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Bruno Frédérich1, Francesco Santini2, Nicolai Konow3, Joseph Schnitzler4,
David Lecchini5 and Michael E. Alfaro6

1Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, Liège, Belgium
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5USR 3278, PSL, Labex ‘Corail’, CRIOBE, Moorea, French Polynesia
6Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA

BF, 0000-0003-3438-0243

Convergent evolution of small body size occurs across many vertebrate

clades and may reflect an evolutionary response to shared selective press-

ures. However it remains unclear if other aspects of phenotype undergo

convergent evolution in miniaturized lineages. Here we present a compa-

rative analysis of body size and shape evolution in marine angelfishes

(Pomacanthidae), a reef fish family characterized by repeated transitions to

small body size. We ask if lineages that evolve small sizes show convergent

evolution in body shape. Our results reveal that angelfish lineages evolved

three different stable size optima with one corresponding to the group of

pygmy angelfishes (Centropyge). Then, we test if the observed shifts in

body size are associated with changes to new adaptive peaks in shape.

Our data suggest that independent evolution to small size optima have

induced repeated convergence upon deeper body and steeper head profile

in Centropyge. These traits may favour manoeuvrability and visual aware-

ness in these cryptic species living among corals, illustrating that

functional demands on small size may be related to habitat specialization

and predator avoidance. The absence of shape convergence in large

marine angelfishes also suggests that more severe requirements exist for

small than for large size optima.
1. Introduction
Body size is among the most significant of morphological traits because of its

critical influence on performance and many ecological factors (e.g. [1]). Evol-

utionary impacts of transitions to large body size are well-documented (e.g.

[2]), yet trends towards miniaturization are also characteristic of many branches

in the tree of life [3]. However, the scarcity of rigorous phylogenetically

controlled tests of macroevolutionary effects from miniaturization limits our

understanding of its role in generating morphological diversity. As exemplified

by the rise of birds from Theropoda [4], an evolutionary trend to small body

size may promote phenotypic diversity and lead to higher rates of morphologi-

cal evolution. Shifts to small body size may be driven by various factors, such as

predation pressure and resource competition [3,5], and convergent evolution of

small body size would thus be due to a shared response to those drivers.

Miniaturization may lead to new adaptive peaks, and lineages evolving

towards small size might converge upon similar morphologies [3,6].

Here we explore the evolution of marine angelfishes (Pomacanthidae), an

iconic reef fish family of approximately 88 species, wherein small body size

has led to a traditional classification that assigns 34 species to the genus
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Table 1. Results from fitting shape diversification models (summarized as median values across the 5000 character maps). Models are specified by their
parameters and ranked from best to worst, according to AICc (small-sample corrected AIC) scores and Akaike weights (AICcWt). DAICc scores indicate differences
between the candidate model and the best-fitting model.

model

model specification

AICc DAICc AICcWtrate parameter (s) optimum (u)

OUM_size a diagonal s matrix separate u for size groups 2837.97 0 0.93

OU1 a diagonal s matrix one single u for all species 2832.73 5.24 0.07

BMM_size separate s for size groups — 2776.79 61.19 4.82 � 10214

BM1 one single s for all species — 2671.32 166.65 6.05 � 10237
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Centropyge, the so-called ‘pygmy angelfishes’ [7]. Recent mol-

ecular phylogenies suggest that this genus is paraphyletic

and constitutes at least three lineages currently considered

as subgenera [8]. The disparity of body size within Poma-

canthidae (from 7 to 60 cm in total length, TL) with

potential convergent evolutionary miniaturization presents

an opportunity to explore the impact of size variation on

the pattern of phenotypic evolution. Using molecular phylo-

genetics, morphometrics and comparative methods on a

dataset of approximately 75% of the extant angelfish species,

we asked if body size evolved to different stable optima in

Pomacanthidae. To probe the hypothesis that similar factors

may drive small body size to an adaptive peak, we tested

if pygmy lineages have converged upon a similar body

shape, suitable for cryptic lifestyles.
2. Material and methods
(a) Phylogenetic analyses
Our molecular dataset includes six genes for 67 angelfish species,

representing all described genera, and seven outgroups (see ana-

lyses details in electronic supplementary material, appendix S1

and table S1). We performed maximum likelihood and Bayesian

inference phylogenetic analyses, producing a phylogeny consist-

ent with earlier studies [8,9] (electronic supplementary material,

appendix S1). From the Bayesian posterior distribution generated

by BEAST v. 1.8 [10], we randomly sampled 100 trees to account

for uncertainty in tree topology and branch length in our

comparative analyses.

(b) Morphological data
We compiled information on maximum body size (TL) from the

literature (electronic supplementary material, table S1) and

obtained X-ray images of adult specimens (N ¼ 186) representing

57 species (electronic supplementary material, table S1). Overall

body shape, an ecologically relevant character directly related

to habitat partitioning [11], was quantified by geometric

morphometrics [12] using 18 two-dimensional landmark coordi-

nates (electronic supplementary material, figure S1).

A generalized Procrustes analysis was used to align specimens,

and a shape variable dataset was obtained for each specimen.

A principal component analysis on shape variables was

performed to summarize the major axis of shape variation.

(c) Comparative analyses
All analyses were conducted in R v. 3.2.2 [13]. To test if lineages

have evolved to different body size optima, we ran an
exploratory analysis of size evolution (log-transformed TL) in SUR-

FACE v. 0.4.1 [14]. This method fits Ornstein–Uhlenbeck (OU)

models [15] with accumulating adaptive peaks to data, using a

stepwise Akaike information criterion (AIC) model selection pro-

cedure. We also inferred the ancestral body size of angelfishes

(see details in electronic supplementary material, appendix S2).

The evolutionary interaction between size and shape was

assessed using a phylogenetic regression based on Procrustes

distances [16]. Then MVMORPH v. 1.0.7 [17] was used to compare

the fit of four models of shape evolution (table 1). These models

included Brownian motion (BM) and OU models differing by the

number of rate parameters (s) or optima (u) associated with size

groups inferred from SURFACE (see details about modelling

shape evolution in electronic supplementary material, appendix

S3). We expect OUM_size to best fit our data if body size

drives evolution to different shape optima. Conversely,

BMM_size should fit better if size mainly influences the rate of

shape evolution. We fitted these models using (i) mean species

scores and associated variance along the first three PC axes on

shape variables to reduce the number of parameters and (ii)

5000 character maps produced by stochastic character mapping

[18] to include possible histories of body size. We finally com-

pared the models based on a priori biological hypotheses with

the SURFACE method using data-driven algorithm.
3. Results
SURFACE found three body size optima: 1.04 (¼11.1 cm TL

for pygmy angelfishes), 1.31 (¼20.6 cm TL for medium-

sized species) and 1.60 (¼40.2 cm TL for large-sized species),

consistent with the observed size range of extant lineages

(figure 1 and electronic supplementary material, figure S2).

Ancestral state reconstruction suggested that small body

size is a derived state (electronic supplementary material,

appendix S2).

Phylogenetic regression revealed a non-significant linear

association between body size and shape in Pomacanthidae

(F ¼ 1.26; p ¼ 0.11; R2 ¼ 0.49). Most body shape variation

(78%) occurred along the three first PC axes, which detected

divergence in relative body height (PC1) and head shape

(PC2 and PC3; figure 2). Taking DAICc . 4 as strong indi-

cation of support for the best model over other candidate

models [19], the OUM_size model, allowing the three size cat-

egories to form around separate optimal body shapes, received

most support whereas all other models performed relatively

poorly (table 1). SURFACE results refined this pattern (AICc

improved from 2837 to 2938), revealing three convergences

on body shape in the small-sized Centropyge (figure 2).
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Figure 1. Body size diversification in Pomacanthidae. (a) Consensus time-tree illustrating three size regimes detected by SURFACE. (b) Log transformed body size for all
pomacanthids. (c) Log transformed body size variation within each optimum detected by SURFACE. Red bars indicate optima and black bars indicate the mean value. Fish
images modified under Creative Commons licence from original photographs by J. E. Randall (retrieved from http://pbs.bishopmuseum.org/images/JER/).
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These pygmy angelfishes mainly differed from larger taxa by

having a higher and more vertical forehead (þPC2; figure 2).
4. Discussion
We found support for three different optimal sizes in marine

angelfishes. These adaptive peaks likely correspond to eco-

morphs and there might be multiple underlying drivers for

this observed pattern. Predatory avoidance and ecological

specializations may have operated on angelfish size evolution.

Most pygmy angelfishes (Centropyge) live cryptically in corals

or coral rubble, whereas large-sized Holacanthus and Poma-
canthus species defend wide home ranges around shelters [20].

Angelfishes obtain attached, benthic prey by biting (except the

zooplanktivorous Genicanthus) and their size diversification is

likely driven by biomechanical constraints related to prey
robustness: Pomacanthus feed on firmly attached, resilient invert-

ebrates (e.g. sponges, tunicates), whereas pygmy angelfishes

consume delicate foods (e.g. hydrozoans and filamentous

algae) [21]. Bite force is positively related to head size among ver-

tebrates [22], so it might be expected that specialization on robust

prey may have selected for large size and powerful bite.

Evolutionary change in body size may be viewed as a key

innovation that produces ecological opportunity and induces

changes in the tempo and mode of phenotypic evolution [23].

We show that pomacanthid miniaturization induces repeated

convergence on body shape (figure 2) rather than shifts in

diversification rate, consistent with the idea that evolution

towards small size acts as a morphological novelty that

permits the colonization of new adaptive zones [23]. Conver-

gent evolution upon similar body shapes in pygmy lineages

suggests more severe requirements on small than on large

size optima. Functional demands in small-sized angelfishes

http://pbs.bishopmuseum.org/images/JER/
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Figure 2. Pomacanthid body shape convergence on the macroevolutionary adaptive landscape. (a) Consensus phylogeny drawn to show body shape evolution based
on SURFACE results. Convergent peaks are colour-mapped whereas non-convergent peaks are in grey-scale. (b) Morphospace constructed on principal component
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are probably related to habitat partitioning and predator

avoidance [21]. The deeper anterior body part and higher

head profile of Centropyge favour manoeuvrability in structu-

rally complex habitats [11] and optimize feeding on benthic

prey while maintaining visual awareness of predators [24].

Our results reveal a pattern of imperfect body shape con-

vergence in pygmy angelfishes (figure 2), consistent with

results from small frogs illustrating that numerous miniatur-

ized lineages have not responded identically to reduced size

[6]. Convergent ecomorphs may vary in behaviour, exploit a

common resource or share habitat in different ways, and thus

may have experienced selection on morphology differently

[25]. Our data from marine angelfishes add to the growing

evidence that morphological convergence can be imperfect

even if similar selective demands operate on pygmy lineages.
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