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Convergent solutions of Stokes Oldroyd-B boundary value problems using
the Immersed Boundary Smooth Extension (IBSE) Method

David B. Steina,∗, Robert D. Guyb, Becca Thomasesb

aCenter for Computational Biology, Flatiron Institute, New York, NY 10010, USA
bDepartment of Mathematics, University of California, Davis, Davis, CA 95616, USA

Abstract

The Immersed Boundary (IB) method has been widely used to solve fluid-structure interaction problems,
including those where the structure interacts with polymeric fluids. In this paper, we examine the conver-
gence of one such scheme for a well known two-dimensional benchmark flow for the Oldroyd-B constitutive
model, and we show that the traditional IB-based scheme fails to adequately capture the polymeric stress
near to embedded boundaries. We analyze the reason for such failure, and we argue that this feature is not
specific to the case study chosen, but a general feature of such methods due to lack of convergence in velocity
gradients near interfaces. In order to remedy this problem, we build a different scheme for the Oldroyd-B
system using the Immersed Boundary Smooth Extension (IBSE) scheme, which provides convergent vis-
cous stresses near boundaries. We show that this modified scheme produces convergent polymeric stresses
through the whole domain, including on embedded boundaries, and produces solutions in good agreement
with known benchmarks.

Keywords: Complex Fluids, Oldroyd-B, Immersed Boundary, Complex geometry, Partial Differential
Equations, High-order

1. Introduction

The Immersed Boundary (IB) method was originally developed for the study of moving, deformable
structures immersed in a fluid, and it has been widely applied to such problems since its introduction [1–
3]. Recently, the method has been adapted to more general fluid-structure problems, including the motion
of rigid bodies immersed in a fluid [4], fluid flow through a domain with either stationary boundaries or
boundaries with prescribed motion [5, 6], and fluid-structure problems in which the boundaries interact
with a polymeric fluid [7–12]. In this broadened context, we use the term Immersed Boundary method
to refer only to methods in which (i) the boundary is treated as a Lagrangian structure embedded in a
geometrically simple domain, (ii) the background PDE (e.g. the Navier-Stokes equations) are solved on a
Cartesian grid everywhere in that domain, and (iii) all communication between the Lagrangian structure
and the underlying PDE is mediated by convolutions with regularized δ-functions. These methods have
many desirable properties: they make use of robust and efficient Cartesian-grid methods for solving the
underlying PDE, are flexible to a wide range of problems, and are simple to implement, requiring minimal
geometric information and processing to describe the boundary. The accuracy and convergence properties
of the IB method have been well-studied for Netwonian fluids, but it has not been carefully validated against
known benchmarks for polymeric fluids. In this paper, we examine the IB method applied to a classical test
problem: the flow of an Oldroyd-B fluid at zero Reynolds number past a stationary cylinder in confinement.
This problem has been extensively studied [13–17], and high quality benchmarks are available at low values
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of the Weissenberg number. We show that the IB method, uncorrected, produces incorrect stresses in
near-boundary regions, and we identify the cause of this simply as a failure of the viscous stress tensor to
converge in these regions. The errors in the velocity gradients enter into the evolution equation for the
polymeric stress, and cause persistent errors that do not converge with grid refinement. We then summarize
a recently introduced modification of the IB method, the Immersed Boundary Smooth Extension method
[18, 19], which captures the viscous stress tensor accurately near boundaries, and show that this method
coupled to a standard pseudo-spectral Oldroyd-B solver produces accurate solutions that converge to known
benchmarks.

In this paper, we first consider coupling an unaltered Immersed Boundary scheme to a pseudo-spectral
solver for the Stokes Oldroyd-B (SOB) equations for a viscoelastic fluid to simulate polymeric flows in two-
dimensional stationary complex geometries. The evolution of the polymeric stress in the SOB equations
is an ODE along streamlines that contains growth terms dependent on the gradient of the fluid velocity
∇u. When fixed obstacles exist in a flow, large velocity gradients are typically present in near-boundary
regions. For many embedded boundary methods, including the IB method, gradients of the velocity field
are not captured accurately in the near-boundary region: for general flows they show persistent O(1) errors
that do not disappear with grid refinement [19]. It would thus be surprising if the IB method, unmodified,
provided accurate solutions for the polymeric stress near to boundaries, and to our knowledge the convergence
properties of these schemes when applied to complex, nonlinear equations such as the SOB system has not
been rigorously analyzed. In this paper, we show that it is indeed the case that this quantity fails to converge
in the L∞ norm; with large errors precisely in the near-boundary regions where velocity gradients are not
accurately.

Significant effort has been expended on improving the accuracy of embedded boundary schemes [23–39],
an overview is provided in [18]. In addition, methods which build on the IB or Immersed Finite Element
(IFEM) method but with modifications such as the use of one-sided interpolation and spread operators near
to boundaries have been used to model flow past fixed objects and deformable particles in a viscoelastic fluid
[41–43]; these works have shown that averaged flow features are resolved but convergence of the stress at
and near boundaries is not considered. A subset of these improved embedded boundary methods [18, 19, 39]
generate solutions to the fluid equations that are globally smooth in a simple domain, and as such allow
discretizations of more complicated, nonlinear equations to be constructed in a way that is nearly unaltered
from solvers used on simple geometries. In [18], we demonstrate that the Immersed Boundary Smooth
Extension (IBSE) method allows for simple and accurate discretizations of the 2D viscous Burgers’ and
Fitzhugh Nagumo equations, and in [19], we show that the solver applied to the Stokes and Navier-Stokes
equations is able to obtain high-accuracy solutions for all elements of the Newtonian stress tensor, including
velocity gradients, up to the boundary. In light of these observations, it is natural to consider using the
IBSE method, rather than the IB method, as the underlying fluid solver when constructing an embedded
boundary scheme for the SOB equation in complex geometries. In the remainder of the paper, we show that
a simple scheme based on the IBSE method and a Fourier pseudo-spectral evolution scheme for the SOB
equations indeed converges, up to and on embedded boundaries, allowing the consistent computation of local
tractions imparted by the polymeric fluid onto immersed obstacles. To the best of our knowledge, these
results provide the first rigorous demonstration of an embedded boundary scheme providing L∞ convergence
of the polymeric stress up to and on embedded boundaries for the flow of a polymeric fluid — including
convergence to numerically challenging benchmarks [14–16].

This paper is organized as follows: in Section 2, we describe the Stokes Oldroyd-B (SOB) model, a
pseudo-spectral evolution scheme for the simulation of the SOB system in a periodic rectangle, and a
standard benchmark flow experiment. In Section 3, we show how this method can be simply extended to
complex geometries using the IB method, show that this method fails to provided convergent solutions for
the polymeric stress near to domain boundaries, and provide a brief analysis explaining this inaccuracy. In
Section 4, we show how to alter this scheme to instead use the IBSE method, demonstrate convergence for
the relatively simple flow for which the IB based scheme failed, and finally show convergence results for
more challenging numerical benchmarks at higher Weissenberg number.
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2. Evolution of the Stokes Oldroyd-B Equation

The total stress (τtot = τN+τP) in an incompressible polymeric fluid is often decomposed into a Newtonian
portion (τN = ηsγ̇ − P I) and a polymeric portion (τP), where u is the fluid velocity, ηs is the Newtonian
(solvent) viscosity, P is the pressure, I is the identity tensor, and γ̇ is the strain rate tensor γ̇ = ∇u+(∇u)ᵀ.
Letting λ denote the relaxation time of the polymers, we assume that the polymeric stress (τP) evolves as

τP + λ
∇
τP = H(τP, γ̇), (1)

where the notation
∇
τP denotes the upper-convected time derivative of τP:

∇
τP = ∂tτP + u · ∇τP − (∇u)ᵀτP − τP∇u. (2)

We have taken the convention that (∇u)ij = ∂xiuj . With ηp the polymer viscosity, the Oldroyd-B model is
given by H(τP, γ̇) = ηpγ̇; other common models may be represented with different choices of the function H,
e.g. for the Giesekus model, H(τP, γ̇) = ηpγ̇ − α λ

ηp
τP

2 [44]. The symmetric positive-definite conformation

tensor σ is related to the polymeric stress by τP =
ηp
λ (σ − I). Substituting this into eq. (1), along with

H(τP, γ̇) = ηpγ̇, and noting that
∇
I = −γ̇ leads to an evolution equation for σ:

∇
σ =

−1

λ
(σ − I) . (3)

Rescaling the pressure P as p = P/ηs, an external force F as f = F/ηs, and defining a coupling constant
ξ = ηp/(ηsλ) gives the system

−∆u +∇p = ξ∇·σ + f , (4a)

∇·u = 0, (4b)

∇
σ = −λ−1 (σ − I) . (4c)

Further rescaling space by a system size L and time by an inverse strain rate L/U (where U is a typical
velocity scale) leads to a nondimensional system of the same form with the relaxation time λ replaced by
the Weissenberg number Wi = Uλ/L. In the literature, it is common to work with a constant β, the ratio
of Newtonian viscosity to total viscosity, given by β = ηs/η, where the total viscosity η is defined to be the
sum of the Newtonian viscosity (ηs) and the polymeric viscosity (ηp). λ and β are related by ξ = 1−β

βλ .

2.1. A pseudo-spectral evolution scheme for the SOB system

We initially consider solving the Stokes Oldroyd-B equations on the periodic torus T2 = [0, 2π]× [0, 2π]
in two spatial dimensions, with the flow driven by a force f(x, y, t), with zero polymeric stress at t = 0:

−∆u +∇p = ξ∇·σ + f(x, y, t) in T2, (5a)

∇·u = 0 in T2, (5b)

∇
σ = −λ−1 (σ − I) in T2, (5c)

σ(x, y, 0) = I. (5d)

Note that zero polymeric stress corresponds to σ(x, y, 0) = I, and that no initial condition is needed for u
— as we are solving the Stokes Oldroyd-B model, u(x, y, 0) is determined by the solution to

−∆u(x, y, 0) +∇p(x, y, 0) = ξ∇·σ(x, y, 0) + f(x, y, 0) in T2, (6a)

∇·u(x, y, 0) = 0 in T2. (6b)
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Throughout this paper, we will be interested primarily in steady-state behavior. To discretize this system in
time, we thus consider u to be fixed, advance the equation for σ forward in time by ∆t, and then recompute
u using the updated value of σ. The Runge-Kutta 4 (RK4) timestepping scheme is well suited to evolving
the convection dominated evolution equation for σ [46], although in Section 4.4 we will utilize an IMEX-
BDF based scheme. Derivatives are computed spectrally by utilizing the Fast Fourier Transform (FFT),
and nonlinear terms are computed pseudo-spectrally with the filter defined in [45].

Analytically, it is known that if σ is initially positive-definite, then the solution σ(x, y, t) to Equation (5)
remains positive-definite [47]. Unfortunately, the numerical scheme described above does not retain this
property, and a loss of positive-definiteness of σ is typically accompanied by numerical instability and
failure [17]. Several numerical solutions have been proposed for this problem, including one in which the
matrix logarithm of σ is advanced in time [48], and one in which the matrix square-root of σ is advanced in
time [49]. We will use the matrix square-root method: letting b =

√
σ be the unique positive-definite matrix

square-root of σ, we solve the evolution equation [49]:

∂tb+ u · ∇b = b∇u + ab+
1

2λ

(
b−ᵀ − b

)
, (7)

where a is a skew symmetric matrix with off-diagonal elements depending on b and ∇u. As in the previous
discussion for the evolution of σ, this evolution is accomplished using explicit pseudo-spectral methods.
Once b has been updated, to update u we first compute σ = b2, and then solve for u as before. Since σ = b2,
σ is guaranteed to stay at least positive semi-definite [49].

The preceding discussion is sufficient to evolve the SOB system in a periodic box. Many flows of interest
are set in more complex domains, for which we will need more complex algorithms. In this paper, we
introduce two: one based on the IB method (Section 3), and one based on the IBSE method (Section 4.2).
Before introducing these methods, we discuss a standard benchmark problem that we will use to assess the
quality of the solutions produced by each method.

2.2. A standard benchmark Stokes Oldroyd-B flow and flow characteristics

A standard benchmark flow for evaluating numerical solvers for polymeric flow problems is the confined
flow of a fluid around a cylinder in a channel, studied in [14–16, 50]. The behavior of the flow is well
understood at low Weissenberg numbers but the behavior of the flow is unknown for Wi & 0.7 (for this
problem, Wi = λ). The typical computational setup is in a rectangular domain, [−20, 20] × [−2, 2] with
no-slip (u = 0) boundaries imposed on the bottom and top of the domain, the inflow condition u(−20, y) =
(uin(y), 0) with

uin(y) =
3

2

(
1− y2

4

)
, (8)

and an outflow boundary condition (which may differ depending on the computational setup). The parameter
β = ηs

η is fixed at 0.59.
In order to assess the quality of the solutions, we examine two quantities. The first is the scalar drag

coefficient, which may be computed as

Cd =
1

η

� 2π

0

[
(τPxx + ηsγ̇xx − P ) cos θ +

(
τPxy + ηsγ̇xy

)
sin θ

]
dθ. (9)

This benchmark has been computed to high accuracy using a variety of methods [13, 51–63], with close
agreement at low values of Wi. In comparing the IB and IBSE based methods, it will be sufficient to
focus only on the very low Weissenberg number case of Wi = 0.1, for which there is good agreement in
the literature for a value of Cd = 130.364. The second quantity that we examine is the value of the xx-
component of the extra polymeric stress (τP) near to and on the cylinder walls. Although exact values are
not reported in the literature, the value may be inferred from plots to be between 17 and 19 [16].
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Figure 1: The computational setup we will use to solve the confined flow around a cylinder problem for a Stokes Oldroyd-B
fluid. Note that in contrast to [14–16, 50], the domain is 12π ≈ 37.7 long, instead of 40 long. The domain Ω where fluid is
present is shown in white, the entire computational domain C is the full box. What we will refer to as the extension domain
E in Section 4, is shown in gray.

3. Evolution of the SOB system in complex geometry using the IB method

In the classical IB method, known forces on an interface defined by the parametrized curve X(s) are
transferred to a grid by convolving those forces with a regularized delta function δh:

f(s) = (SF)(x) =

�
X(s)

F(s)δh(x−X(s)) ds, (10)

the fluid equations are solved for u, and the structure is moved with the fluid velocity according to

U(s) = (S∗u)(s) =

�
C

u(x)δh(X(s)− x) dx. (11)

The operators S and S∗ are typically referred to as the spread and interpolation operators, respectively.
Boundary value problems are slightly different. For these problems, the velocities on the boundary are

known, while the forces that impose these boundary conditions are unknown, and the fluid may be defined
only in some subset Ω of a larger, simple domain C (see Figure 1). In the tether point method [6], these
forces are approximated by connecting the boundary to artificial fixed points using springs. In the direct
forcing IB method [4, 5], these forces are instead computed directly as Lagrange multipliers that serve to
enforce the velocity boundary conditions. For a general Stokes problem, set in a domain Ω, we may solve
the simple computational domain C by adding singular forces F supported on the boundary that act as
Lagrange multipliers which enforce the boundary condition. For Dirichlet problems this can be represented
as

−∆u +∇p+ SF = f in C, (12a)

∇ · u = 0 in C, (12b)

S∗u = Ub. (12c)

In order to simulate the confined channel flow past a cylinder geometry described in Section 2.2, we embed
the channel into the larger periodic box [−6π, 6π]× [−π, π], denoted by C. The entire computational setup
is shown in Figure 1. Internal boundaries representing the channel walls are placed at y = −2 and y = 2,
along the entire length of the channel, and around the circle of radius 1 centered at the point (0, 0). The
IB method will be used to enforce a no-slip u = 0 boundary condition along the channel walls, and at the
surface of the cylinder, corresponding to Ub = 0 in Equation (12). Discretization of the S and S∗ operators
has been covered in detail elsewhere [1]. For these computations we use the fourth-order C3 regularized δ
function introduced in [18], so that the results are directly comparable to those given in Section 4. We have
run the identical simulations with other choices of the regularized δ functions, and find little difference in the
results. We note that the length of the channel is 12π ≈ 37.7, which is slightly less than the channel length
of 40 used in other studies [14–16, 50]. In this setup, direct imposition of the inflow and outflow boundary
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conditions is nontrivial. Instead, we approximate these by adding a constant forcing to the domain whose
magnitude is treated as a Lagrange multiplier to enforce the average inflow condition

� 2

−2

u(−6π, y) dy = 1, (13)

discretized using Simpsons rule. Because of the fact that the IB method relies on simple, underlying
Cartesian grid solvers, integration of the pseudo-spectral solver for the polymeric stress and the IB solver
for the Stokes equations is simple. The full system to be evolved is:

∂tb+ u · ∇b = b∇u + ab+
1

2λ

(
b−1 − b

)
, in C, (14a)

−∆u +∇p+ SF− αx̂ = ξ∇·σ in C, (14b)

∇·u = 0 in C, (14c)

S∗u = 0, (14d)� 2

−2

u(−6π, y) dy = 1. (14e)

This system is evolved in exactly the same way as is described in Section 2.1, with the exception that
u(t+ ∆t) is found by solving the Stokes equations as given in Equations (14b) to (14e).

3.1. Results: Flow past a cylinder at low Wi using the IB-SOB solver

To analyze the quality of the solutions produced by the IB-SOB scheme introduced in Section 3, we solve
the flow around a cylinder problem described in Section 2.2 for both a coarse discretization (ny = 64), and
a relatively fine discretization (ny = 256), where ny denotes the number of points discretizing the domain
in the span-wise direction. For all computations the time-step is set to ∆t = 0.64/ny, and the simulations
are run to tfinal = 20Wi = 2.

The stress in the upper half of the channel, in a region near the cylinder, is shown in Figure 2. Benchmark
solutions are qualitatively different, with stresses that are larger and maximized at the boundary [14–
16, 50], while the solutions produced by the IB method are smaller and maximized away from the boundary.
Interpolating the stress to the boundary (by computing the stress in C and applying S∗) produces stresses
that are far smaller than the benchmark solution (with maximum value no greater than 6 at all discretizations
tested), and does not converge to the known solution (with a maximum value between 17 and 19) with grid
refinement.

The drag-coefficient, as defined by Equation (9), involves an integral of elements of the viscous and
polymeric stress tensor on the boundary. Because these fail to converge near to the boundary, computation
of this quantity by computing the relevant quantities in the domain, interpolating to the boundary using
S∗, and computing the integral given in Equation (9) gives an incorrect result. Instead, we may compute
the drag coefficient as a sum over the singular forces:

Cd =
1

η

�
Γ

ηsF · x̂ dS. (15)

Note that F gives the jump in stress, for this problem the interior solution converges to 0; for the flow of an
incompressible, viscous Newtonian fluid around a cylinder, this is known to provide a consistent result [23].
For ny = 64 and ny = 256, we find values of Cd = 173.951 and Cd = 138.647, giving errors (as computed
to the benchmark value of 130.364) of approximately 33% and 6.4%, respectively. Perhaps surprisingly, this
appears convergent, despite the inaccuracy in the stress in the near-boundary region.

3.2. Analysis of Errors in the IB-SOB solver

To understand the failure for the convergence of the stress in the preceding section, we turn to the
simple one-dimensional Poisson problem. We will solve ∆u = f , where C is the periodic interval [0, 2π],

6
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(a) n = 64, −3 ≤ x ≤ 3, y > 0 (b) n = 64, −0.5 ≤ x ≤ 0.5, 0.8 ≤ y ≤ 1.2
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(c) n = 256, −3 ≤ x ≤ 3, y > 0 (d) n = 256, −0.5 ≤ x ≤ 0.5, 0.8 ≤ y ≤ 1.2

Figure 2: The xx-component of the polymeric stress τP for the Stokes Oldroyd-B flow around the cylinder problem, computed
by the Immersed Boundary method, with ny = 64 (a, b) and ny = 256 (c, d), and Weissenberg number Wi = 0.1. In (a, c),
the stress τPxx is shown in the upper half of the channel (y > 0), for −3 ≤ x ≤ 3. In (b, d), a zoom near the cylinder wall is
shown, with −0.5 ≤ x ≤ 0.5 and 0.8 ≤ y ≤ 1.2.

the physical domain Ω is chosen to be [0, 2π] \ [3, 4], and the extension domain E is taken to be (3, 4). We
take f = sinx to be given in Ω, and seek to impose homogeneous Dirichlet boundary conditions enforced at
x = 3 and x = 4. Some choice of f must be made in E. We will explore two options:

f̃1 =

{
sinx, x ∈ Ω,

sinx, x ∈ E, (16)

and

f̃2 =

{
sinx, x ∈ Ω,

0, x ∈ E, (17)

In the first case, f̃1 ∈ C∞(C), while in the second case f̃2 is piecewise smooth but discontinuous at the
boundary points x = 3 and x = 4. We now solve the problem analytically in the two subdomains Ω and
E. Results are shown in Figure 3; in Panel (a) for f̃1 and in Panel (b) for f̃2. For both choices of u, the
solution is only C0 across the interface, despite the different regularity of the input forcing f̃ .

We define ũ as the function that equals uΩ in Ω, uE in E, and 0 on Γ (with subscripts corresponding to
the subscripts on the forces, when used). Notice that both ũ1 and ũ2 are piecewise smooth, the derivatives
have jumps across the Γ. Differentiating twice, we thus find that:

∆ũ = f̃ + [ũ′]3δ3 + [ũ′]4δ4, (18)

where δa is the Dirac-delta distribution centered at the point a and the bracket notation [u′]a is used to
denote the jump in the given quantity across the point x = a, i.e [u′]a = limx→a+ u

′(x) − limx→a− u
′(x).

Solving on C, rather than on Ω, thus requires the addition of singular forces supported at Γ:

∆ũ+A3δ3 +A4δ4 = f̃ in C, (19a)

ũ = 0 on Γ. (19b)

7



0 π 2π

x

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

u

Ω Ω

E
−1.0

−0.5

0.0

0.5

1.0

f

(a) Solution and forcing for f̃1
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(b) Solution and forcing for f̃2
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(c) Solution and forcing for f̃3

Figure 3: The solution to the Laplace problem ∆u = f̃ ; u(3) = u(4) = 0, for different choices of f̃ . In (a), the forcing function
f̃1 is taken to be C∞(C), yet the solution u is only continuous. This is the generic case — in (b), a different choice is shown
where f̃2 is not even continuous, with the same regularity of the solution. Only for very specific choices of f̃ , such as f̃3, is the
solution u smooth, as shown in panel (c). Note that f̃ is the same in Ω in all graphs, but has been rescaled in Panel (c). The
computation of extended forcing functions that give smooth u will be discussed in Section 4.1.

Note that Aa = −[ũ′]a, and depends on the choice of f̃ . The constants A3 and A4 may be thought of as
Lagrange multipliers that act to enforce the boundary condition that ũ = 0 on Γ, and that these singular
forces correspond to the regularized singular forces added to enforce the boundary condition in Equation (12).
The consequence of the addition of these singular forces is that the analytic solution is in general not smooth,
and thus boundary-naive discretizations fail to converge rapidly: using a Fourier spectral discretization, the
solution u converges at only first-order in the grid spacing h, while the derivative ũ′ fails to converge near
to the boundary.

For the Stokes equations as discretized via Equation (12), the situation is similar: fluid velocities will
be continuous and converge, elements of the stress tensor have discontinuities and fail to converge near
to embedded boundaries. We restate here the evolution equation for the conformation tensor σ in the
Oldroyd-B model:

σt + u · ∇σ − (∇u)ᵀσ − σ∇u = − 1

Wi
(σ − I). (20)

The nonlinear growth terms in this evolution equation depend on ∇u, and failure of convergence of ∇u in
near-boundary regions leads to failure of convergence for the polymeric stress in the same locations. We
comment that this is different from the case of Navier-Stokes, where the evolution of u depends on gradients
of the velocity only in the convective term, and there is additional smoothing that is not present in the
Oldroyd-B model.

Finally, we note that it is possible to choose extended functions f̃ for which the solution ũ is smooth.
An example is shown in Figure 3c. For this choice, the solution ũ will converge rapidly, and both u and u′

will agree with the analytic solution in Ω. If such extended forcing functions could be chosen in general,
we might expect to capture the evolution of the polymeric stress correctly, since ∇u should be captured
accurately, even in near boundary regions. We discuss the computation of such functions in the following
section.

4. Evolution of the SOB system in complex geometry using the IBSE method

Having identified the reason for the failure of the polymeric stress to converge as inaccuracies in the fluid
velocity gradients, we turn to remedying this problem. In Section 3.2, we make two observations: (1) failure
of ∇u to converge is due to the low global regularity of the solution ũ to the problem set in C, and (2),
there is a freedom to choose f in E which we have not exploited. In [19], we show that choosing f in an
appropriate manner leads to a solution u that converges rapidly, with consistent estimates of all elements
of the fluid stress tensor including the velocity gradients ∇u. A full explanation of the method is presented
in [19], here we present a brief review.
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4.1. Review of the IBSE method

It is considerably simpler to explain the Immersed Boundary Smooth Extension (IBSE) method in the
context of the Poisson, rather than the Stokes, equation. Although some details differ, the basic ideas are
the same, and the differences are carefully analyzed in [19]. Suppose then that we wish to solve the Poisson
problem

∆u = f in Ω, (21a)

u = g on Γ, (21b)

in an arbitrary smooth domain Ω. The IBSE method works by smoothly extending the unknown solution u
from the physical domain Ω to the simpler computational domain C. We assume that the boundary Γ = ∂Ω
is smooth, not self-intersecting, and must separate C into the two disjoint regions Ω and the extension
domain E = C \Ω. We denote an extension of the unknown solution u by ξ. This extension of the solution
is then used to define a volumetric forcing Fe = ∆ξ in the region E. With this forcing, an extended problem
in all of the simple domain C may be solved:

∆ue − χEFe = χΩf in C, (22a)

ue = g on Γ. (22b)

The solution ue gives the desired solution u in Ω and is equal to ξ in E. Because ξ was chosen to be a
smooth extension to u, the function ue is globally smooth in C.

The extension ξ to the unknown function u is defined as a solution to a high-order PDE which takes
for its boundary conditions matching criteria of the form ∂jξ/∂nj = ∂ju∂nj . This allows the extension
to be defined by a small number of unknowns (proportional to the number of points used to discretize
the boundary). The extension PDE for ξ is solved efficiently in the simple domain C using an Immersed
Boundary type method.

In order to succinctly describe the methodology we require some additional notation. We define the
spread operator :

(S(j)F )(x) = (−1)j
�

Γ

Fj(s)
∂jδ(x−X(s))

∂nj
dX(s) (23)

and the interpolation operator :

(S∗(j)ξ)(s) = (−1)j
�
C

ξ(x)
∂jδ(x−X(s))

∂nj
dx (24)

for the jth normal derivative, where X(s) is a parametrization for Γ with s in the parameter interval IΓ.
We further introduce the composite operators Tk, T ∗k , and R∗k by:

Tk =

k∑
j=0

S(j), (25a)

T ∗k =
(
S∗(0) S∗(1) · · · S∗(k)

)ᵀ
, (25b)

R∗k =
(
S∗(1) · · · S∗(k)

)ᵀ
. (25c)

The operator T ∗k provides an interpolation of a function and its first k normal derivatives to the boundary;
R∗k provides an interpolation of the first k normal derivatives to the boundary, but excludes the values;
the spread operator Tk represents a set of singular forces (δ-like) and hyper-singular forces (like the first k
normal derivatives of the δ-function) on the boundary.
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The central challenge of the IBSE method is to compute the smooth extension to an unknown solution.
We first discuss how to compute an extension to a given function. Let v ∈ Ck(Ω) be given. To compute a
Ck(C) extension to v, we solve the following high-order PDE in the region E:

Hkξ = 0 in E, (26a)

∂jξ

∂nj
=
∂jv

∂nj
on Γ, 0 ≤ j ≤ k. (26b)

Here Hk is an appropriate differential operator such as the polyharmonic operator ∆k+1. Details regarding
the specific choice of this operator are available in [18]. This problem may be solved on the simpler domain
C using methodology directly analogous to the direct forcing Immersed Boundary method. The boundary
conditions given in Equation (26b) that force ξ to share its first k normal derivatives with u along Γ are
enforced by the addition of unknown singular and hyper-singular forces supported on the boundary:

Hkξ(x) + (TkF )(x) = 0 for x ∈ C, (27a)

(S∗(j)ξ)(s) =
∂jv

∂nj
(s) for s ∈ IΓ, 0 ≤ j ≤ k. (27b)

Notice that ξ is not actually an extension to v: that is, ξ(x) 6= v(x) in Ω. We will only be interested in the
function ξ in E, and so need not form its literal extension (which is χΩv + χEξ).

To solve the Poisson problem given by Equation (21) using the IBSE method, we instead solve the
extended problem given in Equation (22). The forcing function Fe that is specified in E must be chosen
so that it forces the extended solution ue to be Ck(C). Let ξ smoothly extend u, that is, we ask that ξ is
globally smooth in C and that it satisfies the constraints

R∗kξ = R∗ku (28)

at the interface Γ. These constraints require that the first k normal derivatives of ξ agree with the first k
normal derivatives of u on the boundary. The forcing function Fe is then defined as Fe = ∆ξ. Coupling
these equations together, we obtain the IBSE formulation for the Poisson problem given by Equation (21):

∆u− χE∆ξ = χΩf in C, (29a)

Hk + TkF = 0 in C, (29b)

R∗kξ = R∗ku, (29c)

S∗u = 0. (29d)

In [18], we verify that the IBSE formulation of the Poisson problem given in Equation (29) produces
Ck(C) solutions that converge at a rate of O(∆xk+1), in the L∞(Ω) norm, for the Poisson problem, as
well as the heat equation, Burgers equation, and the Fitzhugh-Nagumo equations. In [19], we derive a
generalization of the IBSE formulation described here sufficient for solving the Stokes equations, and verify
that it produces velocities u with global regularity Ck(C) and that all elements of the viscous stress tensor
are Ck−1(C). The velocity and stress converge to the correct solutions at a rate of O(∆xk+1) and O(∆xk),
respectively.

4.2. Coupling of IBSE to the SOB solver

In Section 3, we computed solutions to a standard benchmark problem (the flow around a cylinder
in a confined channel) for the Stokes Oldroyd-B model using the Immersed Boundary method, and find
several deficiencies with the quality of the solutions. In particular, even for low values of the Weissenberg
number (Wi = 0.1), the solutions produce polymeric stresses that are too small, are maximized away from
the boundary, and fail to converge when interpolated to the boundary. Although an integral quantity
relating to the stress (the drag coefficient, Cd) does converge, it converges slowly, and produces large errors:
approximately 33% on a coarse grid (ny = 64) and approximately 6% on a fine grid (ny = 256). The
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Immersed Boundary Smooth Extension method introduced in [19] and summarized in Section 4 was designed
primarily to deal with these issues. By automatically generating a globally smooth extension of the velocity
field u and pressure field p at every timestep, the boundary can be effectively ignored when solving the
Oldroyd-B update without introducing large errors at the boundary.

The IBSE based Stokes Oldroyd-B solver works in almost exactly the same way as the IB based Stokes
Oldroyd-B solver described in Section 3. There is only one additional difficulty: we must decide what to
do with the extra polymeric stress τP in the extension region E. Recall that b is defined to be the positive
definite matrix square-root of the conformation tensor σ. Assuming that ut and bt are known at the discrete
time t, the Stokes Oldroyd-B system is advanced in time as follows:

1. The evolution equation for b given in Equation (7) is advanced for one time-step to compute b∗, as
described in Section 2.1.

2. The conformation tensor σ∗ is computed as b2∗.

3. The Stokes equation:

−∆ut+∆t +∇pt+∆t = ξ∇ · σ∗ in Ω, (30a)

∇ · ut+∆t = 0 in Ω, (30b)

Supplemented with boundary conditions for ut+∆t, is solved using the IBSE method to find the
solutions ut+∆t and pt+∆t that are globally smooth in C and satisfy Equation (30) in Ω (see Section 4
for details).

4. The square root of the conformation tensor, b∗, is re-extended ; that is, redefined in the extension
region E to maintain smoothness in the entire domain, denoted by bt+∆t = Rb∗. We describe the
re-extension process in detail below.

Other than the final re-extension step, this algorithm is identical to the IB-SOB algorithm described in
Section 3, with the IBSE method replacing the IB method for solving the Stokes equation given by Equa-
tion (30). The re-extension step is necessary due to the fact that the solution of u in E is non-physical, and
often displays large derivatives. Naively evolving b in E using this aphysical u leads to instabilities, and
thus we choose simply to reset b in E at each timestep. The re-extension operator Rk−1, for use with the
IBSE-k method, is defined by the following process:

1. Let b̃ be the solution to the equation:

Hk−1b̃+ Tk−1 = 0 in C, (31a)

T ∗k−1b̃ = T ∗k−1b∗, (31b)

Note that this equation is solved elementwise for each element of the tensor. That is, we define b̃ij to
be a Ck−1(C) function that shares its first k − 1 normal derivatives with bij∗ on the boundary Γ.

2. Define Rb∗ by

Rb∗ =

{
b∗ in Ω,

b̃ in E.
(32)

Thus the re-extension operator Rk−1 smoothly re-defines bt+∆t in the extension region E. This equation is
solved using the methodology described in Section 4. Notice the choice to re-extend b to be only Ck−1, and
not Ck. The IBSE-k method produces Ck solutions of the velocity field u, and thus b will be only Ck−1 in
the vicinity of the boundary.

4.3. Results: Flow past a cylinder at low Wi using the IB-SOB solver

We now return to the confined channel flow around a cylinder problem defined in Section 2.2 and studied
using the IB-SOB algorithm in Section 3.1. The setup for the simulations is identical, and we present results
for the same coarse (ny = 64) and fine (ny = 256) discretizations used in Section 3.1. Evolution of the
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ny IB (value) IBSE-2 (value) IB (error) IBSE-2 (error)
64 173.951 130.457 33% 0.07%
256 138.647 130.374 6.4% 0.008%

Table 1: Drag coefficient and relative error in the drag coefficient, for Wi = 0.1, computed relative to the value 130.364 from
[16]. Relative errors are computed assuming that the reference value is exact; errors from IBSE are on the scale of the last
digit reported.

SOB system is done using the IBSE-SOB solver as described in Section 4.2. In all simulations presented
henceforth, the value of k for the IBSE solver is chosen to be 2, providing third-order accuracy for velocities
and second-order accuracy for stresses.

The xx-component of the extra polymeric stress, τP, computed using both the coarse discretization with
ny = 64 and the fine discretization with ny = 256, is shown in Figure 4. In the zoom of the stress near
the cylinder wall, it is apparent that the stress is maximized on the boundary. The maximum value of
τPxx is approximately 18.5 and 18.2 for the coarse and fine discretizations, respectively, substantially larger
than those computed using the IB-SOB method, and consistent with the solutions shown in [16]. The drag
coefficient may be computed directly using Equation (9), and is found to be Cd = 130.457 for ny = 64 and
130.374 for ny = 256, giving an error of 0.07% and 0.008% when compared with the value Cd = 130.364
reported by [16]. This is an improvement of three to four orders of magnitude over the errors produced by
the IB-SOB method; a comparison is shown in Table 1. For both discretizations, The xx-component of τP,
interpolated to the boundary Γ by applying the interpolation operator S∗, is shown in Figure 7c. This curve
converges rapidly, and appears consistent with the with the solution from [16]; a more detailed analysis is
given in Section 4.4.
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Figure 4: The xx-component of the polymeric stress τP for the Stokes Oldroyd-B flow around the cylinder problem, computed
by the IBSE-SOB method, with ny = 64 (a, b) and ny = 256 (c, d), and Weissenberg number Wi = 0.1. In (a, c), the stress
τPxx is shown in the upper half of the channel (y > 0), for −3 ≤ x ≤ 3. In (b, d), a zoom near the cylinder wall is shown, with
−0.5 ≤ x ≤ 0.5 and 0.8 ≤ y ≤ 1.2.

4.4. Results for moderate Weissenberg number (Wi ≤ 0.7)

As can be seen from examining Figure 4d, the solution to the confined channel flow around a cylinder
problem produces steep stress gradients in the vicinity of the cylinder walls, even for low Weissenberg number
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(Wi = 0.1). At higher values of the Weissenberg number this problem becomes more severe, with steeper
gradients at cylinder walls and the appearance of large stresses in the cylinder wake. To help alleviate the
numerical problems that arise due to these steep gradients in the stress we add an artificial viscosity ζ∆b to
the time evolution for the polymeric stress, with ζ = (4∆x)2. Because this is a diffusion on b, rather than σ
or τP, we can not identify it as stress diffusion; it is simply an artificial viscosity added to prevent numerical
breakdown. This evolution equation is marched in time using the same IMEX-BDF scheme used in [19] for
solving the Navier-Stokes equations. Note that this is different from the examples in the preceding section,
which where integrated in time using RK4.

In Figure 5, we show the drag coefficient computed via Equation (9), for 0.1 ≤ Wi ≤ 0.7 over a range
of discretization sizes. For low Wi, our simulations agree quite well, even for coarse discretizations. The
resolution required to obtain accurate results increases with Wi. To better highlight the convergence, we
also show the relative error in the drag coefficient Cd (computed against the value provided by [16]). For the
finest discretization and Wi = 0.1, the error is 0.009%, while the error at Wi = 0.7 is 0.19%. In Figure 6a,
we show the xx-component of the polymeric stress τP in the region near to the cylinder for Wi = 0.7 and
ny = 1024 at t = 14. The solution shows the qualitative features that we expect: a steep boundary layer
along the cylinder wall and a prominent stress island in the wake behind the stagnation point at the rear of
the cylinder.
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Figure 5: The drag coefficient Cd and the relative error when compared against the results from [16], computed by the IBSE-2
method with ny = 64, 128, 256, 512, and 1024.

4.5. Effect of the artificial viscosity ζ

Finally, we analyze the effect of the artificial viscosity ζ∆ added to the stress evolution equation. For
the grid resolution ny = 256, with Wi = 0.1, we run to t = 20 Wi = 2.0 and analyze the drag coefficient
Cd and the xx-component of the polymeric stress integrated to the boundary (S∗τPxx) over a wide range
of values of ζ: for ζ = 1/2k for 0 ≤ k ≤ 20. The results are shown in Figure 7. The convergence study for
Cd confirms that the stress converges at first-order in ζ. Because we scale ζ as ∆x2 as the grid is refined,
this gives O(∆x2) convergence of the stress. This is the maximum asymptotic accuracy deliverable by the
IBSE-2 solver used. The values of ζ used for ny = 128, 256, 512, and 1024, along with the associated error
induced in Cd by the artificial diffusivity, are shown in Figure 7a. The polymeric stress τPxx, interpolated
to the boundary, computed over a range of ζ, is shown in Figure 7b. At large values of ζ, the stress on
the boundary differs markedly from the zero diffusion case, but is nearly indistinguishable for the values
used in simulation, especially for finer discretizations. Finally, in Figure 7b, we show τPxx, as a function
of n, interpolated to the boundary, for both the non-diffusive computations from Section 4.3 (solid lines),
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Figure 6: Figure 6a shows the xx-component of the extra polymeric stress τP for the Stokes Oldroyd-B flow around the cylinder
problem, computed by the IBSE method, with ny = 1024 and Weissenberg number Wi = 0.7. Note that the color scale has
been logged, and that the flow domain is longer than is shown.

and with artificial diffusion added (dotted lines). The non-diffusive solutions converge rapidly with n; the
diffusive solutions converge more slowly, with good agreement for finer discretizations.

5. Discussion

In this paper, we have analyzed the convergence of an uncorrected IB method, as well as a method
based on the IBSE method, for solving the Stokes Oldroyd-B equations. The IB based method fails to
capture stresses accurately on-boundary and in near-boundary regions, and is slow to converge even for
averaged quantities such as the drag coefficient. The IBSE method, by contrast, produces rapid convergence
of averaged quantities and convergent solutions in near- and on-boundary regions that are in agreement
with benchmark solutions. Critical to this convergence is the fact that the IBSE solver accurately computes
gradients of the fluid velocity, which feed directly into the evolution equation for the polymeric stresses.

There are several significant limitations to the approach that we have taken. The first of these is the
use of a uniform discretization. It is apparent that the large gradients in fluid velocity near fixed objects
generate large stresses, both along those objects and in the wake of hyperbolic points in the flow. The IB
method has been implemented using adaptive mesh refinement in the distributed memory-parallel IBAMR
(Immersed Boundary Adaptive Mesh Refinement) software [67]. In [19], we have shown how to couple
the IBSE methodology to an underlying finite-difference discretization. Discretization of the physical and
extension equations need not be done using the same grids or methods, as in this paper: the physical
equations may be computed using finite-differences and AMR, while extensions can be computed using
Fourier methods on a dense grid that is localized around obstacles in the flow.

The second major limitation is that the method, as currently implemented, requires the dense inversion
of a system with size 2(k+1)N , where k is the regularity requested from the solution and N is the number of
nodes in the discretized boundary. In two-dimensions, this allows for the solution of small moving-boundary
problems and relatively large stationary-boundary problems. In three-dimensions, the number of points
required for discretizing the boundaries is typically large enough that dense inversion is impractical. The
development of a an efficient preconditioning strategy for these matrices is crucial to scaling the methodology
to large-scale moving boundary problems, in both two and three dimensions.
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Figure 7: In Figure 7a, we show the relative error for the drag coefficient Cd, produced by the IBSE-2 method with varying
values of the artificial viscosity parameter ζ, as compared to the solution produced by the IBSE-2 method with ζ = 0. The
values of ζ used to study higher Wi numbers, along with the corresponding relative difference in the Cd for this problem,

are shown as (5), for ny = 128, (�), for ny = 256, (4), for ny = 512, and (♦), for ny = 1024. In Figure 7b, we show the
xx-component of the extra polymeric stress τP for the Stokes Oldroyd-B flow around the cylinder problem, interpolated to the
boundary using the operator S∗, computed by the IBSE-2 method for a range of values of ζ; the colors of each line correspond
to the values of ζ shown in Figure 7a. The solution corresponding to ζ = 0 is shown in black. S∗τPxx is shown along the upper
half of the cylinder as a function of the parameter θ, with θ = 0 corresponding to the point at the centerline of the channel
downstream of the cylinder, and θ = π corresponding to the point at the centerline of the channel upstream of the cylinder. In
Figure 7c, we again show S∗τPxx, but now as a function of n. Solid lines correspond to the non-diffusive case, the dotted lines
correspond to the solutions computed with diffusion.
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