
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Bayesian Nonparametric Gamma Mixtures For Mean Residual Life Inference

Permalink
https://escholarship.org/uc/item/7pq476f0

Author
Poynor, Valerie Ann

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7pq476f0
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

SANTA CRUZ

BAYESIAN NONPARAMETRIC GAMMA MIXTURES FOR
MEAN RESIDUAL LIFE INFERENCE

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

STATISTICS AND APPLIED MATHEMATICS

by

Valerie Poynor

September 2013

The Dissertation of Valerie Poynor
is approved:

Professor Athanasios Kottas, Chair

Professor David Draper

Professor Marc Mangel

Professor Abel Rodriguez

Tyrus Miller
Vice Provost and Dean of Graduate Studies



Copyright c© by

Valerie Poynor

2013



Table of Contents

List of Figures v

List of Tables viii

Abstract ix

Dedication xi

Acknowledgments xii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and contributions . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Nonparametric Bayesian inference for Mean Residual Life functions 9
2.1 Theory and properties of MRL functions . . . . . . . . . . . . . . . . . . 10

2.1.1 Properties of mrl functions . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Linear mrl function . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 The form of the mrl function for some common distributions . . 14

2.2 Nonparametric mixture model for MRL inference . . . . . . . . . . . . . 19
2.2.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Prior specification . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.3 Posterior inference . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Data examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.1 Simulation examples . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Analysis of survival times of rats (ad libitum vs restricted eating) 33
2.3.3 Analysis of survival times of patients with small cell lung cancer 41

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Bayesian nonparametric regression modeling for survival response dis-
tributions 46
3.1 Literature review of Bayesian survival regression . . . . . . . . . . . . . 47

iii



3.2 Curve fitting with random covariates . . . . . . . . . . . . . . . . . . . . 51
3.2.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Prior selection and posterior inference . . . . . . . . . . . . . . . 54
3.2.3 Simulation example . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Dependent Dirichlet Process Mixture Model Across Experimental Groups 57
3.3.1 Dirichlet process prior with dependent weights . . . . . . . . . . 58
3.3.2 Properties of the DDP mixture model . . . . . . . . . . . . . . . 62
3.3.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Data example: small sell lung cancer . . . . . . . . . . . . . . . . . . . 76
3.4.1 Dependency across treatment groups . . . . . . . . . . . . . . . . 76
3.4.2 Incorporating the age covariate . . . . . . . . . . . . . . . . . . . 84

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4 Modeling and inference for order constrained MRL functions 90
4.1 Motivation and background . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Model properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2.2 DP-based prior for hazard rate order . . . . . . . . . . . . . . . . 99
4.2.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Data example: small cell lung cancer . . . . . . . . . . . . . . . . . . . . 105

5 Conclusions 109

A Proof of Properties of MRL 125

B Proof of the Lemmas 127
B.1 Proof of the Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
B.2 Proof of the Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

C Posterior sampling from the gamma DPMM 133

D Posterior sampling and Conditional Predictive Ordinate for gamma
DDPMM 136
D.1 Posterior sampling from the gamma DDPMM with random covariates . 136
D.2 Conditional Predictive Ordinate for gamma DDPMM . . . . . . . . . . 142

E Posterior sampling for model for mrl ordered populations 146

iv



List of Figures

2.1 Simulation example 1. Point (solid) and interval (dashed) estimates of
lifetime for the density (top left) overlaying the sample histogram and
actual population density (dot-dashed), posterior (solid) and prior (dot-
dashed) distribution of the correlation between θ and φ (top right), sur-
vival (lower left), hazard rate (lower middle), and mrl (lower right) func-
tions of the two experimental groups under the gamma DPMM. . . . . . 32

2.2 Simulation example 2. Point (solid) and interval (dashed) estimates of
lifetime for the density (top left) overlaying the sample histogram and
actual population density (dot-dashed), posterior (solid) and prior (dot-
dashed) distribution of the correlation between θ and φ (top right), sur-
vival (lower left), hazard rate (lower middle), and mrl (lower right) func-
tions of the two experimental groups under the gamma DPMM. . . . . . 34

2.3 Relative frequency histogram and densities of lifetime (in days) of the two
experimental groups (Ad libitum is left and Restricted is right) along with
posterior mean and 95% interval estimates for the density functions under
the exponentiated Weibull model (top) and the gamma DPMM (bottom). 35

2.4 Point and 95% interval estimates of lifetime (in years) for the density
(top left), survival (top right), and hazard rate (lower left), and point
and 80% interval estimates for the mrl (lower right) functions of the two
experimental groups under the gamma DPMM. . . . . . . . . . . . . . . 37

2.5 Values of the posterior predictive loss criterion for comparison between
the parametric exponentiated Weibull model (dot dashed lines) and non-
parametric gamma DPMM (solid lines). . . . . . . . . . . . . . . . . . . 39

2.6 Point estimates for the mrl functions of Arm A (blue dashed) and Arm
B (green solid). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Densities of the mrl of Arm A minus Arm B at a number of fixed time
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.8 The posterior (black solid) and prior (red dashed) probability of the mrl
function of Arm A being higher than the mrl function of Arm B over a
grid of survival times (days). . . . . . . . . . . . . . . . . . . . . . . . . 43

v



3.1 Simulated data (left), and point (purple solid) and interval estimates
(light blue dashed) of the mean overlaying the truth (black solid) (right). 56

3.2 Point (blue solid) and 95% interval estimates (red dashed) of the mrl
function for the specified covariate value overlaying the true mrl function
of the population (black solid). . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Correlation between ζC and ζT over a grid of α and b values. . . . . . . 63
3.4 Correlation between ω20C and ω20T (left) and ω80C and ω80T (right) over

a grid of α and b values. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5 Correlation between GC(B) and GT (B) over a grid of α and b values. . 66
3.6 Correlation between TC and TT when µ = (0, 0)′ and Σ = ((1, 0)′(0, 1)′)

(left) and when µ = (3.09, 0.5)′ and Σ = ((1.5, 0.2)′(0.2, 0.25)′) (right)
over a grid of α and b values. . . . . . . . . . . . . . . . . . . . . . . . . 67

3.7 Simulation 1 population densities (left) and Simulation 2 population den-
sities (right). The green curve represents the first population (T1) while
the blue represents the second (T2) in each simulation. . . . . . . . . . . 69

3.8 Simulation 1. Simulated survival times from mixture of Weibull having
the same locations and different weights. . . . . . . . . . . . . . . . . . . 70

3.9 Simulation 1. Posterior point and 95% interval estimates for density
(left), survival (middle), and mrl (right) functions. The truth is given by
the black dashed curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.10 Simulation 2. Simulated survival times from mixture of Weibull having
the same locations and different weights. . . . . . . . . . . . . . . . . . . 73

3.11 Simulation 2. Posterior point and 95% interval estimates for α (left), b
(middle), and the correlation between the mixing distributions (right).
The priors for α and b are given by the red dashed line. . . . . . . . . . 74

3.12 Simulation 2. Posterior point and 95% interval estimates for density
(left), survival (middle), and mrl (right) functions. The truth is given by
the black dashed curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.13 Prior (red dashed) and posterior (black solid) densities for α (left), b
(middle), and Cor(GC , GT ) (right). . . . . . . . . . . . . . . . . . . . . . 77

3.14 Posterior point and 95% interval estimates of the density function for
Arm A (upper left) and Arm B (upper right). Posterior point estimate
of the survival function (bottom left) and the mean residual life function
(bottom right) for Arm A (blue dashed) and Arm B (green solid). . . . 78

3.15 The posterior (black solid) and prior (red dashed) probability of the mrl
function of Arm A being higher than the mrl function of Arm B over a
grid of survival times (days). . . . . . . . . . . . . . . . . . . . . . . . . 79

3.16 The CPO values under the EWM (red) and gamma DDPMM (blue and
green) for the small cel lung cancer data. The top panels represent Arm
A, and the bottom represent Arm B. The right column are the right cen-
sored survival times, and the left column are the fully observed survival
times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vi



3.17 Point and 80% interval estimates of the conditional mean of the survival
distribution of Arm A (blue) and Arm B (green) across a grid of age
values (in years). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.18 Estimates of the mrl function of Arm A (blue) and Arm B (green) for
ages 50 (left), 60 (middle), and 78 (right), age is in years. . . . . . . . . 87

4.1 Posterior point estimate and 95% interval bands for the mrl functions of
Arm A (green) and Arm B (blue) under two independent gamma DPMMs
(left), the gamma DDPMM (middle), and the ordered mrl model (right) 106

4.2 Densities of the difference between the mrl functions of Arm A and Arm B
under independent gamma DPMMs (dotted), gamma DDPMM (dashed),
and the ordered mrl model (solid), are provided at 0 days (top left), 250
days (top middle), 500 days (top right), 750 days (bottom left),1000 days
(bottom middle), and 1250 days (bottom right). . . . . . . . . . . . . . 107

vii



List of Tables

2.1 Shapes of the mean residual life function for common parametric distribu-
tions. Shapes are described as being increasing (INC), decreasing (DCR),
upside down bathtub (UBT), bathtub (BT), constant, or undefined. . . 18

2.2 Forms of MRL for Exponentiated Weibull Distribution . . . . . . . . . . 19

3.1 Summary of the CPO values. . . . . . . . . . . . . . . . . . . . . . . . . 84

viii



Abstract

Bayesian Nonparametric Gamma Mixtures for Mean Residual Life Inference

by

Valerie Poynor

In survival analysis interest lies in modeling data that describe the time to a particular

event. Informative functions, namely the hazard function and mean residual life func-

tion, can be obtained from the model’s distribution function. We focus on the mean

residual life function which provides the expected remaining life given that the subject

has survived (i.e., is event-free) up to a particular time. This function is of direct inter-

est in reliability, medical, and actuarial fields. In addition to its practical interpretation,

the mean residual life function characterizes the survival distribution. In terms of mean

residual life function inference, there are two shortcomings present in the current litera-

ture. First off, the shape of the functional is often restricted, which forces the researcher

to make an assumption that may not be appropriate. Secondly, in cases where the shape

of the functional is not parametrically specified, full inference is not obtained. The aim

of our research is to provide a modeling approach that yields full inference for the mean

residual life function, and is not restrictive on the shape of the functional. In particular,

we develop general Bayesian nonparametric modeling methods for inference for mean

residual life functions built from a mixture model for the associated survival distribu-

tion. Although the prior model is not placed on the mean residual life function directly,

our methods offer rich inference for the desired functional. We place a Dirichlet process

ix



mixture model on the survival function, and discuss the importance of careful kernel

selection to ensure desirable properties for the mean residual life function. We advocate

for a mixture model with a gamma kernel and dependent baseline distribution for the

Dirichlet process prior. We extend our model to the regression setting by modeling

the joint distribution for the survival response and random covariates. This approach

provides a flexible method for obtaining inference for the regression functionals when

the number of random covariates is small to moderate. We further extend our methods

to the scenario where interest lies in comparison of survival between two experimental

groups. Typically, we expect the range of survival in the two groups to be the same,

but exhibiting different characteristics over that range. Here, we develop a dependent

Dirichlet process prior for the mixing distributions having shared locations across the

two groups and varying weights to incorporate dependency between populations and

achieve richer inferential results. The final scenario we consider is the case in which

the researcher believes two populations have ordered mean residual life functions. For

such applications, a prior model that incorporates an ordering constraint on the mean

residual life functions is attractive. We introduce a mixture of Erlang distributions with

weights constructed using Dirichlet process priors that provides the mean residual life

ordering result. We demonstrate the utility of our modeling methods through simula-

tion and real data examples. In addition, we draw comparisons with both parametric

and semiparametric models.
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Chapter 1

Introduction

1.1 Background

Survival data describe the time to a particular event. This event is typically

referred to as the failure of some machine or death of a person. However, survival data

can also represent duration of unemployment, life expectancy of a product, the time

until a patient relapses, etc. Continuous-time survival data is more prevalent, however,

there are situations in which survival time lives on a discrete space. Situations in which

discrete-time survival data is more appropriate include time to graduation of students in

terms of semesters or quarters, the number of years of teachers serve before retirement,

and the number of menstrual cycles occurs until a couple conceives. Often discrete-time

survival data is the product of logistical and financial restrictions, such that the data

can only be collected at certain time periods. In our research, we will consider only

continuous survival data. For examples and methodologies involving discrete survival
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data see, e.g., Singer & Willet (1993); Willet & Singer (1993); Scheike & Jensen (1997);

and Cox & Oakes (1984).

The survival function of a continuous positive random variable T defines the

probability of survival beyond time t, S(t) = Pr(T > t) = 1 − F (t), where F (t) is the

distribution function. The hazard rate function computes the probability of a failure in

the next instant given survival up to time t,

h(t) = lim
∆t→0

Pr[t < T ≤ t+ ∆t|T > t]

∆t
=
f(t)

S(t)

where f(t) is the probability density function. The mean residual life (mrl) function

computes the expected remaining survival time of a subject given survival up to time

t. Suppose that F (0) = 0 and µ ≡ E(T ) =
∫∞

0 S(t)dt <∞. Then the mrl function for

continuous T is defined as:

m(t) = E(T − t|T > t) =

∫∞
t (u− t)f(u)du

S(t)
=

∫∞
t S(u)du

S(t)
(1.1)

and m(t) ≡ 0 whenever S(t) = 0. The mrl function is of particular interest because

of its easy interpretability and large area of application (Guess & Proschan, 1985).

Moreover, it characterizes the survival distribution via the Inversion Formula (1.2).

Again for continuous T with finite mean, the survival function is defined through the

mrl function:

S(t) =
m(0)

m(t)
exp

[
−
∫ t

0

1

m(u)
du

]
. (1.2)

The Inversion Formula is one of several defining properties of the mrl function. The

mrl function is also nonnegative and right continuous. More interesting is that the
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mrl function plus its argument, m(t) + t, is nondecreasing. These properties, in addi-

tion to a couple more formalities that are formally stated in Section 2.1.1, provide the

characterization theorem for the mrl function (Hall & Wellner, 1981).

As with the hazard function, it is possible to characterize the form of the

mrl function for standard parametric distributions. In Section 2.1.3, we explore mrl

functions for a number of commonly used parametric models for survival data. While

the shapes of these mrl functions are transparent there is a downfall. Unfortunately,

the shape of the mrl function is often limited to be monotonically increasing (INC)

or decreasing (DCR), which may be appropriate for some situations, but not suitable

for other populations. For instance, biological lifetime data tend to support lower mrl

during infancy and elderly age while there is a higher mrl during the middle ages.

The shape of this mrl function is unimodal and commonly referred to as upside-down

bathtub (UBT) shape. Modifications of the Weibull model have been explored in order

to develop more flexible parametric distributions with regard to the shapes of the hazard

and mrl functions; see, e.g., Pham & Lai (2007).

Several papers have investigated the shape of the mrl function in relation to the

hazard function. For instance, a well-known relationship for monotonically increasing

(decreasing) hazard functions is that the corresponding mrl function will be monoton-

ically decreasing (increasing); see Finkelstein (2002) for a review. Gupta & Akman

(1995) establish sufficient conditions for the mrl function to be decreasing (increasing)

or UBT (BT) given that the hazard is BT (UBT). Xie et al. (2004) look at the specific

change points of mrl function and hazard function.
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Another point of interest lies in inference for the mrl function. The classical

survival analysis literature includes several estimation techniques for mrl functions. The

most basic estimator, being the empirical estimate, was first studied in Yang (1978). The

empirical estimate is defined by m̂n(t) = ((
∫∞
t Sn(u)du)/Sn(t))1[0,T(n)](t) where Sn(t)

is the empirical survival function and T(n) is the maximum observed survival time. It

is shown that under this fixed finite interval, the estimator is asymptotically unbiased,

is uniformly strong consistent, and as n goes to infinity it converges in distribution to a

Gaussian process. Hall & Wellner (1979) extend the empirical estimator by defining it

for values on the positive real line. Furthermore, they provide nonparametric confidence

bands for the estimate via transformations of the limiting process of the estimator into

Brownian motion. Abdous & Berred (2005) use a local linear fitting technique to find

a smooth estimate assuming only that the smoothing kernel is symmetric. A nonpara-

metric hypothesis testing procedure for comparing mrl functions from two independent

groups was introduced by Berger et al. (1988). A practical benefit of this procedure is

that mrl estimates of the two groups were allowed to cross, a pattern that is likely to

arise in applications.

Classical estimation for the mrl function began to have a semiparametric re-

gression flavor when Oakes & Dasu (1990) extended the class of distribution having

linear mrl functions (Hall & Wellner, 1981), to a family having proportional mrl func-

tions, m1(t) = ψm2(t) for ψ > 0. Maguluri & Zhang (1994) further extended the

proportional mrl model to a regression setting, m(t|z) = exp(ψz)m0(t), where z is a

vector of covariates, ψ is of vector of regression coefficients, and m0(t) is a baseline

4



mrl function. Chen & Cheng (2005) also extend the proportional mrl model to include

inference for the regression parameters with censored data.

In contrast to the classical literature, there has been very little work on mod-

eling and inference for mrl functions under the Bayesian framework. Lahiri & Park

(1991) present nonparametric Bayes and empirical Bayes estimators under a Dirichlet

process (Ferguson, 1973) prior for the probability distribution. They show that the

Bayes estimator becomes a weighted average of the prior guess for the mrl function and

the empirical mrl function of the data. Johnson (1999) discusses a Bayesian method

for estimation of the mrl function under interval and right censored data, also using a

Dirichlet process prior for the corresponding survival function.

1.2 Objectives and contributions

The wide range of application for the mrl function illustrates the practical

importance of this functional. Ideally, we would like to develop flexible Bayesian prior

models for the mrl function directly. Based on our literature search, such model struc-

tures do not exist. The reason for the lack of development on this topic may be due

to the difficulty in obtaining a likelihood. Obtaining the likelihood requires the use of

the inversion formula (1.2), which involves integration over the reciprocal of the mrl

function. Note that classical nonparametric estimation techniques do not face this issue

because they are not built from probabilistic modeling of the survival distribution of

mrl function. Forms of the mrl functions that lead to convenient integration are re-
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strictive with respect to the shape of the mrl function. One possibility is to look at

a mixture of mrl functions for which the corresponding distribution function is easily

obtainable. It is easy to show that a linear combination of mrl functions produces a

valid mrl function. We have explored models for the mrl function by mixing over a

class of parametric mrl functions. We developed these classes by creating functions that

satisfy the characterization theorem for mrl functions. We were able to capture unique

skewness characteristics as well as some basic shapes for the mrl function, however, we

could not develop a class of mrl functions that allowed general (multimodal) shapes.

More critically, implementation of posterior inference suffers from the complicated way

the mrl function enters the likelihood.

The obstacles in modeling the mrl function directly have directed us to looking

at the inference for the mrl function that is implied by Bayesian nonparametric mixture

models for the density. The choice of kernel is important when the interest lies in mrl

inference. We investigate and report the implications of the mrl function under various

kernel mixture distributions, providing a basic set of criteria for kernel selection. In

particular, we lend a sufficiency condition that ensures finiteness of the mean of the

mixture distribution, a requirement for a well-defined mrl function. We also discuss the

limitations that some kernels imply for the tail behavior of the mrl function. Taking

these criteria and properties into consideration, we choose to work with a gamma kernel

distribution. The model we propose is a model for the density function, however, we

are still able to show that the model is dense, in the pointwise sense, on the space of mrl

functions. This result indicates that under flexible prior framework, we will be able to

6



closely estimate any mrl function. Details of the model formulation and kernel selection

can be found in Chapter 2.

In the case where predictor variables for the survival response distribution

are present, we provide a framework for obtaining inference for mrl functions. In this

context, fully nonparametric regression modeling is appealing as it can capture different

mrl function shapes for different parts of the covariate space. We convey the details

for joint modeling of survival times and random covariates, and provide a simulation

example with a single continuous covariate demonstrating a variety of mrl forms over

the space of covariate values. When the data consists of two experimental groups, the

dependent Dirichlet process (DDP) prior for the mixing distribution allows dependency

across the two populations to be incorporated in the model. In particular, we propose

a DDP in which the populations share the same locations, but the weights vary for

each group. This structure has not been developed in the literature as much as the

more commonly used structure of having the groups sharing the same weights and

varying locations. However, in the context of survival data, the former structure is

more natural. Specifically, we may expect the range of the survival times of the two

experimental groups to be the same, but exhibiting different prevalence across survival

time. Further discussion of our model development and implementation for Bayesian

nonparametric survival regression is divulged in Chapter 3.

When a researcher knows that the mrl of one population is higher than that

of another population across the entire support, then a Bayesian model that has this

ordering property in the prior is an attractive model for data obtained from these popu-
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lations. Models that assume ordering between two distribution functions (i.e. stochastic

order) have been studied and formulated from both a Bayesian and frequentist perspec-

tive. On the other hand, there is not substantial literature on study for mrl ordering,

and to our knowledge, no work on model formulation from a Bayesian nonparametric

perspective. In Chapter 4, we develop and implement a Bayesian nonparametric model

for this setting.

8



Chapter 2

Nonparametric Bayesian inference for

Mean Residual Life functions

The focus of this chapter is the development of a Bayesian nonparametric mix-

ture model that achieves flexible inference for the mrl function. We begin by reviewing

important properties of the mrl function, and looking at the shapes of a number of

mrl functions that are associated with commonly used parametric models in survival

analysis (Section 2.1). These commonly used parametric model motivate the need for a

more flexible modeling approach to mrl inference. In Section 2.2, we present the gamma

DDP mixture model for mrl inference. In Section 2.3, we demonstrate the ability of the

model to capture unique features in the mrl function through data examples. We close

the chapter with our concluding remarks in Senction 2.4.
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2.1 Theory and properties of MRL functions

In this section, we review some important properties and characteristics of

the mrl function and provide the form of the mrl function for several common distri-

butions. We begin with some elementary properties that are well-established in the

literature that either lead to the development of the Inversion Formula, presented in

Equation (1.2), or become of interest once the Inversion Formula is provided. We state

the characterization theorem for the mrl function (Hall & Wellner, 1981). Finally, we

provide alternative forms of the mrl function that aid in studying various shapes of the

mrl function for a number of commonly used distributions as well as the exponentiated

Weibull distribution.

2.1.1 Properties of mrl functions

We start out by recalling an elementary relationship between the survival func-

tion and the moments of the distribution. If the rth moment exists for a continuous

random variable T , we have:

E(T r) = r

∫ ∞
0

tr−1S(t)dt (2.1)

This expression is of interest, because once we establish the Inversion Formula (1.2),

we have a way of obtaining the moments (when they exist) from the mrl function.

Additionally, we have an expression for the variance in terms of the survival function:

V ar(T ) = 2
∫∞

0 tS(t)dt−
[∫∞

0 S(t)dt
]2

.

We have already defined the mrl as the expectation of the remaining survival

10



time given survival up to time t. Here we derive the expression for the mrl function

through the survival function as stated in (1.1),

m(t) =

∫ ∞
t

(u− t)dP (T ≤ u|T > t) =

∫ ∞
t

(u− t)
(
−S′(u)du

S(t)

)
=

limu→∞(u− t)S(u)− (t− t)S(t) +
∫∞
t S(u)du

S(t)
=

∫∞
t S(u)du

S(t)

where the first limit in the last step tends to 0 since we assume that the first moment

exists, and the second limit tends to 0 since F (∞) = 1. It is now easily seen that the

first moment is equivalent to the mrl function at t = 0.

m(0) =

∫∞
0 (u− 0)f(u)du

S(0)
=

∫∞
0 uf(u)du

1
= µ. (2.2)

The following properties are also provided in Hall & Wellner (1981), and are

essential for the development of the characterization theorem for mrl functions: (a) m(t)

is a nonnegative and right-continuous, and m(0) = µ > 0; (b) v(t) ≡ m(t) + t is non-

decreasing; (c) m(t−) > 0 for t ∈ (0, X), where X ≡ inf{t : F (t) = 1} ≤ ∞. If

X < ∞, m(X−) = 0, and m is continuous at X, (m(t−) ≡ limt→t−m(t)); (d) S(t) =

m(0)/m(t)exp
[
−
∫ t

0 1/m(u)du
]
, for all t < X (Inversion Formula); (e)

∫ t
0 1/m(u)du→

∞ as t → X. Property (d) is known as the Inversion Formula (1.2). See Appendix A

for proofs.

We conclude the review of properties for mrl functions with a key result that

provides necessary and sufficient conditions such that a function is the mrl function for

a survival distribution, and thus it characterizes mrl functions.

11



Characterization Theorem: Suppose a function m(t) which maps R+ → R+ satisfies

(a) m(t) is right-continuous and m(0) > 0; (b) v(t) ≡ m(t) + t is non-decreasing; (c)

if m(t−) = 0 for some t = t0, then m(t) = 0 for t ∈ [t0,∞); (d) if m(t−) > 0 for all t,

then
∫∞

0 1/m(u)du = ∞. Let X ≡ inf{t : m(t−) = 0} ≤ ∞, and define S(t) by (1.2)

for t < X and S(t) ≡ 0 for t ≥ X. Then F (t) ≡ 1 − S(t) is a distribution function on

R+ with F (0) = 0, XF = X, finite mean µF = m(0), and mrl function mF (t) = m(t).

2.1.2 Linear mrl function

Oakes & Dasu (1990) focus on linear mrl functions discussed in Hall & Wellner

(1981). The key result is that if the mrl function is linear, m(t) = At+B (A > −1, B >

0), then by use of the Inversion Formula (1.2), the survival function has the form:

S(t) =

[
B

At+B

] 1
A

+1

+

(2.3)

When A = 0, the survival distribution is an exponential with mean B, however, for

A 6= 0:

S(t) =
(

B
At+B

)
exp

[
−
∫ t

0
1

Au+Bdu
]

=
(

B
At+B

)
exp

[
− 1
A ln(Au+B)

]t
0

=
(

B
At+B

) exp

[
ln(At+B)−

1
A

]
exp

[
ln(B)−

1
A

] =
(

B
At+B

)(
B

At+B

) 1
A

=
(

B
At+B

) 1
A

+1

+

where the positive part is necessary to satisfy the nonnegative property of the survival

function.

For A > 0 the survival function is a Pareto distribution. The form of the

survival function of the Pareto distribution for random variable Z is, S(z) = (β/z)α

for β > 0 (scale), α > 0 (shape), and z ∈ β,+∞). If we consider the transformation
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Z = AT + B where B = β and 1/A + 1 = α, then we have Z ∼ Pareto(α, β). Note

that the first moment only exists for the Pareto distribution when α > 1 therefore, since

1/A + 1 > 1, the mean of the survival distribution exists for linear mrl with A,B > 0.

Finally, since Z ≥ β > 0⇒ β/z > 0, the survival function is always positive, therefore,

no precautions need be made with regard to taking only the positive part of the function.

For −1 < A < 0 the survival function is a rescaled beta distribution. The pdf of

a rescaled beta distribution is f(z|a, b, p, q) = ((z−a)p−1(b−z)q−1)/(B(p, q)(b−a)p+q+1)

where a ≤ z ≤ b, p, q > 0, and B(., .) is the beta function defined as B(p, q) =∫ 1
0 t

p−1 (1− t)q−1 dt. Start with the form of the survival function from the linear mrl,

S(t) = [B/(At+B)]
1/A+1
+ , note: that the positive part is obtained when −At ≤ B →

t ≤ −B/A. Then F (t) = 1− [B/(At+B)]1/A+1. Thus we have,

f(t) = − (1/A+ 1)
[

B
At+B

] 1
A
[

AB
(At+B)2

]
= − ( 1

A
+1)AB

1
A

+1

(At+B)(
1
A

+1)+1
= −A(At+B)

−( 1
A

+1)−1

( 1
A

+1)
−1
B
−( 1

A
+1)

.

Let Z = −AT ⇒ dt
dz = − 1

A ⇒ f(z) =
+A
A

(B−z)−( 1
A

+1)−1

( 1
A

+1)
−1
B
−( 1

A
+1)

(with q=−( 1
A

+1))
= (B−t)q−1(

− 1
q

)
B−q

Now we can see that B = b, a = 0, p = 1. When p = 1⇒ B(p = 1, q) =
∫ 1

0 (1−t)q−1dt =

−(1/q) we have, f(z) = ((z − 0)1−1(b − z)q−1)/(B(1, q)(b − 0)q+1−1) 0 ≤ z ≤ b. The

survival function is given by,

S(z) = 1−
∫ z

0

(u− 0)1−1 (b− u)q−1

B(1, q) (b− 0)q+1−1 du = 1−
∫ z

0 (b− u)q−1 du

B(1, q)bq
=

(
b− z
b

)q
which is precisely the transformed survival function.
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2.1.3 The form of the mrl function for some common distributions

In this section, we summarize our investigation of the forms of mrl functions

for a number of common distributions. In the previous section, we discussed the distri-

butions having a linear mean residual life function namely the exponential, Pareto, and

rescaled beta. These distributions share the convenient feature that they yield a closed

form for the mrl function. On the other hand, the linearity of the mrl is too limiting to

be of much practical use. There are a number of distributions having more flexible mrl

functions, such as increasing and decreasing curvatures as well as BT or UBT shapes.

The difficulty for these distributions lies in obtaining a closed form of the mrl. Recall

from (1.1) that the mrl is defined as
∫∞
t S(u)du/S(t). Alternatively, the mrl can be

written as,

m(t) =

∫∞
t

(u− t)f(u)du

S(t)
=

∫∞
t
uf(u)du

S(t)
−
t
∫∞
t
f(u)du

S(t)
=

∫∞
t
uf(u)du

S(t)
− t (2.4)

Govilt & Aggarwal (1983) derive (2.4) by starting with
∫∞
t f(u)du and applying inte-

gration by parts and solving for
∫∞
t S(u)du to obtain

∫∞
t S(u)du =

∫∞
t uf(u)du−tS(t),

then dividing both sides by S(t). This derivation requires that tS(t) → 0 as t → ∞.

This limit converges to 0 as long as the distribution function is right continuous and

has finite mean. The distributions that we discuss meet these requirements. The mrl

can also be obtained, perhaps more directly, from the equality stated in Hall & Wellner

(1981) by subtracting t from both sides.

The distributions discussed here have no known closed form for their associ-

ated mrl making them difficult to explore. However, through the use of (2.4) and/or

simple transformations of T , we are able to obtain forms of the mrl functions comprised
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of well-known integrals. Although these forms are far from an ideal closed form, they

are easy to evaluate with most statistical programming software.

Gamma Distribution

Govilt & Aggarwal (1983) use (2.4) to obtain a more convenient form of the mrl un-

der the gamma distribution. Using shape parameter α and scale parameter λ, the

numerator in (2.4),
∫∞
t uf(u)du, simplifies to 1/Γ(α)

∫∞
t (w/λ)αexp[−w/λ]dw. Under

the integration by parts with u = (w/λ)α and dv = exp[−w/λ]dw, the numerator is

becomes, (1/Γ(α))(t/λ)α−1tαexp[−tλ] + λα
∫∞
t fT(w)dw. Substituting this expression

to the numerator in (2.4), the mrl function is given by,

m(t) =
tαexp

[
− t
λ

]
λα−1Γ(α)ST(t)

+ λα− t (2.5)

Gompertz Distribution

The Gompertz distribution with shape and scale parameters α, λ > 0 respectively has

survival function S(t) = exp[(λ/α)(1 − eαt)]. The numerator in (1.1) is written as:∫∞
t S(u)du =

∫∞
t exp[(λ/α)(1−eαu)]du = e(λ/α)

∫∞
t exp[−(λ/α)eαu]du. If we let z(u) =

z = (λ/α)eαu, then u = (1/α)ln[(λ/α)z]⇒ du = (1/α)(1/z)dz. Denote the incomplete

gamma function as Γinc(a, t) =
∫∞
t ua−1e−udu for t, a ≥ 0, and define z(t) = (λ/α)eαt.

Substituting back into the survival function provides, S(t) = eλ/α(1/α)
∫∞
z(t) z

−1e−zdz =

eλ/α(1/α)Γinc(0, z(t)).

m(t) =
eλ/α

(
1
α

)
Γinc(0, z(t))

exp
[
λ
α (1− eαt)

] = ez(t)
(

1

α

)
Γinc(0, z(t)) (2.6)

Loglogistic Distribution
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Consider the survival function for the loglogistic distribution with shape and scale

parameters α, λ > 0. The mean of the log-logistic distribution is only finite when

the shape parameter is greater than 1, thus the mrl is only defined when α > 1.

The mrl for the log-logistic distribution is easily obtained from by simplifying (1.1)

as is done by Gupta et al. (1999). The numerator in (1.1) is defined as
∫∞
t [1 +

(u/λ)α]−1. Let z(u) = z = ((u/λ)α)/(1 + (u/λ)α). Then u = λ(z/(1 − z))1/α and

du = (λ/α)(z/(1−z))(1/α)−1(1/((1−z)2))dz. Applying the transformation, the integral

becomes (λ/α)Γ(1 − (1/α))Γ(1/α)
∫ 1
z(t) Γ(1 − (1/α) + (1/α))/(Γ(1 − (1/α))Γ(1α)(1 −

z)(1−(1/α))−1z(1/α)−1dz. Note that the integral is over a Beta kernel, thus the mrl func-

tion is given by,

m(t) =

(
λ

α

)
Γ

(
1− 1

α

)
Γ

(
1

α

)
SZ

(
z(t); 1− 1

α
,

1

α

)(
1 +

(
t

λ

)α)
(2.7)

Lognormal Distribution

The lognormal distribution has no closed form for the survival function, so (2.4) will be

used to obtain the mrl function.

Using location µ and scale σ2,the numerator in (2.4) is (1/
√

2π)
∫∞
t (1/σ)

exp[−(1/2)((ln(u)−µ)/σ)2]du. Let z(u) = z = (ln(u)−µ)/σ, then u = exp[zσ+µ] and

du = σexp[zσ+µ]dz. The numerator becomes, (1/
√

2π)
∫∞
z(t) exp[−(1/2)z2+zσ+µ]dz =

e(µ+(σ2/2))[1− Φ((ln(t)− (µ+ σ2))/σ)].

m(t) =
e

(
µ+σ2

2

) [
1− Φ

(
ln(t)−(µ+σ2)

σ

)]
1− Φ

(
ln(t)−µ

σ

) − t (2.8)

Weibull Distribution

The Weibull distribution is closely related to the gamma distribution, so it is no
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surprise that their mrl functions also behave similarly. Consider the Weibull dis-

tribution with shape parameter α > 0 and scale parameter λ > 0. The numera-

tor in (1.1) becomes
∫∞
t exp

[
−
(
u
λ

)α]
du. Let z(u) = z = uα, then u = z1/α and

du = 1
αz

1
α
−1dz. Applying the transformation, we obtain, α−1

∫∞
z(t) z

α−1−1e−z/(λ
α)dz =

α−1(λα)α
−1

Γ(α−1)
∫∞
z(t)(z

α−1−1e−z/(λ
α))/((λα)α

−1
Γ(α−1)). The last integral is exactly

the survival function SZ(z(t)) with Z ∼ Γ
(

1
α , λ

α
)
. Thus the mrl is given by,

m(t) =

(
λ
α

)
Γ
(

1
α

)
SZ(z(t))

ST(t)
(2.9)

Table 2.1, provides a summary of the possible shapes of the hazard rate and mrl

functions for the distributions discussed in this section. The table shows how restricted

these commonly used distribution are in modeling the mrl function. The gamma and

Weibull are more versatile as they offer three potential shapes for the mrl function, but

none of these shapes consider change points in the mrl function.

Exponentiated Weibull Distribution

Modifications of the Weibull model have been explored in order to develop a more

flexible parametric model with regard to the shapes of the hazard and mrl functions;

see Pham & Lai (2007) for an extensive list. We chose to focus of the exponentiated

Weibull distribution which has closed form survival function and can take on a number

of various forms for the mrl, namely monotone INC, monotone DCR, constant, UBT,

or BT (Mudholkar & Strivasta, 1993). The distribution and mrl functions for the
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Distribution Density Function Hazard Rate Mean Residual Life

Gamma(γ, β)
shape γ > 0
rate β > 0

βγ

Γ(γ) t
γ−1e−βt

γ < 1 DCR
γ = 1 constant β
γ > 1 INC

γ < 1 INC
γ = 1 constant 1/β
γ > 1 DCR

Gompertz(γ, λ)
shape γ > 0
scale λ > 0

λγeλteγe(−γe
λt) ∀γ INC ∀γ DCR

Loglogistic(γ, λ)
shape γ > 0
scale λ > 0

(γ/λ)(t/λ)γ−1

[1+(t/λ)γ ]2
γ ≤ 1 DCR
γ > 1 UBT

γ ≤ 1 undefined
γ > 1 BT

Lognormal(µ, σ)
location µ ∈ R
scale σ2 > 0

e
− (ln(t)−µ)2

2σ2

t
√

2πσ2
UBT BT

Weibull(γ, λ)
shape γ > 0
scale λ > 0

γ
λ

(
t
λ

)γ−1
e−(t/λ)γ

γ < 1 DCR
γ = 1 constant 1/λ
γ > 1 INC

γ < 1 INC
γ = 1 constant λ
γ > 1 DCR

Table 2.1: Shapes of the mean residual life function for common parametric distribu-
tions. Shapes are described as being increasing (INC), decreasing (DCR), upside down
bathtub (UBT), bathtub (BT), constant, or undefined.

exponentiated Weibull model are given by the following expressions:

F (t|α, θ, σ) =

[
1− exp

(
−
(
t

σ

)α)]θ
, t > 0, α, θ, σ > 0 (2.10)

m(t|α, θ, σ) =

∫∞
t

[
1−

[
1− exp

(
−
(
u
σ

)α)]θ]
du

1−
[
1− exp

(
−
(
t
σ

)α)]θ
where α and θ are shape parameters and σ is a scale parameter. Note that σ, being a

scale, will not play a role in determining the form of the hazard and mrl functions. Table

2.2 provides the parameter sets that result in each distinct shape for the mrl function.

Mudholkar & Strivasta (1993) provide a table similar to Table 2.2 for the haz-

ard rate function for specific domains of α and θ. Xie et al. (2004) look at the role of

the product of the shape parameters on the form of the hazard rate. Gupta & Akman

(1995) prove that if the hazard rate function is BT and h(0) > 1/m(0), then the mrl is
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α θ αθ form of mrl function

1 1 1 exponential distribution → constant mrl
– 1 – weibull distribution → monotone (inc, dcr or constant) mrl
< 1 6= 1 < 1 increasing
> 1 6= 1 > 1 decreasing
> 1 < 1 < 1 UBT
< 1 > 1 > 1 BT

Table 2.2: Forms of MRL for Exponentiated Weibull Distribution

UBT, while h(0) ≤ 1/m(0) implies decreasing mrl function. Similarly if the hazard rate

function is UBT and h(0) > 1/m(0), then the mrl is BT, while h(0) ≥ 1/m(0) implies

increasing function. Combining the aforementioned results, we are able to improve the

table in Mudholkar & Strivasta (1993) to specify the exact shape of the mrl function

for particular values of α and θ in conjunction with the value of the product of the

parameters, yielding Table 2.2.

2.2 Nonparametric mixture model for MRL inference

In this section, we discuss our modeling methods for obtaining inference for

the mrl function. Section 2.2.1 motivates the use of a nonparametric Dirichlet process

mixture model (DPMM). We provide the model structure, and discuss the choice of

kernel distribution. In Section 2.2.2, we discuss prior specification. Section 2.2.3 pro-

vides the techniques used to obtain posterior inference for the mixture distribution and

functionals thereof.
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2.2.1 Model formulation

When the data exhibits unusual distributional features such as multi-modality

or skewness, parametric models tend to fail to capture these important features. A way

to go about this issue is to use a mixture model that combines a number of distributions

that we will refer to as components of the model. The question then becomes how many

components should be used and how should they be combined together? These concerns

can be addressed by bringing in a nonparametric aspect to the model, in particular, to

the weights of each component and to the number of components.

We use a Dirichlet process (DP) prior for the mixing distribution resulting

in a DP nonparametric mixture model, f(t|G) =
∫
k(t|θ)dG(θ), for the density of

the survival distribution. In practice, an appropriately supported kernel distribution,

k(t|θ), is selected, and a DP (α,G0) prior is assigned to G. The DP is a stochastic

process with random sample paths that are distributions (Ferguson, 1973). Thus a

realization from the DP provides a random cdf sample path. The G0 parameter is the

baseline or centering distribution, while α is a precision parameter; the larger the value

of α the closer the DP sample path is to the centering distribution. We use the stick-

breaking (SB) constructive definition of the DP defined by Sethuraman Sethuraman

(1994), which states that a sample G(·) from DP (α,G0) is almost surely of the form∑∞
l=1wlδθl(·) where δθl(·) is a point mass at θl. The θl, for all l ∈ {1, 2, ...}, are i.i.d.

samples from the baseline distribution, G0, and the wl are the corresponding weights

constructed sampling i.i.d. latent variables vr ∼ Beta(1, α), for all r ∈ {1, 2, ...}, then
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w1 = v1 and wl = vl
∏l−1
r=1(1− vr), for l ∈ {2, 3, ...}.

We use the truncated version of the SB constructive definition of the DP,

GL(·) =
∑L

l=1 plδθl(·), where θl
iid∼ G0 for l = 1, ..., L, and p1 = v1, pl = vl

∏l−1
r=1(1− vr),

where vr
iid∼ Beta(1, α) for r = 1, ..., L − 1, and pL = 1 −

∑L−1
l=1 pl. The model is given

by:

f(t|G) ∼
∫
k(t|θ)dG(θ) =

L∑
l=1

plk(t|θl) (2.11)

where pl for l = 1, ..., L are the weights obtained via the SB construction, described

above, corresponding to the component θl and L is the total number of components in

the mixture model. Technically, since the number of components is predetermined there

is no nonparametric element to the number of components. However, L is generally cho-

sen to overestimate the true number of components, so that the number of components

suggested by the data is captured by the model. In fact, many of the components will

just be assigned a probability that is virtually zero. The number of components for the

finite sum DP approximation can be found using E(
∑L

l=1 pl) = 1 − (α/(α + 1))L, in

particular, solving for L in (α/(α+ 1))L = ε for small ε > 0.

Our primary aim in this paper is to present a Bayesian model that provides

both flexible and practical inference for the mean residual life function. The mrl func-

tion is defined by the distribution function and vice versa, thus we advocate for the

nonparametric Dirichlet process mixture which provides flexible modeling on the distri-

bution function. We obtain inference for the mrl function via fitting a DPMM on the

distribution function. Since our interest is inference for the mrl function, it is necessary
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that the mrl function of the DPMM exists and is finite. A sufficient condition for the

finiteness of the mrl function for a given kernel distribution is provided later in this

section. Although we do not place a prior directly on the mrl function, from the lemma

stated at the end of this section, we can use prior knowledge of the tail behavior to

select an agreeable kernel distribution. Essentially, we can induce a prior for the mrl

function through the tail behavior. We complete the model formulation by addressing

the aspect of dependency within θ. We consider modeling the dependence between the

kernel parameters by using a joint baseline distribution, G0, in the DPMM.

Care is needed in selecting a kernel distribution to ensure the mean of the

DPMM is finite, E(T |G) < ∞ where T ∼ f(t|G) =
∫

Θ k(t|θ)dG(θ). We provide suffi-

cient conditions to ensure finiteness of the mean by following the argument in Theorem

3 of Ferguson (1973). Let Z = E(T |G), where T is a R+ random valued. Recall that

if E(Z) <∞, then Z <∞ almost surely. Hence we need to show E(Z) <∞. Observe

that Z =
∫
T t
∫

Θ k(t|θ)dG(θ)dt =
∫

ΘE(T |θ)dG(θ) =
∑∞

j=1wjW (θj) where the wj are

the weights arising from the stick-breaking process and W (θj) = E(T |θj). Define the se-

quence of R+ valued random variables Zn =
∑n

j=1wjW (θj), for n ∈ {1, 2, ...}. Note that

Zn is an almost surely increasing sequence and Zn
a.s.→ Z. Thus by the monotone conver-

gence theorem, E(Zn)
a.s.→ E(Z). Now, we can write E(Z) = E

[∑∞
j=1wjW (θj)

]
. Using

the independence of wj and W (θj), the expectation becomes
∑∞

j=1E(wj)E(W (θj)) =∑∞
j=1E(wj)(

∫
ΘW (θj)dG0(θj)). Upon integration over θj in the last expression, the

resulting expression is free of the subscript j and is a function of the parameters of

the baseline distribution, G0, with parameters ψ. Define A(ψ) =
∫
ΘW (θj)dG0(θj),
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then E(Z) becomes A(ψ)
∑∞

j=1E(wj) = A(ψ), since
∑∞

j=1E(wj) = 1. Therefore, if

A(ψ) =
∫
ΘW (θ)dG0(θ) <∞, then E(T |G) <∞ almost surely. In words, the finiteness

of the expected value of the mean of the kernel distribution with respect to the baseline

distribution guarantees finiteness of the first moment of the DPMM.

Common kernel distributions in modeling survival data include the lognormal,

Weibull, and gamma distributions. First, consider the lognormal kernel with W (θ) ≡

E(T |µ, σ) = exp(µ+ σ2/2) and G0 = N(µ|λ, τ2)Γ−1(σ2|a, ρ) where ρ denotes the scale

parameter. Here, we haveA(ψ) =
∫∞
−∞ exp(µ)N(µ|λ, τ2)dµ

∫∞
0 exp(σ2/2)Γ−1(σ2|a, ρ)dσ2.

The first integral is clearly finite, but the second integral would require a bound on σ2

that would depend on ρ in order to be finite. We can get around the restriction by

using a gamma baseline distribution, but the rate parameter of the gamma distribution

would have to be truncated below at 1/2. In either case, we will not have conjugacy.

If we use a Weibull kernel with W (θ) ≡ E(T |γ, σ) = σ1/γΓ(1 + 1/γ) and

G0 = Γ(γ|a, ρ (rate))Γ−1(σ|c, λ), A(ψ) is given by
∫∞

0

∫∞
0 σ1/γΓ(γ|a, ρ)Γ−1(σ|c, λ)dσdγ.

We can integrate out σ without difficulty by recognizing another gamma distribution,

however, the finiteness of the first integral requires γ > 1/c. This is not an unreason-

able restriction for c > 1, allowing for decreasing and/or unimodal components in the

mixture, however, the second integral yields more restrictions. We can obtain finite-

ness by constructing a function, g(γ) that is greater than Γ(1 + 1/γ)Γ(c− 1/γ)λ1/γ for

γ > 1/c, where the second part of the expression is a result of the first integral. Note

that Γ(c− 1/γ) goes to ∞ as γ → 1/c, which causes problems in convergence. We can

get around this by making γ bounded below by a value just slightly larger than 1/c.
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By showing E(g(γ)) < ∞ with respect to the distribution Γ−1(γ|a, ρ), then we know

that E(Γ(1 + 1/γ)Γ(c − 1/γ)λ1/γ) < ∞. The idea is that E(g(γ)) is easily computed,

so it is convenient to use a function of the form g(γ) = λv(1/γw + Γ(c)) for v, w > 0.

Using this function form, will result in a restriction on the shape parameter, a, that

will depend on w. Since w and a are both fixed parameters, this is not an unreasonable

restriction, and slice sampling may be used in the MCMC for γ, but the sampling from

the posterior conditional of ρ will require a Metropolis-Hastings step.

Consider a gamma kernel distribution with W (θ) ≡ E(T |α, β) = α/β and

G0 = f(α|ω)Γ(β|c, λ). We can separate the integrals in A(ψ) to be
∫∞

0 αf(α|ω)dα∫∞
0 β−1Γ−1β−1Γ(β|c, λ)dβ, where the first integral is simply E(α) with respect to

f(α|ω) and the second integral is E(β−1) where β−1 ∼ Γ−1(β|c, λ). Therefore as long

as we choose f(α|ω) to have finite mean and set c > 1, then A(ψ) < ∞. We do not

have conjugacy in the MCMC for α, but our parameter restriction is minimal. The

mean and variance of the gamma distribution are not independent, so we might con-

sider a joint G0. A convenient option would be to model using θ = (θ = log(α), φ =

log(β))′ and place a bivariate normal distribution on G0 = N2(θ|µ,Σ). Now, we have

A(Ψ) =
∫ ∫

eθ−φN2((θ, φ)′|µ,Σ)dθdφ = E(eθ−φ), which can be obtained from the mo-

ment generating function of the bivariate normal, E(eθ
′t), with t = (1,−1)′. Hence

A(Ψ) = e(1,−1)µ+(1/2)(1,−1)Σ(1,−1)′ , which is finite for any µ ∈ R2 and any non-negative

definite Σ ∈ R2x2.

Another important consideration in the choice of the mixture kernel is the

shape of the mixture mrl function relative to the mrl function of the kernel distribution.
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The following lemma, whose proof can be found in Appendix B.1, provides a result on

the tail behavior of the mrl function for the mixture distribution.

Lemma 1. Let m(t|θ) be the parametric mrl function of the corresponding to the

DPMM kernel and m(t|GL) be the mrl function of the mixture, where GL is the trun-

cated approximation to the mixing distribution. Then,

1. If limt→∞m(t|θ) =∞ ∀θ ∈ Θ, then limt→∞m(t|GL) =∞.

2. If limt→∞m(t|θ) = 0 ∀θ ∈ Θ, then limt→∞m(t|GL) = 0.

Taking into account the condition for E(T |G) < ∞ and the lemma above,

the gamma distribution emerges as the more suitable choice for the kernel distribution.

Referring back to Table 2.1, we can see that a lognormal kernel will always result in a

mrl that goes to infinity in tail. A Gompertz kernel would result in a mrl that tends to

zero in the tail. If there is prior knowledge regarding the tail behavior of the mrl, then

it would make sense to choose a kernel that has a corresponding mrl with agreeable

tail behavior. However, in the case that prior knowledge of the mrl tail behavior is not

known, the gamma or Weibull kernel would be appropriate choices. Per our discussion

regarding the sufficient condition for existent and finite mrl, the Weibull requires more

restriction on the support of the model parameters.

Another important model property to investigate is the matter of denseness.

Let F represent the space of absolutely continuous distribution functions on R+ with

finite mean. Formally, a class of distributions, C, is said to be dense in F , if for any
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distribution function, F , there exists a sequence of distribution functions, {Fn} ⊆ C,

that converges to F . The type of convergence implies a measure of distance between the

limiting sequence and F . Johnson & Taaffe (1998) show denseness of infinite and finite

mixtures of Erlang distributions on the space of cumulative distribution functions hav-

ing support [0,∞). They provide details for weak convergence and make an argument

for uniform convergence. A mixture of Erlang distributions is in the class of gamma

mixtures, so the result holds true for gamma mixtures as well. More interesting from

our prospective, however, is the denseness of the resulting mrl function. In appendix

B.2, we show that for any continuous mrl function, m(t), there exists a corresponding

sequence of mrl functions for a mixture of gamma distributions, {mn(t)} such that for

any t0 ≥ 0, limn→∞mn(t0) = m(t0), converges pointwise, providing the denseness result

in Lemma 2.

Lemma 2. The set of mrl functions corresponding with the class of gamma mixture

distributions is dense, in the pointwise sense, in the space of continuous mrl functions.

Finally we turn to the choice of G0. We seek to be more general in our mod-

eling by using a dependent G0 for the parameters of the gamma kernel. This allows

the model to capture correlations between the kernel parameters. Note that, once one

leaves the setting of normal mixtures, the kernel parameters are not naturally separated

as location and scale parameters, making the assumption of an independent G0 more

restrictive than in mixing with Gaussian kernels. Recall that modeling the shape and

26



rate parameters of the gamma kernel on the log-scale allow us to use a bivariate normal

for G0, and we only need a non-negative definite 2×2 covariance matrix in G0 to satisfy

the sufficient condition. In the remainder of this paper, we will refer to this model as

the gamma DPMM and assume a bivariate normal G0 on the log-scale of the gamma

kernel parameters.

2.2.2 Prior specification

When it comes to prior specification often there is not much prior knowledge

on the behavior of the population of interest, but typically the researcher will have at

least somewhat of an idea of the range and midpoint/midrange of the population. We

would want to set our priors to have a prior predictive distribution that encompasses

this range. One way to favor a prior predictive distribution that covers the range of

the data is to imagine one relatively dispersed kernel component that is centered at the

midrange with 2 standard deviations either way representing the prior range. In the

data illustrations in Section 2.3, we set the range to about 2 times the data range. We

can then divide the range by 4 and square that value to get the prior variance of the

data. Specifically, (range(T )/4)2 ≈ V ar(T ). This method can be implemented when

fitting a gamma DPMM. We place the following distributions on the hyperparameters:

µ ∼ N2(aµ, Bµ) and Σ ∼ IWish(aΣ, BΣ). Making use of the moment generating

function of the bivariate normal distribution, the independence property of µ and Σ,

and the first order Taylor expansion for exp((1/2)t′·Σt·) centered around E((1/2)t′·Σt·),
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we approximate V ar(T ) as follows:

V ar(T ) = V ar(E(T |eθ, eφ)) + E(V ar(T |eθ, eφ)) (2.12)

= E(V ar(eθ−φ|µ,Σ)) + V ar(E(eθ−φ|µ,Σ)) + E(E(eθ−2φ|µ,Σ))

= E(et
′
1µ)E(et

′
1Σt1) + E(et

′
2µ)E(et

′
2Σt2)− E2(et

′
3µ)E2(et

′
3Σt3)

≈ et
′
1aµ+(1/2)t′1Bµt1e

(1/2)t′1BΣt1
aΣ−d−1 + et

′
2aµ+(1/2)t′2Bµt2e

(1/2)t′2BΣt2
aΣ−d−1

−e2(t′3aµ+(1/2)t′3Bµt3)e
2

(1/2)t′3BΣt3
aΣ−d−1

where t1 = (1,−2)′, t2 = (2,−2)′, t3 = (1,−1)′, and d × d is the dimension of Σ,

specifically, d = 2. We set aΣ = 4, which is the smallest degrees of freedom for the

inverse Wishart distribution that has finite mean. If we place priors of the form Bµ =

((b′µ, 0)′, (0, b′µ)) and BΣ = ((b′Σ, 0)′, (0, b′Σ)) for b′µ, b
′
Σ > 0, the expression is simplified,

however, we still have four parameters to specify. One solution would be to incorporate

the marginal expectation:

E(T ) ≈ et
′
3aµ+ 1

2
t′3Bµt3+ 1

2
t′3BΣt3 = e(aµ1−aµ2 )+b′µ+b′Σ (2.13)

where upon applying our earlier assumptions, we get the last expression in (2.13) with

aµ = (aµ1 , aµ2)′. We can further simplify by setting b′µ = b′Σ resulting in two equations

with three unknowns. Next, we can allocate a percentage of the marginal expectation

(2.13) to exp(aµ1 − aµ2) and a percentage of the marginal variance (2.12) to exp(aµ1 −

2aµ2), solving for aµ1 and aµ2 . Finally, we can return to (2.12) and solve for b′µ and b′Σ.

Regarding the prior for α, we consider the relationship between the number

of distinct components, n∗, and the value of α. In general, the number of distinct
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components is large for large α and small for small α. If the data set is moderately

large, E(n∗|α) ≈ αlog
(
α+n
α

)
can be used to suggest an appropriate range of α values.

This approach to prior specification is based on a small amount of prior in-

formation regarding the survival distribution. In general, we recommend studying the

implied prior distribution for important survival functionals, including prior point and

interval estimates for the mrl function.

2.2.3 Posterior inference

Posterior simulation is simplified by truncating the mixing distributionGL(·) ≈

G(·). Before we introduce θl, the first two levels of the model are,

ti|ζi
ind∼ K(ti|ζi), i = 1, ..., n

ζi|p,θ
iid∼ GL, i = 1, ..., n

where p = (p1, ..., pL) are the weights corresponding to the weights, θ = (θ1, ...,θL).

By marginalizing over the ζi we obtain the finite mixture model in (2.11). Now we

can augment the model with configuration variables w = (w1, ...,wn) such that wi = l

iff ζi = θl. Using a gamma kernel (K) and bivariate normal baseline (G0) with θl =

(θl, φl)
′, the hierarchical model is given by,

ti|θ,wi
ind∼ Γ(ti|eθwi , eφwi ), i = 1, ..., n (2.14)

wi|p
iid∼

L∑
l=1

plδl(wi), i = 1, ..., n

p|α ∼ f(p|α)

(θl, φl)
′|µ,Σ iid∼ N2((θl, φl)

′|µ,Σ), l = 1, ..., L

29



where f(p|α) = αL−1pα−1
L (1− p1)−1(1− (p1 + p2))−1× ...× (1−

∑L−2
l=1 pl)

−1 is a special

case of the generalized Dirichlet distribution (Conner & Mosemann, 1969). Here, we use

conjugate priors, α ∼ Γ(α|aα, bα(rate)), µ ∼ N2(µ|aµ, Bµ), and Σ ∼ IWish(Σ|aΣ, BΣ).

Now, we can utilize a blocked Gibbs sampler (Ishwaran & James, 2001) to ob-

tain samples from the posterior distribution p(θ,w,p,ψ, α|data) whereψ = (aµ, Bµ, BΣ).

We have Gibbs steps for all parameters except θ, for which we use a Metropolis-Hastings

step. The specifics of the posterior sampling method for the gamma DPMM are provided

in Appendix C.

The posterior samples for GL ≡ (p,θ) can be used to obtain inference for the

density, survival, and hazard functions at any time point t, by directly evaluating the

expressions for these functions under the gamma DPMM. Obtaining the mrl function

must be done by numerical integration approximation for the integral over the survival

function. From (2.1) we know that the mrl function at 0 returns the expected survival

time, m(0) = µ. Hence, the mrl function can be written alternatively as follows:

m(t) =

∫∞
t S(u)du

S(t)
=

∫∞
0 S(u)du−

∫ t
0 S(u)du

S(t)
=
µ−

∫ t
0 S(u)du

S(t)
(2.15)

We can avoid having to truncate the upper bound of the integration in the numerator in

(1.1) by using the form of the mrl function as described in (2.15). We obtain posterior

point and interval estimates for the mrl function by evaluating expression (2.15) at the

posterior samples from the MCMC. We do this over a grid of survival times, t0,j for

j = 1, ...,m . The survival function is monotone decreasing so the trapezoid technique

is an appropriate method of approximating the integral in the mrl. We evaluate the mrl
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at the first grid point by m(t0,1|GL) = [E(T |GL)− 0.5(t0,1(1 + S(t0,1|GL))]/S(t0,1|GL)

and use the following expression for j = 2, ...,m:

m(t0,j |GL) =
E(T |GL)− 1

2(t0,1(1+S(t0,1|GL))+
∑j
i=2(t0,j−t0,j−1)(S(t0,j |GL)+S(t0,j−1|GL)))
S(t0,j |GL)

We save a lower and upper quantile along with the median at each grid point for each

mixture functional to obtain (point-wise) posterior point and interval estimates.

2.3 Data examples

In Section 2.3.1, we use simulated data to illustrate the ability of the gamma

DPMM to capture non-standard mrl function shapes as well as the correlation between

kernel parameters θ and φ. In Section 2.3.2, we fit a gamma DPMM as well as an

exponentiated Weibull model to a data set involving survival times for subjects from

two groups, including formal model comparison between the two models. In Section

2.3.3, we provide results of fitting the gamma DPMM to a data set of two groups both

containing right censored data values.

2.3.1 Simulation examples

In this section, we will work with two simulated data sets. The first data set

consists of 200 simulations from a mixture distribution of four gamma components in

which the shape and scale parameters are positively associated: T1 ∼ 0.35Γ(10, 0.5) +

0.4Γ(20, 1) + 0.15Γ(30, 5) + 0.1Γ(40, 8). We fit a gamma DPMM with priors aµ =
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(1.6, 0.4), Bµ = Bσ = ((0.39, 0)′, (0, 0.39)′), aα = 2, bα = 1, and L = 40. The effective

posterior sample size is 2000. Results are shown in Figure 2.1.
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Figure 2.1: Simulation example 1. Point (solid) and interval (dashed) estimates of life-
time for the density (top left) overlaying the sample histogram and actual population
density (dot-dashed), posterior (solid) and prior (dot-dashed) distribution of the corre-
lation between θ and φ (top right), survival (lower left), hazard rate (lower middle), and
mrl (lower right) functions of the two experimental groups under the gamma DPMM.

The red dashed line represents the 95% interval estimates, the blue solid line

is the point estimate, and the black dot-dashed line is the truth of the appropriate

functional. We can see that truth is well within the interval estimate, moreover the

point estimate is close to the truth. The correlation shows that the model (black solid)

is able to capture the positive relationship between the parameters, even though the

32



prior (black dot-dashed line) is evenly dispersed about the situation of zero correlation.

The second data set consists of 100 simulations from a distribution with nega-

tive correlation between the shape and rate parameters: T2 ∼ 0.3Γ(15, 0.2)+0.25Γ(12, 0.5)+

0.35Γ(8, 2) + 0.1Γ(3, 6). This population was chosen to test the model’s ability to

separate modes that are close together, as well as model a distribution with a long

tail. A gamma DPMM was fit to the data with priors aµ = (2.4,−1), Bµ = Bσ =

((0.18, 0)′, (0, 0.18)′), aα = 2, bα = 1, and L = 40. The effective posterior sample size

is 2000. Results are shown in Figure 2.2. Once again the point estimates are close to

the truth even in the tail where less data is available. The uncertainty band in the mrl

plot has a large upper bound, which is likely an effect of the sparse data in the tail.

Numerical instability in the computation of the mrl function is also likely to contribute

to the large upper bound. The model picks up a strong negative correlation between

the parameters.

2.3.2 Analysis of survival times of rats (ad libitum vs restricted eating)

This data set, considered earlier in Berger et al. (1988), is used to illustrate

posterior inference under both an exponentiated Weibull model and the gamma DPMM.

The data consists of survival times of rats in two experimental groups. The first group

(Ad libitum group) is comprised of 90 rats who were allowed to eat freely as they

desired. The second group (Restricted group) is comprised of 106 rats that were placed

on a restricted diet.

Under the exponentiated Weibull model, we used the P1 = 10%, P2 = 50%,
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Figure 2.2: Simulation example 2. Point (solid) and interval (dashed) estimates of life-
time for the density (top left) overlaying the sample histogram and actual population
density (dot-dashed), posterior (solid) and prior (dot-dashed) distribution of the corre-
lation between θ and φ (top right), survival (lower left), hazard rate (lower middle), and
mrl (lower right) functions of the two experimental groups under the gamma DPMM.

and P3 = 90% quantiles of the data to obtain a system of three equations from the

distribution function: P = [1− exp(−(Q/σ)α)]θ where P is the percentile and Q is

the survival time representing that quantile. The system of equations is solved to

obtain prior means for α, σ and θ. For simplicity, exponential priors were placed on

these parameters. The restricted group had respective quantile values of (Q1 = 1.55,

Q2 = 2.84, Q3 = 3.34). If we set α = 2, θ = 5, and σ = 2, then the corresponding

quantiles are given as Q
′
1 = 1.99, Q

′
2 = 2.85, and Q

′
3 = 4.07 which we considered to
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Figure 2.3: Relative frequency histogram and densities of lifetime (in days) of the two
experimental groups (Ad libitum is left and Restricted is right) along with posterior
mean and 95% interval estimates for the density functions under the exponentiated
Weibull model (top) and the gamma DPMM (bottom).

be reasonably close to the observed quantiles. Therefore, we set hyper-parameters as

aα = 2, aθ = 5, and aσ = 2. Following the same methodology for the ad libitum

group, we set the hyper-parameters as aα = 4, aθ = 1, and aσ = 2. Posterior results

were obtained using a Metropolis-Hastings algorithm in the MCMC with a trivariate

normal proposal distribution on the log-scale. Point and interval estimates of the density

function are plotted in the top row of Figure 2.3.

Prior specification for the gamma DPMM were determined using methods

described in section 3.2 by allocating 60% of the marginal mean to exp(aµ1 − aµ2) and
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2.5% of the marginal variance to exp(aµ1 − 2aµ2). For the restricted group, we use

aµ = (4.1, 3.6), Bµ = Bσ = ((0.1, 0)′, (0, 0.1)′), aα = 2, bα = 1, and L = 40. For the

ad libitum group, we use aµ = (4.16, 3.8), Bµ = Bσ = ((0.095, 0)′, (0, 0.095)′), aα = 2,

bα = 1, and L = 40. The effective posterior sample size under both models are 2000

for each group. The bottom row in Figure 2.3 depicts the posterior estimates for the

densities for the two groups under the DP mixture model.

In Figure 2.3, we note that the parametric model has some trouble capturing

some of the characteristics of the data. In the ad libitum group (upper left) a minor mode

is suggested just below the 200th day. The unimodality of the exponentiated Weibull

distribution makes it impossible for the parametric model to capture this shape. We

note that the model tries to by reaching the tail of the estimated density out to these

values, but this is at a cost of underestimating the density where most of the data exist,

and overestimating the density where there is no data at all. There are many regions

where the data and the density of the data (green dot-dashed) do not even fall within the

interval estimates (black dashed). If we compare to how well the nonparametric model

(lower left) performs we see quite a bit of improvement. The extra structure at the lower

survival times is now being captured without the consequences of modeling poorly in

other regions of the data. The data density remains within the interval estimates over

the entire range of the data. We see similar results for the restricted group, which

has a large left skew with a slight mode in the far tail. The exponentiated Weibull

model (upper right) is able to model some of the skewness, but again runs into trouble

by smoothing over obvious peaks and valleys. Again there are a number of regions in
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which the density of the data (red dot dashed) is not contained in the interval estimates

of the model. The gamma DPMM (lower right) is able to capture the peaks and valleys

that the exponentiated Weibull model could not. There is a slight discrepancy from the

point estimate (blue solid) and the density of the data around 1250 days. Nonetheless,

the data density remains within the interval estimates of the model.
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Figure 2.4: Point and 95% interval estimates of lifetime (in years) for the density (top
left), survival (top right), and hazard rate (lower left), and point and 80% interval
estimates for the mrl (lower right) functions of the two experimental groups under the
gamma DPMM.

By comparing the densities under the two models, there is clear evidence that

the nonparametric gamma DPMM is superior to the exponentiated Weibull model.

Therefore, we will use the results under the nonparametric gamma DPMM to compare
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the mrl functions under the two groups. In Figure , we plot point and interval estimates

of the posterior density functions (upper left), survival functions (upper right), hazard

functions (lower left), and mrl functions (lower right) for both the ad libitum (green)

and restricted (red) groups. Note that the interval estimates for the mrl function are

80% probability bands as opposed to the other interval estimates, which are 95% prob-

ability bands. The reason for this is to reduce the steepness for which the upper bound

shoots upward towards the tail of the data. This is likely due to the lower number of

observations towards the end of the range of the data and also the numerical instability

in computing the mrl function. Looking at the estimated densities survival functions we

can see that the majority of the ad libitum group have lower survival times compared

to the restricted group. The mrl functions are monotonically decreasing and do not

cross with regard to the point estimates. Moreover the interval estimates do not cross

until the we reach about 800 days. This leads us to conclude that the remaining life

expectancy of a rat in the restricted group is higher than the remaining life expectancy

of a rat in the ad libitum group until we reach about 800 days.

We use the minimum posterior predictive loss approach (Gelfand & Ghosh,

1998) to compare the exponentiated Weibull model to the nonparametric gamma DPMM.

Under this criterion the goal is to minimize, within the collection of models under

consideration, the expectation of a specified loss function under the posterior predic-

tive distribution of replicate responses trep given the observed data tobs. Here, we

use the square error loss function so that the general criterion is given by Dk(m) =∑n
i=1 var(ti,rep|tobs,m) + k

k+1

∑n
i=1(E(ti,rep|tobs,m)− ti,obs)2, where ti,rep is a replicate
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of the ith observation, ti,obs, under the posterior predictive distribution of the mth model.

The first term is representative of a penalty measure P (m), and the second term is a

goodness-of-fit measure G(m). The value of k is specified as the relative regret for de-

parture from ti,rep. Note that as k tends to infinity, the criterion becomes the sum of

the penalty P (m) and goodness-of-fit G(m) measures.
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Figure 2.5: Values of the posterior predictive loss criterion for comparison between the
parametric exponentiated Weibull model (dot dashed lines) and nonparametric gamma
DPMM (solid lines).

For the exponentiated Weibull model (m1), obtaining E(ti,rep|tobs,m) and

var(ti,rep|tobs,m) is straightforward. The posterior predictive distribution is given by

p(ti,rep|tobs) =
∫
EW (ti,rep|α, θ, σ) × p(α, θ, σ|data)dαdθdσ and can thus be sampled

by taking the posterior samples (αb, θb, σb), for b = 1, ...., B, and drawing ti,rep,b

from the exponentiated Weibull distribution given each posterior parameter vector.

Next, we compute the mean and variance of the B replicates. Important to note is

that the mean and variance for one experimental group is going to be the same for

each observation in that group. We find the E(ti,rep|tobs,m1) and var(ti,rep|tobs,m1)

for the ad libitum group to be 671.2 and 17433.0, respectively, and for the the re-
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stricted group to be 949.5 and 74691.7, respectively. Thus the ad libitum group has

G(m1)a =
∑90

i=1(671.2 − ti,obs)2 = 1615787 and P (m1)a = 90 ∗ (17433.0) = 1568967.

The restricted group has G(m1)r =
∑106

i=1(949.5 − ti,obs)
2 = 8542725 and P (m1)r =

106 ∗ (74691.7) = 7917319.

Evaluating Dk(m) under the nonparametric gamma DPMM (m2) takes a little

more care. Recall that ti|G
ind∼
∫

Γ(ti|exp(θ), exp(φ))dG(θ, φ) for i = 1, ..., n. In order

to obtain replicates for each ti, we need to know the lth component from which the ob-

served ti came from according to the model, ti,rep|tobs,m2 ∼
∫

Γ(ti,rep|exp(θli), exp(φli))

p(exp(θli), exp(φli)|data)dθlidφli , for i = 1, ..., n, where the subscript li is the ith value of

the posterior sample of w and θli and φli are the lthi posterior samples of θ and φ. Essen-

tially a single ti,rep is sampled from the gamma distribution at each posterior iteration

b = 1, ..., B integrating out all possible values of θli and φli . After obtaining B ti,rep, we

compute the mean (E(ti,rep|tobs,m2) ) and variance (var(ti,rep|tobs,m2)) at each ith repli-

cate. For the ad libitum group we obtained G(m2)a = 318919.2 and P (m2)a = 684342.1,

and for the restricted group G(m2)r = 739435 and P (m2)r = 2247120. Figure 2.5 is

a plot of the criterion values over a grid of k values. For both groups the nonpara-

metric gamma DPMM performs significantly better than the exponentiated Weibull

model. The results of the formal model comparison support our earlier argument that

the nonparametric gamma DPMM is indeed a better model for these data.
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2.3.3 Analysis of survival times of patients with small cell lung cancer

As an example of obtaining inference in the presence of right censoring, we fit

a gamma DPMM to the survival times, in days, of two treatment groups of patients

with small cell lung cancer Ying et al. (1995). The patients were randomly assigned

to one of two treatments referred to as Arm A and Arm B. Arm A patients received

cisplatin (P) followed by etoposide (E), while Arm B patients received (E) followed

by (P). There were a total of 62 patients in Arm A with 15 right censored survival

times, while Arm B consisted of 59 patients with 8 right censored survival times. We

fit a gamma DPMM independently to the two groups. We allocated 60% of the mean

to exp(aµ1 − aµ2) and 2.25% to exp(aµ1 − 2aµ2) resulting in the following priors for

Arm A: aµ = (2.5,−3), Bµ = Bσ = ((0.21, 0)′, (0, 0.21)′). Analoguously, for Arm B:

aµ = (2.6,−2.9), Bµ = Bσ = ((0.21, 0)′, (0, 0.21)′). We use aα = 3, bα = 1, and N = 25.

The effective posterior sample size is 2000.
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Figure 2.6: Point estimates for the mrl functions of Arm A (blue dashed) and Arm B
(green solid).
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The point estimates for mrl functions of the two treatment groups show Arm

A to have a consistently higher mean residual life compared to Arm B in Figure 2.6.

The result leads us to believe that Arm A treatment is more effective than the Arm

B treatment. We take a closer look at the difference of the mean residual life survival

times at a number of fixed time points.
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Figure 2.7: Densities of the mrl of Arm A minus Arm B at a number of fixed time
points.

Specifically, we explore the posterior density of the mrl of Arm A minus Arm B at a

particular time point, Figure 2.7. At time zero, which is the estimated difference of

the overall mean of the two distributions, shows a strong difference between the two

treatments in favor of Arm A. The same is true at 100 days, and just a slightly less
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significance in the difference for day 250. At day 1600, there the difference becomes

much less significant. In conclusion, Arm A has a significantly higher mrl then Arm

B at lower time points. For larger time points, the difference is visible in the point

estimate, but there is much uncertainty surrounding the estimate.
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Figure 2.8: The posterior (black solid) and prior (red dashed) probability of the mrl
function of Arm A being higher than the mrl function of Arm B over a grid of survival
times (days).

A useful result to obtain for comparing the mrl functions of Arm A and Arm

B is the probability of the mrl function of one group being higher than that of the

other over a grid of survival times. In Figure 2.8, we look at the prior probability,

Pr(mA(t) > mB(t)), and posterior probability, Pr(mA(t) > mB(t)|data), under the

gamma DPMM, where mA(t) and mB(t) are the mrl functions of Arm A and Arm

B, respectively. The prior shows no favoritism of one group being higher than the

other as the probability is relatively constant around 0.5 across the grid. The posterior

probabilities suggest Arm A as having the higher mrl function across all survival time.
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In particular, the probability of the mrl function of Arm A being higher than that

of Arm B is larger during the earlier time period, reaching nearly probability 1. The

probability decreases slightly around 500 days to about 0.8, followed by another peak

of about 0.9 around 1200 days. The probability remains above 0.7 across the range of

the data.

2.4 Discussion

We have reviewed basic properties and essential characteristics of the mrl func-

tion. We presented an easy-to-work with (yet limiting) class of distributions that corre-

spond to a linear mrl function. We provided methods for obtaining the mrl function of

several common distributions allowing us to study the various shapes of the mrl func-

tion. We find that the form of the mrl function for these distributions is again limited.

Knowledge of the form of the mrl function would need to be available in order to select a

proper model for mrl inference. The exponentiated Weibull model shows more promise

in inference for the mrl function. The mrl function corresponding to the exponentiated

Weibull distribution is able to take on several forms, namely constant, linear, increasing,

decreasing, BT, and UBT. Another benefit of the exponentiated Weibull distribution is

that it has a closed form for its survival function. This helps lower numerical error in

estimating the mrl function, and provides ease in inference methods for censored data.

We discussed the benefits of fitting a DPMM to obtain flexible inference for

the mrl function. However, when the focus is on inference for this particular functional,
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the choice of the kernel plays an important role. Under the sufficient condition given

in Section 2.2.1, we studied restrictions that need be placed on the mixture model in

order to ensure the mrl function of the mixture distribution is well defined. In addition,

we provided a result on the tail behavior of the mixture mrl function based on the

corresponding property for the mrl function of the kernel distribution. The gamma

kernel was shown to possess the most desirable properties out of the distributions that

we investigated. We showed that under a gamma mixture, the resulting mrl function

is dense in the pointwise sense on the space of continuous mrl functions. The practical

utility of the proposed nonparametric mixture model was demonstrated through analysis

of simulated data examples and real data sets from the literature.

A practically important extension involves methods for inclusion of covari-

ates. Mean residual life regression modeling can be explored under either a structured

semiparametric setting, such as the proportional mrl setting, or a fully nonparametric

framework, for instance, based on mixture modeling for the joint response-covariate

distribution. Chapter 3 discloses the model structure for the later.
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Chapter 3

Bayesian nonparametric regression

modeling for survival response

distributions

In this chapter, we maintain the perspective of achieving sound inference for

the MRL function under a regression setting. Often, there are a number of covariates

associated with survival data. These covariates may be continuous (e.g., blood pressure,

weight, age, etc.) or discrete/categorical (e.g., gender, race, profession, etc.). The

researcher would like to model the survival times by incorporating the covariates, so

that they may predict measurements such as survival time of a new patient given a set of

covariates. In Section 3.2, we address this idea using the curve-fitting approach. Another

type of covariate frequently seen in survival analysis is a fixed covariate indicating the

subject was in a particular experimental group, for example, treatment and control
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settings. For data under this scenario, we might expect the experimental groups to have

underlining characteristics that tie them together, while still capturing the effect of the

treatment. In Section 3.3, we have developed a model that measures the dependency

between two experimental groups as well as incorporating individual group effect on

the survival times. In Section 3.4, we revisit the small cell lung cancer data analyzed

in Section 2.3.3. We compare the graphical results obtained under independent gamma

DPMMs for the two experimental groups with those obtained when dependency across

groups is incorporated within the model. The dependent model is compared formally,

via conditional predictive ordinate values, with two competing models. Combining the

idea of the curve fitting approach with modeling dependency across groups, we include

a continuous covariate in the small cell lung cancer dataset and present our inferential

results.

3.1 Literature review of Bayesian survival regression

The literature on Bayesian regression analysis can be categorized into three

sets, fully parametric, semiparametric, and nonparametric. In regards to fully paramet-

ric Bayesian regression models, the literature is quite extensive. A basic approach being

to consider a parametric model, such as the exponential, Weibull, gamma, or lognormal,

and use a link function on one of the parameters to equate a linear structure on the

set of covariates. For example, in the exponential model the rate parameter, λ, can

be used to incorporate the set of covariates x with effects β by setting λ = exp(x′β).
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A multivariate normal prior or reference prior is typically placed on the β parameters.

Several commonly used parametric models also fall into the category of the proportional

hazards (PH) models, Cox (1972), such that the model can be separated into a baseline

distribution that is independent of covariates, h0(t), and a function of the covariates

independent of time, c(x′β). Hence, given a second set of covariates, the hazard func-

tion is proportional to that of the original set. Literature on fully parametric Bayesian

regression models for survival data include, but is not limited to, Achcarar et al. (1985),

Dellaportas & Smith (1993), Scurrah et al. (2000), Kuo et al. (1992), and Ibrahim et al.

(2001).

As Hendersoni (1995) points out, the PH model is not famous for it’s model

formation, but rather for the potential for a nonparametric element through the baseline

function. The PH model can be written in terms of the survival function by S0(t)c(x
′β),

where S0(t) is the baseline survival function (Klein & Moeschberger, 1997). Thus a

nonparametric prior may be placed on the baseline hazard, cumulative hazard, or sur-

vival function directly. Once prior processes such as the Dirichlet process prior for the

survival distribution (Ferguson, 1973) and the gamma process for the cumulative haz-

ard distribution (Kalbfleisch, 1978) entered the scene, a shift towards semiparametric

modeling occurred. While the DP is a stochastic process that produces realizations of

a distribution function (Section 2.2.1), a gamma process is a Lévy is stochastic process

with independent positive stationary increments. Specifically, the Lévy process can be

used as a prior for sequential differences of the cumulative hazard function. For a neu-

tral to the right Beta process, the differences follow a gamma distribution with mean
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and variance that are functions of the times that define the increments. Dystra & Laud

(1981) provide an absolutely continuous structure for the hazard function by extending

gamma process prior with mixing over the reciprocal of a known continuous function

and giving the mixing distribution a gamma process prior. The nonparametric element

of PH structures can be extended by letting the link function and the baseline distribu-

tion be random. An interesting example is Gelfand & Mallick (1995), who utilize the

the monotonicity property of the cumulative hazard and the link function to model the

functions on a transformed scale of mixtures of beta distribution functions. They argue

for the use of beta mixtures, since they are dense in the space of positive supported and

valued monotonic functions. A DP prior is placed on the weights of the mixtures, while

using Jeffreys’ prior on the covariate effects given the weights.

Another approach in Bayesian semiparametric survival regression is to con-

sider the traditional linear regression structure on the responses, ti, and the covariates,

ti−x′β = εi, then place a nonparametric prior on the errors, εi. Accelerated failure time

(AFT) structures, log(ti)− x′β = εi, have also been studied in the Bayesian semipara-

metric framework. In regards to median regression, the literature includes Walker &

Mallick (1999) and Hanson & Johnson (2002) place Pólya tree mixture on the distribu-

tion of the errors, while Kottas & Gelfand (2001) and use a DP prior. As an extension

to their median regression modeling, Gelfand & Kottas (2003) present a Bayesian semi-

parametric model for median residual life induced by a semiparametric AFT regression

model. A general semiparametric quantile regression model is developed in Kottas &

Krnjajić (2009). A fully nonparametric quantile inference is constructed using DP priors
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in Hjort & Petrone (2007) with a discussion on the extension to the regression setting.

Although the Bayesian semiparametric literature has made great strides in

flexible Bayesian regression modeling, there is still a parametric assumption being made

that places restriction on the inferential potential of the model. In particular, an obvious

restriction is seen in PH and AFT models is the inability of the survival curves to cross

for any two sets of covariates. Also, up until now, priors for the covariate coefficients have

remained parametric. With this motivation, DeIorio et al. (2004) presents the ANOVA

dependent Dirichlet process (DDP) model, which is later extended to include continuous

covariates to the linear DDP DeIorio et al. (2009). The linear DDP uses a DP mixture

model for the log survival responses with a DDP prior on the mixing distribution. The

covariates enter the model in the centrality parameter of the kernel distribution, and

indexes the mixing distribution. Essentially, the model is a DP mixture of log linear

models. To date, the linear DDP is a leading model in Bayesian nonparametric survival

regression. A more detailed description and discussion on the linear DDP can be found

in Section 3.4.

A second fully nonparametric model that has been more recently developed

is the extension of DP mixture models to include random covariates in the kernel dis-

tribution. This modeling technique is referred to as curve fitting regression, and uses

a joint response-covariate kernel distribution (e.g. Taddy & Kottas (2010) and Kottas

et al. (2013)). The curve fitting regression has the ability to capture non-standard rela-

tionships across the covariate space, providing flexible inference across the conditional

survival and density functions. While the linear DDP possesses the novelty of inter-
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pretable parameters and a straight forward posterior sampling algorithm, it is limited

to a linear, or log linear, relationship across the covariates. The curve fitting regression

approach is a more robust model, but does run into trouble when the number of ran-

dom covariates becomes large. Typically survival data consists of a small to moderate

number of covariates, so the curve fitting regression is attractive model choice. In the

following section, we explore the curve fitting regression approach from the perspective

of inference for mrl regression.

3.2 Curve fitting with random covariates

When a covariate can be considered to be random, by which we mean the

covariate is not fixed such as a patient being assigned to treatment or control groups, it

makes sense to model the covariate jointly with the survival response variable. The ben-

efit of this modeling approach is the simplicity of obtaining any conditional or marginal

distributions and functionals that are desired by the researcher. In addition, we are not

restricted to any particular shape in regards to functionals of the survival responses,

given a set of covariates, within and across the covariate space.

3.2.1 Model formulation

Let x be a vector of random covariates and t > 0 the survival time of a

subject. We model the joint response-covariate density using a DPMM, f(t,x|G) =∫
Θ k(t,x|θ)dG(θ). We will work with the truncated version of the SB constructive
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definition of the DP,

f(t,x|G) =

∫
Θ
k(t,x|θ)dG(θ) ≈

L∑
l=1

plk(t,x|θl) (3.1)

In Section 2.2.1, we demonstrate the importance of the kernel choice in ensuring the

finiteness of the mean. In the regression setting, we are interested in the conditional

mrl at any fixed set of covariates, m(t|x0|GL). The sufficiency condition that ensures

the finiteness for the mean, see Section 2.2.1, can be extended for E(t|x0|GL). Let

T (x0,θ) =
∫∞

0 tk(t|x0|θ)dt where k(t,x0|θ) = k(t|x0|θ)k(x0|θ). The condition states

that if A(x0,ψ) =
∫
Θ T (x0,θ)dG0(θ) < ∞ for all θ, then E(t|x0|GL) < ∞, almost

surely. The form of the mean regression is given by:

E(t|x0|GL) =

∫∞
0 tf(t,x0|GL)dt

f(x0|GL)
=

∫∞
0 t

∫
Θ k(t,x0|θ)dGL(θ)dt

f(x0|GL)

=

∫
Θ

∫∞
0 tk(t,x0|θ)dtdGL(θ)

f(x0|GL)
=

∑L
l=1 pl

∫∞
0 tk(t,x0|θl)dt∑L

l=1 plk(x0|θl)

=
L∑
l=1

ql(x0|θl)E(t|x0|θl) (3.2)

where ql(x0|θl) = plk(x0|θl)/{
∑L

l=1 plk(x0|θl)} are covariate dependent weights (Müller

et al., 1996). If we chose independent kernel distributions for T andX0, then k(t,x0|θ) =

k(t|x0|θ)k(x0|θ) = k(t|θ)k(x0|θ). We need only choose k(x) such that the support is

consistent with the support of the covariates. In the case where the covariates are con-

tinuous and take values on the real line (possibly after transformation), the multivariate

normal distribution for k(x) is a natural choice. Turning to k(t), under the independent

scenario, A(x0,ψ) becomes the same with A(ψ) in Section 2.2.1. In that discussion,

the gamma distribution was the clear winner for the kernel choice, completing justifica-
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tion for the following kernel distribution: k(t,x0|θ) = Γ(t|θ, φ)Nd(x|β, κ2), where d is

the number of covariates. In our simulation example, we consider a single continuous

real-valued covariate (d = 1). Let ti be the survival time and xi be the corresponding

real valued covariate for subject i, for i = 1, ..., n. We consider the following DPMM,

ti, xi|θ,wi
ind∼ Γ(ti|eθwi , eφwi )N(xi|βwi , κ

2
wi) (3.3)

wi|p
iid∼

L∑
l=1

plδl(wi)

(θl, φl, βl, κ
2
l )
′|µ,Σ, λ, τ2, ρ

iid∼ N2((θl, φl)
′|µ,Σ)N(βl|λ, τ2)Γ−1(κ2

l |a, ρ)

where the DP implied prior for p is the same with model (2.14). We place the fol-

lowing priors: α ∼ Γ(α|aα, bα(rate)), µ ∼ N2(µ|aµ, Bµ), Σ ∼ IWish(Σ|aΣ, BΣ),

λ ∼ N(λ|aλ, bλ), τ2 ∼ Γ−1(τ2|aτ , bτ ), and ρ ∼ Γ(ρ|aρ, bρ). The MCMC is relatively

straight forward, only requiring one Metropolis-Hastings step for the parameters of the

gamma kernel, just as in the model with no covariates. The rest of the parameters can

be sampled via Gibbs steps.

Note that under the under the curve fitting approach, as the number of covari-

ates increases, the more computationally expensive fitting the model becomes. This is

due mainly to the dimension of the covariance matrix for the random covariates in the

kernel Σ. If d is the number of random covariates, the number of parameters in Σ that

will have to be updated is Ld(d+ 1)/2. One can see how quickly this number can grow

with growing d. Thus, curve fitting under the DP mixture framework is best suited for

situations in which the number of random covariates is small to moderate.
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3.2.2 Prior selection and posterior inference

For prior specification, we use the same ideas discussed in Section 2.2.2. In

particular, by means of imagining one component covering the prior range believed by

the expert, here, for both the survival responses and the covariates. Under the product

kernel, we specify the prior parameters associated with the survival times independently

of the prior parameters for the covariate values.

We can obtain posterior point and interval estimates for the desired survival

functionals using the same methodology as in Section 2.2.3. We compute the value of

the functional at each posterior sample of the parameters over a grid of survival times at

a particular value of the covariate, x0, and save the desired quantiles. The expressions

of the density, survival, hazard, and mrl functions are given respectively below:

f(t|x0, GL) =
f(t,x0|GL)

f(x0|GL)
=

∑L
l=1 plk(t,x0|θl)∑L
l=1 plk(x0|θl)

S(t|x0, GL) = 1−
∫ t

0
f(u|x0, GL)du = 1−

∑L
l=1 plk(x0|θl)K(t|x0,θl)∑L

l=1 plk(x0|θl)

h(t|x0, GL) =
f(t|x0, GL)

S(t|x0, GL)

m(t|x0, GL) =

∫∞
t S(u|x0, GL)du

S(t|x0, GL)
=
E(t|x0, GL)−

∫ t
0 S(u|x0, GL)du

S(t|x0, GL)

where K(t|x0|θl) is the conditional kernel distribution function (a gamma cdf under the

product kernel of model (3.3)).

Of important note is the regression structure of the functionals under this

model. Looking back to the structure for the conditional mean of survival (3.2), the

ql(·) functions can be thought of as a new set of weights, such that the functional is
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a weighted mixture of the mean of the conditional kernel components. The structure

provides a convenient interpretation of the functional. Moreover, the new weights, ql(·)

are functions of the covariate. This property illustrates the potential for seeing a non-

standard relationship of the mean regression across the covariate space. Similarly, the

mrl function can be written as,

m(t|x0, GL) =

L∑
l=1

ql(t,x0|θl)m(t|x0,θl) (3.4)

where ql(x0|θl) = plk(x0|θl)S(t|x0,θl)/{
∑L

l=1 plk(x0|θl)S(t|x0,θl)}. Therefore, we can

think of the mrl regression function as a finite weighted sum of the mrl functions as-

sociated with the conditional kernel components, with weights that are dependent on

time as well at the covariate values. Aside from the nice interpretation on the form of

the mrl regression function under this model, (3.4) shows the potential of the model to

capture non-standard relationships across the covariate space as well as unique features

within the mrl regression function.

3.2.3 Simulation example

We simulate 1500 data values from a population having the following den-

sity: f(t, x) =
∑M

l=1 qlΓ(t|al, bl)N(x|ml, s
2
l ), where M = 6, a = (45, 3, 125, 0.4, 0.5, 4)′,

b = (3, 0.2, 3.8, 0.2, 0.3, 5)′, m = (−12,−8, 0, 12, 18, 21)′, s = (6, 5, 4, 5, 3, 2)′, and q =

(0.28, 0.1, 0.25, 0.21, 0.11, 0.05)′. The simulated data is shown in the left panel of Figure

3.1.

This population was constructed to have various shapes of the mrl function
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Figure 3.1: Simulated data (left), and point (purple solid) and interval estimates (light
blue dashed) of the mean overlaying the truth (black solid) (right).
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Figure 3.2: Point (blue solid) and 95% interval estimates (red dashed) of the mrl function
for the specified covariate value overlaying the true mrl function of the population (black
solid).

across different covariate values. The shapes include mrl functions with multiple change

points, nonlinearly decreasing, UBT, and nonlinearly increasing. We demonstrate the
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ability of the joint DPMM in (3.3) to capture these various mrl functional forms at

appropriate covariate values. The following priors were used: aµ = (0.59,−2.12), Bµ =

Bσ = ((0.019, 0.019)′, (0.019, 0.019)′), aλ = 0, aτ = 2, aρ = 1, bλ = bτ = 88, bρ = 1/88,

aα = 3, bα = 0.1. The DP truncation level was set at L = 80.

The mean of the survival times across a grid of covariate values is shown in

Figure 3.1 (right panel). In general, the model is able to capture the non-linear trend

of the mean over the covariate values. The point estimate is almost on top of the truth

for a large portion of the grid.

The results for mrl functional inference is shown in Figure 3.2. We provide

point and interval estimates for the mrl function at six different covariate values. The

model is able to capture the overall shape of the true mrl functions, despite the variety

of shapes. At covariate values where the data is most dense, such as x = −5, x = 0,

and x = 5, the inference is more precise as is seen in the narrow interval bands. As we

move to covariate values away from zero, where data is more sparse, the wide interval

bands reflect the uncertainty of the mrl functional shape.

3.3 Dependent Dirichlet Process Mixture Model Across

Experimental Groups

Often in clinical trials, researchers are interested in modeling survival times

of patients under treatment and control groups. In Section 2.4, we model the survival

times of rats data under two experimental conditions, ad libitum and restricted. The
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inference for the groups was obtained independently. An extension would be to model

the groups jointly. The benefit of modeling the groups jointly is to be able to capture

dependencies amongst groups, and to borrow strength from the group with a larger

sample size for more precise inference.

3.3.1 Dirichlet process prior with dependent weights

Let s ∈ S represent in general the index of dependence. In our case, this

indicates the experimental group, that is S = {T,C} where (T ) is the treatment group

and (C) is the control group. The DPMM under the regression setting in (3.3) can be

extended to f(t,x|Gs) =
∫
Θ k(t,x|θ)dGs(θ) for s ∈ S, where now we are modeling a

pair of dependent random mixing distributions {Gs : s ∈ S}. We desire to model the

distributions in such a way as to incorporate dependencies across experimental groups,

while maintaining marginally the DP prior, Gs ∼ DP , for each s ∈ S. MacEachern

(2000) develops the dependent DP prior in generality with both the weights and loca-

tions in the DP SB definition dependent on experimental group: Gs(·) =
∑∞

l=1 ωlsδθls(·).

Marginally, Gs ∼ DP (αs, G0s) for each s ∈ S. MacEachern (2000) goes on to describe

the computational difficulties in modeling dependencies in the weights across groups,

thus motivating development of the “single p” model. In this model, the weights do

not change over the groups, only the locations vary, Gs(·) =
∑∞

l=1 ωlδθls(·). We have

studied such dependent DP mixture modeling for comparison of neuronal intensities

under distinct experimental conditions in Kottas et al. (2012). Applications of “single

p” dependent DP models include DeIorio et al. (2004), Gelfand et al. (2005), Rodriguez
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& ter Horst (2008), Kottas & Krnjajić (2009), DeIorio et al. (2009), and Fronczyk &

Kottas (2010).

While computationally convenient and a useful extension from the basic DP

prior, assuming the same weights has potential disadvantages in our setting. A practical

disadvantage of the “single p” dependent DP construction involves applications with a

moderate to large number of covariates. For such cases, the “single p” prior requires

building dependence across s ∈ S for a large number of kernel parameters, whereas

modeling dependency through the weights is not affected by the dimensionality of the

mixture kernel. In situations where we might expect similar locations across groups,

modeling dependency through the weights is more attractive.

Recall that we are interested in the case where we have two groups, treatment

and control. In the mixture modeling, we might expect the two groups to be comprised

of similar components, but these components may have varying prevalence. Thus we

want the mixing distribution to have the form Gs(·) =
∑∞

l=1 ωlsδθl(·). We will again

use the truncated version of Gs ≈
∑L

l=1 plsδθl for s ∈ {T,C} representing the treatment

and control groups, respectively. Therefore, we propose the following model:

f(t,x|Gs) =

∫
Θ
k(t,x|θ)dGs(θ) ≈

L∑
l=1

plsk(t,x|θl) for s ∈ {T,C} (3.5)

Under the stick-breaking method in obtaining the weights, we sample inde-

pendently the latent parameters, υr ∼ Beta(1, α), which is equivalent to using ζr =

(1 − υr) ∼ Beta(α, 1) for r = 1, ..., L − 1. If we use a bivariate beta distribution for

(ζTr, ζCr), we can incorporate the dependency between the two groups. Minimally, we
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need the marginals to be ζ∗sr ∼ Beta(α, 1) for s ∈ {T,C}. By applying a bivariate beta

distribution to the dependent DPMM with common locations and dependent weights,

the following model for survival regression data that specify two experimental groups is

presented,

tiC ,xiC |GC
ind∼ f(tiC ,xiC |GC) =

∫
Θ
k(tiC ,xiC |θ)dGC(θ), i = 1, .., nC

tiT ,xiT |GT
ind∼ f(tiT ,xiT |GT ) =

∫
Θ
k(tiT ,xiT |θ)dGT (θ), i = 1, .., nT

(GC , GT )|φ,ψ ∼ DDP (φ, G0(·|ψ))

where GS =

∞∑
l=1

ωlSδθS ≈
L∑
l=1

plsδθl

θl,ψ
iid∼ G0(·|ψ), l = 1, 2, ...

ω1s = 1− ζ1s| ωls = (1− ζls)
l−1∏
r=1

ζrs l = 2, 3, ...

with (ζlC , ζlT )|φ ind∼ biv-beta(·|φ), l = 1, 2, ...

such that marginally, ζlC ∼ beta(αC , 1) and ζlT ∼ beta(αT , 1)

There are a number of bivariate beta distributions to consider, however, some

exhibit more favorable properties for our purposes than others. In particular, more

flexible marginals would allow for different α values, i.e., ζTr ∼ Beta(αT , 1) and ζCr ∼

Beta(αC , 1). Naturally, we also want the bivariate beta to correspond to reasonable

computation of the MCMC, have a relatively simple density form, full support for the

correlation between ζCr and ζTr, and ideally an analytic expression for the correlation.

The correlation of the bivariate beta distribution for (ζTr, ζCr) will be important for the

study of the implied dependence structure in the dependent DP prior for (GT , GC).

The bivariate beta distribution presented by Michael & Schucany (2011) has
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a simple analytic form for the correlation structure and while the density does not have

an easily obtainable form, sampling from the density is straight forward. A bigger

problem is that we can not obtain marginal distributions for ζCr and ζTr with different

α parameters. Another possible bivariate beta is provided by Olkin & Liu (2003). This

bivariate beta has a reasonable density form and the appropriate beta marginals for ζCr

and ζTr, allowing different α values. However, the correlation does not have an analytic

form, and the support of the correlation is restricted to positive values.

The bivariate beta that we chose to implement in our model is that of Nadara-

jah & Kotz (2005). They construct a bivariate beta distribution through products

of beta distributions. Start with beta random variables, U ∼ Beta(a1, b1), V ∼

Beta(a2, b2), and W ∼ Beta(b, c), subject to the constraint, c = a1 + b1 = a2 + b2.

The bivariate beta distribution we are interested in is defined for random variables, X

and Y , where X = UW and Y = VW . The marginals are given by X ∼ Beta(a1, b1 +b)

and Y ∼ Beta(a2, b2 + b). We can obtain the desired beta marginals for ζCr and ζTr

by setting b1 + b = b2 + b = 1, although the marginals will have the same α parameter.

The density has a complicated form, but it can be sampled from using latent variables.

The correlation has an analytic expression, however, has positive support, which may

or may not be a reasonable assumption. Induced correlations in the model under this

bivariate beta distribution is discussed in Section 3.3.2.
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3.3.2 Properties of the DDP mixture model

In what follows, we explore what correlation structures are induced by the

Nadarajah & Kotz (2005) bivariate beta distribution. At the end of the section, we

provide the full hierarchical DDP mixture model. Under this bivariate beta construc-

tion, the groups have a common α = αC = αT , and the correlation is driven by both

parameters, α and b. The construction is based off of the product of independent beta

distributions. Start with sampling the independent latent variables: U ∼ β(α, 1 − b),

V ∼ β(α, 1 − b), W ∼ β(α + 1 − b, b). Let ζC = UW and ζT = VW . The weights are

defined by ws1 = 1− ζ1s, wls = (1− ζls)
∏l−1
r=1 ζrs, for l ∈ {2, 3, ...}.

We are interested in obtaining the correlation between the two mixing dis-

tributions, GC and GT , implied under this bivariate beta distribution. We first start

with the correlation between ζC and ζT , Cor(ζC , ζT ). We omit the component subscript

in the latent variables, since results are the same for each l ∈ {1, 2, ...}. The covari-

ance can be written as, Cov(ζC , ζT ) = E(ζCζT ) − E(ζC)E(ζT ) = E((UW )(VW )) −

E(UW )E(VW ). Using the fact that U, V,W are independent the covariance becomes,

E(U)E(V )E(W 2)−E(U)E(V )E2(W ) = E(U)E(V )V ar(W ), which gives the following

resulting covariance,

Cov(ζC , ζT ) =

(
α

α+ 1− b

)2(
(α+ 1− b)b

(α+ 1)(α+ 2)

)
=

α2b

(α+ 1− b)(α+ 1)2(α+ 2)
(3.6)

By definition, the correlation is Cor(ζC , ζT ) = Cov(ζC , ζT )/
√
V ar(ζC)V ar(ζT ).

Note that ζC and ζT have the same marginal distribution, Beta(α, 1), so they have the

same expression for the variance. The correlation is therefor given by,

Cor(ζC , ζT ) =

(
α2b

(α+ 1− b)(α+ 1)2(α+ 2)

)(
(α+ 1)2(α+ 2)

α

)
=

αb

α+ 1− b
(3.7)
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The correlation between ζC and ζT can take values on the interval (0, 1). As b → 0

and/or α→ 0, the correlation goes to 0. As b→ 1 and/or α→∞, the correlation tends

to 1. Figure 3.3 below shows a surface plot of the correlation over a grid of α and b

values.
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Figure 3.3: Correlation between ζC and ζT over a grid of α and b values.

The next step is to explore the correlation of the weights, Cor(wlC , wlT ) for

l ∈ {1, 2, ....}. When l = 1, w1s = 1− ζ1s, which is simply a linear operation, hence the

covariance and correlation are the same as before. The Cov(w1C , w1T ) = Cov(ζC , ζT )

and Cor(w1C , w1T ) = Cor(ζC , ζT ) are given by (3.6) and (3.7), respectively. The case

is different for l = {2, 3, ...}. In this case, the covariance is defined as
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Cov(wlC , wlT ) = E
[(

(1− ζlC)
∏l−1
r=1 ζrC

)(
(1− ζlT )

∏l−1
r=1 ζrT

)]
−

E
[
(1− ζlC)

∏l−1
r=1 ζrC

]
E
[
(1− ζlT )

∏l−1
r=1 ζrT

]
.

Using the fact that ζls are independent across l = 1, ..., L, for each s ∈ {C, T} (see

Appendix for details), the covariance, for l ∈ {2, 3, ...}, can be expressed as,

Cov(wlC , wlT ) =
(α+ 1− b)(α+ 2) + α2b

(α+ 1− b)(α+ 1)2(α+ 2)

(
α2b+ α2(α+ 1− b)(α+ 2)

(α+ 1− b)(α+ 1)2(α+ 2)

)l−1

− 1

(α+ 1)2

(
α2

(α+ 1)2

)l−1

(3.8)

The variance for the weights are independent of group, see Appendix, and can be

expressed as V ar(wls) = 2
(α+1)(α+2)

(
α+α2(α+2)

(α+1)2(α+2)

)l−1
− 1

(α+1)2

(
α2

(α+1)2

)l−1
. Therefore,

the correlation, for l ∈ {2, 3, ...}, can be expressed as,

Cor(wlC , wlT ) =

[
(α+ 1− b)(α+ 2) + α2b

(α+ 1− b)(α+ 1)2(α+ 2)

(
α2b+ α2(α+ 1− b)(α+ 2)

(α+ 1− b)(α+ 1)2(α+ 2)

)l−1

− 1

(α+ 1)2

(
α2

(α+ 1)2

)l−1
]

/

[
2

(α+ 1)(α+ 2)

(
α+ α2(α+ 2)

(α+ 1)2(α+ 2)

)l−1

− 1

(α+ 1)2

(
α2

(α+ 1)2

)l−1
]

(3.9)

The correlation between the weights for l ∈ {2, 3, ...} also takes values on the interval

(0, 1) and behaves the same in terms of the limits of α and b as in the case when l = 1.

The component value, l, plays a slight role in the correlation, specifically as l get larger,

the rate of change for smaller α values becomes less extreme. Figure 3.4 provides surface

plots of the correlation for components 20 and 80.

We can now address the covariance and correlation between the two mixing

distributions, Cov(GC , GT ) and Cor(GC , GT ). Let B ∈ Θ represent a subset of the

space of the mixing parameters. In the model we present, Θ is equivalent to R2, so

B is simply a subset of R2. Recall that the mixing distribution for group s has form
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Figure 3.4: Correlation between ω20C and ω20T (left) and ω80C and ω80T (right) over a
grid of α and b values.

Gs(B) =
∑∞

l=1wlsδθl(B). Marginally, Gs(B) follows a DP, so the expectation and

variance of Gs(B) is G0(B) and G0(B)[1−G0(B)]/(α+1), respectively. The covariance

between GC(B) and GT (B) is given by Cov (
∑∞

l=1wlCδθl(B),
∑∞

l=1wlT δθl(B)), which

boils down to the expression, G0(B)
∑∞

l=1wlCwlT + 2G2
0(B)

∑∞
l=1

∑∞
m=l+1wlCwmT −

G2
0(B). The infinite series converges under geometric series (see appendix for details),

and the covariance simplifies to be:

Cov(GC(B), GT (B)) = G0(B)(1−G0(B))

(
(α− 2)b+ α+ 2

α(2α− 3b+ 5)− 2b+ 2

)
(3.10)

The correlation, therefore, does not depend on the choice of B or G0, it is driven by α

and b alone:

Cor(GC(B), GT (B)) =
(α+ 1)((α− 2)b+ α+ 2)

α(2α− 3b+ 5)− 2b+ 2
(3.11)

The correlation of the mixing distribution lives on the interval (1/2, 1), see

Figure 3.5 for a visual. As α→ 0 and/or b→ 1, the correlation tends to 1. When α→∞

the correlation tends to (b+1)/2 and as b→ 0 the correlation tends to (α+1)/(2α+1),

so when α→∞ and b→ 0 the correlation goes to 1/2. Although this correlation space
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Figure 3.5: Correlation between GC(B) and GT (B) over a grid of α and b values.

is limited, it is a typical range seen in the literature (e.g. McKenzie (1985)). It can easily

be shown that the correlation of the survival distributions between the two groups given

GC and GT also live on (1/2, 1), which demonstrates the importance of prior knowledge

of the relationship between the distributions of the two group survival times. While the

possible values of correlation on the distributions of the survival times are restricted to

(1/2, 1), the correlation between the survival times across the two groups, Cor(TC , TT ),

takes on values in (0, 1). The correlation between TC and TT is found by marginalizing

over the mixing distributions (full details available in appendix), GC and GT . Starting

with the covariance, Cov(TC , TT ) = E[TCTT ]−E[TC ]E[TT ] = E[E[TC |GC ]E[TT |GT ]]−

E[E[TC |GC ]]E[E[TT |GT ]]. Under the gamma kernel with bivariate normal G0 that we

have previously discussed, the covariance is given by the following,

Cov(TC , TT ) =
(
et
′
2µ+ 1

2 t
′
2Σt2 − e2(t′3µ+ 1

2 t
′
3Σt3

)( (α− 2)b+ α+ 2

α(2α− 3b+ 5)− 2b+ 2

)
(3.12)

66



where t2 = (2,−2)′ and t3 = (1,−1)′. The variance of Ts, for both s ∈ {C, T}, is given

by, et
′
1µ+ 1

2
t′1Σt1 + et

′
2µ+ 1

2
t′2Σt2 − e2(t′3µ+ 1

2
t′3Σt3). Recall that t1 = (1,−2)′. Therefore the

correlation is given by,

Cor(TC , TT ) =

[(
et
′
2µ+ 1

2 t
′
2Σt2 − e2(t′3µ+ 1

2 t
′
3Σt3)

)( (α− 2)b+ α+ 2

α(2α− 3b+ 5)− 2b+ 2

)]
/[

et
′
1µ+ 1

2 t
′
1Σt1 + et

′
2µ+ 1

2 t
′
2Σt2 − e2(t′3µ+ 1

2 t
′
3Σt3)

]
(3.13)

As the et
′
1µ+ 1

2
t′1Σt1 = E[eθ−2φ]→ 0 the correlation simplifies to ((α−2)b+α+2)/(α(2α−

3b + 5) − 2b + 2). In this case, as α → 0 the correlation tends to 1 and as α → ∞ the

correlation tends to 0. Also, as b → 0 the correlation tends to 1/(2α + 1) and as

b → 1 the correlation tends to 1/(α + 1). These results are scaled down as E[eθ−2φ],

the expectation of the kernel variance, gets larger. In Figure 3.6, the surface plot of

the correlation between the survival times are shown for different values of µ and Σ are

shown over a grid of values for b and α.
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Figure 3.6: Correlation between TC and TT when µ = (0, 0)′ and Σ = ((1, 0)′(0, 1)′)
(left) and when µ = (3.09, 0.5)′ and Σ = ((1.5, 0.2)′(0.2, 0.25)′) (right) over a grid of α
and b values.

Having thoroughly explored the DDP prior, we now present the full hierarchical

version of the proposed mixture model (3.14). The full hierarchical model can be written
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upon introducing the latent configuration variables, w = {wis : i = 1, ..., ns|s = C, T},

such that wis = l if the ith observation at group s is assigned to mixture component

l. Keeping the same kernel structure, baseline distribution, and priors as in (3.3), the

hierarchical version of the model with the chosen bivariate beta distribution may be

written as follows,

{tis}|w, {θl} ∼
∏

s∈{C,T}1

ns∏
i=1

Γ(tis|eθwis , eφwis ) (3.14)

{xis}|w, {θl} ∼
∏

s∈{C,T}1

ns∏
i=1

N(xis|βwis , κ
2
wis)

wis|{(ζls)}
ind∼

L∑
l=1

{(1− ζls)
l−1∏
r=1

ζrs}δl(wis),

for i = 1, ..., ns and s ∈ {C, T}

{(ζlC , ζlT )}|α, b ∼ Biv −Beta({(ζlC , ζlT )}|α, b)

ζlC = UW, ζlT = VW, for l = 1, ..., L,

U
iid∼ Beta(α, 1− b), V iid∼ Beta(α, 1− b),

W
iid∼ Beta(1 + α− b, b)

(θl, φl, βl, κ
2
l )
′|µ,Σ, λ, τ2, ρ

iid∼ N2((θl, φl)
′|µ,Σ)N(βl|λ, τ2)Γ−1(κ2

l |a, ρ)

We place the following priors: α ∼ Γ(α|aα, bα(rate)), b ∼ Unif(0, 1), µ ∼ N2(µ|aµ, Bµ),

Σ ∼ IWish(Σ|aΣ, BΣ), λ ∼ N(λ|aλ, bλ), τ2 ∼ Γ−1(τ2|aτ , bτ ), and ρ ∼ Γ(ρ|aρ, bρ). The

posterior sampling algorithm details are provided in Appendix D.1.
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3.3.3 Simulation

In this section, we construct two sets of populations from which to sample from.

The first set of populations is were constructed using a mixture of Weibull distributions

that shared the same set of locations, but having different weights. Given that model

(3.14) has DDP prior has the same construction, we would expect the model perform

well under this situation. The populations for the first simulation is shown in the left

panel in Figure 3.7. The panel shows how the two populations look similar having

modes at the same locations, just differing prevalences for each mode. The second set

of populations is also constructed using a mixture of Weibull distributions, however,

this time we use different weights as well as locations. The intention is to test the

model’s inferential ability for populations that have quite different features. Figure 3.7

shows the density populations of the second simulation in the right panel. The second

population exhibits a single mode in between the two modes of the first population.

The panel indicates the that the two densities are quite dissimilar.
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Figure 3.7: Simulation 1 population densities (left) and Simulation 2 population densi-
ties (right). The green curve represents the first population (T1) while the blue repre-
sents the second (T2) in each simulation.
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Simulation 1

In Simulation 1, we demonstrate the models’ ability to perform under circum-

stances in which resembles the structure of our model. Specifically, we simulate from two

Weibull mixture distributions that share mixture locations, but have different weights:

T1 ∼ 0.7Weib(2, 8) + 0.1Weib(3, 10) + 0.05Weib(4, 30) + 0.15Weib(8, 40)

T2 ∼ 0.5Weib(2, 8) + 0.05Weib(3, 10) + 0.025Weib(4, 30) + 0.425Weib(8, 40)

The populations are comprised of four components each. We sample 250 survival times

from the first population and 100 survival times from the second population. We do

not consider censoring or covariates here. The histogram of the simulated survival data

is shown in Figure 3.8
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Figure 3.8: Simulation 1. Simulated survival times from mixture of Weibull having the
same locations and different weights.

We place a Uniform prior on the b parameter and a Gamma prior on α with

shape parameter 2 and rate parameter 0.8. The number of components is conserva-

tively set at 40. Using prior specification methods discussed in Section 2.2.2, we place

a bivariate normal prior on µ with mean vector (1.87, 0.25)′ and covariance matrix
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((0.27, 0)′, (0, 0.27)′), and an inverse Wishart with 4 degrees of freedom and scale ma-

trix ((0.27, 0)′, (0, 0.27)′). We update b and α together using a bivariate normal on the

logit and log scale, respectively. The proposal is centered around the previous iteration,

and initial MCMC runs are done to obtain an appropriate covariance matrix. After

burn in and thinning, we obtain 2000 independent posterior samples.
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Figure 3.9: Simulation 1. Posterior point and 95% interval estimates for density (left),
survival (middle), and mrl (right) functions. The truth is given by the black dashed
curves.

Inference for the density, survival, and mrl functions are provided in Figure

3.9. The top panels are results for Group 1, while the bottom panels are that of Group

2. The colored solid and dashed curves represent the poster point and 95% interval
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estimates. The truth is plotted, in a dashed black curve, over the posterior results. The

model is able to express the features of the functionals, and the true population density

is captured within the 95% interval estimates. In particular, the flexibility of the model

is demonstrated in the mrl function. The true mrl is non-standard in both groups: ini-

tially decreasing, followed by an increase after about time 5, and then decreasing again

after about time 12. The difference in sample size between the two groups is indicated

by the slightly larger interval bands in Group 2 for the majority of the support of the

data.

Simulation 2

The second simulation example is intended to be more of a challenge to the

model. The populations consist of mixtures of Weibull distributions, however, here we

use different weights, locations, and number of components. Group 1 is comprised of

four components, while Group 2 is comprised of five:

T1 ∼ 0.5Weib(2, 4) + 0.05Weib(0.6, 4) + 0.025Weib(5, 15) + 0.425Weib(8, 30)

T2 ∼ 0.02Weib(0.6, 1)+0.02Weib(2, 4)+0.66Weib(5, 15)+0.2Weib(2, 8)+0.1Weib(4, 30)

We simulate 250 observations from each population. All observations are fully

observed, and no covariates are considered. The histogram of the simulated survival

data is shown in Figure 3.10.

Once again, we use a uniform prior on b, and gamma prior on α with shape

parameter 2 and rate parameter 0.8. The number of components is set at 40, which is a
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Figure 3.10: Simulation 2. Simulated survival times from mixture of Weibull having the
same locations and different weights.

conservative value for these data. Using the same prior specification approach discussed

in Section 2.2.2, a bivariate normal prior is placed on µ with mean vector (3.02, 0.54)′

and covariance matrix ((0.1, 0)′, (0, 0.1)′). We update α and b the same way as in the

first simulation. After burn in and thinning, we obtain 2000 independent posterior

samples.

The posterior results for α, b, and the correlation between the mixing distri-

butions are shown in Figure 3.12. The prior densities are shown in the plots as the

red dashed line. The model favors smaller α values, which is not surprising since the

number of components in the populations are small. The posterior for b also favors

smaller values. Recall that in general, smaller b indicates smaller correlation. The

model is likely trying to reflect the difference between the populations. On the other

hand, smaller α values lead to a higher correlation. The posterior correlation between

the mixing distributions seemw to settle between the competing values of α and b at

around 0.7. The 95% credible interval for the correlation is given by (0.619, 0.855).
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Figure 3.11: Simulation 2. Posterior point and 95% interval estimates for α (left), b
(middle), and the correlation between the mixing distributions (right). The priors for
α and b are given by the red dashed line.

The posterior results for the density, survival, and mrl functions are shown in

Figure 3.12. Despite the difference in the features of the functionals between the two

groups, the model is able to capture the features of each group with accuracy. This

is especially exciting for the mrl functions. The mrl functions are quite different from

one another, and both are non-standard shapes. The model has no problem capturing

both shapes of the mrl functions. The only area where we can see struggle in the model

for the mrl function inference is in the tails of the functionals. The true mrl function

of Group 1 is slightly above the upper interval estimate of the model. This may be

just due to the random nature of simulated data; this simulated data may suggest a

lower mrl function in the tail. Another possibility is the extreme difference between the

mrl functions of the two groups in the tails. Group 1 shoots up sharply, while Group

2 remains gradually decreasing. A third contributor to the tail struggle is that the

sparsity of the data in this area, so models in general a have a tougher time achieving

accuracy. Even with these elements against the model, the struggle is not significant.
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Figure 3.12: Simulation 2. Posterior point and 95% interval estimates for density (left),
survival (middle), and mrl (right) functions. The truth is given by the black dashed
curves.

The results from the two simulations demonstrates the utility of the gamma

DDPMM. The model is able to incorporate dependency across two populations to

achieve accurate inference in the functionals of each population. In particular, the

model is able to capture provide flexible mrl inference for two groups that exhibit mrl

functions having different features across the range of survival. In the following section,

we apply the gamma DDPMM to a real dataset, and provide inferential results.
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3.4 Data example: small sell lung cancer

We revisit the data set analyzed in Section 2.3.3 under the gamma DPMM.

These data describe the survival times of patients with small cell lung cancer under two

treatment groups, Arm A and Arm B. Arm A consists of 62 survival times, 15 of which

are right censored. Arm B consists of 59 survival times, 8 of which are right censored.

The age of each patient upon entry is also available, however, in Section 3.4.1, we work

with the treatment as the only covariate. The age covariate is later incorporated in

Section 3.4.2 by combining both methodologies described in Sections 3.2 and 3.3.

3.4.1 Dependency across treatment groups

We fit a DDPMM using a gamma kernel to these data. Priors were specified

using an analogous approach as described in Section 2.2.2, i.e., using the range and

midrange of the observed survival times, which, in practice, would be specified by the

expert. We place a uniform prior on b and a gamma prior with shape parameter 2

and rate parameter 0.5 is placed on α, and set L = 80. In Figure 3.13, the prior

and posterior densities are overlaid for α, b, and the correlation between the mixing

distributions, Cor(GC , GT ). The posterior densities for both α and b indicate learning

for these parameters. Consequently, the model is able to learn about the correlation

between the GC and GT . These data imply a fairly strong correlation between the

mixing distributions as well as between the population distributions of the survival

times under Arm A and Arm B.
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Figure 3.13: Prior (red dashed) and posterior (black solid) densities for α (left), b
(middle), and Cor(GC , GT ) (right).

Inference for the density, survival, and mrl functions are provided in Figure

3.14. The point estimates for the density have the same general shape to the point esti-

mates obtained by Kottas & Krnjajić (2009), who employ a semiparametric regression

model. Both models indicate a mode at about 450 days for Arm A and 350 days for

Arm B. However, the point estimates under the gamma DDPMM are smoother than un-

der the semi-parametric regression model for both groups. The difference is seen more

obviously in the Arm B treatment. The point estimates for the two survival curves

indicates that Arm A has a higher survival rate across the range of the data starting

from about 200 days. When comparing the results under the gamma DDPMM from

under the independent gamma DPMM, the general conclusion regarding favorability of

Arm A over Arm B remains the same, however, there an obvious change in the mrl

functions. Although, the point estimates for the mrl functions maintain the same non-

standard shape under both models, the separation between the two groups is far less

under DDPMM compared to the DPMM (Figure 2.6). Arm B is the group that appears
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to be most affected by the model change. Specifically, the point estimate for Arm B is

shifted up. The shift is most drastic in the tail where data become more sparse.
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Figure 3.14: Posterior point and 95% interval estimates of the density function for
Arm A (upper left) and Arm B (upper right). Posterior point estimate of the survival
function (bottom left) and the mean residual life function (bottom right) for Arm A
(blue dashed) and Arm B (green solid).

In Figure 3.15, we look at the prior probability, Pr(mA(t) > mB(t)), and pos-

terior probability, Pr(mA(t) > mB(t)|data), under the gamma DDPMM. This Figure is

analogous to Figure 2.8, which provides results under the independent gamma DPMM.

The prior probabilities under both models do not favor one mrl function over the other

at any time point. We also see from Figure 2.8 and Figure 3.15 that the posterior prob-

ability changes in a similar fashion as we move across the time space. Specifically, the
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probability is highest at smaller survival times then dips down followed by an increase

and then then tapers back down. The range in probabilities is larger in Figure 3.15,

with some probabilities reaching below 0.6. In particular, Figure 3.15 indicates a lower

probability of the mrl function of Arm A being higher than the mrl function of Arm B

after about 500 days when compared to Figure 2.8.

0 500 1000 1500 2000

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Time (days)

Pr
ob
ab
ilit
y

Figure 3.15: The posterior (black solid) and prior (red dashed) probability of the mrl
function of Arm A being higher than the mrl function of Arm B over a grid of survival
times (days).

We formally compare the performance of the gamma DDPMM to a parametric

regression model that is able to obtain constant, increasing, decreasing, UBT, and BT

shaped mrl functions. Namely, we extend the Exponentiated Weibull model (EWM), see

Section 2.1.3, to a regression model through the scale parameter, σ, by setting log(σ) =

β0+β1x. The survival function thus becomes, S(t) = 1−[1− exp (−tαexp (β0 + β1x))]θ.

Here x takes value 0 when the survival time corresponds to Arm A, and a 1 when the

survival time corresponds to Arm B. A normal prior with mean −10 and standard
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deviation 10 was placed on β0, and a normal prior with mean0 and standard deviation

10 was placed on β1. Exponential priors with rate parameters 1/1.1 and 1/0.9 were

placed on α and θ, respectively. Prior parameters were specified by taking advantage

of the closed form survival function of the EWM. The 10th, 50th, and 90th quantiles of

the data, which in practice would be specified by an expert, were used as arguments of

the inverse survival function to obtain prior point estimates of the parameters.

The Conditional Predictive Ordinate (CPO), originally proposed as the leave-

one-out cross-validation predictive density by Geisser & Eddy (1979), is a useful tool

is assessing the performance of a model for a particular dataset. The CPO value of

the ith observation, CPOi, is the marginal posterior probability of observing the ith

observation, ti, when the model is fit to the data with ti omitted:

CPOi = f(ti|data(−i)) =
∫
f(ti|Ψ, xi)π(Ψ|data(−i))dΨ

where data(−i) represents the data with the ith observation removed, Ψ are the parame-

ters of the model, xi is the set of covariates associated with ti, f(·) is the likelihood, and

π(·) is the joint posterior distribution of the model parameters. A higher CPO value

indicates a better model fit. A benefit of omitting the data value is that the data is

only used once in assessing the model. The downfall, having to fit the model for each

desired CPO value. However, CPOi can be expressed in terms of the joint posterior

distribution of the model parameters given ALL the observations:

CPOi =
(∫

1
f(ti|Ψ,xi)π(Ψ|data)dΨ

)−1

In either case, the expression for CPOi often does not have a closed form, so the MCMC
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approximation is used (see, for example, Chen et al. (2000)). The approximation must

be monitored to ensure convergence is obtained. In some cases, the inverted likelihood

can cause the estimator to be unstable. For these CPO values, the original definition

must be used for the MCMC approximation. If the number of values of instability is

small, this is not a large inconvenience, but if there are numerous instability cases, this

model assessment technique may be practically unfeasible.

Obtaining the CPO values for the EWM is straight forward. The likelihood is

given by f(ti|α, θ, β0, β1, xi) = θαtα−1
i exp{β0 + β1xi} [1− exp (−tαi exp{β0 + β1xi})]θ−1

[exp (−tαi exp{β0 + β1xi})]. Recall that xi is 0 if ti is an observation from Arm A and 1

if ti is an observation from Arm B. Let M represent the number of MCMC iterations,

then the CPO values for the EWM are estimated using the posterior samples of the

parameters via the Harmonic mean estimator:

CPOi ≈

 M∑
j=1

1

f(ti|αj , θj , β0j , β1j , xi)

−1

(3.15)

If the ith observation is right censored, the likelihood is replaced by the survival function.

The MCMC for the EWM was ran for 500000 iterations with a burn in of 10000 for

an effective posterior sample size of 2000. The CPO values are plotted in red in Figure

3.14.

The DDPMM requires a slightly different expression for the CPO values. Un-

der the DDPMM, each observation is believed to come from a particular component of

the mixture, so while the density function is a mixture, the likelihood contribution of

the ith observation is a single component. Recall that the full posterior distribution from
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which we obtain samples from is p(θ,w,p,Ψ), where Ψ = (µ,Σ). In the small cell lung

cancer dataset, we have two experimental groups indexedby s ∈ {C, T}, thus for these

data we compute CPO values for the ith observation in group s, CPOis. Again, let M

represent the number of MCMC iterations, then the expression we need to approximate

the CPO values using the posterior parameter samples is given by:

CPOis ≈
A

Bis

 M∑
j=1

∑L
l=1 Γ(tis|θlj)

Γ(tis|θwisj )

 (3.16)

where
A

Bis
=

 M∑
j=1

1

Γ(tis|θwisj )


The details of this derivation is provided in Appendix D.2. The CPO values of the

gamma DDPMM are plotted in blue (Arm A) and green (Arm B) in Figure 3.16.

With respect to the CPO values, the gamma DDPMM performs better than

the EWM around the mode and the far tail of each density, but collectively it’s a close

race between the models. The shape of densities of each group are fairly standard,

so it is not surprising that a flexible parametric model performs well. The EWM has

higher CPO values in the tail of the fully observed data values, but struggles once the

it enters the territory of the right censored values. This feature along with the lower

CPO values around the mode is indicative of parametric nature of the EWM. Although

the EWM performs well, it unable to capture the curvature of the mode while at the

same time accurately estimating the skewness of the tail. An obvious compromise is

made between capturing features of one aspect and not the other versus losing a little

on both but not doing bad on either. The gamma DDPMM does not perform as well

as the EWM in the tail of the observed data values, which may be attributed to the
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Figure 3.16: The CPO values under the EWM (red) and gamma DDPMM (blue and
green) for the small cel lung cancer data. The top panels represent Arm A, and the
bottom represent Arm B. The right column are the right censored survival times, and
the left column are the fully observed survival times.

right censored observations that share some of the same time space as some of the last

few fully observed survival times. A summary of the CPO values were obtained by

averaging over the log of the CPO values, ALPML, in each group s:

ALPMLs = 1
ns

∑ns
i=1 log(CPOis)

The same rubric applies, meaning a higher ALPML indicates better model performance.

The EWM scored a −6.09, while the gamma DDPMM scored a −6.05. The gamma

DDPMM performs slightly better than the EWM. We are not too surprised the EWM
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scored so close to the gamma DDPMM being as the parametric model was selected

after seeing previous inferential results for these data, and was chosen based off the

posterior shape exhibited in the density. Kottas & Krnjajić (2009), provide a Bayesian

semiparametric model for quantile regression that is a DP scale mixture of uniform

densities. The model is fitted to the linear regression errors of the survival times,

ε = t−xTβ, assuming that the median and the mode of the error density is 0. They fit

the model to the small cell lung cancer data, without the age covariate, and compute

the CPO values. The ALPML that they reported is −6.91. Kottas and Krnjajić also

consider a DP scale mixture of Laplace densities and a basic Weibull model for these

data. Table 3.1 shows the ALPML value under each of the models.

Model Summary Value

EWM −6.09

DP scale mixture of uniform densities −6.91

gamma DDPMM −6.05

DP scale mixture of Laplace densities −8.01

Weibull Model −11.56

Table 3.1: Summary of the CPO values.

3.4.2 Incorporating the age covariate

Here, we incorporate the age (in years) of the subjects, upon entrance into

the study, that is available to us in the small cell lung cancer dataset. The researchers
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did not select subjects from particular ages, so it is not a fixed covariate, and can be

thought of as being random. Therefore, we model the age covariate on the log scale

jointly with the survival response. Specifically, we used independent gamma and normal

distributions for the survival times and age, respectively, see model (3.13). We use prior

specifications methods discussed in 3.2.2 for parameters associated with the survival

times, and use a similar idea to specify parameters associated with the age covariate

(see, e.g., Poynor (2010) for details). Appendix D.1 show the details of the posterior

sampling algorithm. We run the MCMC to obtain an effective posterior sample size of

2000.

In Figure 3.17, we plot the conditional mean of survival across a grid of ages.

This inference was obtained by computing (3.2) at each posterior sample of the parame-

ters for each experimental group. Specifically, the form of the mean regression for group

s ∈ {A,B} (A representing Arm A and B representing Arm B) at age x0 under the

gamma DDPMM, is given by,

E(ts|x0, G
L
s ) =

L∑
l=1

pls

(
LN(x0|βl, κ2

l )∑L
r=1 prsLN(x0|βr, κ2

r)

)
︸ ︷︷ ︸

qls(x0|βl,κ2
l )

eθl−φl (3.17)

Recall from Section 3.2, the set of functions qls(·) can be thought of as a new set of

weights such that the mean regression is a finite weighted sum of the kernel component

means. Moreover, the weights are functions of the covariate, indicating the potential of

the model to capture non-standard relationships across the covariate space. This ability

is demonstrated in Figure 3.17 where we an increase in the mean survival from about 36

to just after 50, followed by a steeper decline, particularly in Arm B, and then leveling
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out at higher ages.
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Figure 3.17: Point and 80% interval estimates of the conditional mean of the survival
distribution of Arm A (blue) and Arm B (green) across a grid of age values (in years).

We also look at the mrl function at age 50, 60, and 78, see Figure 3.18. At

age 50, the mrl function for Arm A appear monotonic while the mrl of Arm B has a

very shallow dip at about 400 days then becomes indistinguishable from Arm A. At

age 60, the separation becomes more apparent towards in the earlier survival range,

and the dips are more pronounced and present in both groups. At age 78, we see a

similar curvature as in our past analysis: a dip around 300 − 400 and a shallow mode

around 1000− 1200. While the shapes and range of the mrl functions change across the

covariate space, Arm A remains as high or higher than Arm B.

The linear DDP by DeIorio et al. (2009) is a leading model for Bayesian non-

parametric survival regression. The linear DDP model works with a dependent DP

structure for which the collection of random distributions, indexed by a set of covari-

ates, x, denoted {Gx, x ∈ X}, is almost surely have the form of Gx(·) =
∑∞

l=1 ωlδθxl(·).

Thus, the weights are shared across the covariate space while the locations differ. One

86



0 500 1000 1500 2000

40
0

60
0

80
0

10
00

12
00

At age 50

survival time (days)

0 500 1000 1500 2000

40
0

60
0

80
0

10
00

12
00

At age 60

survival time (days)

0 500 1000 1500 2000

40
0

60
0

80
0

10
00

12
00

At age 78

survival time (days)

Figure 3.18: Estimates of the mrl function of Arm A (blue) and Arm B (green) for ages
50 (left), 60 (middle), and 78 (right), age is in years.

of difference to note is that under the linear DDP, the covariates are not random, such

that in the small cell lung cancer data set, the experimental group and the age would

both be part of the set of covariates x. Specifically, under the linear DDP, if we let

di be the design vector of the ith survival time and α is the vector of coefficients, then

θxil = αldi = ml + Aνl + βlz. Here, ml can be thought of the baseline effect, Aνl rep-

resents the effect of a categorical covariate with outcome indicated by ν (experimental

group indicated by s in our case), and βl represents the effect of a continuous covariate

z. They chose a normal kernel with mean αdi and variance σ2, mixing on both param-

eters. For R+ valued responses, modeling is performed on the log transformed data,

which is the same as using a lognormal kernel (Poynor, 2010). Thus the model is given

by,

fxi(ti|G) ∼
∫
LN(ti|αdi, σ2)dG(α, σ2) (3.18)

G ∼ DP (M,G0)

where we can write G ∼ DP (M,G0) since θ = αdi implies (θ, σ2) ∼ G0xi by definition of
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base measure. Now, if we look at the implications of the mean regression function using

the truncated version of the stick-breaking definition, we obtain (3.19) shown below.

Ex(t|GL) =

L∑
l=1

ple
(αd+σ2/2) (3.19)

The set of covariates only enters into the function as an exponential power, so the

mean regression is a strictly increasing function in x (or equivalently d). While the

linear DDP provides flexible inference for the survival and density functions, it may

not be appropriate in case for which the regression mean or mrl is of interest. Even

under a gamma kernel, which is a more appropriate kernel choice for mrl inference,

reparameterizing to set the mean to αd would result in a regression mean function that is

a weighted sum of linear functions: Ex(t|GL) =
∑L

l=1 plαd. Here, the relationship across

the covariate space is subject to a linear trend. Therefore, under such circumstances, the

gamma DDPMM would be preferable. In the discussion below, we describe extensions

to include potential categorical covariates, however, if the number of experimental group

exceeds two, a multivariate beta would have to be explored to extend the DDP.

3.5 Discussion

We have provided an example of a product kernel for a DPMM that jointly

models survival times with a continuous covariate, and discussed the model in generality

in the case of multiple continuous covariates. We provided a simulation study for a

single continuous covariate to demonstrate the utility of the model. We developed

a DDP prior using a bivariate beta distribution to model dependency between two
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experimental groups. Below we discuss a couple further considerations/extensions to

our modeling structure.

Discrete covariates, such as indication of male or female, number of cystic

masses, level of pain intensity, are very common in survival analysis. One way to extend

the model to include discrete covariates, wi, is to introduce an appropriate density for

the kernel product, such that the product kernel becomes k(t|θT )k(x|θX)k(w|θW ),

where k(w|θW ) can be a product of densities such that the categorical covariates are

assumed independent in the kernel. In the case where the covariate has a finite upper

bound, such as a pain level scale, the binomial is the obvious choice. When the covariate

support has no upper bound, the Poisson or negative binomial distribution may be

considered.

For added model flexibility, we may seek to incorporate a dependency between

the covariates and the survival times within the kernel. A structured approach to build

dependence would be to write the kernel as a product of the conditional distribution

of the survival times on the covariate and the marginal of the covariates, k(t|x)k(x).

We have made a clear argument for modeling the survival times with a gamma kernel,

so one possibility is to incorporate the covariates in one of the parameters of a gamma

distribution for k(t|x). For example we can write the covariates as a linear combina-

tion such as k(t|x) = Γ(t|exp(θ), exp(xTβ)), such that E(T |x) = exp(θ − xTβ). An

appropriate marginal kernel, k(x), will then complete the joint kernel.
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Chapter 4

Modeling and inference for order

constrained MRL functions

When a researcher believes that the mean residual life function of one pop-

ulation is higher than the other across the survival domain, then it is desirable to

incorporate a mrl order constraint in the model. In this chapter, we present a Bayesian

nonparametric model for mrl ordering inference. In Section 4.1, we provide background

and motivation for mrl ordering, including a brief literature review on Bayesian work

involving ordering constraints. Section 4.2 presents the model formulation and prop-

erties. Section 4.3 illustrates the capacity of the model through a data analysis that

includes right censored observations.
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4.1 Motivation and background

There are certain applications in comparison of survival distributions in which

the researcher expects that the average remaining lifetime for one population is higher

than that of the other population given survival up to time t, for every t in the domain.

For instance, ordered mrl functions may arise in treatment and control groups, in which

the population that receives the treatment has a longer remaining life expectancy at all

times.

Let T1 and T2 represent two continuous random variables on R+ with mrl

functions m1 and m2 and distribution functions F1 and F2, respectively. We say that T1

is smaller then T2 in the mrl order, denoted by T1 ≤mrl T2, if and only if m1(t) ≤ m2(t),

for all t. For modeling purposes, a useful characterization of the mrl order is the

following: T1 ≤mrl T2 if and only if,

M(t) =

∫∞
t (1− F1(u))du∫∞
t (1− F2(u))du

is decreasing in t, (4.1)

for all t such that
∫∞
t (1− F2(u))du > 0.

Stochastic and hazard rate orders are also of interest in survival analysis. We

say that T1 is stochastically smaller than T2, denoted by T1 ≤st T2, if F1(t) ≥ F2(t), for

all t. Similarly, T1 is smaller than T2 in the hazard rate order (denoted by T1 ≤hr T2)

if the respective hazard rate functions satisfy h1(t) ≥ h2(t), for all t. Relationships

between the three orders are summarized by Nanda et al. (2010). The hazard rate

order is the strongest of the three stochastic constraints, that is, if T1 ≤hr T2, then

T1 ≤st T2 and T1 ≤mrl T2. The converse is not true with respect to either mrl ordering
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nor stochastic ordering. Also, it is not necessarily the case that mrl order implies

stochastic order or vice versa. Therefore, mrl ordering is of interest independently of

the more commonly studied stochastic order.

Probability orders have been extensively studied with respect to theoretical

properties and classical nonparametric methods for estimation and hypothesis testing

(e.g., Shaked & Shanthikumar, 2007). However, when placing an order restriction in a

model is appropriate, the Bayesian framework has many advantages. A primary benefit

is reduced uncertainty and improved precision in inferential results. In cases where the

sample size is small to moderate, there is potential for the data to not accurately reflect

the ordering between the two populations. For such cases, there is much to benefit from

by incorporating the order constraint in the model. In general, the Bayesian modeling

framework is appealing for situations in which ordering constraints are believed, because

any probability constraint placed on the prior is carried through to the posterior.

In terms of both probabilistic exploration and statistical modeling, the stochas-

tic order constraint has been the most widely studied in the Bayesian literature. Arjas &

Gasbarra (1996) develop a model for stochastically order survival functions by working

with a nonparametric specification for the hazard rate functions. Evans et al. (1997)

provide a Bayesian testing method for assessing evidence of stochastic ordering in dis-

tributions of categorical variables. For stochastic order and partial stochastic order

constraints in the Bayesian nonparametric framework, including use of DP priors, see

Gelfand & Kottas (2001); Hoff (2003); and Dunson & Peddada (2008). Pólya tree based

priors in stochastic ordering have also been explored (Karabatsos & Walker, 2007 and
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Hanson et al., 2008). The weaker restriction of stochastic precedence order, introduced

by Arcones et al. (2002), has more recently been explored by Chen & Dunson (2004)

and Kottas (2011). To our knowledge, nonparametric prior models for mrl order have

not been studied in the literature.

4.2 Model formulation

In this section, we walk the reader through our process of developing a prior

probability model that provides inference for ordered mrl functions. We begin Section

4.2.1 by further discussing the need to develop a model for mrl ordering specifically, as

opposed to usage of models for hazard rate and/or stochastic ordering inferences. We

introduce a structured mixture of Erlang distributions and discuss its benefits for our

model development. In Section 4.2.2, we develop a hazard rate order constraint using

DP priors, which forms a key component of our model for mrl ordering. Finally, in

Section 4.2.3, we present the full hierarchical version of the model, and discuss prior

specification and posterior inference.

4.2.1 Model properties

As mentioned in Section 4.1, hazard rate order implies mrl order, hence, models

that infer hazard rate order also infer mrl order. However, hazard rate order is a stronger

constraint, so achieving mrl order through such models is more restrictive than needed

for our intentions. Namely, these models will only have support in the space of ordered

mrl functions that are also ordered in the hazard rate sense. We have also pointed out
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the relationship between stochastic order and mrl order; while hazard rate order implies

both stochastic and mrl order, it is not the case that either of the latter two imply the

other. Models that have been developed for stochastic order are thus not guaranteed to

satisfy the mrl order. Hence, we seek to develop a Bayesian nonparametric model for

inference on two mrl ordered populations.

First, we review some equivalence relationships that will be useful tools for

our model development (e.g., Shaked & Shanthikumar (2007)). Let Y1 and Y2 be non-

negative random variables with absolutely continuous distribution functions, G1 and

G2, survival functions, G1 and G2, and density functions, g1 and g2, respectively. The

following are equivalent definitions for the hazard rate order:

Y1 ≤hr Y2 ⇔ g1(t)G2(t) ≥ g2(t)G1(t), ∀t ∈ R (4.2)

⇔ G2(t)

G1(t)
is in increasing in t, ∀t ∈ R (4.3)

⇔ G1(x)G2(y) ≥ G1(y)G2(x), ∀x ≤ y (4.4)

By taking the derivative of (4.1), we obtain an equivalent criteria for mrl ordering:

Y1 ≤mrl Y2 ⇔ −G1(t)

∫ ∞
t

G2(u)du+G2(t)

∫ ∞
t

G1(u)du ≤ 0, ∀t ≥ 0 (4.5)

We take our model inspiration from the structure of the Bernstein polynomial

prior model (Petrone, 1999; Petrone & Wasserman, 2002). The Bernstein polynomial

model for the density function, fl(t), where t ∈ [0, 1], of population Tl, for l = 1, 2, is
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given by

fl(t) =

M∑
j=1

ω
(l)
j be(t|j,M − j + 1) (4.6)

ω
(l)
j = Hl

(
j

M

)
−Hl

(
j − 1

M

)
, j = 1, ...M.

Here, M may be fixed or random, be(t|j,M−j+1) is the density of the beta distribution

with mean j/(M+1), and Hl(·) are random distribution functions over [0, 1], for l = 1, 2.

The key feature of Bernstein priors for our purposes is that the parameters of the beta

density basis functions are fixed, which facilitates study of conditions to obtain the mrl

order under the prior structure. The implicit restriction is that of an upper bound for

the support of the survival distributions.

To overcome the limitation of bounded support for the survival distributions,

we consider a mixture of Erlang distributions with fixed shape parameter and random

scale parameter. Specifically, if we denote the density of the Erlang distribution with

shape parameter m ∈ Z+, and scale θ > 0 as em(t|θ) = tm−1e−t/θ/((m − 1)!θm), and

survival function as ESm(t|θ) =
∫∞
t tm−1e−t/θ/((m − 1)!θm)dt =

∑m−1
r=0 tre−t/θ/(r!θr).

The model for the density and survival functions for t ∈ R+, fl(t) ≡ fl(t|θ,M,Hl) and

Sl(t) ≡ Sl(t|θ,M,Hl), respectively, with l = 1, 2 is given by

fl(t) = {1−Hl((M − 1)θ)}eM (t|θ) +

M−1∑
m=1

{Hl(mθ)−Hl((m− 1)θ)}em(t|θ)

Sl(t) = {1−Hl((M − 1)θ)}ES
M (t|θ) +

M−1∑
m=1

{Hl(mθ)−Hl((m− 1)θ)}ES
m(t|θ). (4.7)

Another benefit of using Erlang mixture is that we have a result for denseness,

in the weak sense, on the space of continuous mrl functions, see Lemma 2 in Chapter 2.

The Bernstein prior has the property of being weakly dense on the space of densities on
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[0, 1] (Petrone, 1999), but after a transformation, the result is not guaranteed to hold.

Furthermore, one would need to obtain a denseness result for space of mrl functions

under this prior. Having the denseness result for the Erlang mixture guarantees flexible

mrl inference provided M is allowed to be large enough and θ small enough.

Karabatsos & Walker (2007) show that the Bernstein prior can accommodate

stochastic ordering for two populations when the distributions that drive the weights

are stochastically ordered. Namely, if H1 ≤st H2 ⇒ F1 ≤st F2. An analogous result

can be obtained for the mixture of Erlang distributions. In particular, assume that

H1 ≤st H2. Then using the stochastic order property of Erlang distributions, that is,

ESm(t|θ) ≤ ESm+1(t|θ) (Marshall & Olkin, 2007), we obtain:

S1(t) = {1−H1((M − 1)θ)}ESM (t|θ) +

M−1∑
m=1

{H1(mθ)−H1((m− 1)θ)}ESm(t|θ)

= ESM (t|θ)−H1((M − 1)θ)ESM (t|θ) +H1((M − 1)θ)ESM−1(t|θ)

−H1((M − 2)θ)ESM−1(t|θ)± ...+H1(2θ)ES2 (t|θ)−H1(θ)ES2 (t|θ)

+H1(θ)ES1 (t|θ)− 0

= ESM (t|θ) +
M−1∑
m=1

{ESm(t|θ)− ESm+1(t|θ)}︸ ︷︷ ︸
≤0

H1(mθ)

≤ ESM (t|θ) +

M−1∑
m=1

{ESm(t|θ)− ESm+1(t|θ)}H2(mθ)

= S2(t). (4.8)

Therefore, S1(t) ≤ S2(t), ∀ t, and thus F1 ≤st F2, where F1 and F2 are the distributions

represented through the Erlang mixture structure in (4.7).

We next turn our attention to the desired model for mrl ordering. In what
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follows we explore the mixture of Erlang distributions in (4.7) to see what restrictions

can be placed to develop a prior that has the mrl ordering constraint. Using defintion

(4.5), we need to show −S1(t)
∫∞
t S2(u)du+S2(t)

∫∞
t S1(u)du ≤ 0 for all t ≥ 0. To help

simplify this expression, we provide an alternative form for the survival distributions in

(4.7). Let m be a generic value in the set {2, 3, ..,M − 1}. Then,

ESM (t|θ) =

M−1∑
r=0

1

r!

(
t

θ

)r
e−t/θ =

M−1∑
r=0

θer+1(t|θ) (4.9)

ESm(t|θ)− ESm+1(t|θ) =

m−1∑
r=0

1

r!

(
t

θ

)r
e−t/θ −

m∑
r=0

1

r!

(
t

θ

)r
e−t/θ

= − 1

m!

(
t

θ

)m
e−t/θ = −θem+1(t|θ). (4.10)

Using the substitutions (4.9) and (4.10), we obtain,

Sl(t) = ESM (t|θ) +
M−1∑
m=1

{ESm(t|θ)− ESm+1(t|θ)}Hl(mθ)

= θ
M−1∑
r=0

er+1(t|θ)− θ
M−1∑
m=1

em+1(t|θ)

= θe1(t|θ) + θ
M−1∑
m=1

em+1(t|θ)(1−Hl(mθ))

= θ
M−1∑
m=0

em+1(t|θ)(1−Hl(mθ)). (4.11)

Now, using (4.11) we can write the expression in (4.5) as follows,

−G1(t)

∫ ∞
t

G2(u)du+G2(t)

∫ ∞
t

G1(u)du (4.12)

= −

(
θ

M−1∑
m=0

em+1(t|θ)(1−H1(mθ))

)(
θ

∫ ∞
t

M−1∑
m=0

em+1(u|θ)(1−H2(mθ))du

)

+

(
θ

M−1∑
m=0

em+1(t|θ)(1−H2(mθ))

)(
θ

∫ ∞
t

M−1∑
m=0

em+1(u|θ)(1−H1(mθ))du

)
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= −

(
θ

M−1∑
m=0

em+1(t|θ)(1−H1(mθ))

)(
θ

M−1∑
m=0

ES
m+1(t|θ)(1−H2(mθ))

)

+

(
θ

M−1∑
m=0

em+1(t|θ)(1−H2(mθ))

)(
θ

M−1∑
m=0

ES
m+1(t|θ)(1−H1(mθ))

)

= θ2
M−1∑
m=0

M−1∑
n=0

[
−em+1(t|θ)(1−H1(mθ))ES

n+1(t|θ)(1−H2(nθ))

+ em+1(t|θ)(1−H2(mθ))ES
n+1(t|θ)(1−H1(nθ))

]
= θ2

M−1∑
m=0

M−1∑
n=0

em+1(t|θ)ES
n+1(t|θ)[(1−H1(nθ))(1−H2(mθ))− (1−H1(mθ))(1−H2(nθ))]

(Note: when m = n, the terms are equal to zero)

= θ2
M−2∑
m=0

M−1∑
n=m+1

em+1(t|θ)ES
n+1(t|θ)[(1−H1(nθ))(1−H2(mθ))− (1−H1(mθ))(1−H2(nθ))]

+ θ2
M−2∑
n=0

M−1∑
m=n+1

em+1(t|θ)ES
n+1(t|θ)[(1−H1(nθ))(1−H2(mθ))− (1−H1(mθ))(1−H2(nθ))]

= θ2
M−2∑
m=0

M−1∑
n=m+1

[em+1(t|θ)ES
n+1(t|θ)− en+1(t|θ)ES

m+1(t|θ)]︸ ︷︷ ︸
(∗)

× [(1−H1(nθ))(1−H2(mθ))− (1−H1(mθ))(1−H2(nθ))]︸ ︷︷ ︸
(∗∗)

(4.13)

The Erlang distribution has increasing hazard rate in the shape parameter

(Marshall & Olkin, 2007), so from the definition in (4.2) we know that (∗) ≥ 0 for t ≥ 0.

For the expression denoted by (∗∗), we consider what structure on H1 and H2 results

in nonpositive summands. Conveniently, (∗∗) is of the same form of the hazard rate

ordering definition in (4.4), so if we place the hazard rate ordering constraint on the H

functions, namely, H1 ≤hr H2, then (∗∗) ≤ 0. With (∗) ≥ 0 and (∗∗) ≤ 0, each term of

the sum is nonpositve, thus the sum of the terms is less than or equal to zero, giving us

the desired probabilistic result for mrl ordering under the Erlang mixture model. In the
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next section, we develop the full Bayesian model based on the Erlang mixture structure

with a nonparametric prior for {H1, H2} that satisfies the hazard rate order restriction.

4.2.2 DP-based prior for hazard rate order

In this section, we construct a prior for {H1, H2} through two independent DP

priors that ensures H1 ≤hr H2. The use of independent DP priors is stimulated by the

stochastic ordering result that has been established via independent DP priors (Gelfand

& Kottas, 2001; Hanson et al., 2008; Kottas, 2011). In particular, consider two latent

distribution functions, G1 and G2. If we define H1(·) = G1(·) and H2(·) = G1(·)G2(·),

then H1 ≤st H2. It is convenient to think of H1 and H2 as the distribution of w

and max{w, z}, respectively, where w ∼ G1 and, independently, z ∼ G2. By placing

independent DP priors on G1 and G2, we have a nonparametric prior for stochastic

ordering .

Note that this prior model for stochastic ordering does not guarantee hazard

rate ordering. A counterexample is obtained when G1 and G2 are defined as independent

exponential distributions. Let G1(t) ≡ Exp(t|λ) and independently, G1(t) ≡ Exp(t|µ),

and define H1 and H2 as discussed in the previous paragraph. The ratio of the survival

functions for H1 and H2 is written as,

(1−H2(t))
(1−H1(t)) = (1−G2(t))

(1−G1(t))(1−G2(t)) = e−µt

1−(1−e−λt)(1−e−µt) = e−µt

e−µt+e−λt−e−(µ+λ)t =

1
1+e−(λ−µ)t−e−λt ⇒

d
dt

(
(1−H2(t))
(1−H1(t))

)
=

e−λt((λ−µ)eµt−λ)
(1+e−(λ−µ)t−e−λt)

2

The derivative shows that the ratio of survival functions is increasing for 0 < λ ≤ µ,

however, the function is non-monotonic for λ > µ. For example, the ratio is decreasing
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for t > log[λ/(λ− µ)]/µ when 1 ≤ µ < λ, hence, (4.3) does not hold so we do not have

hazard rate ordering.

As an alternative (albeit related) construction, consider the following. Let

U = min{w, z} where, again, w ∼ G1 and z ∼ G2 for generic distributions, G1 and G2,

on R+. The distribution function on U is given by H1(u) = Pr(U ≤ u) = 1− Pr(U >

u) = 1−Pr({w > u}∩{z > u}) = 1−Pr(w > u)Pr(z > u) = 1−(1−G1(u))(1−G2(u)).

Therefore, the survival distribution of U is given by the product of the of the survival

distributions of G1 and G2, namely, (1 − H1(u)) = (1 − G1(u))(1 − G2(u)). Define

H2(·) = G2(·).

We now look at the ratio of the survival functions,

(1−H2(t))

(1−H1(t))
=

(1−G2(t))

(1−G1(t))(1−G2(t))
=

1

(1−G1(t))
(4.14)

which is an increasing function of t ∈ R, since the survival function of G1 is by definition

a decreasing function in t. Therefore, by (4.3), H1 ≤hr H2. Finally, if we let G1 ∼

DP (α1, G01) and G2 ∼ DP (α2, G02), then we have a nonparametric prior model for

hazard rate ordering.

An important theoretical aspect to point out is that this model is also a prior

model for stochastic ordering since H1 ≤hr H2 ⇒ H1 ≤st H2 (however, we provided a

counterexample under our construction for which the reverse relation is not true). In

general, mrl ordering does not imply stochastic ordering, thus this model is restricted

to the space of set of ordered mrl functions that have corresponding stochastically order

distributions. A more general prior model for mrl order would not imply stochastic
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order as well.

4.2.3 Implementation details

Let t1j , for j = 1, ..., n1, be the observed survival times of one population,

and t2k, for k = 1, ..., n2, be the observed survival times of another population. By

introducing two sets of latent variables, w = {wk : k = 1, ..., n2}, z = {zj : j = 1, ..., n1},

we can write the hierarchical version of our fully nonparametric Bayesian model for

inference for mrl ordering between to groups (4.14).

t1j |wj , zj , θ
ind∼

M−1∑
m=1

Em(t1j |θ)1((m−1)θ,mθ](min{wj , zj}) (4.15)

+EM (t1j |θ)1((M−1)θ,∞)(min{wj , zj}), j = 1, ..., n1

t2k|wn1+k, θ
ind∼

M−1∑
m=1

Em(t2k|θ)1((m−1)θ,mθ](wn1+k)

+EM (t2k|θ)1((M−1)θ,∞)(wn1+k), k = 1, ..., n2

zj |G1
iid∼ G1, j = 1, ..., n1

wk|G2
iid∼ G2, k = 1, ..., n1 + n2

Gl|αl, φl
ind∼ DP (αl, G0l ≡ LN(µl, σ

2
l )), l = 1, 2

αl
ind∼ Γ(aαl , bαl), l = 1, 2

µl
ind∼ N(aµl , bµl), l = 1, 2

σ2
l

ind∼ Γ−1(aσl , bσl), l = 1, 2

θ ∼ Γ−1(aθ, bθ)

M ∼ Unif(2,Mmax)
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We obtain posterior inference by writing the full posterior distribution is the represen-

tation of Antoniak (1974):

p(G1, G2, z,w, θ, α1, α2, φ1, φ2,M |data) =

p(G1|z, α1, φ1, θ, data)p(G2|w, α2, φ2, θ, data)p(z,w, θ, α1, α2, φ1, φ2,M |data). The marginal

posterior is obtained upon marginalizing G1 and G2 over their respective DP priors

(Blackwell & MacQueen, 1973). Appendix E provides the details of the posterior sam-

pling algorithm.

The posterior conditional distributions for G1 and G2 follow an updated DP.

Specifically, p(G1|z, α1, µ1, σ
2
1, θ, data) = DP (α̃1, G̃01) where α̃1 = α1 + n1 and

G̃01 = α1
α1+n1

LN(µ1, σ
2
1)) + 1

α1+n1

∑n1
j=1 δzj (·)

Similarly, p(G2|w, α2, µ2, σ
2
2, θ, data) = DP (α̃2, G̃02) where α̃2 = α2 + n1 + n2 and

G̃02 = α2
α2+n1+n2

LN(µ2, σ
2
2)) + 1

α2+n1+n2

∑n1+n2
k=1 δwk(·)

Therefore, once we obtain samples from the marginal posterior,

p(z,w, θ, α1, α2, µ1, µ2, σ
2
1, σ

2
2,M |data), we can obtain the posterior distribution for the

weights in (4.7). Specifically, we sample from a Dirichlet distribution, using the associ-

ated cdf, for l = 1, 2, at each posterior iteration of M and θ:

(ul1, ul2, ..., ul(M−1), ulM )

∼ Dir(α̃1G̃0l(θ), α̃l(G̃0l(2θ)− G̃0l(θ)), α̃l(G̃0l(3θ)− G̃0l(2θ)), ..., α̃l(1− G̃0l((M − 1)θ))

For the second population, the vector (u21, u22..., u2M ) is all we need since the vector

represents the successive differences of the cdf, H2, over the grid set {0θ, 1θ, 2θ, ..., (M−
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1)θ, limt→∞ t}. However, to obtain the desired differences from the cdf, H1, we have to

construct the cdf through the product of the survival functions ofG1 andG2. Essentially,

we compute:

H1(nθ) = 1− (1−G1(nθ))(1−G2(nθ)) = 1− (1−
∑n

m=1 u1m)(1−
∑n

m=1 u2m)

for n = 1, 2, ...,M − 1. Once we have the values of the cdf, then we can plug the values

into (4.7), and obtain inference for the desired functionals.

For prior specification, we continue the theme of specifying the prior param-

eters using a range of survival specified by the expert. Let L denote the lower range

value and U denote the upper. The most difficult aspect is specifying an appropriate

upper bound for the uniform prior on M . One can think about specifying Mmax based

on how fine of a grid might be desirable over the range specified by the expert. Being

that θ and M are closely related, one may specify Mmax while also considering a prior

point estimate for θ. If we consider the means of the Erlang components, the lowest

mean θ and the highest mean (M − 1)θ should be inclusive of L and U , i.e., θ < L and

(M − 1)θ > U . Thus, consider E(θ) < L and MmaxE(θ) > U . Once these values have

been conservatively chosen, we can specify bθ via E(θ) = bθ/(aθ − 1). Using aθ = 2 to

provide an infinite prior variance for θ, bθ simply becomes the prior point estimate for

θ.

A range and midpoint can be used to specify the parameters of the prior

distributions for µl and σ2
l for l = 1, 2. If the approximate mean or median is known,

then those values could be used instead. Let C represent the prior centering estimate
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of the survival responses. Since the latent variables will correspond with a Erlang

component with mean equal to the ceiling value of the latent value, we can use C

as prior point estimate for the latent values. In another words we can use the rough

estimate similar to the prior specification technique discussed in Chapter 2,

C = EG0l
(u) = E(E(u|µl, σ2

l )) = E(eµl+0.5σ2
l ) = E(eµl)E(e0.5σ2

l )

≈ e(aµl+0.5bµl )e(0.5bσl/(aσl−1)) (4.16)

Again, similar to techniques provided in Chapter 2, the variance of the latent values,

V ar(u), can be approximated using ([U − L]/4)2. The variance in terms of the hyper-

parameters can in turn be approximated by the following,

V ar(u) = V ar(E(u|µl, σ2
l )) + E(V ar(u|µl, σ2

l )) (4.17)

= V ar(eµl+0.5σ2
l ) + E((eσ

2
l − 1)e2µl+σ

2
l )

= E(e2µl)E(eσ
2
l )− E2(eµl)E2(e0.5σ2

l ) + E((eσ
2
l − 1)eσ

2
l )E(e2µl)

= E(e2σ2
l )E(e2µl)− E2(eµl)E2(e0.5σ2

l )

≈ e2bσl/(aσl−1)e2aµl+2bµl − e2aµl+bµlebσl/(aσl−1)

To make this expression obtainable, yet conservative, set aσ1 = aσ2 = 2. By setting

bσ1 = bσ2 = bµ1 = bµ2 and aµ1 = aµ2 , all the hyperparameters in (4.15) and (4.16) can

be specified.

The prior parameters for α1 and α2 can be specified using the same expression

in Chapter 2, provided that the data set is moderately large. Specifically, an appropriate

range for α1 can be obtained by considering the number of distinct latent variables in
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{z1, z2, ..., zn1} and using the approximation, E(n∗z|α1) ≈ α1 log
(
α1+n1
α1

)
. Similarly, for

α2 we can use E(n∗w|α2) ≈ α2 log
(
α2+n1+n2

α2

)
. Note that the sample size associated

with α2 is necessarily larger than that of α1, so specifying priors for each makes more

sense than assuming the same prior on both.

4.3 Data example: small cell lung cancer

The small size and relatively high number of right censored values, makes the

small cell lung cancer data set an especially interesting data set for which to apply our

model for mrl ordering. Small sample sizes and right censoring yield larger uncertainty

in the mrl function estimates. By incorporating the mrl order constraint, we anticipate

a reduction in the uncertainty in the functional inference when compared to the uncer-

tainty we obtained under fitting independent gamma DPMMs (Chapter 2) as well as

the results obtained in the gamma DDPMM (Chapter 3).

Using the prior specification discussed in the previous section as a guide, we

analyze the data under a number of priors to gage its sensitivity. Under priors that

provided less information, we found that the model struggled to learn about the α

parameters and θ, which is likely due to the smaller sample size and larger number of

censoring in this dataset. Therefore, we considered fixed α parameters and θ. We also

implemented the model under informative priors on α1, α2, and θ centered about the

fixed values we report here. The inferential results under the informative priors were

analogous to those obtain under the fixed values. Here, we report our results under
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fixed values for α1, α2, and θ. Priors were specified by considering a conservative range

of the data since there a high number of right censored values. Under the fixed prior set,

we set Mmax = 700, and fixed θ = 15. For the α parameters we set α1 = 5 and α2 = 20.

The hyperparameters of the DP priors were set to be the following, aµ1 = aµ2 = 6.3,

bµ1 = bµ2 = 0.5, aσ1 = aσ2 = 2, and bσ1 = bσ2 = 0.5. We ran the model and obtain 2000

independent posterior samples.
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Figure 4.1: Posterior point estimate and 95% interval bands for the mrl functions of
Arm A (green) and Arm B (blue) under two independent gamma DPMMs (left), the
gamma DDPMM (middle), and the ordered mrl model (right)

The posterior point estimate and 95% interval bands for the mrl functions of

Arm A and Arm B, for our three comparison models are shown in Figure 4.1. Results

for Arm A are displayed across the top panels and results for Arm B are displayed across

the bottom. The point estimates across the three models are very similar in terms of the

range and, more importantly, the shape. The order constrained model maintains the
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same dip and mode over the same range that we have seen in the gamma DPMM and

the gamma DDPMM. The apparent difference between the order constrained model and

the other two is the significant reduction in uncertainty for both groups. Incorporating

the mrl ordering in the prior provides for narrower posterior interval bands in the mrl

functions.
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Figure 4.2: Densities of the difference between the mrl functions of Arm A and Arm
B under independent gamma DPMMs (dotted), gamma DDPMM (dashed), and the
ordered mrl model (solid), are provided at 0 days (top left), 250 days (top middle),
500 days (top right), 750 days (bottom left),1000 days (bottom middle), and 1250 days
(bottom right).

In Figure 4.2, we look at the posterior densities of the difference between mrl

functions for the two experimental groups at particular time points. For early time

points such 0 days and 250 days, the difference appears to be significant across all

three models, however, as time goes on, the non-constrained models are not indicating

a significant difference between the treatment groups. The variance in the density of
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the differences for particularly under the independent gammaDPMMS gets increasingly

large as we move to later time periods. The ability to captures dependency groups in the

gamma DDPMM seems to help the variance from getting as large as the independent

gamma DPMMs. The mrl constraint in the ordered mrl model reduces this variance even

further. In fact, across all time points shown in Figure 4.2, the variance in the density of

the difference is smaller for the constrained mrl model compared to the variance under

the other two models. From these results, we can see the benefits of using the ordered

mrl model when assuming the constraint is appropriate.
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Chapter 5

Conclusions

The mean residual life function is a valuable functional for multiple fields of

research. In the medical field, the mrl function can be used to determine the more

effective treatment in two experimental groups. In actuarial studies, insurance com-

panies utilize the mrl function given a set of covariates to help develop different types

of policies. The mrl function can also be useful in marketing and setting up warranty

policies in selling electronic devices or appliances. Another interesting area in applica-

tion is in the field of econometrics, where, for example, one could may be interested in

model the expected remaining of time of unemployment given that a person is currently

unemployed. However, despite the utility of the mrl function, current models in the

literature either present restrictions on the shape of the mrl functional, or inference on

the mrl function is not even considered. When approached with the mindset of mrl

inference, Bayesian nonparametric mixture models for the survival density (or distribu-

tion) induce very flexible priors for mrl functions that result in rich posterior functional
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inference. Our work provides a comprehensive study of mrl functional inference under

the Bayesian nonparametric framework.

Of both methodological and practical interest is development of nonparametric

prior models directly for the mrl function. The support of the nonparametric prior

would have to be functions that satisfy the properties in the characterization theorem

of the mrl function. Under such a prior, inference for the entire distribution would

be obtainable by using the inversion formula. Although not a direct prior model for

the mrl function, the gamma DP mixture model for the survival density, in Chapter 2,

yields desirable results for mrl inference. We defend our choice of kernel by providing

key results with respect to the mrl function under various kernels. In particular, we

offer a set of criteria based implications of tail behavior for the mrl function, as well as

ensuring existence of the posterior mean of the distribution, in kernel selection. Another

key result that we present is the denseness of mixtures of gamma distributions on the

space of mrl functions. This result implies that under a flexible framework, such as

Bayesian nonparametric methods, a mixture of gamma distributions will be able to

accurately estimate any form of mrl functions. We demonstrate this capability in both

simulated and real data examples.

We extended our flexible inferential results to the regression setting using the

curve fitting approach. The curve fitting approach is an attractive framework for the

regression setting because by modeling the random covariates jointly with the response

we can easily obtain inference the regression functionals. Moreover, we are able to

capture nonlinear or nonstandard relationships between the regression functions as we
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move across the covariate space. In terms of mrl inference, this has not been achieved

under any modeling framework in the literature.

The treatment control setting is common scene in survival analysis. The curve

fitting approach is not applicable for fixed covariates such as experimental groups, thus

we develop a dependent DP prior that allows use to model the effect of each group in

addition to modeling the correlation between the groups. We construct the DDP prior

using a bivariate beta distribution that drives the weights of the mixture components for

each group. The locations are shared across the experimental groups. This construction

is different from most DDP constructions in the literature, where the weights are shared

across the groups and locations differ. However, in treatment control settings the range

of survival is usually the about the same. Differences in the populations are generally

seen in the form of varying prevalence over the range. Thus, the shared locations and

differing weights construction for the DDP is more appropriate for the treatment control

setting. The DDP prior and the curve fitting regression approach can be combined in

a single model to obtain to incorporate both types of covariates, and achieve flexible

inferential results for mrl regression functions for two correlated populations.

Contrary to stochastic, hazard rate, and a number of other types of ordering

constraints, modeling under mrl order constraint has been comparably neglected. In

settings where the researcher believe that the remaining life expectancy of one popula-

tion is higher than that of another, then this information should surely be incorporated

with the model. Particularly in the presence of right censoring and/or a small sample

size, the mrl order may not be suggested by the data and uncertainty bands can be
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quite large. Using a prior model for mrl ordering can substantially improve inferential

accuracy and certainty. In Chapter 4, we present a Bayesian nonparametric model for

inference on mrl ordered populations. We use a mixture of Erlang distributions which

is a gamma mixture, so our earlier results for mrl inference under gamma mixtures

holds for our Erlang mixture model for mrl ordering as well. The Erlang mixture as

the same structural idea of the DDP prior model we developed, with having the same

kernel locations (although fixed in the mrl ordering case) with weights dependent on the

population. The weights in the Erlang mixture are constructed using two independent

DP priors. We are able to demonstrate the posterior benefits of our model by comparing

results for the same data set under the gamma DPMM and the gamma DDPMM.
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Appendix A

Proof of Properties of MRL

Below we provide the proofs for the properties of the mrl function stated in Section 2.1.

(a) m is a nonnegative and right-continuous, and m(0) = µ > 0:

NON-NEGATIVE: Since 0 ≤ F (t) ≤ 1⇒ 0 ≤ 1− S(t) ≤ 1⇒ 0 ≤ S(t) ≤ 1. Therefore, S(t)

is non-negative. Now consider when t ≥ X, then S(t) ≡ 0, so m(t) ≡ 0. For t < X ⇒ S(t) > 0

thus
∫∞
t
S(u)du > 0. Hence m(t) =

∫∞
t

S(u)du

S(t) ≥ 0.

RIGHT-CONTINUITY: We know that F (t) is right-continuous (ie. limh→0+ F (t + h) =

F (t)). Now, limh→0+ S(t+ h) = limh→0+ (1− F (t+ h)) = 1− limh→0+ F (t+ h) = 1− F (t) =

S(t). Hence S(t) is right-continuous as well. If S(t) is right-continuous, then its integral

must also be right-continuous (i.e., the limit, limh→0+

[∫∞
t+h

S(u)du
]

=
∫∞
t
S(u)du). Finally,

limh→0+m(t+ h) = limh→0+

[ ∫∞
t+h

S(u)du

S(t+h)

]
=

∫∞
t

S(u)du

S(t) = m(t), thus m(t) is right-continuous.

FIRST MOMENT STRICTLY POSITIVE: From equation (4) we have established that

µ = m(0). Further, m(0) =
∫∞
0

S(u)du

S(0) =
∫∞

0
S(u)du, which must be greater than 0 because

S(u) is nonnegative for all 0 ≤ u < ∞ and S(u + ε) − S(u − ε) > 0 for at least one value of u

and ε > 0 in the domain. Therefore, m(0) ≡ µ > 0.
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(b) v(t) ≡ m(t) + t is non-decreasing:

Let h > 0. Case 1 (t+ h < X): ⇒ v(t+ h)− v(t) = m(t+ h) + (t+ h)−m(t)− t = m(t+ h)−

m(t)+h =
∫∞
t+h

S(u)du

S(t+h) −
∫∞
t

S(u)du

S(t) +h. Since S(t) is monotone decreasing then S(t+h) ≤ S(t) so

the former expression is ≥
∫∞
t+h

S(u)du

S(t) −
∫∞
t

S(u)du

S(t) + h = −
∫ t+h
t

S(u)du

S(t) + h we need to show that

this expression is nonnegative. Assume that it is, ⇔ h ≥
∫ t+h
t

S(u)du

S(t) ⇔
∫ t+h

t
S(u)du ≤ hS(t)

this is true since the survival function is non-increasing. Hence, v(t+h)−v(t) ≥ 0⇒ v(t) is non-

decreasing. Case 2 (t < X ≤ t+ h): ⇒ v(t+ h)− v(t)
from Case 1

=
∫∞
t+h

S(u)du

S(t+h) −
∫∞
t

S(u)du

S(t) + h,

but the first integral is 0 since t + h > X. Thus, the expression becomes −
∫∞
t

S(u)du

S(t) + h =

−
∫ X
t

S(u)du

S(t) + h. Assuming that it is ⇔
∫ t+h

t
S(u)du ≤ hS(u), which is true since the survival

function in non-increasing. Therefore, v(t + h) − v(t) ≥ 0 ⇒ v(t) is non-decreasing. Case 3

(X ≤ t < t+ h): ⇒ v(t+ h)− v(t) = m(t+ h) + (t+ h)−m(t)− t, but since X ≤ t < t+ h⇒

m(t+ h) = m(t) = 0. Thus, v(t+ h)− v(t) = h > 0⇒ v(t) is non-decreasing.

(c) m(t−) > 0 for t ∈ (0, X); ifX <∞m(X−) = 0 and m is continuous at X:

Part 1: Let t ∈ (0, X), then m(t−) =
∫ X
t− S(u)du

S(t−) . Since S(t−) < S(X) ≤ 1 ⇒
∫ X
t− S(u)du

S(t−) >∫X

t−
S(u)du which is > 0. Therefore, m(t−) > 0.

Part 2: Let t < X < ∞ ⇒ v(t)
from (b)
≤ v(X) = m(X) + X = X ⇒ v(t) = m(t) + t ≤ X ⇔

m(t) ≤ X − t ⇒ limt→X−m(t) ≤ limt→X−(X − t) = X − X− = 0 ⇒ m(X−) = m(X) = 0

proving that m(t) is continuous at X.

(e)
∫ t

0
1

m(u)du→∞ as t→ X:

Using (e) limt→X

∫ t

0
−k′(u)
k(u) du = − limt→X [log(k(t))− log(k(0))] = − limt→X log

[
k(t)
(k(0)

]
= log[

limt→Xk(t)
limt→Xk(0)

]
. The limit of the numerator can be found by, limt→Xk(t) = limt→XS(t)limt→X

m(t) = 0, and the denominator is k(0) = µ which is strictly positive from (a), so the limit

inside the log function is 0 with convergence from the right. ⇒ limt→0+log(t) = −∞, hence

limt→X

∫ t

0
1

m(u)du = −(−∞) =∞.
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Appendix B

Proof of the Lemmas

B.1 Proof of the Lemma 1

Let f(·) and S(·) be the kernel density and survival functions, respectively, of

a DPMM. Assume that f ·) > 0 for all t≥ 0 or for all t > t0 where t0 ≥ 0 is some finite

value. The corresponding mrl function of the DPMM with L components is given by:

m(t|GL) =
∫∞
t

∑L
l=1 plS(u|θl)du∑L
l=1 plS(t|θl)

=
∑L
l=1 pl

∫∞
t S(u|θl)du∑L

l=1 plS(t|θl)

Note that limt→∞
∑L

l=1 pl
∫∞
t S(u|θl)du = 0 and limt→∞

∑L
l=1 plS(t|θl) = 0, so by

L’Hopital’s Rule we have:

limt→∞m(t|GL) = limt→∞
d
dt

∑L
l=1 pl

∫∞
t S(u|θl)du

d
dt

∑L
l=1 plS(t|θl)

= limt→∞
−
∑L
l=1 plS(t|θl)

−
∑L
l=1 plf(t|θl)

Once again the limit as t goes to infinity of both the numerator and denominator is

zero, so applying L’Hopital once more we have the following:

limt→∞m(t|GL) = limt→∞
−
∑L
l=1 plf(t|θl)∑L

l=1 plf
′(t|θl)
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Suppose that the mrl function, m(t|θ) of the kernel distribution tends to infinity as

t→∞. Then, we have:

limt→∞m(t|θ) = limt→∞

∫∞
t S(u|θ)du

S(t|θ) = limt→∞
−S(t|θ)
−f(t|θ) = limt→∞

−f(t|θl)
f ′(t|θ) =∞

In other words, limt→∞(−f(t|θ)/f ′(t|θ)) = 0, so −f(x|θ) grows at a much faster rate

the f ′(t|θ). Hence f ′(t|θ) is “ little-o ” of −f(t|θ): f ′(t|θ) ∈ o(−f(t|θ)). Returning

now to the mrl function of the DPMM, for each component l = 1, ..., L: f ′(t|θl) ∈

o(−f(t|θl)) ⇔ plf
′(t|θl) ∈ o(−plf(t|θl)) since by definition of “little - o” ∀ε > 0 there

exists t0l ∈ R such that |f ′(t|θl)| ≤ ε| − f(t|θl)|∀t ≥ t0l for l = 1, ...L. Multiplying by

pl > 0 on either side gives pl|f ′(t|θl)| ≤ εpl| − f(t|θl)| ⇔ |plf ′(t|θl)| ≤ ε| − plf(t|θl)|.

Since this last inequality holds for all l = 1, ..., L we can apply the sum over l on both

sides obtaining
∑L

l=1 |plf ′(t|θl)| ≤
∑L

l=1 ε| − plf(t|θl)|. We can bound the left side of

the inequality below using the triangle inequality, |
∑L

l=1 plf
′(t|θl)| ≤

∑L
l=1 |plf ′(t|θl)|.

Meanwhile, the right side of the inequality can be written as
∑L

l=1 ε| − plf(t|θl)| =

ε|−
∑L

l=1 plf(t|θl)| since −plf(t|θl) ≤ 0 for each l = 1, ..., L. Thus, we can make the fol-

lowing statement: ∀ε > 0∃t0 ∈ R such that |
∑L

l=1 plf
′(t|θl)| ≤ ε| −

∑L
l=1 plf(t|θl)|∀t ≥

max{t01, t02, ..., t0L}. In other words,
∑L

l=1 plf
′(t|θl) ∈ o(−

∑L
l=1 plf(t|θl)), and there-

fore,

limt→∞m(x|GL) = limt→∞
−
∑L
l=1 plf(t|θl)∑L

l=1 plf
′(t|θl)

=∞

Now suppose that the mrl function of the kernel distribution tends to zero as

t→∞. Hence, we can say that S(t|θ) ∈ o(f(t|θ)), since we have the following:

limt→∞m(t|GL) = limt→∞
S(t|θ)
f(t|θ) = 0
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Thus, in the DPMM we have for each component, l = 1, ..., L, S(t|θl) ∈ o(f(t|θl)) ⇔

plS(t|θl) ∈ o(plf(t|θl)). From the definition ∀ε > 0∃t0l ∈ R such that |plS(t|θl)| ≤

ε|plf(t|θl))|∀t ≥ t0l. Applying the sum over the components gives us
∑L

l=1 |plS(t|θl)| ≤∑L
l=1 ε|plf(t|θl))|. The left side of the inequality can be written as

∑L
l=1 |plS(t|θl)| =

|
∑L

l=1 plS(t|θl)|, similarly, the right side can be written as
∑L

l=1 ε|plf(t|θl))| = ε|
∑L

l=1

plf(t|θl))|. Hence, ∀ε > 0∃t0 ∈ R such that |
∑L

l=1 plS(t|θl)| ≤ ε|
∑L

l=1 plf(t|θl))|∀t ≥

max{t01, t02, ..., t0L}. In other words,
∑L

l=1 plS(t|θl) ∈ o(
∑L

l=1 plf(t|θl)), and therefore,

limt→∞m(t|GL) = limt→∞
∑L
l=1 plS(t|θl)∑L
l=1 plf(t|θl)

= 0

B.2 Proof of the Lemma 2

Let F be the space of absolutely continuous distribution functions on R+ with

finite mean, µ < ∞. Let M be the space of continuous mrl functions. Consider the

class of gamma mixture distributions, C. Now, let m(t), for t ≥ 0, be any mrl function

in M . We can obtain the survival function corresponding to m(t) via the Inversion

Formula:

S(t) = m(0)
m(t) exp

(
−
∫ t

0
1

m(u)du
)

Hence the corresponding distribution function is defined by F (t) = 1 − S(t). Now, we

know that C is dense in F . Particularly, if we define a sequence of distribution functions,

{Fn(t)} ⊆ C, as follows:

Fn(t) =
∑∞

l=1

[
F
(
l
n

)
− F

(
l−1
n

)]
FΓ(t|l, n)
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where
[
F
(
l
n

)
− F

(
l−1
n

)]
are the corresponding weights of the gamma cumulative dis-

tributions functions, FΓ(t|l, n), with shape parameter l and rate parameter n.. Johnson

& Taaffe (1998) show that for any t0 ≥ 0, limn→∞ Fn(t0) = F (t0). That is the sequence

{Fn(t)} converges weakly (or pointwise) to F (t). For the case of a finite mixture, the

sequence is defined such that the limit of the sequence as the number of mixture com-

ponents tends to infinity is also taken. Note that since {Fn(t)} converges weakly (or

pointwise) to F (t), then the sequence of survival functions, {Sn(t)} converges pointwise

to S(t), since limn→∞ Sn(t) = limn→∞(1−Fn(t)) = 1− limn→∞ Fn(t) = 1−F (t) = S(t).

Define the sequence of mrl functions, {mn(t)}, through the sequence of survival

function, {Sn(t)} by the following,

mn(t) =
∫∞
t Sn(u)du

Sn(t)

Consider any t0 ≥ 0, then take the limit of the sequence,

lim
n→∞

mn(t0) = lim
n→∞

∫∞
t0
Sn(u)du

Sn(t0)
=

limn→∞
∫∞
t0
Sn(u)du

limn→∞ Sn(t0)

The limit can be distributed in the last step as a basic property of limits provided the

limits exist and the limit of the denominator is not zero. Upon evaluating these limits,

we will show all these requirements are met. The bottom limit is trivial since {Sn(t)}

converges pointwise to S(t) which is bounded by 0 < S(t) ≤ 1. The nontrivial step

is being able to move the limit inside the integral in the numerator. We can rewrite∫∞
t Sn(u)du as µn −

∫ t
0 Sn(u)du, where µn is the mean of the nth distribution in the

sequence.

⇒ lim
n→∞

mn(t0) =
limn→∞

[
µn −

∫ t0
0
Sn(u)du

]
limn→∞ Sn(t0)

=
limn→∞ µn − limn→∞

∫ t0
0
Sn(u)du

limn→∞ Sn(t0)
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Now, we will establish that µn is finite for every n, and that limn→∞ µn = µ:

µn =

∫ ∞
0

Sn(u)du =

∫ ∞
0

1− Fn(u)du =

∫ ∞
0

1−
∞∑
l=1

[
F

(
l

n

)
− F

(
l − 1

n

)]
FΓ(u|l, n)du

=

∫ ∞
0

∞∑
l=1

[
F

(
l

n

)
− F

(
l − 1

n

)]
−
∞∑
l=1

[
F

(
l

n

)
− F

(
l − 1

n

)]
FΓ(u|l, n)du

=

∫ ∞
0

∞∑
l=1

[
F

(
l

n

)
− F

(
l − 1

n

)]
(1− FΓ(u|l, n))du

=

∫ ∞
0

∞∑
l=1

[
F

(
l

n

)
− F

(
l − 1

n

)]
SΓ(u|l, n)du

where SΓ(u|l, n) is the survival function of the Gamma distribution with shape l and

rate n. Now, since
[
F
(
l
n

)
− F

(
l−1
n

)]
SΓ(u|l, n) ≥ 0, by Tonelli’s Theorem, we can

exchange the summation and integral:

⇒ µn =

∞∑
l=1

[
F

(
l

n

)
− F

(
l − 1

n

)]∫ ∞
0

SΓ(u|l, n)du =

∞∑
l=1

[
F

(
l

n

)
− F

(
l − 1

n

)](
l

n

)

=

∞∑
l=1

[∫ l/n

(l−1)/n

f (u) du

](
l

n

)
=

∞∑
l=1

∫ l/n

(l−1)/n

(
l

n

)
f (u) du

≤
∞∑
l=1

∫ l/n

(l−1)/n

(
u+

1

n

)
f (u) du =

∞∑
l=1

∫ l/n

(l−1)/n

(u) f (u) du+

∞∑
l=1

∫ l/n

(l−1)/n

(
1

n

)
f (u) du

=

∫ ∞
0

uf(u)du+
1

n

∫ ∞
0

f(u)du = µ+
1

n
<∞

where the last inequality holds since we are assuming F has finite mean. The inequality,

µn ≤ µ+ (1/n), also provides the following upper bound for the limit:

⇒ lim
n→∞

µn ≤ lim
n→∞

(
µ+

1

n

)
= µ

We can also establish the following lower bound for the limit,

lim
n→∞

µn = lim
n→∞

∞∑
l=1

∫ l/n

(l−1)/n

(
l

n

)
f(u)du ≥ lim

n→∞

∞∑
l=1

∫ l/n

(l−1)/n

uf(u)du = lim
n→∞

∫ ∞
0

uf(u)du = µ

Therefore, by Squeeze Theorem, limn→∞ µn = µ.
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Using the fact that Sn(t) ≤ 1 and Sn(t) converges pointwise as n→∞ to S(t),

by the dominated convergence theorem,

lim
n→∞

∫ t0

0

Sn(u)du =

∫ t0

0

lim
n→∞

Sn(u)du =

∫ t0

0

S(u)du

Returning to the limit of the sequence of mrl functions,

⇒ lim
n→∞

mn(t0) =
limn→∞ µn − limn→∞

∫ t0
0
Sn(u)du

limn→∞ Sn(t0)
=
µ−

∫ t0
0
S(u)du

S(t0)

=

∫∞
t0
S(u)du

S(t0)
= m(t0)

Hence, {mn(t)} convergence pointwise to m(t), providing the denseness result for con-

tinuous mrl functions under gamma mixture distributions.
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Appendix C

Posterior sampling from the gamma

DPMM

As we stated in the text, posterior samples of the unknown parameters can

easily be obtained using the block Gibbs sampler for DP mixtures described in Ishwaran

& James (2001). Recall that our full hierarchical model is given by,

ti|θ,wi
ind∼ Γ(ti|eθwi , eφwi )

wi|p
iid∼

L∑
l=1

plδl(wi)

p|α ∼ f(p|α) (SB)

θl = (θl, φl)
′|µ,Σ iid∼ N2((θl, φl)

′|µ,Σ)

with priors: α ∼ Γ(α|aα, bα(rate)),µ ∼ N2(µ|aµ, Bµ), and Σ ∼ IWish(Σ|aΣ, BΣ),

where f(p|α) = αL−1pα−1
L (1 − p1)−1(1 − (p1 + p2))−1 × ... × (1 −

∑L−2
l=1 pl)

−1 is a spe-

cial case of the generalized Dirichlet distribution as is Connor and Mosimann Con-
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ner & Mosemann (1969). Let n∗ be the number of distinct components of w where

w∗ = {w∗j : j = 1, ..., n∗} are the distinct components. Let Ψ represent the vector

of the most recent iteration of all other parameters. For i = 1, ..., n, let δi = 0 if ti

is observed and δi = 1 if ti is right censored. Finally, let b = 1, ..., B be the num-

ber of iterations in the MCMC. Then B samples from the joint posterior distribution,

p(µ,σ2,w,p, λ, τ2, ρ, α)|data) are obtained for b = 1, ..., B + 1:

Sample from the posterior conditional distribution for θl for l = 1, ..., L: If l is not

already a component: l /∈ {w∗(b)j : j = 1, ..., n∗(b)}

p(θ
(b+1)
l , φ

(b+1)
l |data,Ψ)

draw∼ N2(µ(b),Σ(b))

If l is an active component: l ∈ {w∗(b)j : j = 1, ..., n∗(b)}

p(θl, φl|data,Ψ) ∝ N2((θl, φl)
′|µ,Σ)

∏
{i:l=wi}

[
Γ(ti|eθl , eφl)

]1−δi [∫∞
ti

Γ(ui|eθl , eφl)dui
]δi

We use a Metropolis-Hastings step for this update. We sample from the proposal distri-

bution (θ′l, φ
′
l)
′ ∼ N2((θ

(b)
l , φ

(b)
l )′, cS2), where S2 is updated from the average posterior

samples of Σ under initial runs, and c > 1. Draw η ∼ Unif(0, 1).

If η < min

1,
N2((θ′l,φ

′
l)
′|µ(b),Σ(b))

∏
{i:l=w

(b)
i
}

[
Γ(ti|eθ

′
l ,eφ
′
l )
]1−δi[∫∞

ti
Γ(ui|eθ

′
l ,eφ
′
l )dui

]δi
N2((θ

(b)
l ,φ

(b)
l )′|µ(b),Σ(b))

∏
{i:l=w

(b)
i
}

[
Γ(ti|eθ

(b)
l ,e

φ
(b)
l )

]1−δi[∫∞
xi

Γ(ui|eθ
(b)
l ,e

φ
(b)
l )dui

]δi


set (θ
(b+1)
l , φ

(b+1)
l )′ = (θ′l, φ

′
l)
′

else (θ
(b+1)
l , φ

(b+1)
l )′ = (θ

(b)
l , φ

(b)
l )′.

Turning to the update for p, we have:

p(p|data,Ψ) ∝ f(p|α)
∏L
l=1 p

Ml
l Ml = |{i : wi = l}| , l = 1, ..., L
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p(p(b+1)|data,Ψ)
draw∼ Generalized Dirichlet Distribution

To sample from this distribution, for l = 1, ..., L draw latent variable: V
∗(b+1)
l

ind∼

Beta(1+M
(b)
l , α(b)+

∑L
r=l+1M

(b)
r ). Now set p

(b+1)
1 = V

∗(b+1)
1 , p

(b+1)
l = V

∗(b+1)
l

∏l−1
r=1(1−

V
∗(b+1)
r ) (l = 2, ..., L− 1), and p

(b+1)
L = 1−

∑L−1
l=1 p

(b+1)
l .

Now we update wi for i = 1, .., n :

p(w
(b+1)
i |data,Ψ)

draw∼
∑L

l=1 p̃liδ(l)(·)

where p̃li =
p

(b+1)
l

[
Γ(ti|eθ

(b+1)
l ,e

φ
(b+1)
l )

]1−δi[∫∞
ti

Γ(ui|eθ
(b+1)
l ,e

φ
(b+1)
l )dui

]δi
∑L
l=1 p

(b+1)
l

[
Γ(ti|eθ

(b+1)
l ,e

φ
(b+1)
l )

]1−δi[∫∞
ti

Γ(ui|eθ
(b+1)
l ,e

φ
(b+1)
l )dui

]δi , l = 1, ..., L.

For the update for µ we have:

p(µ|data,Ψ) ∝
∏
{l∈w∗}N2((θl, φl)

′|µ,Σ)N2(µ|aµ, Bµ)

p(µ(b+1)|data,Ψ)
draw∼ N2(mµ, S

2
µ)

where mµ = S2
µ

(
B−1
µ aµ + Σ−1∑

{l∈w∗(b+1)} θ
(b+1)
l

)
, S2

µ =
(
B−1
µ + n∗(b+1)Σ−1(b)

)−1
.

Turning to the update of Σ, we have:

p(Σ|data,Ψ) ∝
∏
{l∈w∗}N2((θl, φl)

′|µ,Σ)IWish(Σ|aΣ, BΣ)

p(Σ(b+1)|data,Ψ)
draw∼

IWish(n∗(b+1) + aΣ, BΣ +
∑
{l∈w∗(b+1)}(θ

(b+1)
l − µ(b+1))(θ

(b+1)
l − µ(b+1))′)

Lastly, the update for α is given by:

p(α|data,Ψ) ∝ Γ(α|aα, bα)f(p|α)

p(α(b+1)|data,Ψ)
draw∼ Γ

(
L+ aα − 1,−

∑L−1
s=1 log(1− V ∗(b+1)

s ) + bα

)
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Appendix D

Posterior sampling and Conditional

Predictive Ordinate for gamma

DDPMM

D.1 Posterior sampling from the gamma DDPMM with

random covariates

Here we show the algorithm used to obtain the posterior samples of the param-

eters in a gamma DDPMM is the presence of a single random continuous real-valued

covariate. We use the blocked Gibbs sampler described in Ishwaran & James (2001),

with Metropolis-Hastings steps when conjugacy is not obtainable. The full hierarchical

version of the model is written as,
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(tis, xis)|wis,θl
ind∼ Γ(tis|eθwis , eφwis )N(xis|βwis , κ

2
wis),

for i = 1, ..., ns and s ∈ {C, T}

wis|{(ζls)}
ind∼

L∑
l=1

{(1− ζls)
l−1∏
r=1

ζrs}δl(wis), for i = 1, ..., ns and s ∈ {C, T}

{(ζlC , ζlT )}|α, b ∼ Biv −Beta({(ζlC , ζlT )}|α, b)

ζlC = UW, ζlT = VW, for l = 1, ..., L

U
iid∼ Beta(α, 1− b), V iid∼ Beta(α, 1− b),

W
iid∼ Beta(1 + α− b, b)

α ∼ Γ(α|aα, bα)

b ∼ Unif(b|0, 1)

(θl, φl)
′|µ,Σ iid∼ N2((θl, φl)

′|µ,Σ), for l = 1, ..., L

µ ∼ N2(µ|aµ, Bµ)

Σ ∼ IWish(Σ|aΣ, BΣ)

βl|λ, τ2 iid∼ N(βl|λ, τ2), for l = 1, ..., L

κ2
l |a, ρ

iid∼ Γ−1(κ2|a, ρ), for l = 1, ..., L

λ ∼ N(λ|aλ, b2λ)

τ2 ∼ Γ−1(τ2|aτ , bτ )

ρ ∼ Γ(ρ, aρ, bρ)

Let L∗s be the number of distinct components, and w∗s ≡ {w∗js : j = 1, ..., L∗s} be

the vector of distinct components for group s ∈ {C, T}. For i = 1, ..., ns, let δis = 0 if tis
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is observed and δis = 1 if tis is right censored for s ∈ {C, T}. Let Ψ represent the vector

of the most recent iteration of all other parameters. Let b = 1, ..., B be the number of it-

erations in the MCMC. The posterior samples of p(θ,φ,β,κ2,w, ζ,µ,Σ, λ, τ2, ρ, α, b|data)

can be obtained by the following algorithm:

Sample from the posterior conditional distribution for (θl, φl)
′,βl, and κ2

l for l = 1, ..., L:

If l is not already a component: l /∈ w
∗(b)
C ∪w

∗(b)
T

p(θ
(b+1)
l , φ

(b+1)
l |data,Ψ)

draw∼ N2(µ(b),Σ(b))

p(β
(b+1)
l |data,Ψ)

draw∼ N(λ(b), κ
2(b)
l )

p(κ
2(b+1)
l |data,Ψ)

draw∼ Γ−1(a, ρ(b))

If l is an active component in either or both: l ∈ w
∗(b)
C ∪ l ∈ w

∗(b)
T

p(θl, φl|data,Ψ) ∝

N2((θl, φl)
′|µ,Σ)

∏
s∈{C,T}

∏
{i:l=wis}

[
Γ(tis|eθl , eφl)

]1−δis [∫∞
tis

Γ(ui|eθl , eφl)dti
]δis

We use a Metropolis-Hastings step for this update. We sample from the proposal distri-

bution (θ′l, φ
′
l)
′ ∼ N2((θ

(b)
l , φ

(b)
l )′, cS2), where S2 is updated from the average posterior

samples of Σ under initial runs, and c > 1. Draw η ∼ Unif(0, 1).

If η < min {1,
N2((θ′l,φ

′
l)
′|µ(b),Σ(b))

∏
s∈{C,T}

∏
{i:l=w

(b)
is
}

[
Γ(tis|eθ

′
l ,eφ
′
l )
]1−δis[∫∞

tis
Γ(uis|eθ

′
l ,eφ
′
l )dti

]δis
N2((θ

(b)
l ,φ

(b)
l )′|µ(b),Σ(b))

∏
s∈{C,T}

∏
{i:l=w(b)

is
}

[
Γ(tis|eθ

(b)
l ,e

φ
(b)
l )

]1−δis[∫∞
tis

Γ(uis|eθ
(b)
l ,e

φ
(b)
l )dti

]δis


set (θ
(b+1)
l , φ

(b+1)
l )′ = (θ′l, φ

′
l)
′

else (θ
(b+1)
l , φ

(b+1)
l )′ = (θ

(b)
l , φ

(b)
l )′.
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p(βl|data,Ψ) ∝ N(βl|λ, τ2)
∏
s∈{C,T}

∏
{i:l=wis}N(xis|βl, κ2

l )

p(β
(b+1)
l |data,Ψ)

draw∼ N(mβ, s
2
β)

where mβ = s2
β

(
κ
−2(b)
l

[∑
s∈{C,T}

∑
{i:l=wis} xis

]
+ τ−2(b)λ(b)

)
,

and s2
β =

(
τ−2(b) + κ

−2(b)
l

[∑
s∈{C,T}

∑
{i:l=wis} 1

])−1
.

p(κ2
l |data,Ψ) ∝ Γ−1(κ2

l |a, ρ)
∏
s∈{C,T}

∏
{i:l=wis}N(xis|βl, κ2

l )

p(κ
2(b+1)
l |data,Ψ)

draw∼

Γ−1
(

0.5
[∑

s∈{C,T}
∑
{i:l=wis} 1

]
+ a, 0.5

[∑
s∈{C,T}

∑
{i:l=wis}(xis − β

(b+1)
l )2

]
+ ρ(b)

)

To obtain samples from p(ζ|Ψ.data) we work with the latent variables {Ul, Vl,Wl}. The

posterior p({(Ul, Vl,Wl)}|Ψ, data) is proportional to,

p({(Ul, Vl,Wl)}|Ψ, data) ∝∏L−1
l=1 U

(
∑L
r=l+1MrC)+α−1

l (1− Ul)−b(1− UlWl)
MlCV

(
∑L
r=l+1 MrT )+α−1

l (1− Vl)−b(1−

VlWl)
MlTW

(
∑L
r=l+1 MrC+MrT )+α−b

l (1−Wl)
b−1

Using slice sampling, we can introduce latent variables νl and γl for l = 1, ..., L, such

that we have Gibbs steps for for each parameter. The joint posterior of interest becomes:

p({(Ul, Vl,Wl, νl, γl)}|Ψ, data) ∝∏L−1
l=1 U

(
∑L
r=l+1MrC)+α−1

l (1− Ul)−b1(0<νl≤(1−UlWl)
MlC )V

(
∑L
r=l+1 MrT )+α−1

l (1− Vl)−b

×1(0<γl≤(1−VlWl)
MlT )W

(
∑L
r=l+1MrC+MrT )+α−b

l (1−Wl)
b−1

Therefore, we have the following Gibbs steps for l = 1, ..., L− 1

p(ν
(b+1)
l |Ψ, data) ∼ Unif

(
0, (1− U (b)

l W
(b)
l )M

(b)
lC

)
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p(γ
(b+1)
l |Ψ, data) ∼ Unif

(
0, (1− V (b)

l W
(b)
l )M

(b)
lT

)
p(U

(b+1)
l |Ψ, data) ∼ Beta

(
(
∑L

r=l+1M
(b)
rC ) + α, 1− b

)
1(

0, 1

W
(b)
l

[
1−exp

(
log(ν

(b+1)
l

)

M
(b)
lC

)])
p(V

(b+1)
l |Ψ, data) ∼ Beta

(
(
∑L

r=l+1M
(b)
rT ) + α, 1− b

)
1(

0, 1

W
(b)
l

[
1−exp

(
log(γ

(b+1)
l

)

M
(b)
lT

)])
p(W

(b+1)
l |Ψ, data) ∼ Beta

(
(
∑L

r=l+1M
(b)
rT +M

(b)
rC ) + α+ 1− b, b

)
1(0,m∗)

where m∗ = min

{
1

U
(b+1)
l

[
1− exp

(
log(ν

(b+1)
l )

M
(b)
lT

)]
, 1

V
(b+1)
l

[
1− exp

(
log(γ

(b+1)
l )

M
(b)
lT

)]}
Set ζ

(b+1)
lC = U

(b+1)
l W

(b+1)
l

ζ
(b+1)
lT = V

(b+1)
l W

(b+1)
l

For the update for wis for i = 1, ..., ns and s ∈ {C, T} we have:

p(wis|data,Ψ) ∝ Γ(tis|eθwis , eφwis )N(xis|βwis , κ
2
wis)

∑L
l=1{(1− ζls)

∏l−1
r=1 ζrs}δl(wis)

p(w
(b+1)
is |data,Ψ)

draw∼
∑L

l=1 p̃lisδ(l)(wis)

where p̃lis =

pls

[
Γ(tis|eθ

(b+1)
l ,e

φ
(b+1)
l )

]1−δis[∫∞
tis

Γ(uis|eθ
(b+1)
l ,e

φ
(b+1)
l )duis

]δis
N(xis|β

(b+1)
l ,κ

2(b+1)
l )

∑L
l=1 pls

[
Γ(tis|eθ

(b+1)
l ,e

φ
(b+1)
l )

]1−δis[∫∞
tis

Γ(uis|eθ
(b+1)
l ,e

φ
(b+1)
l )duis

]δis
N(xis|β

(b+1)
l ,κ

2(b+1)
l )

with p1s = 1− ζ1s and pls = (1− ζls)
∏l−1
r=1 ζrs for l = 2, ..., L− 1.

For the update for µ we have:

p(µ|data,Ψ) ∝ N2(µ|aµ, Bµ)
∏L
l=1N2((θl, φl)

′|µ,Σ)

p(µ(b)|data,Ψ)
draw∼ N2(mµ, S

2
µ)

where mµ = S2
µ

(
B−1
µ aµ + Σ−1∑L

l=1 θ
(b)
l

)
, S2

µ =
(
B−1
µ + LΣ−1(b)

)−1
.

Turning to the update of Σ, we have:
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p(Σ|data,Ψ) ∝
∏L
l=1N2((θl, φl)

′|µ,Σ)IWish(Σ|aΣ, BΣ)

p(Σ(b+1)|data,Ψ)
draw∼ IWish(L+ aΣ, BΣ +

∑L
l=1(θ

(b+1)
l − µ(b+1))(θ

(b+1)
l − µ(b+1))′)

For the update for λ we have:

p(λ|data,Ψ) ∝ N(λ|aλ, b2λ)
∏L
l=1N(βl|λ, τ2)

p(λ(b+1)|data,Ψ)
draw∼ N(mλ, s

2
λ)

where mλ = s2
λ

(
b−2
λ aλ + τ−2

∑L
l=1 βl

)
and s2

λ =
(
b−2
λ + τ−2(b)L

)−1
.

For the update for τ2 we have:

p(τ2|data,Ψ) ∝ Γ−1(τ2|aτ , bτ )
∏L
l=1N(βl|λ, τ2)

p(τ2(b+1)|data,Ψ)
draw∼ Γ−1

(
0.5L+ aτ , 0.5

[∑L
l=1(β

(b+1)
l − λ(b+1))2

]
+ bτ

)

For the update for ρ we have:

p(ρ|data,Ψ) ∝ Γ(ρ|aρ, bρ)
∏L
l=1 Γ−1(κ2

l |a, ρ)

p(ρ(b+1)|data,Ψ)
draw∼ Γ

(
aL+ aρ,

[∑L
l=1 κ

−2(b+1)
l

]
+ bρ

)

We do not have conjugacy for α and b, so we turn to the Metropolis-Hastings algorithm

to update these parameters. The Bivariate Beta density of (ζc, ζT ), has a complicated

form, however, we can work with the density of the latent variables, (U, V,W ):

p(α, b|data,Ψ) ∝

Unif(b|0, 1)Γ(α|aα, bα)
∏L−1
l−1 Beta(Ul|α, 1− b)Beta(Vl|α, 1− b)Beta(Wl|1 + α− b, b)
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We sample from the proposal distribution,

(log(α′), logit(b′))′ ∼ N2((log(α(b)), logit(b(b))), cS2
αb), where S2

αb is updated from the

average variances and covariance of posterior samples of ((log(α), logit(b)) under initial

runs, and c is updated from initial runs to optimize mixing. Draw η ∼ Unif(0, 1).

If η < min {1,

Γ(α′|aα,bα)
∏L−1
l−1 Beta(Ul|α′,1−b′)Beta(Vl|α′,1−b′)Beta(Wl|1+α′−b′,b′)α′b′(1−b′)

Γ(α(b)|aα,bα)
∏L−1
l−1 Beta(Ul|α(b),1−b(b))Beta(Vl|α(b),1−b(b))Beta(Wl|1+α(b)−b(b),b(b))α(b)b(b)(1−b(b))

}
set (α(b+1), b(b+1))′ = (α′, b′)′

else (α(b+1), b(b+1))′ = (α(b), b(b))′

D.2 Conditional Predictive Ordinate for gamma DDPMM

Here we provide the details of how we arrived to the expression necessary for

computing the CPO values under the gamma DDPMM. As our data example in Section

3.4.1 does not contain any random covariates, we will derive the expression without

covariates, however, the derivation can easily be extended to include random covariates

in the curve-fitting setting.

Recall that the model, under the truncated version, can be written in hierar-
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chical form as,

tiC |wiC ,θ
ind∼ Γ(tiC |θwiC ) fori = 1, ..., nC

tiT |wiT ,θ
ind∼ Γ(tiT |θwiT ) fori = 1, ..., nT

w|{ζlC , ζlT } ∼
∏

s∈{C,T}

ns∏
i=1

L∑
l=1

[
(1− ζls)

l−1∏
r=1

ζrs

]
δl(wis)

θl|µ,Σ
iid∼ N2(θl|µ,Σ)

(ζlC , ζlT )|α, b iid∼ Biv −Beta((ζlC , ζlT )|α, b) forl = 1, ..., L− 1

with priors, α ∼ Γ(α|aα, bα), b ∼ Unif(b|0, 1), µ ∼ N2(µ|aµ, Bµ),

and Σ ∼ IWish(Σ|aΣ, BΣ).

Let Ψ = (α, b,µ,Σ). The predictive density for a new survival time from group

s ∈ {C, T}, t0s, is given by:

p(t0s|data) =
∫ ∫

Γ(t0s|θw0s)
(∑L

l=1 plsδl(w0s)
)
p(θ,p,w,Ψ|data)dw0sdθdwdpdΨ

=
∫ (∑L

l=1 plsΓ(t0s|θl)
)
p(θ,p,w,Ψ|data)dθdwdpdΨ

Let s′ be the experimental group that s is not, data = {ts, ts′}, and A be the

normalizing constant for p(θ,p,w,Ψ|data). Namely, p(θ,p,w,Ψ|data) =

{∏ns
i=1 Γ(tis|θwis )}

{∏ns′
i=1 Γ(tis′ |θwis′ )

}
p(θ,p,w,Ψ)∫ {∏ns

i=1 Γ(tis|θwis )}
{∏ns′

i=1 Γ(tis′ |θwis′ )
}
p(θ,p,w,Ψ)dθdwdpdΨ

Note that p(θ,p,w,Ψ) = N2(θ|µ,Σ)
(∏ns

i=1

∑L
l=1 plsδl(wis)

)(∏ns′
i=1

∑L
l=1 pls′δl(wis′)

)
Biv −Beta(p ≡ (ζs, ζs′)|α, b)Γ(α|aα, bα)Unif(b|0, 1)N2(µ|aµ, Bµ)IWish(Σ|aΣ, BΣ).

The CPO of the ith survival time in group s is defined as,

CPOis = p(tis|t(−i)s, ts′)

=
∫

Γ(tis|θw0s)
(∑L

l=1 plsδl(w0s)
)
p(θ,p,w(−i)s,Ψ)dθdw(−i)sdpdΨdw0s
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where w(−i)s is the vector w with the ith member of group s removed. Similarly,

data(−i)s represents data with the ith member in group s removed.

Now, consider p(θ,p,w(−i)s,Ψ|data(−i)s) =

p(data(−i)s|θ,w(−i)s)p(θ,w(−i)s,p,Ψ)∫
p(data(−i)s|θ,w(−i)s)p(θ,w(−i)s,p,Ψ)dw(−i)sdpdΨ

=

{∏ns
j 6=i Γ(tjs|θwjs)

}{∏ns′
i=1 Γ(tis′ |θwis′ )

}
p(θ,p,w(−i)s,Ψ)∫ {∏ns

j 6=i Γ(tjs|θwjs)
}{∏ns′

i=1 Γ(tis′ |θwis′ )
}
p(θ,p,w(−i)s,Ψ)dθdw(−i)sdpdΨ

Let Bis be the normalizing constant of p(θ,p,w(−i)s,Ψ|data(−i)s):

Bis =
∫ {∏ns

j 6=i Γ(tjs|θwjs)
}{∏ns′

i=1 Γ(tis′ |θwis′ )
}
p(θ,p,w(−i)s,Ψ)dθdw(−i)sdpdΨ

Then, we can write

p(θ,p,w(−i)s,Ψ|data(−i)s) =
{
∏ns
i=1 Γ(tis|θwis)}

{∏ns′
i=1 Γ(tis′ |θwis′ )

}
p(θ,p,w,Ψ)

BisΓ(tis|θwis)p(wis|p)

=
A

Bis

p(θ,p,w,Ψ|data)

Γ(tis|θwis)p(wis|p)

Thus,

CPOis =

∫
Γ(tis|θw0s)p(w0s|p)p(θ,p,w(−i)s,Ψ)dθdw(−i)sdpdΨdw0s

=

∫
Γ(tis|θw0s)

(∫
p(w0s,wis|p)dwis

)
p(θ,p,w(−i)s,Ψ)dθdw(−i)sdpdΨdw0s

=
A

Bis

∫
Γ(tis|θw0s)p(w0s,wis|p)

Γ(tis|θwis)p(wis|p)
p(θ,p,w,Ψ|data)dw0sdθdwdpdΨ

(Note: p(w0s|wisp) = p(w0s|p))

=
A

Bis

∫ ∑L
l=1 plsΓ(tis|θl)
Γ(tis|θwis)

p(θ,p,w,Ψ|data)dw0sdθdwdpdΨ
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All that is left is to be able to evaluate A/Bis:

(
A

Bis

)−1

=
1

A

∫ 
ns∏
j 6=i

Γ(tjs|θwjs)


{ns′∏
i=1

Γ(tis′ |θwis′ )

}(∫
p(wis|w(−i)s,p)dwis

)
︸ ︷︷ ︸

1

×p(w(−i)s|p)p(p,θ,Ψ)dθdw(−i)sdpdΨ

=
1

A

∫ 
ns∏
j 6=i

Γ(tjs|θwjs)


{ns′∏
i=1

Γ(tis′ |θwis′ )

}
p(θ,p,w,Ψ)dθdwdpdΨ

=
1

A

∫ {∏ns
j 6=i Γ(tjs|θwjs)

}{∏ns′
i=1 Γ(tis′ |θwis′ )

}
Γ(tis|θwis)

p(θ,p,w,Ψ)dθdwdpdΨ

=

∫
1

Γ(tis|θwis)
p(θ,p,w,Ψ)dθdwdpdΨ
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Appendix E

Posterior sampling for model for mrl

ordered populations

Here we show the algorithm used to obtain the posterior samples of the pa-

rameters under the nonparametric Erlang mixture model for mrl ordered populations.

We use a Pólya-urn based MCMC, with Metropolis-Hastings steps when conjugacy is

not obtainable. By introducing two sets of latent variables, w = {wk : k = 1, ..., n2},

z = {zj : j = 1, ..., n1}, we can write the hierarchical version of our fully nonparametric

Bayesian model for inference for mrl ordering between to groups,
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t1j |wj , zj , θ
ind∼

M−1∑
m=1

Em(t1j |θ)1((m−1)θ,mθ](min{wj , zj})

+EM (t1j |θ)1((M−1)θ,∞)(min{wj , zj}), j = 1, ..., n1

t2k|wn1+k, θ
ind∼

M−1∑
m=1

Em(t2k|θ)1((m−1)θ,mθ](wn1+k)

+EM (t2k|θ)1((M−1)θ,∞)(wn1+k), k = 1, ..., n2

zj |G1
iid∼ G1, j = 1, ..., n1

wk|G2
iid∼ G2, k = 1, ..., n1 + n2

Gl|αl, φl
ind∼ DP (αl, G0l ≡ LN(µl, σ

2
l )), l = 1, 2

with the following priors M ∼ Unif(2,Mmax),αl
ind∼ Γ(aα, bα), µl

ind∼ N(aµl , bµl),

σ2
l
ind∼ Γ−1(aσl , bσl), for l = 1, 2, and θ ∼ Γ−1(aθ, bθ). Let α = {α1, α2}, and φ =

{µ1, µ2, σ
2
1, σ

2
2}. We need to obtain samples from the full posterior distribution,

p(G1, G2, z,w, θ,α,φ,M |data). In order to do so, we break the full posterior distri-

bution into the posterior joint marginal of the posterior parameters and the poste-

rior conditional of the random distributions given the parameters Antoniak (1974):

p(G1, G2, z,w, θ,α,φ,M |data)

= p(G1|z, α1, µ1, σ
2
1, θ, data)p(G2|w, α2, µ2, σ

2
2, θ, data)p(z,w, θ,α,φ,M |data).

Repeated sequential sampling from the following conditionals yields the algo-

rithm used to obtain posterior samples from p(z,w, θ,α,φ,M |data). For i = 1, ..., nl,

let δli = 0 if tli is observed and δli = 1 if tli is right censored for l ∈ {1, 2}. Let n∗w be

the number of distinct components in w, and w∗k ≡ {w∗k : k = 1, ..., n2} be the vector

of distinct components in w. Let n∗z be the number of distinct components in z, and
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z∗j ≡ {z∗j : j = 1, ..., n1} be the vector of distinct components in z For i = 1, ..., ns, let

δis = 0 if tis is observed and δis = 1 if tis is right censored for s ∈ {1, 2}. Let Ψ represent

the vector of the most recent iteration of all other parameters. Let b = 1, ..., B index

the iterations of the MCMC.

Define the function k(t|θ,M,min{w, z}) =∑M−1
m=1 em(t1j |θ)1((m−1)θ,mθ](min{wj , zj}) + eM (t1j |θ)1((M−1)θ,∞)(min{wj , zj}),

and define KS(t|θ,M,min{w, z}) =∑M−1
m=1 E

S
m(t1j |θ)1((m−1)θ,mθ](min{wj , zj}) + ESM (t1j |θ)1((M−1)θ,∞)(min{wj , zj}).

For j = 1, ..., n1, we update {wj , zj} by:

p({wj , zj}|{wr, zr : r 6= j},Ψ, data) ∝

[k(t1j |θ,M,min{wj , zj})]1−δ1j [KS(t1j |θ,M,min{wj , zj})]δ1jp(zj |{zr : r 6=

j},Ψ)p(wj |{wr : r 6= j},Ψ)

where p(zj |{zr : r 6= j},Ψ) = α1
α1+n1−1LN(zj |µ1, σ

2
1) + 1

α1+n1−1

∑n1−1
r 6=j δzr(zj)

and p(wj |{wr : r 6= j},Ψ) = α2
α2+n1−1LN(wj |µ2, σ

2
2) + 1

α2+n1−1

∑n1−1
r 6=j δwr(wj)

We use a Metropolis-Hastings step for this update. We sample from the

prior as a proposal distribution, w′j ∼ p(w
(b)
j |{w

(b+1)
r : r < j}, {w(b)

r : r > j}Ψ) and

z′j ∼ p(z
(b)
j |{z

(b+1)
r : r < j}, {z(b)

r : r > j}Ψ). Draw η ∼ Unif(0, 1).

If η < min

{
1,

[k(t1j |θ(b),M(b),min{w′j ,z′j})]
1−δ1j [KS(t1j |θ(b),M(b),min{w′j ,z′j})]

δ1j

[k(t1j |θ(b),M(b),min{w(b)
j ,z

(b)
j })]

1−δ1j [KS(t1j |θ(b),M(b),min{w(b)
j ,z

(b)
j })]

δ1j

}
set {w(b+1)

j , z
(b+1)
j } = {w′j , z′j}

else {w(b+1)
j , z

(b+1)
j } = {w(b)

j , z
(b)
j }
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For k = 1, ..., n2, we update wn1+k by:

p(wn1+k|{wr : r 6= n1 + k},Ψ, data) =

q0h(wn1+k|θ,M,α2,µ2,σ2
2)+

∑n∗w−1

r 6=n1+k n
reps
wr ([k(t2k|θ,M,wn1+k]1−δ2k [KS(t2k|θ,M,wn1+k)]δ2k)δw∗r (wn1+k)

q0+
∑n∗w−1
r 6=n1+k n

reps
wr ([k(t2k|θ,M,wn1+k]1−δ2k [KS(t2k|θ,M,wn1+k)]δ2k)δw∗r (wn1+k)

where q0 =

α2

(∑M−1
m=1 [em(t2k|θ)]1−δ2k [ESm(t2k|θ)]δ2k

[
LN(mθ|µ2, σ

2
2)− LN((m− 1)θ|µ2, σ

2
2)
])

+α2

(
[eM (t2k|θ)]1−δ2k [ESM (t2k|θ)]δ2k

[
1− LN((M − 1)θ|µ2, σ

2
2)
])

, with LN(·) represent-

ing the cdf of the gamma distribution), and h(wn1+k|θ,M,α2, µ2, σ
2
2) =

α2 [k(t2k|θ,M,wn1+k)]
1−δ2k [KS(t2k|θ,M,wn1+k)

]δ2k g0(wn1+k|µ2, σ
2
2)/q0, (where g0(·) is

the lognormal density function).

We update M and θ together, since the two parameter are highly correlated:

p(M, θ|Ψ, data) ∝
(∏n1

j=1[k(t1j |θ,M,min{wj , zj})]1−δ1j [KS(t1j |θ,M,min{wj , zj})]δ1j
)

×
(∏n2

k=1[k(t2k|θ,M,wn1+k)]
1−δ2k [KS(t2k|θ,M,wn1+k)]

δ2k
)

Γ−1(θ|aθ, bθ)

We use a Metropolis-Hastings step for this update. We sampleM ′ ∼ Unif(max{2,M (b)−

SM},min{Mmax,M
(b) + SM ), and log(θ′) ∼ N(log(θ(b), S2

θ ). Draw η ∼ Unif(0, 1)

If η < min

{
1,

(∏n1
j=1[k(t1j |θ′,M ′,min{w

(b+1)
j ,z

(b+1)
j })]1−δ1j [KS(t1j |θ′,M ′,min{w

(b+1)
j ,z

(b+1)
j })]δ1j

)
(∏n1

j=1[k(t1j |θ(b),M(b),min{w(b+1)
j ,z

(b+1)
j })]1−δ1j [KS(t1j |θ(b),M(b),min{w(b+1)

j ,z
(b+1)
j })]δ1j

)
×

(∏n2
k=1[k(t2k|θ′,M ′,w

(b+1)
n1+k)]1−δ2k [KS(t2k|θ′,M ′,w

(b+1)
n1+k)]δ2k

)
Γ−1(θ′|aθ,bθ)θ′(∏n2

k=1[k(t2k|θ(b),M(b),w
(b+1)
n1+k)]1−δ2k [KS(t2k|θ(b),M(b),w

(b+1)
n1+k)]δ2k

)
Γ−1(θ(b)|aθ,bθ)θ(b)

}
set {M (b+1), θ(b+1)} = {M ′, θ′}

else {M (b+1), θ(b+1)} = {M (b), θ(b)}
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For the update of α1:

p(α1|n∗z,Ψ, data) ∝ Γ(α1|aα, bα)α
n∗z
1

Γ(α1)
Γ(α1+n1)

Introducing the latent variable η1, we can update α1 via:

Sample η1 ∼ Beta(α
(b)
1 + 1, n1)

Sample α
(b+1)
1 ∼ pΓ(aα + n

∗(b+1)
z , bα− log(η1)) + (1− p)Γ(aα + n

∗(b+1)
z − 1, bα− log(η1))

where p = (aα + n
∗(b+1)
z − 1)/{n1(bα − log(η1)) + aα + n

∗(b+1)
z − 1}

For the update of α2:

p(α2|n∗w,Ψ, data) ∝ Γ(α2|aα, bα)α
n∗w
2

Γ(α2)
Γ(α2+n1+n2)

Introducing the latent variable η2, we can update α1 via:

Sample η2 ∼ Beta(α
(b)
2 + 1, n1 + n2)

Sample α
(b+1)
2 ∼ pΓ(aα + n

∗(b+1)
w , bα− log(η2)) + (1− p)Γ(aα + n

∗(b+1)
w − 1, bα− log(η2))

where p = (aα + n
∗(b+1)
w − 1)/{(n1 + n2)(bα − log(η2)) + aα + n

∗(b+1)
w − 1}

For the update of µ1:

p(µ1|z∗, n∗z,Ψ, data) ∝ N(µ1|aµ1 , bµ1)
(∏n∗z

j=1 LN(z∗j |µ1, σ
2
1)
)

Sample µ
(b+1)
1 ∼ N(m1, s

2
1)

where s2
1 =

(
1
bµ1

+ n
∗(b+1)
z

σ
2(b)
1

)−1

and m =

(
aµ1
bµ1

+
∑n
∗(b+1)
z
j=1 log(z

∗(b+1)
j )

σ
2(b)
1

)
s2

1

For the update of µ2:
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p(φ2|w∗, n∗w,Ψ, data) ∝ N(µ2|aµ2 , bµ2)
(∏n∗w

k=1 LN(w∗k|µ2, σ
2
2)
)

Sample µ
(b+1)
2 ∼ N(m2, s

2
2)

where s2
2 =

(
1
bµ2

+ n
∗(b+1)
w

σ
2(b)
2

)−1

and m =

(
aµ2
bµ2

+
∑n
∗(b+1)
w
k=1 log(w

∗(b+1)
j )

σ
2(b)
2

)
s2

1

For the update of σ2
1:

p(σ2
1|z∗, n∗z,Ψ, data) ∝ Γ−1(σ2

1|aσ1 , bσ1)
(∏n∗z

j=1 LN(z∗j |µ1, σ
2
1)
)

Sample σ
2(b+1)
1 ∼ Γ−1(aσ1 + 0.5n

∗(b+1)
z , bσ1 + 0.5

∑n
∗(b+1)
z
j=1 log(z∗(b+1) − µ(b+1)

1 )2)

For the update of σ2
2:

p(σ2
2|w∗, n∗w,Ψ, data) ∝ Γ−1(σ2

2|aσ1 , bσ1)
(∏n∗w

k=1 LN(w∗k|µ2, σ
2
2)
)

Sample σ
2(b+1)
2 ∼ Γ−1(aσ1 + 0.5n

∗(b+1)
w , bσ2 + 0.5

∑n
∗(b+1)
w
k=1 log(w∗(b+1) − µ(b+1)

2 )2)
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