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Complexity and learnability in the explanation of semantic universals of
quantifiers

Iris van de Pol, Shane Steinert-Threlkeld, Jakub Szymanik
{I.P.A.vandePol, S.N.M.Steinert-Threlkeld, J.K.Szymanik}@uva.nl

Institute for Logic, Language and Computation, University of Amsterdam

Abstract

Despite wide variation among natural languages, there are lin-
guistic properties universal to all (or nearly all) languages. An
important challenge is to explain why these linguistic universals
hold. One explanation employs a learnability argument: seman-
tic universals hold because expressions that satisfy them are
easier to learn than those that do not. In an exploratory study
we investigate the relation between learnability and complexity
and whether the presence of semantic universals for quantifiers
can also be explained by differences in complexity. We develop
a novel application of (approximate) Kolmogorov complexity
to measure fine-grained distinctions in complexity between dif-
ferent quantifiers. Our results indicate that the monotonicity
universal can be explained by complexity while the conserva-
tivity universal cannot. For quantity we did not find a robust
result. We also found that learnability and complexity pattern
together in the monotonicity and conservativity cases that we
consider, while that pattern is less robust in the quantity cases.

Keywords: semantic universals; generalized quantifiers; Kol-
mogorov complexity; learnability

Introduction
Even though there is huge variability between natural lan-
guages, they still share many common features. Such univer-
sal linguistic properties have been found at many levels of
analysis: phonology (Hyman, 2008), syntax (Chomsky, 1965;
Newmeyer, 2008), and semantics (Barwise & Cooper, 1981).
Confronted with attested linguistic universals, the question
naturally arises: why these properties? What explains the pres-
ence of the particular observed universals across languages?

In search of an explanation in terms of the interaction be-
tween linguistics and the specifics of human cognition, several
theories have presented some form of learnability as an ex-
planation of the presence of semantic universals (see, e.g.,
Barwise & Cooper, 1981; Keenan & Stavi, 1986; Szabolcsi,
2010). Recently, Steinert-Threlkeld and Szymanik (in press,
henceforth ST&S) provided evidence for a version of this
learnability hypothesis by using recurrent neural networks as
a model for learning and applying this to several different
semantic universals.

In this paper, we ask whether these semantic universals
could also be explained by some measure of complexity, and
whether this provides similar results as using a measure of
learnability. It is a common expectation that there will be
a connection between learnability and complexity and many
theories of learning are built around such a connection (Tiede,
1999; Hsu, Chater, & Vitányi, 2013). At the same time, there

are few examples that provide evidence for this expectation in
concrete cognitive tasks. In particular, it remains open whether
a connection between learnability and complexity exists for
independently motivated measures of each of these factors in
specific domains. In the present work, we study the meaning
of generalized quantifiers and compare their complexity (in
a sense to be made precise) with the learnability results of
ST&S.

The complexity of generalized quantifiers has been inten-
sively studied using methods from logic, automata theory, and
computational complexity.1 However, as we will explain
in more detail in a later section, none of these theories have
developed a notion of complexity that applies to all quantifiers
and can capture the difference between those that are attested
and non-attested in natural language. To overcome these lim-
itations, in this paper we propose to evaluate the complexity
of quantifiers from an information-theoretic perspective. This
perspective has already proven fruitful as an explanatory de-
vice in linguistics (Gibson et al., 2019). More specifically, we
suggest to adopt (approximate) Kolmogorov complexity (Li &
Vitányi, 2008) as a measure for the complexity of quantifiers.
Kolmogorov complexity roughly measures how much regu-
larity exists in a string, which enables it to be described by
a shorter program that generates it. It is not implausible that
universals will have the function of creating “patterns” that
enable such compression.

The paper is structured as follows. In the next section, we
present generalized quantifier theory and the semantic univer-
sals that we will discuss. We also discuss a recent explanation
of semantic universals in terms of learnability and previous
approaches to measuring the complexity of quantifiers and
their limitations with respect to the current study. Following
that, we introduce Kolmogorov complexity and a tractable ap-
proximation to it, and we explain how we apply this measure
to binary encodings of quantifiers. In the section after that, we
apply this complexity measure to the same pairs of quantifiers
as in the recent learnability study to see (i) whether—in addi-
tion to learnability—some of the attested semantic universals
can be explained by differences in complexity and (ii) whether
complexity and learnability pattern together. We conclude by
discussing the results and outlining future work.

1See Szymanik (2016) for an overview.
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Figure 1: An example of a quantifier model M = 〈M,A,B〉
with 10 objects, shown as a vendiagram. This model verifies
quantifiers some and most, but does not varify all

.

Quantifiers and their universal properties
Quantifiers are the semantic objects that are expressed by
determiners, such as some, most, or all. Determiners are
expressions that can combine with common nouns and a verb
phrase in simple sentences of the form Det N VP, like “some
houses are blue”. We assume a distinction of the determiners
into the grammatically simple (e.g. some, few, many) and the
grammatically complex (e.g. at least 6 or at most 2,
an even number of).

We use the framework of generalized quantifiers to repre-
sent the meaning of quantifiers as sets of sets. In particular,
determiners denote type 〈1,1〉 generalized quantifiers, which
are sets of models of the form M = 〈M,A,B〉, where M is the
domain of the model, and A,B are two unary predicates (that
is: A,B ⊆M).2 See Figure 1 for an illustration. This is an
extensional representation of meaning, in which a quantifier is
defined as the class of all models satisfying a given property
(corresponding to the situations in which a simple sentence
with that quantifier would be true). For a given model, M , and
quantifier Q we write Q ∈M if and only if: M |= Q(A,B).
For example, the meaning of the quantifiers some, most, and
every can then be represented as follows:

JsomeK = {〈M,A,B〉 : |A∩B| 6= /0} ,
JmostK = {〈M,A,B〉 : |A∩B|> |A\B|} ,

JeveryK = {〈M,A,B〉 : A⊆ B} .

The semantic universals that we consider build on specific
properties of generalized quantifiers, namely monotonicity,
quantity, and conservativity. Let Q be a generalized quantifier.
Then we call Q monotone if it is either upward or downward
monotone, which is defined as follows. Q is upward monotone
:= if 〈M,A,B〉 ∈ Q and B ⊆ B′, then 〈M,A,B′〉 ∈ Q. Q is
downward monotone := if 〈M,A,B〉 ∈ Q and B ⊇ B′, then
〈M,A,B′〉 ∈ Q. Barwise and Cooper (1981) formulate and
defend the following semantic universal:

MONOTONICITY UNIVERSAL: All simple determiners
are monotone.
2For a textbook treatment of generalized quantifiers see Peters

and Westerståhl (2006).

The property of quantity intuitively expresses that the meaning
of a determiner only depends on the sizes; i.e., the quantity, of
the relevant sets and not on the way those sets are presented
or on the particular identity of the objects in those sets. Q is
quantitative := if 〈M,A,B〉 ∈ Q, and A∩B, A\B, B\A, and
M \ (A∪B) have the same cardinality (size) as their primed-
counterparts, then 〈M′,A′,B′〉 ∈ Q. Keenan and Stavi (1986)
formulate and defend the following semantic universal3 :

QUANTITY UNIVERSAL: All simple determiners are
quantitative.

The property of conservativity intuitively expresses that a noun
phrase of the form Det N VP is genuinely about the N and
not about the VP. That is, to verify a quantifier in a quantifier
model only the A’s that are B’s are relevant, not the B’s that
are not A’s. Q is conservative := 〈M,A,B〉 ∈ Q if and only if
〈M,A,A∩B〉 ∈ Q. Barwise and Cooper (1981) formulate and
defend the following semantic universal:

CONSERVATIVITY UNIVERSAL: All simple determiners
are conservative.

Explaining semantic universals via learnability
The question naturally arises: can a unified explanation be
given for these universals? ST&S develop the following learn-
ability hypothesis: expressions satisfying semantic universals
are easier to learn than those that do not.4 To anthropo-
morphize: as languages are developing, they choose to attach
lexical items to easy-to-learn meanings, and rely on complex
grammatical constructions and compositional interpretation
thereof to express hard-to-learn meanings.

The hypothesis immediately raises a challenge: to provide
a model of learning on which it’s true. ST&S train recurrent
neural networks to learn minimal pairs of quantifiers, one
satisfying the universal and one that does not.

Figure 2 shows an example learnability result from ST&S:
an upward montone quantifier (in blue: at least 4) was ro-
bustly easier to learn for a neural network than a non-monotone
quantifier (in red: at least 6 or at most 2). Similar pat-
terns were observed for downward monotone and quantitative
quantifiers, while conservative ones were found to be no easier
to learn than non-conservative ones (but were argued to arise
from a different source than learnability).

These computational results provide strong support for the
learnability hypothesis. The approach has also worked well
in explaining universals in disparate linguistic domains: color
terms (Steinert-Threlkeld & Szymanik, 2019) and responsive
predicates (Steinert-Threlkeld, in press).

Previous approaches to the complexity of quantifiers
In the literature on generalized quantifiers one can find several
approaches to measuring complexity. Although these mea-
sures can capture some of the cognitive difficulty of quantifier

3See also Peters and Westerståhl (2006), van Benthem (1984),
and ST&S.

4Hints of this hypothesis may be found in (van Benthem, 1987;
Peters & Westerståhl, 2006; Magri, 2015).
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Figure 2: Learning curves on a neural network for the mono-
tone at least 4 (blue) versus at least 6 or at most 2 (red). This
was Figure 4 in ST&S.

processing,5 we will see that they are not fine-grained enough
to explain the presence of semantic universals.

The earliest approach uses logic, analyzing which quan-
tifiers are definable in progressively more expressive logics.
Many natural language quantifiers can be expressed in ele-
mentary (i.e. first-order) logic, e.g. some or at least 4. The
seminal result here is that proportional quantifiers cannot be
defined in elementary logic: one needs a stronger logical sys-
tem, like second-order logic, to uniformly express the meaning
of, e.g., most.6 This definability criterion cannot, however,
distinguish between the complexity of the quantifiers satisfy-
ing and not satisfying the universals we study. For example,
all and only can be defined with elementary formulas of
exactly the same form (and therefore the same complexity):

All(A, B) := ∀x(A(x) =⇒ B(x))

Only(A, B) := ∀x(B(x) =⇒ A(x))

Also, both monotone and non-monotone quantifiers can be
defined by formulas of the same complexity.

Johan van Benthem (1984) has proposed to study minimal
computational devices (automata) corresponding to general-
ized quantifiers. Under this approach, some quantifiers can be
associated with canonical minimal finite automata. One can
then use the size of such an automaton (i.e., the number of
states) as a measure of quantifier complexity. For example, the
automaton for all has two states while the automaton for at
least 3 has four states. Other quantifiers—for example, pro-
portional quantifiers—must be associated with more complex
computational devices, like push-down automata. This mea-
sure of complexity can explain some variance in the cognitive
difficulty of quantified sentence verification against pictures
(Szymanik & Zajenkowski, 2010). It is, however, not suitable
for our purposes. One can easily construct a minimal quantifier
pair that cannot be distinguished by this complexity measure.

5See Szymanik (2016) for an overview.
6See Peters and Westerståhl (2006) for an overview.

For instance, both all and only have minimal automata with
two states. One can also easily construct a family of quan-
tifiers with the same automaton complexity containing both
quantifiers satisfying and not satisfying quantitity (at least
4, first 3) and monotone and non-monotone quantifiers (at
least 4, at least 3 or at most 2). An extra problem
for this approach is that for push-down automata correspond-
ing to proportional quantifiers, there is no accepted complexity
measure because they do not have a definition of a minimal
automaton. So the measure does not apply to all quantifiers,
including ones expressed in natural language.7

Another well-studied approach to identify the complexity
of generalized quantifiers uses the toolbox of computational
complexity theory (Szymanik, 2016). It measures quantifier
complexity in terms of the asymptotic growth of the com-
putational resources needed to recognize their meaning. The
problem is that computational complexity distinctions are even
more crude than the previously described alternatives. Even
though computational complexity distinctions have been used
to theoretically delimit the borders of natural language ex-
pressivity (Ristad, 1993; Kontinen & Szymanik, 2008), these
borders include both quantifiers satisfying and not satisfying
the semantic universals that we are interested in.

Kolmogorov complexity of quantifiers
To investigate whether the aforementioned semantic universals
can be explained by differences in complexity, we need a
measure of complexity that is suited for that task. As discussed
in the previous subsection, setting up the right framework for
this is a non-trivial challenge, as many well-know complexity
measures are limited in their ability to distinguish between
quantifiers with and without the universal properties under
consideration.

Therefore, in this study, we use (approximate) Kolmogorov
complexity—a finer-grained measure that has not yet been
explored in this domain, and we investigate its potential to
explain semantic universals. Because Kolmogorov complexity
is more fine-grained than the previously discussed complexity
measures, it has greater promise in capturing differences in
complexity between the quantifiers that we consider. It makes
intuitive sense that humans would be sensitive to Kolmogorov
complexity, because it is a mathematical operationalization of
the notion of compressibility and various aspects of cognition
can plausibly be understood in terms of data compression:
storing data compactly in a way that it can be (partially) re-
covered. Kolomogorov complexity has been shown useful
in modelling a cognitive bias towards simplicity in a variety
of cognitive domains (see Chater & Vitányi, 2003; Feldman,
2016).

Kolmogorov complexity (K) measures how much an in-
dividual sequence of symbols can be compressed. When a
sequence contains regularities, these regularities can be ex-
ploited to produce a shorter description of that sequence. K(x)

7This approach has also inspired learnability models
(Gierasimczuk, 2005; Clark, 2010).
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Figure 3: Encoding of some over models of size 1.

of a sequence x is defined as the length of the shortest program
p that outputs x (see Li & Vitányi, 2008).8

The drawback is that K has been formally proven to be
uncomputable. This means that there exists no algorithm that
outputs K(x), given x (Li & Vitányi, 2008). For this reason, we
use a well-established and tractable approximation to K, that is
based on the Lempel-Ziv algorithm for lossless data compres-
sion (Lempel & Ziv, 1976). The Lempel-Ziv algorithm parses
a sequence x from left to right, and cuts up the sequence into
subsequences. At each point it chooses the longest possible
subsequence that is identical to an earlier part of the sequence,
thereby identifying the number of unique subpatterns in x. The
Lempel-Ziv complexity LZ(x) is the number of these unique
subpatterns of x. For approximate Kolmogorov complexity K̃,
we use CLZ(x), which is defined as log2(len(x)) ·LZ(x).9 Ziv
and Lempel (1978) show that CLZ(x) approximates K(x) in
the limit; i.e, when len(x) approaches infinity.Vitányi (2013)
shows that, in practice, lossless compression methods give
adequate results also for finite sequences. Furthermore, CLZ is
considered particularly adequate as a measure for K̃ for shorter
strings (Lesne, Blanc, & Pezard, 2009).10

To determine the approximate Kolmogorov complexity K̃ of
a quantifier we need to represent it as a sequence of symbols.
We encode a quantifier as a binary sequence, representing the
quantifier as a distribution of truth values over all models (up
to a certain size). First, we enumerate all possible models.
Then, given such an enumeration, we represent a quantifier
by placing a 1 in the sequence for every model that verifies
the quantifier and placing a 0 for every model that does not
verify the quantifier. See Figure 3 for an example. Given a
sequence of models, this gives a unique binary representation
for every possible quantifier. Then, for a given sequence of
models up to a certain maximum model size, we can determine
the complexity of a quantifier Q by computing K̃(xQ) over the
binary representation xQ of Q.

8Formally, K is defined given a particular universal Turing ma-
chine (UTM), but, by the Invariance Theorem, K given UTM V or
given UTM W will not differ more than some constant c.

9In particular, we use the same version of CLZ as used by Dingle,
Camargo, and Louis (2018), which uses the average between LZ(x)
and LZ(reverse(x)) to obtain an even more fine-grained complexity
measure.

10There are also other popular lossless compression methods that
can be used as approximations to K, such as gzip (based on LZ com-
pression), and bzip2 (a block-sorting compressor). Graphs comparing
the LZ and gzip2 complexity of the quantifiers that we considered
can be found at https://tinyurl.com/quantifierLZ.

This framework allows us to compare the complexity of
different quantifiers and investigate whether semantic univer-
sals might be explained by differences in complexity. In doing
this, we are not interested in the absolute complexity values of
the quantifiers but in the difference in complexity between a
quantifier that satisfies a universal and its minimally differing
counterpart that does not satisfy that universal. To make any
such comparison across quantifiers, we need to fix an enumer-
ation over quantifier models and use that as the base for our
quantifier representations.

One way of doing that would be to take a random enumer-
ation over quantifier models. Unfortunately, for our purpose,
this is not a suitable method. For a random sequence, the com-
plexity of a quantifier is mainly determined by the uniformity
of that quantifier (defined by the ratio of 1’s versus 0’s in the
quantifier representation).11 When the uniformity of a quan-
tifier is the main determiner for its complexity, differences
between the complexity of two quantifiers might not reflect
differences due to the presence or absence of a particular uni-
versal property.

For our purpose, choosing a structured sequence over mod-
els is more suitable than taking a random sequence. The
intuition behind this can be understood as follows. If a quan-
tifier that satisfies a universal has lower K̃ complexity than
its minimally differing counterpart, then this will be because
the universal property causes a regularity in the distribution of
truth values across quantifier models. This difference in reg-
ularity between quantifiers could disappear when evaluating
quantifiers over a random sequence of models, but it might
be visible when evaluating those quantifiers over a structured
and well-behaved sequence. For this reason, we evaluate our
quantifiers over the lexicographic sequence of models, which
is standardly used in the literature on generalized quantifiers.
For robustness, we look at all 12 uniquely different possible
lexicographical orderings, arising from the different ways of
ordering the symbols for the four sets A∩B, A\B, B\A, and
M \ (A∪B).12

Results
With this framework in place we can now turn to our main
question. To test whether approximate Kolmogorov complex-
ity can explain the three proposed semantic universals, we

11This can be understood from the fact that among all different
strings of a given uniformity there are only few strings of low com-
plexity. This is because when a string x of length n has a low com-
plexity, this means that x can be compressed to a shorter string x′ of
length n′ < n, and there are only few strings of length n′ compared
to the amount of strings of length n. Therefore, when taking two
quantifier representations with the same uniformity, over a random
sequence of models, they are likely to both have complexity values
that are close to the maximum complexity for that uniformity (which
are thus similar).

12In fact, there are in total 24 different lexicographic enumerations
over the quantifier models that we use, but only 12 of them are
unique, and the other 12 are the reverse of one of those 12 unique
sequences. As mentioned earlier, we use a measure that takes the
average between the complexity over a sequence and the complexity
of the reverse of that sequence. So this leaves 12 lexicographical
sequences over which we can compute this measure.
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look at minimally differing pairs of quantifiers in which one
satisfies the universal and the other does not. To compare our
complexity results with the learnability results of ST&S, we
test the same pairs of quantifiers. Let xi,Q be the binary repre-
sentation of quantifier Q, based on a sequence of all models
up to size i. For each quantifier Q, and for each model size
i from 1 to 10, we computed CLZ(xi,Q). We repeated this for
all 12 lexicographical model sequences. For each pair we
plotted the mean complexity against the maximum model size
(with confidence intervals), and we compared the differences
in complexity between the two quantifiers at each maximum
model size and model sequence. The code that we used for
generating these data and the data themselves can be found at
https://tinyurl.com/quantifierLZ.

Monotonicity
To test the MONOTONICITY UNIVERSAL, we looked at
two quantifier pairs, one with a downward- and one with
an upward-monotone quantifier. First, we compared the
downward-monotone quantifier at most 3, meaning |A∩
B| ≤ 3, with the non-monotone quantifier at least 6 or
at most 2, meaning |A∩B| ≥ 6 or |A∩B| ≤ 2. The mean
complexity values over all 12 lexicographical model sequences
and a 95% confidence interval are plotted in Figure 4. The
descriptive statistics show that for all model sizes larger
than 2, monotone at least 4 has a lower complexity than
non-monotone at least 6 or at most 2 (for model size
1 and 2 the differences are 0). This holds for each of the
12 different model sequences. The 12 individual plots for
this pair and all the other quantifier pairs can be found at
https://tinyurl.com/quantifierLZ.

Second, we compared the upward-monotone quantifier at
least 4, meaning |A∩B| ≥ 4, with the non-monotone quan-
tifier at least 6 or at most 2, meaning |A∩B| ≥ 6 or
|A∩B| ≤ 2. The mean complexity values over all 12 model
sequences and a 95% confidence interval are plotted in Figure
4. Exactly like for the downward-monotone quantifiers, the
descriptive statistics show that that for all model sizes larger
than 2, monotone at most 3 has a lower complexity than
non-monotone at least 6 or at most 2 (for model size
1 and 2 the differences are 0). Again, this holds for each of the
12 different model sequences.

These complexity results show the same patterns as the
learnability results of ST&S. This supports the hypothesis
that, in addition to learnability, the MONOTONICITY UNIVER-
SAL might be explained by differences in complexity, with
monotone quantifiers being less complex than non-monotone
quantifiers.

Quantity
To test the QUANTITY UNIVERSAL, we looked at two quan-
tifier pairs with a quantitative and a non-quantitative quanti-
fier. First, we compared the quantitative quantifier at least
3, with the non-quantitative quantifier first 3. The mean
complexity values over all 12 model sequences and a 95%
confidence interval are plotted in Figure 5. For model size 1,

Figure 4: Complexity values for at most 3 and at least
6 or at most 2, and for at least 4 and at least 6 or
at most 2. Mean values with 95% confidence interval over
all 12 lexicographic model sequences

2, and 3, the differences are 0, and for model sizes 4 to 10 the
descriptive statistics show that at least 3 is less complex in
59.5% of the cases, and more complex in 33.3% of the cases.

Second, we compared the quantitative quantifier at least
3, with the non-quantitative quantifier last 3. The main
complexity values over all 12 model sequences and a 95%
confidence interval are plotted in Figure 5. Again, for model
size 1, 2, and 3, the differences are 0, while for model sizes 4
to 10 the descriptive statistics show that at least 3 is less
complex in 52.4% of the cases and more complex in 42.9% of
the cases.

These complexity results do not show a robust pattern. How-
ever, they do show a tendency towards the quantitative quanti-
fiers being less complex than the non-quantitative quantifiers.
In the learnability results of ST&S, the quantitative quantifiers
were significantly easier to learn than the non-quantitative ones.
These findings neither confirm nor disconfirm the hypothesis
that, in addition to learnability, the QUANTITY UNIVERSAL
could be explained by differences in complexity.

Conservativity
To test the CONSERVATIVITY UNIVERSAL, we looked at two
quantifier pairs with a conservative and a non-conservative
quantifier. First, we compared the conservative quantifier
most, meaning |A∩B| > |A \B|, with the non-conservative
quantifier M, meaning |A|> |B|. The mean complexity values
over all 12 model sequences and a 95% confidence interval are
plotted in Figure 6. The descriptive statistics show that that
for all model sizes and for all model sequences, conservative
most has exactly the same complexity as non-conservative M.

3019



Figure 5: Complexity values for at least 3 and first 3,
and for at least 3 and last 3.

Second, we compared the conservative quantifier not all,
meaning A 6⊆ B, with the non-conservative quantifier not
only, meaning B 6⊆ A. Again, the mean complexity values
over all 12 model sequences and a 95% confidence interval
are plotted in Figure 6. For model size 1 to 10 descriptive
statistics show that not all is more complex in 55.9% of the
cases and less complex in 40.8% of the cases.

These results do not support the hypothesis that the CON-
SERVATIVITY UNIVERSAL can be explained by differences in
complexity. However, these complexity results do show the
same patterns as the learnability results of ST&S, as in their
results the conservative quantifiers were of similar learnability
as the non-conservative ones. This, however, does not consti-
tute a counterexample to the explanation of the universals via
learnability. As explained by ST&S one should not expect the
difference between conservative and non-conservative quanti-
fiers under their framework. This universal should rather be
explained in terms of the syntax-semantics interface.13

Discussion
Let us take stock. We have applied tools from algorithmic in-
formation theory—in particular, approximate Kolmogorov
complexity—to measure the complexity of quantifiers ex-
pressed in natural language. We did this in order to see whether
the complexity of a quantifier can explain the presence of
semantic universals for quantifiers, and whether these com-
plexity results show the same patterns as existing learnability
results. We found that monotone quantifiers are robustly less
complex than non-monotone quantifiers, and that conservative

13See Romoli (2015). Hunter and Lidz (2013) observe a difference
in children learning conservative vs. non-conservative quantifiers.
This result, if replicated, could be due to a bias acquired by the
children in earlier exposure to only conservative determiners.

Figure 6: Complexity values for most and M , and for not all
and not only.

and non-conservative quantifiers have equal or similar com-
plexity. For quantitative quantifiers we found a slight tendency
towards being less complex, but this pattern was not robust.
The results for monotonicity and conservativity agree with
an existing explanation in terms of learnability due to ST&S,
while the results on quantitativity hint in the same direction,
but not robustly so.

The results of the exploratory study that we undertook are
not decisive. Nevertheless, the results show substantial simi-
larity between the complexity and learnability of quantifiers
in the explanation of semantic universals. Our results for
monotonicity show that approximate Kolmogorov complexity
can indeed capture differences in complexity between quanti-
fiers that could not be captured with the complexity measures
from the previous approaches that we discussed. That nei-
ther complexity nor learnability distinguishes conservative
from non-conservative quantifiers provides further evidence
that conservativity has a different source than the other two
universals, as suggested by ST&S.

Much work remains to be done. To corroborate our results,
one would like to scale up beyond maximum model size of
n = 10; how to make this computationally efficient is not a
simple task. One would also like to expand the experiments
beyond the minimal pair methodology employed here. In order
to compare with existing results, it would be good to measure
the complexity of many quantifiers and see which semantic
properties best explain the complexities. The methods here
could also be applied to semantic universals in other domains,
to test the connection between complexity and learnability in
a more general setting. Finally, one can also look at other
measures of complexity: for instance, minimal derivation
length in a Lanuage of Thought for generating expressions
for quantifier meanings (Piantadosi, Tenenbaum, & Goodman,
2012; Goodman, Tenenbaum, & Gerstenberg, 2015).
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Vitányi, P. M. (2013). Similarity and denoising. Philosophical
Transactions of the Royal Society A, 371(1984).

Ziv, J., & Lempel, A. (1978). Compression of individual
sequences via variable-rate coding. IEEE Transactions on
Information Theory, 24(5), 530–536.

3021




