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Abstract 

We present a connectionist model of concept learning that 
integrates prototype and exemplar effects and reconciles 
apparently conflicting findings on the development of these 
effects. Using sibling-descendant cascade-correlation 
networks, we found that prototype effects were more 
prominent at the beginning of training and decreased with 
further training. In contrast, exemplar effects steadily 
increased with learning. Both kinds of effects were also 
influenced by category structure. Well-differentiated 
categories encouraged prototype abstraction while poorly 
structured categories promoted example memorization.  

Keywords: exemplar memorization; prototype abstraction; 
category structure; neural networks; sibling-descendant 
cascade-correlation. 

Introduction 
One of the most fundamental abilities is learning to group 
things into categories. This faculty allows us to classify new 
examples and make useful predictions concerning their 
properties. Two general classes of models have been 
proposed to account for phenomena in concept learning: 
prototype and exemplar models. Prototype models claim 
that experience with items that belong to a given category 
results in the formation of a summary representation of all 
the items observed (Posner & Keele, 1968; Reed, 1972). 
Subsequent categorization of a new item is then based on a 
comparison between the prototype and the new item. Thus, 
the more similar a particular instance is to the abstracted 
prototype, the more likely it is to be classified as a category 
member (Homa & Cultice, 1984; Homa, Sterling, & Trepel, 
1981). In contrast, exemplar models claim that all the 
observed items are remembered and that the categorization 
of a new item involves a comparison with items that are 
stored in memory (Hintzman, 1986). 

There is ample evidence in favor of both prototype 
(Homa, et al., 1981; Posner & Keele, 1968) and exemplar 
models (Medin & Schaffer, 1978; Palmeri & Nosofsky, 
2001), suggesting that both processes are used during 
category learning. What is more, the relative contribution of 
each mechanism to categorization might vary across 
development, as well as during training on a novel task. 
Early in development, categorization seems to be based on 
prototype representations while exemplar representations 
seem to increase with age (Hayes & Taplin, 1993; Mervis & 
Pani, 1980). There is also evidence that people are more 

likely to rely on prototypes at the beginning of a 
categorization task, and as training progresses they rely 
more on memorized exemplars (Horst, Oakes, & Madole, 
2005; Minda & Smith, 2001; Smith & Minda, 1998). These 
studies are consistent with a shift from early prototype use 
to later exemplar memorization. 

In addition to the amount of experience with a 
categorization task, category structure also influences which 
type of information is most used. Better-structured 
categories can be represented as separate clusters in 
psychological space, whereas poorly structured categories 
overlap with each other (Figure 1). Smith and Minda found 
that better structured categories encourage the early 
prototype formation, while poorly structured categories 
discourage it, and may even strongly disadvantage the use 
of prototypes (Smith & Minda, 1998). Their findings are 
consistent with a number of other studies (Homa, et al., 
1981; Horst, et al., 2005; Reed, 1978). 

 
 

 
 

Figure 1: Hypothetical representations of three concepts. P1, 
P2 and P3 represent three prototypes and the circles 

represent examples of each concept. A: prototypes are 
relatively far from each other and examples are tightly 
clustered around their respective prototype, yielding 

concepts that are easy to distinguish. B: prototypes are close 
to each other and examples are more widely dispersed 

around their respective prototype, resulting in overlapping 
concepts that are difficult to distinguish. 

 
 
The aim of this paper is to present a unified model able to 

simulate prototype and exemplar processes during concept 
learning. This unified model captures prototype and 
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exemplar effects with the same mechanism, as opposed to 
implementing two separate processes. We intend to 
demonstrate that it is possible for a unified mechanism to 
capture prototype and exemplar processes to different 
degrees depending on category structure and amount of 
training. We present here simulations with sibling-
descendant cascade-correlation (SDCC) networks (Baluja & 
Fahlman, 1994), which offer several demonstrated 
advantages including automatic network construction, rapid 
and strong learning, and psychological and neurological 
plausibility (Shultz, 2003, 2006; Shultz, Mysore, & Quartz, 
2007; Shultz, Thivierge, & Laurin, 2008). At the start, 
SDCC networks are composed of only input and output 
units. During training, examples were presented to the 
networks as specific activation patterns in the input layer. In 
encoder fashion, the networks gradually learned to 
reproduce this pattern on the output layer by changing the 
strength of the connections between the units and by 
recruiting and organizing new hidden units as needed.  

In such networks, a relatively small number of units can 
store a large number of representations, with each 
representation being a specific pattern of activation across 
the units. These representations are relatively distributed, as 
opposed to being localized in single units. Because of its 
distributed nature, a network is likely to represent similar 
items as similar patterns of activations on the hidden units. 
The connection weights between the units reflect all trained 
items; thus, they represent something similar to a prototype, 
or an average of the trained concepts. Even if the networks 
are never presented with the category prototype, they are 
likely to falsely recognize it because it is so similar to many 
of the trained items. In addition, because the networks retain 
some specific information about the trained items, they 
show a familiarity effect when presented with old items, 
which is typical of exemplar models (Shultz, et al., 2008). 

The networks exhibit a prototype effect if they perform 
better when presented with examples that are similar to the 
hypothetical prototype (typical examples) than when they 
are presented with examples that are less similar to the 
prototype (atypical examples). We also tested whether the 
networks memorized some of the features of the trained 
examples. If our networks become more familiar with the 
trained examples and perform better when presented with 
old rather than new examples, regardless of distance from 
the prototype, then they reveal an exemplar effect. 

We studied the impact of category structure and amount 
of training on prototype and exemplar effects. We 
manipulated category structure by changing the similarity 
between the prototypes of the trained categories and the 
similarity between each example and its prototype. Better-
structured categories have more dissimilar prototypes and 
examples that are more similar to the prototype of their 
category (in other words, examples that are more tightly 
clustered around their prototype). To study the impact of 
training experience, networks were presented with varying 
numbers of training trials. 

Method 
As in past work (Shultz, et al., 2008), we trained SDCC 
networks in encoder mode. Encoder networks learn to 
encode the input signal onto the hidden units, and then 
decode that hidden unit signal back onto the output units. 
Because error is computed as the sum-squared difference 
between input and output activations, this can be construed 
as self-supervised learning, without an externally-provided 
category name as target output. This type of learning occurs 
when people are not given information about category 
membership; hence, they can freely create concepts based 
on their observation of the examples (Homa & Cultice, 
1984). In contrast, learning with category labels is much 
simpler and quicker. In typical encoder fashion, there were 
no input-output connections in our networks because such 
connections would have made the learning too simple.  

 Also as in Shultz et al. (2008), we trained the networks 
with examples belonging to four concepts. Each example 
varied on ten binary dimensions. A prototype was first 
constructed by randomly assigning values of 0.5 or -0.5 to 
each dimension. We refer to it as the prototype of the loner 
concept because it was relatively isolated from the other 
three concepts. Another 10-dimensional vector orthogonal 
to the first one was randomly selected (the normalized inner 
product between these two vectors was zero). From this 
orthogonal vector, three prototypes were created by 
randomly flipping one, two or four values. Flipping a value 
means reversing its sign. These three prototypes were much 
closer to each other in the 10-dimensional space than to the 
loner vector. We refer to them as the trio. 

Nineteen examples were created from each prototype by 
flipping one or several values depending on the condition. 
Fifteen of these examples were used for training the 
networks, while four were used only during the test. Out of 
the fifteen trained examples, ten were closer to the prototype 
than the other five, i.e. they were created by flipping fewer 
values. We refer to the examples that were created through 
fewer flips as the close examples, and to the other ones as 
the far examples.  

For each of the four concept prototypes, we manufactured 
examples by flipping 1, 2, 4, or 8 values of the prototype, 
randomly selected without replacement, depending on 
condition and subject to three additional constraints: (a) 
each example had a unique combination of features to flip, 
ensuring example uniqueness, (b) each feature was flipped 
in at least one example, and (c) no feature was flipped in 
every example. This last constraint ensured that no defining 
features were inadvertently created.  

Out of the four examples that were used only during the 
test, two were close and two were far from the prototype. 
The networks were also tested on four of the trained 
examples, two that were randomly selected from the close 
examples, and the other two, from the far examples. Thus, 
testing consisted of presenting the networks with eight 
examples: two close trained examples, two far trained 
examples, two close test examples, and two far test 
examples. An exemplar effect is established if the networks 
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perform better on the trained examples than on the new test 
examples. Superior performance on the close examples 
versus the far ones demonstrates a prototype effect. 

We manipulated the structure of the categories, which 
was determined by two factors. First, the number of flips 
that were applied to the vector orthogonal to the loner to 
create the trio was varied. Applying fewer flips means that 
the three concepts are closer to each other, while performing 
more flips means that the concepts are more distinct from 
one another. Second, we varied the number of flips applied 
to the loner and the trio to create examples. Fewer flips 
indicate that the examples are more tightly clustered around 
their prototype, while more flips imply a more dispersed 
distribution of the examples. These two manipulations affect 
the overall distinctiveness of the concepts. The concepts are 
more separate from one another with more prototype flips 
and fewer example flips. 

Three levels of category structure were defined. The 
number of flips applied to the vector orthogonal to the loner 
to create the trio was 4 (Condition Easy), 2 (Condition 
Intermediate), or 1 (Condition Difficult). The number of 
flips applied to each prototype to create the close examples 
was 1 (Condition Easy), 2 (Condition Intermediate), or 4 
(Condition Difficult). Finally, the number of flips applied to 
each prototype to create the far examples was 2 (Condition 
Easy), 4 (Condition Intermediate), or 8 (Condition 
Difficult). 

The three conditions may be conceptualized as three 
levels of difficulty of a categorization task. Condition Easy 
was the easiest task because the examples were tightly 
distributed around their prototype and the concepts were 
well-differentiated. Condition Difficult was the hardest task 
because the examples were widely dispersed around their 
prototype and the concepts overlapped. Condition 
Intermediate was an easier task than Condition Difficult, but 
harder than Condition Easy. The concepts overlapped less 
than in Condition Difficult, but they were not as well 
differentiated as in Condition Easy. 

To study the influence of training experience, the 
networks were trained for different numbers of epochs, 
varying from 5 to 700. An epoch is a training period during 
which a network is exposed to all trained examples once in 
random order. The networks were trained for 5, 10, 25, 50, 
75, 100, 200, 300, 400 or 700 epochs. Twenty networks 
were trained for each number of epochs in each of the three 
conditions, for a total of 600 networks. 

Results 
We reserve a detailed discussion of all our findings for a 
longer paper and we describe here only some of the most 
important results. We chose network error as the dependent 
measure, error being defined as the sum of the squared 
differences between inputs and outputs. Because network 
error is the difference between the input and output patterns, 
it reflects familiarization with the examples – how well the 
networks recognize the examples. Thus, lower network error 
indicates a higher level of familiarization with the examples. 

As training progressed, the mean network error decreased 
in all three conditions, reflecting the networks’ increased 
familiarity with the examples. At the end of training, the 
mean error for the trained examples approached zero. The 
mean error for the new test examples was higher than the 
error for the trained examples, although it had decreased 
considerably during training. This indicates that the 
networks learned the trained examples very well, and at the 
same time generalized their acquired knowledge to the test 
examples never seen in training.. 

The most central findings of the simulations are illustrated 
in Figures 2 and 3. The figures show the prototype and 
exemplar effects in each condition as a function of the 
number of epochs. 

Figure 2 shows the prototype effect calculated separately 
for the trained and for the new test examples. We calculated 
the prototype effect for each network by subtracting the 
mean error for the close examples from the mean error of 
the far examples. Thus, the prototype effect on the trained 
examples is the difference between the error for the far-train 
examples and the close-train examples. The prototype effect 
on the test examples is the error difference between the far-
test and the close-test examples. A positive difference 
indicates a prototype effect, that is, smaller error for the 
examples that are more similar to the prototype. 

Figure 3 illustrates the exemplar effect calculated 
separately for the far and the close examples. We calculated 
the exemplar effect by subtracting the mean error for the 
train examples from the mean error of the test examples. 
The exemplar effect on the close examples is the error 
difference between the close-test and the close-train 
examples. The exemplar effect on the far examples is the 
error difference between the far-test and the far-train 
examples. A positive difference indicates an exemplar 
memorization effect, which means that the error is smaller 
for the trained examples than for the test ones; or, in other 
words, that the networks are more familiar with examples 
that have already been encountered than with novel 
examples. 

We performed an ANOVA on the error differences shown 
in Figure 2 with the within-network factor Train vs. Test 
Examples and the between-network factors Number of 
Epochs and Condition. We performed a similar ANOVA on 
the error differences shown in Figure 3. All main effects and 
interactions were reliable in both analyses, minimum F(9, 
570) = 4.54, p < .001. We analyzed these effects separately 
for each condition, and found that all main effects and 
interactions were significant, minimum F(9, 190) = 2.49, p 
= .010, except the main effect of Epoch in Condition 
Difficult in Figure 2, F < 1. Hence, we describe the results 
without referring to more detailed statistical tests because all 
the effects we discuss are licensed by these significant main 
and interactive effects. 

Category Structure 
The difficulty of the task had a sizeable impact on the 
prototype effect (Figure 2). The prototype effect was quite 
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large in Condition Easy and somewhat smaller in Condition 
Intermediate. This effect was reversed in Condition Difficult 
as demonstrated by the negative difference scores; 
networks’ error was higher for the close examples than for 
the far ones. The close examples in Condition Difficult 
shared a high degree of similarity, causing the networks to 
easily confuse them with each other. Thus, examples that 

shared a high degree of similarity with their prototype no 
longer had an advantage over ones that did not. This finding 
is consistent with Smith and Minda’s (1998) psychological 
results. They found a reversed prototype effect with poorly 
structured categories. Thus, the prototype effect diminished 
and even reversed as the difficulty of the task increased. 
 

 
 

 
Figure 2: Prototype effect on the trained and the new test examples. 

 
 

 
Figure 3: Exemplar effect on the examples that were close and those that were far from the prototype. 

 
 

In contrast, the exemplar effect increased with the 
difficulty of the task (Figure 3), which is also consistent 
with psychological data (Minda & Smith, 2001; Smith & 
Minda, 1998). The networks relied more on exemplar 
memorization as the task became increasingly difficult and 
the prototype representation no longer provided useful 
information for discriminating the categories. 

Amount of Training 
The exemplar effect increased with the number of epochs in 
every condition (Figure 3), simulating Smith and Minda’s 
psychological results (Minda & Smith, 2001; Smith & 
Minda, 1998). The prototype effect on the trained examples, 
on the other hand, decreased with the number of epochs in 
Conditions Easy and Intermediate, but was less affected by 
the number of training epochs in Condition Difficult. The 
decreasing prototype effect for the trained examples is 
consistent with Smith and Minda’ results with trained 
examples. They did not test new examples in their 
experiments. Our networks make another novel prediction, 
namely that the prototype effect should increase with 
training for new test examples, especially if the 
categorization task is easy (left panel of Figure 2). 

Networks became increasingly familiar with trained 
examples because they could memorize them. As training 
progressed, networks’ recognition of trained examples relied 
more on individual memories, and less on their similarity to 
the prototype (just as with Smith and Minda). In contrast, 
novel examples had not been memorized. Hence, 
recognition of novel examples relied solely on their 
similarity to the prototype, and this prototype effect 
increased during training presumably because the prototype 
representation became increasingly well-defined. 

Interaction Between Exemplar and Prototype 
Effects 
The prototype effect was greater for new test examples than 
for old, trained ones (Figure 2). This finding seems realistic 
because only the trained examples could be memorized. 
Furthermore, the exemplar effect was stronger on the far 
examples than on the close examples in Conditions Easy 
and Intermediate (Figure 3, left and middle panels). Features 
of atypical instances were better remembered than those of 
typical instances. This presumably occurred because there 
was less interference between the memories of the atypical 
examples than between the similar memories of the typical 
examples. This is consistent with Light, Kayra-Stuart and 
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Hollander’s (1979) finding that adults’ recognition memory 
is better for atypical rather than typical faces. Similar results 
were found by Going and Read (1974) and Cohen and Carr 
(1975). 

In Condition Difficult (right panel of Figure 3), however, 
the exemplar effect was larger on the close examples than 
on the far ones. The close examples were disadvantaged by 
their similarity to their prototype (because of the overlap 
between the categories); hence, these examples may have 
been the ones that benefited most from exemplar 
memorization. Reitman and Bower (1973) reported a similar 
effect with adult participants who were trained on an easy or 
a difficult categorization task. Following training, 
participants were given a recognition test. The results for the 
easy task were similar to Light et al.’s (1979) psychological 
results and our simulations in Conditions Easy and 
Intermediate: recognition performance was better for 
atypical examples. In contrast, their results for the difficult 
task were reversed: recognition performance was better for 
typical examples, matching our simulations in Condition 
Difficult. 

Thus, prototype and exemplar effects seem to 
complement each other, each process having a stronger 
influence on the examples that are not favored by the other. 

Discussion 
We demonstrated that a unified model can capture both 
prototype and exemplar effects. The networks abstracted 
concept prototypes and at the same time remembered some 
features of the trained examples. 

Networks also successfully simulated the prototype-to- 
exemplar trend as the learning task increased in difficulty 
(Minda & Smith, 2001; Smith & Minda, 1998). Our 
networks also showed an increase in the size of the 
exemplar effect from Condition Easy to Condition Difficult, 
as the concepts became more poorly structured. At the same 
time, the prototype effect substantially decreased and even 
reversed as difficulty level increased. For better-structured 
concepts (Conditions Easy and Intermediate), the exemplar 
effect was greater farther away from the prototype; for 
poorly structured concepts (Condition Difficult), the 
exemplar effect was greater closer to the prototype. As we 
mentioned earlier, this is consistent with a number of 
psychological studies. 

The networks also exhibited a shift from prototype use to 
exemplar memorization during training. We observed an 
increase in the exemplar effect and a decrease in the 
prototype effect on the trained examples. Better 
memorization with more training makes perfect sense, as 
memorization depends on the amount of experience. A 
possible reason for the decrease in the use of prototype 
information for the trained examples is that it is less needed 
as the examples are better remembered. This is consistent 
with psychological studies reviewed earlier (Hayes & 
Taplin, 1993; Horst, et al., 2005; Mervis & Pani, 1980; 
Minda & Smith, 2001; Smith & Minda, 1998). 

Other studies, however, reported that exemplar 
information is used earlier in development, and the ability to 
abstract a prototype emerges later (Fisher & Sloutsky, 2005; 
Sloutsky & Fisher, 2004; Tighe, Tighe, & Schechter, 1975). 
Fisher and Sloutsky (2005), for instance, found that younger 
children’s memory for trained items was significantly better 
than that of older children and adults, suggesting that the 
latter relied more on an average prototype representation.  

It is important to note a key difference with these studies. 
The studies finding an exemplar-to-prototype shift used 
concepts with defining features, while those that found a 
prototype-to-exemplar shift did not (and neither did our 
simulations). Defining features are present in all examples 
that belong to a category, and only in those, allowing perfect 
categorization performance. For example, Tighe et al. 
(1975) used a word classification task in which names of 
animals belonged to one category, while body parts 
belonged to another. Following this classification task, 
adults were less likely to correctly recognize a previously 
encountered example than children. Tighe et al. proposed 
that adult participants used the defining feature as an 
encoding device and learned less about the other features of 
the words. In contrast, children are less likely to use 
defining features (Keil & Batterman, 1984), which may 
result in better memorization of the probabilistic features. 

Interestingly, Shultz et al. (2008) successfully simulated 
this shift from probabilistic feature learning to the use of 
defining features using the same kind of networks presented 
here. To test the hypothesis that defining features affect 
exemplar memorization in the present work, we repeated the 
simulations for Condition Intermediate, but added two 
defining features to each example. Although exemplar 
memorization did not decrease with training (on the 
contrary, it increased), overall network error was higher in 
the simulations with defining features. These networks were 
less familiar with the trained examples than if they had been 
trained without defining features. This is consistent with 
Tighe et al.’s (1975) finding that adults, who use defining 
features more readily than children, exhibit poorer 
recognition performance. This explains why Tighe et al. and 
other researchers who also used defining features (Fisher & 
Sloutsky, 2005; Sloutsky & Fisher, 2004) found better 
memorization of exemplars in children than in adults. 

To conclude, our simulations further decrease the gap 
between the numerous incongruent studies reported in the 
literature regarding the development of exemplar and 
prototype effects during category learning. Indeed, 
considering factors such as the structure of the categories 
and the presence of defining features, there is considerable, 
unexpected coherence in these mixed results. Most 
importantly, we have demonstrated that it is possible for a 
single mechanism to capture a gradual shift in concept 
processing depending on task difficulty and the amount of 
experience. 
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