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Fig.1 Framework for building aggregate-based models (ABMs) in soil systems. Theories built 26 

upon traditional soil fractionation and even artificial aggregates (Path 1) and the size distribution 27 

of aggregate reactors derived from tomography powered by machine learning (Path 2) would 28 

inform development of ABMs from the bottom up. This theory can be further constrained by top-29 

down measurements of intact soils through model-data assimilation (Path 3). 30 
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            In our recent article in Global Change Biology (Wang et al., 2019), we proposed to develop 35 

aggregate-based models (ABMs) based on a view of soil aggregates as biogeochemical reactors in 36 

the context of soil heterogeneity. Using a bottom-up philosophy, we argued for developing ABMs 37 

based on a systematic and dynamic view of soils as a constellation of aggregate reactors of different 38 

sizes. We envision that these ABMs offer the potential to bring new mechanistic perspectives into 39 

soil system modelling. 40 

            In a letter to the editor by Kravchenko et al. (2019) an alternative opinion is articulated, 41 

and we appreciate the authors’ thoughtful comments. One element of this opinion is that soil 42 

system functioning is not a simple sum of soil constituents—we agree with this statement. Another 43 

objection from Kravchenko et al. is primarily based on indeterminacies of size and boundary 44 

conditions of aggregate reactors. We also agree that these limitations are important, and we began 45 

to address them in Section 6 of our article (Wang et al. 2019). However, we believe that these 46 

challenges arising from traditional soil fractionation techniques do not necessarily dilute our 47 

confidence in developing ABMs as a prognostic framework that integrates soil processes from the 48 

bottom up. We are grateful to have the opportunity here to further clarify our view and share new 49 

thoughts on it. 50 

            A bottom-up modelling approach is the ‘Holy Grail’ of soil system modelling that has been 51 

difficult to achieve because of soil’s opaque and heterogeneous nature. In contrast, there has been 52 

a successful infusion of this modelling philosophy into such fields as ecology, sociology, 53 

economics, physics, and others (e.g., Auyang 1998; Shugart et al. 2018). In soil science, 54 

aggregates reflect soil system development (‘succession’). Aggregates of different sizes form and 55 

collapse constantly during aggregate ‘ontogeny’, defined by aggregate turnover/stability, while 56 

interacting with many endogenous and exogenous factors. In this context we propose that 57 



 4 

aggregates, as physically distinct units embedded in the complex soil matrix, can be viewed as 58 

biogeochemical reactors, in which biogeochemical reactions actively transpire and across which 59 

soil macro-pores bridge interactions. By explicitly simulating aggregate reactors of different sizes 60 

along with their interactions, soil system functioning can be quantified as an emergent property of 61 

finer scale processes. This bottom-up modelling philosophy reflects how we understand soil 62 

system composition, structure, function, and dynamics. From this perspective, we firmly believe 63 

that viewing soil aggregates as physically independent units is a way forward for understanding 64 

soil system functioning. 65 

            In building ABMs, aggregate separation techniques and even artificial aggregates have 66 

played and will continue to play a pivotal role in gaining theoretical understanding of aggregate 67 

reactors and their size-dependent relationships with various factors (Path 1 in Fig.1). Aggregate-68 

based approaches can offer an advantage of measurability relative to current soil carbon models 69 

such as CENTURY for which the simulated carbon pools cannot be measured directly (Parton 70 

1996). Although building ABMs based on lab-derived aggregate sizes is a good starting point, 71 

Kravchenko et al. are legitimately concerned about indeterminacy in real soils. Still, in-situ 72 

observations of size distributions of aggregate reactors are possible via tomography techniques 73 

[e.g., X-Ray CT for bulk soil characterization (Schlüter et al. 2019) and SEM for finer structure 74 

(Smith 2008)] (Path 2 in Fig.1). Even more promising are deep learning techniques for image 75 

recognition that can accelerate the retrieval of rich soil structural information from high resolution 76 

soil images derived from these tomography techniques (Reichstein et al. 2019). Therefore, 77 

knowledge from traditional soil fractionations and new data on soil structure powered by machine 78 

learning can inform ABM development with aggregate reactors as fundamental units (Fig.1). 79 
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            Moreover, top-down constraints based on data from intact soils can further address 80 

shortcomings of the bottom-up approaches (Path 3 in Fig.1). For example, boundary conditions 81 

of aggregate reactors (dependent on inter-aggregate spaces or macro-pores) are hard to determine 82 

because of methodological challenges in conducting in situ measurements. Such a lack of in situ 83 

information will increase the parameter uncertainty of ABMs. This issue is analogous to the 84 

determination of abiotic environment conditions, such as light intensity, surrounding an individual 85 

tree crown in a diverse forest system, which, though still hard to measure explicitly, do not hinder 86 

explicit model development (e.g., Wang et al. 2017). Regarding aggregate reactors, one feasible 87 

and efficient approach would be to calibrate ABMs with data derived from intact soils (Kennedy 88 

and O'Hagan 2001). Our original article therefore emphasized the utility of top-down experiments 89 

(Wang et al. 2019) as also stressed by Kravchenko et al. (2019). 90 

             In summary, because they are mechanistically and structurally explicit, we argue that 91 

ABMs are a valuable tool for advancing soil system science [see a recent example by Ebrahimi 92 

and Or (2018)]. Some of the key challenges facing ABMs can be addressed readily with a 93 

combination of theory-driven and data-driven approaches (Fig.1). We hope more researchers from 94 

soil science, ecology, data science, and beyond will join in this discussion of developing bottom-95 

up ABMs by viewing soil aggregates as relatively distinct units. We maintain that biogeochemical 96 

reactors are a useful concept for understanding soil functioning in the context of global 97 

environmental changes. 98 
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