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RESEARCH ARTICLE
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Abstract
The advent of functional genomics has enabled the genome-wide characterization of the

molecular state of cells and tissues, virtually at every level of biological organization. The

difficulty in organizing and mining this unprecedented amount of information has stimulated

the development of computational methods designed to infer the underlying structure of reg-

ulatory networks from observational data. These important developments had a profound

impact in biological sciences since they triggered the development of a novel data-driven

investigative approach. In cancer research, this strategy has been particularly successful. It

has contributed to the identification of novel biomarkers, to a better characterization of dis-

ease heterogeneity and to a more in depth understanding of cancer pathophysiology. How-

ever, so far these approaches have not explicitly addressed the challenge of identifying

networks representing the interaction of different cell types in a complex tissue. Since these

interactions represent an essential part of the biology of both diseased and healthy tissues,

it is of paramount importance that this challenge is addressed. Here we report the definition

of a network reverse engineering strategy designed to infer directional signals linking adja-

cent cell types within a complex tissue. The application of this inference strategy to prostate

cancer genome-wide expression profiling data validated the approach and revealed that

normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover,

by using a Bayesian hierarchical model integrating genetics and gene expression data and
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combining this with survival analysis, we show that the expression of putative cell communi-

cation genes related to focal adhesion and secretion is affected by epistatic gene copy num-

ber variation and it is predictive of patient survival. Ultimately, this study represents a

generalizable approach to the challenge of deciphering cell communication networks in a

wide spectrum of biological systems.

Author Summary

In the current era of cancer research, stimulated by the release of the entire human
genome, it has become increasingly clear that to understand cancer we need to understand
how the many thousands of genes and proteins involved interact. Modern techniques have
enabled the collection of unprecedented amounts of high quality data describing the state
of these molecules during cancer development. In cancer research particularly, this strat-
egy has been particularly successful, leading to the discovery of new drugs able to target
key factors promoting cancer growth. However, a large body of research suggests that in
complex organs, the interaction between cancer and its surrounding environment is an
essential part of the biology of both diseased and healthy tissues, therefore it is of para-
mount importance that this process is further investigated. Here we report a strategy
designed to reveal communication signals between cancer cells and adjacent cell types. We
apply the strategy to prostate cancer and find that normal cells surrounding the tumour do
exert an anti-tumour activity on prostate cancer cells. By using a statistical model which
integrates multiple levels of genetic data, we show that cell-to-cell communication genes
are controlled by DNA alterations and have potential prognostic value.

Introduction
Prostate Cancer is the most common cancer in males. It is characterized by a considerable
molecular and phenotypic heterogeneity that results in radically different clinical outcomes [1].

The role of tumour microenvironment in the development of cancer is crucial. More specifi-
cally, the expression of growth and motility factors, extracellular matrix components produced
by stromal cells, is linked to the pathophysiology of the tumour and it often predictive of clini-
cal outcome. Stromal cells, such as fibroblasts and endothelial cells secrete many factors that
influence the expansion of the tumour. For example, they secrete most of the enzymes involved
in extracellular matrix breakdown and produce growth factors that control tumour cell prolif-
eration, apoptosis, and migration [2]. They also secrete pro-inflammatory cytokines, which
play a major role in a wide spectrum of pathophysiology mechanisms (e.g. chemo attraction,
neoplastic transformation, angiogenesis, tumour clonal expansion and growth, passage
through the ECM, intravasation into blood or lymphatic vessels and the non-random homing
of tumour metastasis to specific sites) [3]. In addition to tumour promoting factors, they also
secrete tumour suppressor factors that can potentially have an anti-tumour effect on adjacent
tumour cells [4]. Current research on the role of stroma is principally focused on immune cells
fibroblasts and cells of the vasculature such as endothelial cells. However, since other cell types,
such as normal epithelial cells, also produce a number of these factors, such as IL-6 [5], TNFα
[6] [7] and TGFβ1 [7] it is reasonable to hypothesize that they may also play an important role
in influencing the molecular and physiological state of tumour cells.

The intricacy in the biology of cell-to-cell communication and the relatively small amount
of available knowledge makes understanding the biological networks underlying the
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development of tumour microenvironment a suitable challenge for a systems-level approach.
The powerful combination of functional genomics and computational biology have contrib-
uted to the discovery of novel signaling networks in the biology of cancer [8] [9], including cell
communication networks [10]. However, so far there has been no attempt to develop a
completely data-driven systems biology approach to discover novel cell-communication
networks.

Here we describe a data-driven strategy we developed to address this challenge. Our
approach is designed to “learn” the underlying structure of cell-to-cell communication net-
works from functional genomics datasets, representing the transcriptional state of normal and
adjacent tumour cells.

The application of this novel analysis strategy to prostate cancer revealed genes whose
expression is associated to directional signals linking normal and tumour epithelial cells.
Remarkably, experimental validation of our predictions using an in vitro co-culture system
recapitulated the predicted transcriptional response and revealed that normal epithelial cells
have the potential to revert some of the phenotypic traits of tumour cells. Moreover, by inte-
grating genetics, gene expression and tumour features in a single conceptual model, we were
able to show that putative cell communication networks, involved in focal adhesion and pro-
tein secretion are perturbed by genetic mutations and that are linked to survival.

Ultimately, the experimental validation of the hypothesis generated from the model support
the approach we have developed, which explicitly search for candidate directional signals
between different cell types. Its application to a wider range of biological systems is likely to
have a profound impact in the field of functional genomics.

Results

Overview of the analysis and validation strategy
Our study is based on a data analysis workflow which includes reverse engineering techniques
to identify gene expression signatures that may be involved in cell to cell communications. The
strategy we followed, which is summarized in Fig 1, is based on several cycles of computational
analysis, hypothesis generation and experimental validation. The workflow consisted of five
distinct but interconnected steps.

Step 1. Correlation analysis of a gene expression profiling dataset linking genes expressed
in normal and tumor epithelial cells. The analysis of the resulting network with a novel topo-
logical index (polarization index) identified candidate genes involved in cell-to-cell
communication.

Step 2. The application of two different statistical approaches shows that the cell commu-
nication candidate genes represent gene signatures that are statistically robust, such that they
could not be generated by random chance or by issues of sample purity. Moreover, functional
analysis shows that candidate genes are enriched in functional terms representing multiple
hallmarks of cancer.

Step 3. Experimental validation: Expression profiling. By using a transwell based cell co-
culture system we show that changes in gene expression in normal and tumor cells induced by
co-culture recapitulate the signatures predicted by co-expression analysis and representing
multiple hallmarks of cancer.

Step 4. Experimental validation: Cell Biology. By using a transwell based cell co-culture
system in conjunction with several cell biology assays we show that the presence of normal
cells decreases the aggressiveness of tumor cells and that such reduction in survival can be
reproduced in tumor cells by exposing them to a recombinant protein encoded by one of the
most statistically significant cell communication gene candidates,
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Fig 1. Overview of the analysis and validation strategy.

doi:10.1371/journal.pcbi.1004884.g001
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Step 5. Clinical validation. By using a publicly available clinical study, including multilevel
genomics and functional genomics data as well as clinical outcome, we prove that the expres-
sion of a significant number of cell communication candidates identified by our procedure can
be explained by methylation or correlate with genetic mutations and are predictive of clinical
outcome. We also show that the expression of these genes is higher in normal tissue with
respect to adjacent normal and tumor tissue.

A gene co-expression network reveal transcriptional signatures linking
adjacent tumour and normal epithelial cells
The overarching goal of this project was to develop a data driven strategy to identify molecular
pathways involved in cell-to-cell crosstalk. We first set to test whether gene expression profiles
across normal samples may correlate with the gene expression profiles from the matching
tumour samples. We reasoned that if such correlated profiles exist they might be a manifesta-
tion of the signaling events between normal and tumour epithelial cells and may shed new light
on the role of normal epithelia in prostate cancer.

With this in mind, we first applied relevance networks [11], a relatively simple network
inference procedure, to link genes differentially expressed in normal and in tumour epithelia.
We used a dataset developed by Singh et al. [12], representing the transcriptional state of
47-paired prostate tumour and adjacent normal cells samples. The resulting network (NT net-
work) is composed of 2581 positively and negatively correlated genes (Fig 2). These were sub-
divided in 1600 gene expression profiles in normal epithelia (referred from now on as ‘normal-
expressed’ genes) and 981 gene expression profiles in tumour epithelia (referred from now on
as ‘tumour-expressed genes’. The NT network was grouped into 68 modules by using GLay
[13], a community detection method that maximizes inter-module connectivity. Only three
modules contained more than twenty nodes and thus were selected for further investigation
(Fig 2). This arbitrary threshold was used to make sure that a sufficiently large number of
genes was present in each module for subsequent functional analysis. The NT network and its
modules fitted a power law node connectivity distribution (p<10−2), consistent with the exis-
tence of a relatively small number of genes with a very large number of connections.

Module 1 displayed a marked enrichment in normal-expressed genes (Fig 2B, p<10−4) and
module 2 showed enrichment in tumour-expressed genes (Fig 2C, p<10−4). In module 3, the
frequency of normal- and tumour- expressed genes was as expected by random chance (Fig
2D, p = 0.41). Interestingly, the most connected genes in module 1 and 2 represented profiles
from the tissue that was less represented (p<10−4). The most extreme case was module 1 where
19 of the 20 most connected genes were tumour-expressed genes (expected frequency was 1).
Although module 3 showed no preferential tissue distribution, it still showed a higher than
expected frequency of tumour-expressed genes among the 20 most connected genes (p<10−2).
Functional analysis of the genes represented in each module showed that these were enriched
in a wide spectrum of biological functions (Fig 2A and S1 Table).

A novel topological index identifies putative directional signals linking
normal and tumour epithelial cells
The results described above (Fig 2) are consistent with the notion that a relatively small num-
ber of genes expressed in either normal or tumour epithelial cells may control communication
signals that can either modify or respond to the molecular state of the adjacent tissue.

In order to mine the NT network for such signals we developed the polarization index (pol),
a novel gene connectivity metric. We design this index to represent genes that may exert an
effect on the adjacent cell type only when expressed in one specific tissue. This scenario implies
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a directional signal, which is for example typical of soluble factors encoded by tumour suppres-
sor genes or oncogenes. In the case of tumour suppressor genes, these may have lost the ability
to control tumour cell proliferation via autocrine signaling but they may retain that function
when expressed in adjacent stromal cells by a paracrine signal.

We formalized this scenario as follows:
Considering that a given gene gi can be expressed in both normal and tumour tissue, we

define fi as the number of tumour-expressed genes that correlate with the normal-expressed gi.
Similarly, we define bi as the number of normal-expressed genes that correlate with the
tumour-expressed gi. We define the polarization coefficient for gene gi as:

poli ¼
fi � bi

fi þ bi þ ε
ð1Þ

ε is a small positive constant designed to stabilize the ratio when fi and bi are small.

Fig 2. Co-expression network linking normal and tumour epithelial cells. The figures represent the modularized NT network with the results of the
network connectivity and functional enrichment analysis. (A) The NT network in which genes belonging to the three main modules have been color-coded.
The main functional terms identified by the web-based tool G:Profiler are listed in the three panels connected to each module. (B-D) The number of
connections of the top 20 most connected hubs in each module. The x axis represents the number of connections, genes are represented on the y axis and
color-coded to represent the cell type where they are expressed (blue and red represent normal and tumour epithelial cells respectively). Below each heading
two p values are listed. pNT is the p value from a test showing the probability that the proportion of normal/tumour expressed genes in each module is the
result of random chance. phub is the p value from the test showing the probability that the proportion of normal/tumour expressed genes in the top 20 hubs is
the result of random chance.

doi:10.1371/journal.pcbi.1004884.g002
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Poli has a number of desirable properties: its value is proportional to the asymmetry in the
number of correlated genes with gene i in the two tissues while its sign gives the direction of the
effect. This metric tend to 1 or -1 for fi >>bi or fi << bi, respectively.

We computed this index for all genes represented in the NT network (Fig 2) and discovered
that, independently of the threshold used, it is distributed accordingly to a multimodal distri-
bution with three peaks (Fig 3A). The highest frequency of the distribution is centered on zero
whereas a smaller number of genes show polarization coefficients close to +1 and -1.

We focused subsequent analysis on genes with pol>|0.75|, a very stringent threshold that
we found to have less than 1 in 8000 false positives (Fig 3B and S2 Fig). This very stringent
threshold identified 146 and 244 positively and negatively polarized genes, respectively (Fig 3C
and S2 Table).

Functional analysis of the polarized genes using Gene Ontology and the Ingenuity database
shows a statistically significant enrichment in functions key to cancer biology (Fig 3D and 3E).
The main functions significantly enriched in the negatively polarized genes are cell death of
tumour cell lines,migration of tumour cell lines, necrosis and proliferation of PC cell lines (Fig
3D). The main functions enriched in the positively polarized genes are proliferation of cells,
migration of cells, invasion of cells and apoptosis of tumour cell lines (Fig 3E). Moreover, 107
positively polarized genes (53% of the 204 genes that had functional annotation) are linked to
the Gene Ontology term cell communication and therefore represent a class of proteins poten-
tially mechanistically involved with cell crosstalk (S3 Table). Interestingly, only positively
polarized genes are significantly enriched in this functional term (FDR<10−2). Manual cura-
tion into the role of the positive and negatively polarized genes using available literature and
online databases was consistent with the computational analysis. In Table 1 we report the posi-
tively and negatively polarized genes that are either secreted factors (potential paracrine sig-
nals) or factors partitioned at the cell surface (potentially involved in cell-cell communication
via direct contact) or transcription factors that may regulate the expression of cell communica-
tion genes.

Additionally, almost all the network hubs described in Fig 2 are characterized by a high
polarization coefficient (either positive or negative).

Predicted targets of polarized genes in tumour and normal epithelial
cells represent a set of important cancer effector functions
In order to investigate the potential role of polarised genes in cell-to-cell communication we
first identified their first neighbours in the NT network and then we tested the resulting gene
lists for functional enrichment. We could identify 1223 normal-expressed genes as targets of
tumour-expressed negatively polarised genes and 794 tumour-expressed genes as targets of
normal-expressed positively polarised genes (S4 Table). We discovered that there was a signifi-
cant overlap between them (520 genes, p<10−3) (S3 Fig) suggesting that although positively
and negatively polarised genes are by definition different, they may ultimately target the same
biological processes, in tumour and normal cells respectively. This hypothesis was supported
by the functional analysis, which identified a set of terms enriched in the overlapping set of
gene targets. Among these there were regulation of cell death, response to growth factor, cell
adhesion and extracellular region part (S3 Fig and S5 Table).

An in vitro co-culture system recapitulates the transcriptional changes
predicted by the gene polarization analysis
We reasoned that if the cell-to-cell communication model we developed around the gene polar-
ization index is correct, we should be able to modulate the putative targets of polarized genes
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by reconstructing an in vitro system where normal and tumour prostate cells share the same
micro-environment. We performed such experiment by using a trans-well co-culture system
where normal (RWPE1) and tumour (DU-145) epithelial cell lines are separated by a semiper-
meable membrane. In these experiments either tumour or normal cells were inserted into
dishes already containing tumour cells. This experimental set up represents the aspect of the
prostate tissue in which cancer epithelial cells sits in proximity but not necessarily are in direct
contact (paracrine signals). Four sets of samples were processed for expression profiling 24
hours after the start of the experiment. These were: 1) RWPE1 cultured with RWPE1, 2) DU-
145 cultured with DU-145, 3) RWPE1 cultured in the presence of DU-145 and 4) DU145 cul-
tured in the presence of RWPE1. Genes whose expression in tumour cells is influenced by the
presence of normal cells were identified by direct comparison between gene expression in DU-
145 cultured on their own and gene expression in DU-145 cultured in the trans-well system in
the presence of RWPE1. Similarly, we identified genes whose expression in normal cells
depended on the presence of tumour cells by direct comparison between gene expression in
RWPE1 cultured on their own and RWPE1 grown in the trans-well system in the presence of
DU145. We considered the two sets of genes identified by this simple differential expression
analysis as the experimental equivalents of the predicted targets of positively and negatively
polarized genes, respectively.

Consistent with the analysis of the targets of polarized genes (S3 Fig) we found a significant
overlap between genes differentially expressed in normal and tumour cells as a result of co-cul-
ture (Fig 4A, p<0.01). We also discovered that a significant percentage of genes up regulated

Fig 3. Analysis of the NT network using a novel topological index. The results of the analysis of the NT network using the polarization index. (A) The
distribution of polarization coefficient for 4 different significance thresholds defying the NT network. (B) The same distribution from a multi-variate normal
model that generates random datasets with similar distributions of correlation coefficients for the normal and tumour tissue but no constrains on the
correlation structure between the two tissues. (C) The number of connections towards normal or tumour expressed genes for each of the selected (rs>|0.75|)
polarized genes. The x-axis represent the polarized genes sorted by increasing values of polarization index. The y-axis shows the number of tumour-
expressed genes correlated to each polarized gene when expressed in normal tissue (positive values) and the number of normal expressed genes correlated
to each polarized gene when expressed in tumour tissue (negative values). (D-E) The number of genes and significance (x axis) for the most enriched
functional terms in the negative and positively polarized genes respectively.

doi:10.1371/journal.pcbi.1004884.g003

Table 1. Roles of the highly polarised genes.

Positive Polarisation > 0.75

Secreted Cell Migration SLIT2

Extracellular Matrix HYAL2, LTBP1, COL16A1, DMBT1, SFTPD, FBLN1, MATN2, COL4A2, CBLN1, COL19A1

Growth Factors / Other Secreted
Factors

AHSG, DEFB4, DEFA3, PRB4, SVEP1, PRB4, TSHB, TGFB1

Cell
Surface

Cell Adhesion / Focal Adhesion MLLT4, AOC3, CEACAM3, CTNNA1, ADAM15, LPP, ILK

Cell-Cell Communication GJA1, GPA33, RAP1B

Receptor GEM, GABRG2, FGFR1, SIRPB1, GPR6, AVPR1B, IL9R, RCP9, PLXNA3, NCR3, GRIK5,
TBXA2R, TNFRSF25, HTR4

Regulatory Transcription Factors TADA3L, HNF1B, TCF7, EPAS1, HOXD13, WWTR1, TP53, POU2F2, GATA2, HSF4, MYOG,
PAX9, NEUROD2

Negative Polarisation < -0.75

Secreted Secreted IGFBP5, WNT11, IGFBP2, IGFBP5, FGF9

Cell
Surface

Cell-Cell Communication NRXN1, LAMP2

Receptor IL1RL1, PTH2R, FGFR1, TNFRSF10C

Regulatory TF ETV3, BHLHB2, TBX1, PNN, MTA1, TBX19, BRD2, PAX7, CTBP2, ETV3, SIX3, USF2, MAML1

doi:10.1371/journal.pcbi.1004884.t001
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in tumour cells were down regulated in normal cells and vice versa (Fig 4A). This is consistent
with the results of a principal component analysis of these data showing that the variation
between normal and tumour cells following co-culture followed anti-parallel trajectories
(Fig 4B).

Next, we compared the predicted targets of polarized genes and the experimentally deter-
mined transcriptional signatures. The overlap between the differentially expressed genes in the
co-culture system and the predicted targets of polarized genes was significant both at gene (S4
Fig) and at functional level (Fig 4C and 4D). We concluded that remarkably, the in vitro sys-
tem was able to recapitulate a significant component of the transcriptional network inferred
from the clinical study.

The functional analysis of these gene signatures revealed enrichment in several important
cellular functions that are very relevant in cancer (e.g. regulation of growth, apoptosis and cell
adhesion). Since we could not identify a specific direction in differential gene expression we set
to determine whether change in the transcriptional state of co-cultured cells impact a relevant
cancer phenotype. We therefore performed a battery of in vitro tests on tumour cells, using
the same trans-well co-culture system described above. Here we assessed whether the

Fig 4. In vitro normal and tumour cell co-culture model. The results of the in vitro cell co-culture experiment used to analyze normal and tumour epithelial
cells crosstalk. (A) Table showing the number of overlapping genes between differentially regulated gene lists in normal and tumour cells as a result of co-
culture. Rows in the table represent up and down regulated genes in normal cells whereas columns are up and down regulated genes in tumour cells. There
is a significant overlap in gene lists changing in opposite directions (p<0.0001, red background). (B) PCA plot representing normal and tumour cells cultured
on their own (RWPE1 and DU145) or in co-culture (RWPE1DU145 and DU145RWPE1). (C-D) Scatterplots comparing the number of genes in functional terms
represented in the predicted targets of polarized genes and genes differentially expressed in the co-culture model. Panel C represent tumour cells whereas
panel D represent normal cells.

doi:10.1371/journal.pcbi.1004884.g004
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transcriptional signatures defined by our computational analysis and validated by the in vitro
co-culture system may truly reflect a cancer relevant phenotype. We found that the presence of
normal epithelial cells induced several phenotypic changes in tumour cells. More specifically,
population doubling time (PDT) in tumour cells cultured in the presence of normal cells was
considerably longer than in tumour cells cultured on their own (30 hours against 18 hours, Fig
5A). Cell numbers at the end of the experiment were consistent with this finding and also
revealed that additional tumour cells in the trans-well promoted survival (Fig 5B). The apopto-
sis test revealed that normal cells did not have any effect but tumour cells surprisingly increased
the number of tumour apoptotic cells (Fig 5C). We then tested the formation of cell clusters
and recorded the number of cell clusters (Fig 5D), the size of clusters (Fig 5E) and the area of
the dish occupied by single cells (Fig 5F). Normal cells reduced the number and size of clusters
and increased the area occupied by single cells whereas tumour cells had the opposite effect
(Fig 5D–5F).

Consistent with these findings, conditioned media from COS cells overexpressing the
tumour suppressor gene SLIT2, one of the most positively polarized genes (pol = 0.99) which is
expressed at higher levels in normal prostate tissue compared to tumour (S5A Fig), was able to
dramatically reduce tumour cell clone formation in a Matrigel in vitro Clonogenic assay
(Fig 5G).

All of this data is consistent with the normal cells effectively 'normalising' the phenotypic
characteristics of the tumour cells.

Genes with a high polarization index and linked to the genotype of
tumour cells are predictive of clinical outcome and are over-expressed in
normal prostate tissue
Having inferred and experimentally validated a transcriptional network representing the inter-
action between normal and tumour prostate epithelial cells we then hypothesised that expres-
sion of genes within the network may be influenced by genetic/epigenetic modifications and/or
correlate to tumour features and clinical outcome.

We first checked whether the expression of polarised genes might be influenced by DNA
methylation, a common mechanism for transcriptional silencing in cancer. By mapping genes
known to be re-expressed in prostate cancer cell lines, following exposure with DNA hypo-
methylating agents [14][15][16], we could show that methylation significantly affect the
expression of 30 of the 245 positively polarized genes and 12 of the 146 negatively polarised
genes in tumour cells (S6 Fig and Fig 6 and S6 Table). Although the percentage of genes
affected by methylation is relatively small, the number of positively polarised genes whose
expression is affected by methylation was significantly higher than expected by random chance
(S6 Fig).

Next we assessed the role of copy number variation (CNV). We selected an independent
dataset [17], which included genetics (CGH), gene expression and clinically relevant variables
(S7 Table). First we tested whether the expression of polarised genes was directly affected by
CNV. We could only identify 9 polarised genes with significant correlation (p<0.01) between
their CNV and expression (S8 Table). Next we developed a hierarchical Bayesian model to
identify whether epistatic CNV could explain the expression of polarized genes in tumour cells.
We were able to show that the expression of 70 polarised genes could be explained by CNV in
seven genomic regions (S9 Table and Fig 6). Three of these included genes with known func-
tion (ATAD1, GRHL2 and KCNB2) (Fig 6 and S10 Table). Interestingly, the large majority of
polarized genes whose expression was linked to CNV were mainly positively polarised (59 out
of 70).
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Finally, we tested whether the expression of polarised genes was related to tumour features
and clinical outcome. Indeed we found that the expression of a large number of polarised genes
(130) was linked to Gleason score. A smaller number of genes (18 and 1) were linked to PSA
antigen and T stage, respectively (Fig 6 and S11 Table).

The integration of these associations using a network representation revealed 173 polarised
genes linked either to regions affected by CNV (89 genes) and/or to tumour features (84 genes)
(Fig 6). Remarkably, while the expression of none of the polarised genes could be linked to

Fig 5. Phenotypic analyses of tumour cells in co-culture experiments. In each panel is shown the phenotypic characteristic of the tumour cells alone
(DU145, no insert), the tumour cells in the presence of normal (RWPE1) or tumour cells (DU145). The presence of normal cells are seen to (A) increase the
population doubling time (PDT), (B) decrease the total cell number, (C) have no significant effect on apoptosis, (D) decrease the number and (E) size of the
cell clusters and (F) increase the number of single cells. Each of these changes shows a normalisation of the phenotypic characteristics of the tumour cells by
the presence of the normal cells. In contrast co-culture with DU145 tumour cells is seen to have the opposite effect and to increase the tumour phenotype of
the tumour cells. Panel G shows the results of a clonogenic assay performed on two different tumour cell lines (DU145 and PC-1). The figure shows that the
addition of 1:50 dilution of culture media, conditioned by over-expressing Slit-2 induce at least 60% reduction in cell survival respect to control cultures.

doi:10.1371/journal.pcbi.1004884.g005

Fig 6. Integration of CNV, polarized genes, mRNA expression and tumour features. The figure summaries the relationship between gene CNV (blue),
mRNA re-expression following hypo-methylating agents (yellow), polarized gene expression (red and green nodes are positively and negatively polarized
genes, respectively) and tumour features (cyan). These relationships are the result of the statistical modeling described in the last section of the Results.
Genes within the blue open rectangle (a) are under the influence of CNV and are linked to tumour features. Table 1 lists the genes within panel a and their
functional classification according to Gene Ontology.

doi:10.1371/journal.pcbi.1004884.g006
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survival, 132 of them were linked to time free of recurrence (FDR<5%, S7A Fig and S12
Table). Interestingly we could also show that polarised genes linked to CNV did show signifi-
cantly lower p-values than polarised genes only linked to Gleason score (S7B Fig) supporting
the clinical relevance of the epistatic effects identified by the computational model.

A group of 58 positively polarised genes and 6 negatively polarised genes (Fig 6 and S7B
Fig and Table 2) were linked to both CNV and Gleason score. We found that the large majority
of genes in this group (57/58) were negatively associated to Gleason score and positively corre-
lated to time free of recurrence (S7B Fig and S12 Table).

Intriguingly, these were highly enriched in Cytoskeleton proteins (24 out of 51, over-repre-
sented in the GO term Cytoskeleton at FDR<10−8) (Table 2).

We then tested the expression of 36 out of the 58 genes that were profiled in a dataset repre-
senting normal and tumour cells which were laser micro-dissected from prostate cancer speci-
mens [18] (Fig 7). This analysis showed that 11 out of 36 are differentially regulated and that
all except 1 were down regulated in the tumour tissue (Fig 7), an observation that is consistent
with the direction of correlation with the survival free of metastases.

Among these 58 genes, 8 represented genes involved in formation of cell projections
(ACTN1, CALD1, CLIC4, DPYSL3, DBN1, ILK, PAFAH1B1 and RTN4) and six (ACTN1,
CCND2, FLNA, FLNC, ILK and MYL9) mapped on the KEGG pathway focal adhesion
(FDR<1%). Also, five were proteins known to be associated to the Golgi apparatus and
involved in protein secretion (SEC23A, CRYAB, FLNA, NUCB1 and PRNP). Among these
were several genes with known tumour suppressor activity (e.g. FLNA [19], FBLN1 [20],
MYL9 [21], CLIC4 [22] and SEC23A[23]).

Discussion
Here we have described a relatively simple network inference and analysis procedure, explicitly
designed to learn cell communication networks from observational data. This is the first exam-
ple of an open ended reverse engineering strategy that explicitly searches for cell communica-
tion networks from observational data. Our approach also provides clues on the role of normal
epithelial cells in prostate tumour progression. The application of our analysis strategy (Fig 1)
to prostate cancer revealed that normal epithelial cells may have a more important role in con-
trolling tumour expansion than previously suspected. The applicability of this approach is
broader and indeed it opens important avenues for better understanding the whole network of
signals regulating cell communication in both normal and pathological scenarios.

The role of normal epithelial cells in tumour progression
Since the large majority of efforts have focused on understanding the role of fibroblast and
endothelial cells in cancer, the interface between normal and transformed epithelial cells is still
not clearly understood. Our analysis suggests that normal epithelial cells exert a “normalizing”
effect on tumour cells, up to an advanced stage of tumour progression.

A number of recent studies have suggested that at the initial phase of tumour expansion,
normal epithelia could provide a tumour suppressive environment that cancer cells need to
overcome to develop a tumour. So far, tumour suppressor activity of normal epithelial cells has
been studied in cell culture systems replicating early transformation events in epithelia [24].
These models include kidney and mammary epithelial cells in culture where only a few cells
are selectively transformed by oncogenic transformation or inhibition of tumour suppressor
genes [24]. In these conditions, transformed cells are excluded from the epithelia and out
grown by normal epithelial cells. It has been suggested that additional mutations and/or alter-
ations in the adhesion properties of tumour cells may be needed to overcome the tumour
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Table 2. Functional profile of genes linked to CNV and Gleason score.

Gene Symbol Description Polarization Cellular Component Biological Process

SEC23A Sec23 homolog A (S. cerevisiae) 1.00 Golgi membrane Intracellular Protein Transport

DBN1 Drebrin 1 1.00 Cytoskeleton Cytoskeleton organisation

LPP LIM domain containing preferred
translocation partner in lipoma

0.99 Plasma membrane Cell adhesion

CNN1 Calponin 1 0.99 Cytoskeleton Cytoskeleton organisation

SLIT2 Slit homolog 2 0.99 Extracellular region Cell morphogenesis

ILK Integrin-linked kinase 0.99 Cytoskeleton Cell morphogenesis

FAM114A1 Family with sequence similarity 114, member
A1

0.99

MYL9 Myosin, light chain 9, regulatory 0.99 Cytoskeleton regulation of muscle contraction

CCND2 Cyclin D2 0.99 Cyclin-dependent protein
kinase holoenzyme complex

egulation of cyclin-dependent protein
kinase activity,

PRNP Prion protein 0.98 Endoplasmic reticulum protein complex assembly

LTBP1 Latent transforming growth factor beta
binding protein 1

0.98 Extracellular region KEGG_TGF beta signalling pathway

MAOB Monoamine oxidase B 0.98 Mitochondrion oxidation reduction,

DKFZP564O0823 0.98

PALLD Palladin, cytoskeletal associated protein 0.98 Cytoskeleton Cytoskeleton organization

WWTR1 WW domain containing transcription regulator
1

0.98 Nucleoplasm Negative regulation of transcription
from RNA polymerase II promoter

AGPS Alkylglycerone phosphate synthase 0.98 Mitochondrion lipid biosynthetic process,

CLIC4 Chloride intracellular channel 4 0.98 Cytoskeleton, Plasma
membrane

Ion transport

CALD1 Caldesmon 1 0.98 Cytoskeleton, Plasma
membrane

Cell motion

DYRK2 Dual-specificity tyrosine-(Y)-phosphorylation
regulated kinase 2

0.98 Regulation of glycogen biosynthetic
process

ITPR1 Inositol 1,4,5-triphosphate receptor, type 1 0.98 Membrane Fraction Calcium ion transport

DPYSL3 Dihydropyrimidinase-like 3 0.98 Cytoskeleton KEY_Cell projection

FLNC Filamin C 0.97 Cytoskeleton KEGG_ Focal adhesion

FHL1 Four and a half LIM domains 1 0.97 Cytosol Regulation of cell size

DIDO1 Death inducer-obliterator 1 0.97 Cytoskeleton Transcription

PDE4D Phosphodiesterase 4D, cAMP-specific 0.97 Cytoskeleton Purine nucleotide metabolic process

KIFC1 Kinesin family member C1 0.97 Cytoskeleton Mitotic sister chromatid segregation

ZFP36 Zinc finger protein 36 0.97 Cytosol Nuclear-transcribed mRNA catabolic
process

NUCB1 Nucleobindin 1 0.97 Cytoskeleton, Extracellular
region

MTHFD2 Methylenetetrahydrofolate dehydrogenase 0.97 Mitochondrion One-carbon metabolic process

FOS v-fos FBJ murine osteosarcoma viral
oncogene homolog

0.97 Nucleoplasm Response to reactive oxygen
species

FBLN1 Fibulin 1 0.96 Extracellular region

CRYAB Crystallin, alpha B 0.96 Cytoskeleton Microtubule cytoskeleton
organization

FLNA Filamin A, alpha 0.96 Cytoskeleton Cytoskeleton organization

PFKP Phosphofructokinase, platelet 0.96 Cytosol Monosaccharide metabolic process

RBPMS RNA binding protein with multiple splicing 0.96 RNA processing

RAB3GAP1 RAB3 GTPase activating protein subunit 1 0.96 Soluble fraction Regulation of GTPase activity

WDR1 WD repeat domain 1 0.96 Cytoskeleton, Extracellular
region

Sensory perception

(Continued)
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suppressive effects and allow for clonal expansion [24]. However, the precise molecular events
underlying this process are still unknown.

Our work therefore provides further evidence of the tumour suppressor effects of normal
epithelial cells and supports the concept that although tumour cells obviously eventually over-
come these normalizing signals, the effect of normal epithelia may be relevant for the entire
clinical history of prostate cancer.

Potential mechanisms mediating the anti-tumour activity of normal
epithelial cells
The models we have developed provide a link between genetic mutations and the expression of
polarized genes in tumour cells. Remarkably, the functional profile of mutated genes is consis-
tent with a pivotal anti-tumour role of the apical junctional complex and the protein secretion
machinery.

Among the three genes we have identified as potential epistatic regulators, GRHL2 is known
to be a transcription factor known to play a pivotal role in cancer progression [25][26][27].
GRHL2 regulates epithelial cell differentiation by effectively regulating the expression of genes
of the epithelial apical junctional complex [28]. It controls the expression of the adherents
junction gene E-cadherin and the tight junction gene claudin 4 (Cldn4) and has been linked to
both pro and anti-tumour activity [25]. Moreover, GRHL2 up regulates the human telomerase
reverse transcriptase (hTERT) gene during cellular immortalization of oral squamous cell

Table 2. (Continued)

Gene Symbol Description Polarization Cellular Component Biological Process

C9orf61 0.96

TPM2 Tropomyosin 2 (beta) 0.95 Cytoskeleton Regulation of ATPase activity

DES Desmin 0.95 Cytoskeleton Cytoskeleton organization

PRB4 Proline-rich protein BstNI subfamily 1 0.95 Extracellular region

MAP1LC3B Microtubule-associated protein 1 light chain 3
beta

0.95 Cytoskeleton, Vacuole Proteolysis

MATN2 Matrilin 2 0.95 Extracellular region

MBNL1 Muscleblind-like (Drosophila) 0.94 Cytoskeleton Spliceosome assembly

DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3,
X-linked

0.91 Nucleoplasm

CAP1 CAP, adenylate cyclase-associated protein 1
(yeast)

0.89 Cytoskeleton Cell morphogenesis

KRTAP26-1 Keratin associated protein 26–1 0.88 Cytoskeleton

PAFAH1B1 Platelet-Activating Factor Acetylhydrolase 1b,
Regulatory Subunit 1 (45kDa)

0.86 Cytoskeleton

SPOP Platelet-activating factor acetylhydrolase,
isoform Ib, subunit 1 (45kDa)

0.80 Astral microtubule M phase of mitotic cell cycle

MYH11 Myosin, heavy chain 11, smooth muscle 0.80 Cytoskeleton Cytoskeleton organization

ZMYND11 Zinc finger, MYND domain containing 11 0.77 Regulation of transcription

MTX1 Metaxin 1 0.75 Mitochondrion Mitochondrial transport

SORBS2 Sorbin and SH3 domain containing 2 -0.80 Cytoskeleton

ACTN1 Actinin, alpha 1 -0.90 Cytoskeleton Cytoskeleton organization

RTN4 Reticulon 4 -0.92 Nuclear envelope Angiogenesis

BAT1 HLA-B associated transcript 1 -0.92 Nucleoplasm RNA splicing

PDE8A Phosphodiesterase 8A -0.99 Purine metabolic process

RBM5 RNA binding motif protein 5 -0.99 Nucleolus Spliceosome assembly

doi:10.1371/journal.pcbi.1004884.t002
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carcinoma cells [29]; it is a proto-oncogene in breast cancer cells [25]; it regulates proliferation
of hepatocellular carcinoma cells [30] and is a suppressor of epithelial-to-mesenchymal transi-
tion in breast cancer [31].

Our model predicts that increase expression of GRHL2 due to CNV down regulates the
expression of a set of polarized genes that precisely encode for components of the cytoskeleton
and are involved in focal adhesion and cell migration. Several of these genes are extracellular
factors and one of them (SEC23A) has been found to control secretion of anti-tumour factors
in breast cancer [23].

These observations lead to the hypothesis that increased expression of GRHL2 in tumour
cells may result in the deregulation of at least two different types of tumour suppressor signals,

Fig 7. Expression of polarized genes in laser-capture micro-dissected tumour and normal tissue. The differential expression patterns of polarised
genes linked to CNV and Gleason score in the Tomlins et al LCM-based gene expression dataset. 36/58 genes were mapped from the network (see Fig 5) to
the independent dataset. (A) Expression of all but 1 of the polarised differentially expressed in the LCM dataset (11/36) was downregulated in low and high-
grade tumour tissue compared to healthy prostate. (B-D) Expression of several polarised genes linked to CNV and Gleason score in specific prostate tumour
compartments isolated by the Tomlins et al study. Nor = normal prostate tissue, BPH = benign prostate hyperplasia, Adj = prostate tissue adjacent to tumour,
PIN = intraepithelial neoplasia, PCA-L = low-grade tumour, PCA-H = high-grade tumour, Meta = metastatic tumour tissue. * p < 0.05, ** p < 0.01 ***
p < 0.001.

doi:10.1371/journal.pcbi.1004884.g007
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one dependent on the establishment of focal adhesion junctions and the other directly affecting
secretion of anti-tumour factors. This chain of events may contribute to tumour transforma-
tion and metastases formation and at the same time could make tumour cells sensitive to the
same tumour suppressor signals that continue to be produced by adjacent normal epithelial
cells. The in vitro system we have used to validate our model shows that normal epithelial cells
are able to exert anti-tumour effects even if normal and tumour epithelial cells were separated
by a semi-permeable membrane, suggesting that soluble factors may be playing a major role in
tumour suppression. Secretion of the highly positively polarized gene SLIT2 from normal epi-
thelial cells has the potential of exerting a tumour suppressor activity as shown by our clono-
genic assay on tumour cells exposed to diluted conditioned media.

More broadly, there is strong support in the literature linking several of the positively polar-
ized genes to tumour suppression.

More precisely, FLNA[19] FBLN1[20], MYL9 [21], CLIC4 [22] all have demonstrated
tumour suppressor activity. It has been shown that Filamin A (FLNA) exerts anti-tumour
activity via at least three different mechanisms. It represses MMP-9 expression reducing cell
migration in prostate cancer. It controls focal adhesion and androgen-related cell migration in
human fibrosarcoma [19] and Cyclin D1/cyclin-dependent kinase 4 mediated cell migration in
breast cancer [32]. The myosin light chain (MYL9) in stroma has been shown to predict malig-
nant progression and recurrence-free survival in prostate cancer [21]. Fibulin 1 (FBLN1) is
down regulated in a number of tumours, including prostate [33]. CLIC4 was first characterized
as intracellular chloride channel, later shown to be involved in signaling, cytoskeleton integrity
and differentiation [34] and is a tumour suppressor gene in cutaneous squamous cell cancer
[22].

Computational inference of cell-to-cell communication networks
The reverse engineering approach we have adopted is based on the assumption that gene co-
expression is either directly or indirectly a reflection of important underlying mechanisms of
gene regulation and as such it can reveal novel biological networks. While this concept is well
accepted in the scientific community, it remains true that correlation does not necessarily
imply causation, hence the importance of experimental validation.

However, for a number of candidates, it is possible to hypothesize a mechanism whereby
highly polarized genes may directly affect adjacent cells. For example, a number of them are
secreted factors that can work as paracrine signals or membrane proteins known to be involved
in cell communication (Table 1). This is the case for Slit-2 that we have experimentally verified
by treating prostate cancer cells with conditioned media derived from cells over-expressing the
recombinant protein. Others may indirectly control cell communication. This is for example
the case with transcription factors (e.g. GATA2 control of IGF1 signalling [35]), proteins con-
trolling secretion (e.g. LTBP1 control of TGFB1 secretion [36]) or proteins involved in cell
migration.

Interestingly, the gene expression profiling analysis we have performed to validate our pre-
dictions, suggest that the polarization coefficient may have the ability to capture directional sig-
nals that are triggered by normal and tumour cells. However, the experimental system we have
used is based on a trans-well system, which only validate paracrine signals.

We believe our approach could have a broad impact. Although, at present there are not
many suitable datasets containing both disease and adjacent normal tissue, we have verified
that the distribution of polarization coefficient in two additional, datasets representing kidney
and liver adjacent normal and tumour tissues are similar to the one observed in prostate cancer
(S9 Fig). In the future we envisage that tissue laser micro dissection and mRNA sequencing
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technologies may provide a very powerful combination for the identification of genome wide
cell communication networks.

Conclusions and further developments
The approach we have developed has the advantage to reverse engineer cell communication
networks in the absence of any prior information. In this respect, the method is different from
the recently developed computational method developed by Choi et al [10]. The latter has been
successfully applied to understanding the relationship between stroma and cancer cells in a
model of lung tumour metastases and is based on comprehensive ligand-receptor network
information, which can be extracted from several knowledge databases. We envisage that the
integration of these knowledge driven approach within the framework of statistical learning
will allow the development of a more powerful set of methodologies.

The study we have performed relies on cross-sectional data and therefore the correlations
we estimate do not take into consideration the hierarchical sequence of events that characterize
cell communication dynamically. However, such dynamics can be captured using in vivomod-
els of tumor expansion [37]. In such scenarios, different computational methodologies may be
used to reverse engineer underlying gene regulatory networks [38]. For example, suitable
approaches may include ordinary differential equation (ODE) or state space models [39].

In conclusion, the approach we have pioneered is likely to provide a general strategy to
‘learn’ the structure of cell-to-cell communication networks in diseased and physiologically
normal tissues. We anticipate that the availability of a viable strategy to infer cell communica-
tion networks will stimulate the development of experimental studies representing the molecu-
lar state of adjacent tissues and their functional interactions in physiology and disease.

Methods

Microarray datasets
This analysis initially focus on the dataset developed by Singh et al.[12] representing the tran-
scriptional state of 47 paired prostate tumour and adjacent normal cells samples. Raw Affyme-
trix microarray data were normalized and processed before analysis to remove low variant and
low expressed genes. Further details of the procedures can be found in S1 File.

The analysis linking copy number variation (CNV), gene expression, tumour features and
clinical outcome was performed on the dataset developed by Taylor et al. [17], which consist of
231 tumour samples. Raw comparative genomic hybridization Agilent data was processed as
detailed in S1 File.

The dataset developed by Tomlins et al [18] was used to test the expression of polarized
genes in laser capture micro-dissected low and high-grade tumour and normal prostate tissue.
In the Tomlins et al study, tumour grading was determined by Gleason score. A scores of 3
determined a low-grade tumour, a score of 4 or greater determined a high-grade tumour. Raw
data was downloaded and normalized using the “marray” BioConductor package in R [40].

All data processing was performed in the statistical environment R.

Network inference
Network inference was performed using a relevance network approach [11]. Non-linear Spear-
man ranking correlation (rs) was used to infer gene-to-gene correlations. In order to estimate
the number of significant correlations, 100 bootstrap versions of the original dataset were used
for each dataset to draw the null distribution of rs expected by chance. The bootstrap distribu-
tion was used to estimate a p-value, which was subsequently corrected for multiple-test using
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an FDR correction procedure [41] (S1 Fig). The use of the relevance networks based on the
Spearman correlation coefficient has advantages respect to more complex reverse engineering
methods such as the mutual information based ARACNE [42] algorithm. Spearman correla-
tion measure both positive and negative correlations and is better suited for datasets with a
smaller number of samples. We used a threshold of rs>|0.75| (FDR<10−2) to select significant
connections (NT network).

Network modularization and analysis
The NT network, representing statistically significant correlations between genes expressed in
normal and tumour tissues, was modularized using the community finding algorithm GLay
[13], as implemented in the network analysis tool Cytoscape [43].

The algorithm begins by setting each node into a separate community and progressively
merges those with the maximum increase to the modularity score. The hierarchical merging
tree is cut at the point where maximum modularity is achieved.

Connectivity analysis of the whole network and of the three largest modules (defined as
larger than 20 nodes) was performed using the network analysis tool NetworkAnalizer [44],
also implemented as a Cytoscape plug-in.

The polarization index
The general definition of the polarization index for a given gene i, have been given in the result
section (Eq 1). The analysis described in this paper has been performed with the parameter ε
set to 1. Additionally, pol was set to 0 if the absolute difference between f and b was lower than
20 to avoid high pol values for low number of connections.

Computational validation of the polarization index
In order to acquire confidence in the biological relevance of the polarization index we derived a
null hypothesis distributions for estimating the likelihood that a given polarization value
derives by random chance. This represented a scenario where the overall properties of the data
are conserved in the absence of any interaction between normal and tumour samples.

Random data sampled from the Singh et al. dataset were used to compute normal and
tumour correlation matrices. Each matrix was fitted by a multivariate Gaussian model to gen-
erate a synthetic dataset. Synthetic datasets were then used to compute the correlation matrix
whose distribution predictively resembles that of the original dataset. Subsequently, the polari-
zation index was estimated from this correlation matrix. The multivariate fitting and subse-
quent random dataset generation was performed using the function rmvnorm withinmvtnorm
packages [45] in the R statistical software environment (S2 Fig). Significantly polarized genes
have been defined as poli > |0.75|. At this threshold we did not observed any false positives in
the 8000 random simulations performed.

Although the expected level of contamination of tumour tissue with normal cells is expected
to be very low, we devised a computational strategy to ask whether the polarization index could
arise as a result of contamination of tumour samples with normal cells. We computed the
polarization index between two simulated datasets that reproduce a situation where both
tumour and normal samples are derived from normal tissues with added noise, thereby simu-
lating variation that is consistent with a true microarray experiment (S8A Fig). Firstly, an
adapted model of the type derived by Jain et al [46] was used to estimate the experimental
noise across replicates (S8B Fig). Random Gaussian noise [47] derived from this noise model
was then added to the normal tissue dataset to create a synthetic normal and synthetic contam-
inated tumour dataset. The intensity of the added noise was controlled by adding a scaling
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factor γ, which was chosen to match the distribution of correlations between genes in the syn-
thetic datasets with the distribution observed in the real data (S8C Fig). The distribution of the
polarization coefficient is consistent with the notion that even high levels of contamination
cannot explain the observed distribution of polarization coefficient (S8D Fig).

Polarization in kidney and liver expression profiling datasets
In order to test whether the trimodal distribution of the polarization coefficient could be
observed in other cancer types in addition to prostate cancer, we analyzed two additional pub-
lic domain datasets representing kidney [48] and liver [49], respectively. Only paired data cor-
responding to tumour and normal from the same tissue were used. Only one pair of samples
per individual was used. In general, normal tissue was adjacent to the tumour. Datasets were
normalized and processed before analysis as for the main prostate cancer dataset. Results are
shown in S9 Fig.

Functional analysis
Lists of polarized genes or their correlated genes were analyzed for enrichment of curated func-
tional categories using the QIAGEN Ingenuity Pathway Analysis tool (IPA, www.qiagen.com/
ingenuity). Enrichment of Gene Ontology (GO) terms and KEGG pathways was determined
using the web-based tool gprofiler [50]. In order to reduce redundancy in the functional terms
we used REVIGO and selected the functional terms with dispensability index equal to zero.
Unless stated otherwise gProfiler functional clusters were considered for further investigation
if they had a FDR<1%.

Co-culture system
Normal (RWPE1) and tumour (DU145) prostate cell lines were co-cultured in a transwell sys-
tem (transwell I used was from Nunc, Loughborough, UK, Cat. 12-565-286; Pore size, 0.2 μm.)
for 24 hours in the presence of DMEM containing 10% fetal calf serum. The experiment was
performed in triplicate with DU145 alone or DU145 co-cultured with either RWPE1 or
DU145 in the insert. Cells from all compartments were harvested and RNA extracted using a
Qiagen RNeasy kit according to the manufacturer's instructions (Qiagen, USA). Custom-made
oligonucleotide arrays were manufactured using the Operon Human Oligo set, version 3.0 [51]
and then hybridized with Cy3 labeled probe, as described in Sarti et al. [52]

Phenotypic cell analysis was carried out in Becton Dickinson TC treated 96-well plates. 2.5
x 103 cells were seeded per well in DMEM containing 10% fetal calf serum. 24 hours later,
some wells were fitted with inserts also seeded with 2.5 x 103 cells per insert. Two days later
inserts were removed, media was aspirated from the wells and cells were fixed with 85% ice-
cold ethanol for at least two hours. After fixation cells were stained with propidium iodide
(10 μg per ml propidium iodide, 100 μg per ml RNase A, 0.1% Triton X-100 in PBS, 100 μl per
well). Plates were incubated at 37°C for 20 min in the dark and then analysed by laser scanning
cytometry (Acumen Explorer, TTP Labtech.).

The intensity of the propidium iodide fluorescence was proportional to the DNA content of
the cells and was measured on a linear scale. Single healthy and apoptotic cells were identified
based on nuclear size and DNA content [53]. Cell clusters were defined as single scanned
objects that contained multiple nuclei. The size of the clusters was defined as the ratio of the
total nuclear area within a cluster divided by the size of an average nucleus in the same
population.
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Clonogenic assay
Single-cell suspensions for either PC-3 or DU 145 cells, were prepared from 80% confluent cul-
tures. The cells were counted and plated onto 24-well flat-bottomed plates using a two-layer
soft agar system with 1x103 cells in 400 μl of media per well, as described previously [54]. The
feeder layer was prepared with agar (1%) equilibrated at 42°C. On top of the agar layers condi-
tioned media from COS-7 cells stably transfected with a SLIT2 expression vector, or mock
transfected control, was added. After 14 days of incubation, the colonies (>50 cells) were
counted using an inverted microscope. All experiments were done at least three times in tripli-
cate per experimental point and all statistical analyses were performed using the Student's t-
test.

Expression profiling analysis of the normal-tumour cell co-culture
experiment
Genes differentially expressed were first identified using SAMmulti-class test [22], with a
threshold of FDR<1%. Differentially expressed genes were then used as input for principal
component analysis (PCA) and the first two components representing 68% of variability were
plotted to visualize the relationships between the different samples (Fig 5A). Genes differen-
tially expressed in a given cell type as a result of co-culture were identified by a 2-class SAM
procedure (FDR<1%) by directly comparing RWPE1 co-cultured with DU145 (RWPE1DU145)
and RWPE1 cultured in isolation (RWPE1) or by comparing DU145 co-cultured with RWPE1
(DU145RWPE1) and DU145 cultured in isolation (DU145).

Predicted targets of polarized genes and the differentially expressed genes were then com-
pared using a Fisher exact test. The comparison of these gene lists at the functional level was
performed by plotting the frequency of genes in each functional term for predicted targets (x
axis in Fig 5C and 5D) against differentially expressed genes (y axis in Fig 5C and 5D).

Statistical modelling linking genetic mutations, transcription of polarised
genes, tumour features and clinical outcome
In order to address the hypothesis that disease linked genetic mutations such as copy number
variation (CNV) may influence the expression of polarised genes in tumour cells and that this,
in turn, may be predictive of tumour features and clinical outcome we implemented a data
analysis pipeline based on a number of advanced statistical procedures.

We used an independent dataset [17], which had comparative genomic hybridisation
(CGH), gene expression and comprehensive information on tumour features and clinical out-
come for a total of 231 tumour samples.

Firstly, in order to prioritise relevant genetic abnormalities we used ANOVA to rank CGH
signals linked to tumour features and/or one of the clinical outcome variables (see S1 File for
further details). The top 2017 probes in the ranked list were selected as an input of the model-
ling procedure.

We then mapped the 391 polarised genes we originally identified on the independent data-
set. Next, we used the selected CGH data and the polarised gene expression profiling dataset as
an input of a hierarchical Bayesian model [55] to find association between polarized gene
expressions and CNV (see S2 File for details of the modeling procedure as applied here). Next,
we fit an ANCOVA model for each gene expression on the tumour features. We then com-
puted correlations for the significant associations (p<0.05) and integrated all information in a
network format using the Cytoscape [43] software (Fig 6). Finally, we selected all polarized
genes represented in the network and performed a survival analysis testing the hypothesis that
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their expression in tumour cells could be linked to clinical outcome (survival and time free of
recurrence).

Survival analysis was performed as below. Briefly, for each gene we defined an optimal cut-
off to separate patients in two groups of low and high-expressing tumours, using procedure
described in Budczies et al [56]. Using this cut off, we dichotomized each gene expression level
that was then used to fit a cox regression model.

Supporting Information
S1 Fig. Distribution of Spearman correlation coefficient in the Singh dataset. The distribu-
tion of the gene-to-gene Spearman correlation coefficient between genes expressed in the nor-
mal, tumour and between genes expressed in normal and tumour tissues.
(TIF)

S2 Fig. Statistical validation of the polarization index. (A) Flowchart of the procedure used
to estimate the probability of observing polarized genes by random chance. Prostate normal
and tumour gene expression data are independently used to derive two correlation matrixes
representing the correlation structure within each of the tissues. (B) Using these correlation
matrixes as an input of a Multivariate Gaussian model we simulated synthetic normal and
tumour datasets and finally we compute the polarization coefficient using these data.
(TIF)

S3 Fig. Functional analyses of the targets of polarized genes. The Venn diagram lists func-
tional terms significantly enriched in the targets of polarized genes. The diagram shows terms
in common (red) as well as specifically enriched in positively and negatively polarized genes.
(TIF)

S4 Fig. Comparison between targets of polarized genes and experimental cell communica-
tion transcriptional signatures. The gene level overlap between predicted and experimental
cell-to-cell communication signatures. The two Venn diagrams show the comparison between
the targets of (A) positively or (B) negatively polarized genes and the list of up and down-regu-
lated differentially expressed genes in the in vitro cell communication model. NormalT are
genes differentially expressed in normal cells as a result of co-culture with tumour cells;
TumourN are genes differentially expressed in tumour cells as a result of co-culture with nor-
mal cells.
(TIF)

S5 Fig. Slit 2 expression in normal and tumour cells.
(TIF)

S6 Fig. Gene re-expression following treatment with hypomethylating agents and polariza-
tion. The frequency plot shows the distribution of the polarization index. The plot below
shows the genes that are re-expressed as a result of exposure to hypomethylating agents. Note
that genes are enriched in the positive end of the distribution (pol>0.75, p<0.03).
(TIF)

S7 Fig. Survival analyses. (A) The distribution of p values from a cox model linking expression
of polarized genes and survival free of recurrence. It compares genes that are linked to both
CNV and Gleason score (CNV+

AND Gle+) with genes that are linked to Gleason score but not
to CNV (CNV-

AND Gle+) and finally to all genes linked to CNV (CNV+). Note that genes
linked to CNV and Gleason score have a higher association with survival respect to genes that
are linked to Gleason score and not to CNV. (B) shows the–log10 of the p value (bar plot on
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the right side) and the value of beta parameter (bar plot on the left side) for the of the Cox sur-
vival model. The red dotted line shows the p<0.01 threshold of significance. Note that a nega-
tive beta means that higher expression of the gene in question has a lower hazard risk (higher
chance of survival).
(TIF)

S8 Fig. A high frequency of polarized genes does not occur as a result of experimental
noise. (A-B) The original dataset from normal cells is used to add noise depending on signal
levels (shown in panel B) multiplied by a scaling factor γ. The observed levels of polarization
index computed from these synthetic datasets is therefore due to random experimental noise.
(C) The number of highly polarized genes in the Singh et al dataset and synthetic dataset across
the distribution of correlations. Note that the shape of the distribution of correlations between
the real and synthetic dataset. (D) The distribution of polarization index between the Singh
et al and synthetic datasets.
(TIF)

S9 Fig. Distribution of the polarization coefficient in the kidney and liver datasets. The fig-
ure shows the distribution of polarization coefficient for the (A) kidney and the (B) liver gene
expression profiling datasets. (C) For reference purposes the distribution of the polarization
coefficient for the prostate cancer dataset is shown.
(TIF)

S1 Table. Functional analysis of genes in the NT network modules. The excel file is the out-
put of the web based tool g-profiler for genes in modules 1, 2 and 3 (see Fig 1).
(XLSX)

S2 Table. Polarized genes. The table represents the full list of polarized genes with their polari-
zation index (pol), the number of genes connected to each polarized gene in tumour (f) and in
normal (b) cells.
(XLSX)

S3 Table. Functional analysis of polarized genes. The excel file is the output of the web based
tool DAVID for positively and negatively polarized genes.
(XLSX)

S4 Table. Targets of polarized genes. The excel spreadsheet shows the list of genes connected
to positively or negatively polarized genes.
(XLSX)

S5 Table. Functional analysis of target genes. The excel file is the output of the web based
tool DAVID for the targets of positively and negatively polarized genes.
(XLSX)

S6 Table. Genes known to be re-expressed in prostate cancer cells, following exposure to
hypomethylating agents.
(XLSX)

S7 Table. Clinical variables available in the Taylor et al dataset.
(XLSX)

S8 Table. Correlation between CGH and expression in polarized genes. The table shows the
correlation coefficients between CGH signal and gene expression for all polarized genes. Note
that only nine genes show a statistically significant correlation at a p<0.01.
(XLSX)
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S9 Table. Results of the Bayesian hierarchical model. The table shows posterior probabilities
of inclusion for the significant associations between polarized genes and CGH probes. The
rightmost columns show the chromosomal location of the CGH probes.
(XLSX)

S10 Table. Functionally annotated CNV genes affecting the expression of polarized genes.
(XLSX)

S11 Table. Results of ANCOVA linking polarized genes to tumour features. The table
shows correlations between polarized genes and tumour features. We fit an ANCOVA model
for each gene expression on the tumour features. Correlations are computed only if the corre-
sponding association is significant (p<0.05), otherwise they are set to zero.
(XLSX)

S12 Table. Survival analysis. The table shows the results of the survival analysis on the polar-
ized genes significantly associated with either the Gleason score or CNV. More specifically, for
each gene it shows the polarization direction, the estimate of the coefficient of a cox regression
model, the corresponding p-value and the corrected p-value after the Benjamini and Hochberg
correction. For each gene an optimal cutoff was defined to separate patients in two groups of
low and high-expressing tumours. The resulting dichotomized gene expression levels were
then used to fit the cox regression model. The rightmost columns show whether the gene is
associated with Gleason score, CNV or both. The analysis is performed twice on survival and
time of recurrence.
(XLSX)

S1 File. Details on data processing for the public domain microarray datasets.
(DOCX)

S2 File. Details of the hierarchical Bayesian model used to find associations between polar-
ized gene expressions and Copy Number Variations (CNV).
(DOCX)

Author Contributions
Conceived and designed the experiments: FF MV RBMGMJC. Performed the experiments:
VT AC ZN XZ JH PA KC ND AR. Analyzed the data: VT AC ZN XZ JH PA KC ND ARMJC
MG RBMV FF. Wrote the paper: VT AC KC FF.

References
1. Barbieri CE, Bangma CH, Bjartell A, Catto JWF, Culig Z, Grönberg H, et al. The mutational landscape

of prostate cancer. European Urology. 2013. pp. 567–576. doi: 10.1016/j.eururo.2013.05.029 PMID:
23759327

2. HuM, Polyak K. Microenvironmental regulation of cancer development. Current Opinion in Genetics
and Development. 2008. pp. 27–34. doi: 10.1016/j.gde.2007.12.006 PMID: 18282701

3. Rollins BJ. Inflammatory chemokines in cancer growth and progression. Eur J Cancer. 2006; 42: 760–
767. PMID: 16510278

4. Niu Y-N, Xia S-J. Stroma-epithelium crosstalk in prostate cancer. Asian J Androl. 2009; 11: 28–35. doi:
10.1038/aja.2008.39 PMID: 19098934

5. Giri D, Ozen M, Ittmann M. Interleukin-6 is an autocrine growth factor in human prostate cancer. Am J
Pathol. 2001; 159: 2159–2165. Available: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=
Retrieve&db=PubMed&dopt=Citation&list_uids=11733366 PMID: 11733366

6. Bouraoui Mechergui Y, Ben Jemaa A, Mezigh C, Fraile B, Ben Rais N, Paniagua R, et al. The profile of
prostate epithelial cytokines and its impact on sera prostate specific antigen levels. Inflammation. 2009;
32: 202–210. doi: 10.1007/s10753-009-9121-7 PMID: 19399601

Molecular Cross-Talk in Prostate Carcinoma

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004884 April 28, 2016 25 / 28

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004884.s018
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004884.s019
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004884.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004884.s021
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004884.s022
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004884.s023
http://dx.doi.org/10.1016/j.eururo.2013.05.029
http://www.ncbi.nlm.nih.gov/pubmed/23759327
http://dx.doi.org/10.1016/j.gde.2007.12.006
http://www.ncbi.nlm.nih.gov/pubmed/18282701
http://www.ncbi.nlm.nih.gov/pubmed/16510278
http://dx.doi.org/10.1038/aja.2008.39
http://www.ncbi.nlm.nih.gov/pubmed/19098934
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=11733366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Citation&amp;list_uids=11733366
http://www.ncbi.nlm.nih.gov/pubmed/11733366
http://dx.doi.org/10.1007/s10753-009-9121-7
http://www.ncbi.nlm.nih.gov/pubmed/19399601


7. Campbell CL, Savarese DM, Quesenberry PJ, Savarese TM. Expression of multiple angiogenic cyto-
kines in cultured normal human prostate epithelial cells: predominance of vascular endothelial growth
factor. Int J Cancer. 1999; 80: 868–874. PMID: 10074920

8. Chang Q, Bournazou E, Sansone P, Berishaj M, Gao SP, Daly L, et al. The IL-6/JAK/Stat3 feed-forward
loop drives tumorigenesis and metastasis. Neoplasia. 2013; 15: 848–62. PMID: 23814496

9. Komurov K. Modeling community-wide molecular networks of multicellular systems. Bioinformatics.
2012; 28: 694–700. doi: 10.1093/bioinformatics/btr718 PMID: 22210865

10. Choi H, Sheng J, Gao D, Li F, Durrans A, Ryu S, et al. Transcriptome Analysis of Individual Stromal
Cell Populations Identifies Stroma-Tumor Crosstalk in Mouse Lung Cancer Model. Cell Rep. 2015; 10:
1187–1201. doi: 10.1016/j.celrep.2015.01.040 PMID: 25704820

11. Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS. Discovering functional relationships between
RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci U
S A. 2000; 97: 12182–12186. PMID: 11027309

12. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, et al. Gene expression correlates of clini-
cal prostate cancer behavior. Cancer Cell. 2002; 1: 203–209. PMID: 12086878

13. Su G, Kuchinsky A, Morris JH, States DJ, Meng F. GLay: community structure analysis of biological
networks. Bioinformatics. 2010; 26: 3135–3137. doi: 10.1093/bioinformatics/btq596 PMID: 21123224

14. Lodygin D, Epanchintsev A, Menssen A, Diebold J, Hermeking H. Functional epigenomics identifies
genes frequently silenced in prostate cancer. Cancer Res. 2005; 65: 4218–4227. PMID: 15899813

15. Wang Y, Yu Q, Cho AH, Rondeau G, Welsh J, Adamson E, et al. Survey of differentially methylated pro-
moters in prostate cancer cell lines. Neoplasia. 2005; 7: 748–760. PMID: 16207477

16. Yu YP, Paranjpe S, Nelson J, Finkelstein S, Ren B, Kokkinakis D, et al. High throughput screening of
methylation status of genes in prostate cancer using an oligonucleotide methylation array. Carcinogen-
esis. 2005; 26: 471–479. PMID: 15485992

17. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. Integrative Genomic Profiling
of Human Prostate Cancer. Cancer Cell. 2010; 18: 11–22. doi: 10.1016/j.ccr.2010.05.026 PMID:
20579941

18. Tomlins SA, Mehra R, Rhodes DR, Cao X,Wang L, Dhanasekaran SM, et al. Integrative molecular con-
cept modeling of prostate cancer progression. Nat Genet. 2007; 39: 41–51. PMID: 17173048

19. Sun GG, Lu YF, Zhang J, HuWN. Filamin A regulates MMP-9 expression and suppresses prostate
cancer cell migration and invasion. Tumour Biol. 2014; 35: 3819–26. doi: 10.1007/s13277-013-1504-6
PMID: 24390612

20. XiaoW, Wang J, Li H, GuanW, Xia D, Yu G, et al. Fibulin-1 is down-regulated through promoter hyper-
methylation and suppresses renal cell carcinoma progression. J Urol. 2013; 190: 291–301. doi: 10.
1016/j.juro.2013.01.098 PMID: 23391467

21. Huang YQ, Han ZD, Liang YX, Lin ZY, Ling XH, Fu X, et al. Decreased expression of myosin light chain
MYL9 in stroma predicts malignant progression and poor biochemical recurrence-free survival in pros-
tate cancer. Med Oncol. 2014; 31.

22. Suh KS, Malik M, Shukla A, Ryscavage A, Wright L, Jividen K, et al. CLIC4 is a tumor suppressor for
cutaneous squamous cell cancer. Carcinogenesis. 2012; 33: 986–995. doi: 10.1093/carcin/bgs115
PMID: 22387366

23. Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celià-Terrassa T, et al. Direct targeting of Sec23a by
miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med. 2011; 17:
1101–1108. doi: 10.1038/nm.2401 PMID: 21822286

24. Hogan C, Kajita M, Lawrenson K, Fujita Y. Interactions between normal and transformed epithelial
cells: Their contributions to tumourigenesis. Int J Biochem Cell Biol. 2011; 43: 496–503. doi: 10.1016/j.
biocel.2010.12.019 PMID: 21187160

25. Werner S, Frey S, Riethdorf S, Schulze C, Alawi M, Kling L, et al. Dual roles of the transcription factor
grainyhead-like 2 (GRHL2) in breast cancer. J Biol Chem. 2013; 288: 22993–23008. doi: 10.1074/jbc.
M113.456293 PMID: 23814079

26. Xiang J, Fu X, RanW, Chen X, Hang Z, Mao H, et al. Expression and role of grainyhead-like 2 in gastric
cancer. Med Oncol. 2013;30.

27. Danila DC, Anand A, Schultz N, Heller G, Wan M, Sung CC, et al. Analytic and clinical validation of a
prostate cancer-enhanced messenger RNA detection assay in whole blood as a prognostic biomarker
for survival. Eur Urol. 2014; 65: 1191–7. doi: 10.1016/j.eururo.2013.07.006 PMID: 23954088

28. Werth M, Walentin K, Aue A, Schönheit J, Wuebken A, Pode-Shakked N, et al. The transcription factor
grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex.
Development. 2010; 137: 3835–45. doi: 10.1242/dev.055483 PMID: 20978075

Molecular Cross-Talk in Prostate Carcinoma

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004884 April 28, 2016 26 / 28

http://www.ncbi.nlm.nih.gov/pubmed/10074920
http://www.ncbi.nlm.nih.gov/pubmed/23814496
http://dx.doi.org/10.1093/bioinformatics/btr718
http://www.ncbi.nlm.nih.gov/pubmed/22210865
http://dx.doi.org/10.1016/j.celrep.2015.01.040
http://www.ncbi.nlm.nih.gov/pubmed/25704820
http://www.ncbi.nlm.nih.gov/pubmed/11027309
http://www.ncbi.nlm.nih.gov/pubmed/12086878
http://dx.doi.org/10.1093/bioinformatics/btq596
http://www.ncbi.nlm.nih.gov/pubmed/21123224
http://www.ncbi.nlm.nih.gov/pubmed/15899813
http://www.ncbi.nlm.nih.gov/pubmed/16207477
http://www.ncbi.nlm.nih.gov/pubmed/15485992
http://dx.doi.org/10.1016/j.ccr.2010.05.026
http://www.ncbi.nlm.nih.gov/pubmed/20579941
http://www.ncbi.nlm.nih.gov/pubmed/17173048
http://dx.doi.org/10.1007/s13277-013-1504-6
http://www.ncbi.nlm.nih.gov/pubmed/24390612
http://dx.doi.org/10.1016/j.juro.2013.01.098
http://dx.doi.org/10.1016/j.juro.2013.01.098
http://www.ncbi.nlm.nih.gov/pubmed/23391467
http://dx.doi.org/10.1093/carcin/bgs115
http://www.ncbi.nlm.nih.gov/pubmed/22387366
http://dx.doi.org/10.1038/nm.2401
http://www.ncbi.nlm.nih.gov/pubmed/21822286
http://dx.doi.org/10.1016/j.biocel.2010.12.019
http://dx.doi.org/10.1016/j.biocel.2010.12.019
http://www.ncbi.nlm.nih.gov/pubmed/21187160
http://dx.doi.org/10.1074/jbc.M113.456293
http://dx.doi.org/10.1074/jbc.M113.456293
http://www.ncbi.nlm.nih.gov/pubmed/23814079
http://dx.doi.org/10.1016/j.eururo.2013.07.006
http://www.ncbi.nlm.nih.gov/pubmed/23954088
http://dx.doi.org/10.1242/dev.055483
http://www.ncbi.nlm.nih.gov/pubmed/20978075


29. Kang X, ChenW, Kim RH, Kang MK, Park N- H. Regulation of the hTERT promoter activity by MSH2,
the hnRNPs K and D, and GRHL2 in human oral squamous cell carcinoma cells. Oncogene. 2009; 28:
565–574. doi: 10.1038/onc.2008.404 PMID: 19015635

30. Tanaka Y, Kanai F, Tada M, Tateishi R, Sanada M, Nannya Y, et al. Gain of GRHL2 is associated with
early recurrence of hepatocellular carcinoma. J Hepatol. 2008; 49: 746–757. doi: 10.1016/j.jhep.2008.
06.019 PMID: 18752864

31. Cieply B, Farris J, Denvir J, Ford HL, Frisch SM. Epithelial-mesenchymal transition and tumor suppres-
sion are controlled by a reciprocal feedback loop between ZEB1 and Grainyhead-like-2. Cancer Res.
2013; 73: 6299–6309. doi: 10.1158/0008-5472.CAN-12-4082 PMID: 23943797

32. Zhong Z, YeowWS, Zou C, Wassell R, Wang C, Pestell RG, et al. Cyclin D1/cyclin-dependent kinase 4
interacts with filamin A and affects the migration and invasion potential of breast cancer cells. Cancer
Res. 2010; 70: 2105–2114. doi: 10.1158/0008-5472.CAN-08-1108 PMID: 20179208

33. Wlazlinski A, Engers R, Hoffmann MJ, Hader C, Jung V, Müller M, et al. Downregulation of several fibu-
lin genes in prostate cancer. Prostate. 2007; 67: 1770–1780. PMID: 17929269

34. Leanza L, Biasutto L, Managò A, Gulbins E, Zoratti M, Szabò I. Intracellular ion channels and cancer.
Frontiers in Physiology. 2013.

35. Vidal S, Rodriguez-Bravo V, Quinn SA, Rodriguez-Barrueco R, Lujambio A, Williams E, et al. A Target-
able GATA2-IGF2 Axis Confers Aggressiveness in Lethal Prostate Cancer. Cancer Cell. 2015; 27:
223–239. doi: 10.1016/j.ccell.2014.11.013 PMID: 25670080

36. Saharinen J, Hyytiäinen M, Taipale J, Keski-Oja J. Latent transforming growth factor-beta binding pro-
teins (LTBPs)—structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth
Factor Rev. 1999; 10: 99–117. PMID: 10743502

37. Clarke K, Daubon T, Turan N, Soulet F, Mohd Zahari M, Ryan KR, et al. Inference of Low and High-
Grade Glioma Gene Regulatory Networks Delineates the Role of Rnd3 in Establishing Multiple Hall-
marks of Cancer. PLoS Genet. 2015; 11: e1005325. doi: 10.1371/journal.pgen.1005325 PMID:
26132659

38. Turan N, Kalko S, Stincone A, Clarke K, Sabah A, Howlett K, et al. A systems biology approach identi-
fies molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary dis-
ease. PLoS Comput Biol. 2011; 7: e1002129. doi: 10.1371/journal.pcbi.1002129 PMID: 21909251

39. Davidsen PK, Turan N, Egginton S, Falciani F. Multi-level functional genomics data integration as a tool
for understanding physiology: A network perspective. J Appl Physiol. 2015; jap.01110.2014.

40. Yee Hwa Yang with contributions from Agnes Paquet and Sandrine Dudoit. marray: Exploratory analy-
sis for two-color spotted microarray data. 2009; Available: www.maths.usyd.edu.au/u/jeany/

41. Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate
controlling procedures. Bioinformatics. 2003; 19: 368–375. PMID: 12584122

42. Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, et al. ARACNE: An Algo-
rithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bio-
informatics. 2006; 7: S7.

43. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environ-
ment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13: 2498–504.
PMID: 14597658

44. Assenov Y, Ramírez F, Schelhorn S- E, Lengauer T, Albrecht M. Computing topological parameters of
biological networks. Bioinformatics. 2008; 24: 282–4. PMID: 18006545

45. Steele JM. Non-Uniform Random Variate Generation (Luc Devroye). SIAM Review. 1987. pp. 675–
676.

46. Jain N, Thatte J, Braciale T, Ley K, O&apos;Connell M, Lee JK. Local-pooled-error test for identifying
differentially expressed genes with a small number of replicated microarrays. Bioinformatics. 2003; 19:
1945–1951. PMID: 14555628

47. Genz A. Numerical Computation of Multivariate Normal Probabilities. J Comput Graph Stat. 1992; 1:
141–149.

48. Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, et al. Gene expression patterns in human liver
cancers. Mol Biol Cell. 2002; 13: 1929–39. PMID: 12058060

49. Boer JM, Huber WK, Sültmann H, Wilmer F, Von Heydebreck A, Haas S, et al. Identification and classi-
fication of differentially expressed genes in renal cell carcinoma by expression profiling on a global
human 31,500-element cDNA array. Genome Res. 2001; 11: 1861–1870. PMID: 11691851

50. Reimand J, Kull M, Peterson H, Hansen J, Vilo J. G:Profiler-a web-based toolset for functional profiling
of gene lists from large-scale experiments. Nucleic Acids Res. 2007; 35.

Molecular Cross-Talk in Prostate Carcinoma

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004884 April 28, 2016 27 / 28

http://dx.doi.org/10.1038/onc.2008.404
http://www.ncbi.nlm.nih.gov/pubmed/19015635
http://dx.doi.org/10.1016/j.jhep.2008.06.019
http://dx.doi.org/10.1016/j.jhep.2008.06.019
http://www.ncbi.nlm.nih.gov/pubmed/18752864
http://dx.doi.org/10.1158/0008-5472.CAN-12-4082
http://www.ncbi.nlm.nih.gov/pubmed/23943797
http://dx.doi.org/10.1158/0008-5472.CAN-08-1108
http://www.ncbi.nlm.nih.gov/pubmed/20179208
http://www.ncbi.nlm.nih.gov/pubmed/17929269
http://dx.doi.org/10.1016/j.ccell.2014.11.013
http://www.ncbi.nlm.nih.gov/pubmed/25670080
http://www.ncbi.nlm.nih.gov/pubmed/10743502
http://dx.doi.org/10.1371/journal.pgen.1005325
http://www.ncbi.nlm.nih.gov/pubmed/26132659
http://dx.doi.org/10.1371/journal.pcbi.1002129
http://www.ncbi.nlm.nih.gov/pubmed/21909251
http://www.maths.usyd.edu.au/u/jeany/
http://www.ncbi.nlm.nih.gov/pubmed/12584122
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://www.ncbi.nlm.nih.gov/pubmed/18006545
http://www.ncbi.nlm.nih.gov/pubmed/14555628
http://www.ncbi.nlm.nih.gov/pubmed/12058060
http://www.ncbi.nlm.nih.gov/pubmed/11691851


51. Verdugo RA, Medrano JF. Comparison of gene coverage of mouse oligonucleotide microarray plat-
forms. BMCGenomics. 2006; 7: 58. PMID: 16551360

52. Stekel DJ, Sarti D, Trevino V, Zhang L, Salmon M, Buckley CD, et al. Analysis of host response to bac-
terial infection using error model based gene expression microarray experiments. Nucleic Acids Res.
2005; 33: e53. PMID: 15800204

53. Ormerod M. Flow Cytometry. First Principles. J Clin Pathol. 1993; 46: 975.

54. Campbell MJ, Reddy GS, Koeffler HP. Vitamin D3 analogs and their 24-oxo metabolites equally inhibit
clonal proliferation of a variety of cancer cells but have differing molecular effects. J Cell Biochem.
1997; 66: 413–425. PMID: 9257197

55. Cassese A, Guindani M, Tadesse MG, Falciani F, Vannucci M. A hierarchical Bayesian model for infer-
ence of copy number variants and their association to gene expression. Ann Appl Stat. 2014; 8: 148–
175. PMID: 24834139

56. Budczies J, Klauschen F, Sinn B V., Gyorffy B, Schmitt WD, Darb-Esfahani S, et al. Cutoff Finder: A
Comprehensive and Straightforward Web Application Enabling Rapid Biomarker Cutoff Optimization.
PLoS One. 2012; 7.

Molecular Cross-Talk in Prostate Carcinoma

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004884 April 28, 2016 28 / 28

http://www.ncbi.nlm.nih.gov/pubmed/16551360
http://www.ncbi.nlm.nih.gov/pubmed/15800204
http://www.ncbi.nlm.nih.gov/pubmed/9257197
http://www.ncbi.nlm.nih.gov/pubmed/24834139



