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Abstract 

We review the holographic correspondence between field theories and string/M theory, 
focusing on the relation between compactifications of string/M theory on Anti-de Sitter 
spaces and conformal field theories. We review the background for this correspondence 
and discuss its motivations and the evidence for its correctness. We describe the main 
results that have been derived from the correspondence in the regime that the field 
theory is approximated by classical or semiclassical gravity. We focus on the case of 
the N = 4 supersymmetric gauge theory in four dimensions, but we discuss also field 
theories in other dimensions, conformal and non-conformal, with or without supersym­
metry, and in particular the relation to QCD. We also discuss some implications for 
black hole physics. 
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Chapter 1 

Introd uction 

1.1 General Introduction and Overview 

The microscopic description of nature as presently understood and verified by experi­
ment involves quantum field theories. All particles are excitations of some field. These 
particles are pointlike and they interact locally with other particles. Even though 
quantum field theories describe nature at the distance scales we observe, there are 
strong indications that new elements will be involved at very short distances (or very 
high energies), distances of the order of the Planck scale. The reason is that at those 
distances (or energies) quantum gravity effects become important. It has not been 
possible to quantize gravity following the usual perturbative methods. Nevertheless, 
one can incorporate quantum gravity in a consistent quantum theory by giving up the 
notion that particles are pointlike and assuming that the fundamental objects in the 
theory are strings, namely one-dimensional extended objects [1, 2]. These strings can 
oscillate, and there is a spectrum of energies, or masses, for these oscillating strings. 
The oscillating strings look like localized, particle-like excitations to a low energy ob­
server. So, a single oscillating string can effectively give rise to many types of particles, 
depending on its state of oscillation. All string theories include a particle with zero 
mass and spin two. Strings can interact by splitting and joining interactions. The only 
consistent interaction for massless spin two particles is that of gravity. Therefore, any 
string theory will contain gravity. The structure of string theory is highly constrained. 
String theories do not make sense in an arbitrary number of dimensions or on any 
arbitrary geometry. Flat space string theory exists (at least in perturbation theory) 
only in ten dimensions. Actually, IO-dimensional string theory is described by a string 
which also has fermionic excitations and gives rise to a supersymmetric theory.l String 
theory is then a candidate for a quantum theory of gravity. One can get down to four 

lOne could consider a string with no fermionic excitations, the so called "bosonic" string. It lives 
in 26 dimensions and contains tachyons, signaling an instability of the theory. 
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dimensions by considering string theory on JR.4 x M6 where M6 is some six dimensional 
compact manifold. Then, low energy interactions are determined by the geometry of 
M 6 • 

Even though this is the motivation usually given for string theory nowadays, it is 
not how string theory was originally discovered. String theory was discovered in an 
attempt to describe the large number of mesons and hadrons that were experimentally 
discovered in the 1960's. The idea was to view all these particles as different oscillation 
modes of a string. The string idea described well some features of the hadron spectrum. 
For example, the mass of the lightest hadron with a given spin obeys a relation like 
m 2 

f'V T J2 + const. This is explained simply by assuming that the mass and angular 
momentum come from a rotating, relativistic string of tension T. It was later discovered 
that hadrons and mesons are actually made of quarks and that they are described by 
QeD. 

QeD is a gauge theory based on the group SU(3). This is sometimes stated by saying 
that quarks have three colors. QeD is asymptotically free, meaning that the effective 
coupling constant decreases as the energy increases. At low energies QeD becomes 
strongly coupled and it is not easy to perform calculations. One possible approach 
is to use numerical simulations on the lattice. This is at present the best available 
tool to do calculations in QeD at low energies. It was suggested by 't Hooft that the 
theory might simplify when the number of colors N is large [3]. The hope was that one 
could solve exactly the theory with N = 00, and then one could do an expansion in 
1/ N = 1/3. Furthermore, as explained in the next section, the diagrammatic expansion 

. of the field theory suggests that the large N theory is a free string theory and that 
the string coupling constant is 1/ N. If the case with N = 3 is similar to the case 
with N = 00 then this explains why the string model gave the correct relation between 
the mass and the angular momentum. In this way the large N limit connects gauge 
theories with string theories. The 't Hooft argument, reviewed below, is very general, 
so it suggests that different kinds of gauge theories will correspond to different string 
theories. In this review we will study this correspondence between string theories and 
the large N limit of field theories. We will see that the strings arising in the large N 
limit of field theories are the same as the strings describing quantum gravity. Namely, 
string theory in some backgrounds, including quantum gravity, is equivalent (dual) to 
a field theory. 

We said above that strings are not consistent in four flat dimensions. Indeed, if one 
wants to quantize a four dimensional string theory an anomaly appears that forces the 
introduction of an extra field, sometimes called the "Liouville" field [4]. This field on 
the string worldsheet may be interpreted as an extra dimension, so that the strings 
effectively move in five dimensions. One might qualitatively think of this new field as 
the "thickness" of the string. If this is the case, why do we say that the string moves 
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in five dimensions? The reason is that like any string theory, this theory.will contain 
gravity, and the gravitational theory will live in as many dimensions as the number of 
fields we have on the string. It is crucial then that the five dimensional geometry is 
curved, so that it can correspond to a four dimensional field theory, as described in 
detail below. 

The argument that gauge theories are related to string theories in the large N limit 
is very general and is valid for basically any gauge theory. In particular we could 
consider a gauge theory where the coupling does not run (as a function of the energy 
scale). Then, the theory is conformally invariant. It is quite hard to find quantum field 
theories that are conform ally invariant. In supersymmetric theories it is sometimes 
possible to prove exact conformal invariance. A simple example, which will be the 
main example in this review, is the supersymmetric SU(N) (or U(N)) gauge theory in 
four dimensions with four spinor supercharges (N = 4). Four is the maximal possible 
number of supercharges for a field theory in four dimensions. Besides the gauge 'fields 
(gluons) this theory contains also four fermions and six scalar fields· in the adjoint 
representation of the gauge group. The Lagrangian of such theories is completely 
determined by supersymmetry. There is a global SU(4) R-symmetry that rotates the 
six scalar fields and the four fermions. The conformal group in four dimensions is 
SO( 4,2)' including the usual Poincare transformations as well as scale transformations 
and special conformal transformations (which include the inversion symmetry x IJ ~ 

xJ1. / x 2
). These symmetries of the field theory should be reflected in· the dual string 

theory. The simplest way for this to happen is if the five dimensional geometry has these 
symmetries. Locally there is only one space with SO( 4,2) isometries: five dimensional 
Anti-de-Sitter space, or AdS5. Anti-de Sitter space is the maximally symmetric solution 
of Einstein's equations with a negative cosmological constant. In this supersymmetric 
case we expect the strings to also be supersymmetric. We said that superstrings move 
in ten dimensions. Now that we have added one more dimension it is not surprising any 
more to add five more to get to a ten dimensional space. Since the gauge theory has 
an SU( 4) ~ SO(6) global symmetry it is rather natural that the extra five dimensional 
space should be a five sphere, S5. So, we conclude that N = 4 U(N) Yang-Mills theory 
could be the same as ten dimensional superstring theory on AdS5 x S5 [5]. Here we 
have presented a very heuristic argument for this equivalence; later we will be more 
precise and give more evidence for this correspondence. 

The relationship we described between gauge theories and string theory on Anti-de­
Sitter spaces was motivated by studies of D-branes and black holes in strings theory. 
D-branes are solitons in string theory [6]. They corne in various dimensionalities. If 
they have zero spatial dimensions they are like ordinary localized, particle-type soliton 
solutions, analogous to the 't Hooft-Polyakov [7,8] monopole in gauge theories. These 
are called D-zero-branes. If they have one extended dimension they are called D-one-
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branes or D-strings. They are much heavier than ordinary fundamental strings when 
the string coupling is small. In fact, the tension of all D-branes is proportional to 1/ gs, 
where gs is the string coupling constant. D-branes are defined in string perturbation 
theory in a very simple way: they are surfaces where open strings can end. These 
open strings have some massless modes, which describe the oscillations of the branes, 
a gauge field living on the brane, and their fermionic partners. If we have N coincident 
branes the open strings can start and end on different branes, so they carry two indices 
that run from one to N. This in turn implies that the low energy dynamics is described 
by a U(N) gauge theory. D-p-branes are charged under p + I-form gauge potentials, 
in the same way that a O-brane (particle) can be charged under a one-form gauge 
potential (as in electromagnetism). These p + I-form gauge potentials have p + 2-form 
field strengths, and they are part of the massless closed string modes, which belong to 
the supergravity (SUGRA) multiplet containing the massless fields in flat space string 
theory (before we put in any D-branes). If we now add D-branes they generate a flux of 
the corresponding field strength, and this flux in turn contributes to the stress energy 
tensor so the geometry becomes curved. Indeed it is possible to find solutions of the 
supergravity equations carrying these fluxes. Supergravity is the low-energy limit of 
string theory, and it is believed that these solutions may be extended to solutions of 
the full string theory. These solutions are very similar to extremal charged black hole 
solutions in general relativity, except that in this case they are black branes with p 

extended spatial dimensions. Like black holes they contain event horizons. 

If we consider a set of N coincident D-3-branes the near horizon geometry turns out 
to be Ad55 x 55. On the other hand, the low energy dynamics on their world volume is 
governed by a U(N) gauge theory with N = 4 supersymmetry [9]. These two pictures of 
D-branes are perturbatively valid for different regimes in the space of possible coupling 
constants. Perturbative field theory is valid when gsN is small, while the low-energy 
gravitational description is perturbatively valid when the radius of curvature is much 
larger than the string scale, which turns out to imply that gsN should be very large. As 
an object is brought closer and closer to the black brane horizon its energy measured 
by an outside observer is redshifted, due to the large gravitational potential, and the 
energy seems to be very small. On the other hand low energy excitations on the 
branes are governed by the Yang-Mills theory. So, it becomes natural to conjecture 
that Yang-Mills theory at strong coupling is describing the near horizon region of 
the black brane, whose geometry is Ad55 x 55. The first indications that this is the 
case came from calculations of low energy graviton absorption cross sections [10, 11, 
12]. It was noticed there that the calculation done using gravity and the calculation' 
done using super Yang-Mills theory agreed. These calculations, in turn, were inspired 
by similar calculations for coincident D 1-D5 branes. In this case the near horizon 
geometry involves Ad53 x 53 and the low energy field theory living on the D-branes 
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is a 1 + 1 dimensional confo~mal field theory. In this D 1-D5 case there were numerous 
calculations that agreed between the field theory and gravity. First black hole entropy 
for extremal black holes was calculated in terms'of -the field theory in [13], and then 
agreement was shown for near extremal black holes [14, 15.] and for absorption cross 
sections [16, 17, 18]. More generally, we will see that correlation functions in the gauge 
theory can be calculated using the string theory (or gravity for large gsN) description, 
by considering the propagation of particles between different points in the boundary 
of AdS, the points where operators are inserted [19, 20]. 

Supergravities on AdS spaces were studied very extensively, see [21, 22] for reviews. 

One of the main points of this review will be that the strings coming. from gauge 
theories are very much like the ordinary superstrings that have been studied during the 
last 20 years. The only particular feature is that they are moving on a curved geometry 
(anti-de Sitter space) which has a boundary at spatial infinity. The boundary is at an 
infinite spatial distance, but a light ray can go to the boundary and come back in finite 
time. Massive particles can never get to the boundary. The radius of curvature of 
Anti-de Sitter space depends on N so that large N corresponds to a large radius of 
curvature. Thus, by taking N to be large we can make the curvature as small as we 
want. The theory in AdS includes gravity, since any string theory includes gravity. So 
in the end we claim that there is an equivalence between a gravitational theory and a 
field theory. However, the mapping between the gravitational and field theory degrees 
of freedom is quite non-trivial since the field theory lives in a lower dimension. In some 
sense the field theory (or at least the set of local observables in the field theory) lives 
on the boundary of spacetime. One could argue that in general any quantum gravity 
theory in AdS defines a conformal field theory (CFT) "on the boundary". In some 
sense the situation is similar to the correspondence between three dimensional Chern­
Simons theory and a WZW model on the boundary [23]. This is a topological theory in 
three dimensions that induces a normal (non-topological) field theory on the boundary. 
A theory which includes gravity is in some sense topological since one is integrating 
over all metrics and therefore the theory does not depend on the metric. Similarly, 
in a quantum gravity theory we do not have any local observables. Notice that when 
we say that the theory includes "gravity on AdS" we are considering any finite energy 
excitation, even black holes in AdS. So this is really a sum over all spaceti~es that are 
asymptotic to AdS at the boundary. This is analogous to the usual flat space discussion 
of quantum gravity, where asymptotic flatness is required, but the spacetime could have 
any topology as long as it is asymptotically flat. The asymptotically AdS case as well 
as the asymptotically flat cases are special in the sense that one can choose a natural 
time and an associated Hamiltonian to define the quantum theory. Since black holes 
might be present this time coordinate is not necessarily globally well-defined, but it is 
certainly well-defined at infinity. If we assume that the conjecture we made above is 

8 

·1 



valid, then the U( N) Yang-Mills theory gives a non-perturbative definition of string 
theory on AdS. And, by taking the limit N -t 00, we can extract the (ten dimensional 
string theory) flat space physics, a procedure which is in principle (but not in detail) 
similar to the one used in matrix theory [24]. 

The fact that the field theory lives in a lower dimensional space blends in perfectly 
with some previous speculations about quantum gravity. It was suggested [25, 26] 
that quantum gravity theories should be holographic, in the sense that physics in some 
region can be described by a theory at the boundary with no more than oIle degree of 
freedom per Planck area. This "holographic" principle comes from thinking about the 
Bekenstein bound which states that the maximum amount of entropy in some region 
is given by the area of the region in Planck units [27]. The reason for this bound is 
that otherwise black hole formation could violate the second law of thermodynamics. 
We will see that the correspondence between field theories and string theory on AdS 
space (including gravity) is a concrete realization of this holographic principle. 

The review is organized as follows. 

In the rest of the introductory chapter, we present background material. In section 
1.2, we present the 't Hooft large N limit and its indication that gauge theories may 
be dual to string theories. In section 1.3, we review the p-brane supergravity solutions. 
We discuss D-branes, their world volume theory and their relation to the p-branes. We 
discuss greybody factors and their calculation for black holes built out of D-branes. 

In chapter 2, we review conformal field theories and AdS spaces. In section 2.1, we 
give a brief description of conformal field theories. In section 2.2, we summarize the 
geometry of AdS spaces and gauged supergravities. 

In chapter 3, we "derive" the correspondence between supersymmetric Yang Mills 
theory and string theory on AdS5 x S5 from the physics of D3-branes in string the­
ory. We define, in section 3.1, the correspondence between fields in the string theory 
and operators of the conformal field theory and the prescription for the computation 
of correlation functions. We also point out that the correspondence gives an explicit 
holographic description of gravity. In section 3.2, we review the direct tests of the dual­
ity, including matching the spectrum of chiral primary operators and some correlation 
functions and anomalies. Computation of correlation functions is reviewed in section 
3.3. The isomorphism of the Hilbert spaces of string theory on AdS spaces and of 
CFTs is decribed in section 3.4. We describe how to introduce Wilson loop operators 
in section 3.5. In section 3.6, we analyze finite temperature theories and the thermal 
phase transtion. 

In chapter 4, we review other topics involving AdS5. In section 4.1, we consider 
some other gauge theories that arise from D-branes at orbifolds, orientifolds, or conifold 
points. In section 4.2, we review how baryons and instantons arise in the string theory 
description. In section 4.3, we study some deformations of the CFT and how they arise 
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in the string theory description. 

In chapter 5, we describe a similar correspondence involving 1 + 1 dimensional eFTs 
and AdS3 spaces. We also describe the relation of tbese results to black holes in five 
dimensions. 

In chapter 6, we consider other examples of the AdS/eFT correspondence as well as 
non conformal and non supersymmetric cases. In section 6.1, we analyse the M2 and M5 
branes theories, and go on to describe situations that are not conformal, realized on the 
worldvolume of various Dp-branes, and the "little string theories" on the worldvolume 
of NS 5-branes. In section 6.2, we describe an approach to studying theories that 
are confining and have a behavior similar to QeD in three and four dimensions. We 
discuss confinement, (}-vacua, the mass spectrum and other dynamical aspects of these 
theories. 

Finally, the last chapter is devoted to a summary and discussion. 

Other reviews of this subject are [28, 29, 30, 31]. 

1.2 L<irge N Gauge Theories as String Theories 

The relation between gauge theories and string theories has been an interesting topic 
of research for over three decades. String theory was originally developed as a theory 
for the strong interactions, due to various string-like aspects of the strong interactions, 
such as confinement and Regge behavior. It was later realized that there is another 
description of the strong interactions, in terms of an SU(3) gauge theory (QeD), which 
is consistent with all experimental data to date. However, while the gauge theory de­
scription is very useful for studying the high-energy behavior of the strong interactions, 
it is very difficult to use it to study low-energy issues such as confinement and chiral 
symmetry breaking (the only current method for addressing these issues in the full 
non-Abelian gauge theory is by numerical simulations). In the last few years many 
examples of the phenomenon generally known as "duality" have been discovered, in 
which a single theory has (at least) two different descriptions, such that when one 
description is weakly coupled the other is strongly coupled and vice versa (examples of 
this phenomenon in two dimensional field theories have been known for many years). 
One could hope that a similar phenomenon would apply in the theory of the strong 
interactions, and that a "dual" description of QeD exists which would be more ap­
propriate for studying the low-energy regime where the gauge theory description is 
strongly coupled. 

There are several indications that this "dual" description could be a string the­
ory. QeD has in it string-like objects which are the flux tubes or Wilson lines. If 
we try to separate a quark from an anti-quark, a flux tube forms between them (if 
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'IjJ is a quark field, the operator if; (O)'IjJ( x) is not gauge-invariant but the operator 
if;(O)Pexp(iJ;A/-Ldx/-L)'IjJ(x) is gauge-invariant). In many ways these flux tubes be­
have like strings, and there have been many attempts to write down a string theory 
describing the strong interactions in which the flux tubes are the basic objects. It 
is clear that such a stringy description would have many desirable phenomenological 
attributes since, after all, this is how string theory was originally discovered. The most 
direct indication from the gauge theory that it could be described in terms of a string 
theory comes from the 't Hooft large N limit [3], which we will now describe in detail. 

Yang-Mills (YM) theories in four dimensions have no dimensionless parameters, since 
the gauge coupling is dimensionally transmuted into the QCD scale AQCD (which is the 
only mass scale in these theories). Thus, there is no obvious perturbation expansion 
that can be performed to learn about the physics near the scale AQCD. However, an 
additional parameter of SU(N) gauge theories is the integer number N, and one may 
hope that the gauge theories may simplify at large N (despite the larger number of 
degrees of freedom), and have a perturbation expansion in terms of the parameter 1/ N. 
This turns out to be true, as shown by 't Hooft based on the following analysis (reviews 
of large N QCD may be found in [32, 33]). 

First, we need to understand how to scale the coupling gYM as we take N -+ 00. 

In an asymptotically free theory, like pure YM theory, it is natural to scale gYM so 
that A QCD remains constant in the large N limit. The beta function equation for pure 
SU(N) YM theory is 

dgYM _ _ gNg~M O( 5 ) 
J.L dl-l - 3 161f2 + gYM' (1.1 ) 

so the leading terms are of the same order for large N if we take N -+ 00 while keeping 
A = g? M N fixed (one can show that the higher order terms are also of the same order 
in this limit). This is known as the 't Hooft limit. The same behavior is valid if we 
include also matter fields (fermions or scalars) in the adjoint representation, as long as 
the theory is still asymptotically free. If the theory is conformal, such as the N = 4 
SYM theory which we will discuss in detail below, it is not obvious that the limit of 
constant A is the only one that makes sense, and indeed we will see that other limits, in 
which A -+ 00, are also possible. However, the lirriitof constant A is still a particularly 
interesting limit and we will focus on it in the remainder of this chapter. 

Instead of focusing just on the YM theory, let us describe a general theory which 
has some fields <Pi, where a is an index in the adjoint representation of SU(N), and i 
is some label of the field (a spin index, a flavor index, etc.). Some of these fields can 
be ghost fields (as will be the case in gauge theory). We will assume that as in the 
YM theory (and in the N = 4 SYM theory), the 3-point vertices of all these fields are 
proportional to 9Y M, and the 4-point functions to g? M, so the Lagrangian is of the 
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schematic form 

for some constants cijk and dijk1 (where we have assumed that the interactions are 
SU(N)-invariant; mass terms can also be added and do not change the analysis). 
Rescaling the fields by <Pi = gyMq,i, the Lagrangian becomes 

. .£ rv -i- [Tr(d<Pid<Pi ) + cijkTr(<Pi<Pj<Pk) + ~jklTr(<Pi<Pj<Pk<PI)] , (1.3) 
gYM 

with a coefficient of 1 I g~ M = N I A in front of the whole Lagrangian. 

Now, we can ask what happens to correlation functions in the limit of large N 

with constant A. Naively, this is a classical limit since the coefficient in front of the 
Lagrangian diverges, but in fact this is not true since the number of components in 
the fields also goes to infinity in this limit. We can write the Feynman diagrams of 
the theory (1.3) in a double line notation, in which an adjoint field q,a is represented 
as a direct product of a fundamental and an anti-fundamental field, q,~, as in figure 
1.1. The interaction vertices we wrote are all consistent with this sort of notation. The 
propagators are also consistent with it in a U(N) theory; in an SU(N) theory there is 
a small mixing term 

(q,~q,7) <X (t5ft5~ - ~t5;t5t), (1.4) 

which makes the expansion slightly more complicated, but this involves only subleading 
terms in the large N limit so we will neglect this diff~rence here. Ignoring the second 
term the propagator for the adjoint field is (in terms of the index structure) like that of a 
fundamental-anti-fundamental pair. Thus, any Feynman diagram of adjoint fields may 
be viewed as a network of double lines. Let us begin by analyzing vacuum diagrams 
(the generalization to adding external fields is simple and will be discussed below). In 
such a diagram we can view these double lines as forming the edges in a simplicial 
decomposition (for example, it could be a triangulation) of a surface, if we view each 
single-line loop as the perimeter of a face of the simplicial decomposition. The resulting 
surface will be oriented since the lines have an orientation (in one direction for a 
fundamental index and in the opposite direction for an anti-fundamental index). When 
we compactify space by adding a point at infinity, each diagram thus corresponds to a 
compact, closed, oriented surface. 

What is the power of N and A associated with such a diagram? From the form 
of (1.3) it is clear that each vertex carries a coefficient proportional to NI A, while 
propagators are proportional to AI N. Additional powers of N come from the sum over 
the indices in the loops, which gives a factor of N for each loop in the diagram (since 
each index has N possible values). Thus, we find that a diagram with V vertices, E 

12 



· · , 

· , 

, · · , , , , 

----"9----_ -
, , , , 

, 

· · · · · , - · - , - · ----0----

;&: 
, - ,)f.:)" 

, , 

-~~' )f 

· , 
· · · , 

· · · · 

N2 

Figure 1.1: Some diagrams in a field theory with adjoint fields in the standard repre­
sentation (on the left) and in the double line representation (on the right). The dashed 
lines are propagators for the adjoint fields, the small circles represent interaction ver­
tices, and solid lines carry indices in the fundamental representation. 

propagators (= edges in the simplicial decomposition) and F loops (= faces in the 
simplicial decomposition) comes with a coefficient proportional to 

(1.5) 

where X = V - E + F is the Euler character of the surface corresponding to the diagram. 
For closed oriented surfaces, X = 2 - 29 where 9 is the genus (the number of handles) 
of the surface. 2 Thus, the perturbative expansion of any diagram in the field theory 
may be written as a double expansion of the form 

00 00 00 

L N 2- 2g L Cg,i)',i = L N 2- 2g fgp..), ( 1.6) 
g=O i=O g=O 

where fg is some polynomial in A (in an asymptotically free theory the A-dependence 
will turn into some AQcD-dependence but the general form is similar; infrared diver­
gences could also lead to the appearance of terms which are not integer powers of A). 
In the large N limit we see that any computation will be dominated by the surfaces 
of maximal X or minimal genus, which are surfaces with the topology of a sphere (or 

2We are discussing here only connected diagrams, for disconnected diagrams we have similar con­
tributions from each connected component. 

13 

I 



equivalently a plane). All these planar diagrams will give a contribution of order N2, 
while all other diagrams will be suppressed by powers of 1/ N 2

• For example, the first 
diagram in figure 1.1 is planar and proportional to N 2-3+3 = N 2 , while the second one 
is not and is proportional to N 4- 6+2 = N°. We presented our analysis for a general 
theory, but in particular it is true for any gauge theory coupled to adjoint matter fields, 
like the N = 4 SYM theory. The rest of our discussion will be limited mostly to gauge' 
theories, where only gauge-invariant (SU(N)-invariant) objects are usually of interest. 

The form of the expansion (1.6) is the same as one finds in a perturbative theory 
with closed oriented strings, if we identify 1/ N as the string coupling constant3 . Of 
course, we do not really see any strings in the expansion, but just diagrams with holes 
in them; however, one can hope that in a full non-perturbative description of the field 
theory the holes will "close" and the surfaces of the Feynman diagrams will become 
actual closed surfaces. The analogy of (1.6) with perturbative string theory is one 
of the strongest motivations for believing that field theories and string theories are 
related, and it suggests that this relation would be more visible in the large N limit 
where the dual string theory may be weakly coupled. However, since the analysis 
was based on perturbation theory which generally does not converge, it is far from a 
rigorous derivation of such a relation, but rather an indication that it might apply, 
at least for some field theories (there are certainly also effects like instantons which 
are non-perturbative in the 1/ N expansion, and an exact matching with string theory 
would require a matching of such effects with non-perturbative effects in string theory). 

The fact that 1/ N behaves as a coupling constant in the large N limit can also be 
seen directly in the field theory analysis of the 't Hooft limit. While we have derived the 
behavior (1.6) only for vacuum diagrams, it actually holds for any correlation function 
of a product of gauge-invariant fields (Ilj=l Gj ) such that each Gj cannot be written as 

a product of two gauge-invariant fields (for instance, Gj can be of the form ~ Tr(Ili 4.>i)). 
We can study such a correlation function by adding to the action S -+ S + N "'E.- gj G j, 
and then, if W is the sum of connected vacuum diagrams we discussed above (but now 
computed with the new action), 

(1.7) 

Our analysis of the vacuum diagrams above holds also for these diagrams, since we 
put in additional vertices with a factor of N, and, in the double line representation, 
each of the operators we inserted becomes a vertex of the simplicial decomposition 
of the surface (this would not be true for operators which are themselves products, 

3In the conformal case, whe~e ..\ is a free parameter, there is actually a freedom of choosing the 
string coupling constant to be 1/ N times any function of,\ without changing the form of the expansion, 
and this will be used below. 
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and which would correspond to more than one vertex). Thus, the leading contribution 
to (I1j=l Gj ) will come from planar diagrams with n additional operator insertions, 
leading to 

(1.8) 

in the 't Hooft limit. We see that (in terms of powers of N) the 2-point functions of the 
Gj's corne out to be canonically normalized, while 3-point functions are proportional 
to l/N, so indeed l/N is the coupling constant in this limit (higher genus diagrams 
do not affect this conclusion since they just add higher order terms in 1/ N). In the 
string theory analogy the operators Gj would become vertex operators inserted on the 
string world-sheet. For asymptotically free confining theories (like QeD) one can show 
that in the large N limit they have an infinite spectrum of stable particles with rising 
masses (as expected in a free string theory). Many additional properties of the large 
N limit are discussed in [34, 32] and other references. 

The analysis we did of the 't Hooft limit for SU(N) theories with adjoint fields 
can easily be generalized to other cases. Matter in the fundamental representation 
appears as single-line propagators in the diagrams, which correspond to boundaries of 
the corresponding surfaces. Thus, if we have such matter we need to sum also over 
surfaces with boundaries, as in open string theories. For SO(N) or USp(N) gauge 
theories we can represent the adjoint representation as a prod~ct of two fundamental 
representations (instead of a fundamental and an anti-fundamental representation), 
and the fundamental representation is real, so no arrows appear on the propagators in 
the diagram, and the resulting surfaces may be non-orient able. Thus, these theories 
seem to be related to non-orient able string theories [35]'. We will not discuss these cases 
in detail here, some of the relevant aspects will be discussed in section 4.1.2 below. 

Our analysis thus far indicates that gauge theories may be dual to string theories 
with a coupling proportional to 1/ N in the 't Hooft limit, but it gives no indication as to 
precisely which string theory is dual to a particular gauge theory. For two dimensional 
gauge theories much progress has been made in formulating the appropriate string 
theories [36, 37, 38, 39, 40, 41, 42, 43], but for four dimensional gauge theories there was 
no concrete construction of a corresponding string theory before the results reported 
below, since the planar diagram expansion (which corresponds to the free string theory) 
is very complicated. Various direct approaches towards constructing the relevant string 
theory were attempted, many of which were based on the loop equations [44] for the 
Wilson loop observables in the field theory, which are directly connected to a string­
type description. 

Attempts to directly construct a string theory equivalent to a four dimensional gauge 
theory are plagued with the well-known problems of string theory in four dimensions 
(or generally below the critical dimension). In particular, additional fields must be 
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added on the worldsheet beyond the four embedding coordinates of the string to ensure 
consistency of the theory. In the standard quantization of four dimensional string 
theory an additional field called the Liouville field arises [4], which may be interpreted 
as a fifth space-time dimension. Polyakov has suggested [45, 46] that such a five 
dimensional string theory could be related to four dimensional gauge theories if the 
couplings of the Liouville field to the other fields take some specific forms. As we will 
see, the AdS/CFT correspondence realizes this idea, but with five additional dimensions 
(in addition to the radial coordinate on AdS which can be thought of as a generalization 
of the Liouville field), leading to a standard (critical) ten dimensional string theory. 

1.3 Black p-Branes 

The recent insight into the connection between large N field theories and string theory 
has emerged from the study of p-branes in string theory. The p-branes were originally 
found as classical solutions to supergravity, which is the low energy limit of string 
theory. Later it was pointed out by Polchinski that D-branes give their full string 
theoretical description. Various comparisons of the tw~ descriptions led to the discovery 
of the AdS / CFT correspondence. 

1.3.1 Classical Solutions 

String theory has a variety of classical solutions corresponding to extended black holes 
[47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57]. Complete descriptions of all possible black 
hole solutions would be beyond the scope of this review, and we will discuss here only 
illustrative examples corresponding to parallel Dp branes. For a more extensive review 
of extended objects in string theory, see [58, 59]. 

Let us consider type II string theory in ten dimensions, and look for a black hole 
solution carrying electric charge with respect to the Ramond-Ramond (R-R) (p + 1)­
form Ap+l [48,53,56]. In type IIA (lIB) theory, p is even (odd). The theory contains 
also magnetically charged (6 - p)-branes, which are electrically charged under the dual 
dA7_ p = *dAp+l potential. Therefore, R-R charges have to be quantized according to 
the Dirac quantization condition. To find the solution, we start with the low energy 
effective action in the string frame, 

_ . 1 J 10 r-:. ( -2'" ( ()2) 2 2) S-(27r)1L~ d Xy-g e n+4"V¢ -(8_p)!Fp+2 , (1.9) 

where Ls is the string length, related to the string tension (27ra't1 as a' = l~, and Fp+2 
is the field strength of the (p + I)-form potential, Fp+2 = dAp+l. In the self-dual case 
of p = 3 we work directly with the equations of motion. We then look for a solution 
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corresponding to a p-dimensional electric source of charge N for Ap+1, by requiring the 
Euclidean symmetry IS O(p) in p-dimensions: 

P 

ds 2 = ds~o_p + eO L dx i dxi. 
i=l 

(1.10) 

Here ds~o_p is a Lorentzian-signature metric in (10 - p)-dimensions. We also assume 
that the metric is spherically symmetric in (10 - p) dimensions with the R-R source at 
the origin,· 

r *Fp+2 = N, lss-p (1.11) 

where S8-p is the (8 - p)-sphere surrounding the source. By using the Euclidean 
symmetry ISO(p), we can reduce the problem to the one of finding a spherically 
symmetric charged black hole solution in (10 - p) dimensions [48, 53, 56]. The resulting 
metric, in the string frame, is given by 

with the dilaton field, 
-2<1> - -2j ( )-~ e - 98 - P , (1.13) 

where 

( )

7-P 

f±(p) = 1 _ r; , (1.14) 

and 9s is the asymptotic string coupling constant. The parameters r + and r _ are 
related to the mass M (per unit volume) and the RR charge N of the solution by 

(1.15) 

1 

where lp = 9lis is the 10-dimensional Planck length and dp is a numerical factor, 

(1.16) 

The metric in the Einstein frame, (9£ )p.v, is defined by multiplying the string frame 

metric 9p.v by J 9se -<I> in (1.9), so that the action takes the standard Einstein-Hilbert 
form, 

(1.17) 

The Einstein frame metric has a horizon at p = r+. For p :::; 6, there is also a curvature 
singularity at p = r _. When r + > r _, the singularity is covered by the horizon and 
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the solution can be regarded as a black hole. When r + < r _, there is a timelike naked 
singularity and the Cauchy problem is not well-posed. 

The situation is subtle in the critical case r + = r _. If p ::j:. 3, the horizon and the 
singularity coincide and there is a "null" singularity4. Moreover, the dilaton either 
diverges or vanishes at p = r +. This singularity, however, is milder than in the case of 
r + < r _, and the supergravity description is still valid up to a certain distance from 
the singularity. The situation is much better for p = 3. In this case, the dilaton is 
constant. Moreover, the p = r + surface is regular even when r + = r _, allowing a 
smooth analytic extension beyond p = r + [60j. 

According to (1.15), for a fixed value of N, the mass M is an increasing function of 
r +. The condition r + ?: r _ for the absence of the timelike naked singularity therefore 
translates into an inequality between the mass M and the R-R charge N, of the form 

(1.18) 

The solution whose mass M is at the lower bound of this inequality is called an extremal 
p-brane. On the other hand, when M is strictly greater than that, we have a non­

extremal black p-brane. It is called black since there is an event horizon for r + > r _. 
The area of the black hole horizon goes to zero in the extremal.limit r + = r _. Since 
the extremal solution with p ::j:. 3 has a singularity, the supergravity description breaks 
down near p = r + and we need to use the full string theory. The D-brane construction 
discussed below will give exactly such a description. The inequality (1.18) is also 
the BPS bound with respect to the lO-dimensional supersymmetry, and the extremal 
solution r + = r _ preserves one half of the supersymmetry in the regime where we can 
trust the supergravity description. This suggests ~hat the extremal p-brane is a ground 
state of the black p-brane for a given charge N. 

The extremal limit r + = r _ of the solution (1.12) is given by 

In this limit, the symmetry of the metric is enhanced from the Euclidean 'group I SO(p) 
to the Poincare group I SO(p, 1). This fits well with the interpretation that the extremal 
solution corresponds to the ground state of the black p-brane. To describe the geometry 
of the extremal solution outside of the horizon, it is often useful to define a new 
coordinate r by 

7-p _ 7-p 7-p 
r =p -r+, (1.20) 

4This is the case for p < 6. For p = 6, the singularity is timelike as one can see from the fact that 
it can be lifted to the Kaluza-Klein monopole in 11 dimensions. 
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and introduce the isotropic coordinates, ra = rOa (a = 1, ... ,9 - P; La(oa)2 = 1). The 
metric and the dilaton for the extremal p-brane are then written as 

1 ( P )' 9-p 
ds2 = fii(0 -dt2+Edx i dx i + VH(r) Edradra, 

H(r) i=l a=l 

(1.21) 

(1.22) 

where 
1 7-p 

r+ 
H(r) = -1 ( ) = 1 + ~, + p r P 

7-p d NL7-p r+ = pgs s . (1.23) 

The horizon is now located at r = o. 
In general, (1.21) and (1.22) give a solution to the supergravity equations of motion 

for any function H(r') which is a harmonic function in the (9 - p) dimensions which 
are transverse to the p-brane. For example, we may consider a more general solution, 
of the form 

k 7-p 

( 
_ '" r(i)+ 

Hr)=I+L..tI_ -1 7-' 
i=l r - ri p 

7-p d N L7-p 
r(i)+ = pgs is· (1.24) 

This is called a multi-centered solution and represents parallel extremal p-branes lo­
cated at k different locations, r = rj (i = 1,···, k), each of which carries Ni units of 
the R-R charge. 

So far we have discussed the black p-brane using the classical supergravity. This 
description is appropriate when the curvature of the p-brane geometry is small com­
pared to the string scale, so that stringy corrections are negligible. Since the strength 
of the curvature is characterized by r +, this requires r + » Ls. To suppress string loop 
corrections, the effective string coupling erf> also needs to be kept small. When p = 3, 
the dilaton is constant and we can make it small everywhere in the 3-brane geome­
try by setting gs < 1, namely lp < Is. If gs > 1 we might need to do an S-duality, 
gs -+ 1/ gs, first. Moreover, in this case it is known that the metric (1.21) can be 
analytically extended beyond the horizon r = 0, and that the maximally extended 
metric is geodesically complete and without a singularity [60]. The strength of the cur­
vature is then uniformly bounded by r+2. To summarize, for p = 3, the supergravity 
approximation is valid when 

Lp < Ls « r +. (1.25) 

Since r + is related to the R-R charge N as 

7-p d Nl7-p r + = pgs s , (1.26) 

this can also be expressed as 
1« gsN < N. (1.27) 

For p i= 3, the metric is singular at r = 0, and ,the supergravity description is valid 
only in a limited region of the spacetime. 
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1.3.2 D-Branes 

Alternatively, the extremal p-brane can be describeQ as a D-brane. For a review of D­
branes, see [61]. The Dp-brane is a (p+ I)-dimensional hyperplane in spacetime where 
an open string can end. By the worldsheet duality, this means that the D-brane is also 
a source of closed strings (see Fig. 1.2). In particular, it can carry the R-R charges. 
It was shown in [6] that, if we put N Dp-branes on top of each other, the resulting 
(p + 1 )-dimensional hyperplane carries exactly N units of the (p + I)-form charge. On 
the world sheet of a type II string, the left-moving degrees of freedom and the right­
moving degrees of freedom carry separate spacetime supercharges. Since the open 
string boundary condition identifies the left and right movers, the D-brane breaks at 
least one half of the spacetime supercharges. In type IIA (lIB) string theory, precisely 
one half of the supersymmetry is preserved if p is even (odd). This is consistent with 
the types of R-R charges that appear in the theory. Thus, the Dp-brane is a BPS object 
in string theory which carries exactly the same charge as the black p-bnl.ne solution in 
supergravi ty. 

(a) 

, 

I , 

\ 
I 
I 

(b) 

Figure 1.2: (a) The D-brane is where open strings can end. (b) The D-brane is a source 
of Closed strings. 

It is believed that the extremal p-brane in supergravity and the Dp-brane are two 
different descriptions of the same object. The D-brane uses the string worldsheet and, 
therefore, is a good description in string perturbation theory. When there are N D­
branes on top of each other, the effective loop expansion parameter for the open strings 
is 9sN rather than 9s, since each open string boundary loop ending on the D-branes 
comes with the Chan-Paton factor N as well as the string coupling 9s. Thus, the D­
brane description is good when 9sN « 1. This is complementary to the regime (1.27) 
where the supergravity description is appropriate. 

The low energy effective theory of open strings on the Dp-brane is the U(N) gauge 
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theory in (p + 1) dimensions with 16 supercharges [9J. The theory has (9 - p) scalar 
. fields & in the adjoint representation of U(N). If the vacuum expectation value (&) has 

k distinct eigenvalues5, with N1 identical eigenvalues ;;1, N2 identical eigenvalues ;;2 
and so on, the gauge group U(N) is brokep to U(Nt) x ... X U(Nk). This corresponds 
to the situation when N1 D-branes are at r1 = ;;1l;, N2 Dp-branes are at r2 = ;;2l;, 
and so on. In this case, there are massive W-bosons for the broken gauge groups. 
The W-boson in the bi-fundamental representation of U(Nj) x U(Nj) comes from the 
open string stretching between the D-branes at T: and rj, and the mass of the W­
boson is proportional to the Euclidean distance IT: - rj I between the D-branes. It is 
important to note that the same result is obtained if we use the supergravity solution 
for the multi-centered p-brane (1.24) and compute the mass of the string going from 
ri to fj, since the factor H(r)t from the metric in the r-space (1.21) is cancelled by 
the redshift factor H(r')-t when converting the string tension into energy. Both the 
D-brane description and the supergravity solution give the same value of the W-boson 
mass, since it is determined by the BPS condition. 

1.3.3 Greybody Factors and Black Holes 

An important precursor to the AdS/eFT correspondence was the calculation of grey­
body factors for black holes built out of D-branes. It was noted in [14J that Hawking 
radiation could be mimicked by processes where two open strings collide on a D-brane 
and form a closed string which propagates into the bulk. The classic computation of 
Hawking (see, for example, [62] for details) shows in a semi-classical approximation 
that the differential rate of spontaneous emission of particles of energy w from a black 
hole is 

(1.28) 

where v is the velocity of the emitted particle in the transverse directions, and the sign 
in the denominator is minus for bosons and plus for fermions. We use n to denote the 
number of spatial dimensions around the black hole (or if we are dealing with a black 
brane, it is the number of spatial dimensions perpendicular to the world-volume of the 
brane). TH is the Hawking temperature, and O"absorb is the cross-section for a particle 
coming in from infinity to be absorbed by the black hole. In the differential emission 
rate, the emitted particle is required to have a momentum in a small region dnk, and 
w is a function of k. To obtain a total emission rate we would integrate (1.28) over all 
k. 

If O"absorb were a constant, then (1.28) tells us that the emission spectrum is the same 

5There is a potential Ll J Tr[~1 , ~Jj2 for the scalar fields, so expectation values of the matrices 
~1 (I = 1, .. ·,9 - p) minimizing the potential are simult~neously diagonalizable. 
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as that of a blackbody. Typically, O"absorb is not constant, but varies appreciably over 
the range of finite wiTH, The consequent deviations from the pure blackbody spectrum 
have earned O"absorb the name "greybody factor." A 'successful microscopic account of 
black hole thermodynamics should be able to predict these greybody factors. In [16] 
and its many successors, it was shown that the D-branes provided an account of black 
hole microstates which was successful in this respect. 

Our first goal will be to see how grey body factors are computed in the context of 
quantum fields in curved spacetime. The literature on this subject is immense. We 
refer the reader to [63] for an overview of the General Relativity literature, and to 
[18, 11, 59] and references therein for a first look at the string theory additions. 

In studying scattering of particles off of a black hole (or any fixed target), it is con­
venient to make a partial wave expansion. For simplicity, let us restrict the discussion 
to scalar fields. Assuming that the black hole is spherically symmetric, one can write 
the asymptotic behavior at infinity of the time-independent scattering solution as 

(1.29) 

where x = r cos O. The term eikx represents the incident wave, and the second term 
in the first line represents the scattered wave. The Pe( cos 0) are generalizations of 
Legendre polynomials. The absorption probability for a given partial wave is given by 
Pe = 1 - ISeI 2

• An application of the Optical Theorem leads to the absorption cross 
section [64] , 

e = 2n-17r~ r (n - 1) (f n - 1) (f + n - 2) P. 
0" abs kn 2 + 2 f e . (1.30) 

Sometimes the absorption probability Pe is called the greybody factor. 

The strategy of absorption calculations in supergravity is to solve a linearized wave 
equation, most often the Klein-Gordon equation 0 <p = 0, using separation of variables, 
<p = e-iwt Pe( cos O)R(r). Typically the radial function cannot be expressed in terms of 
known functions, so some approximation scheme is used, as we will explain in more 
detail below. Boundary conditions are imposed at the black hole horizon corresponding 
to infalling matter. Once the solution is obtained, one can either use the asymptotics 
(1.29) to obtain Se and from it Pe and O";l:>s' or compute the particle flux at infinity 
and at the horizon and note that particle number conservation implies that Pe is their 
ratio. 

One of the few known universal results is that for wiTH « 1, O"abs for an s-wave 

massless scalar approaches the horizon area of the black hole [65]. This result holds 
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for any spherically symmetric black hole in any dimension. For w much larger than 
any characteristic curvature scale of the geometry, one can. use the geometric optics 
approximation to find O"abs. 

We will be interested in the particular black hole geometries for which string theory 
provides a candidate description of the microstates. Let us start with N coincident 
D3-branes, where the low-energy world-volume theory is d = 4 N = 4 U(N) gauge 
theory. The equation of motion for the dilaton is 0 <p = 0 where 0 is the laplacian for 
the metric 

It is convenient to change radial variables: r = Re-Z, <p = e2z 'Ij;. The radial equation 
for the t'th partial wave is 

(1.32) 

which is precisely Schrodinger's equation with a potential V(z) = -2w2 R2 cosh 2z. The 
absorption probability is precisely the tunneling probability for the barrier V(z): the 
transmitted wave at large positive z represents particles falling into the D3-branes. At 
leading order in small wR, the absorption probability for the t'th partial wave is 

(1.33) 

This result, together with a recursive algorithm for 'computing all corrections as a 
series in wR, was obtained in [66] from properties of associated Mathieu functions, 
which are the solutions of (1.32). An exact solution of a radial equation in terms of 
known special functions is rare. We will therefore present a standard approximation 
technique (developed in [67] and applied to the problem at hand in [10]) which is 
sufficient to obtain the leading term of (1.33). Besides, for comparison with string 
theory predictions we are generally interested only in this leading term. 

The idea is to find limiting forms of the radial equation which can be solved exactly, 
and then to match the limiting solutions together to approximate the full solution. 
Usually a uniformly good approximation can be found in the limit of small energy. The 
reason, intuitively speaking, is that on a compact range of radii excluding asymptotic 
infinity and the horizon, the zero energy solution is nearly equal to solutions with very 
small energy; and outside this region the wave equation usually has a simple limiting 
form. So one solves the equation in various regions and then matches together a global 
solution. 
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It is elementary to show that this can be done for (1.32) using two regions: 

far region: z » log wR 

near regIOn: z « - log w R 

[0; + w2 R~e2z - (f + 2?] l/J = 0 
l/J(z) = H;~)2(wReZ) 

[0; + w2 R2e-2z - (f + 2)2] l/J = 0 

l/J(z) = aJf+2(wRe-Z) 

(1.34) 

It is amusing to note the Z2 symmetry, z -+ -z, which exchanges the far region, 
where the first equation in (1.34) is just free particle propagation in flat space, and 
the near region, where the second equation in (1.34) describes a free particle in AdS5 • 

This peculiar symmetry was first pointed out in [10]. It follows from the fact that the 
full D3-brane metric comes back to itself, up to a conformal rescaling, if one sends 
r -+ R2 fr. A similar duality exists between six-dimensional flat space and AdS3 x S3 
in the DI-D5-brane solution, where the Laplace equation again can be solved in terms 
of Mathieu functions [68,69]. To our knowledge there is no deep understanding of this 
"inversion duality." 

For low energies wR « 1, the near and far regions overlap in a large domain, 
10gwR « z « -logwR, and by comparing the solutions in this overlap region one can 
fix a and reproduce the leading term in (1.33). It is possible but tedious to obtain the 
leading correction by treating the small terms which were dropped from the potential 
to obtain the limiting forms in (1.34) as perturbations. This strategy was pursued 
in [70, 71] before the exact solution was known, and in cases where there is no exact 
solution. The validity of the matching technique is discussed in [63], but we know of 
no rigorous proof that it holds in all the circumstances in which it has been applied. 

The successful comparison of the s-wave dilaton cross-section in [10] with a per­
turbative calculation on the D3-braneworld-volume was the first hint that Green's 
functions of N = 4 super-Yang-Mills theory could be computed from supergravity. 
In summarizing the calculation, we will follow more closely the conventions of [11], 
and give an indication of the first application of non-renormalization arguments [12] to 
understand why the agreement between supergravity and perturbative gauge theory 
existed despite their applicability in opposite limits of the 't Hooft coupling. 

Setting normalization conventions so that the pole in the propagator of the gauge 
bosons has residue one at tree level, we have the following action for the dilaton plus 
the fields on the brane: 

S = 2~2 f dlOxyg [n - ~(04))2 + ... ] + f d4 x [-~e-rJ>TrF:v + ... ] , (1.35) 

where we have omitted other supergravity fields, their interactions with one another, 
and also terms with the lower spin fields in the gauge theory action. A plane wave 

24 



of dilatons with energy wand momentum perpendicular to the brane is kinematically 
equivalent on the world-volume to a massive particle which can decay into two gauge 
bosons through the coupling !4>Tr F';'v. In fact, the absorption cross-section is given 
precisely by the usual expression for the decay rate into k particles: 

(1.36) 

In the Feynman rules for M, a factor of v'2K,2 attaches to an external dilaton line on 
account of the non-standard normalization of its kinetic term in (1.35). This factor 
gives O"abs the correct dimensions: it is a length to the fifth power, as appropriate for six 
transverse spatial dimensions. In (1.36), 1M 12 indicates summation over distinguishable 
processes: in the case of the s-wave dilaton there are N 2 such processes because of the 
number of gauge bosons. One easily verifies that IMI2 = N 2

K,
2
W

4
• Sf is a symmetry 

factor for identical particles in the final state: in the case of the s-wave dilaton, Sf = 2 
because the outgoing gauge bosons are identical. 

Carrying out the f = 0 calculation explicitly, one finds 

O"abs = ---
3271" 

(1.37) 

which, using (1.30) and the relation between Rand N, can be shown to be in precise 
agreement with the leading term of Po in (1.33). This is now understood to be due to 
a non-renormalization theorem for the two-point function of the operator 0 4 =~TrF2. 

To understand the connection with two-point fun~tions, note that an absorption 
calculation is insensitive to the final state on the D-brane world-volume. The absorption 
cross-section is therefore related to the discontinuity in the cut of the two-point function 
of the operator to which the external field couples. To state a result of some generality, 
let us suppose that a scalar field 4> in ten dimensions couples to a gauge theory operator 
through the action 

(1.38) 

where we use x to denote the four coordinates parallel to the world-volume and Yi to 
denote the other six. An example where this would be the right sort of coupling is the 
,eth partial wave of the dilaton [11]. The fh partial wave absorption cross-section for 
a particle with initial momentum p = w{ i + yd is obtained by summing over all final 
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Figure 1.3: An application of the optical theorem. 

states that could be created by the operator 01..·1:6 

(1.39) 

In the second equality we have applied the Optical Theorem (see figure 1.3). The 
factor of 2~2 is the square of the external leg factor for the incoming closed string 
state, which was included in the invariant amplitude M. The factor of we arises from 
acting with the .e derivatives in (1.38) on the incoming plane wave state. The symbol 
Disc indicates that one is looking at the unitarity cut in the two-point function in the 
s plane, where s = p2. The two-point function can be reconstructed uniquely from 
this cut, together with some weak conditions on regularity for large momenta. Results 
analogous to (1.39) can be stated for incoming particles with spin, only it becomes 
more complicated because a polarization must be specified, and the two-point function 
in momentum space includes a polynomial in p which depends on the polarization. 

Expressing absorption cross-sections in terms of two-point functions helps illustrate 
why there is ever agreement between the tree-level calculation indicated in (1.36) and 
the supergravity result, which one would a priori expect to pick up all sorts of ra­
diative corrections. Indeed, it was observed in [12] that the s-wave graviton cross­
section agreed between supergravity and tree-level gauge theory because the correlator 
(Tof3T-yo) enjoys a non-renormalization theorem. One way to see that there must be 
such a non-renormalization theorem is to note that conformal Ward identities relate 
this two-point function to (T;:Tof3T'Yo) (see for example [72] for the details), and su­
persymmetry in turn relates this anomalous three-point function to the anomalous 
VEV's of the divergence of R-currents in the presence of external sources for them. 
The Adler-Bardeen theorem [73] protects these anomalies, hence the conclusion. 

Another case which has been studied extensively is a system consisting of several 
D1 and D5 branes. The D1-branes are delocalized on the four extra dimensions of 
the D5-brane, which are taken to be small, so that the total system is effectively 1+1-

6There is one restriction on the final states: for a process to be regarded as an eth partial wave 
absorption cross-section, e units of angular momentum must be picked up by the brane. Thus Oil ... il 

must transform in the irreducible representation which is the eth traceless symmetric power of the 6 
of SO(6). 
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dimensional. We will discuss the physics of this system more extensively in chapter 5, 
and the reader can also find background material in [59]. For now our purpose is 
to show how supergravity absorption calculations relate to finite-temperature Green's 
functions in the 1 + I-dimensional theory. 

Introducing momentum along the spatial world-volume (carried by open strings at­
tached to the branes), one obtains the following ten-dimensional metric and dilaton: 

(1.40) 

The quantities 1'~, 1'~, and 1''k = 1'5 sinh2 a are related to the number of D1-branes, the 
number of D5-branes, and the net number of units of momentum in the X5 direction, 
respectively. The horizon radius, 1'0, is related to the non-extremality. For details, see 
for example [18]. If 1'0= 0 then there are only left-moving open strings on the world­
volume; if 1'0 #- a then there are both left-movers and right-movers. The Hawking 
temperature can be expressed as iH = -A + iR, where 

(1.41) . 

TL and TR have the interpretation of temperatures of the left-moving and right-moving 
sectors of the l+l-dimensional world-volume theory. There is a detailed and remark­
ably successful account of the Bekenstein-Hawking entropy using statistical mechanics 
in the world-volume theory. It was initiated in [13], developed in a number of subse­
quent papers, and has been reviewed in [59]. 

The region of parameter space which we will be interested in is 

(1.42) 

This is known as the dilute gas regime. The total energy of the open strings on the 
branes is much less than the constituent mass of either the D1-branes or the p5-branes. 
We are also interested in low energies W1'I,W1'5 « 1, but w/TL,R can be arbitrary thanks 
to (1.42), (1.41). The D1-D5-brane system is not stable because left-moving open 
strings can run into right-moving open string and form a closed string: indeed, this 
is exactly the process we aim to quantify. Since we have collisions of left and right 
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moving excitations we expect that the answer will contain the left and right moving 
occupation factors, so that the emission rate is 

2 1 1 d4k 
dr = gel! w w ) ( e 2TL - 1) (e 2TR - 1) (27r 4 

(1.43) 

where gel 1 is independent of the temperature and measures the coupling of the open 
strings to the closed strings. The functional form of (1.43) seems, at first sight, to be 
different from (1.28). But in order to compare them we should calculate the absorption 
cross sect ron appearing in (1.28). 

Off-diagonal gravitons hY1Y2 (with Yl,2 in the compact directions) reduce to scalars 
in six dimensions which obey the massless Klein Gordon equation. These so-called 
minimal scalars have been the subject of the most detailed study. We will consider 
only the s-wave and we take the momentum .along the string to be zero. Separation of 
variables leads to the radial equation 

( 
r5 sinh

2 a) 
1 + 2 r 

(1.44) 

Close to the horizon, a convenient radial variable is z = h = 1 - r5!r2. The matching 
procedure can be summarized as follows: 

far region: 

near regIOn: 

(1.45) 
After matching the near and far regions together and comparing the infalling flux at 
infinity and at the horizon, one arrives at 

w 

eTH -1 
(1.46) 

This has precisely the right form to ensure the matching of (1.43) with (1.28) (note 
that for a massless particle with no momentum along the black string v = 1 in (1.28)). 
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Figure 1.4: Low energy dynamics of extremal or near-extremal black branes. rs denotes 
the typical gravitational size of the system, namely the position where the metric 
significantly deviates from Minkowski space. The Compton wavelength of the particles 
we scatter is much larger than the gravitational size, A »rs. In this situation we 
replace the whole black hole geometry (a) by a point-like system in the transverse 
coordinates with localized excitations (b). These excitations are the ones described by 
the field theory living on the brane. 

It is possible to be more precise and calculate the coefficient in (1.43) and actually 
check that the matching is precise [16]. We leave this to chapter 5. 

Both in the D3-brane analysis and in the D1-D5-brane analysis, one can see that all 
the interesting physics is resulting from the near-horizon region: the far region wave­
function describes free particle propagation. For quanta whose Compton wavelength is 
much larger than the size of the black hole, the effect of the far region is merely to set 
the boundary conditions in the near region. See figure 1.4. This provides a motivation 
for the prescription for computing Green's functions, to be described in section 3.3: as 
the calculations of this section demonstrate, cutting out the near-horizon region of the 
supergravity geometry and replacing it with the D-branes leads to an identical response 
to low-energy external probes. 
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Chapter 2 

-Conformal Field Theories and AdS 
Spaces 

2.1 Conformal Field Theories 

Symmetry principles, and in particular Lorentz and Poincare invariance, playa major 
role in our understanding of quantum field theory. It is natural to look for possible 
generalizations of Poincare invariance in the hope that they may play some role in 
physics; in [74] it was argued that for theories with a non-trivial S-matrix there are 
no such bosonic generalizations. An interesting generalization of Poincare invariance 

. is the addition of a scale invariance symmetry linking physics at different scales (this 
is inconsistent with the existence of an S-matrix since it does not allow the standard 
definition of asymptotic states). Many interesting field theories, like Yang-Mills theory 
in four dimensions, are scale-invariant; generally this scale invariance does not extend 
to the quantum theory (whose definition requires a cutoff which explicitly breaks scale 
invariance) but in some special cases (such as the d = 4, N = 4 supersymmetric Yang­
Mills theory) it does, and even when it does not (like in QCD) it can still be a useful 
tool, leading to relations like the Callan-Symanzik equation. It was realized in the past 
30 years that field theories generally exhibit a renormalization group flow from some 
scale-invariant (often free) UV fixed point to some scale-invariant (sometimes trivial) 
IR fixed point, and statistical mechanics systems also often have non-trivial IR scale­
invariant fixed points. Thus, studying scale-invariant theories is interesting for various 
physical applications. 

It is widely believed that unitary interacting scale-invariant theories are always in­
variant under the full conformal group, which is a simple group including scale invari­
ance and Poincare invariance. This has only been proven in complete generality for 
two dimensional field theories [75, 76], but there are no known counter-examples. In 
this section we will review the conformal group and its implications for field theories, 

30 



focusing on implications which will be useful in the context of the AdS/eFT corre­
spondence. General reviews on conformal field theories may be found in [77, 78, 79] 
and references therein. 

2.1.1 The Conformal Group and Algebra 

The conformal group is the group o(transformations which preserve the form of the 
metric up to an arbitrary scale factor, gjJ,,(x) -1- !12 (x)gjJ"(x) (in this section greek 
letters will correspond to the space-time coordinates, j.l, v = 0,··· , d - 1). It is the. 
minimal group that includes the Poincare group as well as the inversion symmetry 
xjJ -1- xjJ / x2 • 

The conformal group of Minkowski space1 is generated by the Poincare transforma­
tions, the scale transformation 

xjJ -1- )..xjJ, (2.1 ) 

and the special conformal transformations 

xlt + ajJx2 

xjJ -1- ---------::-~ 
1 + 2x"a" + a2x2 

(2.2) 

We will denote the generators of these transformations by MjJ" for the Lorentz trans­
formations, Pit for translations, D for the scaling transformation (2.1) and KjJ for the 
special conformal transformations (2.2). The vacuum of a conformal theory is annihi­
lated by all of these generators. They obey the conformal algebra 

[MjJ" , Pp] = -i('rJltPP" - 'rJ"PPjJ); 

[M/w , Mpu] = -i'rJJ.l.pM"u ± permutations; 

[D, Pit] = -iPIt ; 

[MJ.I." , Kp] = -i{'rJJLpK" - 'rJ"pKJL ); 

[MJ.I.'" D] = 0; [D, KjJ] = iKJL; (2.3) 

[PjJ' K,,] = 2iMJLII - 2i'rJJL"D, 

with all other commutators vanishing. This algebra is isomorphic to the algebra of 
SO(d,2), and can be put in the standard form of the SO{d, 2) algebra (with signature 
-, +, +, ... , +, -) with generators Jab (a, b = 0,· .. ,d + 1) by defining 

J(d+l)d = D. (2.4) 

For some applications it is useful to study the conformal theory in Euclidean space; in 
this case the conformal group is SO{ d + 1, 1),2 and since IRd is conform ally equivalent 
to Sd the field theory on IRd (with appropriate boundary conditions at infinity) is 

1 More precisely, some of these transformations can take finite points in Minkowski space to infinity, 
so they should be defined on a compactification of Minkowski space which includes points at infinity. 

2Strictly speaking, SO(d + 1,1) is the connected component of the conformal group which includes 
the identity, and it does not include :cit -+ :cit /:c 2• We will hereafter ignore such subtleties. 
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isomorphic to the theory on Sd. Much of what we say below will apply also to the 
Euclidean theory. 

In the special case of d = 2 the conformal group 'is larger, and in fact it is infinite 
dimensional. The special aspects of this case will be discussed in chapter 5 where they 
will be needed. 

2.1.2 Primary Fields, Correlation Functions, and Operator 
Prod uct Expansions 

The interesting representations (for physical applications) of the conformal group in­
volve operators (or fields) which are eigenfunctions of the scaling operator D with 
eigenvalue -i!::i (!::i is called the scaling dimension of the field). This means that under 
the scaling transformation (2.1) they transform as </>(x) -+ </>'(x) = A~</>(AX). The com­
mutation relations (2.3) imply that the operator P~ raises the dimension of the field, 
while the operator K~ lowers it. In unitary field theories there is a lower bound on the 
dimension of fields (for scalar fields it is ~ 2:: (d - 2) /2 which is the dimension of a free 
scalar field), and, therefore, each representation of the conformal group which appears 
must have some operator of lowest dimension, which must then be annihilated by K~ 
(at x = 0). Such operators are called primary operators. The action of the conformal 
group on such operators is given by [80] 

[P~, <I>(x)] = iolL<I>(x), 

[M~v, <I>(x)] = [i(x~ov - XVolL ) + E~v]<P(x), 
[D,<I>(x)] = i(-!::i+x~o~)<I>(x), 

[K~, <I>(x)] = [i(x20~ - 2x~xvov'+ 2x~~) - 2xVE~v]<I>(x), 

(2.5) 

where E~v are the matrices of a finite dimensional representation of the Lorentz group, 
acting on the indices of the <I> field. The representations of the conformal group cor­
responding to primary operators are classified by the Lorentz representation and the 
scaling dimension !::i (these determine the Casimirs of the conformal group). These 
representations include the primary field and all the fields which are obtained by act­
ing on it with the gerierators of the conformal group (specifically with P~). Since the 
operators in these representations are eigenfunctions of D, they cannot in general be 
eigenfunctions of the Hamiltonian Po or of the mass operator M2 = - p~ p~ (which is a 
Casimir operator of the Poincare group but not of the conformal group)j in fact, they 
have a continuous spectrum of M2 ranging from 0 to 00 (there are also representations 
corresponding to free massless fields which have M2 = 0). 

Another possible classification of the representations of the conformal group is in 
terms of its maximal compact subgroup, which is SO( d) x SO(2). The generator of 
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50(2) is JO(d+l) = ~(Ko + Po), and the representations of the conformal group de-­
scribed above may be decomposed into representations of this subgroup. This is useful 
in particular for the oscillator constructions of the representations of superconformal 
algebras [81, 82, 83, 84, 85, 86, 87], which we will not describe in detail here (see 
[88] for a recent review). This subgroup is also useful in the radial quantization of 
the conformal field theory on 5 d- l x IR, which will be related to AdS space in global 
coordinates. 

Since the conformal group is much larger than the Poincare group, it severely restricts 
the correlation functions of primary fields, which must be invariant under conformal 
transformations. It has been shown by Luscher and Mack [89] that the Euclidean 
Green's functions of a eFT may be analytically continued to Minkowski space, and 
that the resulting Hilbert space carries a unitary representation of the Lorentzian 
conformal group. The formulas we will write here for correlation functions apply both 
in Minkowski and in Euclidean space. It is easy to show using the conformal algebra 
that the 2-point functions of fields of different dimension vanish, while for a single 
scalar field of scaling dimension ~ we have 

1 1 
(4)(O)4>(x)) ex Ix12~ =, (x2)~· (2.6) 

3-point functions are also determined (up to a constant) by the conformal group to be 
of the form 

Cijk 
(4)i(Xt)4>j(X2)4>k(X3)) = (2.7) 

IXl - x21~1 +~2-~3Ixl - x31~1:~3-~2Ix2 - x31~2+~3-~1 . 

Similar expressions (possibly depending on additional constants) arise for non-scalar 
fields. With 4 independent Xi one can construct two combinations of the Xi (known as 
harmonic ratios) which are conformally invariant, so the correlation function can be any 
function of these combinations; for higher n-point functions there are more and more 
independent functions which can appear in the correlation functions. Many other prop­
erties of conformal field theories are also easily determined using the conformal invari­
ance; for instance, their equation of state is necessarily of the form 5 = cV(E jV)(d-l)/d 

for some constant c. 

The field algebra of any conformal field theory includes the energy-momentum tensor 
TJL/I which is an operator of dimension ~ = d; the Ward identities of the conformal al­
gebra relate correlation functions with T to correlation functions without T. Similarly, 
whenever there are global symmetries, their (conserved) currents J/-L are necessarily 
operators of dimension ~ = d - 1. The scaling dimensions of other operators are not 
determined by the conformal group, and generally they receive quantum corrections. 
For any type of field there is, however, a lower bound on its dimension which follows 
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from unitarity; as mentioned above, for scalar fields the bound is ~ :::: (d - 2)/2, where 
equality can occur only for free scalar fields. 

A general property of local field theories is the existence of an operator product 
expansion (OPE). As we bring two operators 01(X) and 02(Y) to the same point, their 
product creates a general local disturbance at that point, which may be expressed as 
a sum of local operators acting at that point; in general all operators with the same 
global quantum numbers as 0 10 2 may appear. The general expression for the OPE 
is 01(X)02(Y) -+ L:n C~2(X - y)On(Y), where this expression should be understood as 
appearing inside correlation functions, and the coefficient functions C~2 do not depend 
on the other operators in the correlation function (the expression is useful when the 
distance to all other operators is much larger than Ix - YD. In a conformal theory, the 
functional form of the OPE coefficients is determined by conformal invariance to be 
C~2(X - y) = c~2/lx - ylto 1+to2 -ton

, where the constants Cf2 are related to the 3-point 
functions described above. The leading terms in the OPE of the energy-momentum 
tensor with primary fields are determined by the conformal algebra. For instance, for 
a scalar primary field <p of dimension ~ in four dimensions, 

(2.8) 

One of the basic properties of conformal field theories is the one-to-one correspon­
dence between local operators 0 and states 10) in the radial quantization of the theory. 
In radial quantization the time coordinate is chosen to be the radial direction in ~d, 
with the origin corresponding to past infinity, so that the field theory lives on ~ x Sd-l . 

The Hamiltonian in this quantization is the operator' JO(d+l) mentioned above. An op­
erator 0 can then be mapped to the state 10) _ limx-to O(x)IO). Equivalently, the 
state may be viewed as a functional of field values on some ball around the origin, and 
then the state corresponding to 0 is defined by a functional integral on a ball around 
the origin with the insertion of the operator 0 at the origin. The inverse mapping of 
states to operators proceeds by taking a state which is a functional of field values on 
some ball around the origin and using conformal invariance to shrink the ball to zero 
size, in which case the insertion of the state is necessarily equivalent to the insertion 
of some local operator. 

2.1.3, Superconformal 'Algebras and Field Theories 

Another interesting generalization of the Poincare algebra is the supersymmetry alge­
bra, which includes additional fermionic operators Q which anti-commute to the trans­
lation operators PI-'" It is interesting to ask whether supersymmetry and the conformal 
group can be joined together to form the largest possible simple algebra including the 
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Poincare group; it turns out that in some dimensions and for some numbers of su­
persymmetry charges this is indeed possible. The full classification of superconformal 
algebras was given by Nahm [90]; it turns out that superconformal algebras exist only 
for d ~ 6. In addition to the generators of the conformal group and the supersymme­
try, superconformal algebras include two other types of generators. There are fermionic 
generators S (one for each supersymmetry generator) which arise in the commutator 
of KI-£ with Q, and there are (sometimes) R-symmetry generators forming some Lie 
algebra, which appear in the anti-commutator of Q and S (the generators Q and S are 
in the fundamental representation of this Lie algebra). Schematically (suppressing all 
indices), the commutation relations of the superconformal algebra include, in addition 
to (2.3), the relations 

z 
[D,Q] = -"2Q; 

. z 
[D,S] = "2S; [K,Q]~S; [P,S] ~ Qj 

(2.9) 
{Q,Q} ~ P; is,S} ~ Kj {Q,S}~M+D+R. 

The exact form of the commutation relations is different for different dimensions (since 
the spinorial representations of the conformal group behave differently) and for different 
R-symmetry groups, and we will not write them explicitly here. 

For free field theories without gravity, which do not include fields whose spin is 
bigger than one, the maximal possible number of supercharges is 16 (a review of field 
theories with this number of supercharges appears in [91]); it is believed that this is the 
maximal possible number of supercharges also in interacting field theories. Therefore, 
the maximal possible number of fermionic generators in a field theory superconformal 
algebra is 32. Superconformal field theories with this number of supercharges exist 
only for d = 3,4,6 (d = 1 may also be possible but there are no known examples). For 
d = 3 the R-symmetry group is Spin(8) and the fermionic generators are in the (4,8) 
of SO(3,2) x Spin(8); for d = 4 the R-symmetry group is SU(4) and3 the fermionic 
generators are in the (4,4) + (4",4") of SO( 4,2) x SU( 4); and for d = 6 the R-symmetry 
group is Sp(2) ~ SO(5) and the fermionic generators are in the (8,4) representation 
of SO(6, 2) x Sp(2). 

Since the conformal algebra is a subalgebra of the superconformal algebra, represen­
tations of the superconformal algebra split into several representations of the conformal 
algebra. Generally a primary field of the superconformal algebra, which is (by defini­
tion) annihilated (at x = 0) by the generators KI-£ and S, will include several primaries 
of the conformal algebra, which arise by acting with the supercharges Q on the su­
perconformal primary field. The superconformal algebras have special representations 
corresponding to chiral primary operators, which are primary operators which are an­
nihilated by some combination of the supercharges. These representations are smaller 

3Note that this is different from the other N-extended superconformal algebras in four dimensions 
which have a U (N) R-symmetry. . 
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than the generic representations, containing less conformal-primary fields. A special 
property of chiral primary operators is that their dimension is uniquely determined by 
their R-symmetry representations a,nd cannot receive any quantum corrections. This 
follows by using the fact that all the S generators and some of the Q generators anni­
hilate the field, and using the {Q, S} commutation relation to compute the eigenvalue 
of D in terms of the Lorentz and R-symmetry representations [92,93,94,91,95]. The 
dimensions of non-chiral primary fields of the same representation are always strictly 
larger than those of the chiral primary fields. A simple example is the d.= 4, N = 1 
superconformal algebra (which has a U(I) R-symmetry group); in this case a chiral 
multiplet (annihilated by Q) which is a primary is also a chiral primary, and the algebra 
can be used to prove that the dimension of the scalar component of such multiplets 
is ~ = ~R where R is the U(I) R-charge. A detailed description of the structure of 
chiral primaries in the d = 4, N = 4 algebra will appear in section 3.2. 

When the R-symmetry group is Abelian, we find a bound of the form ~ ~ aiR/ 
for some constant a, ensuring that there is no singularity in the OPE of two chiral 
(~ = aR) or anti-chiral (~ = alRI = -aR) operators. On the other hand, when 
the R-symmetry group is non-Abelian, singularities can occur in the OPEs of chiral 
operators, and are avoided only when the product lies in particular representations. 

2.2 Anti-de Sitter Space 

2.2.1 Geometry of Anti-de Sitter Space 

In this section, we will review some geometric facts about anti-de Sitter space. One 
of the important facts is the relation between the conformal compactifications of AdS 
and of flat space. In the case of the Euclidean signature metric, it is well-known 
that the flat space IRn can be compactified to the n-sphere sn by adding a point at 
infinity, and a conformal field theory is naturally defined on sn. On the other hand, 
the (n + 1 )-dimensional hyperbolic space, which is the Euclidean version of AdS space, 
can be conform ally mapped into the (n + 1 )-dimensional disk Dn+1 • Therefore the 
boundary of the compactified hyperbolic space is the compactified Euclid space. A 
similar correspondence holds in the case with the Lorentzian signature metric, as we 
will see below. 

Conformal Structure of Flat Space 

One of the basic features of the AdS/eFT correspondence is the identification of the 
isometry group of AdSp+2 with the conformal symmetry of flat Minkowski space 1R1

,p. 

Therefore, it would be appropriate to start our discussion by reviewing the conformal 
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structure of flat space. 

We begin with two-dimensional Minkowski space !RI,I: 

(-00 < t,x < +00). (2.10) 

This metric can be rewritten by the following coordinate transformations 

-du+du_ , (u± = t ± x) 
1 

------( -dr2 + dfP) 
4 cos2 '11+ cos2 '11_ ' 

(u± = tan U±i u± = (r ± 0)/2)(2.11) 

In this way, the Minkowski space is conform ally mapped into the interior of the com­
pact region, 1'11± I < 7r /2, as shown in figure 2.1. Since light ray trajectories are invariant 
under a conformal rescaling of the metric, this provides a convenient way to express 
the causal structure of JR.I,I. The new coordinates (r, 0) are well defined at the asymp­
totical regions of the flat space. Therefore, the conformal compactification is used to 
give a rigorous definition of asymptotic flatness of spacetime - a spacetime is called 
asymptotically flat if it has the same boundary structure as that of the flat space after 
conformal compactification. 

e 

x=const t=const 

Figure 2.1: Two-dimensional Minkowski space is conformally mapped into the interior 
of the rectangle. 

The two corners of the rectangle at (r, 0) = (0, ±7r) correspond to the spatial infinities 
x = ±oo in the original coordinates. By identifying these two points; we can embed 
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... ,": : 

> 

identify 

Figure 2.2: The rectangular region can be embedded in a cylinder, with e = 11' and • 
e = -11' being identified. 

the rectangular image of ~1,1 in a cylinder ~ x S1 as shown in figure 2.2. It was proven 
by Luscher and Mack [89] that correlation functions of a conforma.l field theory (eFT) 
on ~1,1 can be analytically continued to the entire cylinder. 

As we saw in section 2.1, the global conformal symmetry of ~1,1 is SO(2,2), which 
is generated by the 6 conformal Killing vectors 8±, u±8±, u;8±. The translations along 
the cylinder ~ x S1 are expressed as their linear combinations 

(2.12) 

In the standard form of SO(2, 2) generators, Jab, given in section 2.1, they correspond 
to J03 and J12 , and generate the maximally compact subgroup SO(2) x SO(2) of 
SO(2,2). 

o ~1,p with P 2: 2 

It is straightforward to extend the above analysis to higher dimensional Minkowski 
space: 

(2.13) 

where dnp_ 1 is the line element on the unit sphere Sp-1. A series of coordinate changes 
transforms this as 

(u± = t ± r) 
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___ 1 ___ (-du+diL +-4
1 

sin2(u+ - u_)dn;_I) , 
cos2 u+ cos2 u_ 

2 _ 1 2 _ (-d7 2 + d02 + sin2 Odn;_J, 
4 cos u+ cos u_ 

(u± = (7 ± 0)/2). (2.14) 

t=const 

___ +-4-.j-.....::::,.~_e 

Figure 2.3: The conformal transform~tion maps the (t, r) half plane into a triangular 
region in the (7,0) plane .. 

As shown in figure 2.3, the (t,r) half-plane (for a fixed point on SP-l) is mapped 
into a triangular region in the (7,0) plane. The conformally scaled metric 

(2.15) 

can be analytically continued outside of the triangle, and the maximally extended space 
with 

0::; 0::; 7r, -00 < 7 < +00, (2.16) 

has the geometry of!R x SP (Einstein static universe), where 0 = 0 and 7r corresponds 
to the north and south poles of SP. This is a natural generalization of the conformal 
embedding of !Rl

,1 into !R x SI that we saw in the p = 1 case. 

Since 

(2.17) 

the generator H of the global time translation on !R x SP is identified with the linear 
combination 

(2.18) 
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where Po and Ko are translation and special conformal generators, 

. 1 (a a ) . 1 ( 2, a 2 a ) 
Po . 2 au+ + au_ ' Ko. 2 u+ au+ + u_ au_ (2.19) 

on 1R1
,p defined in section 2.1. The generator H = Jo,P+2 corresponds to the 50(2) 

part of the maximally compact subgroup SO(2) x SO(p + 1) of SO(2,p + 1). Thus 
the subgroup 50(2) x 50(p+ 1) (or to be precise its universal cover) of the conformal 
group 50(2, p + 1) can be identified with the isometry of the Einstein static universe 
IR x Sp. The existence of the generator H also guarantees that a correlation function 
of a eFT on 1R1

,p can be analytically extended to the entire Einstein static universe 
IR x 5P• 

-­p::::oo - p::::oo 

Figure 2.4: AdSp+2 is realized as a hyperboloid in 1R2
,pH. The hyperboloid has closed 

timelike curves along the T direction. To obtain a causal space, we need to unwrap the 
circle to obtain a simply connected space. 

Anti-de Sitter Space 

The (p + 2)-dimensional anti-de Sitter space (Ad5p+2 ) can be represented as the hy­
perboloid 

pH 

X~ + X;+2 - LXl = R2, (2.20) 
i=l 

in the flat (p + 3)-dimensional space with metric 

p+l 

ds 2 = -dX~ - dX;+2 + L dX;' (2.21 ) 
i=l 

By construction, the space has the isometry SO(2,p + 1), and it is homogeneous and 
isotropic. 
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Equation (2.20) can be solved by setting 

R cosh p cos T, X p+2 = R cosh p sin T, 

Rsinhpn i (i= 1,· .. ,p+1;Ln~= 1). (2.22) 

Substituting this into (2.21), we obtain the metric on AdSp+2 as 

(2.23) 

By taking 0 :::; p and 0 :::; T < 271" the solution (2.22) covers the entire hyperboloid once. 
Therefore, (T, p, ni ) are called the global coordinates of AdS. Since the metric behaves 
near p = 0 as ds2 ~ R2( -dT2 + dp2 + p2 dn2), the hyperboloid has the topology of 
S1 x IRP+1, with 51 representing closed timelike curves in the T direction. To obtain a 
causal spacetime, we can simply unwrap the circle S1 (i.e. take -00 < T < 00 with 
no identifications) and obtain the universal covering of the hyperboloid without closed 
timelike curves. In this paper, when we refer to AdSp+2, we only consider this universal 
covermg space. 

The isometry group SO(2,p + 1) ,of AdSp+2 has the maximal compact subgroup 
50(2) x 50(p + 1). From the above construction, it is clear that the 50(2) part 
represents the constant translation in the T direction, and the 50(p+ 1) gives rotations 
of 5P• 

1 

Figure 2.5: Ad53 can be conformally mapped into one half of the Einstein static universe 
IR x 52. 

To study the causal structure of Ad5p+2, it is convenient to introduce a coordinate 
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() related to p by tan() =sinhp (O:S; () < rr/2). The metric (2.23) then takes the form 

ds 2 = ~(-dr2 + d()2 + sifi2 () dQ2
). 

cos2 () 
(2.24) 

The causal structure of the spacetime does not change by a conformal rescaling on the 
metric. Multiplying the metric by R-2 cos2 (), it becomes 

(2.25) 

This is the metric of the Einstein static universe, which also appeared, with the dimen­
sion lower by one, in the conformal compactification of 1R1

,p (2.15). This time, however, 
the coordinate () takes values in 0 :s; () < rr /2, rather than 0 :s; () < rr in (2.15). Namely, 
AdSp+2 can be conform ally mapped into one half of the Einstein static universe; the 
spacelike hypersurface of constant r is a (p + 1 )-dimensional hemisphere. The equator 
at () = rr /2 is a boundary of the space with the topology of SP, as shown in figure 2.5 
in the case of p = 1. (In the case of AdS2 , the coordinate () ranges -rr /2 :s; () :s; rr /2 
since So consists of two points.) As in the case of the flat space discussed earlier, the 
conformal compactification is a convenient way to describe the asymptotic regions of 
AdS. In general, if a spacetime can be conformally compactified into a region which has 
the same boundary structure as one half of the Einstein static universe, the spacetime 
is called asymptotically AdS. 

Since the boundary extends in the timelike direction labeled by r, we need to specify 
a boundary condition on the IR x SP at () = rr /2 in order to make the Cauchy problem 
well-posed on AdS [96]. It turns out that the boundary of AdSp+2 , or to be precise the 
boundary of the conform ally compactified AdSp+2 , is identical to the conformal com­
pactification of the (p + 1 )-dimensional Minkowski space. This fact plays an essential 
role in the AdSp+2 /CFTp+1 correspondence. 

In addition to the global parametrization (2.22) of AdS, there is another set of 
coordinates (u, t, x) (0 < u, x E IRP ) which will be useful later. It is defined by 

Xo 2~ (1 + u2(R2 + X 2 - t2
)) , X P+2 = Rut, 

Xi Ruxi (i = 1,··· ,p), 

XP+1 2~ (1 - u2 (R2 - X 2 + t 2)) . . (2.26) 

These coordinates cover one half of the hyperboloid (2.20), as shown in figure 2.6 in 
the case of p = o. Substituting this into (2.21), we obtain another form of the AdSp+2 

metric 

(2.27) 
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u=o 

9=- nl2 6=1t/2 

Figure 2.6: AdS2 can be conformally mapped into ~ x [-7r/2,7r/2]. The (u,t) coordi-
nates cover the triangular region. . 

The coordinates (u, t, i) are called the Poincare coordinates. In this form of the metric, 
the subgroups I SO(l, p) and SO(l, 1) of the SO(2,p+ 1) isometry are manifest, where 
ISO(l,p) is the Poincare transformation on (t, i) and SO(l, 1) is 

(t,i,u) -t (ct,ci,c-1u), c,> O. (2.28) 

In the AdS/eFT correspondence, this is identified with the dilatation D in the confor­
mal symmetry group of ~l,p. 

It is useful to compare the two expressions, (2.23) and (2.27), for the metric of 
AdSp+2. In (2.23), the norm of the timelike Killing vector aT is everywhere non-zero. 
In particular, it has a constant norm in the conform ally rescaled metric (2.24). For this 
reason, T is called the global time coordinate of AdS. On the other hand, the timelike 
Killing vector at in (2.27) becomes null at u = 0 (Killing horizon), as depicted in figure 
2.7 in the AdS2 case. 

Euclidean Rotation 

Since AdSp+2 has the global time coordinate T and the metric (2.23) is static with 
respect to T, quantum field theory on AdSp+2 (with an appropriate boundary condition 
at spatial infinity) allows the Wick rotation in T, eiTH -t e-TEH . From (2.22), one 
finds that the Wick rotation T -t TE = -iT is expressed in the original coordinates 
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~1 

u=O 

9=-1tI2 9=1t12 

Figure 2.7: The timelike Killing vector at is depicted in the AdS2 case. The vector at 
becomes a null vector at u = o. 

(Xo, X, X p+2) on the hyperboloid as X p+2 -+ XE = -iXp+2, and the space becomes 

X~ - X~ - X2 = R2, 

ds~ = -dX~ + dxi; + dX2. (2.29) 

We should point out that the same space is obtained by rotating the time coordi~ate 
t of the Poincare coordinates (2.26) as t -+ tE =, -"-it, even though the Poincare 
coordinates cover only a part of the entire AdS (half of the hyperboloid). This is 
analogous to the well-known fact in flat Minkowski space that the Euclidean rotation of 
the time coordinate t in the Rindler space ds2 = -r2dt2 + dr2 gives the flat Euclidean 
plane ~?, even though the Rindler coordinates (t, r) cover only a 1/4 of the entire 
Minkowski space ~1,1. 

In the coordinates (p, TE, rip) and (u, tE, x), the Euclidean metric is expressed as 

ds~ 

(2.30) 

In the following, we also use another, trivially equivalent, form of the metric, obtained 
from the above by setting u = 1/y in (2.30), giving 

ds2 = R2 ( dy2 + dx~ :2: .. + dX;+l ) . (2.31 ) 
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Rez 

u=const u= 00 

Figure 2.8: The Euclidean AdS2 is the upper half plane with the Poincare metric. It 
can be mapped into a disk, where the infinity of the upper half plane is mapped to a 
point on the boundary of the disk. 

The Euclidean AdSp+2 is useful for various practical computations in field theory. 
For theories on flat space, it is well-known that correlation functions (<PI· .. <Pn) of fields 
on the Euclidean space are related, by the Wick rotation, to the T -ordered correlation 
functions (OIT(<Pl ... <Pn)IO) in the Minkowski space. The same is true in the anti-de 
Sitter space ifthe theory has a positive definite Hamiltonian with respect to the global 
time coordinate T. Green functions of free fields on AdSp+2 have been computed in 
[97, 98] using this method. 

The Euclidean AdSp+2 can be mapped into a (p+ 2)-dimensional disk. In the coordi­
nates (u, tE, x), u = 00 is the sphere SP+l at the boundary with one point removed. The 
full boundary sphere is recovered by adding· a point corresponding to u = 0 (or equiv­
alently x = 00). This is shown in figure 2.8 in the case of AdS2, for which z = tE +i/u 
gives a complex coordinate on the upper-half plane. By adding a point at infinity, the 
upper-half plane is compactified into a disk. In the Lorentzian case, u = 0 represented 
the Killing horizon giving the boundary of the (u, t, x) coordinates. Since the u = 0 
plane is null in the Lorentzian case, it shrinks to a point in the Euclidean case. 

2.2.2 Particles and Fields in Anti-de Sitter Space 

Massive particles, moving along geodesics, can never get to the boundary of AdS. On 
the other hand, since the Penrose diagram of AdS is a cylinder, light rays can go to the 
boundary and back in finite time, as observed by an observer moving along a geodesic 
in AdS. More precisely, the light ray will reflect if suitable boundary conditions are set 
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for the fields propagating in AdS. 

Let us first consider the case of a scalar field propagating in AdSp+2. The field 
equation 

(2.32) 

has stationary wave solutions 

(2.33) 

where }/(np) is a spherical harmonic, which is an eigenstate of the Laplacian on SP 
with an eigenvalue l(l + p - 1), and G(()) is given by the hypergeometric function 

(2.34) 

with 

1 
"2(l + A± - wR), a 

b 
1 
"2(l + A± + wR), 

1 
1 + "2(p + 1), (2.35) c 

and 
1 1 ,--------

A± = 2"(p + 1) ± 2"V(p + 1)2 + 4(mR)2. (2.36) 

The energy-momentum tensor 

(2.37) 

is conserved for any constant value of f3. The value of f3 is determined by the coupling 
of the scalar curvature to (j}, which on AdS has the same effect as the mass term in 
the wave equation (2.32). The choice of f3 for each scalar field depends on the theory 
we are considering. The total energy E of the scalar field fluctuation, 

(2.38) 

is conserved only if the energy-momentum flux through the boundary at () = 11"/2 
vanishes, 

{ dnpv'9niT~lo=7r/2 = o. lsp 
This requirement reduces to the boundary condition 

(tan ())P [(1 - 2f3)oo + 2f3 tan ()] 4>2 -70 (() -711"/2). 
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Going back to the stationary wave solution (2.34), this is satisfied if and only if either 
a or b in (2.34) is an integer. If we require the energy w to be real, we find 

IwIR=A±+l+2n, (n=0,1,2,···). (2.41) 

This is possible only when A defined by (2.36)· is real. Consequently, the mass is 
bounded from below as 

(2.42) 

This is known as the Breitenlohner-Freedman bound [99, 100]. Note that a negative 
(mass)2 is allowed to a certain extent. The Compton wavelength for these possible 
tachyons is comparable to the curvature radius of AdS. If m2 > -(p - l)(p + 3)/4R2, 
we should choose A+ in (2.41) since this solution is normalizable while the solution 
with A_ is not. If m2 ~ -(p-1)(p+3)/4R2, both solutions are normalizableand there 
are two different quantizations of the scalar field on AdS space. Which quantization to 
choose is often determined by requiring symmetry. See [100, 101, 102] for discussions of 
boundary conditions in supersymmetric theories. In general, all solutions to the wave 
equation form a single SO(2, p + 1) highest weight representation. The highest weight 
state is the lowest energy solution [103]. Since SO(2,p + 1) acts on AdS as isometries, 
the action of its generators on the solutions is given by first order differential operators. 

2.2.3 Supersymmetry in Anti-de Sitter Space 

The SO(2, p + 1) isometry group of AdSp+2 has a supersymmetric generalization called 
an AdS supergroup. To understand the supersymmetry on AdS, it would be useful to 
start with the simple supergravity with a cosmological constant A. In four dimensions, 
for example, the action of the N = 1 theory is [104] 

(2.43) 

where 

(2.44) 

and D J.L is the standard covariant derivative. The local supersymmetry transformation 
rules for the vierbeiti VaJ.L and the gravitino .,pJ.L are 

-it(x}ra.,pJ.L, 

Dj.Lf.(x). (2.45) 

A global supersymmetry of a given supergravity background is determined by re­
quiring that the gravitino variation is annihilated, b.,pj.L = O. The resulting condition 
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I on c:(x), 

D", = (D" + ~~'") f = 0, 
(2.46) 

is known as the Killing spinor equation. The integrability of this equation requires 

(2.47) 

where 
1 

(J/1-V = 2/[/1-"v)' (2.48) 

Since AdS is maximally symmetric, the curvature obeys 

(2.49) 

where R is the size of the hyperboloid defined by (2.20). Thus, if we choose the '" 
curvature of AdS to be A = 3/ R2 (this is necessary for AdS to be a classical solution of 
(2.43)), the integrability condition (2.47) is obeyed for any spinor E. Since the Killing 
spinor equation (2.46) is a first order equation, this means that there are as many 
solutions to the equation as the number of independent components of the spinor. 
Namely, AdS preserves as many supersymmetries as flat space. 

The existence of supersymmetry implies that, with an appropriate set of boundary 
conditions, the supergravity theory on AdS is stable with its energy bounded from 
below. The supergravity theories on AdS typically contains scalar fields with negative 
(mass)2. However they all satisfy the bound (2.42) [102, 105]. The issue of the boundary 
condition and supersymmetry in AdS was further studied in [101]. A non-perturbative 
proof of the stability 9f AdS is given in [106], based on a generalization of Witten's 
proof [107] of the positive energy theorem in flat space [108]. 

2.2.4 Gauged Supergravities and Kaluza-Klein Compactifica­
tions 

Extended supersymmetries in AdSp+2 with p = 2,3,4,5 are classified by Nahm [90] 
(see also [109]) as 

AdS4 OSp(NI4), N = 1,2" .. 

AdS5 SU(2, 21N /2), N = 2,4,6,8 

AdS6 F(4) 

AdS7 OSp(6,2IN), ·N=2,4. (2.50) 
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For AdSp+2 with p > 5, there is no simple AdS supergroup. These extended super­
symmetries are realized as global symmetries of gauged supergravity on AdSp+2 • The 
AdS/CFT correspondence identifies them with the superconformal algebras discussed 
in section 2.1.3. Gauged supergravities are supergravity theories. with non-abelian 
gauge fields in the supermultiplet of the graviton. Typically the cosmological constant 
is negative and AdSp+2 is a natural background geometry. Many of them are related 
to Kaluza-Klein compactification of the supergravities in 10 and 11 dimensions. A 
complete catalogue of gauged supergravities in dimensions ~ 11 is found in [21]. Here 
we list some of them. 

o AdS7 

The gauged supergravity in 7 dimensions has global supersymmetry OSp(6,2IN). 
The maximally supersymmetric case of N = 4 constructed in [110] contains a Yang­
Mills field with a gauge group Sp(2) ~ SO(5). The field content of this theory can be 
derived from a truncation of the spectrum of the Kaluza-Klein compactification of the 
II-dimensional supergravity to 7 dimensions, 

(2.51 ) 

The ll-dimensional supergravity has the Lagrangian 

.c = ..;g (~R - 4
1
8 Fj.tvpq Fj.tvpq ) + :2 A A F A F + fermions, (2.52) 

where A is a 3-form gauge field and F = dA. It was pointed out by Freund and Rubin 
[111] that there isa natural way to "compactify" the ~heory to 4 or 7 dimensions. We 
have put the word "compactify" in quotes since we will see that typically the size of 
the compact dimensions is comparable to the radius of curvature of the non-compact 
dimensions. To compactify the theory to 7 dimensions, the ansatz of Freund and 
Rubin sets the 4-form field strength F to be proportional to the volume element on a 
4-dirriensional subspace M 4 . The Einstein equation, which includes the contribution of 
F to the energy-momentum tensor, implies a positive curvature onM4 and a constant 
negative curvature on the non-compact dimensions, i.e. they are Ad57 • 

The maximally symmetric case is obtained by considering M4 = S4. Since there is 
no cosmological constant in 11 dimensions, the radius R of S4 is proportional to the 
curvature radius of AdS7 . By the Kaluza-Klein mechanism, the SO(5) isometry of S4 
becomes the gauge symmetry in 7 dimensions. The spherical harmonics on S4 give 
an infinite tower of Kaluza-Klein particles on AdS7 • A truncation of this spectrum 
to include only the graviton supermultiplet gives the spectrum of the N = 4 SO(5) 
gauged supergravity on AdS7 . It has been believed that this is a consistent truncation 
of the full theory, and very recently it was shown in [112] that this is ind~ed the case. 
In general, there are subtleties in the consistent truncation procedure, which will be 
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discussed in more detail in the next subsection. There are also other N = 4 theories 
with non-compact gauge groups SO(p, q) with p + q = 5 [113]. 

The seven dimensional N = 2 gauged supergraviti with gauge group Sp(l) ~ SU(2) 
was constructed in [114]. In this case, one can have also a matter theory with possibly 
another gauge group G. It is not known whether a matter theory of arbitrary G 
with arbitrary coupling constant can be coupled to gauged supergravity. The Kaluza­
Klein compactification of 10-dimensional N = 1 supergravity, coupled to N = 1 super 
Yang-Mills, on S3 gives a particular example. In this case, ten dimensional anomaly 
cancellation requires particular choices of G. 

o AdS6 

The 6-dimensional anti-de Sitter supergroup F( 4) is realized by the N = 4 gauged 
supergravity with gauge group SU(2). It was predicted to exist in [115] and constructed 
in [116]. It was conjectured in [117] to be related to a compactification of the ten 
dimensional massive type IIA supergravity theory. The relevant compactification of. 
the massive type IIA supergravity is constructed as a fibration of AdS6 over S4 [118]. 
The form of the ten dimensional space is called a warped product [119] and it is the 
most general one that has the AdS isometry group [120]. The SU(2) gauge group of 
the 6-dimensional N = 4 gauged supergravity is associated with an S[1(2) subgroup 
of the SO( 4) isometry group of the compact part of the ten dimensional space. 

o AdS5 
In 5 dimensions, there are N = 2,4,6 and 8 gauged supergravities with supersym­

metry SU(2, 21N /2). The gauged N = 8 supergravity was constructed in [121, 122]. It 
has the gauge group SU(4) ~ SO(6) and the global symmetry E6 • This theory can be 
derived by a truncation of the compactification of lO-dimensional type lIB supergravity 
on S5 using the Freund-Rubin ansatz, i.e. setting the self-dual 5-form field strength 
F(5) to be proportional to the volume form of S5 [123, 83, 124]. By the Einstein equa­
tion, the strength of F(5) determines the radius of S5 and the cosmological constant 
R-2 of AdS5 • 

This case is of particular interest; as we will see below, the AdS /eFT correspondence 
claims that it is dual to the large N (and large g}MN) limit of N = 4 supersymmetric 
SU(N) gauge theory in four dimensions. The complete Kaluza-Klein mass spectrum 
of the lIB supergravity theory on AdS5 x S5 was obtained in [83, 124]. One of the 
interesting features of the Kaluza-Klein spectrum (in this case as well as in the other 
cases discussed in this section) is that the frequency w of stationary wave solutions is 
quantized. For example, the masses of the scalar fields in the Kaluza-Klein tower are 
all of the form (mR)2 = l(l+4), where l is an integer bounded from below. Substituting 
this into (2.36) with p = 3, we obtain 

(2.53) 
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Therefore, the frequency w given by (2.41) takes values in integer multiples of 1/ R: 

IwlR = 2 ± Ii + 21 + l + 2n, (n =;= 0,1,2,· .. ). (2.54) 

This means that all the scalar fields in the supergravity multiplet are periodic in T 

with the period 27r, i.e. the scalar fields are single-valued on the original hyperboloid 
(2.20) before taking the universal covering. This applies to all other fields in the 
supermultiplet as well, with the fermions obeying the Ramond boundary condition 
around the timelike circle. 

The fact that the frequency w is quantized has its origin in supersymmetry.The 
supergravity particles in 10 dimensions are BPS objects and preserve one half of the 
supersymmetry. This property is preserved under the Kaluza-Klein compactification 
on S5. The notion of the BPS particles in the case of AdS supergravity is clarified in 
[125] and it is shown, in the context of theories in 4 dimensions, that it leads to the 
quantization of w. In the AdS/eFT correspondence, this is dual to the fact that chiral 
primary operators do not have anomalous dimensions. 

On the other hand, energy levels of other states, such as stringy states or black holes, 
are not expected to be quantized as the supergravity modes are. Thus, the full string 
theory does not make sense on the hyperboloid but only on its universal cover without 
the closed timelike curve. 

The N = 4 gauged supergravity with gauge group SU(2) x U(I) was constructed in 
[126]. Various N = 2 theories were constructed in [127, 128, 129, 130]. 

o AdS4 

In four dimensions, some of the possible AdS supergroups are OSp(NI4) with N = 
1,2,4 and 8. N = 8 is the maximal supergroup that corresponds to a supergravity 
theory. The N = 8 gauged supergravity with SO(8) gauge group was constructed in 
[131, 132]' This theory (like the other theories discussed in this section) has a highly 
non-trivial potential for scalar fields, whose extrema were analyzed in [133, 134]. It 
was shown in [135] that the extremum with N = 8 supersymmetry corresponds to 
a truncation of the compactification of ll-dimensional supergravity on AdS4 x S7. 
Some of the other extrema can also be identified with truncations of compactifications 
of the II-dimensional theory. For a review of the 4-dimensional compactifications of 
ll-dimensional supergravity, see [22]. 

o AdS3 

Nahm's classification does not include this case since the isometry group SO(2,2) of 
AdS3 is not a simple group but rather the direct product of two SL(2, IR) factors. The 
supergravity theories associated with the AdS3 supergroups OSp(pI2) x OSp(qI2) were 
constructed in [136] and studied more recently in [137]. They can be regarded as the 
Chern-Simons gauge theories of gauge group OSp(pI2) x OSp(qI2). Therefore, they 
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are topological field theories without local degrees of freedom. The case of p = q = 3 
is obtained, for example, by a truncation of the Kaluza-Klein compactification of the 
6-dimensional N = (2,0) supergravity on S3. In addition to OSp(pI2), several other 
supersymmetric extensions of S L(2,~) are known, such as: 

SU(NI1,1), G(3), F(4), D(2,1,0). (2.55) 

Their representations are studied extensively in the context of two-dimensional super­
conformal field theories. 

2.2.5 Consistent Truncation of Kaluza-Klein Compactifications 

Despite the fact that the equations of motion for type lIB supergravity in ten dimen­
sions are known, it turns out to be difficult to extract any simple form for the equations 
of motion of fluctuations around its five-dimensional Kaluza-Klein compactification on 
S5. The spectrum of this compactification is known from the work of [124, 83]. It is 
a general feature of compactifications involving anti-de Sitter space that the positively 
curved compact part has a radius of curvature on the same order as the negatively 
curved anti-de Sitter part. As a result, the positive (mass)2 of Kaluza-Klein modes is 
of the same order as the negative (mass)2 of tachyonic modes. Thus there is no low­
energy limit in which one can argue that all but finitely many Kaluza-Klein harmonics 
decouple. This was a traditional worry for all compactifications of eleven-dimensional 
supergravity on squashed seven-spheres. 

However, fairly compelling evidence exists-([138] ,and references therein) that the 
reduction of eleven-dimensional supergravity on S7 can be consistently truncated to 

. four-dimensional N = 8 gauged supergravity. This is an exact statement about the 
equations of motion, and does not rely in any way on taking a low-energy limit. Put 
simply, it means that any solution of the truncated theory can be lifted to a solution of 
the untruncated theory. Charged black hole metrics in anti-de Sitter space provide a 
non-trivial example of solutions that can be lifted to the higher-dimensional theory [139, 
140,141]. There is a belief but no proof that a similar truncation may be made from ten­
dimensional type lIB supergravity on S5 to five-dimensional N = 8 supergravity. To 
illustrate how radical a truncation this is, we indicate in figure 2.9 the five-dimensional 
scalars that are kept (this is a part of one of the figures in [124]). Note that not 
all of them are SO(6) singlets. Indeed, the fields which are kept are precisely the 
superpartners of the massless graviton under the supergroup SU(2, 214), which includes 
SO(6) as its R-symmetry group. 

The historical route to gauged supergravities was as an elaboration of the ungauged 
theories, and only after the fact were they argued to be related to the Kaluza-Klein 
reduction of higher dimensional theories on positively curved manifolds. In ungauged 
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Figure 2.9: The low-lying scalar fields in the Kaluza-Klein reduction of type lIB su­
pergravity on S5.The filled dots indicate fields which are kept in the truncation to 
gauged supergravity. We also indicate schematically the ten-dimensional origin of the 
scalars. 

d = 5 N = 8 supergravity, the scalars parametrize the coset E6(6)jUSp(8) (following 
[142] we use here U Sp(8) to denote the unitary version of the symplectic group with a 
four-dimensional Cartan subalgebra). The spectrum of gauged supergravity is almost 
the same: the only difference is that twelve of the vector fields are dualized into anti­
symmetric two-forms. Schematically, we write this as 

1 8 27 48 42 

9p.1I 1jJ~ Aab 

A 
X

abc <pabcd 

Ap.IJ BJr: 
15 12 (2.56) . 

Lower-case Roman indices are the eight-valued indices of the fundamental of U Sp(8). 
Multiple U Sp(8) indices in (2.56) are antisymmetrized and the symplectic trace parts 
removed. The upper-case Roman indices I, J are the six-valued indices of the vector 
representation of SO(6), while the index a indicates a doublet of the S£(2, 1R) which 
descends directly from the S £(2, 1R) global symmetry of type lIB supergravity. These 
groups are embedded into E6(6) via the chain 

E6(6) :J S£(6, 1R) x S£(2, 1R) J SO(6) x S£(2, 1R) . (2.57) 

The key step in formulating gauged supergravities is to introduce minimal gauge 
couplings into the Lagrangian for all fields which are charged under the subgroup of 
the global symmetry group that is to be gauged. For instance, if XI is a scalar field in 
the vector representation of SO(6), one makes the replacement 

(2.58) 
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everywhere in the ungauged action. The gauge coupling 9 has dimensions of energy 
in five dimensions, and one can eventually show that 9 = 2/ R where R is the radius 
of the 55 in the Ad55 x 55 geometry. The replacement (2.58) spoils supersymmetry, 
but it was shown in [122, 121] that a supersymmetric Lagrangian can be recovered 
by adding terms at O(g) and 0(g2). The full Lagrangian and the supersymmetry 
transformations can be found in these references. It is a highly non-trivial claim that 
this action, with its beautiful non-polynomial structure in the scalar fields, represents 
a consistent truncation of the reduction of type lIB supergravity on 55. This is not 
entirely implausible, in view of the fact that the 50(6) isometry of the 55 becomes 
the local gauge symmetry of the truncated theory. Trivial examples of consistent 
truncation include situations where one restricts to fields which are invariant under 
some subgroup of the gauge group. For instance, the part of N = 8 five-dimensional 
supergravity invariant under a particular 5U(2) C 50(6) is N = 4 gauged supergravity 
coupled to two tensor multiplets [143]. A similar trunction to N = 6 supergravity was 
considered in [144]. 

The 0(g2) term in the Lagrangian is particularly interesting: it is a potential V 
for the scalars. V is an 50(6) x 5L(2, JR.) invariant function on the coset manifold 
E6(6)/U5p(8). It involves all the 42 scalars except the dilaton and the axion. Roughly 
speaking, one can think of the 40 remaining scalars as parametrizing a restricted class 
of deformations of the metric and 3'-form fields on the 55, and of V as measuring the 
response of type liB supergravity to these deformations. If the scalars are frozen to an 
extremum of V, then the value of the potential sets the cosmological constant in five 
dimensions. The associated conformal field theories were discussed in [145, 146, 147]. 
The known extrema can be classified by the subset of the 50(6) global R-symmetry 
group that is preserved. 
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Chapter 3 

AdS / CFT Correspondence 

3.1 The Correspondence 

In this section we will present an argument connecting type lIB string theory compact­
ified on AdS5 x S5 to N = 4 super-Yang-Mills theory [5]. Let us start with type lIB 
string theory in flat, ten dimensional Minkowski space. Consider N parallel D3 branes 
that are sitting together or very close to each other (the precise meaning of "very close" 
will be defined below). The D3 branes are extended along a (3 + 1) dimensional plane 
in (9 + 1) dimensional spacetime. String theory on this background contains two kinds 
of perturbative excitations, closed strings and open strings. The closed strings are the 
excitations of empty space and the open strings end on the D-branes and describe exci­
tations of the D-branes. If we consider the system at l<?w energies, energies lower than 
the string scale 1/ is, then only the massless string states can be excited, and we can 
write an effective Lagrangian describing their interactions. The closed string massless 
states give a gravity supermultiplet in ten dimensions, and their low-energy effective 
Lagrangian is that of type lIB supergravity. The open string massless states give an 
N = 4 vector supermultiplet in (3 + 1) dimensions, and their low-energy effective 
Lagrangian is that of N = 4 U(N) super-Yang-Mills theory [9, 2]. 

The complete effective action of the massless modes will have the form 

(3.1 ) 

Sbulk is the action of ten dimensional supergravity, plus some higher derivative cor­
rections. Note that the Lagrangian (3.1) involves only the massless fields but it takes 
into account the effects of integrating out the massive fields. It is not renormalizable 
(even for the fields on the brane), and it should only be understood as an effective 
description in the Wilsonian sense, i.e. we integrate out all massive degrees of freedom 
but we do not integrate out the massless ones. The brane action Sbrane is defined on 
the (3 + 1) dimensional brane worldvolume, and it contains the N = 4 super-Yang-
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Mills Lagrangian plus some higher derivative corrections, for example terms of the 
form a'2Tr(F4). Finally, Sint describes the interactions between the brane modes and 
the bulk modes. The leading terms in this interaction Lagrangian can be obtained by 
covariantizing the brane action, introducing the background metric for the brane [148]. 

We can expand the bulk action as a free quadratic part describing the propagation 
of free massless modes (including the graviton), plus some interactions which are pro­
portional to positive powers of the square root of the Newton constant. Schematically 
we have 

(3.2) 

where we have written the metric as 9 = T} + Kh. We indicate explicitly the dependence 
on the graviton, but the other terms in the Lagrangian, involving other fields, can be 
expanded in a similar way. Similarly, the interaction Lagrangian Sint is proportional to 
positive powers of K. If we take the low energy limit, all interaction terms proportional 
to K drop out. This is the well known fact that gravity becomes free at long distances 
(low energies). 

In order to see more clearly what happens in this low energy limit it is convenient 
to keep the energy fixed and send ls --t ,0 (a' --t 0) keeping all the dimensionless 
parameters fixed, including the string coupling constant and N. In this limit the 
coupling K r-.J gsa/2 --t O,so that the interaction Lagrangian relating the bulk and the 
brane vanishes. In addition all the higher derivative terms in the brane action vanish, 
leaving just the pure N = 4 U(N) gauge theory in 3 + 1 dimensions, which is known 
to be a conformal field theory. And, the supergravity theory in the bulk becomes free. 
So, in this low energy limit we have two decoupled systems. On the one hand we have 
free gravity in the bulk and o~ the other hand we have the four dimensional gauge 

. theory. 

Next, we consider the same system from a different point of view. D-branes are 
massive charged objects which act as a source for the various supergravity fields. As 
shown in section 1.3 we can find a D3 brane solution [56] of supergravity, of the form 

ds2 = j-l/2( -dt2 + dx~ + dx~ + dx~) + l/2(d1'2 + 1'2dn~) , 

Fs = (1 + * )dtdxldx2dx3dj-l , (3.3) 

Jl4 
j = 1 + 4 ' It == 4rrgsa

/2 
N . 

l' 

Note that since gtt is non-constant, the energy Ep of an object as measured by an 
observer at a constant position l' and the energy E measured by an observer at infinity 
are related by the redshift factor 

(3.4) 
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This means that the same object brought closer and closer to r = 0 would appear to 
have lower and lower energy for the observer at infinity. Now we take the low energy 
limit in the background described by equation (3.3). There are two kinds of low energy 
excitations (from the point of view of an observer at infinity). We can have massless 
particles propagating in the bulk region with wavelengths that becomes very large, or 
we can have any kind of excitation that we bring closer and closer to r = O. In the 
low energy limit these two types of excitations decouple from each other. The bulk 
massless particles decouple from the near horizon region (around r = 0) because the 
low energy absorption cross section goes like ()" '" w3 .ft5 [10, 11], where w is the energy. 
This can be understood from the fact that in this limit the wavelength of the particle 
becomes much bigger than the typical gravitational size of the brane (which is of order 
R). Similarly, the excitations that live very close to r = 0 find it harder and harder to 
climb the gravitational potential and escape to the asymptotic region. In conclusion, 
the low energy theory consists of two decoupled pieces, one is free bulk supergravity 
and the second is the near horizon region of the geometry. In the near horizon region, 
r « R, we can approximate f rv Jl4 / r4, and the geometry becomes 

2 . d 2 
2 r 2 2 2 2) 2 r 2 02 

ds = R2 (-dt + dX 1 + dX 2 + dX3 + R --;:2 + R dH5' (3.5) 

which is the geometry of AdS5 x S5. 

We see that both from the point of view of a field theory of open strings living 
on the brane, and from the point of view of the supergravity description, we have 
two decoupled theories in the low-energy limit. In both c~ses one of the decoupled 
systems is supergravity in flat space. So, it is natural to identify the second system 
which appears in both descriptions. Thus, we are led to the conjecture that N = 4 
U(N) super- Yang-Mills theory in 3 + 1 dimensions is the same as (or dual to) type IIB 
superstring theory on AdS5 x S5 [5]. 

We could be a bit more precise about the near horizon limit and how it is being 
taken. Suppose that we take el -+ 0, as we did when we discussed the field theory 
living on the brane. We want to keep fixed the energies of the objects in the throat 
(the near-horizon region) in string units, so that we can consider arbitrary excited 
string states there. This implies that Vd Ep '" fixed. For small a f (3.4) reduces to 
E rv Epr / N. Since we want to keep fixed the energy measured from infinity, which 
is the way energies are measured in the field theory, we need to take r -+ 0 keeping 
r / a f fixed. It is then convenient to define a new variable U == r / a f

, so that the metric 
becomes 

This can also be seen by considering a D3 brane sitting at r. As discussed in section 
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1.3 this corresponds to giving a vacuum expectation value to one of the scalars in the 
Yang-Mills theory. When we take the c/ -+ 0 limit we want to keep the mass of the 
"W-boson" fixed. This mass, which is the mass of the string stretching between the 
branes sitting at r = 0 and the one at r, is proportional to U = r / ci, so this quantity 
should remain fixed in the decoupling limit. 

A U(N) gauge theory is essentially equivalent to a free U(l) vector multiplet times 
an SU(N) gauge theory, up to some 7I..N identifications (which affect only global issues). 
In the dual string theory all modes interact with gravity, so there are no decoupled 
modes. Therefore, the bulk AdS theory is describing the SU(N) part of the gauge 
theory. In fact we were not precise when we said that there were two sets of excitations 
at low energies, the excitations in the asymptotic flat space and the excitations in 
the near horizon region. There are also some zero modes which live in the region 
connecting the "throat" (the near horizon region) with the bulk, which correspond to 
the U(l) degrees of freedom mentioned above. The U(l) vector supermultiplet includes 
six scalars which are related to the center of mass motion of all the branes [149]. From 
the AdS point of view these zero modes live at the boundary, and it looks like we might 
or might not decide to include them in the AdS theory. Depending on this choice we 
could have a correspondence to an SU(N) or a U(N) theory. The U(l) center of mass 
degree of freedom is related to the topological theory of B-fields on AdS [150]; if one 
imposes local boundary conditions for these B-fields at the boundary of AdS one finds 
a U(l) gauge field living at the boundary [151]' as is familiar in Chern-Simons theories 
[23, 152]. These modes living at the boundary are sometimes called singletons (or 
doubletons) [153, 125, 154, 85, 86, 155, 156, 157, 158]. 

As we saw in section 2.2, Anti-de-Sitter space has a large group of isometries, which 
is SO( 4,2) for the case at hand. This is the same group as the conformal group-in 3 + 1 
dimensions. Thus, the fact that the low-energy field theory on the brane is conformal 
is reflected in the fact that the near horizon geometry is Anti-de-Sitter space. We also 
have some supersymmetries. The number of supersymmetries is twice that of the full 
solution (3.3) containing the asymptotic region [149]. This doubling of supersymmetries 
is viewed in the field theory as a consequence of superconformal invariance (section 
2.2.3), since the superconformal algebra has twice as many fermionic generators as the 
corresponding Poincare superalgebra. We also have an SO(6) symmetry which rotates 
the S5. This can be identified with the SU(4)R R-symmetry group of the field theory. 
In fact, the whole supergroup is the same for the N = 4 field theory and the AdS5 x S5 
geometry, so both sides of the conjecture have the same spacetime symmetries. We 
will discuss in more detail the matching between the two sides of the correspondence 
in section 3.2. 

In the above derivation the field theory is naturally defined on 1R3
,1, but we saw 

in section 2.2.1 that we could also think of the conformal field theory as defined on 
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S3 X IR by redefining the Hamiltonian. Since the isometries of AdS are in one to 
one correspondence with the generators of the conformal group of the field theory, we 
can conclude that this new Hamiltonian t(Po + Ko) can be associated on AdS to the 
generator of translations in global time. This formulation of the conjecture is more 
useful since in the global coordinates there is no horizon. When we put the field theory 
on S3 the Coulomb branch is lifted and there is a unique ground state. This is due 
to the fact that the scalars </i in the field theory are conformally coupled, so there is 
a term of the form f d4 xTr( ¢2)R in the Lagrangian, where R is the curvature of the 
four-dimensional space on which the theory is defined. Due to the positive curvature 
of S3 this leads to a mass term for the scalars [20], lifting the moduli space. 

The parameter IV appears on the string theory' side as the flux of the five-form 
Ramond-Ramond field strength on the S5, 

( F5 = N. iss (3.7) 

From the physics of D-branes we know that the Yang-Mills coupling is related to the 
string coupling through [6, 159] 

4rri () i X 
T=-2-+-=-+-· , 

9y M 2rr 98 2rr 
(3.8) 

where we have also included the relationship of the () angle to the expectation value 
of the RR scalar x. We have written the couplings in this fashion because both the 
gauge theory and the string theory have an S L(2, /Z) self-duality symmetry under which 
T -t (aT + b)/(CT + d) (where a, b, c, d are integers wit4 ad - bc = 1). In fact, SL(2, /Z) 
is a conjectured strong-weak coupling duality symmetry of type lIB string theory in 
flat space [160], and it should also be a symmetry in the present context since all the 
fields that are being turned on in the AdS5 x S5 background (the metric and the five 
form field strength) are invariant under this symmetry. The connection between the 
SL(2, /Z) duality symmetries of type IIB string theory and N = 4 SYM was noted in 
[161, 162, 163]. The string theory seems to have a parameter that does not appear 
in the gauge theory, namely a', which sets the string tension and all other scales in 
the string theory. However, this is not really a parameter in the theory if we do not 
compare it to other scales in the theory, since only relative scales are meaningful. In 
fact, only the ratio. of the radius of curvature to (x' is a parameter, but not a' and 
the radius of curvature independently. Thus, (x' will disappear from any final physical 
quantity we compute in this theory. It is sometimes convenient, especially when one is 
doing gravity calculations, to set the radius of curvature to one. This can be achieved 
by writing the metric as ds2 = R2ds2 , and rewriting everything in terms of g. With 
these conventions G N rv 1/ N2 and a' rv 1/"';98 N. This implies that any quantity 
calculated purely in terms of the gravity solution, without including stringy effects, 

59 



will be independent of 9sN and will depend only on N. a' corrections to the gravity 
results give corrections which are proportional to powers of 1/J9sN. 

Now, let us address the question of the validity' of various approximations. The 
analysis of loop diagrams in the field theory shows that we can trust the perturbative 
analysis in the Yang-Mills theory when 

R4 
9~MN '" 9s N '" [4 « 1. 

s 

(3.9) 

Note that we need 9~ M N to be small and not just 9~ M. On the other hand, the 
classical gravity description becomes reliable when the radius of curvature R of AdS 
and of S5 becomes large compared to the string length, 

R4 
[4 '" 9s N '" g~MN » 1. 

s 

(3.10) 

We see that the gravity regime (3.10) and the perturbative field theory regime (3.9) 
are perfectly incompatible. In this fashion we avoid any obvious contradiction due 
to the fact that the two theories look very different. This is the reason that this 
correspondence is called a "duality". The two theories are conjectured to be exactly 
the same, but when one side is weakly coupled the other is strongly coupled and vice 
versa. This makes the correspondence both hard to prove and' useful, as we can solve 
a strongly coupled gauge theory via classical supergravity. Notice that in (3.9)(3.10) 
we implicitly assumed that 9s < 1. If 9s > 1 we can perform an S L(2, 7L.) duality 
transformation and get conditions similar to (3.9)(3.10) but with 9s -+ 1/9s. So, 
we cannot get into the gravity regime (3.10) by taking N small (N = 1,2, .. ) and 
9s very large, since in that case the D-string becomes light and renders the gravity 
approximation invalid. Another way to see this is to note that the radius of curvature 
in Planck units is R:t /i: '" N. So, it is always necessary, but not sufficient, to have 
large N in order to have a weakly coupled supergravity description. 

One might wonder why the above argument was not a proof rather than a conjecture. 
It is not a proof because we did not treat the string theory non-perturbatively (not 
even non-perturbatively in Of). We could also consider different forms of the conjecture. 
In its weakest form the gravity description would be valid for large 9sN, but the full 
string theory on AdS might not agree with the field theory. A not so weak form would 
say that the conjecture is valid even for finite gsN, but only in the N -+ 00 limit 
(so that the Of corrections would agree with the field theory, but the 9s corrections 
may not). The strong form of the conjecture, which is the most interesting one and 
which we will assume here, is that the two theories are exactly the same for all values 
of 9s and N, In this conjecture the spacetime is only required to be asymptotic to 
AdS5 x S5 as we approach the boundary. In the interior we can have all kinds of 
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processes; gravitons, highly excited fundamental string states, D-branes, black holes, 
etc. Even the topology of spacetime can change in the interior. The Yang-Mills theory 
is supposed to effectively sum over all spacetimes which are asymptotic to AdS5 x 55. 

This is completely analogous to the usual conditions of asymptotic flatness. We can 
have black holes and all kinds of topology changing processes, as long as spacetime is 
asymptotically flat. In this case asymptotic flatness is replaced by the asymptotic AdS 
behavior. 

3.1.1 Brane Probes and Multicenter Solutions 

The moduli space of vacua of the N' = 4 U( N) gauge theory is (~6)N / S;" parametriz­
ing the positions of the N branes in the six dimensional transverse space. In the 
supergravity solution one can replace 

N N 1 
f ex 4" ---t L I""' ""'14' r i=1 r - ri 

(3.11) 

and still have a solution to the supergravity equations. We see that if IT! » Iii I then 
the two solutions are basically the same, while when we go to r '" ri the solution starts 
looking like the solution of a single brane. Of course, we cannot trust the supergravity 
solution for a single brane (since the curvature in Planck units is proportional to a 
negative power of N). What we can do is separate the N branes into groups of Ni 
branes with 9sNi » 1 for all i. Then we can trust the gravity solution everywhere. 

Another possibility is to separate just one brane (or a small number of branes) 
from a group of N branes. Then we can view this b~ane as a D3-brane in the AdS5 

background which is generated by the other branes (as described above). A string 
stretching between the brane probe and the N branes appears in the gravity description 
as a string stretching between the D3-brane and the horizon of AdS. This seems a bit 

. surprising at first since the proper distance to the horizon is infinite. However, we get 
a finite result for the energy of this state once we remember to include the red shift 
factor. The D3-branes in AdS (like any D3-branes in string theory) are described at 
low energies by the Born-Infeld action, which is the Yang-Mills action plus some higher 
derivative corrections. This seems to contradict, at first sight, the fact that the dual 
field theory (coming from the original branes) is just the pure Yang-Mills theory. In 
order to understand this point more precisely let us write explicitly the bosonic part 
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of the Born-Infeld action for a D-3 brane in AdS [148], 

1 f 4 -1 [ 
S = -(211")3gso'2 d xj 

r-_-d-e-t (-1]-a{3-+-j-a-a r-a-{3-r -+-r-2 -j 9-i-j a-a-()'-' a-{3()-j-' +-211"-0-'-fj-j-F.-a-{3) - 1] , 

(3.12) 
where ()i are angular coordinates on the 5-sphere. We can easily check that if we define 
a new coordinate U = r / a', then all the a' dependence drops out of this action. Since 
U (which has dimensions of energy) corresponds to the mass of the W bosons in this 
configuration, it is the natural way to express the Higgs expectation value that breaks 
U(N + 1) to U(N) x U(I). In fact, the action.(3.12) is precisely the low-energy effective 
action in the field theory for the massless U (1) degrees of freedom, that we obtain after 
integrating out the massive degrees of freedom (W bosons). We can expand (3.12) 
in powers of au and we see that the quadratic term does not have any correction, 
which is consistent with the non-renormalization theorem for N = 4 super-Yang-Mills 
[164]. The (aU)4 term has only a one-loop correction, and this is also consistent with 
another non-renormalization theorem [165]. This one-loop correction can be evaluated 
explicitly in the gauge theory and the result agrees with the supergravity result [166]. 
It is possible to argue, using broken conformal invariance, that all terms in (3.12) are 
determined by the (aU)4 term [5]. Since the massive degrees of freedom that we are 
integrating out have a mass proportional to U, the action (3.12) makes sense as long 
as the energies involved are much smaller than U. In' particular, we need au / U « U. 
Since (3.12) has the form £(gsN(aU)2/u4), the higher order terms in (3.12) could 
become important in the supergravity regime, when gsN » 1. The Born Infeld action 
(3.12), as always, makes sense only when the curvature of the brane is small, but the 
deviations from a straight fiat brane could be large. In this regime we can keep the 
non-linear terms in (3.12) while we still neglect the massive string modes and similar 
effects. Further gauge theory calculations for effective actions of D-brane probes include 
[167, 168, 169]. 

3.1.2 The Field H Operator Correspondence 

A conformal field theory does not have asymptotic states or an S-matrix, so the natural 
objects to consider are operators. For example, in N = 4 super-Yang-Mills we have a 
deformation by a marginal operator which changes the value of the coupling constant. 
Changing the coupling constant in the field theory is related by (3.8) to changing the 
coupling constant in the string theory, which is then related to the expectation value of 

62 



the dilaton. The expectation value of the dilaton is set by the boundary condition for 
the dilaton at infinity. So, changing the gauge theory coupling constant corresponds 
to changing the boundary value of the dilaton. More precisely, let us denote by 0 
the corresponding operator. We can consider adding the term f d4 x<po(x)O(x) to the 
Lagrangian (for simplicity we assume that such a term was not present in the original 
Lagrangian, otherwise we consider <Po ( x) to be the total coefficient of O( x) in the 
Lagrangian). According to the discussion above, it is natural to assume that this 
will change the boundary condition of the dilaton at the boundary of AdS to (in the 
coordinate system (2.31)) 4>(x, z)lz=o = <Po(x). More precisely, as argued in [19, 20], it 
is natural to propose that 

(3.13) 

where the left hand side is the generating function of correlation functions in the field 
theory, i.e. <Po is an arbitrary function and we can calculate correlation functions of 0 
by taking functional derivatives with respect to <Po and then setting <Po = O. The right 
hand side is the full partition function of string theory with the boundary condition 
that the field <P has the value <Po on the boundary of AdS. Notice that <Po is a function 
of the four variables parametrizing the boundary of AdS5 • 

A formula like (3.13) is valid in general, for any field <p; Therefore, each field prop­
agating on AdS space is in a one to one correspondence with an operator in the field 
theory. There is a relation between the mass of the field <p and the scaling dimension 
of the operator in the conformal field theory. Let us describe this more generally in 
AdSd+1' The wave equation in Euclidean space for a fi'eld of mass m has two indepen­
dent solutions, which behave like zd-6. and z6. for small z (close to the boundary of 
AdS), where 

(3.14) 

Therefore, in order to get consistent behavior for a massive field, the boundary condi­
tion on the field in the right hand side of (3.13) should in general be changed to 

(3.15) 

and eventually we would take the limit where {: -+ O. Since <p is dimensionless, we 
see that <Po has dimensions of [length]6.-d which implies, through the left hand side 
of (3.13), that the associated operator 0 has dimension .6. (3.14). A more detailed 
derivation of this relation will be given in section 3.3, where we will verify that the 
two-point correlation function of the operator 0 behaves as that of an operator of 
dimension ~ [19, 20]. A similar relation between fields on AdS and operators in the 
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field theory exists also for non-scalar fields, including fermions and tensors on AdS 
space. 

Correlation functions in the gauge theory can be computed from (3.13) by differenti­
ating with respect to cPo. Each differentiation brings down an' insertion (], which sends 
a cP particle (a closed string state) into the bulk. Feynman diagrams can be used to 
compute the interactions of particles in the bulk. In the limit where classical super­
gravity is applicable, the only diagrams that contribute are the tree-level diagrams of 
the gravity theory (see for instance figure 3.1). 

+ + 

Figure 3.1: Correlation functions can be calculated (in the large 9sN limit) in terms of 
supergravity Feynman diagrams. Here we see the leading contribution coming from a 
disconnected diagram plus connected pieces involving interactions of the supergravity 
fields in the bulk of AdS. At tree level, these diagrams and those related to them by 
crossing are the only ones that contribute to the four-point function. 

This method of defining the correlation functions of a field theory which is dual to 
a gravity theory in the bulk of AdS space is quite general, and it applies in principle 
to any theory of gravity [20]. Any local field theory contains the stress tensor as an 
operator. Since the correspondence described above matches the stress-energy tensor 
with the graviton, this implies that the AdS theory includes gravity. It should be 
a well defined quantum theory of gravity since we should be able to compute loop 
diagrams. String theory provides such a theory. But if a new way of defining quantum 
gravity theories comes along we could consider those gravity theories in AdS, and they 
should correspond to some conformal field theory "on the boundary". In particular, 
we could consider backgrounds of string theory of the 'form AdS5 x M 5 where M 5 is 
any Einstein manifold [170,171,172]. Depending on the choice of M 5 we get different 
dual conformal field theories, as discussed in section 4.1. Similarly, this discussion 
can be extended to any AdSd+1 space, corresponding to a conformal field theory in d 
spacetime dimensions (for d > 1). We will discuss examples of this in section 6.1. 
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3.1.3 Holography 

In this section we will describe how the AdS/eFT correspondence gives a holographic 
description of physics in AdS spaces. 

Let us start by explaining the Bekenstein bound, which states that the maximum 
entropy in a region of space is Smax = Area/ 4G N [27], where the area is that of the 
boundary of the region. Suppose that we had a state with more entropy than Smax, 
then we show that we could violate the second law of thermodynamics. We can throw 
in some extra matter such that we form a black hole: The entropy should not decrease. 
But if a black hole forms inside the region its entropy is just the area of its horizon, 
which is smaller than the area of the boundary of the region (which by our assumption 
is smaller than the initial entropy). So, the second law has been violated. 

Note that this bound implies that the number of degrees of freedom inside some 
region grows as the area of the boundary of a region and not like the volume of the 
region. In standard quantum field theories this is certainly not possible. Attempting 
to understand this behavior leads to the "holographic principle" , which states that in 
a quantum gravity theory all physics within some volume can be described in terms of 
some theory on the boundary which has less than one degree of freedom per Planck 
area [25, 26] (so that its entropy satisfies the Bekenstein bound). 

In the AdS/eFT correspondence we are describing physics in the bulk of AdS space 
by a field theory of one less dimension (which can be thought of as living on the 
boundary), so it looks like holography. However, it is hard to check what the number 
of degrees of freedom per Planck area is, since the theory, being conformal, has an 
infinite number of degrees of freedom, and the area of the boundary of AdS space is 
also infinite. Thus, in order to compare things properly we should introduce a cutoff 
on the number of degrees of freedom in the field theory and see what it corresponds to 
in the gravity theory. For this purpose let us write the metric of AdS as 

(3.16) 

--
In these coordinates the boundary of AdS is at r = 1. We saw above that when we 
calculate correlation functions we have to specify boundary conditions at r = 1 - 0 and 
then take the limit of 0 -+ o. It is clear by studying the action of the conformal group 
on Poincare coordinates that the radial position plays the role of some energy scale, 
since we approach the boundary when we do a conformal transformation that localizes 
objects in the eFT. So, the limit 0 -+ 0 corresponds to going to the UV of the field 
theory. When we are close to the boundary we could also use the Poincare coordinates 

dt 2 d .... 2 d 2 

d 2 =R2 - +X+Z 
S 2' 

Z 
(3.17) 
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in which the boundary is at z = O. If we consider a particle or wave propagating 
in (3.17) or (3.16) we see that its motion is independent of R in the supergravity 
approximation. Furthermore, if we are in Euclidean space and we have a wave that 
has some spatial extent A in the i directions, it will also have an extent A in the z 
direction. This can be seen from (3.17) by eliminating A through the change of variables 
x -+ AX, Z -+ AZ. This implies that a cutoff at 

(3.18) 

corresponds to a UV cutoff in the field theory at distances 8; with no factors of R (8 
here is dimensionless, in the field theory it is measured in terms of the radius of the S4 
or S3 that the theory lives on). Equation (3.18) is called the UV-IR relation [173]. 

Consider the case of N = 4 SYM on a three-sphere of radius one. We can estimate 
the number of degrees of freedom in the field theory with a UV cutoff 8. We get 

(3.19) 

since the number of cells into which we divide the three-sphere is of order 1/83 . In the 
gravity solution (3.16) the area in Planck units of the surface at r = 1 - 8, for 8 « 1, 
IS 

(3.20) 

Thus, we see that the AdS/CFT correspondence saturates the holographic bound [173]. 
One could be a little suspicious of the statement that gravity in AdS is holographic, 

since it does not seem to be saying much because in AdS space the volume and the 
boundary area of a given region scale in the same fashion as we increase the size of 
the region. In fact, any field theory in AdS would be holographic in the sense that 
the number of degrees of freedom within some (large enough) volume is proportional 
to the· area (and also to the volume). What makes this case different is that we 
have the additional parameter R, and then we can take AdS spaces of different radii 
(corresponding to different values of N in the SYM theory), and then we can ask 
whether the number of degrees of freedom goes like the volume or the area, since these 
have a different dependence on R. 

One might get confused by the fact that the surface r = 1 - 8 is really nine dimen­
sional as opposed to four dimensional. From the form of the full metric on AdS5 x S5 
we see that as we take 8 -+ 0 the physical size of four of the dimensions of this nine 
dimensional space grow, while the other five, the S5, remain constant. So, we see 
that the theory on this nine dimensional surface becomes effectively four dimensional, 
since we need to multiply the metric by a factor that goes to zero as we approach the 
boundary in order to define a finite metric for the four dimensional gauge theory. 
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Note that even though it is often said that the field theory is defined on the boundary 
of AdS, it actually describes all the physics that is going on inside AdS. When we are 
thinking in the AdS picture it is incorrect to consider at the same time an additional 
field theory living at the boundary!. Different regions of AdS space, which are at 
different radial positions, correspond to physics at different energy scales in the field 
theory. It is interesting that depending on what boundary we take, 1R3+1 (in the 
Poincare coordinates) or S3 X IR (in the global coordinates), we can either have a 
horizon or not have one. The presence of a horizon in the 1R3+1 case is related to the 
fact that the theory has no mass gap and we can have excitations at arbitrarily low 
energies. This will always happen when we have a horizon, since by bringing a particle 
close to a horizon its energy becomes arbitrarily small. We are talking about the energy 
measured with respect to the time associated to the Killing vector that vanishes at the 
horizon. In the S3 case there is no horizon, and correspondingly the theory has a gap. 
In this case the field theory has a discrete spectrum since it is in finite volume. 

L 

R > 

Figure 3.2: Derivation of the IRjUV relation by considering a spatial geodesic ending 
at two points on the boundary. . 

Now let us consider the UV /IR correspondence in spaces that are not AdS, like the 
ones which correspond to the. field theories living on D-p-branes with p =I- 3 (see section 
6.1.3). A simple derivation involves considering a classical spatial geodesic that ends 
on the boundary at two points separated by a distance L in field theory units (see 
figure 3.2). This geodesic goes into the bulk, and it has a point at which the distance 
to the boundary is maximal. Let us call this point Tmax(L). Then, one formulation of 
the UV JIR relation is 

(3.21 ) 

A similar criterion arises if we consider the wave equation instead of classical geodesics 

1 Except possibly for a small number of singleton fields. 
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[174]; of course both are the same since a classical geodesic arises as a limit of the wave 
equation for very massive particles. 

Since the radial direction arises holographically, it is not obvious at first sight that 
the theory will be causal in the bulk. Issues of causality in the holographic description 
of the spacetime physics were discussed in [175,176,177,178]. 

This holographic description has implications for the physics of black holes. This 
description should therefore explain how the singula~ity inside black holes should be 
treated (see [179]). Holography also implies that black hole evolution is unitary since 
the boundary theory is unitary, It is not totally clear, from the gravity point of view, 
how the information comes back out or where it is stored (see [180] for a discussion). 
Some speculations about holography and a new uncertainty principles were discussed 
in [181]. 

3.2 Tests of the AdS/CFT Correspondence 

In this section we review the direct tests of the AdS / CFT correspondence. In section 
3.1 we saw how string theory on AdS defines a partition function which can be used 
to define a field theory. Here we will review the evidence showing that this field theory 
is indeed the same as the conjectured dual field theory. We will focus here only on 
tests of the correspondence between the .N = 4 SU(N) SYM theory and the type 
lIB string- theory compactified on AdS5 x S5; most of the tests described here can be 
generalized also to cases in other dimensions and/or with less supersymmetry, which 
will be described below. 

As described in section 3.1, the AdS/CFT correspondence is a strong/weak coupling 
duality. In the 't Hooft large N limit, it relates the region of weak field theory coupling 
A = g}MN in the SYM theory to the region of high curvature (in string units) in the 
string theory, and vice versa. Thus, a direct comparison of correlation functions is 
generally not possible, since (with our current knowledge) we can only compute most 
of them perturbatively in A on the field theory side and perturbatively in 1/v'X on the 
string theory side. For example, as described below, we can compute the equation of 
state of the SYM theory and also the quark-anti-quark potential both for small A and 
for large A, and we obtain different answers, which we do not know how to compare 
since we can only compute them perturbatively on both sides. A similar situation 
arises also in many field theory dualities that were analyzed in the last few years (such 
as the electric/magnetic SL(2, Z) duality of the .N = 4 SYM theory itself), and it was 
realized that there are several properties of these theories which do not depend on the 
coupling, so they can be compared to test the duality. These are: 

• The global symmetries of the theory, which cannot change as we change the 
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coupling (except for extreme values of the coupling). As discussed in section 
3.1, in the case of the AdS/eFT correspondence we have the same supergroup 
SU(2,214) (whose bosonic subgroup is SO(4, 2) x SU(4)) as the global symmetry 
of both theories. Also, both theories are believed to have a non-perturbative 
S £(2, Z) duality symmetry acting on their coupling constant T. These are the 
only symmetries of the theory on ]R4. Additional ZN symmetries arise when the 
theories are compactified on non-simply-connected manifolds, and these were also 
successfully matched in [182, 150]2. 

• Some correlation functions, which are usually related to anomalies, are protected 
from any quantum corrections and do not depend on A. The matching of these 
correlation functions will be described in !3ection 3.2.2 below. 

• The spectrum of chiral operators does not change as the coupling varies, and it 
will be compared in section 3.2.1 below. 

• The moduli space of the theory also does not depend on the coupling. In the 
SU(N) field theory the moduli space is ]R6(N-l) / SN, parametrized by the eigen­
values of six commuting traceless N x N matrices. On the AdS side it is not 
clear exactly how to define the moduli space. As described in section 3.1.1, there 
is a background of string theory corresponding to any point in the field theory 
moduli space, but it is not clear how to see that this is the exact moduli space· 
on the string theory side (especially since high curvatures arise for generic points 
in the moduli space). 

• The qualitative behavior of the theory upon deformations by relevant or marginal 
operators also does not depend on the coupling (at least for chiral operators 
whose dimension does not depend on the coupling, and in the absence of phase 
transitions). This will be discussed in section 4.3. 

There are many more qualitative tests of the correspondence, such as the exis­
tence of confinement for the finite temperature theory [183], which we will not 
discuss in this section. We will also not discuss here tests involving the behavior 
of the theory on its moduli space [167, 184, 168]. 

2Unlike most of the other tests described here, this test actually tests the finite N duality and not 
just the large N limit. 
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3.2.1 The Spectrum of Chiral Primary Operators· 

The Field Theory Spectrum 

The N = 4 supersymmetry algebra in d = 4 has four generators Q~ (and their complex 
conjugates QoA), where a is a Weyl-spinor index (in the 2 of the SO(3,1) Lorentz 
group) and A is an index in the 4 of the SU(4)R R-symmetry group (lower indices A 
will be taken to transform in the 4 representation). They obey the algebra 

(3.22) 

where u i (i = 1,2,3) are the Pauli matrices and (uO)ao = -~ao (we use the conventions 
of Wess and Bagger [185]). 

N = 4 supersymmetry in four dimensions has a unique multiplet which does not 
include spins greater than one, which is the vector multiplet. It include~ a vector field 
All (11 is a vector index of the SO(3, 1) Lorentz group), four complex Weyl fermions AaA 
(in the 4 of SU(4)R), and six real scalars cji (where I is an index in the 6 of SU(4)R). 
The classical action of the supersymmetry generators on these fields is schematically 
gi ven (for on-shell fields) by 

[Q~,</i] '" AaB, 

{Q~, A{3B} '" (uP,V)a{3 Fllv + (a{3[ </i, <//l, 
A -B I 

{Qa' A/3} '" (u ll )a/3V p,</> , 
(3.23) 

A - A 0/3 [Qa,Ap,] '" (UIl )aoA/3( , 

with similar expressions for the action of the Q's, where uP,V are the generators of 
the Lorentz group in the spinor representation, V il is the covariant derivative, the 
field strength Fp,v = [Vp" V vl, and we have suppressed the SU(4) Clebsch-Gordan 
coefficients corresponding to the products 4 x 6 -+ 4, 4 x 4 -+ 1 + 15 and 4 x 4 -+ 6 
in the first three lines of (3.23). 

An N = 4 supersymmetric field theory is uniquely determined by specifying the 
gauge group, and its field content is a vector multiplet in the adjoint of the gauge 
group. Such a field theory is equivalent to an N = 2 theory with one hypermultiplet 
in the adjoint representation, or to an N = 1 theory with three chiral multiplets <I>i in 
the adjoint representation (in the 32/ 3 of the SU(3) x U(1)R C SU( 4)R which is left 
unbroken by the choice of a single N = 1 SUSY generator) and a superpotential of the 
form W ex (iikTr(<I>i<I>i<I>k). The interactions of the theory include a scalar potential 

proportional to LI,J Tr([<//, <//F) , such that the moduli space of the theory is the space 
of commuting matrices </i (I = 1" .. ,6). 
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The spectrum of operators in this theory includes all the gauge invariant quantities 
that can be formed from the fields described above. In this section we will focus 
on local operators which involve fields taken at the same point in space-time. For 
the SU(N) theory described above, properties of the adjoint representation of SU(N) 
determine that such operators necessarily involve a product of traces of products of 
fields (or the sum of such products). It is natural to divide the operators into single­
trace operators and multiple-trace operators. In the 't Hooft large N limit correlation 
functions involving multiple-trace operators are suppressed by powers of N compared 
to those of single-trace operators involving the same fields. We will discuss here in 
detail only the single-trace operators; the multiple-trace operators appear in operator 
product expansions of products of single-trace operators. 

As discussed in section 2.1, it is natural to classify the operators in a conformal 
theory into primary operators and their descendants. In a superconformal theory it 
is also natural to distinguish between chiral primary operators, which are in short 
representations of the superconformal algebra and are annihilated by some of the su­
percharges, and non-chiral primary operators. Representations of the super conformal 
algebra are formed by starting with some state of lowest dimension, which is anni­
hilated by the operators Sand KJ-t, and acting on it with the operators Q and Pw 
The N = 4 supersymmetry algebra involves 16 real supercharges. A generic primary 
representation of the superconformal algebra will thus include 216 primaries of the 
conformal algebra, generated by acting on the lowest state with products of different 
supercharges; acting with additional supercharges always leads to descendants of the 
conformal algebra (i.e. derivatives). Since the supercharges have helicities ±1/2, the 
primary fields in such representations will have a range of helicities between A - 4 (if 
the lowest dimension operator 'ljJ has helicity A) and A + 4 (acting with more than 8 
supercharges of the same helicity either annihilates the state or leads to a conformal 
descendant). In non-generic representations of the super conformal algebra a product 
of less than 16 different Q's annihilates the lowest dimension operator, and the range 
of helicities appearing is smaller. In particular, in the small representations of the 
N = 4 superconformal algebra only up to 4 Q's of the same helicity acting on the 
lowest dimension operator give a non-zero result, and the range of helicities is between 
A - 2 and A + 2. For the N = 4 supersymmetry algebra (not including the conformal 
algebra) it is known that medium representations, whose range of helicities is 6, can 
also exist (they arise, for instance, on the moduli space of the SU(N) N = 4 SYM 
theory [186, 187, 188, 189, 190, 191, 192, 193]); it is not clear if such medium repre­
sentations of the superconformal algebra [194] can appear in physical theories or not 
(there are no known examples). More details on the structure of representations of the 
N = 4 superconformal algebra may be found in [83, 195, 196, 197, 198, 199, 194] and 
references therein. 
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In the U(l) N = 4 SYM theory (which is a free theory), the only gauge-invariant 
"single trace" operators are the fields of the vector multiplet itself (which are 4/, AA,).A 

and FJ.LV = o[J.LAv]). These operators form an ultra-short representation of the N = 4 
algebra whose range of helicities is from (-1) to 1 (<l:cting with more than two su­
percharges of the same helicity on any of these states gives either zero or derivatives, 
which are descendants of the conformal algebra). All other local gauge invariant op­
erators in the theory involve derivatives or products of these op~rators. This rep­
resentation is usually called the doubleton representation, and it does not appear 
in the SU(N) SYM theory (though the representations which do appear can all be 
formed by tensor products of the doubleton representation). In the context of AdS 
space one can think of this multiplet as living purely on the boundary of the space 
[200, 201, 202, 203, 204, 85, 84, 205, 206, 207, 208], as expected for the U (1) part of 
the original U(N) gauge group of the D3-branes (see the discussion in section 3.1). 

There is no known simple systematic way to compute the full spectrum of chiral 
primary operators of the N = 4 SU(N) SYM theory, so we will settle for presenting the 
known chiral primary operators. The lowest component of a superconformal-primary 
multiplet is characterized by the fact that it cannot be written as a supercharge Q 
acting on any other operator. Looking at the action of the supersymmetry charges 
(3.23) suggests that generally operators built from the fermions and the gauge fields 
will be descendants (given by Q acting on some other fields), so one would expect 
the lowest components of the chiral primary representations to be built only from the 
scalar fields, and this turns out to be correct. 

Let us analyze the behavior of operators of the form Oh h ···In = Tr( ¢h ¢h ... ¢In ). 

First we can ask if this operator can be written as {Q, t/J} for any field t/J. In the 
SUSY algebra (3.23) only commutators of ¢[ls appear on the right hand side, so we see 
that if some of the indices are antisymmetric the field will be a descendant. Thus, only 
symmetric combinations of the indices will be lowest components of primary multiplets. 
Next, we should ask if the multiplet built on such an operator is a (short) chiral 
primary multiplet or not. There are several different .ways to answer this question. 
One possibility is to use the relation between the dimension of chiral primary operators 
and their R-symmetry representation [92, 93, 94, 91, 95], and to check if this relation 
is obeyed in the free field theory, where [OIlh···In] == n. In this way we find that the 
representation is chiral primary if and only if the indices form a symmetric traceless 
product of n 6's (traceless representations are defined as those who give zero when 
any two indices are contracted). This is a representation of weight (0, n, 0) of SU(4)R; 
in this section we will refer to SU( 4)R representations either by their dimensions in 
boldface or by their weights. 

Another way to check this is to see if by acting with Q's on these operators we get the 
most general possible states or not, namely if the representation contains "null vectors" 
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or not (it turns out that in all the relevant cases "null vectors" appear already at the 
first level by acting with a single Q, though in principle there could be representations 
where "null vectors" appear only at higher levels). 'Using the SUSY algebra (3.23) 
it is easy to see that for symmetric traceless representations we get "null vectors" 
while for other representations we do not. For instance, let us analyze in detail the 
case n = 2. The symmetric product of two 6's is given by 6 x 6 -;. 1 + 20'. The 
field in the 1 representation is Tr(4/<//), for which [Q~, Tr(4/4/)] rv GAJBTr(>'oB</>J) 
where CAlB is a Clebsch-Gordan coefficient for 4 x 6 -;. 4. The right-hand side is 
in the 4 representation, which is the most general representation that can appear in 
the product 4 x 1, so we find no null vectors at this level. On the other hand, if we 
look at the symmetric traceless product Tr(</>{I</>J}) == Tr(</>I</>J) - ~t5IJTr(</>K</>K) in the 
20' representation, we find that {Q~, Tr(</>{I</>J})} rv Tr(>'oB</>K) with the right-hand 
side being in the 20 representation (appearing in 4 x 6 -;. 4 + 20), while the left-hand 
side could in principle be in the 4 x 20' -;. 20 + 60. Since the 60 does not appear on 
the right-hand side (it is a "null vector") we identify that the representation built on 
the 20' is a short representation of the SUSY algebra. By similar manipulations (see 
[20, 209, 195, 198] for more details) one can verify that chiral primary representations 
correspond exactly to symmetric traceless products of 6's. 

It is possible to analyze the chiral primary spectrum also by using N = 1 subalgebras 
of the N = 4 algebra. If we use an N = 1 subalgebra of the JV = 4 algebra, as described 
above, the operators On include the chiral operators of the form Tr( <pil <pi2 .•• <pin) (in 
a representation of SU(3) which is a symmetric product of 3's), but for a particular 
choice of the N = 1 subalgebra not all the operators On appear to be chiral (a short 
multiplet of the N = 4 algebra includes both short and long multiplets of the N = 1 
subalgebra). 

The last issue we should discuss is what is the range of values of n. The product 
of more than N commuting3 N x N matrices can always be written as a sum of 
products of traces of less than N of the matrices, so it does not form an independent 
operator. This means that fOI: n > N we can express the operator OlIh···1n in terms 
of other operators, up to operators including commutators which (as explained above) 
are descendants of the SUSY algebra. Thus, we find that the short chiral primary 
representations are built on the operators On = O{h I

2···
In } with n = 2,3,···, N, for 

which the indices are in the symmetric traceless product of n 6's (in a U(N) theory 
we would find the same spectrum with the additional representation corresponding to 
n = 1). The superconformal algebra determines the dimension of these fields to be 
[On] = n, which is the same as their value in the free field theory. We argued above 

3We can limit the discussion to commuting matrices since, as discussed above, commutators always 
lead to descendants, and we can write any product of matrices as a product of commuting matrices 
plus terms with commutators. 
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that these are the only short chiral primary representations in the SU(N) gauge theory, 
but we will not attempt to rigorously prove this here. 

The full chiral primary representations are obtained by acting on the fields On by 
the generators Q and P of the supersymmetry algebra. The representation built on 
On contains a total of 256 X 112n2(n2 -1) primary states, of which half are bosonic and 
half are fermionic. Since these multiplets are built on a field of helicity zero, they will 
contain primary fields of helicities between (-2) and 2. The highest dimension primary 
field in the multiplet is (generically) of the form Q4Q40n' and its dimension is n + 4. 
There is an elegant way to write these multiplets as traces of products of "twisted 
chiral N = 4 superfields" [209, 195]; see also [210] which checks some components of 
these superfields against the couplings to supergravity modes predicted on the basis of 
the DBI action for D3-branes in anti-de Sitter space [211]. 

It is easy to find the form of all the fields in such a multiplet by using the algebra 
(3.23). For example, let us analyze here in detail the bosonic primary fields of dimension 
n + 1 in the multiplet. To get a field of dimension n + 1 we need to act on On with two 
supercharges (recall that [Q] = ~). If we act with two supercharges Q~ of the sam~ 
chirality, their Lorentz indices can be either antisymmetrized or symmetrized. In the 
first case we get a Lorentz scalar field in the (2, n - 2,0) representation of SU( 4)R' 
which is of the schematic form 

Using an N = 1 subalgebra some of these operators may be written as the lowe~t 
components of the chiral superfields Tr(W~<I>jl ... <I>in-2). In the second case we get 
an anti-symmetric 2-form of the Lorentz group, in the (0, n - 1,0) representation of 
SU(4)R, of the form 

{Q {en [Qt3h On]} rv Tr( (~J1.V)at3FJ1.v¢/1 ... q/n-I ) + Tr(AaA At3B</>KI ... </>Kn-2). (3.25) 

Both of these fields are complex, with the complex conjugate fields given by the action 
of two Q's. Acting with one Q and one Q on the state On gives a (real) Lorentz-vector 
field in the (l,n - 2, 1) representation of SU(4)R, of the form 

At dimension n + 2 (acting with four supercharges) we find: 

• A complex scalar field in the (0, n - 2,0) representation, given by Q40n' of the 
form Tr( F;'v </>11 ... </>In-2) + .. '. 

~ 

• A real scalar field in the (2, n - 4,2) representation, given by Q2Q20n' of the 
form fCt{3firPTr( ACtA I A{3A)~1 >,,;2</>11 ... </>In- 4 ) + .. '. 
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• A complex vector field in the (1, n - 4, 1) representation, given by Q3QOn' of the 
form Tr( FlJ.v 'DV 4>J 4>h ... 4>ln-2) + . . .. . 

• An complex anti-symmetric 2-form field in the (2, n - 3,0) representation, given 
by Q2Q20n' of the form Tr(FlJ.v[4>J

l ,4>J2 14>h ... 4>ln-2) + .... 

• A symmetric tensor field in the (0, n - 2,0) representation, given by Q2Q20n' of 
the form Tr('D{IJ.4>J'Dv}4>K 4>h ... 4>ln-2) + .... 

The spectrum of primary fields at dimension n + 3 is similar to that of dimension n+ 1 
(the same fields appear but in smaller SU(4)R representations), and at dimension n+4 
there is a single primary field, which is a real scalar in the (0, n - 4,0) representation, 
given by Q4Q40n' of the form Tr( FJv4>/l ... 4>ln-4) + . ... Note that fields with more 
than four FIJ./s or more than eight A's are always descendants or non-chiral primaries. 

For n = 2,3 the short multiplets are even shorter since some of the representations 
appearing above vanish. In particular, for n = 2 the highest-dimension primaries in the 
chiral primary multiplet have dimension n + 2 = 4. The n = 2 representation includes 
the currents of the superconformal algebra. It includes a vector of dimension 3 in the 
15 representation which is the SU(4)R R-symmetry current, and a symmetric tensor 
field of dimension 4 which is the energy-momentum tensor (the other currents of the 
superconformal algebra are descendants of these). The n = 2 multiplet also includes 
a complex scalar field which is an SU( 4)wsinglet, whose real part is the Lagrangian 
density coupling to p--l (of the form Tr(F,~J + ... ) and whose imaginary part is the 

gYM ... 

Lagrangian density coupling to () (of the form Tr( F A F)). For later use we note that 
the chiral primary multiplets which contain scalars of -dimension ~ :::; 4 are the n = 2 
multiplet (which has a scalar in the 20' of dimension 2, a complex scalar in the 10 of 
dimension 3, and a complex scalar in the 1 of dimension 4), the n = 3 multiplet (which 
contains a scalar in the 50 of dimension 3 and a complex scalar in the 45 of dimension 
4), and the n = 4 multiplet which contains a scalar in the 105 of dimension 4. 

The String Theory Spectrum and the Matching 

As discussed in section 3.1.2, fields on AdSs are in a one-to-one correspondence with 
operators in the dual conformal field theory. Thus, the spectrum of operators described 
in section 3.2.1 should agree with the spectrum of fields of type lIB string theory on 
AdSs x SS. Fields on AdS naturally lie in the same multiplets of the conformal group 
as primary operators; the second Casimir of these representations is C2 = ~(~ - 4) for 
a primary scalar field of dimension ~ in the field theory, and C2 = m2 R2 for a field of 
mass m on an AdSs space with a radius of curvature R. Single-trace operators in the 
field theory may be identified with single-particle states in AdSs, while multiple-trace 
operators correspond to multi-particle states. 
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Unfortunately, it is not known how to compute the full spectrum of type IIB string 
theory on Ad55 x 55. In fact, the only known states are the states which arise from the 
dimensional reduction of the ten-dimensional type lIB supergravity multiplet. These 
fields all have helicities between (-2) and 2, so it is clear that they all lie in small mul­
tiplets of the superconformal algebra, and we will describe below how they match with 
the small multiplets of the field theory described above. String theory on Ad55 x 55 is 
expected to have many additional states, with masses of the order of the string scale 1/ ls 
or of the Planck scale l/lp • Such states would correspond (using the mass/dimension 
relation described above) to operators in the field theory with dimensions of order 
~ rv (gsN)1/4 or ~ rv N 1/4 for large N,gsN. Presumably none of these states are in 
small multiplets of the superconformal algebra (at least, this would be the prediction 
of the AdS/eFT correspondence). 

The spectrum of type lIB supergravity compactified on Ad55 x 55 was computed in 
[124]. The computation involves expanding the ten dimensional fields inappropriate 
spherical harmonics on 55, plugging them into the supergravity equations of motion, 
linearized around the Ad55 x 55 background, and diagonalizing the equations to give 
equations of motion for free (massless or massive) fields4 • For example, the ten dimen­
sional dilaton field r may be expanded as r(x, y) = Lk::O rk(x)yk(y) where x is a coor­
dinate on Ad55, y is a coordinate on 55, and the yk are the scalar spherical harmonics 
on 55. These spherical harmonics are in representations corresponding to symmetric 
traceless products of 6's of 5U(4)R; they may be written as yk(y) '" yhyI2 ... yh 
where the yI, for 1= 1,2", . ,6 and with L~=l (yI)2 = 1, are coordinates on 55. Thus, 
we find a field rk(x) on Ad55 in each such (0, k, 0) representation of 5U(4)R, and the 
equations of motion determine the mass of this field to be m% = k( k + 4) / R2. A similar 
expansion may be performed for all other fields. 

If we organize the results of [124] into representations of the superconformal algebra 
[83], we find representations of the form described in the previous section, which are 
built on a lowest dimension field which is a scalar in the (0, n, 0) representation of 
5U( 4)R for n = 2,3" .. ,00. The lowest dimension scalar field in each representation 
turns out to arise from a linear combination of spherical harmonic modes of the 55 
components of the graviton h~ (expanded around the Ad55 x 55 vacuum) and the 
4-form field Dabcd, where a, b, c, d are indices on 55. The scalar fields of dimension 
n + 1 correspond to 2-form fields Bab with indices in the 55. The symmetric tensor 
fields arise from the expansion of the Ad55-components of the graviton. The dilaton 
fields described above are the complex scalar fields arising with dimension n + 2 in the 
multiplet (as described in the previous subsection). 

In particular, the n = 2 representation is called the supergraviton representation, and 

4The fields arising from different spherical harmonics are related by a "spectrum generating alge­
bra", see [212]. 
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it includes the field content of d = 5,.N = 8 gauged supergravity. The field/operator 
correspondence matches this representation to the representation including the super­
conformal currents in the field theory. It includes a massless graviton field, which (as 
expected) corresponds to the energy-momentum tensor in the field theory, and massless 
5U(4)R gauge fields which correspond to (or couple to) the global SU(4)R currents in 
the field theory. 

In the naive dimensional reduction of the type lIB supergravity fields, the n = 1 
doubleton representation, corresponding to a free U(l) vector multiplet in the dual 
theory, also appears. However, the modes of this multiplet are all pure gauge modes in 
the bulk of AdS5, and they may be set to zero there. This is one of the reasons why it 
seems more natural to view the corresponding gauge theory as an 5U(N) gauge theory 
and not a U(N) theory. It may be possible (and perhaps even natural) to add the 
doubleton representation to the theory (even though it does not include modes which 
propagate in the bulk of Ad55, but instead it is equivalent to a topological theory in 
the bulk) to obtain a theory which is dual to the U(N) gauge theory, but this will not 
affect most of our discussion in this review so we will ignore this possibility here. 

Comparing the results described above with the results of section 3.2.1, we see that 
we find the same spectrum of chiral primary operators for n = 2,3,' .. ,N. The super­
gravity results cannot be trusted for masses above the order of the string scale (which 
corresponds to n rv (gsN)1/4) or the Planck scale (which corresponds to n rv Nl/4), so 
the results agree within their range of validity. The field theory results suggest that the 
exact spectrum of chiral representations in type IIB string theory on Ad55 x S5 actually 
matches the naive supergravity spectrum up to a mass scale m2 

rv N 2 
/ R2 rv N 3

/
2 M; 

which is much higher than the string scale and the Planck scale, and that there are no 
chiral fields above this scale. It is not known how to check this prediction; tree-level 
string theory is certainly not enough for this since when g8 = 0 we must take N = 00 to 
obtain a finite value of gsN. Thus, with our current knowledge the matching of chiral 
primaries of the .N = 4 SYM theory with those of string theory on AdS5 x 55 tests 
the duality only in the large N limit. In some generalizations of the AdS/CFT corre­
spondence the string coupling goes to zero at the boundary even for finite N, and then 
classical string theory should lead to exactly the same spectrum of chiral operator~ as 
the field theory. This happens in particular for the near-horizon limitof NS5-branes, in 
which case the exact spectrum was successfully compared in [213]. In other instances 
of the AdS/CFT correspondence (such as the ones discussed in [214, 215, 216]) there 
exist also additional chiral primary ~ultiplets with n of order N, and these have been 
successfully matched with wrapped branes on the string theory side. 

The fact that there seem to be no non-chiral fields on AdS5 with a mass below the 
string scale suggests that for large N and large g8 N, the dimension of all non-chiral 
operators in the field theory, such as Tr( qi ¢/), grows at least as (gsN)1/4 rv (g}MN)1/4. 
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The reason for this behavior on the field theory side is not clear; it is a prediction of 
the AdS/CFT correspondence. 

3.2.2 Matching of Correlation Functions and Anomalies 

The classical .N = 4 theory has a scale invariance symmetry and an SU(4)R R­
symmetry, and (unlike many other theories) these symmetries are exact also in the 
full quantum theory. However, when the theory is coupled to external gravitational or 
SU(4)R gauge fields, these symmetries are broken by quantum effects. In field theory 
this breaking comes froni one-loop diagrams and does not receive any further correc­
tions; thus it can be computed also in the strong coupling regime and compared with 
the results from string theory on AdS space. 

We will begin by discussing the anomaly associated with the SU(4)R global currents. 
These currents are chiral since the fermions AoA are in the -4 representation while the 
fermions of the opposite chirality >'t are in the 4 representation. Thus, if we gauge the 
SU( 4)R global symmetry, we will find an Adler-Bell-Jackiw anomaly from the triangle 
diagram of three SU( 4)R currents, which is proportional to the number of charged 
fermions. In the SU(N) gauge theory this number is N 2 

- 1. The anomaly can be 
expressed either in terms of the 3-point function of the SU(4)R global currents, 

where dabc = 2Tr(Ta{Tb, TC}) and we take only the negative parity component of the 
correlator, or in terms of the non-conservation of the SU(4)R current when the theory 
is coupled to external SU(4)R gauge fields F:v ' 

(3.28) 

How can we see this effect in string theory on AdS5 X S5? One way to see it 
is, of course, to use the general prescription of section 3.3 to compute the 3-point 
function (3.27), and indeed one finds [217, 218] the correct answer to leading order 
in the large N limit (namely, one recovers the term proportional to N 2 ). It is more 
illuminating, however, to consider directly the meaning of the anomaly (3.28) from the 
point of view of the AdS theory [20]. In the AdS theory we have gauge fields A~ which 
couple, as explained above, to the SU(4)R global currents J: of the gauge theory, but 
the anomaly means that when we turn on non-zero field strengths for these fields the 
theory should no longer be gauge invariant. This effect is precisely reproduced by- a 
Chern-Simons term which exists in the low-energy supergravity theory arising from the 
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compactification of type IIB supergravity on AdS5 x S5, which is of the form 

(3.29) 

This term is gauge invariant up to total derivatives, which means that if we take a 
gauge transformation A~ -+ A~ + (VJ1.A)a for which A does not vanish on the boundary. 
of AdS5 , the action will change by a boundary term of the form 

(3.30) 

From this we can read off the anomaly in (VJ1. J/J.) since, when we have a coupling of 
the form f d4xA~J:, the change in the action under a gauge transformation is given by 
f d4x(V/J. A)aJ: = - f d4XAa(VJ1. J:), and we find exact agreement with (3.28) for large 
N. 

The other anomaly in the JJ = 4 SYM theory is the conformal (or Weyl) anomaly 
(see [219, 220] and references therein), indicating the breakdown of conformal invariance 
when the theory is coupled to a curved external metric (thereis a similar breakdown of 
conformal invariance when the theory is coupled to external SU(4)R gauge fields, which 
we will not discuss here). The conformal anomaly is related to the 2-point and 3-point 
functions of the energy-momentum tensor [221, 222, 72, 223]. In four dimensions, the 
general form of the conformal anomaly is 

(3.31 ) 

where 
1 2 2 2 

E4 = 1671"2 (R/J.vPu - 4RJ1.v + R ), 

1 ( 2 2 1 2) 
14 = - 1671"2 R/J.vpu - 2R/J.v + 3 R , 

(3.32) 

where R/J.vpu is the curvature tensor, RJ1.v == R~pv is th.e Riemann tensor, and R = R~ is 
the scalar curvature. A free field computation in the SU(N) JJ = 4 SYM theory leads 
to a = c = (N2 - 1) /4. In supersymmetric theories the supersymmetry algebra relates 
g/J.vTJ1.v to derivatives of the R-symmetry current, so it is protected from any quantum 
corrections. Thus, the same result should be obtained in type IIB string theory on 
AdS5 x S5, and to leading order in the large N limit it should be obtained from type 
IIB supergravity on Ad85 x 8 5. This was indeed found to be true in [224,225,226, 227]5, 
where the conformal anomaly was shown to arise from subtleties in the regularization 
of the (divergent) supergravity action on AdS space. The result of [224, 225, 226, 227] 
implies that a computation using gravity on AdS5 always gives rise to theories with 

5 A generalization with more varying fields may be found in [228]. 
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a = c, so generalizations of the AdS/CFT correspondence which have (for large N) a 
supergravity approximation are limited to conformal theories which have a = c in the 
large N limit. Of course, if we do not require the string theory to have a supergravity 
approximation then there is no such restriction. 

For both of the anomalies we described the field theory and string theory computa­
tions agree for the leading terms, which are of order N 2. Thus, they are successful tests 
of the duality in the large N limit. For other instances of the AdS/CFT correspondence 
there are corrections to anomalies at order 1/ N rv 9s( a f 

/ R2)2; such corrections were 
discussed in [229] and successfully compared in [230,231,232]6. It would be interesting 
to compare other corrections to the large N result. 

Computations of other correlation functions [233, 234, 235], such as 3-point func­
tions of chiral primary operators and correlation functions which have only instanton 
contributions (we will discuss these in section 4.2), have suggested that they are also 
the same at small .A and at large .A, even though they are not related to anomalies in 
any known way. Perhaps there is some non-renormalization theorem also for these cor­
relation functions, in which case their agreement would also be a test of the AdS/CFT 
correspondence. As discussed in [236, 237] (see also [144]) the non-renormalization 
theorem for 3-point functions of chiral primary operators would follow from a conjec­
tured U(I)y symmetry of the 3-point functions of Af = 4 SCFTs involving at least two 
operators which are descendants of chiral primaries7

. This symmetry is a property of 
type lIB supergravity on AdS5 x S5 but not of the full type lIB string theory. 

3.3 Correlation Functions 

A useful statement of the AdS/CFT correspondence is that the partition (unction of 
string theory on AdS5 x S5 should coincide with the partition function of Af = 4 super­
Yang-Mills theory "on the boundary" of AdS5 [19, 20]. The basic idea was explained 
in section 3.1.2, but before summarizing the actual calculations of Green's functions, it 
seems worthwhile to motivate the methodology from a somewhat different perspective. 

Throughout this section, we approximate the string theory partition function by 
e-IsUGRA, where ISUGRA is the supergravity action evaluated on AdS5 x S5 (or on small 
deformations ofthis space). This approximation amounts to ignoring all the stringy a f 

corrections that cure the divergences of supergravity, and also all the loop corrections, 
which are controlled essentially by the gravitational coupling K, rv 9staf2. On the gauge 

6Computing such corrections tests the conjecture that the correspondence holds order by order in 
1/ N; however, this is weaker than the statement that the correspondence holds for finite N, since the 
1/ N expansion is not expected to converge. 

7 A proof of this, using the analytic harmonic superspace formalism which is conjectured to be valid 
in the N = 4 theory, was recently given in [238]. . 
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theory side, as explained in section 3.1.2, this approximation amounts to taking both 
N and g~ M N large, and the basic relation becomes 

-ISUGRA '" Z . - Z _. -w e _ strmg - gauge - e , (3.33) 

where W = {JF is the free energy of the gauge theory divided by the temperature. 
When we apply this relation to a Schwarzschild black hole in AdS5 , which is thought 
to be reflected in the gauge theory by a thermal state at the Hawking temperature of 
the black hole, we arrive at the relation ISUGRA ~ {JF. Calculating the free energy 
of a black hole from the Euclidean supergravity action has a long tradition in the 
supergravity literature [239], so the main claim that is being made here is that the dual' 
gauge theory provides a description of the state of the black hole which is physically 
equivalent to the one in string theory. We will discuss the finite temperature case 
further in section 3.6, and devote the rest of this section to the partition function of 
the field theory on jR4. 

The main technical idea behind the bulk-boundary correspondence is that the bound­
ary values of string theory fields (in particular, supergravity fields) act as sources for 
gauge-invariant operators in the field theory. From a D-brane perspective, we think of 
closed string states in the bulk as sourcing gauge singlet operators on the brane which 
originate as composite operators built from open strings. We will write the bulk fields 
generically as 4>( x, z) (in the coordinate system (3.17)), with value 4>0 ( x) for z = Eo 

The true boundary of anti-de Sitter space is z = 0, and € -=f. 0 serves as a cutoff which 
will eventually be removed. In the supergravity approximation, we think of choosing 
the values 4>0 arbitrarily and then extremizing the action I SUGRA[4>l in the region z > € 

subject to these boundary conditions. In short, we solve the equations of motion in 
the bulk subject to Dirichlet boundary conditions on the boundary, and eva.luate the 
action on the solution. If there is more than one solution, then we have more than 
one saddle point contributing to the string theory partition function, and we must 
determine which is more important. In this section, multiple saddle points will not be 
a problem. So, we can write 

(3.34) 

That is, the generator of connected Green's functions in the gauge theory, in the large 
N, g~ MN limit, is the on-shell supergravity action. 

Note that in (3.34) we have not attempted to be prescient about inserting factors 
of Eo Instead our strategy will be to use (3.34) without modification to compute two­
point functions of 0, and then perform a wave-function renormalization on either fJ 
or 4> so that the final answer is independent of the cutoff. This approach should be 
workable even in a space (with boundary) which is not asymptotically anti-de Sitter, 
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corresponding to a field theory which does not have a conformal fixed point in the 
ultraviolet. 

A remark is in order regarding the relation of (3.34) to the old approach of extracting 
Green's functions from an absorption cross-section [12]. In absorption calculations one 
is keeping the whole D3-brane geometry, not just the near-horizon AdS5 X S5 throat. 
The usual treatment is to split the space into a near region (the throat) and a far 
region. The incoming wave from asymptotically flat infinity can be regarded as fixing 
the value of a supergravityfield at the outer boundary of the near region. As usual, 
the supergravity description is valid at large N and large 't Hooft coupling. At small 
't Hooft coupling, there is a different description of the process: a cluster of D3-branes 
sits at some location in flat ten-dimensional space, and the incoming wave impinges 
upon it. In the low-energy limit, the value of the supergravity field which the D3-branes 
feel is the same as the value in the curved space description at the boundary of the 
near horizon region. Equation (3.34) is just a mathematical expression of the fact that 
the throat geometry should respond identically to the perturbed supergravity fields as 1, 

the low-energy theory on the D3-branes. 

Following [19,20], a number of papers-notably [240,241,217,242,218,243,244, 
233,245,234,246,247, 248, 249, 250, 251, 252]-have undertaken the program of ex­
tracting explicit n-point correlation functions of gauge singlet operators by developing 
both sides of (3.34) in a power series in cPo. Because the right hand side is the ext rem­
ization of a classical action, the power series has a graphical representation in terms , 
of tree-level Feynman graphs for fields in the supergravity. There is one difference: in 
ordinary Feynman graphs one assigns the wavefunctions of asymptotic states to. the 
external legs of the graph, but in the present case the external leg factors reflect the 
boundary values cPo. They are special limits of the usual gravity propagators in the 
bulk, and are called bulk-to-boundary propagators. We will encounter their explicit 
form in the next two sections. 

3.3.1 Two-point Functions 

. For two-point functions, only the part of the action which is quadratic in the relevant 
field perturbation is needed. For massive scalar fields in AdS5 , this has the generic 
form 

(3.35) 

where 'rf is some normalization which in principle follows from the ten-dimensional 
origin of the action. The bulk-to-boundary propagator is a particular solution of the 
equation of motion, (0 -m2 )cP = 0, which has special asymptotic properties. We will 
start by considering the momentum space propagator, which is useful for computing 
the two-point function and also in situations where the bulk geometry loses conformal 
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invariance; then, we will discuss the position space propagator, which has proven more 
convenient for the study of higher point correlators in the conformal case. We will 
always work in Euclidean space8 . A coordinate system in the bulk of AdS5 such that 

R2 
ds2 = - (dx2 + dz2) Z2 . (3.36) 

provides manifest Euclidean symmetry on the directions parametrized by x. To avoid 
divergences associated with the small z region of integration in (3.35), we will employ 
an explicit cutoff, z ~ L 

A complete set of solutions for the linearized equation of motion, (0 -m2 )<p = 0, is 
given by <p = eip.x Z (pz), where the function ~ (u) satisfies the radial equation 

, (3.37) 

There are two independent solutions to (3.37), namely Z(u) = u2h_2(U) and Z(u) = 

u2Kt._2(U), where Iv and Kv are Bessel functions and 

(3.38) 

The second solution is selected by the requirement of regularity in the interior: It.-2( u) 
increases exponentially as u -t 00 and does not lead to a finite action configuration9 • 

Imposing the boundary condition <p( x, z) = <Po ( x) = eiP-x at z = €, we find the bulk-to­
boundary propagator 

A.( .... ) _ K~( .... ) _ (pZ) 2Kt._2(pZ) ip·x 
'f' X, Z - P x, Z - ()2K () e . 

P€ t.-2, P€ 
(3.39) 

To compute a two-point function of the operator 0 for which <Po is a source, we write 

82 W [<Po = >'1 eip.x + >'2 eiq.x] 
(O(fJ)O(ij)) = 8>'18>'2 

Al=A2=O 

= (leading analyti c terms in (€p) 2 ) 

_ 7]€2t.-8(2~ _ 4) f(3 - ~) 84(ji + ij) (i) 2t.-4 
f(~ - 1) 2 

(3.40) 

+ (higher order terms in (€p)2), 

(0( .... )0( .... ))= 2t._82~-4 r(~+I) 1 
,x Y TJ€ ~ 7l'2r(~ _ 2) Ix - Y12t. 

Several explanatory remarks are in order: 

8The results may be analytically continued to give the correlation functions of the field theory on 
Minkowskian ]R4, which corresponds to the Poincare coordinates of AdS space. 

9Note that this solution, when continued to Lorentzlan AdS space, generally involves the non­
normalizable mode of the field, with .L in (2.34). 
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• To obtain the second line in (3.40) we have used (3.39), substituted in (3.35), 
performed the integral and expanded in €. The leading analytic terms give rise 
to contact terms in position space, and the higher order terms are unimportant 
in the limit where we remove the cutoff. Only the leading nonanalytic term is 
essential. We have given the expression for generic real values of ~. Expanding 
around integer ~ 2:: 2 one obtains finite expressions involving log fp. 

• The Fourier transforms used to obtain the last line are singular, but they can be 
defined for generic complex ~ by analytic continuation and for positive integer 
~ by expanding around a pole and dropping divergent terms, in the spirit of 
differential regularization [253]. The result is a pure power law dependence on 
the separation Ix - Yi, as required by conformal invariance. 

• We have assumed a coupling J d4 x¢(x, Z = f)O(X) to compute the Green's func­
tions. The explicit powers of the cutoff in the final position space answer can 
be eliminated by absorbing a factor of f.'~-4 into the definition of O. From here' 
on we will take that convention, which amounts to inserting a factor of f4-~ on 
the right hand side of (3.39). In fact, precise matchings between the normal­
izations in field theory and in string theory for all the chiral primary operators . 
have not been worked out. In part this is due to the difficulty of determining 
the coupling of bulk fields to field theory operators (or in stringy terms, the cou­
pling of closed string states to composite open string operators on the brane). 
See [11] for an early approach to this problem. For the dilaton, the graviton, 
and their superpartners (including gauge fields in AdS5 ) , the couplings can be 
worked out explicitly. In some of these cases all hormalizations have been worked 
out unambiguously and checked against field theory predictions (see for example 
[19,217,234]). 

• The mass-dimension relation (3.38) holds even for string states that are not in­
cluded in the Kaluza-Klein supergravity reduction: the mass and the dimension 
are just different expressions of the second Casimir of SO(4,2). For instance, 
excited string states, with m I'V 1/...;el, are expected to correspond to operators 
with dimension ~ "" (g} MN)1/4. The remarkable fact is that all the string the­
ory modes with m "" 1/ R (which is to say, all closed string states which arise 
from massless ten dimensional fields) fall in short multiplets of the supergroup 
SU(2,214). All other states have a much larger mass. The operators in short 
multiplets have algebraically protected dimensions. The obvious conclusion is 
that all operators whose dimensions are not algebraically protected have large 
dimension in the strong 't Hooft coupling, large N limit to which supergravjty 
applies. This is no longer true for theories of reduced supersymmetry: the su­
pergroup gets smaller, but the Kaluza-Klein states are roughly as numerous as 

84 



before, and some of them escape the short multiplets and live in long multiplets 
of the smaller supergroups. They still have a mass on the order of 1/ R, and 
typically correspond to dimensions which are finite (in the large g} MN limit) 
but irrational. 

Correlation functions of non-scalar operators· have been widely studied following 
[20]; the literature includes [254, 255, 256, 257, 258, 259, 260, 261, 262,263, 264]. For 
./V = 4 super-Yang-Mills theory, all correlation functions of fields in chiral multiplets 
should follow by application of supersymmetries once those of the chiral primary fields 
are known, so in this case it should be enough to study the scalars. It is worthwhile 
to note however that the mass-dimension formula changes for particles with spin. In 
fact the definition of mass has some convention-dependence. Conventions seem fairly 
uniform in the literature, and a table of mass-dimension relations in AdSd+1 with unit 
radius was made in [143] from the various sources cited above (see also [209]): 

• scalars: ~± = t( d ± vi d2 + 4m2), 

• spinors: . ~ = H d + 21m!), 

• vectors: ~± = t(d ± V(d - 2)2 + 4m2), 

• p-forms: ~ = Hd ± V(d - 2p)2 + 4m2), 

• first-order (d/2)-forms (d even): ~ = t(d + 21m!), 

• spin-3/2: ~ = Hd + 21m!), 

• massless spin-2: ~ = d. 

In the case of fields with second order lagrangians, we have not attempted to pick 
which of ~± is the physical dimension. Usually the choice ~ = ~+ is clear from the 
unitarity bound, but in some cases (notably m2 = 15/4 in AdS5 ) there is a genuine 
ambiguity. In practice this ambiguity is usually resolved by appealing to some special 
algebraic property of the relevant fields,such as transformation under supersymmetry 
or a global bosonic symmetry. See section 2.2.2 for further discussion. The scalar case 
above is precisely equation (2.36) in that section. 

For brevity we will omit a further discussion of higher spins, and insteaq refer the 
reader to the (extensive) literature. 

3.3.2 Three-point Functions 

Working with bulk-to-boundary propagators in the momentum representation is conve­
nient for two-point functions, but for higher point functions position space is preferred 
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because the full conformal invariance is more obvious. (However, for non-conformal ex­
amples of the bulk-boundary correspondence, the momentum representation seems uni­
formly more convenient). The boundary behavior of position space bulk-to-boundary 
propagators is specified in a slightly more subtle way: following [217] we require 

(3.41) 

Here if is the point on the boundary where we insert the operator, and (x, z) is a point 
in the bulk. The unique regular K~ solving the equation of motion and satisfying 
(3.41) is 

. . ~ 

K~(x,z;iJ)= 7r2~~~2) (Z2+(;_iJ)2) . (3.42) 

At a fixed cutoff, z = €, the bulk-to-boundary propagator K~(x, €; iJ) is a continuous 
function which approximates €4-~04(X - y) better and better as € -t o. Thus at 
any finite €, the Fourier transform of (3.42) only approximately coincides with (3.39) 
(modified by the factor of €4-~as explained after (3.40)). This apparently innocuous 
subtlety turned out to be important for two-point functions·, as discovered in [217]. 
A correct prescription is to specify boundary conditions at finite z = €, cut off all 
bulk integrals at that boundary, and only afterwards take € -t o. That is what we 
have done in (3.40). Calculating two-point functions directly using the position-space 
propagators (3.41), but cutting the bulk integrals off again at €, and finally taking the 
same € -t 0 answer, one arrives at a different answer. This is not surprising since the 
z = € boundary conditions were not used consistently. The authors of [217] checked 
that using the cutoff consistently (i.e. with the momentum space propagators) gave 
two-point functions (0(Xt}0(X2)) a normalization such that Ward identities involving 
the three-point function (0(XdO(X2)JtL (X3))' where JtL is a conserved current, were 
obeyed. Two-point functions are uniquely difficult because of the poor convergence 
properties of the integrals over z. The integrals involved in three-point functions are 
sufficiently benign that one can ignore the issue of how to impose the cutoff. 

If one has a Euclidean bulk action for three scalar fields <P1, <P2, and <P3, of the form 

S = J d5x y'g [~ !( O<Pi)2 + !m?<p? + A<P1 <P2<P3] , (3.43) 

and if the <Pi couple to operators in the field theory by interaction terms f d4x <PiOi, 
then the calculation of (010 20 3) reduces, via (3.34), to the evaluation of the graph 
shown in figure 3.3. That is, 

(01(X1)02(X2)03(X3)) = -A J d5x y'gK~l (x; xdK~2(X; x2)K~3(X.;.X3) 
Aal 
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Figure 3.3: The Feynman graph for the three-point function as computed in super­
gravity. The legs correspond to factors of K6,;, and the cubic vertex to a factor of A. 
The position of the vertex is integrated over AdS5. 

for some constant al. The dependence on the Xi is dictated by the conformal invariance, 
but the only way to compute al is by performing the integral over x. The result [217] 
IS 

r [H~1 + ~2 - ~3)] r [!(~1 + ~3 - ~2)] r [H~2 + ~3 - ~d] 
al = - . 

27r4r(~1 - 2)r(~2 - 2)r(~3 - 2) (3.45) 

r [H~l + ~2 + ~3) - 2] . 
In principle one could also have couplings of the form ¢>10¢>20¢>3. This leads only to a 
modification of the constant al. 

The main technical difficulty with three-point functions is that one must figure out 
the cubic couplings of supergravity fields. Because of the difficulties in writing down 
a covariant action for type lIB supergravity in ten dimensions (see however [265, 266, 
267]), it is most straightforward to read off these "cubic couplings" from quadratic 
terms in the equations of motion. In flat ten-dimensional space these terms can be read 
off directly from the original type lIB supergravity papers [123, 268]. For AdS5 x S5, 
one must instead expand in fluctuations around the background metric and five-form 
field strength. The old literature [124] only dealt with the linearized equations of 
motion; for 3-point functions it is necessary to go to one higher order of perturbation 
theory. This was done for a restricted set of fields in [233]. The fields considered 
were those dual to operators of the form Tr¢>(Jt ¢>h .. . 4>Jt} in field theory, where the 
parentheses indicate a symmetrized traceless product. These operators are the chiral 
primaries of the gauge theory: all other single trace operators of protected dimension 
descend from these by commuting with supersymmetry generators. Only the metrlc 
-and the five-form are involved in the dual supergravity fields, and we are interested 
only in modes which are scalars in AdS5 • The result of [233] is that the equations of 

87 

I ' 



I \ 

I ' 

motion for the scalar modes SI dual to 

0 1 = CI Tn/PI ... q/() JI ... J( . (3.46) 

(3.47) 

Derivative couplings of the form s8s8s are expected a priori to enter into (3.47), 
but an appropriate field redefinition eliminates them. The notation in (3.46) and 
(3.47) requires some explanation. I is an index which runs over the weight vectors 
of all possible representations constructed as symmetric traceless products of the 6 of 
SU( 4)R. These are the representations whose Young diagrams are B, EH 833, .... C}I ... J( 

is a basis transformation matrix, chosen so that C}I ... J(C
JJ1 

... 
J
( = 8IJ. As commented in 

the previous section, there is generally a normalization ambiguity on how supergravity 
fields couple to operators in the gauge theory. We have taken the coupling to be 
J d4 x S 101, and the normalization ambiguity is represented by the "leg factors" wI. 

It is the combination sI = wI sI rather than sI itself which has a definite relation 
to supergravity fields. We refer the reader to [233] for explicit expressions for AI 
and the symmetric tensor g It hIs. To get rid ~f factors of wI, we introduce operators 
0 1 = iii 0 1. One can choose iii so that a two-point function computation along the 
lines of section 3.3.1 leads to 

(3.48) 

With this choice, the three-point function, as calculated using (3.44), is 

It ... h'" Is'" 1 J i::1 1 i::12 i::13 (CItChCIs) • 
(0 (XI)O (X2)0 (X3)) = N I'" ... IA +A -A I'" ... IA +A -A I'" ... IA +A -A Xl - X2 I 2 3 Xl - X3 I 3 2 X2 - X3 2 3 I 

(3.49) 
where we have defined 

(CItChC
I3) = C5~ ... JiKI ... KjC5~ ... JiLI ... LkC#I ... KjLI".£k . (3.50) 

Remarkably, (3.49) is the same result one obtains from free field theory by Wick con­
tracting all the qi fields in the three operators. This suggests that there is a non­
renormalization theorem for this correlation function, but such a theorem has not yet 
been proven. It is worth emphasizing that the normalization ambiguity in the bulk­
boundary coupling is circumvented essentially by considering invariant ratios of three­
point functions and two-point functions, into which the "leg factors" wi do not enter. 
This is the same strategy as was pursued in comparing matrix models of quantum 
gravity to Liouville theory. 
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3.3.3 Four-point Functions 

The calculation of four-point functions is difficult qecause there are several graphs 
which contribute, and some of them inevitably involve bulk-to-bulk propagators of 
fields with spin. The computation of four-point functions of the operators Ot/> and Oa 
dual to the dilaton and the axion was completed in [269]. See also [241, 245, 246, 
247, 270, 271, 250, 248, 272, 273] for earlier contributions. One of the main technical 
results, further developed in [274], is that diagrams involving an internal propagator 
can be reduced by integration over one of the bulk vertices to a sum of quartic graphs 
expressible in terms of the functions 

4 

D6. 16.26.36.4(Xt, X2,X3,X4) = f d5xJgII [{6.;(X, z; Xi), 
1=1 

[{6.(X,z;y) = (2 (~ -.»2)6.. 
Z + x - y 

(3.51 ) 

The integration is over the bulk point (x, z). There are two independent conform ally 
invariant combination·s of the Xi: 

(3.52) 

One can write the connected four-point function as 

(0t/>(xdOa(X2)0t/>(X3)0~~X4)) = (;2)4 [16X~4 (;8 -: 1) D4455 + 6:~:~D3355 
16 X14 1 46 40 8· -.>2 1 + -3 -'>2 - D2255 - 14 D 4444 - 9::t2 D3344 - 9 -'>2 D2244 - 3:=6 D 1144 + 64x 24 D 4455 

X 138 X 13 X 13 . X 13 
(3.53) 

An interesting limit of (3.53) is to take two pairs of points close together. Following 
[269], let us take the pairs (Xl, X3) and (X2' X4) close together while holding Xl and X2 
a fixed distance apart. Then the existence of an OPE expansion implies that 

(3.54) 

at least as an asymptotic series, and hopefully even with a finite radius of convergence 
for X13 and X24. The operators On are the ones that appear in the OPE of 0 1 with 0 3, 
and the operators Om are the ones that appear in the OPE of O2 with 0 4. Or/> and Oa 
are descendants of chiral primaries, and so have protected dimensions.- The product 
of descendants of chiral fields is not itself necessarily the descendent of a chiral field: 
an appropriately normal ordered product: Or/>Or/> : is expected to have an unprotected 
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Figure 3.4: A nearly degenerate quartic graph contributing to the four-point function 
in the limit lid, li241 « li121. 

dimension of the form 8 + O( 1 / N 2
). This is the natural result from the field theory 

point of view because there are O(N2) degrees of freedom contributing to each factor, 
and the commutation relations between them are non-trivial only a fraction 1/ N 2 of 
the time. From the supergravity point of view, a composite operator like: ()",()", : 
corresponds to a two-particle bulk state, and the O(I/N2) = O(K2 / R8 ) correction to 
the mass .is interpreted as the correction to the mass of the two-particle state from 
gravitational binding energy. Roughly one is thinking of graviton exchange between 
the legs of figure 3.4 that are nearly coincident. 

If (3.54) is expanded in inverse powers of N, then the O(I/N2) correction to ~n 
and ~m shows up to leading order as a term proportional to a logarithm of some 
combination of the separations iij. Logarithms also appear in the expansion of (3.53) 
in the lid, li241 « lid limit in which (3.54) applies: the leading log in this limit is 

( 
~ 1)16 log (XJ~!24). This is the correct form to be interpreted in terms of the propagation 
X12 X 12 

of a two-particle state dual to an operator whose dimension is slightly different from 8. 

3.4 Isomorphism of Hilbert Spaces 

The AdS /CFT correspondence is a statement about the equivalence of two quantum 
theories: string theory (or M theory) on AdSp+2 x (compact space) and CFTp+1 . The 
two quantum theories are equivalent if there is an isomorphism between their Hilbert 
spaces, and moreover if the operator algebras on the Hilbert spaces are equivalent. In 
this section, we discuss the isomorphism of the Hilbert spaces, following [275, 183, 276, 
277]. Related issues have been discussed in [278,279,280,281, 282, 283, 284, 285, 286]. 

States in the Hilbert space of CFT p+l fall into representations of the global conformal 
group SO(2, p + 1) on IRP,I. At the same time, the isometry group of AdS is also 
SO(2,p + 1), and we can use it to classify states in the string theory. Thus, it is 
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useful to compare states in the two theories by organizing them into representations 
of SO(2,p + 1). The conformal group SO(2,p + 1) has Hp + 2)(p + 3) generators, 
Jab = -Jba (a, b = 0, 1, ... , p + 2), obeying the commutation relation 

(3.55) 

with the metric gab = diag(-l,+l,+l,···,+l,~1). In CFTp+1, they are identified 
with the Poincare generators PIJ. and Mp.v, the dilatation D and the special conformal 
generators K p. (J-l, 1/ = 0, ... , p), by the formulas 

(3.56) 

Since the field theory on lRP,l has no scale, the spectrum of the Hamiltonian Po is 
continuous and there is no normalizable ground state with respect to Po. This is also 
the case for the string theory on AdSp+2 ' The Killing vector Ot corresponding to Po 
has the norm 

II0tii = Ru, (3.57) 

and it vanishes as u -+ O. Consequently, a stationary wave solution of the linearized 
supergravityon AdS has a continuous frequency spectrum with respect to the timelike 
coordinate t. It is not easy to compare the spectrum of Po of the two theories. 

It is more useful to compare the two Hilbert spaces using the maximum compact 
subgroup SO(2) x SO(p + 1) of the conformal group [275]. The Minkowski space lRP,l 
is conformally embedded in the Einstein Universe lR x SP, and SO(2) x SO(p + 1) is 
its isometry group. In particular, the generator Jo,p+2 = HPo + Ko) of SO(2) is the 
Hamiltonian for the CFT on lR x SP. Now we have ~ scale in the problem, which is 
the radius of SP, and the Hamiltonian !(Po + Ko) has a mass gap. In string theory on 
AdSp+2 , the generator HPo + Ko) corresponds to the global time translation along the 
coordinate T. This is a globally well-defined coordinate on AdS and the Killing vector 
OT is everywhere non-vanishing: 

R 
Ii0TII = -()' cos 

(3.58) 

Therefore, a stationary wave solution with respect to T is normalizable and has a 
discrete frequency spectrum. In fact, as we saw in section 2.2.4, the frequency is 
quantized in such a way that bosonic fields in the supergravity multiplet are periodic 
and their superpartners are anti-periodic (i.e. obeying the supersymmetry preserving 
Ramond boundary condition) in the T-direction with the period 211" R. 

3.4.1 Hilbert Space of String Theory 

With the techniques that are currently available, we can make reliable statements about 
the Hilbert space structure of string theory on AdS only when the curvature radius R 
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of AdS is much larger than the string length Ls. In this section we will study some of 
the properties of the Hilbert space that we can see in the AdS description. We will 
concentrate on the AdS5 x 8 5 case, but it is easy to' generalize this to other cases. 

We first consider the case that corresponds to the 't Hooft limit 9s --+ 0, 9sN fixed 
and large, so that we can trust the gravity approximation. 

(1) E «ms ; Gas of Free Gravitons 

The Hilbert space for low energies is well approximated by the Fock space of gravitons 
and their superpartners on AdS5 x S5. Since T is a globally defined timelike coordinate 
on AdS, we can consider stationary wave solutions in the linearized supergravity, which 
are the normalizable states discussed in section 2.2.2. The frequency w of a stationary 
mode is quantized in the unit set by the curvature radius R (2.41), so one may effectively 
view the supergravity particles in AdS as confined in a box of size R. 

The operator H = 2k(Po + Ko) corresponds lO to the Killing vector aT on AdS. Thus, 
a single particle state of frequency w gives an eigenstate of H. Since the supergraviton 
is a' BPS particle, its energy eigenvalue w is exact, free from corrections either by 
first quantized string effects (,...., Lsi R) or by quantum gravity effects (,...., Lpl R). :rhe 
energy of multi particle states may receive corrections, but they become important only 
when the energy E becomes comparable to the gravitational potential E2 I (m~R7), i.e. 
E ,...., m~R7. For the energies we are considering this effect is negligible. ' 

Therefore, the Hilbert space for E « ms is identified with the Fock space of free 
supergravity particles. For E » R-1

, the entropy S(E) (= log N(E) where N(E) is 
the density of states) behaves as 

9 
S(E) ,...., (ER)w, (3.59) 

since we effectively have a gas in ten dimensions (we will ignore multiplicative numerical 
factors in the entropy in this section). 

(2) ms < E « msI9;; Gas of Free Strings 

When the energy E becomes comparable to the string scale m s , we have to take 
into account excitations on the string worldsheet. Although we do not know the exact 
first quantized spectrum of string theory on AdS, we can estimate the effects of the 
worldsheet excitations when Ls « R. The mass m of a first quantized string state is a 
function of Ls and R. When Ls « R, the world sheet dynamics is perturbative and we 
can expand m in powers of Lsi R, with the leading term given by the string spectrum 
on flat space (R = 00). Therefore, for a string state corresponding to the n-th excited 

laThe factor 2~ in the relation between H and (Po + Ko) is fixed by the commutation relations 
(3.55). 
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level of the string on fiat space, the (mass)2 is given by 

(3.60) 

Unlike the single particle supergravity states discussed in the previous paragraph, string 
excitations need not carry integral eigenvalues of H (in units of R-l). As they are not 
BPS particles, they are generically unstable in string perturbation theory. 

The free string spectrum in 10 dimensions gives the Hagedorn density of states 

S(E) ~ ELs. (3.61 ) 

Thus, the entropy of supergravity particles (3.59) becomes comparable to that of ex­
cited strings (3.61) when 

(3.62) 

namely 
(3.63) 

For m!O R9 < E, excited strings dominate the Hilbert space. The free string formula 
(3.61) is reliable until the energy hits another transition point E rv ms/ g;. We are 
assuming that R9 < l; / g;, which is true in the 't Hooft region. 

(3) m s/ g; « E « m~R7; Small Black Hole 

As we increase the energy, the gas of free strings starts collapsing to make a black 
hole. The black hole can be described by the classical supergravity when the horizon 
radius r + becomes larger than the string length Ls. furthermore, if the horizon size 
r + is smaller than R, the geometry near the black hole can be approximated by the 
10-dimensional Schwarzschild solution. The energy E and the entropy S of such a 
black hole is given by 

E '" m~r~ 
S '" (mpr +)8. (3.64) 

Therefore,' the entropy is estimated to be 

8 
S(E) rv (ELp)7. (3.65) 

We can trust this estimate when Ls « r + « R, namely m~L~ « E « m~R7. Compar­
ing this with the Hagedorn density of states in the regime (2) given by (3.61), we find 
that the transition to (3.65) takes place at 

E '" ms 
2 . 

. gs 
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For E » m~l;, the entropy formula (3.65) is reliable and the black hole entropy exceeds 
that of the gas of free strings. Therefore, in this regime, the Hilbert space is dominated 
by black hole states. 

(4) m~R7 < E; Large Black Hole 

The above analysis assumes that the size of the black hole, characterized by the 
horizon radius r +, is small compared to the radii R of AdS5 and 8 5 . As we increase 
the energy, the radius r + grows and eventually becomes comparable to R. Beyond this 
point, we can no longer use the 10-dimensional Schwarzschild solution to estimate the 
number of states. According to (3.64), the horizon size becomes comparable to R when 
the energy of the black hole reaches the scale E '" m~R7. Beyond this energy scale, 
we have to use a solution which is asymptotically Ad85 [287], 

(3.67) 

where 

(3.68) 

and r = r + is the location of the out-most horizon. By studying the asymptotic 
behavior of the metric, one finds that the black hole carries the energy 

(3.69) 

Here lp is the five-dimensional Planck length, related to the lO-dimensional Planck 
scale lp and the compactification scale R as 

13 - l8 R-5 
p- P . (3.70) 

The entropy of the AdS Schwarzschild solution is given by 

(3.71 ) 

For r + » R, (3.69) becomes E '" r!lp3 R-2
, and the entropy as a function of energy is 

. 3 

8", (~:2) 4 = c:) 2 (ER)~. (3.72) 

As the energy increases, the horizon size expands as R « r + -+ 00, and the supergrav­
ity approximation continues to be reliable. For E -+ 00, the only stringy and quantum 
gravity corrections are due to the finite size R of the AdS radius. of curvature and of 
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the compact space, and such corrections are suppressed by factors of lsi Rand lpl R. 
The leading lsi R corrections to (3.72) were studied in [288], and found to be of the 
order of (lsi R)3. 

o Summary 

The above analysis gives the following picture about the structure of the Hilbert 
space of string theory on AdS when is « Rand 9s « 1. 

s 

E 

free strings 

small 

black hole 

~/4 

large 

black hole 

E 

Figure 3.5: The behavior of the entropy S as a function of the energy E in AdS5 • 

(1) For energies E « m s , the Hilbert space is the Fock space of supergravity particles 
and the spectrum is quantized in the unit of R-1 • For E « m!O R9 , the entropy is 
given by that of the gas of free supergravity particles in 10 dimensions: 

9 

S '" (ER)TIi. (3.73) 

(2) For m!O R9 < E « m~i;, stringy excitations become important, and the entropy 
grows linearly in energy: 

(3.74) 

(3) For m~l~ « E « m~R7, the black hole starts to show up in the Hilbert space. 
For E « m~R7, the size of the black hole horizon is smaller than R, apd the entropy 
is given by that of the IO-dimensional Schwarzschild solution: 

8 
S tV (Elp)'7. (3.75) 
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(4) For m~R7 < E, the size of the black hole horizon becomes larger than R. We then 
have to use the AdSp+2 Schwarzschild solution, and the entropy is given by: 

(R)'2 3 s", 1 (ER)"i. 
P . 

(3.76) 

The behavior of the entropy is depicted in figure 3.5. 

In the small black hole regime (3), the system has a negative specific heat. This 
corresponds to the well-known instability of the flat space at finite temperature [289]. 
On the other hand, the AdS Schwarzschild solution has a positive specific heat and it 
is thermodynamically stable. This means that, if we consider a canonical ensemble, 
the free string regime (2) and the small black hole regime (3) will be missed. When 
set in contact with a heat bath of temperature T '" m s , the system will continue to 
absorb heat until its energy reaches E '" m~R7, the threshold of the large black hole 
regime (4). In fact the jump from (1) to (4) takes place at much lower temperature 
since the temperature equivalent of E '" m~R7 derived from (3.76) in the regime (4) 
is T '" R- 1

• Therefore, once the temperature is raised to T", R- 1 a black hole forms. 
The behavior of the canonical ensemble will be discussed in more detail in section 3.6. 

Finally let us notice that in the case that gs '" 1 we do not have the Hagedorn phase, 
and we go directly from the gas of gravitons to the small black hole phase. 

3.4.2 Hilbert Space of Conformal Field Theory 

Next, let us turn to a discussion of the Hilbert spac~ of the CFTp+l' The generator 
JO,p+2 = t(Po + Ko) is the Hamiltonian of the CFT on SP with the unit radius. In 
the Euclidean CFT, the conformal group SO(2,p + 1) turns into SO(1,p + 2) by the 
Wick rotation, and the Hamiltonian t(Po + Ko) and the dilatation operator D can 
be rotated into each other by an internal isomorphism of the group. Therefore, if 
there is a conformal field <Ph (x) of dimension h with respect to the dilatation D, then 
there is a corresponding eigenstate Ih) of HPo + Ko) on SP with the same eigenvalue 
h. In two-dimensional conformal field theory, this phenomenon is well-known as the 
state-operator correspondence, but in fact it holds for any CFT p+l : 

(3.77) 

As discussed in section 3.2.1, in maximally supersymmetric cases there is a one-to­
one correspondence between chiral primary operators of CFT p+l and the supergravity 
particles on the dual AdSp+2 x (compact space). This makes it possible to identify a 
state'in the Fock space of the supergravity particles on AdS with a state in the CFT 
Hibert space generated by the chiral primary fields. 
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To be specific, let us consider the N = 4 5U(N) super Yang-Mills theory in four 
dimensions and its dual, type lIB string theory on AdS5 x 55. The string scale ma and 
the lO-dimensional Planck scale mp are related to the gauge theory parameters, gYM 
and N, by 

ma ~ (g}MN)t R-1
, mf> ~ Nt R-1

• (3.78) 

The four energy regimes of string theory on Ad55 x 55 are translated into the gauge 
theory energy scales (measured in the units of the inverse 53 radius) in the 't Hooft 
limit as follows: 

(1) E« (g}MN)t 

The Hilbert space consists of the chiral primary states, their superconformal descen­
dants and their products. Because of the large-N factorization, a product of gauge 
invariant operators receives corrections only atsubleading orders in the 1/ N expan­
sion. This fits well with the supergravity description of multi-graviton states, where we 
estimated that their energy E becomes comparable to the gravitational potential when 
E rv m1j,R7

, which in the gauge theory scale corresponds to E rv N 2 • The entropy for 
1 « E « (gfMN)t is then given by 

9 
5 rv E1O. (3.79) 

(2) (gfMN)t < E« (gfMNt~N2 
Each single string state is identified with a single trace operator in the gauge theory. 

Supergravity particles correspond to chiral primary states and stringy excitations to 
non-chiral primaries. Since stringy excitations have an energy rv m a , the AdS/eFT 
correspondence requires that non-chiral conformal fields have to have large anomalous 
dimensions .6. rv maR = (gfMN)t. In the 't Hooft limit (N » (g?MNP for any,), 
we can consider the regime (g?MN)~ < E « (g}MN)-~ N 2 where the entropy shows 
the Hagedorn behavior 

5""' (g}MN)-t E. 

Apparently, the entropy in this regime is dominated by the non-chiral fields. 

(3) (g}MN)-f N 2 < E < N 2 

(3.80) 

The string theory Hilbert space consists of states in the small black hole. It would be 
interesting to find a gauge theory interpretation of the 10-dimensional Schwarzschild 
black hole. The entropy in this regime behaves as 

(3.81 ) 

(4) N 2 < E 

The string theory Hilbert space consists of states in the large black hole; The entropy 
is given by 

1 3 
S""' N2 Ei. (3.82) 
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The E~ scaling of the entropy is what one expects for a conformal field theory in (3 + 1) 
dimensions at high energies (compared to the radius of the sphere). It is interesting 
to note that the N dependence of 5 is the same as that of N 2 free particles in (3 + 1) 

. dimensions, although the precise numerical coefficient in 5 differs from the one that 
is obtained from the number of particles in the N = 4 Yang-Mills multiplet by a 
numerical factor [290j. 

3.5 Wilson Loops 

In this section we consider Wilson loop operators in the gauge theory. The Wilson loop 
operator 

(3.83) 

depends on a loop C embedded in four dimensional spac~, and it involves the path­
ordered integral of the gauge connection along the contour. The trace is taken over 
some representation of the gauge group; we will discuss here only the case of the 
fundamental representation (see [291] for a discussion of other representations). From 
the expectation value of the Wilson loop operator (W(C)) we can calculate the quark­
antiquark potential. For this purpose we consider a rectangular loop with sides of 
length T and L in Euclidean space. Then, viewing T as the time direction, it is clear 
that for large T the expectation value will behave as e-TE where E is the lowest possible 
energy of the quark-ant i-quark configuration. Thus, we have 

(W) f'V e-TV(L) , (3.84) 

where V(L) is the quark anti-quark potential. For large N and large g}MN, the 
AdS/eFT correspondence maps the computation of (W) in the eFT into a problem 
of finding a minimum surface in AdS [292, 293]. 

3.5.1 Wilson Loops and Minimum Surfaces 

In QeD, we expect the Wilson loop to be related to the string running from the quark to 
the antiquark. We expect this string to be analogous to the string in our configuration, 
which is a superstring which lives in ten dimensions, and which can stretch between 
two points on the boundary of AdS. In order to motivate this prescription let us 
consider the following situation. We start with the gauge group U(N + 1), and we 
break it to U(N) x U(l) by giving an expectation value to one of the scalars. This 
corresponds, as discussed in section 3.1, to having a D3 brane sitting at some radial 
position U in AdS, and at a point on 55. The off-diagonal states, transforming in the 
N of U (N), get a mass proportional to U, m = U /2rr. So, from the point of view of 
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the U( N) gauge theory, we can view these states as massive quarks, which act as a 
source for the various U (N) fields. Since they are charged they will act as a source for 
the vector fields. In order to get a non-dynamical source (an "external quark" with no 
fluctuations of its own, which will correspond precisely to the Wilson loop operator) 
we need to take m -+ 00, which means U should also go to infinity. Thus, the string 
should end on the boundary of AdS space. 

These stretched strings will also act as a source for the scalar fields. The coupling to 
the scalar fields can be seen qualitatively by viewing the quarks' as strings stretching 
between the N branes and the single separated brane. These strings will pull the N 
branes and will cause a deformation of the branes, which is described by the scalar 
fields. A more formal argument for this coupling is that these states are BPS, and 
the coupling to the scalar (Higgs) fields is determined by supersymmetry. Finally, one 
can see this coupling explicitly by writing the full U( N + 1) Lagrangian, putting in 
the Higgs expectation value and calculating the equation of motion for the massive 
fields [292]. The precise definition of the Wilson loop operator corresponding to the 
superstring will actually include also the field theory fermions, which will imply some 
particular boundary conditions for the worldsheet fermions at the boundary of AdS. 
However, this will not affect the leading order computations we describe here. 

So, the final conclusion is that the stretched strings couple to the operator 

W(C) = Tr [Pexp (!(iAtl-xtl- + flqi#)dr)] , (3.85) 

where xtl-( r) is any parametrization of the loop and OJ (I = 1, ... ,6) is a unit vector in 
IR6 (the point on S5 where the string is sitting). This is the expression when the signa­
ture of IR4 is Euclidean. In the Minkowski signature case, the phase factor associated 
to the trajectory of the quark has an extra factor "i" in front of OJ 11. 

Generalizing the prescription of section 3.3 for computing correlation functions, the 
discussion above implies that in order to compute the expectation value of the operator 
(3.85) in N = 4 SYM we should consider the string theory partition function on 
AdS5 x S5, with the condition that we have a string worldsheet ending on the loop C, 
as in figure 3.6 [293, 292]. In the supergravity regime, when 9sN is large, the leading 
contribution to this partition function will come from the area of the string worldsheet. 
This area is measured with the AdS metric, and it is generally not the same as the 
area enclosed by the loop C in four dimensions. 

The area as defined above is divergent. The divergence arises from the fact that 
the string worldsheet is going all the way to the boundary of AdS. If we evaluate 
the area up to some radial distance U = r, we see that for large r it diverges as 

llThe difference in the factor of i between the Euclidean and the Minkowski cases can be traced to 
the analytic continuation of Vii. A detailed derivation of (3.85) can be found in [294]. 
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Figure 3.6: The Wilson loop operator creates a string worldsheet ending on the corre­
sponding loop on the boundary of AdS. 

rlCI, where ICI is the length of the loop in the field theory [292, 293]. On the other. 
hand, the perturbative computation in the field theory shows that (W), for W given 
by (3.85), is finite, as it should be since a divergence in the Wilson loop would have 
implied a mass renormalization of the BPS particle. The apparent discrepancy between 
the divergence of the area of the minimum surface in AdS and the finiteness of the 
field theory computation can be reconciled by noting that the appropriate action for 
the string worldsheet is not the area itself but its Legendre transform with respect to 
the string coordinates corresponding to ()I and the radial coordinate u [294]. This is 
because these string coordinates obey the Neumann boundary conditions rather than 
the Dirichlet conditions. When the loop is smooth, the Legendre transformation simply 
subtracts the divergent term rlCI, leaving the resulting action finite. 

As an example let us consider a circular Wilson loop. Take C to be a circle of radius 
a on the boundary, and let us work in the Poincare coordinates (defined in section 
2.2). We could find the surface that minimizes the area by solving the Euler-Lagrange 
equations. However, in this case it is easier to use conformal invariance. Note that 
there is a conformal transformation in the field theory that maps a line to a circle. In 
the case of the line, the minimum area surface is clearly a plane that intersects the 
boundary and goes all the way to the horizon (which is just a point on the boundary 
in the Euclidean case). Using the conformal transformation to map the line to a circle 
we obtain the minimal surface we want. It is, using the coordinates (3.17) for AdS5 , 

(3.86) 

where el, e2 are two orthonormal vectors in four dimensions (which define the orien­
tation of the circle) and 0 ::; z ::; a. We can calculate the area of this surface in AdS, 
and we get a contribution to the action 

1 R2! la-dza R2 a 
S '" 27rQ,A = 27rQ' d() € -;2 = ~(-; - 1), (3.87) 
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where we have regularized the area by putting a an IR cutoff at z = (. in AdS, which 
is equivalent to a UV cutoff in the field theory [173]. Subtracting the divergent term 
we get 

(3.88) 

This is independent of a as required by conformal invariance. 

We could similarly consider a "magnetic" Wilson loop, which is also called a 't Hooft 
loop [295]. This case is related by electric-magnetic duality to the previous case. Since 
we identify the electric-magnetic duality with the S L(2, Z) duality of type IIB string 
theory, we should consider in this case aD-string worldsheet instead of a fundamental 
string worldsheet. We get the same result as in (3.88) but with 98 ---+ 1/9s. 

Using (3.84) it is possible to compute the quark-antiquark potential in the supergrav­
ity approximation [293, 292]. In this case we consider a configuration which is invariant 
under (Euclidean) time translations. We take both particles to have the same scalar 
charge, which means that the two ends of the string are at the same point in S5 (one 
could consider also the more general case with a string ending at different points on S5 
[292]). We put the quark at x = -L/2 and the anti-quark at x = L/2. Here "quark" 
means an infinitely massive W-boson connecting the N branes with one brane which 
is (infinitely) far away. The classical action for a string worldsheet is 

(3.89) 

where GMN is the Euclidean AdS5 x S5 metric. Note that the factors of a' cancel 
out in (3.89), as they should. Since we are interested in a static configuration we take 
T = t, (J = x, and then the action becomes 

(3.90) 

We need to solve the Euler-Lagrange equations for this action. Since the action does 
not depend on x explicitly the solution satisfies 

(3.91) 

Defining Zo to be the maximum value of z(x), which by symmetry occurs at x = 0, we 
find that the solution is12 

1
1 dyy2 

X = Zo 4' 
zlzo v!l- Y 

(3.92) 

12 All integrals in this section can be calculated in terms of elliptic or Beta functions. 
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where Zo is determined by the condition 

L t dyy2 V27r3
/

2 

i = Zo 10 Jl _ y4 = zor(I/4)2· (3.93) 

The qualitative form of the solution is shown in figure 3. 7(b). Notice that the string 
quickly approaches x = L /2 for small z (close to the boundary), 

L 3 --xrvz 
2 ' 

Z -+ 0 . (3.94) 

Now we compute the total energy of the configuration. We just plug in the solution 
(3.92) in (3.90), subtract the infinity as explained above (which can be interpreted as 
the energy of two separated massive quarks, as in figure 3.7(a)), and we find 

E = V(L) = _ 47r
2
(29'fM N )1/2 
r(~)4L 

(3.95) 

We see that the energy goes as 1/ L, a fact which is determined by conformal invariance. 
Note that the energy is proportional to (g}MN)1/2, as opposed to g}MN which is,the 
perturbative result. This indicates some screening of the charges at strong coupling. 
The above calculation makes sense for all distances L when gsN is large, independently 
of the value of gs. Some subleading corrections coming from quantum fluctuations of 
the worldsheet were ca.lculated in [296, 297, 298]. 

In a similar fashion we could compute the potential between two magnetic monopoles 
in terms of aD-string worldsheet, and the result will be the same as (3.95) but with 
flY M -+ 47r /gy M. One can also calculate the interaction between a magnetic monopole 
and a quark. In this case the fundamental string (ending on the quark) will attach to 
the D-string (ending on the monopole), and they will' connect to form a (1, 1) string 
which will go into the horizon. The resulting potential is a complicated function of 
gYM [299], but in the limit that gYM is small (but still with g}MN large) we get 
that the monopole-quark potential is just 1/4 of the quark-quark potential. This can 
be understood from the fact that when 9 is small the D-string is very rigid and the 
fundamental string will end almost perpendicularly on the D-string. Therefore, the 
solution for the fundamental string will be half of the solution we had above, leading 
to a factor of 1/4 in the potential. Calculations of Wilson loops in the Higgs phase 
were done in [300]. 

Another interesting case one can study analytically is a surface near a cusp on ]R4. 

In this case, the perturbative computation in the gauge theory shows a logarithmic 
divergence with a coefficient depending on the angle at the cusp. The area of the 
minimum surface also contains a logarithmic divergence depending on the angle [294]. 
Other aspects of the gravity calculation of Wilson loops were discussed in [301, 302, 
303, 304, 305]. 
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u=o -0 
(a) (b) 

Figure 3.7: (a) Initial configuration corresponding to two massive quarks before we 
turn on their coupling to the U (N) gauge theory. (b) Configuration after we consider 
the coupling to the U(N) gauge theory. This configuration minimizes the action. The 
quark-antiquark energy is given by the difference of the total length of the strings in 
(a) and (b). 

3.5.2 Other Branes Ending on the Boundary 

We could also consider other branes that are ending at the boundary [306]. The 
simplest example would be a' zero-brane (i.e. a par:ticle) of mass m. In Euclidean 
space a zero-brane describes a one dimensional trajectory in anti-de-Sitter space which 
ends at two points on the boundary. Therefore, it is associated with the insertion of 
two local operators at the two points where the trajectory ends. In the supergravity 
approximation the zero-brane follows a geodesic. Geodesics in the hyperbolic plane 
(Euclidean AdS) are semicircles. If we compute the action we get 

S = m ! ds = - 2mR fa J adz 
, Jf z a2 - Z2 

(3.96) 

where we took the distance between the two points at the boundary to be L = 2a and 
regulated the result. We find a logarithmic divergence when t --7 0, proportional to 
log( t/ a). If we subtract the logarithmic divergence we get a residual dependence on a. 
Naively we might have thought that (as in the previous subsection) the answer had to 
be independent of a due to conformal invariance. In fact, the dependence on a is very 
important, since it leads to a result of the form 

e-S I'V e-2mRloga ~ _1_ 
a2mR ' 
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which is precisely the result we expect for the two-point function of an operator of 
dimension .6. = mR. This is precisely the large mR limit of the formula (3.14), so 
we reproduce in the supergravity limit the 2-point -function described in section 3.3. 
In general, this sort of logarithmic divergence arises when the brane worldvolume is 
odd dimensional [306], and it implies that the expectation value of the corresponding 
operator depends on the overall scale. In particular one could consider the "Wilson 
surfaces" that arise in the six dimensional N = (2,0) theory which will be discussed in 
section 6.1.1. In that case one has to consider a two-brane, with a three dimensional 
worldvolume, ending on a two dimensional surface on the boundary of AdS7 . Again, 
one gets a logarithmic term, which is proportional to the rigid string action of the two 
dimensional surface living on the string in the N = (2,0) field theory [307, 306]. 

One can also compute correlation functions involving more than one Wilson loop. 
To leading order in N this will be just the product of the expectation values of each 
Wilson loop. On general grounds one expects that the subleading corrections are given 
by surfaces that end on more than one loop. One limiting case is when the surfaces look "­
similar to the zeroth order surfaces but with additional thin tubes connecting them. 
These thin tubes are nothing else than massless particles being exchanged between the 
two string worldsheets [291, 307]. We will discuss this further in section 6.2. 

3.6 Theories at Finite Temperature 

As discussed in section 3.2, the quantities that can be most successfully compared 
between gauge theory and string theory are those ~ith some protection from super­
symmetry and/or conformal invariance - for instance, dimensions of chiral primary 
operators. Finite temperature breaks both supersymmetry and conformal invariance, 
and the insights we gain from examining the T > 0 physics will be of a more qualita­
tive nature. They are no less interesting for that: we shall see in section 3.6.1 how the 
entropy of near-extremal D3-branes comes out identical to the free field theory pre­
diction up to a factor of a power of 4/3; then in section 3.6.2 we explain how a phase 
transition studied by Hawking and Page in the context of quantum gravity is mapped 
into a confinement-deconfinement transition in the gauge theory, driven by finite-size 
effects; and in section 6.2 we will summarize the attempts to use holographic duals of 
finite-temperature field theories to learn about pure gauge theory at zero temperature' 
but in one lower dimension. 

3.6.1 Construction 

The gravity solution describing the gauge theory at finite temperature can be obtained 
by starting from the general black three-brane solution (1.12) and taking the decoupling 
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limit of section 3.1 keeping the energy density above extremality finite. The resulting 
metric canbe written as 

ds 2 = R2 [u 2( -hde + dx 2 + dx2 + d~2) + du
2 

+ df!2] 
1 2 3 hu2 5 

u4 

h = 1 - ~ Uo = 1fT. 
u4 ' 

(3.98) 

It will often be useful to Wick rotate by setting tE = it, and use the relation between 
the finite temperature theory and the Euclidean theory with a compact time direction. 

The first computation which indicated that finite-temperature U(N) Yang-Mills the­
ory might be a good description of the microstates of N coincident D3-branes was the 
calculation of the entropy [290, 308]. On the supergravity side, the entropy of near­
extremal D3-branes is just the usual Bekenstein-Hawking result, S = A/4GN, and it 
is expected to be a reliable guide to the entropy of the gauge theory at large Nand 
large g} M N. There is no problem on the gauge theory side in working at large N, 
but large g} M N at finite temperature is difficult indeed. The analysis of [290] was 
limited to a free field computation in the field theory, but nevertheless the two results 
for the entropy agreed up to a factor of a power of 4/3. In the canonical ensemble, 
where temperature and volume are the independent variables, one identifies the field 
theory volume with the world-volume of the D3-branes, and one sets the field theory 
temperature equal to the Hawking temperature in supergravity. The result is 

2 
1f 2 4 

FSUGRA = -SN VT , 

4 
FSYM = 3FsUGRA . 

(3.99) 

The supergravity result is at "leading order in lsi R, and it would acquire corrections 
suppressed by powers of T R if we had considered the full D3-brane metric rather than 
the near-horizon limit, (3.98). These corrections do not have an interpretation in the 
context of eFT because they involve R as an intrinsic scale. Two equivalent methods 
to evaluate FSUGRA are a) to use F = E - T S together with standard expressions for 
the Bekenstein-Hawking entropy, the Hawking temperature, and the ADM mass; and 
b) to consider the gravitational action of the Euclidean solution, with a periodicity in 
the Euclidean time direction (related to the tempe~ature) which eliminates a conical 
deficit angle at the horizonP 

The 4/3 factor is a long-standing puzzle into which we still have only qualitative in­
sight. The gauge theory computation was performed at zero 't Hooft coupling, whereas 

l3The result of [290], SSYM = (4/3)l/4SSUGRA, differs superficially from (3.99)., but it is only 
because the authors worked in the microcanonical ensemble: rather than identifying the Hawking 
temperature with the field theory temperature, the ADM" mass above extremality was identified with 
the field theory energy. 
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the supergravity is supposed to be valid at strong 't Hooft coupling, and unlike in the 
1 + I-dimensional case where the entropy is essentially fixed by the central charge, there 
is no non-renormalization theorem for the coefficient of T4 in the free energy. Indeed, 
it was suggested in [288] that the leading term in the 1/ N expansion of F has the form 

(3.100) 

where f(g}MN) is a function which smoothly interpolates between a weak coupling 
limit of 1 and a strong coupling limit of 3/4. It was pointed out early [309] that the 
quartic potential g} M Tr[4/, 4/]2 in the N = 4 Yang-Mills action might be expected 
to freeze out more and more degrees of freedom as the coupling was increased, which 
would suggest that f(g}MN) is monotone decreasing. An argument has been given 
[310], based on the non-renormalization of the two-point function of the stress tensor, 
that f(g}MN) should remain finite at strong coupling. 

The leading corrections to the limiting value of f(g} MN) at strong and weak coupling 
were computed in [288] and [311], respectively. The results are 

(3.101) 
for large g} M N. 

The weak coupling result is a straightforward although somewhat tedious application 
of the diagrammatic methods of perturbative finite-temperature field theory. The 
constant term is from one loop, and the leading correction is from two loops. The strOng 
coupling result follows from considering the leading cl corrections to the supergravity 
action. The relevant one involves a particular contraction of four powers of the Weyl 
tensor. It is important now to work with the Euclidean solution, and one restricts 
attention further to the near-horizon limit. The Weyl curvature comes from the non­
compact part of the metric, which is no longer AdS5 but rather the AdS-Schwarzschild 
solution which we will discuss in more detail in section 3.6.2. The action including 
the c/ corrections no longer has the Einstein-Hilbert form, and correspondingly the 
Bekenstein-Hawking prescription no longer agrees with the free energy computed as f3! 
where! is the Euclidean action. In keeping with the basic prescription for computing 
Green's functions, where a free energy in field theory is equated (in the appropriate 
limit) with a supergravity action, the relation ! = f3 F is regarded as the correct 
one. (See [312].) It has been conjectured that the interpolating function f(g}MN) 
is not smooth, but exhibits some phase transition at a finite value of the 't Hooft 
coupling. We regard this as an unsettled question. The arguments in [313, 314] seem 
as yet incomplete. In particular, they rely on analyticity properties of the perturbation 
expansion which do not seem to be proven for finite temperature field theories. 
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3.6.2 Thermal Phase Transition 

The holographic prescription of [19, 20], applied at large Nand g'f: MN where loop and 
stringy corrections are negligible, involves extremizing the supergravity action subject 
to particular asymptotic boundary conditions. We can think of this as the saddle point 
approximation to the path integral over supergravity fields. That path integral is ill­
defined because of the non-renormalizable nature of supergravity. String amplitudes 
(when we can calculate them) render on-shell quantities well-defined. Despite the con­
ceptual difficulties we can use some simple intuition about path integrals to illustrate 
an important point about the AdS/CFT correspondence: namely, there can be more 
than one saddle point in the range of integration, and when there is we should sum 
e-IsuGRA over the classical configurations to obtain the saddle-point approximation to 
the gauge theory partition function. Multiple classical configurations are possible be­
cause of the general feature of boundary value problems in differential equations: there 
can be multiple solutions to the classical equations satisfying the same asymptotic 
boundary conditions. The solution which globally minimizes ISUGRA is the one that 
dominates the path integral. 

When there are two or more solutions competing to minimize ISUGRA, there can 
be a phase transition between them. An example of this was studied in [287] long 
before the AdS / CFT corresponden~e, and subsequently resurrected, generalized, and 
reinterpreted in [20, 183) as a confinement-deconfinement transition in the gauge theory. 
Since the qualitative features are independent of the dimension, we will restrict our 
attention to AdS5 • It is worth noting however that if the AdS5 geometry is part of a 
string compactification, it doesn't matter what the in~ernal manifold is except insofar 
as it fixes the cosmological constant, or equivalently the radius R of anti-de Sitter 
space. 

There is an embedding of the Schwarzschild black hole solution into anti-de Sitter 
space which extremizes the action 

(3.102) 

Explicitly, the metric is 
1 

ds 2 = fdt 2 + -dr2 + r2d02 
f 3' 

r2 J1 
f = 1 + R2 - r2 . 

(3.103) 

The radial variable ris restricted to r ~ r +, where r + is the largest root of f = O. The 
Euclidean time is periodically identified, t rv t + j3, in order to eliminate the conical 
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singularity at r = r +. This requires 

f3 = 27r R2r + 
2r~ +R2 

(3.104) 

Topologically, this space is 53 x B2, and the boundary is 53 x 51 (which is the relevant 
space for the field theory on 53 with finite temperature). We will call this space X 2 • 

Another space with the same boundary which is also a local extremum of (3.102) is 
given by the metric in (3.103) with I-l = 0 and again with periodic time. This space, 
which we will call Xl, is not only metrically distinct from the first (being locally con­
formally flat), but also topologically B4 x Sl rather than 53 x B2. Because the 51 
factor is not simply connected, there are two possible spin structures on Xl, corre­
sponding to thermal (anti-periodic) or supersymmetric (periodic) boundary conditions 
on fermions. In contrast, X 2 is simply connected and hence admits a unique spin 
structure, corresponding to thermal boundary conditions. For the purpose of comput­
ing the twisted partition function, Tr( _l)F e-{3H, in a saddle-point approximation, only 
Xl contributes. But, Xl and X 2 make separate saddle-point contributions to the usual 
thermal partition function, Tre-{3H, and the more important one is the one with the 
smaller Euclidean action. 

Actually, both I(X l ) and I(X2) are infinite, so to compute I(X2)- I(Xt} a regulation 
scheme must be adopted. The one used in [183, 288] is to cut off both Xl and X 2 at a 
definite coordinate radius r = Ro. For X 2 , the elimination of the conical deficit angle 
at the horizon fixes the period of Euclidean time; but for Xl, the period is arbitrary. 
In order to make the comparison of I(Xl) and I(X2) meaningful, we fix the period of 
Euclidean time on Xl so that the proper circumference of the 51 at r = flo is the same 
as the proper length on X 2 of an orbit of the Killing vector a/at, also at r = Ro. In 
the limit Ro -t 00, one finds 

(3.105) 

where again r + is the largest root of f = O. The fact that (3.105) (or more precisely 
its Ad54 analog) can change its sign was interpreted in [287] as indicating a phase 
transition between a black hole in Ad5 and a thermal gas of particles in Ad5 (which 
is the natural interpretation of the space Xl)' The black hole is the thermodynam­
ically favored state when the horizon radius r + exceeds the radius of curvature R of 
Ad5. In the gauge theory we interpret this transition as a confinement-deconfinement 
transition. Since the theory is conform ally invariant, the transition temperature must 
be proportional to the inverse radius of the space 53 which the field theory lives on. 
Similar transitions, and also local thermodynamic instability due to negative specific 
heats, have been studied in the context of spinning branes and charged black holes 
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III [315, 316, 317, 140, 139, 318, 319]. Most of these works are best understood on 
the CFT side as explorations of exotic thermal phenomena in finite-temperature gauge 
theories. Connections with Higgsed states in gauge'theory are clearer in [320, 321]. 
The relevance to confinement is explored in [318]. See also [322, 323, 324, 283] for 
other interesting contributions to the finite temperature literature. 

Deconfinement at high temperature can be characterized by a spontaneous breaking 
of the center of the gauge group. In our case the gauge group is SU(N) and its center 
is 7l.N • The order parameter for the breaking of the center is the expectation value of 
the Polyakov (temporal) loop (W(C)). The boundary of the spaces X 1 ,X2 is S3 X S1, 
and the path C wraps around the circle. An element of the center 9 E 7l.N acts on the 
Polyakov loop by (W(C)) -+ g(W(C)). The expectation value of the Polyakov loop 
measures the change of the free energy of the system Fq(T) induced by the presence 
of the external charge q, (W(C)) '" exp(-Fq(T)jT). In a confining' phase Fq(T) is 
infinite and therefore (W(C)) = o. In the deconfined phase Fq(T) is finite and therefore 
(W(C)) "# o. 

As discussed in section 3.5, in order to compute (W(C)) we have to evaluate the 
partition function of strings with a worldsheet D that is bounded by the loop C. The 
details of a similar computation will be discussed in the next section. They will not be 
needed in this section. Consider first the low temperature phase. The relevant space 
is Xl which, as discussed above, has the topology B4 x Sl. The contour C wraps the 
circle and is not homotopic to zero in Xl. Therefore C is not a boundary of any D, 
which immediately implies that (W(C)) = o. This is the expected behavior at low 
temperatures (compared to the inverse radius of the S3), where the center of the gauge 
group is not broken. 

For the high temperature phase the relevant space is X 2 , which has the topology 
S3 x B2. The contour C is now a boundary of a string worldsheet D = B2 (times a 
point in S3). This seems to be in agreement with the fact that in the high temperature 
phase (W (C)) "# 0 and the center of the gauge group is broken. It was pointed out 
in [183] that there is a subtlety with this argument, since the center should not be 
broken in finite volume (S3), but only in the infinite volume limit (jR3). Indeed, the 
solution X 2 .is not unique and we can add to it an expectation value for the integral 
of the NS-NS 2-form field B on B2, with vanishing field strength. This is an angular 
parameter'lj; with period 27r, which contributes i'lj; to the string worldsheet action. The 
string theory partition function includes now an integral over all values of 'Ij;, making 
(W (C)) = 0 on S3. In contrast, on jR3 one integrates over the local fluctuations of 
'Ij; but not over its vacuum expectation value. Now (W(C)) "# 0 and depends on the 
value of'lj; E U(1), which may be understood as the dependence on thc:center 7l.N in 
the large N limit. Explicit computations of Polyakov loops at finite temperature were 
done in [325, 326]. . 
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In [183] the Euclidean black hole solution (3.103) was suggested to be holographically 
dual to a theory related to pure Qeb in three dimensions. In the large volume limit 
the solution corresponds to the N = 4 gauge theory on JR3 x 51 with thermal boundary 
conditions, and when the 51 is made small (corresponding to high temperature T) the 
theory at distances larger than liT effectively reduces to pure Yang-Mills on JR3. Some 
of the non-trivial successes of this approach to QeD will be discussed in section 6.2. 
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Chapter 4 

More on the Correspondence 

4.1 . Other AdS5 Backgrounds 

Up to now we have limited our discussion to the Ad55 x 55 background of type IIB 
string theory; in section 4.3 we will describe backgrounds which are related to it by 
deformations. However, it is clear from the description of the correspondence in sections 
3.1 and 3.3 that a similar correspondence may be defined for any theory of quantum 
gravity whose metric includes an Ad55 factor; the generalization of equation (3.13) 
relates such a theory to a four dimensional conformal field theory. The background 
does not necessarily have to be of the form Ad55 xX; it is' enough that it has an 
50( 4,2) isometry symmetry, and more general possibilities in which the curvature of 
AdS5 depends on the position in X are also possible J119]. It is necessary, however, 
for the AdS theory to be a theory of quantum gravity, since any conformal theory 
has an energy-momentum tensor operator that is mapped by the correspondence to 
the graviton on AdS5

1
• Thus, we would like to discuss compactifications of string 

theory or M theory, which are believed to be consistent theories of quantum gravity, 
on backgrounds involving AdS5• For simplicity we will only discuss here backgrounds 
which are direct products of the form AdS5 x X. 

Given such a background of string/M theory, it is not apriori clear what is the 
conformal field theory to which it corresponds. A special class of backgrounds are 
those which arise as near-horizon limits of branes, like the AdS5 x S5 background. 
In this case one can sometimes analyze the low-energy field theory on the branes by 
standard methods before taking the near-horizon limit, and after the limit this becomes 
the dual conformal field theory. The most well-studied case is the case of D3-branes 
in type lIB string theory. When the D3-branes are at a generic point in space-time 

1 If we have a topological field theory on the boundary the bulk theory does not have to be gravi­
tational, as in [327]. 
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the near-horizon limit gives the AdS5 x S5 background discussed extensively above. 
However, if the transverse space to the D3-branes is singular, the near-horizon limit 
and the corresponding field theory can be different. 'The simplest case is the case of a 
D3-brane on an orbifold [328] or orientifold [214] singularity, which can be analyzed by 
perturbative string theory methods. These cases will be discussed in sections 4.1.1 and 
4.1.2. Another interesting case is the conifold singularity [215] and its generalizations, 
which will be discussed in section 4.1.3. In this case a direct analysis of the field theory 
is not possible, but various indirect arguments can be used to determine what it is in 
many cases. 

Not much is known about more general cases of near-horizon limits of D3-branes, 
which on the string theory side were analyzed in [329, 330, 331, 332, 333], and even 
less is known about backgrounds which are not describable as near-horizon limits of 
branes (several AdS5 backgrounds were discussed in [334]). An example of the latter 
is the AdS5 x CP3 background of M theory [335], which involves a 4-form flux on the 
4-cycle in CP3. Using the methods described in the previous sections we can compute 
various properties of such compactifications in the large N limit, such as the mass 
spectrum and the central charge of the corresponding field theories (for the AdS5 x Cp3 
compactification one finds a central charge proportional to N 3

, where N is the 4-form 
flux). However, it is not known how to construct an alternative description of the 
conformal field theory in most of these cases, except for the cases which are related by 
deformations to the better-understood orb if old and conifold compactifications. 

Some of the AdS5 x X backgrounds of string/M theory preserve some number of 
supersymmetries, but most of them (such as the AdS5 x CP3 background) do not. 
In supersymmetric cases, supersymmetry guarantees the stability of the corresponding 
solutions. In the non-supersymmetric cases various instabilities may arise for finite N 

(see, for instance, [336, 337]) which may destr~y the conformal (SO( 4,2)) invariance, 
but the correspondence is still conjectured to be valid when all quantum corrections 
are taken into account (or in the infinite N limit for which the supergravity approxima­
tion is valid). One type of instability occurs when the spectrum includes a tachyonic 
field whose mass is below the Breitenlohner-Freedman stability bound. Such a field is 
expected to condense just like a tachyon in flat space, and generally it is not known 
what this condensation leads to. If the classical supergravity spectrum includes a field 
which saturates the stability bound, an analysis of the quantum corrections is neces­
sary to determine whether they raise the mass squared of the field (leading to a stable 
solution) or lower it (leading to an unstable solution). Apriori one would not expect 
to have a field which exactly saturates the bound (corresponding to an operator in 
the field theory whose dimension is exactly .6. = 2) in a non-supersymmetric theory, 
but this often happens in orbifold theories for reasons that will be dIscussed below. 
Another possible instability arises when there IS a massless field in the background, 
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corresponding to a marginal operator in the field theory. Such a field (the dilaton) 
exists in aU classical type lIB compactifications, and naively corresponds to an exactly 
marginal deformation of the theory even in the non-supersymmetric cases. However, 
for finite N one would expect quantum corrections to generate a potential for such a 
field (if it is neutral under the gauge symmetries), which could drive its expectation 
value away from the range of values where the supergravity approximation is valid. 
Again, an analysis of the quantum corrections is necessary in such a case to determine 
if the theory has a stable vacuum (which mayor may not be describable in supergrav­
i ty), corresponding to a fixed point of the corresponding field theory, or if the potential 
leads to a runaway behavior with no stable vacuum. Another possible source of insta­
bilities is related to the possibility of forming brane-anti-brane pairs in the vacuum (or, 
equivalently, the emission of branes which destabilize the vacuum) [338,339,340,341]; 
one would expect such an instability to arise, for example,- in cases where we look at 
the near-horizon limit of N 3-branes which have a repulsive force between them. For 
all these reasons, the study of non-supersymmetric backgrounds usually requires an 
understanding of the quantum corrections, which are not yet well-understood neither 
in M theory nor in type lIB compactifications with RR backgrounds. Thus, we will fo­
cus here on supersymmetric backgrounds, for which the supergravity approximation is 
generally valid. In the non-supersymmetric cases the correspondence is still expected to 
be valid, and in the extreme large N limit it can also be studied using supergravity, but 
getting finite N information usually requires going beyond the SUGRA approximation. 
It would be very interesting to understand better the quantum corrections in order to 
study non-supersymmetric theories at finite N using the AdS/eFT correspondence. 

4.1.1 Orbifolds of Ad55 X 55 

The low-energy field theory corresponding to D3-branes at orbifold singularities may be 
derived by string theory methods [342, 343]. Generally the gauge group is of the form 
I1i U(aiN), and there are various bifundamental (and sometimes also adjoint) matter 
fields2

• We are interested in the near-horizon limit of D3-branes sitting at the origin of 
IR4 x IR6/r forsome finite group r which is a discrete subgroup ofthe 50(6) ~ 5U( 4)R 
rotation symmetry [328]. If r C SU(3) C 5U(4)R the theory on the D3-branes has 
N = 1 supersymmetry, and if r C SU(2) C 5U(4)R it has N = 2 supersymmetry. The 
near-horizon limit of such a configuration is of the form Ad55 x 5 5/r (since the orbifold 
commutes with taking the near-horizon limit), and corresponds (at least for large N) 

2In general one can choose to have the orbifold group act on the Chan-Paton indices in various 
ways. We will discuss here only the case where the group acts as N copies of the regular representation 
of the orbifold group r, which is the only case which leads to conformal theories. Other representations 
involve also 5-branes wrapped around 2-cycles, so they do not arise in the naive near-horizon limit of 
D3-branes. The AdS5 description of this was given in [216]. 
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to a conformal theory with the appropriate amount of supersymmetry. Note that on 
neither side of the correspondence is the orbifolding just a projection on the f -invariant 
states of the original theory - on the string theory 'side we need to add also twisted 
sectors, while on the field theory side the gauge group is generally much larger (though 
the field theory can be viewed as a projection of the gauge theory corresponding to 
dim(f). N D-branes). 

We will start with a general analysis of the orbifold, and then discuss specific ex­
amples with different amounts of supersymmetry3. The action of f on the S5 is the 
same as its action on the angular coordinates of 1R6

• If the original action of f had 
only the origin as its fixed point, the space S5 If is smooth. On the other hand, if the 
original action had a space of fixed points, some fixed points remain, and the space 
55 If includes orbifold singularities. In this case the space is not geometrically smooth, 
and the supergravity approximation is not valid (though of course in string theory it is 
a standard orbifold compactification which is generically not singular). The spectrum 
of string theory on Ad55 x 55 If includes states from untwisted and twisted sectors of 
the orbifold. The untwisted states are just the f-projection of the original states ot 
AdS5 x S5, and they include in particular the f -invariant supergravity states. These 
states have (in the classical supergravity limit) the same masses as in the original 
AdS5 x 55 background [345], corresponding to integer dimensions in the field theory, 
which is why we often find in orbifolds operators of dimension 2 or 4 which can desta­
bilize non-supersymmetric backgrounds. If the orbifold group has fixed points on the 
55, there are also light twisted sector states that are localized near these fixed points, 
which need to be added to the supergravity fields for a proper description of the low­
energy dynamics. On the other hand, if the orbifold has no fixed points, all twisted 
sector states are heavy4, since they involve strings stretching between identified points 
on the 55. In this c~e the twisted sector states decouple from the low-energy theory 
in space-time (for large 9sN). There is a global f symmetry in the corresponding field 
theory, under which the untwisted sector states are neutral while the twisted sector 
states are charged. 

In the 't Hooft limit of N· -+ 00 with 9sN finite, all the solutions of the form 
Ad55 x 55 If have a fixed line corresponding to the dilaton, indicating that the beta 
function of the corresponding field theories vanishes in this limit [328] .. In fact, one 
can prove [346, 347, 348] (see also [349, 350]) that in this limit, which corresponds to 
keeping only the planar diagrams in the field theory, all the correlation functions of the 
untwisted sector operators in the orbifold theories are the same (up to multiplication 

3We will not discuss here orbifolds that act non-trivially on the AdS space, as in [344]. 
4Note that this happens even when in the original description there were massl~ss twisted sector 

states localized at the origin. 
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by some power of dim( r)) as in the N = 4 SYM theory corresponding to Ad55 x 55 5. 

This is the analog of the usual string theory statement that at tree-level the interactions 
of untwisted sector states are exactly inherited from those of the original theory before 
the orbifolding. For example, the central charge of the field theory (appearing in the 
2-point function of the energy-momentum tensor) is (in this limit) just dim(f) times 
the central charge of the corresponding N = 4 theory. This may easily be seen also 
on the string theory side, where the central charge may be shown [171] to be inversely 
proportional to the volume of the compact space (and Vol ( 55 /f) = Vol ( 55) / dim(f)). 

The vanishing of the beta function in the 't Hooft limit follows from this general 
result (as predicted by the AdS/eFT correspondence). This applies both to orbifolds 
which preserve supersymmetry and to those which do not, and leads to many examples 
of supersymmetric and non-supersymmetric theories which have fixed lines in the large 
N limit. At subleading orders in liN, the correlation functions-differ between the 
orbifold theory and the N = 4 theory, and in principle a non-'zero beta function 
may arise. In supersymmetric orbifolds supersymmetry prevents this6 , but in non­
supersymmetric theories generically there will no longer be a fixed line for finite N. 
The dilaton potential is then related to the appearance of a non-zero beta function in 
the fi~ld theory, and the minima of this potential are related to the zeros of the field 
theory beta function for finite N. 

. 4 
As a first example we can analyze the case [328] of D3-branes on an IR. /'lI..k orb-

ifold singularity, which preserves N = 2 supersymmetry. Before taking the near­
horizon limit, the low-energy field theory (at the free orbifold point in the string the­
ory moduli space) is a U(N)k gauge theory with bifundamental hypermultiplets in the 
(N, N, 1"",1) + (1, N, N, 1,···,1) + ... + (1"", 1,'N, N) + (N, 1"",1, N) repre­
sentation. The bare gauge couplings Ti of all the U (N) theories are equal to the string 
coupling TIlB at this point in the moduli space. In the near-horizon (low-energy)1imit 
this field theory becomes the 5U(N)k field theory with the same matter content, since 
the off-diagonal U(I) factors are IR-free7 (and the diagonal U(l) factor is decoupled 
here and in all other examples in this section so we will ignore it). This theory is dual 
to type lIB string theory on Ad55 x 55/'lI.. k, where the 'lI..k action leaves fixed an 51 
inside the 55. 

This field theory is known (see, for instance, [351]) to be a finite field theory for any 
value of the k gauge couplings Ti, corresponding to a k-complex-dimensional surface 
of conformal field theories. Thus, we should see k complex parameters in the string 

5There is no similar relation for the twisted sector operators, 
6 At least, it prevents a potential for the dilaton, so there is still some fixed line in the field theory, 

though it can be shifted from the N = 4 fixed line when l/N corrections are taken into account. 
7Th is does not contradict our previous statements about the beta functions since -the U(l) factors 

are subleading in the 1/ N expansion, and the operators corresponding to the off-diagonal U(l)'s come 
from twisted sectors. 
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theory background which we can change without destroying the AdS5 component of 
this background. One such parameter is obviously the dilaton, and the other (k - 1) 
may be identified [328] with the values of the NS-NS and R-R 2-form B-fields on the 
(k -1) 2-cycles which vanish at the Zk orbifold singularity (these are part of the blow­
up modes for the singularities; the other blow-up modes turn on fields which change the 
AdS5 background, and correspond to non-marginal deformations of the field theory). 

The low-energy spectrum has contributions both from the untwisted and from the 
twisted sectors. The untwisted sector states are just the Zk projection of the original 
AdS5 x S5 states. The twisted sector states are the same (for large N and at low 
energies) as those which appear in flat space at an ~4 /Zk singularity, except that here 
they live on the fixed locus of the Zk action which is of the form AdS5 x SI. At the 
orbifold point the massless twisted sector states are (k - 1) tensor multiplets (these 
tensor multiplets include scalars corresponding to the 2-form B-fields described above). 
Upon dimensional reduction on the Sl these give rise to (k - 1) U (1) gauge fields on 
AdS5, which correspond to the U(I) global symmetries of the field theory (which were 
the off-diagonal gauge U(I)'s before taking the near-horizon limit, and become global 
symmetries after this limit); see, e.g. [352]. The orb if old point corresponds to having 
all the B-fields'maximally turned on [353]. The spectrum of fields on AdS5 in this 
background was successfully compared [354] to the spectrum of chiral operators in the 
field theory. If we move in the string theory moduli space to a point where the B­
fields on some 2-cycles are turned off, the D3-branes wrapped around these2-cycles 
become tensionless, and the low-energy theory becomes a non-trivial N = (2,0) six 
dimensional SCFT (see [91] and references therein). The low-energy spectrum on 
AdS5 then includes the dimensional reduction of this conformal theory on a circle. In 
particular, when all the B-fields are turned off, we get the A k - l (2,0) theory, which gives 
rise to SU(k) gauge fields at low-energies upon compactification on a circle. Thus, the 
AdS/CFT correspondence predicts an enhanced global SU(k) symmetry at a particular 
point in the parameter space of the corresponding field theory. Presumably, this point 
is in a very strongly coupled regime (the string coupling TIlB ex Li Ti may be chosen 
to be weak, but individual T/S can still be strongly coupled) which cannot be accessed 
directly in the field theory. The field theory in this case has a large group of duality 
symmetries [351], which includes (but is not limited to) the SL(2, Z) subgroup which 
acts on the couplings as T -t (aT + b) / (CT + d) at the point where they are all equal. 
In the type lIB background the S L(2, Z) subgroup of this duality group is manifest, 
but it is not clear how to see the rest of this group. 

Our second example corresponds to D3-branes at an ~6 /Z3 orbifold point, where, if 
we write ~6 as (:3 with complex coordinates Zj (j = 1,2,3), the Z3 acts a! Zj -t e21ri / 3zj. 

In this case the only fixed point of the Z3 action is the origin, so in the near-horizon 
limit we get [328] AdS5 x S5/Z3 where the compact space is smooth. Thus, the low-

116 



energy spectrum in this case (for large gsN) includes only the Z3 projection of the 
original supergravity spectrum, and all twisted sector states are heavy in this limit. 

The corresponding field theory may be derived by' the methods of [342, 343]. It is 
an SU(N)3 gauge theory, with chiral multiplets Uj (j = 1,2,3) in the (N, N, 1) repre­
sentation, \Ii (j = 1,2,3) in the (1, N, N) representation, and Wj (j = 1,2,3) in the 
(N, 1, N) representation, and a classical superpotential of the form W = gt:ijk Ui \Ii Wk. 
In the classical theory all three gauge couplings and the superpotential coupling 9 are 
equal (and equal to the string coupling). In the quantum theory one can prove that 
in the space of these four parameters there is a one dimensional line of superconfor­
mal fixed points. The parameter which parameterizes this fixed line (which passes 
through weak coupling in the gauge theory) may be identified with the dilaton in the 
AdS5 x S5/Z3 background. Unlike the previous case, here there are no indications of 
additional marginal deformations, and no massless twisted sector states on AdS5 which 
they could correspond to. 

As in the previous case, one can try to compare the spectrum of fields on AdS5 

with the spectrum of chiral operators in the field theory. In this case, as in all cases 
with less than N = 4 supersymmetry, not all the supergravity fields on AdS5 are in 
chiral multiplets, since the N = 4 chiral multiplets split into chiral; anti-chiral and 
non-chiral multiplets when decomposed into N = 2 (or N = 1) representations8 (in 
general there can also be various sizes of chiral multiplets). However, one can still 
compare those of the fields which are in chiral multiplets (and have the appropriate 
relations between their AdS mass I field theory dimension and their R-charges). The 
untwisted states may easily be matched since they are a projection of the original 
states both in space-time and in the field theory (if we think of the field theory as a 
projection of the N = 4 SU(3N) gauge theory). Looking at the twisted sectors we 
seem to encounter a paradox [331]. On the string theory side all the twisted sector 
states are heavy (they correspond to strings stretched across the S5, so they would 
correspond to operators with .6. ~ mR ~ R2 It; ~ (gsN)1/2). On the field theory side 
we can identify the twisted sector fields with operators which are charged under the 
global Z3 symmetry which rotates the three gauge groups, and naively there exist chiral 
operators which are charged under this symmetry and remain of finite dimension in the 
large N,g}MN limit. However, a careful analysis shows that all of these operators are 
in fact descendants, so their dimensions are not protected. For example, the operator 
E;=l e21Tij/3Tr((WJj»)2), where WJj) is the field strength multiplet of the j'th SU(N) 
group, seems to be a chiral superfield charged under the Z3 symmetry. However, using 
linear combinations of the Konishi anomaly equations [355, 356] for the three gauge 
groups, one can show that this operator (and all other "twisted sector" operators) is in 

8Note that this means that unlike the AdS5 x S5 case, in cases with less SUSY there are always 
non-chiral operators which have a finite dimension in the large N, g} M N limit. 
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fact a descendant, so there is no paradox. The AdS/CFT correspondence predicts that 
in the large N, g} M N limit the dimension of all these Z3-charged operators scales as 
(g} MN)1/2, which is larger than the scaling ~ '" (g}MN)1/4 for the non-chiral operators 
in the N = 4 SYM theory in the same limit. It would be interesting to verify this 
behavior in the field theory. Baryon-like operators also exist in these theories [357], 
which are similar to those which will be discussed in section 4.1.3. 

There are various other supersymmetric orbifold backgrounds which behave simi­
larly to the examples we have described in detail here. There are also many non­
supersymmetric examples [358, 359] but, as described above, their fate for finite N is 
not clear, and we will not discuss them in detail here. 

4.1.2 Orientifolds of Ad85 X 8 5 

The discussion of the near-horizon limits of D3-branes on orientifolds is mostly similar 
to the discussion of orbifolds, except for the absence of twisted sector states (which· do 
not exist for orientifolds). We will focus here on two examples which illustrate some 
of the general properties of these backgrounds. Additional examples were discussed in 
[360, 361, 362, 363, 364, 365, 366, 367]. 

Our first example is the near-horizon limit of D3-branes on an orientifold 3-plane. 
The orientifold breaks the same supersymmetries as the 3-branes do, so in the near 
horizon limit we have the full 32 supercharges corresponding to a d = 4,N = 4 SCFT. 
In flat space there are (see [368] and references therein) two types of orientifold planes 
which lead to different projections on D-brane states. One type of orientifold plane 
leads to a low-energy SO(2N) N = 4 gauge theory for N D-branes on the orientifold, 
while the other leads to a U Sp(2N) N = 4 gauge theory. In the first case we can also 
have an additional "half D3-brane" stuck on the orientifold, leading to an SO(2N + 1) 
N = 4 gauge theory. In the near-horizon limits of branes on the orientifold we should 
be able to find string theory backgrounds which are dual to all of these gauge theories. 

The near-horizon limit of these brane configurations is type IIB string theory on 
Ad55 x 55

/ Z2 == AdS5 X Rp5
, where the Z2 acts by identifying opposite points on 

. the 55, so there are no fixed points and the space Rp5 is smooth. The manifestation 
of the orientifolding in the near-horizon limit is that when a string goes around a 
non-contractible cycle in Rp5 (connecting opposite points of the S5) its orientation 
is reversed. In all the cases discussed above the string theory perturbation expansion 
had only closed orient able surfaces, so it was a power series in g; (or in 1/ N 2 in the 
't Hooft limit)j but in this background we can also have non-orient able closed surfaces 
which include crosscaps, and the perturbation expansion includes also _odd powers of 
g8 (or of l/N in the 't Hooft limit). In fact, it has long been known [35] that in the 
't Hooft limit the SO(N) and USp(N) gauge theories give rise to Feynman diagrams 
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that involve also non-orientable surfaces (as opposed to the S U (N) case which gives 
only orient able surfaces), so it is not surprising that such diagrams arise in the string 
theory which is dual to these theories. While in the cases described above the leading 
correction in string perturbation theory was of order g; (or 1/ N2 in the 't Hooft limit), 
in the AdS5 x Rp5 background (and in general in orientifold backgrounds) the leading 
correction comes from RP2 worldsheets and is of order g8 (or 1/ N in the 't Hooft limit). 
Such a correction appears, for instance, in the computation of the central charge (the 2-
point function of the energy-momentum tensor) of these theories, which is proportional 
to the dimension of the corresponding gauge group. 

Our discussion so far has not distinguished between the different configurations cor­
responding to SO(2N), SO(2N +.1) and USp(2N) groups (the only obvious parameter 
in the orientifold background is the 5-form flux N). In the Feynman diagram expansion 
it is well-known [369, 370] that the SO(2N) and U Sp(2N) theories are related by a 
transformation taking N to (-N), which inverts the sign of all diagrams with an odd 
number of crosscaps in the 't Hooft limit. Thus, we should look for a similar effect in 
string theory on AdS5 x RP5. It turns out [214] that this is implemented by a "discrete 
torsion" on Rp5, corresponding to turning on a BNS- NS 2-form in the non-trivial co­
homology class of H 3 (Rp5, Z) = Z2. The effect of turning on this "discrete torsion" is 
exactly to invert the sign of all string dia.-grams with an odd number of crosscaps. It is 
also possible to turn on a similar "discrete torsion" for the RR 2-form B-field, so there 
is a total of four different possible string theories on AdSs x Rps. It turns out that 
the theory with no B-fields is equivalent to the SO(2N) N = 4 gauge theory, which 
is self-dual under the S-duality group SL(2, Z). The theory with only a non-zero BRR 
field is equivalent to the SO(2N + 1) gauge theory, while the theories with non-zero 
BNS-NS fields are equivalent to the USp(2N) gauge theory [214], and this is consistent 
with the action of S-duality on these groups and on the 2-form B-fields (which are a 
doublet of S L(2, Z)). 

An interesting test of this correspondence is the matching of chiral primary fields. 
In the supergravity limit the fields on AdS5 x Rp5 are just the Z2 projection of the 
fields on AdSs x S5, including the multiplets with n = 2,4,6" .. (in the notation of 
section 3.2). This matches with almost all the chiral superfields in the corresponding 
gauge theories, which are described as traces of products of the fundamental fields as 
in section 3.2, but with the trace of a product of an odd number of fields vanishing in 
these theories from symmetry arguments. However, in the SO(2N) gauge theories (and 
not in any of the others) there is an additio'nal gauge invariant chiral superfield, called 
the Pfaffian whose lowest component is of the form tata2···a2N A-.lt A-.I2 ••• A-.IN 

, 't'ata2 'f'a3a4 't'a2N_t a2N' 

where ai are SO(2N) indices and the Ij are (symmetric traceless) indices in the 6 of 
SU(4)R. The supersymmetry algebra guarantees that the dimension or-this operator 
is ~ = N, and it is independent of the other gauge-invariant chiral superfields. This 
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operator may be identified with the field on AdS5 corresponding to a D3-brane wrapped 
. around a 3-cycle in Rp5, corresponding to the homology class H3(Rp5, Z) = Z2. This 
wrapping is only possible when no B-fields are turned on [214], consistent with such 
an operator existing for SO(2N) but not for SO(2N + 1) or USp(2N). While it is 
not known how to compute the mass of this state directly, the superconformal algebra 
guarantees that it has the right mass to correspond to an operator with ~ = N; the 
naive approximation to the mass, since the volume of the 3-cycle in Rp5 is 7r

2 R3
, is 

mR ~ R'7r2 R3/(27r)39s l! = Jl4/87r1; ~ N (since in the orientifold case Jl4 ~ 47r(2N)I; 
instead of equation (3.3)), which leads to the correct dimension for large N. The 
existence of this operator (which decouples in the large N limit) is an important test 
of the finite N correspondence. Anomaly matching in this background was discussed 
in [231]. 

Another interesting background is the near-horizon limit of D3-branes on an orien­
tifold 7-plane, with 4 D7-branes coincident on the orientifold plane to ensure [371,372] 
that the dilaton is constant and the low-energy theory is conformal (this is the same 
as D3-branes in F-theory [373] at a D4-type singularity). The field theory we get in 
the near-horizon limit in this case is [374, 375] an N = 2 SQCD theory with U Sp(2N) 
gauge group, a hypermultiplet in the anti-symmetric representation and four hyper­
multiplets in the fundamental representation. In this case the orientifold action has 
fixed points on the S5, so the near-horizon limit is [376, 377] type lIB string theory 
on AdS5 x S5/Z2 where the Z2 action has fixed points on an S3 inside the S5. Thus, 
this background includes an orientifold plane with the topology of S3 x AdS5, and the 
D7-branes stretched along the orientifold plane also remain as part of the background, 
so that the low-energy theory includes both the supergravity modes in the bulk and the 
SO(8) gauge theory on the D7-branes (which corresponds to an SO(8) global symme­
try in the corresponding field theories)9. The string perturbation expansion in this case 
has two sources of corrections of order 9s, the cross~ap diagram and the open string 
disc diagram with strings ending on the D7-brane, leading to two types of corrections 
of order 1/ N in the 't Hooft limit. Again, the spectrum of operators in the field theory 
may be matched [377] with the spectrum of fields coming from the dimensional reduc­
tion of the supergravity theory in the bulk and of the 7-brane theory wrapped on the 
S3. The anomalies may also be matched to the field theory, including l/N corrections 
to the leading large N result [230] which arise from disc and crosscap diagrams. 

By studying other backgrounds of D3-branes with 7-branes (with or without ori­
entifolds) one can obtain non-conformal theories which exhibit a logarithmic running 
of the coupling constant [377, 378]. For instance, by separating the D7-branes away 
from the orientifold plane, corresponding to giving a mass to the hyp_~rmultiplets in 
the fundamental representation, one finds string theory solutions in which the dilaton 

9Similar backgrounds were discussed in [1701. 
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varies in a similar way to the variation of the coupling constant in the field theory, 
and this behavior persists also in the near-horizon limit (which is quite complicated in 
this case, and becomes singular close to the branes, 'corresponding to the low-energy 
limit of the field theories which is in this case a free Abelian Coulomb phase). This 
agreement with the perturbative expectation, even though we are (necessarily) in a 
regime of large A = gf M N, is due to special properties of N = 2 gauge theories, which 
prevent many quantities from being renormalized beyond one-loop. 

4.1.3 Conifold theories 

In the correspondence between string theory on AdS5 x S5 and d = 4 N =. 4 SYM 
theories, some of the most direct checks, such as protected operator dimensions and the 
functional form of two- and three-point functions, are determined by properties of the 
supergroup SU(2,214). Many of the normalizations of two- and three-point functions 
which have been computed explicitly are protected by non-renormalization theorems. 
And yet, we are inclined to believe that the correspondence is a fundamental dynam­
ical principle, valid independent of group theory and the special non-renormalization 
properties of N = 4 supersymmetry. 

To test this belief we want to consider theories with reduced supersymmetry. Orb­
if old theories [328] provide interesting examples; however, as discussed in the previous 
sections, it has been shown [347, 348] that at large N these theories are a projection 
of N = 4 super-Yang-Mills theory; in particular many of their Green's functions are 
dictated by the Green's functions of the N = 4 theory. The projection involved is 
onto states invariant under the group action that defines the orbifold. Intuitively, this 
similarity with the N = 4 theory arises because the compact part of the geometry is 
still (almost everywhere) locally S5, just with some global identifications. Therefore, 
to make a more non-trivial test of models with reduced supersymmetry, we are more 
interested in geometries of the form AdS5 x M5 where the compact manifold M5 is not 
even locally S5. 

In fact, such compactifications have a long history in the supergravity literature: the 
direct product geometry AdS5 x M5 is known as the Freund-Rubin ansatz [111]. The 
curvature of the anti-de Sitter part of the geometry is supported by the five-form of 
type IIB supergravity. Because this five-form is self-dual, M5 must also be an Einstein 
manifold, but with positive cosmological constant: rescaling M5 if necessary, we can 
write 'Ra {3 = 4ga {3. For simplicity, we are assuming that only the five-form and the 
metric are involved in the solution. 

A trivial but useful observation is that five-dimensional Einstein manifolds with 
'Ra {3 = 4ga{3 are in one-to-one correspondence with Ricci-flat manifolds C6 whose metric 
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has the conical form 
( 4.1) 

It can be shown that, given any metric of the form (4.1), the ten-dimensional metric 

( 
R4) -1/2 ( R4) 1/2 

ds~o = 1 + -;::t ( -dt
2 + dx~ + dx~ + dX;) + 1 + -;::t dS~6 (4.2) 

is a solution of the type IIB supergravity equations, provided one puts N units of 
five-form flux through the manifold M 5 , where 

gt = y0r KN 
2 VoIM5 

(4.3) 

Furthermore, it was shown in [170] that the number of supersymmetries preserved by 
the geometry (4.2) is half the number that are preserved by its Ricci-flat R -+ 0 limit. 
Preservation of supersymmetry therefore amounts to the existence of a Killing spinor 
on dsb6, which would imply that it is a Calabi-Yau metric. Finally, the r « R limit of' 
(4.2) is precisely AdS5 x M 5 , and in that limit the riumber of preserved supersymmetries 
doubles. 

These facts suggest a useful means of searching for non-trivial Freund-Rubin geome­
tries: starting with a string- vacuum of the form 1R3

,1 x C6 , where C6 is Ricci-flat, we; 
locate a singularity of C6 where the metric locally has the form (4.1), and place a large 
number of D3-branes at that point. The resulting near-horizon Freund-Rubin geome­
try has the same number of supersymmetries as the original braneless string geometry. 
The program of searching for and classifying such singularities on manifolds preserving 
some supersymmetry was enunciated most completely in [331]. 

We will focus our attention on the simplest non-trivial example, which was worked 
out in [215]1°. C6 is taken to be the standard coni fold , which as a complex 3-fold is 
determined by the equation 

(4.4) 

The Calabi-Yau metric on this manifold has SU(3) holonomy, so one quarter of super­
symmetry is preserved. We will always count our supersymmetries in four-dimensional 
superconformal field theory terms, so one quarter of maximal supersymmetry (that is, 
eight real supercharges) is in our terminology /II = 1 supersymmetry (superconformal 
symmetry). The supergravity literature often refers to this amount of supersymmetry 
in five dimensions as /II = 2, because in a flat space supergravity theory with this 

--
10 Additional aspects and examples of conifold theories were discussed in [379, 380, 381, 382, 383, 
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much supersymmetry, reduction on 51 without breaking any supersymmetry leads to 
a supergravity theory in four dimensions with N = 2 supersymmetry. 

The Calabi-Yau metric on the manifold (4.4) may' be derived from the Kahler po­

tential K = (L:t=1 IZiI2) 2/3, and can be explicitly written as 

d 2 d 2 2d 2 
S06 = r + r STll , 

where ds}ll is the Einstein metric on the coset space 

Tll = 5U(2) x 5U(2) 
U(I) 

( 4.5) 

(4.6) 

In the quotient (4.6), the U(I) generator is chosen to be the sum ~0"3 + ~T3 of generators 
of the two 5U(2)'s. The manifolds Tpq, where the U(I) generator is chosen to be 
~0"3 + ~T3' with p and q relatively prime, were studied in [172]. The topology of each of 
these manifolds is 52 x 53. They all admit unique Einstein metrics. Only Tll leads to 
a six-manifold Cs which admits Killing spinors. In fact, besides 55 = 50(6)/50(5), 
Tll is the unique five-dimensional coset space which preserves supersymmetry. The 
Einstein metrics can be obtained via a rescaling of the Killing metric on 5U(2) x 5U(2) 
by a process explained in [172]. The metric on Tll satisfying Rof3 = 4gof3 can be written 
as 

2 

dS}ll = ~ L (d(); + sin2 ()id¢>n + ~ (d'IjJ + cos ()1 d¢>1 + cos ()2d¢>2)2 . (4.7) 
i=1 

The volume of this metric is 167r3 /27, whereas the volume of the unit five-sphere, which 
also has ROlf3 = 4gOlf3 , is 7r3

. 

Perhaps the most intuitive way to motivate the conj'ectured dual gauge theory [215] 
is to first consider the 5 5 /7L.2 orbifold gauge theory, where the 7L.2 is chosen to flip the 
signs of four of the six real coordinates in IRs, and thus has a fixed 51 on the unit 55 
in this fiat space. This 7L.2 breaks 50(6) down to 50{4) x 50(2), which is the same 
isometry group as for Tll. In fact, it can also be shown that an appropriate blowup of 
the singularities along the fixed 51 leads to a manifold of topology 52 x 53. Since Tll 

is a smooth deformation of the blown-up orbifold, one might suspect that its dual field 
theory is some deformation of the orbifold's dual field theory. The latter field theory 
is well known [328], as described in section 4.1.1. It has N = 2 supersymmetry. The 
field content in N = 1 language is 

gauge group 5U(N) 5U(N) 

chirals AI, A2 0 Ei 

chirals Bll B2 Ei 0 (4.8) 

chiral <I> adj. 1 

chiral ~ 1 adj. 
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The adjoint chiral fields <P and <i>, together with the N = 1 gauge multiplets, fill out 
N = 2 gauge multiplets. The chiral multiplets A!, Bl combine to form an N = 2 
hypermultiplet, and so do A2 , B2 . The superpotential is dictated by N = 2 supersym­
metry: 

(4.9) 

where g is the gauge coupling of both SU(N) gauge groups. A relevant deformation 
which preserves the global SU(2) x SU(2) x U(l) symmetry, and also N = 1 super-
symmetry, is 

(4.10) 

There is a nontrivial renormalization group flow induced by these mass terms. The 
existence of a non-trivial infrared fixed point can be demonstrated using the methods 
of [385]: having integrated out the heavy fields <P and <i>, the superpotential is quartic 
in the remaining fields, which should, therefore, all have dimension 3/4 at the infrared 
fixed point (assuming that we do not break the symmetry between the two gauge 
groups). The anomalous dimension, = -1/2 for the quadratic operators TrAB is 
precisely what is needed to make the exact beta functions vanish. 

The IR fixed point of the renormalization group described in the previous paragraph 
is the candidate for the field theory dual to type lIB string theory on AdS5 x Tll, or in 
weak coupling terms the low-energy field theory of coincident D3-branes on a conifold 
singularity. There are several non-trivial checks that this is the right theory. The 
simplest is to note that the moduli space of the N = 1 version of the theory is simply 
the conifold. For N = 1 the scalar fields ai and bj (in the chiral multiplets A and B j ) 

are just complex-valued. The moduli space can be parametrized by the combinations 
aibj, and if we write 

( 4.11) 

then we recover the conifold equation (4.4) by taking the determinant of both sides. 
In the N > 1 theories, a slight generalization of this line of argument leads to the 
conclusion that the fully Higgsed phase of the theory, where all the D3-branes are 
separated from one another, has for its moduli space the Nth symmetric power of the 
conifold. 

The most notable prediction of the renormalization group analysis of the gauge 
theory is that the operators TrABj should have dimension 3/2. This is something we 
should be able to see from the dual description. As a warmup, consider first the N = 4 
example. There, as described in section 3.2, the lowest dimension operators have the 
form Tr¢P ¢/), and their dimension is two. Their description in supergtavity is a Weyl 
deformation of the S5 part of the geometry with h~ ex y2(y), where h~ is the trace 
of the metric on S5 and y2(y) is a d-wave spherical harmonic on S5. The four-form 
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potential Dabcd is also involved in the deformation, and there are two mass eigenstates 
in Ad5s which are combinations of these two fields. A simple way to compute y2 is to 
start with the function XiXj on ~6 and restrict it to the unit 55. This suggests quite 
a general way to find eigenfunctions of the Laplacian on an Einstein manifold M5: we 
start by looking for harmonic functions on the associated conical geometry (4.1). The 
Laplacian is 

(4.12) 

The operator r2DC6 commutes with rar, so we can restrict our search to functions f 
on C6 with DC6 f = 0 and rarf = b.f for some constant b.. Such harmonic functions 
restricted to r = 1 have OMs flr=1 = -b.(b. + 4)fl r=1. Following through the analysis 
of [124] one learns that the mass of the lighter of the two scalars in Ad55 corresponding 
to h~ ex flr=1 is m 2 R2 = b.(b. - 4). So, the dimension of the corresponding operator is 
b.. In view of (4.11), all we need to do to verify in the supergravity approximation the 
renormalization group prediction b. = 3/2 for TrAiBj is to show that rarzi = ~Zi. This 
follows from scaling considerations as follows. The dilation symmetry oli the cone is 
r -1- Ar. Under this dilation, dsb6 -1- A2dsb6. The Kahler form should have this same 
scaling, and that will follow if also the Kahler potential [{ -1- A 2 

[{. As mentioned 

above, the Calabi-Yau metric follows from [{ = (2:t=1 IZiI2r/3, which has the desired 

scaling if Zi -1- A3
/
2

Zi. Thus, indeed rarz i = ~Zi. 
It is straightforward to generalize the above line of argument to operators of the 

form Tr AU! B(i! ... Ail) Bit). Various aspects of the matching of operators in the con­
formal field theory to Kaluza-Klein modes in supergravity have been studied in [215, 
171, 386]. But there is another interesting type of color singlet operators, which are 
called dibaryons because the color indices of each gauge group are combined using an 
antisymmetric tensor. The dibaryon operator is 

(4.13) 

where we have suppressed 5U(2) indices. Let us use the notation 5U(2)A for the global 
symmetry group under which A form a doublet, and 5U(2)B for the group under which 
Bj form a doublet. Clearly, (4.13) is a singlet under 5U(2)B. This provides the clue 
to its string theory dual, which must also be 5U(2)B-symmetric: it is a D3-brane 
wrapped on Tll along an orbit of 5U(2)B [216]. Using the explicit metric (4.7), it 
is straightforward to verify that mR '" ~N in the test brane approximation. Up to 
corrections of order 1/ N, the mass-dimension relation is b. '" mR, so we see that 
again the field theory prediction for the anomalous dimension of A is born out. The 3-
cyde which the D3-brane is wrapped on may be shown to be the unique-homologically 
non-trivial 3-cycle of Tll. There is also an anti-dibaryon, schematically BN , which 
is a D3-brane wrapped on an orbit of 5U(2)A. The two wrappings are opposite in 
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homology, so the dibaryon and anti-dibaryon can annihilate to produce mesons. This 
interesting process has never been studied in any detail, no doubt because the dynamics 
is complicated and non-supersymmetric. It is possible to construct dibaryon operators 
also in a variety of orbifold theories [216, 357]. 

The gauge theory dual to Tll descends via .renormalization group flow from the 
gauge theory dual to 8 5/7..2 , as described after (4.10). The conformal anomaly has 
been studied extensively for such flows (see for example [223]), and the coefficient a in 
(3.31) is smaller in the IR than in the UV for every known flow that connects UV and 
IR fixed points. To describe the attempts to prove a c-theorem, stating that this must 
always be the case in four dimensions, would take us too far afield, so instead we refer 
the reader to [387] and references therein. 

In the presence of JJ = 1 superconformal invariance, one can compute the anomaly 
coefficients a and c in (3.31) if one knows (8/.LR/.L)gpv,B>.' where R/.L is the R-current 
which participates in the superconformal algebra, and the expectation value is taken 
in the presence of an arbitrary metric g/.LV and an external gauge field source B/.L for 
the R-current. The reason a and c can be extracted from this anomalous one-point': 
function is that 81-'R/.L and T: are superpartners in the JJ = 1 multiplet of anomalies. 
It was shown in [223] via a supergroup argument that 

((8/.L R/.L)Ta{3T-yo) = (a - c)[ ]a{3-Yo 

((8/.L R/.L)RaR{3) = (5a - 3c)[ ]a{3 , 
( 4.14) 

where now the correlators are computed in flat space. The omitted expressions between 
the square brackets are tensors depending on the positions or momenta of the operators 
in the correlator. Their form is not of interest to us here because it is the same for any 
theory: we are interested instead in the coefficients. These can be computed perturba­
tively via the triangle diagrams in figure 4.1. The Adler-Bardeen theorem guarantees 
that the one loop result is exact, provided 8/.LR/.L is non-anomalous in the absence of 
external sources (that is, it suffers from no internal anomalies). The constants of pro­
portionality in the relations shown in figure 4.1 can be tracked down by comparing the 
complete Feynman diagram amplitude with the explicit tensor forms which we have 
omitted from (4.14). We are mainly interested in ratios of central charges between IR 
and UV fixed points, so we do not need to go through this exercise. 

The field theory dual to 8 5/7..2 , expressed in JJ = 1 language, has the field con­
tent described in (4.8). The R-current of the chosen JJ = 1 superconformal algebra 
descends from a U(l) in the 80(6) R-symmetry group of the JJ = 4 algebra, and it 
assigns a U(l)R charge r(>.) = 1 to the 2N2 gauginos (fermionic components of the 
vector superfield) and r(x) = -1/3 to the 6N2 "quarks" (fermionic cOIl!.ponents of the 
chiral superfields)ll. We have E", r( 'lj;) = 0, which means that the R-current has no 

11 We will ignore here the distinction between U (N) and SU (N) groups which is subleading in the 
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a) b) 

Figure 4.1: Triangle diagrams for computing the anomalous contribution to o/LRJ1.. The 
sum is over the chiral fermions 'IjJ which run around the loop, and r( 1/J) is the R-charge 
of each such fermion. 

gravitational anomalies [388]. 

For the field theory dual to Tll, the R-current described in the previous paragraph is 
no longer non-anomalous because we have added a mass to the adjoint chiral superfields. 
There is, however, a non-anomalous combination SJ1. of this current, R/L' with the 
Konishi currents, f{~, which by definition assign charge 1 to the fermionic fields in the 
ith chiral multiplet and charge O.to the fermionic fields in the vector multiplets: 

2" ( i i) i S J1. = RJ1. + 3 ~ 'IR -, f{ J1. . (4.15) 
t 

Here ,i is the anomalous dimension of the ith chiral superfield. At the strongly in­
teracting N = 1 infrared fixed point, Sj1. is the current which participates in the 
superconformal algebra. However, to compute correlators ((OJ1.SJ1.) ... ) it is more con­
venient to go to the ultraviolet, where ,i = 0 and the perturbaiive analysis in terms 
of fermions running around -a loop can be ~pplied straightforwardly. Using the fact 
that 'lk = ,& = -1/4 and ,~ = ,& = 1/2, we find that SUV(A) = 1 for the gaugi­
nos, suv(X) = -1/2 for the quarks which stay light (i.e., the bifundamental quarks), 
and suv(ry) = 0 for the quarks which are made heavy (that is, the adjoint quarks). 
Note that it is immaterial whether we include these heavy quarks in the triangle dia­
gram, which is as it should be since we can integrate them out explicitly. As before, 
Ltf; suv(1/J) = 0, so there are no gravitational anomalies and aIR = eIR. Qombining the 
information in the past two paragraphs, we have a field theory prediction for the flow 

lIN expansion. 
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from the 55 /712 theory to the Tll theory: 

2 2 ( 1)3 aIR CIR 5aIR- 3cIR 2N +4N -2 27 
-- = _.- = = 3 - - . 
auv cuv 5auv - 3cuv 2N2 + 6/N2 (_~) 32 

( 4.16) 

This analysis was carried out in [171], where it was also noted that these numbers 
can be computed in the supergravity approximation. To proceed, let us write the 
ten-dimensional Einstein metric as 

( 4.17) 

where R is given by (4.3) and ds: is the metric of Ad55 scaled so that R,w = -4gp.v. 

We will refer to ds~ as the dimensionless AdS5 metric. Reducing the action from ten 
dimensions to five results in 

(4.18) 

where J9 and R under the integral sign refer to the dimensionless AdS5 metric, and 
in the second equality we have used (4.3). In (4.18), '" is the ten-dimensional gravi­
tational coupling. In computing Green's functions using the prescription of [19, 20], 
the prefactor 8 ~:~~5 multiplies every Green's function. In particular, it becomes the 
normalization factor for the one-point function (Tj;) as calculated in [224]. Also, as 
pointed out in section 3.2, the supergravity calculation in [224] always leads to a = c. 
Without further thought we can write a = c oc (Vol M5t 1

, and 

aIR eIR (VOl Tll ) -1 27 
auv = cuv = Vol 55 /712 - 32 ' 

(4.19) 

in agreement with (4.16). It is essential that t~e volumes in (4.19) be computed for 
manifolds with the same cosmological constant. Our convention has been to have 

Ro{3 = 4g~{3. 

It is possible to do better and pin down the exact normalization of the central 
charges. In fact, literally the first normalization check performed in the AdS/CFT 
correspondence was the verification [19] that in the compactification dual to N = 4 
5U(N) Yang-Mills theory, the coefficient c had the value N 2 /4 (to leading order in 
large N). Thus, in general 

71"3 N 2 

a=c=---
4VoIM5 

(4.20) 

(again to leading order in large N) for the CFT dual to a Freund-Rubin geometry 
AdS5 x M5 supported by N units of five-form flux through the M5 • This is in a 
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normalization convention where the CFT comprised of a single free real scalar field 
has c = 1/120. See, for example, [l71J for a table of standard anomaly coefficients per 
degree of freedom. Even more generally, we can consider any compactification of string 
theory or M-theory (or any other, as-yet-unknown theory of quantum gravity) whose 
non-compact portion is AdS5 • This would include in particular type lIB supergravity 
geometries which involve the B:VS,RR fields, or the complex coupling T. Say the AdS5 

geometry has R/1-v = -Ag/1-v. If we rescale the metric by a factor of 4/ A, we obtain the 

dimensionless AdS5 metric J.;~ with n/1-V = -49/1-v. In defining a conformal field theory 
through its duality to the AdS5 compactification under consideration, the part of the 
action relevant to the computation of central charges is still the Einstein-Hilbert term 
plus the cosmological term: 

I! 5 . 4 ! 5 r:;(A ) S=-2 dxy'g(R+3A+ ... )= 2A3/2 dxvg R+12+ ... , 
2K5 K5 

(4.21 ) 

where K~ = 8rrG5 is the five-dimensional gravitational coupling. Comparing straight­
forwardly with the special case analyzed in (4.20), we find that the conformal anomaly 
coefficients, as always to leading order in l/N, must be given by 

1 
(4.22) a = c = G

5
A3/2 . 

4.2 D-Branes· in AdS, Baryons and Instantons 

A conservative form of the AdS/CFT correspondence would be to say that classical 
supergravity captures the large N asymptotics of some quantities in field theory which 
are algebraically protected against dependence on the 't Hooft coupling. The stronger 
form which is usually advocated, and which we believe is true, is that the field theory 
is literally equivalent to the string theory, and the only issue is understanding the 
mapping from one to the other. To put this belief to the test, it is natural to ask 
what in field theory corresponds to non-perturbative objects, such as D-branes, in 
string theory. The answer was found in [214J for several types of wrapp~d branes 
(see also [291J for an independent analysis of some cases), and subsequent papers 
[389, 390, 391, 182, 392, 393, 331, 394, 357, 395, 396J have extended and elaborated 
on the story. See also [397, 398] for actions for D-branes in anti-de Sitter space, and 
[399, 400] for other related topics. The connection between D-instantons and gauge 
theory instantons has also been extensively studied, and we summarize the results at 
the end of this section. 

Let us start with wrapped branes which have no spatial extent in -AdS5 , namely 
they are particles propagating in this space. The field theory interpretation must be 
in terms of some vertex or operator, as for any other particle in AdS (as described 
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above in the case of supergravity particles). If the compact manifold is 55, then the 
only topologically stable possibility is a·wrapped 5-brane. The key observation here is 
that charge conservation requires that N strings must run into or out' of the 5-brane. 
In the case of a D5-brane, these N strings are fundamental strings (one could also 
consider 5L(2,Z) images of this configuration). The argument is a slight variant of 
the ones used in the discussion of anomalous brane creation (401, 402, 403]. There are 
N units of five-form (F5) flux on the S5, and the coupling 2~a A F5 in. the D5-brane 
world-volume translates this flux into N units of charge under the U(1) gauge field a 

on the D5-brane. Since the D5-brane spatial world-volume is closed, the total charge 
must be zero. A string running out ofthe D5-brane counts as ( -1) unit of U (1) charge, 
hence the conclusion. Reversing the orientation of the D5-brane changes' the sign of 
the charge induced by F5 , and correspondingly the N strings should run into the brane 
rather than out. 

In the absence of other D-branes, the strings cannot end anywhere in AdS5 , so they 
must run out to the boundary. A string ending on the boundary is interpreted (see sec­
tion 3.5) as an electric charge in the fundamental representation of the SU( N) gauge' 
group: an external (non-dynamical) quark. This interpretation comes from viewing' 
the strings as running from the D5-brane to a D3-brane at infinity. It was shown in 
(402J that such stretched strings have a unique ground state which is fermionic, and 
the conclusion is that the D5-brane "baryon" is precisely an antisymmetric combina­
tion of N fermionic fundamental string "quarks." The gauge theory interpretation is 
clear: because the gauge group is SU(N) rather than U(N), there is a gauge-invariant 
baryonic vertex for N external fundamental quarks. We will return to a discussion of 
baryonic objects in section 6.2.2. 

To obtain other types of wrapped hrane objects with no spatial extent in AdS5 , we 
must turn to compact manifolds with more nontrivial homology cycles. Apart from the 
intrinsic interest of studying such objects and the gauge theories in which they occur, 
the idea is to verify the claim that every object we can exhibit in gauge theory has a 
stringy counterpart, and vice versa. 

Following (214] and the discussion in section 4.1.2, we now examine wrapped branes 
in the Ad55 x Rp5 geometry, which is the near-horizon geometry of D3-branes placed 
on top of a Z2 orientifold three-plane (the Z2 acts as Xi -+ -Xi for the six coordinates 
perpendicular to the D3-branes). H3(Rp5, Z) = Z2, and the generator of the homology 
group is a projective space Rp3 C RP5. This seems to offer the possibility of wrapping 
a D3-brane on a 3-cycle to get a particle in AdS5 • However, there is a caveat: as argued 
in [214] the wrapping is permitted only if there is no discrete torsion for the NS and 
RR B-fields. In gauge theory terms, that amounts to saying that the_ corresponding 
operator is permitted if and only if the gauge group is SO( N) with N even. Direct 
calculation leads to a mass m ~ N / R for the wrapped brane, so the corresponding 
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gauge theory operator has dimension N (at least to leading order in large N). A 
beautiful fact is that a candidate gauge theory operator exists precisely when the 
gauge group is 50(N) with N even: it is the "Pfaffian" operator, 

1 ala2 ... aN A. ,/.. (4 23) 
(N/2)! E 'fJala2··· 'fJaN_laN • • 

Here the fields cf>ab are the adjoint scalar bosons which are the .N = 4 superpartners 
of the gauge bosons. We have suppressed their global flavor index. A similar wrapped 
3-brane was discussed in section 4.1.3, where the 3-brane was wrapped around the 
3-cycle of Ttl (which is topologically 52 x 53). 

It is also interesting to consider branes with spatial extent in Ad55 • Strings in Ad55 

were discussed in section 3.5. A three-brane in Ad55 (by which we mean any wrapped 
brane with three dimensions of spatial extent in Ad55 ) aligned with one direction 
perpendicular to the boundary must correspond to some sort of domain wall in the 
field theory. Some examples are obvious: in Ad55 X 55, if the three-brane is a D3-
brane, then crossing the domain wall shifts the 5-form flux and changes the gauge group 
from 5U(N) to 5U(N + 1) or 5U(N - 1). A less obvious example was considered in 
[214]: crossing a D5-brane or NS5-brane wrapped on some RP2 C Rp5 changes the 
discrete torsion of the RR or NS B-field, and so one can switch between 50( N) and 
5p(N/2) gauge groups. D5-branes on homology 2-cycles of the base of conifolds and 
orbifolds, have also been studied [216, 381, 357, 404], and the conclusion is that they 
correspond to domain walls across which the rank of some factor in the product gauge 
group is incremented. 

Another brane wrapping possibility is branes with two dimensions of spatial extent 
in Ad55 • These become strings in the gauge theory when they are oriented with one 
dimension along the radial direction. In a particular model (an 5U(N)3 gauge theory 
whose string theory image is Ad55 X 55/7/.,3) the authors of [357] elucidated their mean­
ing: they are strings which give rise to a monodromy for the wave-functions of particles 
transported around them. The monodromy belongs to a discrete symmetry group of 
the gauge theory. The familiar example of such a phenomenon is the Aharonov-Bohm 
effect, where the electron's wave-function picks up a U(l) phase when it is transported 
around a tube of magnetic flux. The analysis of [357] extends beyond their specific 
model, and applies in particular to strings in 50(N) gauge theories, with N even, 
obtained from wrapping a D3-brane on a generator of HI (RP5, 7/.,), where the Rp5 has 
no discrete torsion. 

Finally, we turn to one of the most familiar examples of a non-perturbative object 
in gauge theory: the instanton. The obvious candidate in string theory to describe an 
instanton is the D-instanton, also known as the D(-l)-brane. The correspondence in 
this case has been treated extensively in the literature [405, 406, 407, 408, 409, 410, 
411,412]. The presentation in [412] is particularly comprehensive, and the reader who 
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is interested in a more thorough review of the subject can find it there. Note that the 
analysis of instantons in large N gauge theories is problematic since their contribution 
is (at least naively) highly suppressed; the k instanton contribution comes with a factor 
of e-8rr2k/gtM = e-8rr2kN/).. which goes like e-N in the 't Hooft limit. Therefore, we can 

only discuss instanton contributions to quantities that get no other contributions to 
any order in the 1/ N expansion. Luckily, such quantities exist in the N = 4 SYM 
theory, like the one discussed below. 

The Einstein metric on AdS5 x S5 is unaffected by the presence of a D-instanton. 
The massless fields in five dimensions which acquire VEV's in the presence of a D­
instanton are the axion and the dilaton: in a coordinate system for the Poincare patch 
of AdSs where 

(4.24) 

we have [406, 407, 408, 410] 

I 

( 4.25) 

2471' Z4Z4 
e¢ - 9 + -------.....,. 

- s N2 [Z2 + (XIL - xIL )2]4' 

X = xoo ± (e-¢ - l/gs ), 

for a D-instanton whose location in anti-de Sitter space is (XIL' z). It can be shown using 
the general prescription for computing correlation functions that this corresponds in 
the gauge theory to a VEV 

( 4.26) 

which is exactly right for the self-dual background which describes the instanton in 
gauge theory. The action of a D-instanton, 271'/ gs, also matches the action of the 
instanton, 871'2/ g? M, because of the relation g? M = 471'gs' The result (4.26) is insensitive 
to whether the D-instanton is localized on the S5, since the field under consideration 
is an SO(6) singlet. It is a satisfying verification of the interpretation of the variable 
z as inverse energy scale that the position z of the D-instanton translates into the size 
of the gauge theory instanton. In other words, we understand the AdS5 factor (which 
appears in the moduli space of an SU(2) instanton) as merely specifying the position 
of the D-instanton in the five-dimensional bulk theory. 

In fact, at large N, a Yang-Mills instanton is parametrized not only by a point in 
AdS5, but also by a point in S5. The S5 emerges from keeping track of the fermionic 
instanton zero modes properly [412]. The approach is to form a bilinear AAB in the zero 
modes. AAB is antisymmetric in the four-valued SU(4)indices A and B, and satisfies 
a hermiticity condition that makes it transform ·in the real 6 of SO(6). Dual variables 
XAB can be introduced into the path integral which have the same antisymmetry and 
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heriniticity properties: the possible values of XAB correspond to points in 1R6. When the 
fermions are integrated out, the resulting determinant acts as a potential for the XAB 

fields, with a minimum corresponding to an S5 whose radius goes into the determination 
of the overall normalization of correlation functions. 

Building on the work of [405] on cr.' corrections to the four-point function of stress­
tensors, the authors of [408] have computed contributions to correlators coming from 
instanton sectors of the gauge theory and successfully matched them with D-instanton 
calculations in string theory. It is not entirely clear why the agreement is so good, 
since the gauge theory computations rely on small 't Hooft coupling (while the string 
theory computations are for fixed g} M in the large N limit) and non-renormalization 
theorems are not known for the relevant correlators. The simplest example turns out 
to be the sixteen-point function of superconformal currents A~ = Tr((Tfl/l 0.(3 F;/I)..(3A) , 

where F; is the self-dual part of the field-strength, A is an index in the fundamental 
of SU(4), cr. and (3 are Lorentz spinor indices, and J.l and 1/ are the usual Lorentz vector 
indices. One needs sixteen insertions of A to obtain a non-zero result from the sixteen 
Grassmannian integrations over the fermionic zero modes of an instanton. The gauge 
theory result for gauge group SU(2) turns out to be 

( 

16 ) 211316 8,..2 +·0 d4 - d- f 
II 2 AA Ap ( ) = __ 8 - g} M • Y M f x Z d8 d8 i 

gYM o.p Xp 10 gYMe -5 1] <" 
~1 ~ Z 

ii [[i 2 ~ (:: _ X)2J4 ~ (z~:: + (Xp - x)"u~,.l"A,) 1 . 
(4.27) 

The superconformal currents A~ are dual to spin 1/2 particles in the bulk: dilatinos 
in ten dimensions which we denote A. One of the superpartners of the well-known 
n4 term in the superstring action (see for example [413]) is the sixteen-fermion vertex 
[414]: in string frame, 

-2</> ( -<PJ2 ) e e _ 16 .c = -4 n + ... + --jI6( T, T)A + c.c + ... , 
cr.' cr.' 

(4.28) 

where !t6( T, f) is a modular form with weight (12, -12), and T is the complex coupling 
of type IIB theory: 

( 4.29) 

There is a well-defined expansion of this modular form in powers of e2'Trir, e-2'Trif, and 
g} M. Picking out the one-instanton contribution and applying the prescription for 
calculating Green's functions laid out in section 3.3, one recovers the form (4.27) up 
to an overall factor. The overall factor can only be tracked down by redeing the gauge 
theory calculation with gauge group SU(N), with proper attention paid to the saddle 
point integration over fermionic zero modes, as alluded to in the previous paragraph. 
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The computation of Green's functions such as (4.27) has been extended in [412] to the 
case of multiple instantons. Here one starts with a puzzle. The D-instantons effectively 
form a bound' state because integrations over their relative positions converge. Thus 
the string theory result has the same form as (4.27), with only a single integration 
over a point (x, z) in AdS5. In view of the emergence of an S5 from the fermionic 
zero modes at large N, the expectation on the gauge theory side is that the moduli 
space for k instantons should be k copies of AdS5 x S5. But through an analysis of 
small fluctuations around saddle points of the path integral it was shown that most of 
the moduli are lifted quantum mechanically, and what is left is indeed a single copy 
of AdS5 x S5 as the moduli space, with a prefactor on the saddle point integration 
corresponding to the partition function of the zero-dimensional S U (k) gauge theory 
which lives on k· coincident D-instantons. It is assumed that k « N. Although the 
k instantons "clump" in moduli space, their field configurations involve k commuting 
SU(2) subgroups of the SU(N) gauge group. The correlation functions computed in 
gauge theory have essentially the same form as (4.27). In comparing with the string· 
theory analysis, one picks out the k-instanton contribution in the Taylor expansion 
of the modular form in (4.28). There is perfect agreement at large N for every finite 
k, which presumably means that there is some unknown non-renormalization theorem 
protecting these terms. 

4.3 Deformations of the Conformal Field Theory 

In this section we discuss deformations of the conformal field theory, and what they 
correspond to in its dual description involving string theory on AdS space. We will 
focus on the case of the N = 4 field theory, though the general ideas hold also for 
all other examples of the AdS/CFT correspondence. We start in section 4.3.1 with a 
general discussion of deformations in field theory and in the dual description. Then 
in section 4.3.2 we use the AdS/CFT correspondence to prove a restricted c-theorem. 
In section 4.3.3 we discuss the interesting relevant and marginal deformations of the 
N = 4 SYM field theory; and in section 4.3.4 we review what is known about these 
deformations from the point of view of type IIB string theory on AdS5 x S5. The 
results we present will be based on [415, 146, 145, 147, 416, 143]. 

4.3.1 Deformations in the AdS/CFT Correspondence 

Conformal field theories have many applications in their own right, but since our main 
interest (at least in the context of four dimensional field theories) is in_ studying non­
conformal field theories like QCD, itis interesting to ask how we can learn about non­
conformal field theories from conformal field theories. One way to break conformal 
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mvaflance, described in section 3.6, is to examine the theory at finite temperature. 
However, it is also possible to break conformal invariance while preserving Lorentz 
invariance, by deforming the action by local operators, 

( 4.30) 

for some Lorentz scalar operator 0 and some coefficient h. 

The analysis of such a deformation depends on the scaling dimension !:l. of the op­
erator 0 12. If!:l. < 4, the effect of the deformation is strong in the IR and weak in 
the UV, and the deformation is called relevant. If!:l. > 4, the deformation is called 
irrelevant, and its effect becomes stronger as the energy increases. Since we generally 
describe field theories by starting with some UV fixed point and flowing to the IR, it 
does not really make sense to start with a CFT and perform an irrelevant deformation, 
since this would really require a new UV description of the theory. Thus, we will not 
discuss irrelevant deformations here. The last case is !:l. = 4, which is called a marginal 
deformation, and which does not break conformal invariance to leading order in the 
deformation. Generally, even if the dimension of an operator equals 4 in some CFT, 
this will no longer be true after deforming by the operator, and conformal invariance 
will be broken. Such deformations can be either marginally relevant or marginally ir­
relevant, depending on the dimension of the operator 0 for finite small values of h. In 
special cases the dimension of the operator will remain !:l. = 4 for any value of h, and 
conformal invariance will be present for any value of h. In such a case the deformation 
is called exactly marginal, and the conformal field theories for all values of h are called 
a fixed line (generalizing the concept of a conformal fie,ld theory as a fixed point of the 
renormalization group flow). When a deformation is relevant conformal invariance will 
be broken, and there are various possibilities for the IR behavior of the field theory. It 
can either flow to some new conformal field theory, which can be free or interacting, or 
it can flow to a trivial field theory (this happens when the theory confines and there 
are n~ degrees of freedom below some energy scale A). We will encounter examples of 
all of these possibilities in section 4.3.3. 

The analysis of deformations in the dual string theory on AdS space ,follows from 
our description of the matching of the partition functions in sections 3.1 and 3.3. 
The field theory with the deformation (4.30) is described by examining string theory 
backgrounds in which the field <p on AdS space, which corresponds to the operator 0, 
behaves near the boundary of AdS space like <p(x, U) u-+f hUA - 4 , where [0] = !:l. and 
we use the coordinate system (2.27) (with U instead of u). In principle, we should sum 
over all backgrounds with this boundary condition. Note that, as mentioned in section 

12If the operator does not have a fixed scaling dimension we can write it as a sum oi~perators which 
are eigenfunctions of the scaling operator, and treat the deformation as a sum of the appropriate 
deformations. 
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3.3, in Minkowski space this involves turning on the non-normalizable solution to the 
field equations for ¢( x, U); turnipg on the normalizable mode (as done for instance in 
[417, 418, 419, 420, 421, 422, 423]) cannot be understood as a deformation of the field 
theory, but instead corresponds to a different state in the same field theory [424]13. 
As in the field theory, we see a big difference between the cases of ~ > 4 and ~ < 4. 
When ~ > 4, the deformation grows as we approach the boundary, so the solution near 
the boundary will no longer look like AdS space; this is analogous to the fact that we 
need a new UV description of the field theory in this case. On the other hand, when 
~ < 4, the solution goes to zero at the boundary, so asymptotically the solution just 
goes over to the AdS solution, and the only changes will be in the interior. For ~ = 4 
the solution naively goes to a constant at the boundary, but one needs to analyze the 
behavior of the string theory solutions beyond the leading order in the deformation 
to see if the exact solution actually grows as we approach the boundary (a marginally 
irrelevant deformation), decreases there (a marginally relevant deformation) or goes to 
a constant (an exactly marginal deformation). 

An exactly marginal deformation will correspond to a space of solutions of string 
theory, whose metric will always include an AdS5 factor14 , but the other fields can. 
vary as a function of the deformation parameters. A relevant (or marginally relevant) 
deformation will change the behavior in the interior, and the metric will no longer be 
that of AdS space. If we start in the regime of large gsN where there is a supergrav­
ity approximation to the space, the deformation may be describable in supergravity 
terms, or it may lead to large fields and curvatures in the interior which will cause the 
supergravity approximation to break down. The IR behavior of the corresponding field 
theory will be reflected in the behavior of the string theory solution for small values 
of U (away from the boundary). If the solution asymptotes to an AdS solution also at 
small U, the field theory will flow in the IR to a non-trivial fixed point15 . Note that 
the variables describing this AdS space may be different from the variables describing 
the original (UV) AdS space, for instance the form of the SO( 4,2) isometries may be 
different [145]. If the solution is described in terms of a space which has a non-zero 
minimal value of U (similar to the space which appears in the AdS-Schwarzschild black 
hole solution described in section 3.6, but in this case with the full I SO(3, 1) isom­
etry group unbroken) the field theory will confine and be trivial in the IR. In other 
cases the geometrical description of the space could break down for small values of U; 

13Some of the solutions considered in [420] may correspond to actual deformations of the field theory. 
14The full space does not necessarily have to be a direct product AdS5 x X, but could also be a 

fibration of AdS5 over X, which also has the SO(4, 2) isometry group. 
15Four dimensional field theories are believed [425] to have a c-theorem analogous to the 2-

dimensional c-theorem [75] which states that the central charge of the IR fixed point will be smaller 
than that of the UV fixed point. We will discuss some evidence for this in the AdS context, based on 
the analysis of the low-energy gravity th'eory, in the next subsection. 
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presumably this is what happens when the field theory flows to a free theory in the IR. 

4.3.2 A c-theorem 

Without a detailed analysis of matter fields involved in non-ant i-de Sitter geometries, 
there are few generalities one can make about the description of renormalization group 
flows in the AdS/eFT correspondence16 . However, there is one general result in gravity 
[143] (see also [146]) which translates into a c-theorem via the correspondence. Let us 
consider D-dimensional metrics of the form 

(4.31 ) 

Any metric with Poincare invariance in the t,x dir.ections can be brought into this form 
by an appropriate choice of the radial variable r. Straightforward calculations yield 

-(D - 2)A" = Rt - Rr = Gt - Gr = ",2 (Tt - Tr) > 0 t r t r Dt r-' ( 4.32) 

In the second to last step we have used Einstein's equation, and in the last step we 
have assumed that the weak energy condition holds in the form 

( 4.33) 

for any null vector (J.L. This form of the weak energy condition is also known as the 
null energy condition, and it is obeyed by all fields which arise in Kaluza-Klein com­
pactifications of supergravity theories to D dimensions: Thus, we can take it as a fairly 
general fact that A" :::; 0 for D > 2. Furthermore, the inequality is saturated precisely 
for anti-de Sitter space, where the only contribution to TJ.LV is from the cosmological 
constant. Thus in particular, any deformation of AdSD arising from turning on scalar 
fields will cause A to be concave as a function of r. If we are interested in relevant 
deformations of the conformal field theory, then we should recover linear behavior in A 
near the boundary, which corresponds to the (conformal) ultraviolet limit in the field 
theory. Without loss of generality, then, we assume A(r) I'V r/l as r -+ 00. 

The inequality A" :::; 0 implies that the function 

1 
C(r) = A,D-2 (4.34) 

decreases monotonically as r decreases. Now, suppose there is a region where A is nearly 
linear over a range of r corresponding to many orders of magnitude of eA(r). This is 
the bulk analog of a scaling region in the boundary field theory. The asymptotically 

16See [426,427,428,429,430] for general discussions of the renormalization group flow in the context 
of the AdS/eFT correspondence. 
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linear behavior of A( r) as r ---* 00 indicates an ultraviolet scaling region which extends 
arbitrarily high in energy. If A( r) recovers linear behavior as r ---* -00, there is an 
infrared scaling region; and there could also be large though finite scaling regions in 
between. Assuming odd bulk dimension D, the perfect AdSD spacetime which any 
su~h scaling region approximates leads to an anomalous VEV 

(TJ.l) = universal 
I-' A,D-2 (4.35) 

where the numerator is a combination of curvature invariants which can be read off 
from the analysis of [224] (see section 3.2.2). The point is that in limits where conformal 
invariance is recovered, the expression (4.34) coincides with the anomaly coefficients of 
the boundary field theory, up to factors of order unity which are universal for all eFT's 
in a given dimension. Thus, C(r) is a c-function, and the innocuous inequality A" ~ 0 
amounts to a c-theorem provided that Einstein gravity is a reliable approximation to 
the bulk physics. 

In geometries such as the interpolating kinks of [146, 145, 143] (discussed in more 
detail in section 4.3.4), the outer anti-de Sitter region is distinguishable from the inner 
one in that it has a boundary. There can only be one boundary (in Einstein frame) 
because A gets large and positive only once. In fact, the inner anti-de Sitter region has 
finite proper volume if the coordinates t and Ii in (4.31) are made periodic. Supergravity 
is capable of describing irreversible renormalization group flows despite the reversibility 
of the equations, simply because the basic prescription for associating the partition 
functions of string theory and field theory makes use of the unique boundary. 

4.3.3 Deformations of the N = 4 SU(N) SYM Theory 

The most natural deformations to examine from the field theory point of view are mass 
deformations, that would give a mass to the scalar and/or fermion fields in the N = 4 
vector multiplet. One is tempted to give a mass to all the scalars and fermions in the 
theory, in order to get a theory that will flow to the pure Yang-Mills (YM) theory 
in the IR. Such a deformation would involve operators of the form Tr( ¢/ ¢/) for the 
scalar masses, and [€o.6Tr(AoAA.6B) + c.c.] for the fermion masses. In the weak coupling 
regime of small A = g} M N, such deformations indeed make sense and would lead to 
a pure Yang-Mills theory in the IR. However, the analysis of this region requires an 
understanding of the string theory in the high-curvature region which corresponds to 
small A, which is not yet available. With our present knowledge of st"ring theory we 
are limited to analyzing the strong coupling regime of large A, where supergravity is 
a good approximation to the full string theory. In this regime there are two problems 
with the mass deformation described above: 
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• The operator Tr(<t/q/) is a non-chiral operator, so the analysis of section 3.2.1 
suggests that for large A it acquires a dimension which is at least as large as 
A 1/4, and in particular for large enough values 'of A it is an irrelevant operator. 
Thus, we cannot deform the theory by this operator for large A. In any case 
this operator is not dual to a supergravity field, so analyzing the corresponding 
deformation requires going beyond the supergravity approximation . 

• The pure YM theory is a confining theory which dynamically generates a mass 
scale Ay M, which is the characteristic mass scale for the particles (glueballs) of 
the theory. When we deform the JV = 4 theory by a mass deformation with 
a mass scale m, a one-loop analysis suggests that the mass scale Ay M will be 
given by AYM rv me-C/g~M(m)N, where c is a constant which does not depend on 

N (arising from the one-loop analysis) and-gfM(m) is the coupling constant at 
the scale m. Thus, we find that while for small A we have Ay M « m and there 
is a separation of scales between the dynamics of the massive modes and the 
dynamics of the YM theory we want to study, for large A we have AYM rv m and 
there is no such separation of scales (for non-supersymmetric mass deformations 
the one-loop analysis we made is not exact, but an exact analysis is not expected 
to change the qualitative behavior we describe). Thus, we cannot really study 
the pure YM theory, or any other confining theory (which does not involve all 
the fields of the original JV = 4 theory) as long as we are in the strong coupling 
regime where supergravity is a good approximation. 

We will see below that, while we can find ways to get around the first problem and 
give masses to the scalar fields, there are no known ways to solve the second problem 
and study interesting confining field theories using the supergravity approximation. Of 
course, in the full string theory there is no such problem, and the mass deformation 
described above, for small A, gives an implicit string theory construction of the non­
supersymmetric pure YM theory. 

In the rest of this section we will focus on the deformations that can arise in the 
strong coupling regime, and which may be analyzed in the supergravity approximation. 
As described in section 3.2.1, the only operators whose dimension remains small for 
large N and large A are the chiral primary operators, so we are limited to deforma­
tions by these operators. Let us start by analyzing the symmetries that are preserved 
by such deformations. Most of the chiral operators are in non-trivial SU(4)R rep­
resentations, so they break the SU( 4)R group to some subgroup which depends on 
the representation of the operator we are deforming by. Generic deformations will 
also completely break the supersymmetry. One analyzes how much sup~rsymmetry a 
particular deformation breaks by checking how many supercharges annihilate it. For 
example, deformations which preserve JV = 1 supersymmetry are annihilated by the 
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supercharges Qa and OCr of some N = 1 subalgebra of the N = 4 algebra. Given 
the structure of the chiral representations described in section 3.2.1 it is easy to see 
if a deformation by such an operator preserves any supersymmetry or not. Exam­
ples of deformations which preserve some supersymmetry are superpotentials of the 
form W = hTr( cpil <I>i2 ... cpin), which to leading order in h add to the Lagrangian a 
term of the form [ht a /3Tr(A a AI A/3A24/1 ... 4/n-2) + c.c.]. These operators are part of 
the scalar operators described in section 3.2.1 arising at dimension n + 1 in the chiral 
multiplet. In order to preserve supersymmetry one must also add to the Lagrangian 
various terms of order h 2 , so we see that the question of whether a deformation breaks 
supersymmetryor not depends not only on the leading order operator we deform by 
but also on additional operators which we mayor may not add at higher orders in the 
deformation parameter (note that the form of the chiral operators also changes when 
we deform, so an exact analysis of the deformations beyond the leading order in the 
deformation is highly non-trivial). Another example of a supersymmetry-preserving 
deformation is a superpotential of the form W = hTr(W;cpil ... cpin-2), which deforms 
the theory by some of the scalar operators arising at dimension n + 2 in the chiral 
multiplet (e.g. the dilaton deformation for n = 2, which actually preserves the full 
N = 4 supersymmetry). 

The list of chiral operators which correspond to marginal or relevant deformations 
was given in section 3.2.1. There is a total of 6 such operators, three of which are 
the lowest components of the chiral multiplets with n = 2,3,417

• These operators 
are traceless symmetric products of scalars On = Tr( </>{I'4/2 ••• </>In}), which viewed 
as deformations of the theory correspond to non-positive-definite potentials for the 
scalar fields. Thus, at least if we are thinking of the theory on JR.4 where the scalars 
have flat directions before adding the potential, these deformations do not make sense 
since they would cause the theory to run away along the flat directions. In particular, 
the deformation in the 20' which naively gives a mass to the scalars really creates a 
negative mass squared for at least some of the scalars, so it cannot be treated as a 
small deformation of the UV conformal theory at the origin of moduli space. We will 
focus here only on deformations by the other 3 operators, which all seem to make sense 
in the field theory. 

One marginal operator of dimension 4 is the operator which couples to the dilaton, 
which is a 1 of SU(4)R' of the form [Tr(F;J + iTr(F /\ F) + .. -). Deforming by 
this operator corresponds to changing the coupling constant 1Y M of the field theory, 
and is known to be an exactly marginal deformation' which does not break any of the 
symmetries of the theory. 

171n a U (N) theory there is an additional scalar operator which is the lowest component of the 
n = 1 multiplet. 
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The other two relevant or marginal deformations are the scalars of dimension n + 1 
in the n = 2 and n = 3 multiplets. Let us start by describing the relevant deformation, 
which is a dimension 3 operator in the 10 of SU(4)R' of the form 

(4.36) 

where the indices are contracted to be in the 10 of SU(4)R (which is in the symmetric 
product of two 4's and in the self-dual antisymmetric product of three 6's). This 
operator is complexj obviously when we add it to the Lagrangian we need to add it 
together with its complex conjugate. The coefficient parametrizing the deformation 
is a complex number m a in the 10 of SU(4)R. Deforming by this operator obviously 
gives a mass to some or all of the fermion fields A, depending on the exact values of 
mao For generic values of ma, all the fermions will acquire a mass and supersymmetry 
will be completely broken. The scalars will then obtain a mass from loop diagrams in 
the field theory, so that the low-energy theory below a scale of order m a will be the 
pure non-supersymmetric Yang-Mills theory. Unfortunately, as described above, for 
large>. = g} M N this is not really a good description since this theory will confine at a 
scale AYM of order m. However, for small >. this deformation does enable us to obtain 
the pure YM theory as a deformation of the N = 4 theory. 

It is interesting to ask what happens if we give a mass only to some of the fermions. 
In this case we mayor may not preserve some amount of supersymmetry (obviously, 
preserving N = 1 supersymmetry requires leaving at least one adjoint fermion mass­
less). The deformations which preserve at least N = 1 supersymmetry correspond to 
superpotentials of the form W = mijTr(<l>i<l>j). Choosing an N = 1 subgroup breaks 
SU(4)R to SU(3) X U(l)R' and (if we choose the U(l) normalization so that the su­
percharges decompose as 4 = 3 1 + 1_3 ) the 10 decomposes as 10 = 6 2 + 3_2 + 1_6 • 

The SUSY preserving deformation mij is then in the 62 representation, and it further 
breaks both the SU(3) and the U(1). In a supersymmetric deformation we obviously 
need to also add masses of order m2 to some of the scalarsj naively this leads to a con­
tradiction because, as described above, there are no reasonable scalar masses to add 
which are in chiral operators. However, at order m 2 we have to take into account also 
the mixings between operators which occur at order m in the deformation18 j the form 
of the chiral operators changes after we deform, and they mix with other operators 
(in particular, the form of the operator which is an eigenvalue of the scaling operator 
changes when we turn on m). In the case of the supersymmetric mass deformation, at 
order m the chiral operator (4.36) described above mixes with the non-chiral Tr{ eli eli) 
operator giving the scalars a ma:;;s, so there is no contradiction. The simplest way 
to see this operator mixing in the SUSY-preserving case is to note that the N = 1 
SUSY transformations in the presence of a general superpotential include terms of the 

18Similar mixings were recently discussed in [237]. 
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form {Qa, A/3i} rv €a/3 ~!, which lead to corrections of order m to [Q2, O2] which is the 
operator that we are deforming hy. 

There are two interesting ways to give a mass to only one of the fermions. One of 
them is a particular case of the SUSY-preserving deformation described above, of the 
form W = mTr(q,lq,l), which is an element of the 62 of SU(3) x U(1), and breaks 
SU(4)R -t SU(2) x U(1) while preserving N = 1 SUSY (but breaking the conformal 
invariance). The other possibility is to use the deformation in the 1_6, which breaks 
SUSY completely but preserves an SU(3) subgroup of SU(4)R. To leading order in 
the deformation both possibilities give a mass to one fermion, but at order m2 they 
differ in a way which causes one of them to break SUSY while the other further breaks 
SU(3) -t SU(2) x U(1). At weak coupling we can analyze the order m2 terms in detail. 
In the SUSY-preserving deformation at order m2 we turn on a scalar mass term of the 
form'lmI2Tr[(cpt)2 + (4)2)2], which may be written in the form 

1~12 Tr[2(4)I? + 2(qi)2 _ {4>3)2 _ (4)4)2 _ (4)5)2 _ (4)6)2] + 1~12 Tr[4>I¢/], ( 4.37) 

where the first term is one of the ~ = 2 chiral operators in the 20', and the second term 
is a non-chiral operator which arises from the operator mixing as described above (the 
appearance of the second term allows us to add' the chiral operator in the first term 
without destroying the positivity of the scalar potential). In the non-SUSY deformation 
the chiral term is not turned on at any order in the deformation (the 20' representation 
contains no singlets of SU(3)), and all the scalars get equal masses from the non-chiral 
term. 

Which theory do we flow to in the IR after turning on such a single-fermion mass 
term? In the SUSY-preserving case one can show that we actually flow to an N = 1 
SCFT (and, in fact, to a fixed line of N = 1 SCFTs). Naively, one chiral multiplet 
gets a mass, and we remain with the N = 1 SU(N) SQCD theory with two adjoint 
chiral multiplets, which is expected (based on the amount of matter in the theory) 
to flow to an interacting IR fixed point. In fact, one can prove [416] that there is an 
exactly marginal operator at that fixed point, which (generally) has a non-zero value in 
the IR theory we get after the flow described above. The full superpotential with the 
deformation is of the form W = hTr(q,1[q,2, q,3]) + mTr(q,Iq,I) (where h is proportional 
to gYM), and to describe the low-energy theory we can integrate out the massive field 
q,I to remain with a superpotential W = - :: Tr([q,2, q,3j2) for the remaining massless 
fields. Naively this superpotential is irrelevant (its dimension at the UV fixed point 
at weak coupling is 5), but in fact one can show (for instance, using the methods of 
[385]) that it is exactly marginal in the IR theory, so there is a fixed line of SCFTs 
parametrized by the coefficient h of the superpotential W = hTr([q,2, q,3]2). Upon 
starting from a particular value of gyM in the UV and performing the supersymmetric 
mass deformation, we will land in the IR at some particular point on the IR fixed line 
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(i.e. some value of h). The unbroken global U(l) symmetry of the theory becomes the 
U(l)R in the N = 1 superconformal algebra in the IR. 

It is more difficult to analyze the mass deformation which does not preserve SUSY 
(but preserves SU(3)), since we cannot use the powerful constraints of supersymmetry. 
Naively one would expect this deformation to lead to masses (from loop diagrams) for 
all of the scalars, but not for the fermions, since the SU(3) symmetry prevents them 
from acquiring a mass. Then, the IR theory seems to be SU(N) Yang-Mills coupled 
to three adjoint fermions, .which presumably flows to an IR fixed point (this is what 
happens for supersymmetric theories with one-loop beta functions of the same order, 
but it is conceivable also that the theory may confine and generate a mass scale). There 
is no reason for such a fixed point to have any exactly marginal deformations (in fact, 
there are no known examples in four dimensions of non-supersymmetric theories with 
exactly marginal deformations), so presumably the flow starting from any value of gYM 

always ends up at the same IR fixed point. 

If we give a mass to two of the fermions, it is possible to do this with a superpotential 
of the form W = mTr(<Jjl<Jj2) which in fact preserves N = 2 supersymmetry (it gives 
the N = 2 SQCD theory with one massive adjoint hypermultiplet, which was discussed 
in [431 D. This theory is known to dynamically generate a mass scale, at which the 
SU(N) symmetry is broken (at a generic point in the moduli space) to U(l)N"'-l, and 
the low-energy theory is the theory of (N -1) free U(l) vector multiplets. The behavior 
of this theory for large N was discussed in [432]. At special points in the moduli space 
there are massless charged particles, and at even more special points in the moduli 
space [433, 434, 435] there are massless electrically and magnetically charged particles 
and the theory is a non-trivial N = 2 SCFT. It is not completely clear which point in 
the moduli space one would flow to upon adding the mass deformation to the N = 4 
theory. Presumably, without any additional fine-tuning one would end up at a generic 
point in the moduli space which corresponds to a free IR theory. 

If we give a mass to two fermions while breaking supersymmetry (as above, this 
depends on the order m2 terms that we add), we presumably end up in the IR with 
Yang-Mills theory coupled to two massless adjoint fermions. This theory is expected 
to confine at some scale Ay M (which for large g} MN would be of the order of the scale 
m), and lead to a trivial theory in the IR. A similar confining behavior presumably 
occurs if we give a mass to three or four of the fermions (for three fermions we can 
give a mass while preserving SUSY, and we presumably flow in the IR to the confining 
N = 1 pure SYM theory). 

The only remaining deformation is the deformation by the .6. = 4 operator in the 45 
representation, which is in the n = 3 multiplet. A general analysis of t1!is deformation 
is rather difficult, so we will focus here on the SUSY preserving case where the defor­
mation is a superpotential of the form W = hijk Tr( <Jji<Jjj<Jjk) , with the coefficients hijk 
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in the 100 representation in the decomposition 45 = 154 + 100 + 80 + 6_4 + 3_4 + 3_8 • 

It turns out that one can prove (see [385] and references therein) that two of these ten 
deformations correspond to exactly marginal operators, that preserve N = 1 supercon­
formal invariance. This can be done by looking at a general N = 1 theory with three 
adjoint chiral multiplets, a gauge coupling g, and a superpotential of the form 

W = hI Tr( (pI (p2(p3 + (pI (p3(p2) + h2 Tr( (pI)3 + (p2)3 + (p3)3) +h3Cijk Tr( (pi(pj(pk). (4.38) 

This particular superpotential is chosen to preserve a Z3 x Z3 global symmetry, where 
one of the Z3 factors acts by (PI .,. (p2, (p2 .,. (p3, (p3 .,. (PI and the other acts by 
(pI .,. (PI, (p2 .,. W(p2, (p3 .,. w 2(p3 where w is a third root of unity. The second Z3 

symmetry prevents any mixing between the chiral operators (pi, and the first Z3 can 
then be used to show that they all have the same anomalous dimension ,(g, hI, h2' h3). 
The beta function may be shown (using supersymmetry) to be exactly proportional to 
this gamma function (with a coefficient which is a function of g), so that the requirement 
of conformal invariance degenerates into one equation (, = 0) in the four variables 
g, hI, h2 and h3, which generically has a 3-dimensional space of solutions. This space 
of solutions corresponds to a 3-dime:f!.sional space of N = 1 SCFTs. The general 
arguments we used so far do not tell us ~he form of the 3-dimensional space, but we 
can now use our analysis of the N = 4 theory to learn more about it. First, we know 
that the N = 4 line 9 = h3' hI = h2 = 0 is a subspace of this 3-dimensional space. We 
also know that at leading order in the deformation away from this subspace, (h3 + g), 
hI and h2 correspond to marginal operators (as described above they couple to chiral 
operators of dimension 4), while (h3 - g) couples to a non-chiral operator (in the 15 
of SU(4)R) whose dimension is corrected away from 9 = 0 (and seems to be large for 
large g}MN). Thus, we see that to leading order in the deformation around the N = 4 
fixed line, the exactly marginal deformations are given by hI and h2 (which are two 
particular elements of the 100 representation). It is not known if the other deformations 
in the 45 are marginally relevant, marginally irrelevant or exactly marginal. 

4.3.4 Deformations of String' Theory on AdS5 x S5 

As described in section 4.3.1, to analyze the deformations of section 4.3.3 in the AdS 
context requires finding solutions of string theory with appropriate boundary condi­
tions. For the exactly marginal deformation in the 1, which corresponds to the dilaton, 
we already know the solutions, which are just the AdS5 x S5 solution with any value of 
the string coupling TIlB. The other operators discussed above are identified in string 
theory with particular modes of the 2-form field Bab with indices in the S5 direc­
tions (we view B as a complex 2-form field which contains both the N-S-NS and R-R 
2-form fields). Thus, the dimension 3 mass deformation would be related to string the­

ory backgrounds in which Bab(X, U, y) u-+f mYa~)(Y)/U for some spherical harmonics 
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r:.~)(y) on 5S, and the dimension 4 deformations would be related to backgrounds with 

Bab(X, U, y) u-+f hYS)(y). It is clear from the identification of the superconformal al­
gebra in the field theory and in the string theory that these deformations break the 
same supersymmetries in both cases; this can also be checked explicitly (say, to leading 
order in the deformation [415, i46]) by analyzing the SUSY variations of the type lIB 
supergravity fields. The existence of an exactly marginal deformation breaking the 
.N = 4 superconformal symmetry to .N = 1 superconformal symmetry suggests that 
the theorem of [436], that forbids fiat space compactifications with different amounts 
of supersymmetry from being at a finite distance from each other in the string theory 
moduli space, is not valid in AdS compactifications [415, 146]. 

Since we know little about string theory in backgrounds with RR fields, our analysis 
of such solutions is effectively limited to the supergravity approximation. This already 
limits our discussion to large A = gsN, and it limits it further to cases where the 
solution does not develop large curvatures in the interior. In the supergravity limit one 
would want to find solutions of type lIB supergravity with the boundary conditions 
described above (with the rest of the fields having the same boundary conditions as in 
the Ad55 x 55 case). Unfortunately, no such solutions are known, and they seem to 
be rather difficult to construct. There are 3 possible approaches to circumventing this 
problem of finding exact solutions to type lIB supergravity : . 

• One can try to construct solutions perturbatively in the deformation parameter, 
which should be easier than constructing the full exact solution. Unfortunately, 
this approach does not make sense for the relevant deformations, since already 
at leading order in the deformation (correspondi:J;lg to the linearized equations of 
motion around the Ad55 x 55 solution) we find that the solution (Bab rv 1jU) 
grows to be very large in the interior, so the perturbative expansion does not make 
sense. At best one may hope to have a perturbative expansion in a parameter 
like mjU (if m is the coefficient of a relevant operator 'of dimension ~ = 3), 
but this only makes sense near the boundary. On the other hand, for marginal 
deformations, and especially for deformations that are supposed to be exactly 
marginal, this approach makes sense. Exactly marginal deformations correspond 
to solutions which do not depend on the AdS coordinates at all, so a perturbation 
expansion in the parameters of the deformation seems to be well-defined. In 
practice such a perturbation expansion is quite complicated, and can only be 
done in the first few orders in the deformation. In the case of the deformation by 
hI, h2 which was described in field theory above, one can verify that it is an exactly 
marginal deformation to second order in the deformation, even though additional 
SUCRA fields need to be turned on at this order (including components of the 
metric with 55 indices). This is in fact true for any deformation in the 45. At 
third order one probably gets non-trivial constraints on which elements of the 45 
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one can be turned on in an exactly marginal deformation, but the equations of 
motion of type lIB SUGRA have not yet been expanded to this order. Verifying 
that the deformations that are exactly marginal in the field theory correspond 
to exactly marginal deformations also in string theory on AdS5 x S5 would be a 
non-trivial test of the AdS/CFT correspondence . 

• There are no known non-trivial solutions of type lIB supergravity which are 
asymptotically of the form described above for the relevant or marginal deforma­
tions. However, there are several known solutions [172, 119] of type IIB super­
gravity (in addition to the AdS5 x S5 solution) which involve AdS5 spaces and 
have SO(4, 2) isometries (these solutions need not necessarily be direct products 
AdS5 x X), and one can try to guess that they would be the end-points of flows 
arising from relevant deformations. As long as we are in the supergravity ap­
proximation, only solutions which are topologically equivalent to AdS5 x S5 can 
be related by flows to the AdS5 x S5 solution, so we will not discuss here other 
types of AdS5 solutions. 

One such solution was found in [172], which is of the form AdS5 x X, where X is 
an S1 fiber over C p2 (a "stretched five-sphere"), and there is also a 3-form field 
turned on in the compact directions (this is called a Pope-Warner type solution 
[437]). This solution ha~ an SU(3) isometry symmefry (corresponding to an 
SU(3) global symmetry in the corresponding field theory), and it breaks all the 
supersymmetries. Thus, it is natural to try to identify it with the deformation 
by the non-supersymmetric single-fermion mass operator described in section 
4.3.3, which has the same symmetries. Additional evidence for this identification 
will be presented below. This classical supergravity solution, like all type lIB 
supergravity solutions, has the dilaton as an arbitrary parameter, corresponding 
to a fixed line in the corresponding field theory. However, for finite N one would 
expect quantum corrections in this non-supersymmetric background to generate a 
potential for the dilaton (as well as for any other massless scalar fields if they exist 
in this compactification), which should have a unique vacuum to correspond with 
the field theory expectations described above. For infinite N this correspondence 
would predict a fixed line in the corresponding field theory, but it is not clear 
how to analyze this directly in the field theory (perturbation theory is not valid 
since the field theory, which is the IR limit of QCD with three adjoint fermions, 
is always strongly coupled, so if there is a fixed line it does not pass through weak 
coupling). We will discuss this solution further below. 

An additional solution, found in [119], exhibits an SO(5) global sy~mmetry: How­
ever, as discussed below, thi~ solution appears to be unstable . 

• The most successful way (to date) of analyzing the appropriate solutions of type 
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lIB supergravity has been to restrict attention to the five dimensional .N = 8 
supergravity [122] sector-of the theory, which includes only the n = 2 "super­
graviton" multiplet from the spectrum described in section 3.2.1. Unlike the sit­
uation in flat-space compactifications, the five dimensional supergravity cannot 
be viewed as a low-energy limit of the ten dimensional supergravity compactifi­
cation in any sense. For instance, the supergraviton multiplet contains fields of 
m 2 = -4/ R2, while other multiplets (in the n = 3,4 multiplets) which are not 
included in the truncation to the five dimensional supergravity theory involve 
massless fields on AdS5. However, it is conjectured that there does exist a con­
sistent truncation of the type IIB supergravity theory on AdS5 x 55 to the five 
dimensional N = 8 supergravity, in the sense that every solution of the latter can 
be mapped into a solution of the full type lIB theory (with the other fields in type 
lIB supergravity being some functions of the five dimensional SUGRA fields). A 
similar truncation is believed to exist ([138, 112] and references therein) for the 
relation between 11 dimensional supergravity compactified on Ad54 x 57 and the 
four dimensional N = 8 gauged supergravity, and for the relation between 11 
dimensional supergravity compactified on AdS7 x S4 and the seven dimensional 
gauged supergravity, and the similarities between the two cases suggest that it 
milY exist also in the Ad55 x 55 case (though this has not yet been. proven19

). 

In: the rest of this section we will assume that s.uch a truncation exists and see 
what we can learn from it. Obviously; we can only learn from such a truncation 
about deformations of the theory by fields in the n = 2 multiplet, so we cannot 
analyze the marginal deformations in the 45 in this way. 

The first thing one can try to do with the five dimensional N = 8 supergravity 
is to find solutions to the equations of motion with an 50(4,2) isometry. These 
correspond to critical points of the scalar potential of d = 5, N = 8 supergravity, 
which is a complicated function of the 42 (=20' + IOe + Ie) scalar fields in the 
n = 2 multiplet. A full analysis of the critical points of this potential has not 
yet been performed, but there are 4 known vacua in addition to the vacuum 
corresponding to AdS5 x S5 : 

(i) There is a non-supersymmetric vacuum with an unbroken SU(3) gauge group. 
This vacuum is conjectured to correspond to the 5U(3)-invariant vacuum of the 
full type IIB supergravity theory described above, which, as mentioned above, 

. could correspond to a mass deformation of the N = 4 field theory. Additional 
evidence for this correspondence was presented in [146, 145], which constructed 
a solution of the five dimensional .N = 8 supergravity which interpolates be­
tween the AdS5 x S5 solution and the SU(3)-invariant solution, with the leading 

19Partial evidence for this was given in [141]. 
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deformation from the AdS5 x S5 solution corresponding exactly to the mass 
operator in the 1_6 in the decomposition 10 = 62 + 3_2 + 1_6 , which breaks 
SU(4)R ~ SU(3). If indeed there is a consistent truncation of the type lIB 
supergravity to 5d N = 8 SUGRA then this is convincing evidence that the 
SU(3) invariant solution indeed corresponds (in the large N limit) to the fixed 
point arising from the single-fermion-mass deformation of the N = 4 field theory. 
Since this solution is non-supersymmetric, one must verify that the classical solu­
tion is stable, namely that it does not contain tachyons whose mass is below the 
Breitenlohner-Freedman stability bound (in supersymmetric vacua this is guar­
anteed; using equation (3.14), such tachyons would correspond to operators of 
complex dimension in the field theory which would contradict its unitarity). In 
[145] it was verified that this is true for the fields of the five dimensional super­
gravity multiplet; it would be interesting to verify this for the full spectrum of 
the type lIB supergravity theory, to confirm that the solution indeed describes a 
consistent supergravity compactification. The central charge of the correspond­
ing field theory was computed in [147] and found to be smaller than that of the 
UV N = 4 fixed point, consistent with the conjectured c-theorem. As discussed 
above, the supergravity solution contains a massless scalar (the dilaton) which 
is expected to obtain a non-trivial potential when the quantum corrections are 
included. It is not clear how to analyze these corrections and to check whether 
after their inclusion there is still a consistent vacuum of string theory on the cor­
responding manifold or not. Presumably, if such a consistent vacuum exists, it 
would not be a weakly coupled string theory (since it is unlikely that the dilaton 
can be stabilized at weak coupling). However, it could still have small curvatures 
(in the large N limit), so that a supergravity analysis of this theory may be use­
ful. If the dilaton does not stabilize in the small curvature region one would need 
to go beyond the supergravity approximation to learn anything about the the­
ory, and in particular to learn whether there is any stable AdS-type background 
(corresponding to an IR fixed point in the field theory) or not (corresponding to 
confinement in the field theory). 

(ii) There is a non-supersymmetric vacuum with unbroken SO(5) gauge symme­
try, which is conjectured to be related to the SO(5)-invariant compactification 
of type lIB supergravity which we mentioned above. The mass spectrum in this 
vacuum was computed in [145], where it was found that it has a tachyonic particle 
whose mass is below the stability bound. Thus, even classically this is not really 
a vacuum of the supergravity theory (presumably the tachyon would condense 
and the theory would flow to some different vacuum). It was found in [146, 145] 
that this "vacuum" is related to the AdS5 .x S5 vacuum by a defo~~ation involv­
ing turning on one of the operators in the 20' representation; presumably the 
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instability of the supergravity solution is related to the instability of the field 
theory after performing this deformation. 

(iii) There is [147, 416, 143] a v:acuum with 5U(2) x U(l) unbroken symmetry 
and 8 unbroken supercharges, corresponding to an N = 1 SCFT in the field 
theory. There is no known corresponding solution of the full type liB theory, 
but assuming that 5d SUCRA is a consistent truncation, such a solution must 
exist (though it is not guaranteed that all its curvature invariants will be small, 
as required for the consistency of the supergravity approximation). It is natural 
to identify this vacuum with the IR fixed point arising from the supersymmetric 
single-chiral-superfield mass deformation described in section 4.3.3. This is con­
sistent with the form of the 5d SUCRA fields that are turned on in this solution, 
with the global symmetries of the solution, and with the fact that on both sides 
of the correspondence we have a fixed line of .AI = 1 SCFTs (the parameter h of 
the fixed line corresponds to the dilaton on the string theory side; supersymmetry 
prohibits the generation of a potential for this field). Recently this identification 
was supported by the construction of the full solution interpolating between the 
.AI = 4 fixed point and the N = 1 fixed point in the 5d SUCRA theory [143]. 
Since we have some supersymmetry left in this case, one can also quantitatively 
test this correspondence by matching the global anomalies of the field theory 
described in section 4.3.3 (the 5U(N) .AI = 1 SQCD theory with two adjoint 
chiral multiplets and a superpotential W <X Tr([cI>2, cI>3]2)) with those of the cor­
responding SUCRA background, as described in section 3.2.2. The conformal 
anomalies were successfully compared in [416, 143] in the large N limit, giving 
some evidence for this correspondence (in particular, the conformal anomalies of 
this theory satisfy a = c, as required for a consistent supergravity approxima­
tion). The fact that the central charge corresponding to this solution is smaller 
than that of the Ad55 x 55 solution with the same RR 5-form flux (note that 
the RR flux is quantized and does not change when we deform) means that this 
interpretation is consistent with the conjectured four dimensional c-theorem. 

(iv) There is an additional background found in [147] with 5U(2) x U(l) x U(l) 
unbroken gauge symmetry and no supersymmetry. The mass spectrum of this 
background has not yet been computed, so it is not clear if it is stable or not. 
The SUCRA solution involves giving VEVs to fields both in the 20' and in the 
10, but it is not clear exactly what deformation of the original Ad55 x 55 theory 
(if any) this background corresponds to. 

In principle, one could also use the truncated five dimensional theory to analyze 
other relevant deformations in the 10, which are not expected t-o give rise to 
conformal field theories in the IR. Presumably most of them would lead to high 
curvatures in the interior, but perhaps some of them do not and can then be 
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analyzed purely in supergravity. 

To summarize, the analysis of deformations in string theory on Ad55 x 55 is rather 
difficult, but the results that are known so far seem to be consistent with the AdS/eFT 
correspondence. The only known results correspond to deformations which lead to con­
formal theories in the IR; as discussed in section 4.3.3, these are also the only deforma­
tions which we would expect to be able to usefully study in general in the supergravity 
approximation. The most concretely analyzed deformation is the single-chiral-fermion 
mass deformation, which seems to lead to another AdS-type background of type IIB 
supergravity (though only the truncation of this background to the five dimensional 
supergravity is known so far). In non-supersymmetric cases the analysis of deforma­
tions is complicated (see, for instance, [336]) by the fact that quantum corrections are 
presumably important in lifting flat directions, so a classical supergravity analysis is 
not really enough and the full string theory seems to be needed. 
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Chapter 5 

In this chapter we will study the relation between gravity theories (string theories) 
on Ad53 and twq dimensional conformal field theories; First we are going to describe 
some generalities which are valid for any Ad53 quantum gravity theory, and then we 
will discuss in more detail IIB string theory compactified on Ad53 x 53 X M4 with 
M4 = K3 or T4. 

Ad53 quantum gravity is conjectured to be dual to a two dimensional conformal field 
theory which can be thought of as living on the boundary of Ad53 . The boundary of 
Ad53 (in global coordinates) is a cylinder, so the conformal field theory is defined on 
this cylinder. We choose the cylinder to have radius one, which is the usual convention 
for conformal field theories. Of course, all circles are equivalent since this is a conformal 
field theory, but we have to rescale energies accordingly. If the spacetime theory or 
the ~onformal field theory contain fermions then they have anti-periodic boundary 
conditions on the circle. The reason is that the circle is contractible in Ad53 , and close 
to the "center" of Ad53 a translation by 27r on the circle looks like a rotation by 27r, 
and fermions get a minus sign. So, the dual conformal field theory is in the NS-NS 
sector. Note that we will not sum over sectors as we do in string theory, since in this 
case the conformal field theory describes string theory on the given spacetime and all 
its finite energy excitations, and we do not have to second-quantize it. 

5.1 The Virasoro Algebra 

The isometry group of Ad53 is 5L(2, JR) x 5L(2, JR), or 50(2,2). The conformal group 
in two dimensions is infinite. This seems to be, at first sight, a contradiction, since in 
our previous discussion we identified the conformal group with the isometry group of 
AdS. However, out of the infinite set of generators only an 5L(2,JR) x SL(2,JR) sub­
group leaves the vacuum invariant. The vacuum corresponds to empty Ad53 , and this 

151 



subgroup corresponds to the group of isometries of AdS3 . The other generators map 
the vacuum into some excited states. So, we expect to find that the other generators of 
the conformal group map empty AdS3 into AdS3 with (for instance) a graviton inside. 
These other generators are associated to reparametrizations that leave the asymptotic 
form of AdS3 invariant ~t infinity. This problem was analyzed in detail in [438] and 
we will just sketch the argument here. The metric on AdS3 can be written as 

ds2 = R2( - cosh2 pdr2 + sinh2 pd4>2 + dp2). 

When p is large (close to the boundary) this is approximately 

ds2 
I'V R2 [-e2Pdr+ dr- + dp2] , 

(5.1 ) 

(5.2) 

where r± == r ± 4>. An infinitesimal reparametrization generated by a general vector 
field eo. (r, 4>, p) changes the metric by go.f3 --t go.f3 + V o.ef3 + V f3eo.' If we want to preserve 
the asymptotic form of the metric (5.2), we require that [438] 

e-2p 

e+ = f(r+) + -2-g"(r-) + 0(e-4p
) , 

e-2p e- = g(r-) + -f"(r+) + 0(e-4p
) , (5.3) 

2 

e = - 1'(;+) - g'(;-) + O( e-2P ) , 

where f( r+) and g( r-) are arbitrary functions. Expanding the functions f = L: Lnenr+, 

9 = L: Lnenr-, we recognize the Virasoro generators Ln, Ln. For the ca.ses n = 0, ±1 
one can find some isometries that reduce to (5.3) at infinity, are globally defined, and 
leave the metric invariant. These are the SO(2, 2) is~metries discussed above. For the 
other generators it is possible to find a globally defined vector field e, but it does not 
leave the metric invariant. 

It is possible to calculate the classical Poisson brackets among these generators, and 
one finds that this classical algebra has a central charge which is equal to [438] 

3R 
c = 2G~)' (5.4) 

where G~) is the three dimensional Newton constant. So, this should also be the 
central charge of the dual conformal field theory, since (5.3) implies that these Virasoro 
generators are acting on the boundary as the Virasoro generators of a 1 + 1 dimensional 
conformal field theory. 

A simple calculation of the central charge term (5.4) was given in [226]. Under a 
diffeomorphism of the form (5.3), the metric near the boundary changes to 

(5.5) 
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The metric retains its asymptotic form, but we have kept track of the subleading 
correction. This subleading correction changes the expectation value of the stress 
tensor. If we start with a zero stress tensor, we get ' 

(5.6) 

after the transformation. Under a general conformal transformation, r+ -+ r+ + f( r+), 
the stress tensor changes as 

. C 3 

T++ -+ T++ + 28+fT++ + f8+T++ + 247r 8+f. (5.7) 

So, comparing (5.7) with (5.6) we can calculate the central charge (5.4). 

It is also possible to show that if we have boundary conditions on the metric at 
infinity that in the dual conformal field theory correspond to considering the theory 
on a curved geometry, then we get the right conformal anomaly [224] (generalizing the 
discussion in section 3.2.2). 

5.2 The BTZ Black Hole 

Three dimensional gravity has no propagating degrees of freedom. But, if we have a 
negative cosmological constant, we can have black hole solutions. They are given by 
[439, 440] 

with ¢ = ¢ + 27r. We can combine the temperature T and the angular momentum 
potential n into 

lIn 
-=-±-
T± - T T' 

(5.9) 

and their relation to the parameters in (5.8) is r± = 7rR(T+ ± T_). The mass and 
angular momentum are 

8G(3) M = R + (r! + r~) 
N R ' (5.10) 

where we are measuring the mass relative to the AdS3 space, which we define to have 
M = 0 (the scale of the mass is set by the radius of the circle in the duaJ eFT). This 
is not the usual convention, but it is much mor~ natural in this context since we are 
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measuring.energies with respect to the NS-NS vacuum. Note that the mass of a black 
hole is always at least 

R c-
Mmin = 8G~) = 12· (5.11) 

The black hole with this minimum mass (sometimes called the zero mass black hole) 
has a singularity at r = r + = r _ = o. All these black holes are locally the same as AdS3 

but they differ by some global identifications [439, 440], i.e. they are quotients of AdS3 • 

In theories that have supersymmetry it can be checked that the zero mass black hole 
preserves some supersymmetries provided that we make the fermions periodic as we go 
around the circle [441], which is something we have the freedom to do once the circle 
is not contractible in the gravity geometry. These supersymmetries commute with the 
Hamiltonian conjugate to t. Furthermore, we will see below that if we consider the near 
horizon geometry of branes wrapped on a circle with periodic boundary conditions for 
the spinors, we naturally obtain the BTZ black hole with mass Mmin . This leads us 
to identify the M = Mmin BTZ black hole with the RR vacuum of the conformal field 
theory [441]. The energy M min (5.11) is precisely the energy difference between the NS­
NS vacuum and the RR vacuum. Of course, we could still have the M = Mmin BTZ 
black hole with anti-periodic boundary conditions as an excited state in the NS-NS 
sector. 

Next, let us calculate the black hole entropy. The Bekenstein-Hawking entropy 
formula gives 

S = Area = 271T+ = 7r
2
c(T + T ) 

4G~) 4G~) 3 + - , 
(5.12) 

where we used (5.4). We can also calculate this in the conformal field theory. All we 
need is the centra~ charge of the conformal field theory, which we argued had to be 
(5.4). Then, we can use the general formula [442] for the growth of states in a unitary 
conformal field theory [443, 276], which gives 

(5.13) 

Thus, we see that the two results agree. This result if valid for a general conformal 
field theory as long as we are in the asymptotic high energy regime (where energies 
are measured in units of the radius of the circle), so in particular we need that T » l. 
When is the result (5.12) valid? In principle we would say that it is valid as long as 
the area of the horizon is much bigger than the Planck length, r + » G~). This gives 
T » 1/c, which is a much weaker bound on the temperature for large c. So, we see 
that the corresponding conformal field theory has to be quite special, since the number 
of states should grow as determined by the asymptotics (5.13) for energies that are 
much smaller than one would expect for a generic conformal field theory. 
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Figure 5.1: Calculation of the partition function at finite temperature through the 
Euclidean conformal field theory. Since the two directions are equivalent we can choose 
the "time" direction as we wish. The partition function is dual under j3 -+ 47r2 

/ j3. 
(a) At low temperatures j3 is large and only the vacuum propagates in the j3 direction. 
(b) At high temperatures, small j3, only the crossed channel vacuum propagates in the 
<p direction. (c) When j3 = 27r we have a sharp transition according to supergravity. 

A related manifestation of this curious feature of the "boundary" conformal field 
theory is the following. We could consider the canonical ensemble by going to Euclidean 
space and making the Euclidean time coordinate periodic, T = T + j3. We consider the 
case n = 0, the general case is considered in [276]. The conformal field· theory is then 
defined on a rectangular two-torus, and the free energy will be the partition function 
of the theory on this two-torus. Due to the thermaL boundary condition in the NS 
sector, the two-torus ends up having NS-NS boundary conditions on both circles. In 
order to calculate the partition function in the dual gravitational theory we should find 
a three-manifold that has the two-torus as its boundary (the correspondence tells us 
to sum over all such manifolds). One possibility is to have the original AdS3 space 
but with time identified, T = T + j3. The value of the free energy is then given, to 
leading order, by the ground state energy of AdS3 . This is the expected result for 
large j3, where the torus is very elongated and only the vacuum propagates in the T 

channel, see figure 5.1(a). For high temperatures, only the vacuum propagates in the 
crossed channel (fig. 5.1(b)), and this corresponds to the BTZ black hole in AdS3 . 

Note that the Euclidean BTZ geometry is the same as AdS3 but "on its side", with 
T H <p, so now the T circle is contractible. The transition between the two regimes 
occurs at j3 = 27r, which corresponds to a square torus (fig. 5.1(c)). This is a sharp 
transition when the gravity approximation is correct, i.e. when R/G~) f"V c» 1. This 
sharp transition will not be present in the partition function of a genetic conformal 
field theory, for example it is not present if we consider c free bosons. When we discuss 
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in more detail the conformal field theories that correspond to string theory on AdS3, 
we will see that they have a feature that makes it possible to explain this transition. 
This sharp transition is the two dimensional version of the large N phase transition 
discussed in section 3.6.2 [183J (in this case c plays the role of N). 

5.3 Type lIB String Theory on AdS3 x S3 X M4 

In this section we study IIB string theory on AdS3 X S3 X M4 [276, 444J. Throughout 
this section M4 = K3 or T4. In this case we can get some insight on the dual confor­
mal field theory by deriving this duality from D-branes, as we did for the AdS5 x S5 
case. We start with type lIB string theory on M4. We consider a set of Q1 D1 
branes along a non-compact direction, and Q5 D5 branes wrapping M4 and sharing 
the non-compact direction with the D1 branes. All the branes are coincident in the 
transverse non-compact directions. The unbroken Lorentz symmetry of this configura­
tionis SO(l, 1) x SO(4). SO(1, 1) corresponds to boosts along the string, and SO(4) 
is the group of rotations in the four non-compact directions transverse to both branes. 
This configuration also preserves eight supersymmetries, actually N = (4,4) super­
symmetry once we decompose them into left and right moving spinors of SO(1, 1)1. 
It is possible to find the supergravity solution for this configuration (see [445J for a 
review) and then take the near horizon limit as we did in section 3.1 [5], and we get 
the metric (in string frame) 

ds 2 U 2 r;;-;::;-d u2 r;;-;::;-
0:' = g6~(-dt2+dxD+g6VQ1Q5 U2 +g6VQ1Q5dn~. (5.14) 

This is AdS3 x S3 with radius R2 = R~dS = R~3 = g6v'QIQ51~, where g6 is the 
six dimensional string coupling. The full ten dimensional geometry also includes an 
M4 factor. In this case the volume of the M4 factor in the near-horizon geometry 
is proportional to Q1/Q5, and it is independent of the volume of the original M4 

. over which we wrapped the branes. In the full D1-D5 geometry, which includes the 
asymptotically flat region, the volume of M4 varies, and it is equal to the above fixed 
value in the near horizon region [446, 447, 448, 449J. 

5.3.1 The Conformal Field Theory 

The dual conformal field theory is the low energy field theory living on the D1-D5 
system [450J. One of the properties of this conformal field theory that we will need 

.. , 

lIf M4 = K3 we need that the sign of the Dl brane charge and the sign of the D5 brane charge 
are the same, otherwise we break supersymmetry (except for the single configuration with charges 
(Qs, Qt) = (±l, :t=l)). 
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is its central charge, so that we will be able to compare it with supergravity. We can 
calculate this central charge in a way that is not too dependent on the precise structure 
of the conformal field theory. The conformal field theory that we are interested in is 
the IR fixed point of the field theory living on DI-D5 branes. The field theory living 
on DI-D5 branes, before we go to the IR fixed point, is some 1 + 1 dimensional field 
theory with N = (4,4) supersymmetry. This amount of supersymmetry is equivalent to 
N = 2 in four dimensions, so we can classify the multiplets in a similar fashion. There 
is a vector multiplet and a hypermultiplet. In two dimensions both multiplets have the 
same propagating degrees of freedom, four scalars and four fermions, but they have 
different properties under the SU(2)L x SU(2)R global R-symmetry. Under this group 
the scalars in the hypermultiplets are in the trivial representation, while the scalars 
in the vector multiplet are in the (2,2). On the fermions these global symmetries 
act chi rally. The left moving vector multiplet fermions are in the (1,2), and the left 
moving hypermultiplet fermions are in the (2,1). The right moving fermions have 
similar properties with SU(2)L B SU(2)R. The theory can have a Coulomb branch 
where the scalars in the vector multiplets have expectation values, and a Higgs branch 
where the scalars in the hypermultiplets have expectation values. 

From the spacetime origin of the supercharges it is clear that the SU(2)L x SU(2)R 
global R-symmetry is the same as the SO( 4) symmetry of spatial rotations in the 4-
plane orthogonal to the DI-D5 system [451, 452, 453]. The vector multiplets describe 
motion of the branes in the transverse directions, this is consistent with their SO( 4) 
transformation properties. The vector multiplet "expectation values" should be zero 
if we want the branes to be on top of each other. We have put quotation marks since 

. expectation values do not exist in a 1 + 1 dimensional field theory. It is possible to 
show that if Ql and Q5 are coprime then, by turning on some of the M4 moduli (more 
precisely some NS B-fields), one can remove the Coulomb branch altogether, forcing 
the branes to be at the same point in the transverse directions [454, 341]. 

Since the fermions transform chi rally under SU(2)L, this theory has a chiral anomaly. 
The chiral anomaly for SU(2)L is proportional to the number of left moving fermions 
minus the number of right moving fermions that transform under this symmetry. The. 
't Hooft anomaly matching conditions imply that this anomaly should be the same at 
high and low energies [455]. At high energies (high compared to the IR fixed point) 
the anomaly is ka = NH - Nv , the difference between the number of vector multiplets 
and hypermultiplets. Let us now calculate this, starting with the T4 case. On a 
DI-D5 brane worldvolume there are massless excitations coming from (1,1) strings, 
(5,5) strings and (1,5) (and (5,1)) strings. The (1,1) or (5,5) strings come from a 
vector multiplet of an N = (8,8) theory, which gives rise to both a vector multiplet 
and a hypermultiplet of N = (4,4) supersymmetry, so they do not contribute to the 
anomaly. The massless modes of the (1,5) strings come only in hypermultiplets, and 
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they contribute to the anomaly with ka = QIQ5' For the K3 case the analysis is similar. 
The D5 branes are now wrapped on K3, so the (5,5) strings give rise only to a vector 
multiplet. The difference from the T4 case comes from the fact that in the T4 case 
the (5,5) hypermultiplet came from Wilson lines on the torus, and on K3 we do not 
have one-cycles so we do not have Wilson lines .. On the fivebrane worldvolume there 
is (when it is wrapped on K3) an induced one-brane charge equal to Qind = -Q5' The 
total D1 brane charge is equal to the sum of the charges carried by explicit D1 branes 
and this negative induced charge; QI = Q~nd + QPI [456]. Therefore, the number of 
D1 branes is really Qpl = QI + Q5, and the number of (1,5) strings is QpIQ5' So, 
we conclude that the anomaly is ka = QPlQ5 - Q~ = QIQ5, which in the end is the 
same result as in the T4 case. Note that in order to calculate this anomaly we only 
need to know the massless fields, since all massive fields live in larger representations 
which are roughly like a vector multiplet plus a hypermultiplet, and therefore they do 
not contribute to the anomaly. 

When we are on the Higgs branch all the vectors become massive except for the center .; 
of mass multiplet, which contains fields describing the overall motion of all the branes 
in the four transverse directions. This is just a free multiplet, containing four scalar 
fields. On the Higgs branch, at the IR fixed point, the 5U(2)L symmetry becomes a 
current algebra with an anomaly kelt. The total anomaly~hould be the same, so that 
ka = kelt -1. The last term comes from the center of mass U( 1) vector multiplet (which 
is not included in kelt). So, we conclude that kelt = QIQ5 + 1. Since the U(I) vector 
multiplet is decoupled, we drop it in the rest of the discussion and we talk only about 
the conformal field theory of the hypermultiplets. The N = (4,4) superconformal 
symmetry relates the anomaly in the 5U(2) current algebra to the central charge, 
c = 6kelt = 6(QIQ5 + 1). Using the value for the Ad53 radius R = (g~QIQ5)l/4ls and 
the three dimensional Newton constant G~) = g~l;/4R3, we can now check that (5.4) 
is satisfied to leading order for large k. This also ensures, as we saw above, that the 
black hole entropy comes out right. 

Now we will try to describe this conformal field theory a bit more explicitly. We start 
with Q5 D5 branes, and we view the Dl branes as instantons of the low-energy SYM 
theory on the five-branes [159]. These instantons live on M4 and are translationally 
invariant (actually also 50(1,1) invariant) along time and the X5 direction, where X5 

is the non compact direction along the D5 branes. See figure 5.2(a). This instanton 
configuration, with instanton number QI, has moduli, which are the parameters that 
parameterize a continuous family of solutions (classical instanton configurations). All 
of these solutions have the same energy. Small fluctuations of this configuration (at 
low energies) are described by fluctuations of the instanton moduli. _ These moduli 
can fluctuate in time as well as in the X5 direction. See figure 5.2(b). So, the low 
energy dynamics is given by a 1 + 1 dimensional sigma model whose target space is the 
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Figure 5.2: (a) The D1 branes become instantons on the D5 brane gauge theory. 
(b) The instanton moduli can oscillate in time and along X5. 

instanton moduli space. Let us be slightly more explicit, and choose four coordinates 
X6, .•. , X9 parameterizing M4. The instantons are described in the UV SYM theory as 
SU( Q5) gauge fields A6 ,7,8,9(e

a
j x6, ... , X9) with field strengths which satisfy F = *4F, 

where *4 is the epsilon symbol in M4 and ea are the moduli parameterizing the family of 
instantons. The dimension of the instanton moduli space for Q1 instantons in SU(Q5) 
is 4k, where 

k = Q1Q5 + 1 for [{3. (5.15) 

The leading behaviour for large Q is the same. In the T4 case we have four additional 
moduli coming from the Wilson lines of the U(1) factor of U(Q5) [457]. It has been 
argued in [453, 458] that the instanton moduli space is a deformation of the symmetric 
product of k copies of M\ Sym(M4)k = (M4)k / Sk. The deformation involves blowing 
up the fixed points of the orbifold, as well as modifying the B-fields that live at the 
orbifold point. We will discuss this in more detail later. The parameter that blows 
up the singularity can be identified with one of the supergravity moduli of this solu­
tion. For some particular value of these moduli (which are not to be confused with 
the moduli of the instanton configuration) the CFT will be precisely the symmetric 
product, but at that point the gravity approximation will not be valid, since we will 
see that the supergravity description predicts fewer states at low conformal weights 
than the symmetric pr6ductCFT. When we deform the symmetric product, some of 
the states can get large corrections and have high energies (i.e. they correspond to 
operators having high conformal weight). Other studies of this D1-D5 system include 
[459,460,461] 
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5.3.2 Black Holes Revisited 

We remarked above that the BTZ black hole entropy can be calculated' just from the 
value of the central charge, and therefore the gravity result agrees with the conformal 
field theory result. Note that the calculation of the central charge that we did above 
in the CFT is valid for any. value of the coupling (i.e. the moduli), so the field theory 
calculation of the central charge and the entropy is valid also in the black hole regime 
(where the gravity approximation is valid). This should be contrasted to the Ad35 x 3 5 

case, where the field theory calculation of the entropy was only done at weak coupling 
(in two dimensions the entropy is determined by the central charge and cannot change 
as we vary moduli). In [462] corrections to the central charge in the gravity picture 
were analyzed. 

We noticed above that the gravity description predicted a sharp phase transition 
when the temperature was T = 1/(27r), and we remarked that the field theory had to 
have some special properties to make this happen. We will now explain qualitatively 
this phase transition. Our discussion will be qualitative because we will work at the 
orbifold point, and this is not correct if we are in the supergravity regime. We will 
see that the symmetric product has a feature that makes this sharp phase transition 
possible. 

The orbifold theory can be interpreted in terms of a gas of strings [463,464]. These 
are strings that wind along X5 and move on M4. The total winding number is k. The' 
strings can be singly wound or multiply wound. In the R-R sector it does not cost any 
energy to multiply wind the strings. If we have NS-NS boundary conditions, which 
are the appropriate ones to describe Ad33 , it will cost some energy to multiply wind 
the strings. The energy cost in the orbifold CFT is the same as twice the conformal 
weight of the corresponding twist operator, which is h = h = w/4 + O(1/w) for a 
configuration with winding number w. If the strings are singly wound and we have a 
temperature of order one (or 1 /27r), we will not have many oscillation modes excited 
on these strings, and the entropy will be small. Note that the fact that we have 
many singly wound strings does not help, since we are supposed to symmetrize over 
all strings, so most of the strings will be in similar states and they will not contribute 
much to the entropy. So, the free energy of such a state is basically F rv O. On 
the other hand, if we multiply wind all the strings, we raise the energy of the system 
but we also increase the entropy [465], since now the energy gap of the system will 
be much lower (the multiply wound strings behave effectively like a field theory on 
a circle with a radius which is w times bigger). If we multiply wind w strings, with 
w » 1, we get an energy E rv w /2 + 27r2wT2, where the last term comes from thermal 
excitations along the string. The entropy is also larger, 3 = 47r2wT. So, the free 
energy is F = E - T 3 = w /2 - 27r2wT2. Comparing this to the free energy of the state 
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with all strings singly wound, we see that the latter wins when T < 1/(21T'), and the 
multiply wound state wins when T > 1/(21T'). This explains the presence of the sharp 
phase transition at T = 1/(21T') when we are at the orbifold point. 

Note that the mass of the black hole at the transition point is M = Mmin + k/2, 
which is (for large k) much bigger than the minimum mass for a BTZ black hole, like 
the situation in other AdSd>3. We could have black holes ·which are smaller than this, 
but they cannot be in thermal equilibrium with an external bath. Of course they could 
be in equilibrium inside AdS3 if we do not couple AdS3 to an external bath to keep the 
temperature finite. In this case we are considering the microcanonical ensemble, and 
there are more black hole solutions that we could be considering [277, 282, 285J. 

(b) 

Figure 5.3: Some configurations with winding number four. (a) Two singly wound 
strings and one doubly wound string. (b) A maximally multiply wound configuration. 

If we were considering the conformal field theory on a circle with RR boundary 
conditions, the corresponding supergravity background would be the M = Mmin BTZ 
black hole. This follows from the fact that we should have preserved supersymmetries 
that commute with the Hamiltonian (in AdS3 the preserved supersymmetries do not 
commute with the Hamiltonian generating evolution in global time). In order to have 
these supersymmetries we need to have RR boundary conditions on the circle. Notice 
that the RR vacuum is not an excited state on the NS-NS vacuum, it is just in a 
different sector of the conformal field theory, even though the M = Mmin BTZ black 
hole appears in both sectors. 

In the case with RR boundary conditions a black hole forms as soon as we raise 
the temperature (beyond T rv 1/ k). This seems at first sight paradoxical, since the 
temperature could be much smaller than one, which would be the natural energy gap 
for a generic conformal field theory on a circle. The reason that the energy gap is very 
small for this conformal field theory is due to the presence of "long", multiply wound 
strings. In the RR sector all multiply wound strings have the same energy. But, as we 
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saw before, multiply wound strings lead to higher entropy states so they are preferred. 
In fact, one can estimate the energy gap of the system by saying that it will be of 
the order of the minimum energy excitation that can exist on a string multiply wound 
k-times, which is of the order of 11k. This estimate of the energy gap agrees with a 
semiclassical estimate as follows. We can trust the thermodynamic approximation for 
black holes as long as the specific heat is large enough [466]. For any system we need 
a large specific heat, Ce = ~~, in order to trust the thermodynamic approximation. In 
this case E rv kT2, so the condition Ce » 1 boils down to E » 1 I k . So, this estimate 
of the energy gap agrees with the conformal field theory estimate. Note that in the RR 
supergravity vacuum (the M = Mminblack hole) we could seemingly have arbitrarily 
low energy excitations as waves propagating on this space. The boundary condition on 
these waves at the singularity should be such that one gets the above gap, but in the 
gravity approximation k = 00 and this gap is not seen. Note also that the M = Mmin 
black hole does not correspond to a single state (as opposed to the Ad53 vacuum), but 
to a large number of states, of the order of e27rV2k for T4 case and e27rv'4k for K32

• 

There are other black holes that preserve some supersymmetries, which are extremal 
BTZ black holes with M - Mmin = J [441]. J is the angular momentum in Ad53 , 

identified with the momentum along the 51 in the CFT. Of course, these black holes 
will preserve supersymmetry only if the boundary conditions on 51 are periodic, i.e. 
only if we are considering the RR sector of the theory. In the RR sector it becomes more 
natural to measure energies so that the RR vacuum has zero energy. The extremal 
black holes correspond to states in the CFT in the RR sector with no left moving 
energy, Lo = 0, and some right moving energy, Lo = J > o. The entropy of these 
states is 

5 = 27rVkJ. (5.16) 

. This is the entropy as long as kLo is large, even for Lo = 1. The reason for this is again 
the presence of multiply wound strings, that ensure that the asymptotic formula for 
the number of states in a conformal field theory is reached at very low values of Lo. In 
this argument it is important that we are in the RR sector, and since we are counting 
BPS states we can deform the theory until we are at the symmetric product point, and 
then the argument we gave in terms of multiply wound strings is rigorous [13, 457]. 

It is possible to consider also black holes which carry angular momentum on 53. 
They are characterized by the eigenvalues JL, JR, of Ji and J~ of 5U(2)L x 5U(2)R. 
These rotating black holes can be found by taking the near horizon limit of rotating 
black strings in six dimensions [467, 468]. Their metric is locally Ad53 X 53 but with 
some discrete identifications [469]. Cosmic censorship implies that their mass has a 

2 An easy way to calculate this number of BPS states is to consider this configur~tion as a system 
of DI-D5 branes on Sl x M4 and then do a U-duality transformation, transforming this into a system 
of fundamental string momentum and winding. 
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lower bound 

E == M - Mmin 2: Jl!k + Jk/k. (5.17) 

We can also calculate the entropy for a general configuration carrying angular momenta 
J L,R on 53, linear momentum J on 51, and energy E = M - Mmin : 

5 = 2rrVk(E + J)/2 - Jl + 2rrVk(E - J)/2 - Jit- (5.18) 

We can understand this formula in the following way [470, 451]. If we bosonize the 
U(1) currents, JL '" ~{)¢>, and similarly for JR , we can construct the operator eihrf> 

with conformal weight Jl/k. This explains why the minimum mass is (5.17). This also 
explains (5.18), since only a portion of the energy equal to Lo-Jl!k = (E+J)/2-Jl!k 
can be distributed freely among the oscillators3. 

5.3.3 Matching of Chiral-Chiral Primaries 

The eFT we are discussing here, and also its string theory dual, have moduli (param­
eters of the field theory). At some point in the moduli space the symmetric product 
description is valid, and at that point the gravity description is strongly coupled and 
cannot be trusted. As we move away from that point we can get to regions in moduli 
space where we can trust the gravity description. The energies of most states will 
change when we change the moduli. There are, however, states that are protected, 
whose energies are not changed. These are chiral primary states [472]. The supercon­
formal algebra contains terms of the form4 

{Q++ __ } (3 'c (2 1) 
r ,Qs =2Lr+s+2r-s)Jr+s+3"dr+s r -4" 

{ +_ _+} 3 C 2 1 ) Qr ,Qs = 2Lr+s + 2(r - s)Jr+s + 3"dr+s(r - 4' ' 
(5.19) 

where Q;± = (Q~})t, and r, s E Z +!. The generators that belong to the global 
supergroup (which leaves the vacuum and Ad53 invariant) have r, s = ±1/2. The first 
superscript indicates the eigenvalues under the global J5 generator of SU(2), and the 
second superscript corresponds to a global 5U(2) exterior automorphism of the algebra 
which is not associated to a symmetry in the theory. If we take a state Ih) which has 
La = J5, then we see from (5.19) that Q~~/2Ih) has zero norm, so in a unitary field 
theory it should be zero. Thus, these states are annihilated by Q~~/2. Moreover, if 
a state is annihil~ted ~y Q~t2 then La = Jg. These states are called right chiral 
primaries, and if La = J5 it is a left chiral primary. The possible values of J5 for chiral 

30ther black holes were studied in [471]. 
40ur normalization for Jg follows the standard SU(2) practice and differs by a factor of two from 

the U(l) current in [472, 276, 444, 473]. 
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primaries are bounded by Jg :::; c/6 = k. This can be seen by computing the norm of 
Q~~/2Ih). Note that k is the level of the 5U,(2) current algebra. The values of Jg for 
generic states are not bounded. The spins of 5U(2) 'current algebra primary fields are 
bounded by Jg :::; k/2, which is not the same as the bound on chiral primaries. 

Let us now discuss the structure of the supermultiplets under the 5U(1, 112) subgroup 
of the N = 4 algebra [474]. This is the subgroup generated by the supercharges with 
r, S = ±1/2 in (5.19), plus the global 5U(2) generators J8 and the 5£(2, 1R) subgroup 
of the Virasoro algebra. The structure of these multi plets is the following. By' acting 
with Q~/~ on a state we lower its energy, which is the La eigenvalue. Energies are all 
positive in a unitary conformal field theory, since La eigenvalues are related to scaling 
dimensions of fields which should be positive. So, we conclude that at some point Q~/~ 
will annihilate the state. Such a state is also annihilated by L1 (5.19). We call such 
a state a primary, or highest weight, state. Then, we can generate all other states by 
acting with Q:~/2. See figure 5.4. This will give in general a set of 1 + 4 + 6 + 4 + 1 
states, where we organized the states according to their level. On each of these states 
we can then act with arbitrary powers of L_1 • However, we could also have a short 
representation where some ofthe Q-1/2 operators annihilate the state. This will happen 
when La = ±Jg, i.e. only when we have a chiral primary (or an antichiral primary). 
Since by 5U(2) symmetry each chiral primary comes with an antichiral primary, we 
concentrate on chiral primaries. These short multiplets are of the form 

states Jg La 
10) J J 

Q::::~/210) j - 1/2 j + 1/2 
Q::::t/2Q::::~/210) j - 1 j + 1. 

(5.20) 

The multiplet includes four states (which are 5L(2, 1R) primaries), except in the case 
that j = 1/2 when the last state is missing. We get a similar structure if we consider 
the right-moving part of the supergroup. 

We will first consider states that are left and -right moving chiral primaries, with 
La = Jg and La = Jg. From now on we drop the indices on Jg, Jg, and denote the 
chiral primaries by (j,]). By acting with Q::::~/2 and Q::::t2 we generate the whole 
supermultiplet. We will calculate the spectrum of chiral-chiral primaries both in string 
theory (in the gravity approximation) and in the conformal field theory at the orbifold 
point. Since these states lie in short representations we might expect that they remain 
in short representations also after we deform the theory away from the orbifold point. 
Actually this argument is not enough, since in principle short multiplets could combine 
and become long multiplets. In the K3 case we can give a better argument. We will 
see that all chiral primaries that appear are bosonic in nature, while we "See from figure 
5.4 that we need some bosonic and some fermionic chiral primaries to make a long 
multiplet. Therefore, all chiral primaries must remain for any value of the moduli. 
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Figure 5.4: Structure of SU(l, 1\2) multiplets. We show the spectrum of possible j's 
and conformal weights. We show only the SL(2, IR) primaries that appear in each 
multiplet and their degeneracies. The minus sign denotes opposite statistics. The full 
square is a long multiplet. The encircled states form a short multiplet. Four short 
multiplets can combine into a long multiplet. 

Let us start with the conformal field theory. Since these states are protected by 
supersymmetry we can go to the orbifold point Sym(M4)k. The chiral primaries in 
this case can be understood as follows. In a theory with N = (4,4) supersymmetry we 
can do calculations in the RR sector and then translate them into results about the NS­
NS sector. This process is called "spectral flow", and It amounts to an automorphism 
of the N = 4 algebra. Under spectral flow, the chiral primaries of the NS-NS sector 
(that we are interested in) are in one to one correspondence with the ground states 
of the RR sector. It is easier to compute the properties of the RR ground states of 
the theory. Orbifold conformal field theories, like Sym(M4)k, can be thought of as 
describing a gas of strings winding on a circle, the circle where the eFT is defined, 
with total winding number k and moving on M4. The ground state energies' of a 
singly wound string and a multiply wound string are the same if we are in the RR 
sector. Then, we can calculate a partition function over the RR ground states. It is 
more convenient to relax the constraint on the total winding number by introducing 
a chemical potential for the winding number, and then we can recover the result with 
fixed winding number by extracting the appropriate term in the partition function as in 
[463]. Since our conformal field theory has fixed k we will be implicitly assuming that 
we are extracting the appropriate term from the partition function. The RR ground 
states for the strings moving on M4 are the same as the ground states -of a quantum 
mechanical supersymmetric sigma model on M4. It was shown by Witten [475] that 
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these are in one-to-one correspondence with the harmonic forms on M4. Let us denote 
by hrs the number of harmonic forms of holomorphic degree rand antiholomorphic 
degree s. States with degree r + s odd are fermionic, and states 'with r + s even are 
bosonic. In the case of K3 hO~ = h22 = h 20 = h02 = 1 and hl1 = 20. In the case of 
T4 hO~ = h22 = h 20 = h02 = 1, hOI = hlO = h12 = h21 = 2, and hl1 = 4. A form with 
degrees (r, s) gives rise to a state with angular momenta (j,]) = ((; -1)/2, (s -1)/2). 
The partition function in the RR sector becomes [463] 

'" kT [( 1)2J+2J J -J] 1 (521) ~ P rSym(M4)k - Y Y = n n (1 _ n y (r-I)/2 y-(s-I)/2)(-Ij'+shrs ' . 
k>O n~l ~s P 

where the trace is over the ground states of the RR sector. Spectral flow boils down 
to the'replacement p ~ pyl/2yl/2. Thus, we get the NS-NS partition function, giving 
a prediction for the chiral primaries, 

'" kT [( 1 )2J+2J J -J] _ 1 L: p rSym(M4)k - Y Y - nn>O nr,s(1 - pn+l y (n+r)/2 y (n+s)/2)(-i)T+shrs ' 

- (5.22) 
where here the trace is over the chiral-chiral primaries in the NS-NS sector. 

Now, we should compare this with supergravity. In supergravity we start by c~l­
culating the spectrum of single particle chiral-chiral primaries. We then calculate the 
full spectrum by considering multiparticle states. Each single particle state contributes 
with a factor (1 - yjyJtd(j,J) to the partition function, were d(j,]) is the total number 
of single particle states with these spins. The supergravity spectrum was calculated in 
[276, 476, 477,444]. The number of single particle st~l.tes is given by 

(5.23) 
j,j n,r,s~O 

We have excluded the identity, which is not represented by any state in supergravity. 
So, the gravity partition function is given by 

T [( 1 )2J+2J j -J] 1 (5 24) 
rSugra - y y c-c primaries = n n' (1 _ (n+r)/2-(n+s)/2)(-I)r+s hrs ' . 

n~O r,s Y Y 

where n' means that we are not including the term with n = r = s = 0. 

Let us discuss some the particles appearing in (5.23) and (5.24) more explic~tly. Some 
of them are special because they carry only left moving quantum numbers or only right 
moving quantum numbers. For example, we have the (0,1) and,(1,0) states that are 
related to the 5U(2)L and 5U(2)R gauge fields on Ad53 . These 5U(2) symmetries 
come from the S O( 4) isometries of the 3-sphere. These gauge fields -have a Chern­
Simons action [478, 136] and they give rise to 5U(2) current algebras on the boundary 
[23, 152]. The chiral primary in the current algebra is the operator J~l' which has 
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the quantum numbers mentioned above. When we apply Q=;/2Q=i/2 to this state 
we get the left moving stress tensor. Again, this should correspond to part of the 
physical modes of gravity on Ad53 • Pure gravity iil three dimensions is a theory with 
no local degrees of freedom. In fact, it is equivalent to an 5L(2,1R) x 5L(2,1R) Chern­
Simons theory [478,479,480,481]. This gives rise to some physical degrees of freedom 
living at the boundary. It was argued that we get a Liouville theory at the boundary 
[482, 483, 484, 485, 486], which includes a stress tensor operator. In the T4 case we 
also have some other special particles which correspond to fermion zero modes (1/2,0) 
and (0,1/2). These fermion zero modes are the supersymmetric partners of the U(l) 
currents associated to isometries of T4. The six dimensional theory corresponding to 
type lIB string theory on T4 has 16 vector fields transforming in the spinor of 50(5,5). 
From the symmetric product we get only 8 currents (4L + 4R). The other eight are 
presumably related to an extra copy of T4 appearing in the CFT due to the Wilson 
lines of the U(l) in U(Q5) [457,487]. 

Besides these purely left-moving or purely right-moving modes, which are not so easy 
to see in supergravity, all other states arise as local 'bulk excitations of supergravity 
fields on Ad53 and are clearly present. Higher values of j typically correspond to 
higher Kaluza-Klein modes of lower j fields. More precisely, we have n (1/2,1/2) 
states where n = h11 + 1 [276, 476, 444]. By applying Q's, each of these states gives 
rise to four 5U(2)-neutral scalar fields, which have conformal weights h = Ii = l. 
Therefore, they correspond to massless fields in spacetime by (3.14). These are the 4n 
moduli of the supergravity compactification, which are identified with the moduli of 
the conformal field theory. In the conformal field theory 4h11 of them correspond to 
deformations of each copy of M4 in the symmetric product, while the extra four are 
associated to a blowup mode, the blowup mode of the Z2 singularity that arises when 
we exchange two copies of M4. Next, we have n + 1 fields with quantum numbers 
(1,1), n of these are higher order Kaluza Klein modes of the n fields we had before, 
and the new one corresponds to deformations of the 53. Each of these states gives rise 
to 5U(2)-neutral fields with positive mass, since we have to apply Q's twice and we get 
h = Ii = 2. These are the n fixed scalars of the supergravity background plus one more 
field related to changing the size of the 53. The fields with j,),s' above these values 
are just higher Kaluza Klein modes of the fields we have alre~dy mentioned explicitly. 
See [276, 476, 444] for a more systematic treatment and derivation of these results. 

Now, we want, to compare the supergravity result with the gauge theory results. 
In (5.22) there is an "exclusion principle" since the total power of p has to be pk, 

thus limiting the total number of particles. In supergravity (5.24) we do not have any 
indication of this exclusion principle. Even if we did not know about the conformal 
field theory, from the fact that there is an N = 4 superconformal spacetime symmetry 
we get a bound on the angular momentum of thechira~ primaries j ::; k. However, this 
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bound is less restrictive than implied by (5.22). There are multi-particle states with 
j < k that are excluded from (5.22). The bounds from (5.22) appear for very large 
angular momenta and, therefore, very large energies, where we would not necessarily 
trust the gravity approximation. In fact, the gravity result and the conformal field 
theory result match precisely, as long as the conformal weight or spin of the chiral 
primaries is j,] :::; k/2. One can show that the gravity description exactly matches 
the k -+ 00 limit of (5.22) [444]. This limit is extracted from (5.22) by noticing that 
there is a factor of (1- p) in the denominator, which is related to the identity operator. 
So, we can extract the k -+ 00 limit by multiplying (5.22) by (1 - p) and setting 
p -+ 1. In principle, we could get precise agreement between the conformal field 
theory calculation and the supergravity calculation if we incorporate the exclusion 
principle by assigning a "degree" to each supergravity field, as explained in [473], 
and then considering only multiparticle states with degree smaller than k. One can 
further wonder whether there is something special that happens at j = k/2, when the 
exclusion principle starts making a difference. Since we are considering states with 
high ~onformal weight and angular momentum it is natural to wonder whether there 
are any black hole states that could appear. There are black holes which carry angular 
momentum on 53. These black holes are characterized by the two angular momenta 
JL, JR, of 5U(2)L x 5U(2)R. The minimum black hole mass for given angular momenta 
was given in (5.17), Mmin(JL, JR) = k/2 + Jl/k + J~/k, where we used c = 6k and 
(5.4). We see that these masses are always bigger than the mass of the chiral primary 
states with angular momenta (JL, JR), except when JL = JR = k/2. So we see that 
something special is happening at j = k/2, since at this point a black hole appears 
as a chiral primary state. Connections between this exclusion principle and quantum 
groups and non-commutative geometry were studied in [488, 489]. 

5.3.4 Calculation of the Elliptic Genus in Supergravity 

We could now consider states which are left moving chiral primaries and anything on 
the right moving side. These states are also in small representations, and one might 
be tempted to compute the spectrum of chiral primaries at the orbifold point and then 
try to match it to supergravity. However, this is not the correct thing to do, and in 
fact the spectrum does not match [490]. It is not correct because some chiral primary 
states could pair up and become very massive non-chiral primaries. In the case of 
chiral-anything states, a useful tool to count the number of states, which gives a result 
that is independent of the deformations of the theory, is the "elliptic genus" , which is 
the partition function 

(5.25) 
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This receives contributions only from the left moving ground states, Lo = o. These 
states map into (chiral, anything} under spectral flow, i.e. states that are chiral pri­
maries on the left moving side but are unrestricted on the right moving side. 

The number of states contributing to the elliptic genus goes like e21r-.;:;;k for large 
powers qn. This raised some doubts that (5.25) would agree with·supergravity. The 
elliptic genus diverges when we take the limit k -+ 00. The origin of this divergence is 
the contribution of the (2,0) form, which is a chiral primary on the left but it carries 
zero conformal weight on the right. So, we get a contribution of order k from the fact 
that this state could be occupied k times without changing the powers of q or y. The 
function that has a smooth limit in the k -+ 00 limit is then zfs /k. In the K3 case 
this function is 

lim Zfs = TIm>l(l - qm/2y l/2)2(1- qm/2y-l/2)2(1 - qm/2)20 

k-+oo k TIm~l (1 - qm/2ym/2)24( 1 - qm/2y-m/2)24 
(5.26) 

We can now compare this expression to the supergravity result. In the supergravity 
result we explicitly exclude the contribution of the (2,0) form, since it is directly related 
to the factor of k that we extracted, but we keep the contribution of the (0,2) form and 
the rest of the fields. The supergravity result then agrees precisely with (5.26) [473]. 
Both in the supergravity calculation and in the conformal field theory calculation at 
the orbifold point there are many fields of the form (chiral,anything) , but most of 
them cancel out to give (5.26). For example, we can see that the only supergravity 
single particle states that contribute for large powers of y>1/2 are the (chiral, chiral) . 
and (chiral, antichiral) states. One can further incorporate the exclusion principle in 
supergravity by assigning degrees to the various fields, and then one' finds that the 
elliptic genus agrees up to powers of cl with h ::; (k + 1)/4 [473]. Here again this is 
the point where a black hole starts contributing to the elliptic genus. It is an extremal 
rotating black hole with angular momentum JL = k/2 and JR = 0, which has Lo = k/4 
and Lo = k/2. 

5.4 Other AdS3 Compactifications 

We start by discussing the compactifications discussed in the last section more broadly, 
and then we will discuss other AdS3 compactifications. In the previous section we 
started out with type lIB string theory compactified on M4 to six dimensions. The 
theory has many charges carried by string like objects, which come from branes wrap­
ping on various cycles of M4. These charges transform as vectors under the duality 
group of the theory SO(5, n), where n = 21,5 for the K3 and T4 cases respectively. 
These 5 + n strings correspond to the fundamental and D strings, the NS and D five­
branes wrapped on M4, and to D3 branes wrapped on the n + 1 two-cycles of M4. A 
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general charge configuration is given by a vector qI transforming under SO(5, n). The 
radius of curvature of the gravity solution is proportional to q2, R4 "-J q2, where we use 
the SO(5, n) metric. In the K3 case q2 > 0 for supersymmetric configurations. The six 
dimensional space-time theory has 5n massless scalar fields, which parameterize the 
coset manifold SO(5,n)/SO(5) x SO(n) [491]. When we choose a particular charge 
vector, with q2 > 0, we break the duality group to SO(4,n), and out of the original5n 
massless 'scalars n becomes massive and have values determined by the charges (and 
the other scalars) [492]. The remaining 4n scalars are massless and represent moduli 
of the supergravity compactification and, therefore, moduli of the dual conformal field 
theory. Note that the conformal field theory involves the instanton moduli space, but 
here the word "moduli" refers to the parameters of the CFT, such as the shape of T\ 
etc. 

H we start moving in this moduli space we sometimes find that the gravity solution 
is best described by doing duality transformations [454, 341]. One interesting region 
in moduli space is when the system is best described in terms of a system of NS 
fivebranes and fundamental strings. This is the S-dual version of the D1-D5 system 
that we were considering above. In this NS background the radius of the S3 and of AdS3 , 
is R2 = Qsa', and it is independent of Q1. Actually, Q1 only enters through the six 
dimensional string coupling, which in this case is a fixed scalar g~ = QS/Q1' The volume 
of M4 is a free scalar in this case. The advantage of this background is that one can solve 
string theory on it to all orders in a', since it is a WZW model, actually an S L(2, IR) x 
SU(2) WZW model. String propagation in SL(2, IR) WZW models were studied in 
[493,494,495,496,497,498,499,500,501,502,503, 504, 505,506, 507, 508, 509,510, 
511, 512, 513]. Thus, in this case we can also considet states corresponding to massive 
string modes, etc. We can also define the spacetime Virasoro generators in the full 
string theory, and check that they act on string states as they should [506, 507, 508]s. In 
the string theory description the Virasoro symmetry appears directly in the formalism 
as a spacetime symmetry. One can also study D-branes in these AdS3 backgrounds 
[516]. Conditions for spacetime supersymmetry for string theory on SL(2, IR) WZW 
backgrounds were studied in [517,518]. In the D1-D5 configuration it is much harder 
to solve string theory, since RR backgrounds are involved. Classical actions for strings 
on these backgrounds were written in [519, 520, 521]. However, a formulation of string 
theory on these backgrounds was proposed in [522] (see also [523, 518, 524]). For 
some values of the moduli the CFT is singular. What this means is that we will have 
a continuum of states in 'the cylinder picture. In the picture with NS charges this 
happens, for example, when all RR B-fields on M4 are zero. This continuum of states 
comes from fundamental strings stretching close to the boundary of AdS3. These states 

SConfigurations with NS fluxes that lead to AdS2d+1 spaces where studied in [514]. It has also 
been suggested [515] that (2,1) strings can describe AdS3 spaces. 
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have finite energy, even though they are long, due to the interaction with the constant 
three form field strength, H = dBNS, on Ad53 [340,341]. 

A simple variation of the previous theme is to quotient (orbifold) the three-sphere by 
a ZN C 5U(2)£. This preserves N = (4,0) supersymmetry. This quotient changes the 

, central charge of the theory by a factor of N through (5.4) (since the volume of the 53 
is smaller by a factor of N). It is also possible to obtain this geometry by considering 
the near horizon behavior of a DI-D5 + KK monopole system, or equivalently a D1-D5 
system near an AN singularity. It is possible to analyze the field theory by using the 
methods in [342], and using the above anomaly argument one can calculate the right 
moving central charge. The left moving central charge should be calculated by a more 
detailed argument. When we have NS 5 branes and fundamental strings on an AN 
singularity, the worldsheet theory is solvable, and one can calculate the spectrum of 
massive string states, etc. [525]. One can also consider also both RR ana NS fluxes 
simultaneously [526]. Other papers analyzing aspects of these quotients or orbifolds 
are [527,527,528, 529, 530]. 

A related configuration arises if we consider M-theory on M6, where M6 = T 6, T2 x 
K3 or C}3, and we wrap M5 branes on a four-cycle in M6 with non-vanishing triple 
self-intersection number. Then, we get a string in five dimensions, and the near horizon 
geometry of the supergravity solution is Ad53 x 52 x MJ, where the subscript on MJ 
indicates that the vector moduli of M6 are fixed scalars. In this case we get again 
an N = (0,4) theory, and the SU(2)R symmetry is associated to rotations of the 
sphere. It is possible to calculate the central charge by counting the number of moduli 
of the brane configuration. Some of the moduli correspond to geometric deformations 
and some of them correspond to B-fields on the fivebrane worldvolume [531, 532]. A 
supergravity analysis of this compactification was done in [444, 533]. 

Another interesting case is string theory compactified on Ad53 x 53 X 53 X 51, which 
has a large N = 4 symmetry [534, 535, 536]. This algebra is sometimes called Ay. It 
includes an 5U(2h x 5U(2)kl x U(l) current algebra. The relative sizes of the levels 
of the two 5U(2) factors are related to the relative sizes of the radii of the spheres. 
This case seems to be conceptually simpler than the case with an M4 , since all the 
spacetime dimensions are associated to a symmetry of the system6 . In [534] a geometry 
like this was obtained from branes, except that the 51 was replaced by JR, and it is not 
clear which brane configuration gives the geometry with the 51. This makes it more 
difficult to guess the dual conformal field theory. In [535] a eFT dual was proposed 
for this system in the case that k = k'. One starts with a theory with a free boson and 
four free fermions, which has large N = 4 symmetry. Let us call this theory C FT3 . 

Then, we can consider the theory based on the symmetric product 5ym(C FT3)k. The 

6In the case of T4 one can show that the U(1)4 symmetries of the torus can be viewed as the 
k' ~ 00 limit of the large N = 4 algebra [537]. 
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space-time theory has two moduli, which are the radius of the circle and the value of 
the RR scalar. These translate into the radius of the compact U(1 )-boson in C FT3 
and a blow up mode of the orbifold. In [536] a dual CFT was proposed for the general 
case (k =I- k'). 

Another interesting example is the D1-D5 hrane system in Type I string theory 
[538, 539, 540]. The.N = (0,4) theory on the D1 brane worldvolume theory encodes 
in the Yukawa couplings the ADHM data for the construction of the moduli space of 
instantons [541, 542J. What distinguishes the Type I system from the Type IIB case is 
the SO(32) gauge group in the open string sector. When the D5 branes wrap a compact 
space M4 with M4 = T 4, K3, the near horizon geometry of the Type I supergravity 
solution is AdS3 x S3 X M4 [540J. As in the previous examples, one is lead to conjecture 
a duality between Type I string theory on AdS3 x S3 X M4 and the two-dimensional 
(0,4) SCFT in the IR limit of the D1 brane worldvolume theory. The supergroup of 
the Type I compactification is SU(1, 112) x SL(2,~) x SU(2), and the Kaluza-Klein 
spectrum in the supergravity can be analyzed as in [444J. The correspondence to the 
two-dimensional SCFT has not been much explored yet. 

The relation between AdS3 compactifications and matrix theory [24] was addressed' 
in [543]. 

5.5 Pure Gravity 

One might suspect that the simplest theory we could have on AdS3 is pure Einstein 
gravity. In higher dimensions this is not possible since pure gravity is not renormal­
izable, so the only known sensible quantum gravity theory is string theory, but in 
three dimensions gravity can be rewritten as a Chern-Simons theory [480, 481], and 
this theory is renormalizable. Gravity in three dimensions has no dynamical degrees 
of freedom. We have seen, nevertheless, that it has black hole solutions when we 
consider gravity with a negative cosmological constant [439] (5.8). So, it should at 
least describe the dynamics of these black holes, black hole collisions, etc. It has been 
argued that this Chern-Simons theory reduces to a Liouville theory at the boundary 
[482, 484, 485, 544], with the right central charge (5.4). Naively, using the Cardy for­
mula, this Liouville theory does not seem to give the same entropy as the black holes, 
but the Cardy formula does not hold in this case (Liouville theory does not satisfy the 
assumptions that go into the Cardy formula). Hopefully, these problems will be solved 
once it is understood how to properly quantize Liouville theory. Since we have the 
right central charge it seems that we should be able to calculate the BTZ black hole 
entropy [443], but Liouville theory is very peculiar and the entropy seems smaller [545]. 
Other papers studying AdS pure gravity or BTZ black holes in pure gravity include 
[546,284,547,548,549,550,551,552,553,554,555, 556, 557,558, 559, 560, 561,562, 
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563, 564, 565]. 

The Chern-Simons approach to gravity has also led to a proposal for a black hole 
entropy counting in this pure gravity theory. In that' approach the black hole entropy 
is supposed to come from degrees of freedom in the Chern-Simons theory that become 
dynamical when a horizon is present [566]. 

One interesting question in three dimensional gravity is whether we should consider 
the Chern-Simons theory on a fixed topology or whether we should sum over topologies. 
Naively it is the second possibility, however it could be that the sum over topologies is 
already included in the Chern-Simons path integral over a fixed topology. 

In any case, three dimensional pure gravity is part of the full string theory compact­
ifications, and it would be interesting to understand it better. 

The situation is similar if one studies pure AdS3 supergravities [136,483, 567]. 

5.6 Greybody Factors 

In this section we consider an extremal or near extremal black string in six dimensions. 
We take the direction along the string to be compact, with radius R5 » is. We need to 
take it to be compact since classically an infinite black string is unstable [568, 569]. Here 
we assume that the temperature is small enough so that the configuration is classically 
stable7. We take a configuration with Dl brane charge QI and D5 brane charge Q5. 
The general solution with these charges, and arbitrary energy and momentum along 
the string, has the following six dimensional Einstein metric8 [468, 570] : 

( 
2 . h2 ) -1/2 ( 2 . h2 ) -1/2 

d 2 _ 1 rosIn a rosIn I [-d 2 d 2 
SE - + 2 1 + 2 t + X5 r r 

r2 ( r
2
sinh

2a) 1 + r~ (cosh (Jdt + sinh (JdX5)2 + 1 + 0 r2 dS1r4 (5.27) 

( 
2 . h2 ) 1/2 ( 2 . h2 ) 1/2 [( 2) -I 1 + 1 + rosl;2 a 1 + rosl~ I 1 _ ~~ dr2 + r2dn~ 

We consider the case that the internal space M4 = T4. In general we will also have 
some scalars that are non-constant. These become fixed scalars in the near-horizon 
AdS3 limit. In this case there are five fixed scalars, which are three self-dual NS B­
fields, a combination of the RR scalar and the four-form on T 4

, and finally the volume 
of T4. If we take the first four to zero at infinity they stay zero throughout the solution. 

7 A general supergravity analysis of the various regimes in the DI-D5 system wasgiven in [286]. 
8Throughout this section we use the six dimensional Einstein metric, related to the six dimensional 

string metric by gE = e-<Ps g3tr , where <P6 is the six dimensional dilaton. 
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Then, the physical volume of T4 is 

( ) 
= Volume _ ( r5sinh2

,) -,1 ( r5sinh
2a) 

v r - ( )4 2 - v 1 + 2 1 + 2 ' 21f a' r r 
(5.28) 

where v = v( 00) is the value of the dimensionless volume at infinity. The solution 
(5.27) is parameterized by the four independent quantities a", 0", roo There are two 
extra parameters which enter through the charge quantization conditions, which are 
the radius of the X5 dimension R5 and the volume v of T4. The three charges are 

1 J ' y'vr5. Q1 = 2 y'v V * H = -2-- smh 2a, 
41f a' v a' 

1 J' r5 . Q5 = 2 r.: H = 2 r.: smh 2" 
41f V va' V va' 

(5.29) 

R2r2 
N = 2a'~ sinh 20", 

where * is the Hodge dual in the six dimensions xO
, •• , x 5 and H' is the RR 3-form field. 

The last charge N is related to the momentum around the 51 by P5 = N / R5 • All three 
charges are normalized to be integers . 

. The ADM energy of this solution is 

R r2 
M = 4 ( cosh 2a + cosh 2, + cosh 20") . 

2a' . 

The Bekenstein-Hawking entropy is 

AIO A6 21f R5r~ 
5 = ~ = ~ = ,2 cosh a cosh, cosh 0", 

4GN 4GN a 

(5.30) 

(5.31) 

where A is the area of the horizon and we have used the fact that in the six dimensional 
Einstein metric G~),E = a'21f2/2. The Hawking temperature is 

T= 1 
21fro cosh a cosh, cosh 0" 

(5.32) 

The near extremal black string corresponds to the case that R5 is large and the total 
mass is just above the rest energy of the branes. By "rest energy" of .the branes we 
mean the mass given by the BPS bound, 

(5.33) 

Note that this includes the mass due to the excitations carrying momentum along the 
circle. In the limit that a' -t 0 with E, R5 and N fixed we automatically go into the 
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regime described by the conformal field theory living on the D1-D5 system which is 
decoupled. Instead, we are going to take here a' small but nonzero, so that we keep 
some coupling of the CFT to the rest of the degrees of freedom. The geometry is Ad53 

(locally) close to the horizon, but far away it is just the flat six dimensional space 
1R1

,4 x 51. In this limit we can approximate the six dimensional geometry by 

where 

r~ = a'Q5Vv, r~ = a'QdVV. (5.35) 

Let us consider a minimally coupled scalar field, 4>, i.e. a scalar field that is not a 
fixed scalar. Let us send a quantum of that field to the black string, and calculate the 
absorption cross section for low energies. The low energy condition is 

(5.36) 

We will consider here just an s-wave configuration. We also set the momentum in the 
direction of the string of the incoming particle to zero, the general case can be found 
in [18, 571]. Separation of variables, 4> = e-iwtx(r), leads to the radial equation 

lrho 3 2] r3 rhr Or + W f X = ° , 2 
h = 1 _ rO. 

r2 
(5.37) 

Close to the horizon, a convenient radial variable is z = h = 1 - r5! r2. The matching 
procedure can be summarized as follows: 

far region: 

near regIOn: 

[:30rr30r + W2] X = 0, 

_ A Jl (wr) 
X - r3 / 2 

[Z(l- z)o; + (1- i 27r;'H) (1- z)oz + 167r~;LTR] Z4;';HX = 0, 

-~F ( . w . w . w ) X = Z 47rTH -z-- -z--'l - Z--' z 
47rTL' 47rTR' 27rTH" 

(5.38) 

where TL, TR are defined in terms of the Hawking temperature TH and the chemical 
potential, Il, which is conjugate to momentum on 51 : 

(5.39) 
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After matching the near and far regions together and comparing the infalling flux at 
infinity and at the horizon, one arrives at 

w 

eTH -1 
(5.40) 

Notice that this has the right form to be interpreted as the creation of a pair of particles 
along the string. 

According to the AdS3 / C FT2 correspondence, we can replace the near horizon region 
by the conformal field theory. The field ¢ couples to some operator 0 in the conformal 
field theory [572] : 

Sint = f dtdx50(t,X5)¢(t,X5,O).' 

Then, the absorption cross section can be calculated by 

a ~ ~ L L lUI f dtdx 50(t, x5)eikot+iksXSli)12 
Nt i J 

~ ~i L f eikot+ikSXS(iIO(t, X5)Ot(0, O)li) 
t 

~ f eikot+iksxs (O(t, X5)Ot(0, 0)).0, 

(5.41) 

(5.42) 

where we summed over final states in the CFT and we averaged over initial st~tes. 
We will calculate the numerical coefficients later. The average over initial states is 
essentially an average over a thermal ensemble, since the number of states is very large 
so the microcanonical ensemble is the same as a thermal ensemble. So, the final result 
is that we have to compute the two point function of the corresponding operator over a 
thermal ensemble. This essentially translates into computing the correlation function 
on the Euclidean cylinder, and the result is proportional to (5.40) [16, 573, 572]. This 
argument reproduces the functional dependence on w of (5.40). For other fields (non­
minimally coupled) the functional dependence on w is determined just in terms of the 
conformal weight of the associated operator. 

Let us emphasize that the matching procedure (5.38) is valid only in the low energy 
regime (5.36). In this regime the typical gravitational size of the configuration, which 
is of order r5, is much smaller than the Compton wavelength of the particle. See figure 
1.4. In fact, note that in the connecting region r ~ r5 the function ¢ does not vary very 
much. Let us see this more explicitly. We see from (5.37) that we can approximate the 
equation by something like w2r~¢ + ¢" = O. From (5.36) we see that the variation of ¢ 
is very small over this connecting region. Furthermore, since absorption will turn out 
to be small, we can approximate the value of ¢ at the origin by the value it has in flat 
space. So, we can directly match the values of if> at the origin for a wave propagating 
in flat space with the value of ¢ near the boundary of AdS3 • 
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In order to match the numerical coefficient we need to determine the numerical 
coefficient in the two-point function of the operator O. This can be done for minimally 
coupled scalars using a non-renormalization theorem, as it was done for the case of 
absorption of gravitons on a D3 brane. The argument is the following. We first notice 
that the moduli space of minimally coupled scalars in supergravity is 50(4,5)/50(4) x 
50(5). This is a homogeneous space with some metric, so the gravity Lagrangian in 
spacetime will include 

5 = 2~~ f cfX9ab(</J)O</Jaoq}. (5.43) 

The fields </Ja couple to operators Oa, and we are interested in computing 

(5.44) 

The operators Oa are a basis of marginal deformations of the eFT, and Gab is the 
metric on the moduli space of the eFT. Since the conformal field theory has N = (4,4) 
supersymmetry, this metric is highly constrained. In fact, it was shown in [574] that it 
is the homogeneous metric on 50(4,5)/50(4) x 50(5) (up to global identifications). 
Since the eFT moduli space is the same as the supergravity moduli space, the two 
metrics could differ only by an overall numerical factor Gab = D9ab, where D is a 
number. In order to compute this number we can go to a point in moduli space where 
the. eFT is just the orbifold 5ym(T4)k. This point corresponds to having a single D5 
brane and k = Q5Ql Dl branes. We can also choose the string coupling to be arbitrarily 
small. For example, we can choose the scalar </J to be an off-,diagonal component of the 
metric on T4. The absorption cross section calculation, then reduces to the one done in 
[16], which we now review. We take the metric on the four-torus to be 9ij = Jij + h ij , 

where h is a small perturbation, and choose </J = h12 • The bulk action for </J then 
reduces to 

(5.45) 

The coupling of h to the fields on the Dl branes can be derived by expanding the 
Born-Infeld action. The leading term is 

(5.46) 

To extract the cross-section we take R5 = 00, but the volume of the transverse space 
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V finite, and we use the usual 2-d S-matrix formulas: 

(5.4 7) 

Since we have put the four transverse dimensions into a box of volume V, the flux 
of the hij gravitons on the brane is :F = l/V. To find the cross-section we divide the' 
net decay rate by the flux. The unusual factors of v'2~6 and 1/ J2rr9so.' come from 
the coefficients of the kinetic terms for h12 and Xi (5.45)(5.46). The leading factor 
of 2 in the equation for [(kO) in (5.47) is there because there are two distinguishable 
final states that can come out of a given h12 initial state: an Xl boson moving left 
and an X 2 boson moving right, or Xl moving right and X 2 moving left. The factor of 
QIQ5 comes from the fact that we have QIQ5 D1 branes. Note that the delta function 
constraints plus the on shell conditions imply that pO = qO = p5 = _q5 = W /2 and 
p' q = w2/2. 

The final answer in (5.47) agrees with the zero temperature limit of (5.40). As we 
remarked before, the thermal-looking factors in (5.40) can be derived just by doing a 
calculation of the two point function on the cylinder [572]. Finally, we should remark 
that this calculation implies that the metric on the moduli space of the CFT has 
an overall factor of k = Ql Q5 as compared with the metric that appears in the six 
dimensional gravity action (5.43). This blends in perfectly with the expectations from 
AdS3/CFT, since in the AdS3 region, by the time we go down to three dimensions, we 
get factors of the volume of the S3 and the radius of AdS3 which produce the correct 
factor of k in the gravity answer for the metric on the moduli space. 

Of course, this absorption cross section calculation is also related to the time reversed 
process of Hawking emission. Indeed, the Hawking radiation rates calculated in gravity 
and in the conformal field theory coincide. 

Many other greybody factors were calculated and compared with the field theory 
predictions [17, 571, 575, 576, 577, 572, 578, 64, 579, 580, 581, 582, 583, 584, 71, 
585, 586, 587, 588, 589]. In some of these references the "effective string" model is 
mentioned. This effective string model is essentially the conformal field theory at the 
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orbifoldpoint Sym(T4)k. Some of the gravity calculations did not agree with the 
effective string calculation. Typically that was because either the energies considered 
were not low enough, or because one needed to take into account the effect of the 
deformation in the CFT away from the symmetric product point in the moduli space. 

5.7 Black Holes in Five Dimensions 

If we Kaluza-Klein reduce, using [590, 591], the metric (5.27) on the circle along the 
string, we get a five dimensional charged black hole solution: 

ds; = _)..-'/3 (1 - ~~) dt' + )..1/3 [ (1 - ~~) -I dr' + r'dn~l ' (5.48) 

where 
\ = ( r5sinh

2o:) ( T5sinh2,) ( r5sinh
2
a). 

A 1+ 2 1+ 2 1+ 2 r r r 
(5.49) 

This is just the five-dimensional Schwarzschild metric, with the tiine and space com­
ponents rescaled by different powers of A. The solution is manifestly invariant under 
permutations of the three boost parameters, as required by V-duality. The event hori­
zon is clearly at r = roo The coordinates we have used present the solution in a simple 
and symmetric form, but they do not always cover the entire spacetime. When all three 
charges are nonzero, the surfacer = 0 is a smooth inner horizon. This is analogous to 
the situation in four dimensions with four charges [592, 593]. 

The mass, entropy and temperature of this solution are the same as those calculated 
above for the black string (5.30)(5.31)(5.32). It is interesting to take the extremal limit 
ro --+ 0 with roe')', roeOt, roea' finite and nonzero. This is an extremal black hole solution 
in five dimensions with a non-singular horizon which has non-zero horizon area. The 
entropy becomes 

(5.50) 

which is independent of all the continuous parameters in the theory, and depends only 
on the charges (5.29). We can calculate this entropy as follows [13]. These black 
hole states saturate the BPS bound, so they are BPS states. Thus, we should find 
an "index", which is a quantity that is invariant under deformations and counts the 
number of BPS states. Such an index was computed in [13] for the case where the 
internal space was M4 = K3 and in [457] for M4 = T4. These indices are also called 
helicity supertrace formulas [594]. Once we know that they do not receive contributions 
from non-BPS quantities, we can change the parameters of the theory and go to a point 
where we can do the calculation, for example, we can take R5 to be large and then go 
to the point where we have the Sym(M4)k description. 
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It is interesting that we can also consider near extremal black holes, in the approx­
imation that the contributiQn to the mass of two of the charges is much bigger than 
the third and much bigger than the mass above extremality. This region in parameter 
space is sometimes called the "dilute gas" regime. In the five dimensional context it 
is natural to take R5 '" Ls , and at first sight we would not expect the CFT description 
to be valid. Nevertheless, it is "experimentally" observed that the absorption cross 
section is still (5.40), since the calculation is exactly the same as the one we did above . 

. This suggests that the CFT description is also valid in this case. A qualitative expla­
nation of this fact was given in [465], where it was observed that the the strings could 
be multiply wound leading to a very low energy gap, much lower than 1/ R5 , and of 
the right order of magnitude as expected for a 5d black hole. 

Almost all that we said in this subsection can be extended to four dimensional black 
holes. 
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Chapter 6 

Other AdS Spaces and 
Non-Conformal Theories 

6.1 Other Branes 

6.1.1 M5 Branes 

There exist six dimensional N = (2,0) SCFTs, which have sixteen supercharges, and 
are expected to be non-trivial isolated fixed points of the renormalization group in 
six dimensions (see [91] and references therein). As a consequence, they have neither 
dimensionful nor dimensionless parameters. These theories have an Sp(2) ~ SO(5) 
R-symmetry group. 

The AN - 1 (2,0) theory is realized as the low-energy theory on the worldvolume of 
N coincident M5 branes (five branes of M theory). The N = (2,0) supersymmetry 
algebra includes four real spinors of the same chirality, in the 4 of SO(5). Its only 
irreducible massless matter representation consists of a 2-form BJ1.v with a self-dual 
field strength, five real scalars and fermions. It is called a tensor multiplet. For a 
single 5-brane the five real scalars in the tensor multiplet define the embedding of the 
M5 brane in eleven dimensions. The R-symmetry group is the rotation group in the 
five dimensions transverse to the M5 worldvolume, and it rotates the five scalars. The 
low-energy theory on the moduli space of flat directions includes r tensor multiplets 
(where for the AN - 1 theories r = N - 1). The moduli space is parametrized by the 
scalars in the tensor multiplets. It has orbifold singularities (for the AN - 1 theory it 
is TR5(N-l) / SN) and the theory at the singularities is superconformal. The self-dual 
2-form BJ1.v couples to self-dual strings. At generic points on the moduli space these 
strings are BPS saturated, and at the superconformal point their tensiol! goes to zero. 

The AN - 1 (2,0) superconformal theory has a Matrix-like DLCQ description as quan­
tum mechanics on the moduli space of AN - 1 instantons [595]. In this description the 

181 

, I 



I 

chiral primary operators are identified with ~he cohomology with compact support of 
the resolved moduli space of instantons, which is localized at the origin [596]. Their 
lowest components are scalars in the symmetric traceless representations of the 50(5) 
R-symmetry group. 

The eleven dimensional supergravity metric describing N M5 branes is given by! 

5 

ds 2 == j-l/3( -dt2 + L dxn + p/3(dr2 + r2dnD , 

j = 
7rNl3 

1+~, 
r 

;=1 

and there is a 4-form flux of N units on the 54. 

(6.1 ) 

The near horizon geometry of (6.1) is of the form Ad57 x 54 with the radii of 
curvature RAdS = 2Rs4 = 2lp( 7r N)I/3. Note that since RAdS =1= RS4 this background 
is not conform ally flat, unlike the Ad55 x 55 background discussed above. Following 
similar arguments to those of section 3.1 leads to the conjecture that the AN - 1 (2,0) 
SCFT is dual to M theory on Ad57 x 54 with N units of 4-form flux on 54 [5]. 

The eleven dimensional supergravity description is applicable for large N, since then 
the curvature is small in Planck units. Corrections to supergravity will go like positive 
powers of lpl RAdS '" N-l/3; the supergravity action itself.is of order M; '" N 3 (instead I 

of N 2 in the Ad55 x 55 case). The known corrections in M theory are all positive 
powers of l; '" liN, suggesting that the (2,0) theories have a liN expansion at large 
N. The bosonic symmetry of the supergravity compactification is 50(6,2) x 50(5). 
The 50(6,2) part is the conformal group of the SCFT, and the 50(5) part is its 
R-symmetry. 

The Kaluza-Klein excitations of supergravity contain particles with spin less than 
two, so they fall into small representations of supersymmetry. Therefore, their masses 
are protected from quantum (M theory) corrections. As in the other examples of the 
duality, these excitations correspond to chiral primary operators of the A N - 1 (2,0) 
SCFT, whose scaling dimensions are protected from quantum corrections. The spec­
trum of Kaluza-Klein harmonics of supergravity on Ad57 x 54 was computed in [597]. 
The lowest components of the SUSY multiplets are scalar fields with 

m 2 R~dS = 4k(k - 3), k = 2,3" ... (6.2) 

They fall into the k-th order symmetric traceless representation of 50(5) with unit 
multiplicity. The k = 1 excitation is the singleton that can be gauged away except on 
the boundary of Ad5. It decouples from the other operators and can bejdentified with 
the free "center of mass" tensor multiplet on the field theory side. 

lOur conventions are such that the tension of the M2 brane is T2 = 1/(271V1:. 
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Using the relation between the dimensions of the operators ~ and the masses m of 
the Kaluza-:Klein excitations 1n2R~dS = ~(~ - 6), the dimensions of the corresponding 
operators in the SCFT are ~ = 2k, k = 2,3,··· [598,599,600,601]. These are the 
dimensions of the chiral primary operators of the AN-1 (2,0) theory as found from the 
DLCQ description2

• The expectation values of these operators parametrize the space 
of flat directions of the theory, (I~5)N -1 IS N. The dimensions of these operators are the 
same as the naive dimension of the product of k free tensor multiplets, though there i~ 
no good reason for this to be true (unlike the d = 4 .N = 4 theory, where the dimension 
had to be similar to the free field dimension for small ,x, and then for the chiral operators 
it could not change as we vary ,x). For large N, the k =2 scalar field with ~ = 4 is 
the only relevant deformation of the SCFT and it breaks the supersymmetry. All the 
non-chiral fields appear to have large masses in the large N limit, implying that the 
corresponding operators have large dimensions in the field theory. 

The spectrum includes also a family of spin one Kaluza-Klein excitations that couple 
to I-form operators of the SCFT. The massless vectors in this family couple to the 
dimension five R-symmetry currents of the SCFT. The massless graviton couples to 
the stress-energy tensor of the SCFT. As in the d = 4 N = 4 case, the chiral fields 
corresponding to the different towers of Kaluza-Klein harmonics are related to the 
scalar operators associated with the Kaluza-Klein tower (6.2) by the supersymmetry 
algebra. For each value of (large enough) k, the SUSY multiplets include one field 
in each tower of Kaluza-Klein states. Its SO(5) representation is determined by the 
representation of the scalar field. For instance, the R-symmetry currents and the 
energy-momentum tensor are in the same supersymmetry multiplet as the scalar field 
corresponding to k = 2 in equation (6.2). 

As we did for the D3 branes in section 4.1, we can place the M5 branes at singularities 
and obtain other dual models. If we place the M5 branes at the origin of 1R6 x 1R5 If 
where f is a discrete subgroup of the SO(5) R-symmetry group, we get AdS7 x S4 If 
as the near horizon geometry. With f c SU(2) C SO(5) which is an ADE group we 
obtain theories with (1,0) supersymmetry. The analysis of these models parallels that 
of section 4.1.1. In particular, the matching of the f -invariant supergravity Kaluza­
KI~in modes and the field theory operators has been discussed in [602]. 

Another example is the DN (2,0) SCFT. It is realized as the low-energy theory on 
the worldvolume of N M5 branes at an 1R5/Z2 orientifold singularity. The Z2 reflects 
the five coordinates transverse to the M5 branes and changes the sign of the 3-form 
field C of eleven dimensional supergravity. The near horizon geometry is the smooth 
space AdS7 x Rp4 [598]. In the supergravity solution we identify the fields at points 
on the sphere with the fields at antipodal points, with a change of the _sign of the C 

2The DLCQ description corresponded to the theory including the free tensor multiplet, so it in­
cluded also the k = 1 operator. 
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field. This identification projects out half of the Kaluza-Klein spectrum. and only the 
even k harmonics remain. An additional chiral field arises from a M2 brane wrapped 
on the 2-cycle in RP\ which is non-trivial due to the orientifolding; this is analogous 
to the Pfaffian of the SO(2N) d = 4 N = 4 SYM theories which is identified with a 
wrapped 3-brane [214] (as discussed in section 4.1.'2). The dimension of this operator 
is .6. = 2N. To leading order in 1/ N the correlation functions of the other chiral 
operators are similar to those of the AN - 1 SCFT. The DN theories also have a DLCQ 
Matrix description as quantum mechanics on the moduli space of DN instantons [595]. 
This moduli space is singular. One would expect to associate the spectrum of chiral 
primary operators with the cohomology with compact support of some resolution of 
this space, but such a resolution has not been constructed yet. 

A different example is the (1,0) six dimensional SCFT with Es global symmetry, 
which is realized on the worldvolume of M5 branes placed on top of the nine brane in 
the Horava-Witten [603] compactification of M theory on lR.10 x S1 /Zz. The conjectured 
dual description is in terms of M theory on AdS7 x S4/ZZ' [604]. The Zz action has a 
fixed locus AdS7 x S3 on which a ten dimensional N = 1 Es vector multiplet propagates. 
The chiral operators fall into short representations of the supergroup OSp(6, 212). In 
[605] Es neutral and charged operators of the (1,0) theory were matched with Kaluza­
Klein modes of bulk fields and fields living on the singular locus, respectively. 

Correlation functions of chiral primary operators of the large N (2,0) theory can 
be computed by solving classical differential equations for the supergravity fields that 
correspond to the field theory operators. Two and three point functions of the chiral 
primary operators have been computed in [606]. 

The (2,0) SCFT has Wilson surface observables '[607], which are generalizations 
of the operator given by W(E) = exp(i fl: BJ,LvduJ.W) in the theory of a free tensor 
multiplet, where E is a two dimensional surface. A prescription for computing the 
Wilson surface in the dual M theory picture has been given in [292]. It amounts, 
in the supergravity approximation, to the computation of the minimal volume of a 
membrane bounded at the boundary of AdS7 by E. The reasoning is analogous to that 
discussed in section 3.5, but here instead of the strings stretched between D-branes, 
M2 branes are stretched between M5 branes. Such an M2 brane behaves as a string on 
the M5 branes worldvolume, with a tension proportional to the distance between the 
M5 branes. By separating one M5 brane from N M5 branes this string can be used 
as a probe of the SCFT on theworldvolume of the N M5 branes, analogous to the 
external quarks discussed in section 3.5. If we consider two such parallel strings with 
length 1 and distance L and of opposite orientation, the resulting potential per unit 
length is [292] 

V N 
- = -c-' 
1 £2 ' 

(6.3) 
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where c is a positive numerical constant. The dependence on L is as expected from 
conformal invariance. The procedure for Wilson surface computations has been applied 
also to the computation of the operator product expansion of Wilson surfaces, and the 
extraction of the OPE coefficients of the chiral primary operators [606]. 

The six dimensional AN - 1 theory can be wrapped on various two dimensional mani­
folds. At energies lower than the inverse size of the manifolds, the low-energy effective 
description is in terms of four dimensional SU(N) gauge theories. The two dimensional 
manifold and its embedding in eleven dimensions determine the amount of supersym­
metry of the gauge theory. The simplest case is a wrapping on T2 which preserves all the 
supersymmetry. This results in the N = 4 SU(N) SCFT, with the complex gauge cou­
pling being the complex structure T of the torus. In general, when the two dimensional 
manifold is a holomorphic curve (Riemann surface), called a supersymmetric cycle, the 
four dimensional theory is supersymmetric. For N = 2 supersymmetric gauge theo­
ries the Riemann surface i~ the Seiberg-Witten curve and its period matrix gives the 
low energy holomorphic gauge couplings Tij (i,j = 1"", N - 1) [608, 609, 610, 351]. 
For N = 1 supersymmetric gauge theories the Riemann surface has genus zero and it 
encodes holomorphic properties of the supersymmetric gauge theory, namely the struc­
ture of its moduli space of vacua [611]. For a generic real two dimensional manifold 
the four dimensional theory is not supersymmetric. Some qualitative properties of the 
QCD string [612] and the () vacua follow from the wrapping procedure. Of course, 
in the non-supersymmetric cases the subtle issue of stability has to be addressed as 
discussed in section 4.1. In general it is not known how to compute the near-horizon 
limit of 5-branes wrapped on a general manifold. At any rate, it seems that the theory 
on M5 branes is very relevant to the study of four dimensional gauge theories. The 
M5 branes theory will be one starting point for an approach to studying pure QCD in 
section 6.2. 

Other works on M5 branes in the context of the AdS/CFT correspondence are [613, 
614, 615, 616, 617, 618; 619, 620, 621, 622, 623, 624]. 

6.1.2 M2 Branes 

N = 8 supersymmetric gauge theories in three dimensions can be obtained by a di­
mensional reduction of the four dimensional N = 4 gauge theory. The automorphism 
group of the N = 8 supersymmetry algebra is SO(8). The fermionic generators of the 
N = 8 supersymmetry algebra transform in the real two dimensional representation of 
the SO(2, 1) Lorentz group, and in the 85 representation of the SO(8) automorphism 
algebra. The massless matter representation of the algebra consists of eight bosons in 
the 8v and eight fermions in the 8e of SO(8). Viewed as a dimensional reduction of 
the vector multiplet of the four dimensional N ~ 4 theory which has six real scalars, 
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one extra scalar is the component of the gauge field in the reduced dimension and the 
second extra scalar is the dual to the vector in three dimensions. 

An N = 8 supersymmetric Yang-Mills Lagrangian does not posses the full SO(8) 
symmetry. It is only invariant under an SO(7) subgroup. At long distances it is ex­
pected to flow to a superconformal theory that exhibits the SO(8) R-symmetry (see 
[91] and references therein). The flow will be discussed in the next section. This IR 
conformal theory is realized as the low-energy theory on the world volume of N overlap­
ping M2 branes. For a single M2 brane, the eight real scalars define its embedding in 
eleven dimensions. The R-symmetry group is the rotation group in the eight transverse 
dimensions to the M2 worldvolume, which rotates the eight scalars. 

The eleven dimensional'supergravity metric describing N M2 branes is given by 

(6.4) 

and there are N units of flux of the dual to the 4-form field on S7. 

The near horizon geometry of (6.4) is of the form AdS4 x S7 with the radii of 
curvature 2RAdS = RS4 = Lp(327r2 N)1/6. One conjectures that the three dimensional 
N = 8 SCFT on the world volume of N M2 branes is dual to M theory on AdS4 x S7 
with N units of flux of the dual to the 4-form field on S7 [5]. 

The supergravity description is applicable for large N. Corrections to supergravity 
will be proportional to positive powers of Lpl RAdS '"'" N-l/6

; the known corrections are 
all proportional to powers of l~ '"'" N- 1

/
2

• The supergravity action itself is in this case 
proportional to M; '"'" N 3

/
2

, so this will be the leading behavior of all correlation func­
tions in the large N limit. The bosonic symmetry of the supergravity compactification 
is SO(3,2) x SO(8). As is standard by now, the SO(3, 2) part is identified with the 
conformal group of the three dimensional SCFT, and the SO(8) part is its R-symmetry. 
The fermionic symmetries may also be identified. We can relate the chiral fields of the 
SCFT with the Kaluza-Klein excitations of supergravity whose spectrum was analyzed 
in [625, 626]. 

The lowest component of the supersymmetry multiplets is a family of scalar excita­
tions with 

221 
m R AdS = 4k( k - 6), k = 2, 3, . .. . (6.5) 

They fall into the k-th order symmetric traceless representation of SO(8) with unit 
multiplicity. The dimen~ions of the corresponding operators in the N = 8 SCFT are 
6. = k/2, k = 2,3,··· [598,599,601]. Their expectation values parametrize the space 
of flat directions of the theory, C[{8)N -1 IS N. When viewed as the IR limit of the three 
dimensional N = 8 Yang-Mills theory, some of these operators can be identified as 
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Tr( 4/1 ... <ph ) where <pI are the seven scalars of the vector multiplet. As noted above, 
the eighth scalar arises upon dualizing the vector field, which we can perform explicitly 
only in the abelian case. The other chiral fields are all obtained by the action of the 
supersymmetry generators on the fields of (6.5). 

Unlike the (2,0) SCFTs, the d = 3 .N = 8 theories do not have a simple DLCQ 
description (see [627]), and the spectrum of their chiral operators is not known. The 
above spectrum is the prediction of the conjectured duality, for large N. 

We can place the M2 branes at singularities and obtain other dual models, as in sec­
tion 4.1. If we place theM2 branes at the origin of IR3 x IR8 /r with r a discrete subgroup 
of the 50(8) R-symmetry group, we get Ad54 x 57/r as the near horizon geometry. One 
class of models is when r c 5U(2) x 5U(2) is a cyclic group. It is generated by multiply­
ing the complex coordinates z of (:4 ~ IR8 by diag(e27ri/k e-27ri / k e27ria/k e-27ria/k) 1,2,3,4 , , , 

for relatively prime integers a, k. When a = 1, k = 2 the near horizon geometry is 
Ad54 x RP7 with a dual N = 8 theory, which is the IR limit of the 50(2N) gauge 
theory [598]. As in section 4.1.2, one can add a discrete theta angle to get additional 
theories [628, 629]. When a = ±l, k > 2 one gets .N = 6 supersymmetry, while for 
a =1= ±1 the supersymmetry is reduced to .N = 4. Other models are obtained by non 
cyclic r. As for the D3 branes [345] and the M5 branes [602], the r-invariant super­
gravity Kaluza-Klein modes and the field theory operators of some of these models 
have been analyzed in [630]. 

Another class of models is obtained by putting the M2 branes at hypersurface sin­
gularities defined by the complex equation 

(6.6) 

where k is an integer. The near horizon geometry is of the form Ad54 x H, where H 
is topologically equivalent to 57 but in general not diffeomorphic to it. Some of these 
examples, k = 1,· . ·,28, correspond to the known exotic seven-spheres. The expected 
supersymmetry is at least N = 2 and may be .N = 3, depending on whether the R­
symmetry group corresponding to the isometry group of the metric on the exotic seven 
spheres is 50(2) or 50(3). An example with .N = ·1 supersymmetry is when H is the 
squashed seven sphere which is the homogeneous space (5p(2) x 5p(1))/(5p(1) x 5p(1)). 
In this case the R-symmetry group is trivial (50(1)). 

A general classification of possible near horizon geometries of the form Ad54 x H 
and related SCFTs in three dimensions is given in [331, 330]. Most of these SCFTs 
have not been explored yet. 

Other works on M2 branes in the context of the AdS/CFT correspondence are [631, . 
632, 633, 634, 398, 635, 636, 637, 638, 639, 337, 640]. -
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6.1.3 Dp Branes 

Next, we discuss the near-horizon limits of other Dp-branes. They give spaces which 
are different from AdS, corresponding to the fact that the low-energy field theories on 
the Dp-branes are not conformal. 

The Dp branes of the type II string are charged under the Ramond-Ramond p + 1-
form potential. Their tension is given by Tp ~ 1 / gsl~+l and is equal to their Ramond­
Ramond charge. They are BPS saturated objects preserving half of the 32 supercharges 
of Type II string theories. The low energy worldvolume theory of N flat coinciding Dp 
branes is thus invariant under sixteen supercharges. It is the maximally supersymmetric 
p + 1 dimensional Yang-Mills theory with U(N) gauge group. Its symmetry group is 
ISO(I,p) x SO(9 - p), where the first factor is the p + 1 dimensional Poincare group 
and the second factor is the R-symmetry group. The theory can be obtained as a 
dimensional reduction of N = 1 SYM in ten dimensions to p + 1 dimensions. Its 
bosonic fields are the gauge fields and 9 - p scalars in the adjoint representation of the 
gauge group. The scalars parametrize the embedding of the Dp branes in the 9 - p 

transverse dimensions. The SO(9 - p) R-symmetry group isthe rotation group in these 
dimensions, and the scalars transform in its vector representation. In the following we 
will discuss the decoupling limit of the brane world volume theory from the bulk and 
the regions of validity of different descriptions. 

The Yang-Mills gauge coupling in the Dp-brane theory is given by 

(6.7) 

The decoupling from the bulk (field theory) limit is the limit ls -+ 0 where wekeep the 
Yang-Mills coupling constant and the energies fixed. For p ~ 3 this implies that the 
theory decouples from the bulk and that the higher gs and 0;' corrections to the Dp 
brane action are suppressed. For p > 3, as seen from (6.7), the string coupling goes to 
infinity and we need to use a dual description to analyze this issue. 

Let u == r / 0;' be a fixed expectation value of a scalar. At an energy scale u, the 
dimensionless effective coupling constant of the Yang-Mills theory is 

2 2 N p-3 
gell f',J gYM U • (6.8) 

The perturbative Yang-Mills description is applicable when g;ll « 1. 

The ten dimensional supergravity background describing N Dp branes is given by 
the string frame metric 

p 9 

dsZ = f-1 /2( -dtZ + L dxn + plz L dx~ , 
i=l i=p+l 

f (6.9) 
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with a constant cp = 26- 2P7r(9-3P)/2r((7 - p)/2). The background has a Ramond­
Ramond p + 1-form potential Ao ... p = (1 - I-I )/2, and a dilaton 

(6.10) 

After a variable redefinition 

2JCP9fM N 
Z = 5' 

(5 - p)uT 
(6.11) 

the field theory limit of the metric (6.9) for p < 5 takes the form [641, 642] 

!=2. 

d 2 _ 1 (_2_) 5-p ( 2 N) 5~P f:E {-de + di
2 + dz

2 
(5 - P)2do2 } 

S - a 5 Cp9y M Z P 2 + 4 ~ 's-p , -p Z 

. (6.12) 

with the dilaton 
Z=E. 

, 2 
¢ gejj 

e "'N. (6.13) 

The curvature associated with the metric (6.12) is 

1 
'D "' __ 
I\,- [2 . 

sgejj 
(6.14) 

In the form of the metric (6.12) it is easy to see that the UV /IR correspondence, as 
described in section 3.1.3, leads to the relationship A '" Z between wavelengths in the 
dual field theories and distances in the gravity solution. Through (6.11) we can then 
relate energies in the field theory to distances in the u variable. 

In the limit of infinite u the effective string coupling (6.13) vanishes for p < 3. This 
corresponds to the UV freedom of the Yang-Mills theory. For p > 3 the coupling 
increases and we have to use a dual description. This corresponds to the fact that 
the Yang-Mills theory is non renormalizable and new degrees of freedom are required 
at short distances to define the theory. The isometry group of the metric (6.12) is 
I SO(1, p) x SO(9 - p). The first factor corresponds to the Poincare symmetry group 
of the Yang-Mills theory and the second factor corresponds to its R-symmetry group. 

For each Dp brane we can plot a phase diagram as a function of the two dimerisionless 
parameters gejj and N [641]. Different regions in the phase diagram have a good 
description in terms of different variables. As an example consider the D2 branes 
in Type IIA string theory. The dimensionless effective gauge coupling (6.8) is now 
9;Jj rv 9}MN/u. The perturbative Yang-Mills description is valid for gelJ « 1. When 
gej j rv 1 we have a transition from the perturbative Yang-Mills description to the 
Type IIA supergravity description. The Type IIA supergravity description is valid 
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when both the curvature is string units (6.14) and the effective string coupling (6.13) 
are small. This implies that N must be large. 

When gel I > N2/5 the effective string coupling becomes large. In this region we 
grow the eleventh dimension Xu and the good description is in terms of an eleven 
dimensional theory. We can uplift the D2 brane solution (6.12) and (6.13) to an 
eleven dimensional background that reduces to the ten dimensional background upon 
Kaluza-Klein reduction on Xu. This can be done using the relation between the ten 
dimensional Type IIA string metric ds~o and the eleven dimensional metric dS~l' 

(6.15) 

<p and AIL are the Type IIA dilaton and RR gauge field. The 4-form field strength is 
independent of Xu. 

The curvature of the eleven dimensional metric in eleven dimensional Planck units 
[p is given by 

24>/3 2/3 
e gell 

R '" -[2-- '" [2 N2/3 
pgel I p 

(6.16) 

When the curvature (6.16) is small we can use the eleven dimensional supergravity 
description. 

The metric (6.15) corresponds to the M2 branes solution smeared over the transverse 
direction Xu. The near-horizon limit of the supergravity solution describing M2 branes 
localized in the compact dimension Xu has the form (6.4), but with a harmonic function 
f of the form 

00 32rr2 [6 N ' 

f = L (2 ( 0 p 2 R )2)3' 
n=-oo r + Xu - Xu + rrn u 

(6.17) 

where r is the radial distance in the seven non-compact transverse directions and 
Xu '" Xu + 2rr Ru. X?l corresponds to the expectation value of the scalar dual to the 
vector in the three dimensional gauge theory. The expression for the harmonic function 
(6.17) can be Poisson resummed at distances much larger than Rll = 9?M[~' leading 
to 

f = 6rr2N9?M O( -U/g}M) 
[

4 5 + e . 
sU 

(6.18) 

The difference between the localized M2 branes solution and the smeared one is the 
exponential corrections in (6.18). They can be neglected at distances u » 9?M' or 
in terms of the dimensionless parameters when geff « N 1

/
2

• According to (6.11) this 
corresponds to distance scales in the field theory of order VN / 9f M. In this region we 
can still use the up lifted D2 brane solution since it is the same as the one coming from 
(6.17) up to exponentially small corrections. When gel I » N 1

/
2

, which corresponds to 
very low energies u « 9fM, the sum in (6.17) is dominated by the n = 0 contribution. 
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This background is of the form (6.4) (with f = 327f2 Nl~/r6), namely the near-horizon 
limit of M2 branes in eleven non-compact dimensions. This is the superconformal 
theory which we discussed in the previous section. In figure 6.1 we plot the transition 
between the different descriptions as a function of the energy scale u. We see the flow 
from the' high energy Ai = 8 super Yang-Mills theory realized on the worldvolume of 
D2 branes to the low energy Ai = 8 SCFT realized on the world volume on M2 branes. 

N= 8 SCFT Up lifted D2 brane llA D2 brane Perturbative SYM 

------~---------+I------~I -------. ___ u 
2 115 2 giM gyMN gYMN 

Figure 6.1: The different descriptions of the D2 brane theory as a function of the energy 
scale u. We see the flow from the high energy Ai = 8 super Yang-Mills theory to the 
low energy Ai = 8 SCFT. 

A similar analysis can be done for the other Dp branes of the Type II string theories. 
In the DO branes case one starts at high energies with a perturbative super quantum 
mechanics description. At intermediate energies the good description is in terms of the 
Type IIA DO brane solution. At low energies the theory is expected to describe matrix 
black holes [643]. In the D1 branes case one starts in the UV with a perturbative super 
Yang-Mills theory in two dimensions. In the intermediate region the good description is 
in terms of the Type lIB Dl brane solution. The IR limit is described by the SymN (JR8) 
orbifold SCFT. The D3 branes correspond to the Ai == 4 SCFT discussed extensively 
above. 

In the D4 branes case, the UV definition of the theory is obtained by starting with 
the six dimensional (2,0) SCFT discussed in section 6.1.1, and compactifying it on 
a circle. At high energies, higher than the inverse size of the circle, we have a good 
description in terms of the (2,0) SCFT (or the AdS7 x S4 background of M theory). 
The intermediate description is via the background of the Type IIA D4 brane. Finally 
at low energies we have a description in terms of perturbative super Yang-Mills theory 
in five dimensions. In the D5 branes case we have a good description in the IR region 
in terms of super Yang-Mills theory. At intermediate energies the system is described 
by the near-horizon background of the Type lIB D5 brane, and in the UV in terms of 
the solution of the Type lIB NS 5-branes. We will discuss the NS 5-brane theories in 
the next section. 

Consider now the system of N D6 branes of Type IIA string theory. As pefore, we can 
attempt at a decoupling of the seven dimensional theory on the D6 branes world volume 
from the bulk by taking the string scale to zero and keeping the energies and the seven 
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dimensional Yang-Mills coupling fixed. The effective Yang-Mills coupling (6.8) is small 
at low energies u « (g} MNtl/3 and super Yang-Mills is a good description in this 
regime. The curvature in string units (6.14) is small' when u » (g}MNtl/3 while the 
effective string coupling (6.13) is small when u « N/g'fJit. In between these limits we 
can use the Type IIA supergravity solution. 

When u f"V N/g'fJit the effective string coupling is large and we should use the 
description of D6-branes in terms of eleven dimensional supergravity compactified on 
a circle with N Kaluza-Klein monopoles. Equivalently, the description is in terms of 
eleven dimensional supergravity on an ALE space with an AN - 1 singularity. When 
u » N / g'fJit the curvature of the eleven dimensional space vanishes and, unlike the 
lower dimensional branes, there does not not exist a seven dimensional field theory 
that describes the UV. In fact, the D6 brane worldvolume theory does not decouple 
from the bulk. 

A simple way to see that the D6 brane worldvolume theory does not decouple from 
the bulk is to note that now in the decoupling limit we keep g} M '" g81; fixed. When 
we lift the D6 branes solution to M theory, this means that the eleven dimensional 
Planck length I; = g81; remains fixed, and therefore gravity does not decouple. An­
other way to see that gravity does not decouple is to consider the system of D6 branes at 
finite temperature in the decoupling limit. For large energy densities above extremal­
ity, E/V » N/l;, we need the eleven dimensional description. This is given by an 
uncharged Schwarzschild black hole at the ALE singularity. The associated Hawking 
temperature is TH '" 1/ J Nl~E /V and there is Hawking radiation to the asymptotic re­
gion of the bulk eleven dimensional supergravity. Generally, the worldvolume theories 
of DJrbranes with p > 5 do not decouple from the bulk. 

The supergravity computation of the Wilson loop, discussed in section 3.5, can be 
carried out for the Dp brane theories. For instance for the N D2 branes theory one 
gets for the quark antiquark potential, using the type IIA SUGRA D2-brane solution 
[292], 

(6.19) 

where c is a positive numerical constant. In view of the discussion above, this result 
should be trusted only for loops with sizes 1/g}MN « L « VN/g}M' For smaller 
loops the computation fails because we go into the perturbative regime, where the 
potential becomes logarithmic. For larger loops we get into the AdS4 x S7 region. 

Other works on Dp branes in the context of the AdS/eFT correspondence are [644, 
642, 645, 646, 647, 648, 649, 650, 651]. 

192 



6.1.4 NS5 Branes 

The NS5 branes of Type II string theories couple magnetically to the NS-NS BJ.l.1/ 
field, and they are magnetically dual to the fundamental string. Their tension is given 
by TNS c::= 1/9;l~. Like the Dp branes, they are BPS objects that preserve half of 
the supersymmetry of Type II theories. A fundamental string propagating in the 
background of N parallelNS5 branes is described far from the branes by a conformal 
field theory with non trivial metric, B field and dilaton, constructed in [652]. The 
string coupling grows as the string approaches the NS5-branes. At low energies the six 
dimensional theory on the worldvolumeof N Type lIB NS5 branes is a U(N) N = (1,1) 
super Yang-Mills theory, which is free in the IR. However, it is an interacting theory 
at intermediate energies. At low energies the theory on the worldvolume of N Type 
IIA NS5 branes is the AN-l (2,0) SCFT discussed above. 

The six dimensional theories on the world volume of NS5 branes of Type II string 
theories were argued [653] to decouple from the bulk in the limit 

9s -+ 0, ls = fixed. (6.20), 

This is because the effective coupling on the NS5 branes (e.g. the low-energy Yang-Mills· 
coupling in the type lIB case) is Ills, while the coupling to the bulk modes goes like 
9s. However, the computation of [654] showed that in this limit there is still·Hawking 
radiation to the tube region of the NS 5-brane solution, suggesting a non decoupling 
of the world volume theory from the bulk. In the spirit of the other correspondences 
discussed previously, one can reconcile the two by conjecturing [213] that string or M 
theory in the NS5 brane background in the limit (6.20), which includes the tube region, 
is dual to the decoupled NS5 brane worldvolume theory ("little string theory"). In 
particular, the fields in the tube which are excited in the Hawking radiation correspond 
to objects in the decoupled NS5 brane theory. In the following we will mainly discuss 
the Type IIA NS5 brane theory3. 

The Type IIA NS5 brane may be considered as the M5 brane localized on the eleven 
dimensional circle. Therefore its metric is that of an M5 brane at a point on a transverse 
circle. In such a configuration the near horizon metric of N NS5 branes can be written 
as [641, 213] 

ds2 l; (f- 1/3( -dt2 + ~dXn + f2/3(dx~1 + du2 + u2dn~)) 
rrN 

f = L 
n=-oo (u2 + (Xll - 2rrnlls)2)3/2 

00 

(6.21) 

The Xll coordinate is periodic and has been rescaled by l; (Xll == Xu 1- 2rr I 1;). The 
background also has a 4-form flux of N units on.51 x S3. 

3Type lIB NS5-branes at orbifold singularities are discussed in [655]. 
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At distances larger than Lsv'Fi the NS5 brane theory is described by the AN - 1 (2,0) 
SCFT. Indeed, in the extreme low energy limit Ls -t 0 the sum in (6.21) is dominated 
by the n = 0 term and the background is of the form Ad57 x 54. This reduces to the 
conjectured duality between M theory on Ad57 x 54 and the (2,0) SCFT, discussed 
previously. However, the NS5 brane theory is not a local quantum field theory at all 
energy scales since at short distances it is not described by a UV fixed point. To see 
this one can take Ls to infinity (or u to infinity) in (6.21) and get a Type IIA background 
with a linear dilaton. It has the topology of ~1,5 x ~ X 53 with g;( <p) = e-2</>/ls..fN, 

where <p is the ~ coordinate. This is in accord with the fact that the NS5 brane 
theory exhibits a T-duality property upon compactification on tori (note that in this 
background a finite radius in field theory units corresponds to a finite radius in string 
theory units on the string theory side of the correspondence, unlike the previous cases 
we discussed). 

The NS5 brane theories have an A-D-E classification. This can be seen by viewing 
them as Type II string theory on K3 with A-D-E singularities in the decoupling limit 
(6.20). The NS5 brane theories have an 50(4) R-symmetry which we identify with 
the 50(4) isometry of 53. The IIA NS5-brane theories have a moduli space of vacua j. 

of the form (~4 x 51 y jW where r is the rank of the A-D-E gauge group and W 
is the corresponding Weyl group. It is parametrized by the W-invariant products 
of the 5r scalars in the r tensor multiplets. They fall into short representations of 
the supersymmetry algebra. We can match these chiraloperators with the string 
excitations in the linear dilaton geometry describing the large u region of (6.21). The 
string excitations, in short representations of the supersymmetry algebra, in the linear 
dilaton geometry were analyzed in [213]. Indeed, they match the spectrum of the chiral 
operators in short representations of the NS5 brane theories. Actually, due to the fact 
that the string coupling goes to zero at the boundary of the linear dilaton solution, one 
can compute here the precise spectrum of chiral fields in the string theory, and find an 
agreement with the field theory even for finite N (stronger than the large N agreement 
that we described in section 3.2). 

As in the dualities with local quantum field theories, also here one can compute 
correlation functions by solving differential equations on the NS5 branes background 
(6.21). Since in this case the boundary is infinitely far away, it is more natural to 
compute correlation functions in momentum space, which correspond to the S-matrix 
in the background (6.21). The computation of two point functions of a scalar field 
was sketched in [213] and described more rigorously in [656]. The NS 5-brane theories 
are non-local, and this causes some differences in the matching between M theory and 
the non-gravitational NS5-brane theory in this case. One difference fro!? the previous 
cases we discussed is that in the linear dilaton backgrounds if we put a cutoff at some 
value of the radial coordinate (generalizing the discussion of [173] which we reviewed in 
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section 3.1.3), the volume enclosed by the cutoff is not proportional to the area of the 
boundary (which it is in AdS space). Thus, if holography is valid in these backgrounds 
(in the sense of having a number of degrees of freedom proportional to the boundary 
area) it is more remarkable than holography in AdS space. 

6.2 QeD 

The proposed extension of the duality conjecture between field theories and superstring 
theories to field theories at finite temperature, as described in section 3.6, opens up 
the exciting possibility of studying the physically relevant non supersymmetric gauge 
theories. Of particular interest are non supersymmetric gauge theories that exhibit 
asymptotic freedom and confinement. In this section, we will discuss an approach to 
studying pure (without matter fields) QCDp in p dimensions using a dual superstring 
description. We will be discussing mainly the cases p = 3,4. 

The approach proposed by Witten [183] was to start with a maximally supersym­
metric gauge theory on the p + 1 dimensional world volume of N Dp branes. One then 
compactifies the supersymmetric theory on a circle of radius Ro and imposes anti­
periodic boundary conditions for the fermions around the circle. Since the fermions do 
not have zero frequency modes around the circle they acquire a mass mJ f"V 1/ Ro. The 
scalars then acquire a mass from loop diagrams, and at energies much below 1/ Ro they 
decouple from the system. The expected effective theory at large distances compared 
to the radius of the circle is pure QCD in p dimensions. Note that a similar approach 
was discussed in the treatment of gauge theories at finite temperature T in section 
3.6, where the radius of the circle is proportional to I/T. The high temperature limit 
of the supersymmetric gauge theory in p + 1 dimensions is thus described by a non 
supersymmetric gauge theory in p dimensions. 

The main obstacle to the analysis is clear from the discussions of the duality between 
string theory and quantum field theories in the previous sections. The string approach 
to weakly coupled gauge theories is not yet developed. Most of the available tools 
are applicable in the supergravity limit that describes the gauge theory with a large 
number of colors and large 't Hooft parameter. In this regime we cannot really learn 
directly about QCD, since the typical scale of candidate QCD states (glueballs) is 
of the same order of magnitude (for QCD4 , or a larger scale for QCD3) as the scale 
1/ Ro of the mass of the "extra" scalars and fermions. A related issue is that at 
short distances asymptotically free gauge theories are weakly coupled and the dual 
supergravity description is not valid. Therefore, we will be limited to a discussion in 
the strong coupling region of the gauge theories and in particular we will not be able 
to exhibit asymptotic freedom. 
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One may hope that a full solution of the classical (gs = 0) string theory will provide 
a description of large N gauge theories for all couplings (in the 't Hooft limit). To 
study the gauge theories with a finite number of colors requires the quantum string 
theory. However, there is also a possibility that the gauge description is valid for weak 
coupling and the string theory description is valid for strong coupling with no smooth 
crossover between the two descriptions. In such a scenario there is a phase transition 
at A = Ac [313, 314]. This will prevent us from using the string description to study 
QCD, and will prevent classical string theory from being the master field for large N 
QCD. 

In the last part of this section we will briefly discuss another approach, based on a 
suggestion by Polyakov [46], to study non supersymmetric gauge theories via a non su­
persymmetric string description. In this approach one can exhibit asymptotic freedom 
qualitatively already in the gravity description. In the IR there are gravity solutions 
that exhibit confinement at large distances as well as strongly coupled fixed points. 

6.2.1 QCD3 

The starting point for studying QCD3 is the N' = 4 superconformal SU(N) gauge the­
ory in four dimensions which is realized as the low energy effective theory of N coincid­
ing parallel D3 branes. As outlined above, the three-dimensional non-supersymmetric 
theory is constructed by compactifying this theory on 1R3 x Sl with anti-periodic bound­
ary conditions for the fermions around the circle. The boundary conditions break su­
persymmetry explicitly and as the radius Ro of the circle becomes small, the fermions 
decouple from the system since there are no zero frequency modes. The scalar fields 
in the four dimensional theory will acquire masses at one-loop, since supersymmetry is 
broken, and these masses become infinite as Ro -t O. Therefore in the infrared we are 
left with only the gauge field degrees of freedom and the theory should be effectively 
the same as pure QCD3 . 

We will now carry out the same procedure in the dual superstring (supergravity) 
picture. As has been extensively discussed in the previous sections, the N' = 4 theory 
on 1R4 is conjectured to be dual to type lIB superstring theory on AdS5 x S5 with the 
metric (3.5) or (3.6). 

Recall that the dimensionless gauge coupling constant g4 of the N' = 4 theory is 
related to the string coupling constant gs as gJ ~ g8' In the 't Hooft limit, N -t 00 

with g~N ~ gsN fixed, the string coupling constant vanishes, gs -t O. Therefore, we 
could study the N' = 4 theory using the tree level string theory in the AdS space 
(3.6). If also gsN » 1, the curvature of the AdS space is small and th~ string theory 
is approximated by classical supergravity. 

Upon compactification on Sl with supersymmetry breaking boundary conditions, 
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(3.6) is replaced by the Euclidean black hole geometry [179, 183] 4 

ds' = a'"h"9,N (U'(h(U)dT' + t, dxi) + h(U)-1 ~~' + dO;) , (6.22) 

where r parametrizes the compactifying circle (with radius Ro in the field theory) and 

u4 

h{u) = 1 - ~ . 
u4 

(6.23) 

The Xl,2,3 directions correspond to the ]R3 coordinates of QCD3. The horizon of this 
geometry is located at u = Uo with 

1 
Uo = 2Ro . (6.24) 

The supergravity approximation is applicable for N -+ 00 and gsN » 1, so that all 
the curvature invariants are small. The metric (6.22) describes the Euclidean theory, 
the Lorentzian theory is obtained by changing 2::::::1 dx~ -+ -dt2 + dx~ + dx~. Notice 
that this is not the same as the Wick rotation that leads to the near extremal black 
hole solution (3.98). 

From the point of view of QCD3, the radius Ro of the compactifying circle provides 
the ultraviolet cutoff scale. To obtain large N QCD3 itself (with infinite cutoff), one 
has to take g~ N -+ 0 as Ro -+ 0 so that the three dimensional effective coupling 
glN = g~N/{27rRo) remains at the intrinsic energy scale of QCD3. gl is the classical 
dimensionful coupling of QCD3 • The effective dimensionless gauge coupling of QCD3 
at the distance scale Ro is therefore gs N. 

The proposal is that Type IIB string theory on the AdS black hole background (6.22) 
provides a dual description to QCD3 (with the UV cutoff described above). The limit 
in which the classical supergravity description is valid, gsN » 1, is the limit where 
the typical mass scale of QCD3, gjN, is much larger than the cutoff scale 1/ Ro. It is 
the opposite of the limit that is required in order to see the ultraviolet freedom of the 
theory. Therefore, with the currently available techniques, we can only study large N 
QCD3 with a fixed ultraviolet cutoff Rr/ in the strong coupling regime. It should be 
emphasized that by strong coupling we mean here that the coupling is large compared 
to the cutoff scale, so we really have many more degrees of freedom than just those of 
QCD3. QCD3 is the theory which we would get in the limit of vanishing bare coupling, 
which is the opposite limit to the one we are taking. 

This is analogous to, but not the same as, the lattice strong coupling expansion with 
a fixed cutoff given by the lattice spacing a (which is analogous to Ro -here). There, 

4The stability issue of this background is discussed in [657]. 
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QCD3 is obtained in the limit gja --+ 0 while strong coupling lattice QCD3 is the 
theory at large gja. An important difference in the approach that we take, compared 
to the lattice description, is that We have full Lorentz invariance in the three gauge 
theory coordinates. The regularization of the gauge theory in the dual string theory 
description is provided by a one higher dimensional theory, the theory on D3 branes. 

In the limit Ro --+ 0 the geometry (6.22) is singular. As discussed above, in this 
limit the supergravity description is not valid and we have to use the string theory 
description. 

Confinement 

As we noted before, the gauge coupling of QCD3 gj has dimensions of mass, and it 
provides a scale already for the classical theory. The effective dimensionless expansion 
parameter at a length scale l, gj(l) = 19j, goes to zero as 1 --+ O. Therefore, like QCD4 , 

the theory is free at short distances. Similarly, at a large length scale 1 the effective 
coupling becomes strong. Therefore, the interesting IR physics is non-perturbative. 

In three dimensions the Coulomb potential is already confining. This is a logarithmic 
confinement V(r) "" In(r). Lattice simulations provide evidence that in QCD3 at large 
distances there is confinement with a linear potential V (r) '" ur. 

To see confinement in the dual description we will consider the spatial Wilson loop. 
In a confining theory the vacuum expectation value of the Wilson loop operator exhibits 
an area law behavior [658] 

(W(C)) ~ exp(-uA(C)) , (6.25) 

where A( C) is the area enclosed by the loop C. The constant u is called the string 
tension. The area law (6.25) is equivalent to the quark-antiquark confining linear 

. potential V( L) "" u L. This can be simply seen by considering a rectangular loop C 
with sides of length T and L in Euclidean space as in figure 6.2. For large T we have, 
when V (L) '" uLand interpreting T as the time direction, 

(W(C)) "" exp( -TV(L)) "" exp( -uA(C)) . (6.26) 

The prescription to evaluate the vacuum expectation value of the Wilson loop oper­
ator in the dual string description has been introduced in section 3.5. It amounts to 
computing 

(W(C)) = J exp( -f.L(D)) , (6.27) 

where f.L(D) is the regularized area of the worldsheet of a string D bounded at infinity 
by C. 
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Figure 6.2: A confining quark-antiquark linear potential V( L) rv u L can be extracted 
from the Wilson loop obeying an area law (W( C)) rv exp( -uT L). 

We will work in the supergravity approximation in which (6.27) is approximated by 

(W(C)) = exp( -f1(D)) , (6.28) 

where f1(D) is the minimal area of a string worldsheet D bounded at infinity by C. 

This prescription has been applied in section 3.5 to the calculation of the Wilson 
loop in the N = 4 theory which is not a confining theory. Indeed, it has been found 

. there that it exhibits a Coulomb like behavior. The basic reason was that when we 
scaled up the loop C by xi -+ o:xi with a positive number 0:, we could use conformal 
invariance to scale up D without changing its (regularized) area. Therefore D was not 
proportional to A(C). When scaling up the loop the surface D bends in the interior of 
the AdS space. In the case when such a bending is limited by the range of the radial 
coordinate one gets an area law. This is the case in the models at hand, in which the· 
coordinate u in (6.22) is bounded from below by Uo as in figure 6.3. 

The evaluation of the classical action of the string worldsheet bounded by the loop C 
at infinite u is straightforward, as done in section 3.5 [325, 659]. The string minimizes 
its length by going to the region with the smallest possible metric component gii (where 
i labels the 1R3 directions), from which it gets the contribution to the string tension. 
The smallest value of gii in the metric (6.22) is at the horizon. Thus, we find that 
the Wilson loop exhibits an area law (6.25), where the string tension is given by the 
gii component of the metric (6.22) evaluated at the horizon u = Uo times a numerical 
factor 2

1
'/r : 

(6.29) 
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Figure 6.3: The worldsheet of the string D is bounded at infinite u by the loop C. 
The string tends to minimize its length by going to the region with smallest metric 
component gii, which in this case is near the horizon u = uo. The energy between the 
quark and the antiquark is proportional to the distance L between them and to the 
string tension which is a = 2~gii(UO)' 

The way supergravity exhibits confinement has an analog in the lattice strong cou­
pling expansion, as first demonstrated by Wilson [658]. The leading contribution in 
the lattice strong coupling expansion to the string tension is the minimal tiling by pla­
quettes of the Wilson loop C as we show in figure 6.4. This is analogous to the minimal 
area of the string worldsheet D ending on the loop' C in figure 6.3. One important 
difference is that in the supergravity description the space is curved. Of course, a 
computation analogous to the Wilson loop computations we described in section 3.5 
which would be done in flat space would also exhibit confinement, since the minimal 
area of the string worldsheet D ending on the loop C is simply the area enclosed by 
the loop itself. 

The quark-antiquark linear potential V = a L can have corrections arising from the 
fluctuations of the thin tube (string) connecting the quark and antiquark. Luscher 
studied a leading correction to the quark-antiquark potential at large separation L. 
Within a class of bosonic effective theories in flat space that describe the vibrations of 
the thin flux tubes he found a universal term, -c/ L, called a Luscher term [660] : 

V = aL - c/L . (6.30) 

For a flux tube in d space-time dimensions c = (d - 2)/247r. Lattice QeD calculations 
of the heavy quark potential have not provided yet a definite confirmation of this 
subleading term. This term can also not been seen order by order in the lattice strong 
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Figure 6.4: The leading contribution in the lattice strong coupling expansion to the 
string tension is the minimal tiling by plaquettes of the Wilson loop C. 

coupling expansion. Subleading terms is this expansion are of the non minimal tiling 
type, as in figure 6.5, and correct only the string tension but not the linear behavior 
of the potential. 

Figure 6.5: Subleading contribution in the lattice strong coupling expansion to the 
string tension, which is a non minimal tiling of the Wilson loop. This is the lattice 
analog of the fluctuations of the string worldsheet. 

The computation of the vacuum expectation value of the Wilson loop (6.28) based 
on the minimal area of the string worldsheet D does not exhibit the Luscher term 
[661]. This is not surprising. Even if the the Luscher term exists in QCD3 , it should 
originate from the fluctuations of the string worldsheet (6.27) that have not been taken 
into account in (6.28). Some analysis of these fluctuations has been done in [298], but 
the full computation has not been carried out yet. 

Other works on confinement as seen by a dual supergravitydescription are [662, 663, 
664,297]. 
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Mass Spectrum 

If the dual supergravity description is in the same un.iversality Class as QCD3 it should 
exhibit a mass gap. In the following we will demonstrate this property. We will also 
compute the spectrum of lowest glueball masses in the dual supergravity description. 
They will resemble qualitatively the strong coupling lattice picture. We will also discuss 
a possible comparison to lattice results in the continuum limit. 

The mass spectrum in pure QCD can be obtained by computing the correlation 
functions of gauge invariant local operators (glueball operators) or Wilson loops, and 
looking for the particle poles. As we discussed extensively before, correlation functions 
of local operators are related (in some limit) to tree level amplitudes in the dual su­
pergravity description. We will consider the two point functions of glue ball operators 
o (for instance, we could take 0 = Tr(F 2

)). For large Ix - yl it has an expansion of 
the form 

(6.31 ) 

where Mi are called the glueball masses. 

We will classify the spectrum of glueballs by JPc where J is the glueball spin, Pits 
parity and C its charge conjugation eigenvalue. The action of C on the gluon fields is 
[665] 

(6.32) 

where the Ta's are the hermitian generators of the gauge group. In string theory, 
charge conjugation corresponds to the world sheet parity transformation changing the 
orientation of the open strings attached to the D-branes. 

Consider first the lowest mass glueball state. It carries 0++ quantum numbers. 
One has to identify a corresponding glueball operator, namely a local gauge invariant 
operator with these quantum numbers. The lowest dimension operator with these 
properties is Tr(F2), and we have to compute its two point function. To do that we 
need to identify first the corresponding supergravity field that couples to it as a source 
at infinite u. This is the Type lIB dilaton field cJ>. 

The correspondence between the gauge theory and the dual string theory picture 
asserts that in the SUGRA limit the computation of the correlation function amounts 
to solving the field equation for cJ> in the AdS black hole background (6.22), 

(6.33) 

In order to find the lowest mass modes we consider solutions of cJ> which are inde­
pendent of the angular coordinate rand take the form cJ> = f( u )eikx

. Plugging this in 
(6.33) we obtain the differential equation -" 

(6.34) 
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The eigenvalues M2 of this equation are the glueball masses squared. 

At large II equation (6.34) has two independent solutions, whose asymptotic behavi<?r 
is I rv constant and I rv l/u4 • We consider normaJizable solutions and choose the 
second one. Regularity requires the vanishing of the derivative of I( u) at the horizon. 
The eigenvalues M2 can be determined numerically [666, 667, 668], or approximately' 
via WKB techniques [666, 669]. 

One finds that: 
(i) There are no solutions with eigenvalues M2 :::; O. 
(ii) There is a discrete set of eigenvalues M2 > O. 

This exhibits the mass gap property of the supergravity picture. In fact, even without 
an explicit solution of the eigenvalues M2 of equation (6.34), the properties (i) and (ii) 
can be deduced from the structure of the equation, and the requirement for normalizable 
and regular solutions [183]. 

The 0++ mass spectrum in the WKB approximation closely agrees with the more 
accurate numerical solution. It takes the form 

M2 rv 1.44n(n + 1) 
0++ rv m ' n = 1,2,3"" . (6.35) 

The mass spectrum (6.35), that corresponds to a massless mode of the string in ten 
dimensions, is proportional to the cutoff 1/ flo and not to (51/2, which is bigger by a 
power of gsN (6.29). This is qualitatively similar to what happens in strong coupling 
lattice QCD with lattice spacing a. As we will discuss in the next section, in the strong 
coupling lattice QCD description the lowest masses of glueballs are proportional to 1/ a. 
Note that in a stringy description of QCD we would ex'pect the glueballs to correspond 
to string excitations, which are expected to have masses of order (51/2. Therefore in the 
supergravity limit, gsN » 1, the glueballs that correspond to the string excitations 
are much heavier than the "supergravity glueballs" which we analyzed. 

The natural scale for the glueball masses of continuum QCD3 is g~N. Therefore 
to get to the continuum QCD3 region we have to require g~N « 1/ flo which implies 
gsN «1. As discussed above, our computation is performed in the opposite limit 
gsN» 1. In particular, we do not have control over possible mixing between glueball 
states and the other scalars and fermionic degrees of freedom which are at the same 
mass scale 1/ flo in the field theory. ' 

We can attempt a numerical comparison of the supergravity computations with the 
continuum limit of lattice QCD, obtained by taking the bare coupling to zero. Since 
these are computations at two different limits of the coupling value (of the original 
N = 4 theory) there is apriori no reason for any agreement. Curiously; it turns out 
that ratios of the glueball excited state masses with n > 1 in (6.35) and the lowest mass 
n = 1 state are in reasonably good agreement with the lattice computations (within 
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the systematic and statistical error bars) [666, 670]. 

As a second example consider the spectrum of 0-- glueball masses. It can be com­
puted via the field equations of the NS-NS 2-form field. The details of the computation 
can be found in [666] and, as in the 0++ case, the ratios of the glueball masses are found 
to be in good agreement with the lattice computations. 

In closing the numerical comparison we note another curious agreement between the 
supergravity computation and the weak coupling lattice computations. This is for the 
ratio of the lowest mass 0++ and 0-- glueball states, 

( MMa--) = 1.50, 
a++ supergravity 

(Za u

) = 1.45 ± 0.08 . 
a++ lattice 

(6.36) 

As stressed above, the regime where we would have liked to compute the mass 
spectrum is in the limit of small gsN (or large ultraviolet cutoff 1/ Ro). In this limit 
the background is singular and we have to use the string theory description, which· 
we lack. We can compute the subleading correction in the strong coupling expansion 
to the masses. This requires the inclusion of the cP corrections to the supergravity' 
action. The typical form of the masses is 

M2 = Co + cla,3/ Jl6 
R'6 ' (6.37) . 

with Co as in (6.35). The background metric is modified by the inclusion of the a,31?,.4 

string correction to the supergravity action. The modified metric has been derived in 
[288,671]. Based on this metric the corrections to the'masses Cl have been computed in 
[666]. While these corrections significantly change the glueball masses, the corrections 
to the mass ratios turn out to be relatively small. 

Lattice computations may exhibit lattice artifacts due to the finite lattice spacing. 
Removing them amounts to taking a sufficiently small lattice spacing such that effec­
tively the right physics of the continuum is captured. Getting close to the continuum 
means, in particular, that deviations from Lorentz invariance are minimized. 

Analogous "artifacts" are seen in the dual supergravity description. They correspond 
to Kaluza-Klein modes that are of the same mass scale as the glue ball mass scale. There 
are Kaluza-Klein modes from the circle coordinate r in (6.22) that provides the cutoff 
to the three dimensional theory. They have a typical mass scale of order 1/ Ro. There 
are also SO(6) non-singlet Kaluza-Klein modes from the five-sphere in (6.22). In the 
field theory they correspond to operators involving the SO(6) non-singlet scalar and 
fermion fields of the high-energy theory. They have a mass scale of order 1/ Ro too. 

The inclusion of the subleading a,3 correction does not make the Kaluza-Klein modes 
sufficiently heavy to decouple from the spectrum [672, 666]. This means that the dual 
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supergravity description is also capturing physics of the higher dimensions, or of the 
massive scalar and fermion fields from the point of view of QCD3 • One hopes that upon 
inclusion of all the a' corrections, and taking the appropriate limit of small gsN (or 
large cutoff 1/ Ro), these Kaluza-Klein modes will decouple from the system and leave 
only the gauge theory degrees of freedom. Currently, we do not have control over the 
ex' corrections, which requires an understanding of a two dimensional sigma model with 
a RR background. In section 6.2.3 we will use an analogy with lattice field theory to 
improve on our supergravity description and remove some of the Kaluza-Klein modes. 

6.2.2 QCD4 

One starting point for obtaining QCD4 is the (2,0) superconformal theory in six dimen­
sions realized on N parallel coinciding M5-branes, which was discussed in section 6.l. 
The compactification of this theory on a circle of radius Rl gives a five~dimensional the­
ory whose low-energy effective theory is the maximaJly supersymmetric SU(N) gauge 
theory, with a gauge coupling constant gi = 21r R l . To obtain QCD4 , one compactifies 
this theory further on another SI of radius Ro. The dimensionless gauge coupling con­
stant g4 in four dimensions is given by g~ = gi/(21r Ro) = Rd Ro. As in the previous 
case, to break supersymmetry one imposes the anti-periodic boundary condition on the 
fermions around the second SI. And, as in the previous case, to really get QCD4 we 
need to require that the typical mass scale of QCD states, AQCD , will be much smaller 
than the other mass scales in our construction (1/ Rl and 1/ Ro), and this will require 
going beyond the supergravity approximation. However, one can hope that the theory 
obtained from the supergravity limit will be in the same universality class as QCD4 , 

and we will give some evidence for this. 

As discussed in section 6.1, the large N limit of the six-dimensional theory is M 
theory on AdS7 x S4. Upon compactification on the two circles and imposing anti­
periodic boundary conditions for the fermions on the second SI, we get M theory on 
a black hole background [183]. Taking the large N limit while keeping the 't Hooft 
parameter 21r A = g~ N finite requires Rl « Ro. We can now use the duality between 
M theory on a drcle and Type IIA string theory, and the M5 brane wrapping on the 
SI of radius Rl becomes a D4 brane. The large N limit of QCD4 then becomes Type 
IIA string theory on the black hole geometry given by the metric 

ds2 = 23
1r 

Au (4U 2 t dx~ + 42 u2(1 _ u~ )dr2 + 4 du
2 

6 + dn~) 
Uo i=1 9uo u u2(1~~) 

(6.38) 

with a non constant dilaton background 

(6.39) 
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The coordinates xi,i = 1, .. ,4, parametrize the 1R4 gauge theory space-time, the coor­
dinate Uo ~ U ~ 00, and T is an angular coordinate with period 27r. The location of 
the horizon is at u = uo, which is related to the radius Ro of the compactifying circle 
as 

1 
Uo = 3Ro . (6.40) 

Equivalently, we could have started with the five dimensional theory on the world­
volume of N D4 branes and heated it up to a finite temperature T = 1/27r Ro. Indeed, 
the geometry (6.38) with the dilaton background (6.39) is the near horizon geometry 
of the non-extremal D4 brane background. But again, when we Wick rotate (6.38) 
back to Lorentzian signature we take one of the coordinates Xi as time. Notice that 
the string coupling (6.39) goes as 1/ N. 

Confinement 

QCD4 at large distances is expected to confine with a linear potential V(r) '" (Jr 
between non-singlet states. Therefore, the vacuum expectation value of the Wilson 
loop operator is expected to exhibit an area law behavior. In order to see this in the 
dual description we follow the same procedure as in QCD3 . 

The string tension (J is given by the coefficient of the term 2:t=l dx; in the metric 
(6.38), evaluated at the horizon u = Uo, times a 2~ numerical factor: 

4 2 4), 
(J = 3).uo = 27m. (6.41) 

In QCD4 it is believed that confinement is a consequence of the condensation of 
magnetic monopoles via a dual Meissner effect. Such a mechanism has been shown to 
occur in supersymmetric gauge theories in four dimensions [673]. This has also been 
demonstrated to some extent on the lattice via the implementation of the 't Hooft 
Abelian Projection [674]. We will now see that this appears to be the mechanism also 
in the dual string theory description [291]. 

Consider the five dimensional theory on the world volume of the D4 branes. A 
magnetic monopole is realized as a D2 brane ending on the D4 brane [163]. It is 
a string in five dimensions. Upon compactification on a circle, the four dimensional 
monopole is obtained by wrapping the string on the circle. We can now compute 
the potential between a monopole and anti-monopole. This amounts to computing the 
action of a D2-brane interpolating between the mo:q.opole and the anti-monopole, which 
mediates the force between them as in figure 6.6( a). This is the electric-magnetic dual 
of the computation of the quark-anti-quark potential described above. -

If the pair is separated by a distance L in the Xl direction, and stretches along the 
X2 direction (which we can interpret as the Euclidean time), the D2 brane coordinates 
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are T, Xl, X2. The action per unit length in the X2 direction is given by 

(6.42) 

where G is the induced metric on the D2 brane worldvolume. We have to find a 
configuration of the D2-brane that minimizes (6.42). For L > Lc where (up to a 
numerical constant) Lc rv Ro, there is no minimal volume D2 brane configuration 
that connects the monopole and the anti-monopole and the energetically favorable 
configuration is as in figure 6.6(b). Therefore there' is no force between the monopole 
and the anti-monopole, which means that the magnetic charge is screened. At length 
scales L » Ro we expect pure QCD4 as the effective description. We see that in this 
region confinement is accompanied by monopole condensation, as we expect. 

___ ---' .. ~Xl 

(a) 

• .. 
L<Lc 

, , , · · (b) · · , · · · , , , 
• ... 

L>Lc 

Figure 6.6: The magnetic monopole is a string in five dimensions and the four di­
mensional monopole is obtained by wrapping the string on the circle. The potential 
between a monopole (wrapped on cd and an anti-monopole (wrapped in the opposite 
orientation on C2), separated by a distance L in the Xl direction, amounts to computing 
the action of a D2-brane which mediates the force between them as in figure (a). For 
L > Lc there is no minimal volume D2 brane configuration that connects the monopole 
and the anti-monopole and the energetically favorable configuration is as in figure (b), 
and then the magnetic charge is screened. 
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() Vacua 

In addition to the gauge coupling, four dimensional gauge theories have an additional 
parameter () which is the coefficient of the Tr(F /\ F) term in the Lagrangian. The () 
angle dependence of asymptotically free gauge theories captures non trivial dynamical 
information about the theory. Unlike in spontaneously broken gauge theories, it cannot 
be analyzed by an instanton expansion. What is required is an appropriate effective 
description of the theories at long wavelengths. Such an effective description is provided 
by the lattice. However, since the Lorentz invariance is lost by the discretization of 
space time, it is very difficult to study questions such as the behavior of the system 
under () -t () + 2rr. Also, the construction of instantons which are the relevant objects 
in the analysis of the () dependence is a rather non trivial task and involves delicate 
cooling techniques. 

Another effective description may be provided by the description of the four dimen­
sional gauge theories by the M5 brane wrapping a non supersymmetric cycle. Indeed, 
in this formalism, one sees that the vacuum energy exhibits the correct () angle behavior 
in softly broken supersymmetric gauge theories [675]. 

In this subsection we use the dual string theory description to analyze the () angle 
dependence in large N SU(N) gauge theory [676]. Since the amplitude for an instanton 
is weighted by a factor exp( -8rr2 N j)..) where ).. is the 't Hooft parameter (which we 
keep fixed), it naively seems that the instanton effects vanish as N -t 00. However, 
unlike the N = 4 gauge theory for instance, here one expects this not to be the case 
due to IR divergences in the theory. 

Let us first review what we expect the behavior of the () dependence to be from the 
field theory viewpoint. The Yang-Mills action is 

f 4 N 2 () -
IYM = d xTr(4).. F + 16rr2 F F) . (6.43) 

At large N we expect the energy of the vacuum to behave like E(()) = N2C(()jN). The 
N 2 factor is due to the fact that this is the order of the number of degrees of freedom 
(this also follows from the standard scaling of the leading diagrams in the 't Hooft /" 
limit). The dependence on ()jN follows from (6.43) as is implied by the large N limit/· 
() is chosen to be periodic with period 2rr. Since the physics should not c~ange under 
() -t () + 2rr we require that E(() + 2rr) = E(()). 

These conditions cannot be satisfied by a smooth function of () j N. They can be 
satisfied by a multibranched function with the interpretation that there are N inequiv­
alent vacua, and all of them are stable in the large N limit. The vacuum energy is 
then given by a minimization of the energy of the kth vacuum Ek with -respect to k 

E(()) = min Ek (()) = N 2 minC((() + 2rrk)jN) , 
k k 

(6.44) 
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for some function C( 0) which is quadratic in 0 for small values of O. 

E 

---

--~=---~------~-+~~-----=----=---~ e 
- 2lt -It It 2lt 

Figure 6.7: The energy of the vacuum is expected to be a multibranched function. 

The function E( 0) is periodic in 0 and jumps at some values of 0 between different 
branches. The CP transformation acts by 0 -+ -0 and is a symmetry only for 0 = 0, rr. 
Therefore, C(O) = C( -0). One expects an absolute minimum at 0 = 0 and a non 
vanishing of the second derivative of E( 0) with respect to 0, which corresponds to the 
topological susceptibility Xt of the system as we will discuss later. Taking all these 
facts into account one conjectures in the leading order in 1/ N that [677] 

E(O) ~ Xt min(O + 2rrk)2 + O(I/N) , 
k 

(6.45) 

where Xt is positive and independent of N. At 0 = rr the function exhibits the jump 
between the vacua at k = 0 and k = -1 and the spontaneous breaking of CP invariance. 

In order to analyze the 0 dependence in the dual string theory description with the 
background (6.38) we have to identify the 0 parameter. This is done by recalling that 
the effective Lagrangian of N D4 branes in Type IIA string theory has the coupling 

~2 ! d5 xc;
pa(ho Ap Tr(Faf3F-yo) , 

16rr 
(6.46) 

where A is the Type IIA RR I-form and F is the U(N) gauge field strength on the 
five dimensional brane worldvolume. Upon compactification of the D4 brane theory on 
a circle we see that the four dimensional 0 parameter is related to the integral of the 
RR I-form on the circle. Since it is a ten dimensional field it is a parameter from the 
worldvolume point of view. 

In the dual description we define the parameters at infinite u. The 0 parameter is 
defined as the integral of the RR I-form component on the circle at infinite u 

o = ! drAT = 2rrA~ , 

which is defined modulo 2rrk, k EZ. 
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The action for the RR I-form takes the form 

I = ~ f d1OxJg~gaa'g(3(3' (8aA(3 - 8(3Aa){ 8a,A(3' - 8(3,Aa,)' , 
2/'\:10 4 

(6.48) 

and the equation of motion for A is 

(6.49) 

The required solution AT ( u) to (6.49), regular at u = Uo and with vanishing field 
strength at infinite u (in order to have finite energy), takes the form 

(6.50) 

Evaluating the Type IIA action for the RRI-form (6.48) with the solution (6.50) and 
recalling the 27rZ ambiguity we get the vacuum energy (6.45) where Xt is independent 
of N [676]. 

In order to check that the vacua labeled by k are all stable in the limit N -+ 00 we {, 
need a way to estimate their lifetime. The domain wall separating two adjacent vacua. 
is constructed by wrapping a D6 brane of Type IIA string theory on the S4 part of the 
metric [676]. Since the energy density of the brane at weak coupling is of order 1/ gs 
where gs is the Type IIA string coupling, as N -+ 00 (with fixed gsN) it is of order N. 
If we assume a mechanism for the decay of a, k-th vacuum via a D6 brane bubble, its 
decay rate is of the order of e-N . Thus, there is an infinite number of stable vacua in ' 
the infinite N limit. 

One can repeat the discussion of confinement in the previous subsection for (J =1= O. 
When (J = 27rp/ q with co-prime integers p, q the confinement is associated with a 
condensation of (-p, q) dyons and realizes the mechanism of oblique confinement. 

Mass Spectrum 

The analysis of the mass spectrum of QCD4 as seen by the dual description in the 
supergravity limit is similar to the one we carried out for QCD3 . It is illuminating to 
consider an analogous picture of strong coupling lattice QCD [291]. 

In strong coupling lattice QCD the masses of the lightest glueballs are of order 1/ a 

where a is the lattice spacing. The reasoning is that in strong coupling lattice QCD 
the leading contribution to the correlator of two Wilson loops separated by distance L 
is from a tube with the size of one plaquette, as in figure 6.8, that connects the loops. 
With the Wilson lattice action the 0++ glueball mass is given by [678] -

Mo++ = -410g(g~N)a-l . (6.51) 
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Figure 6.8: The leading contribution in strong coupling lattice QCD to the correlator 
of two Wilson loops, separated by distance L, is from a tube with the size of one 
plaquette that connects the loops. This leads to the lowest mass glueballs having a 
mass of the order of 1/ a, where a is the lattice spacing. 

To make the connection with continuum QCD4 we would like to sum the lattice 
strong coupling expansion Mo++ = F(glN)a- 1

, and take the limit a -+ 0 and g4 -+ 0 
with 

1 
9 2 N rv as a -+ 0 , 

4 - blog(l/aAQcD ) 
(6.52) 

where g4 is the four dimensional coupling and b is the first coefficient of the ,B-function. 
We hope that in the limit (6.52) we will get a finite glueball mass measured in AQCD 

units. 

In the dual string theory description the analog of a is Ro. The strong coupling 
expansion is analogous to the 0' expansion of string theory. Supergravity is the leading 
contribution in this expansion. The lowest glueball masses Mg correspond to the zero 
modes of the string, and their mass is proportional to 1/ Ro. Another way to see that 
this limit resembles the strong coupling lattice QCD picture is to consider the Wilson 
loop correlation function (W(Ct)W(C2 )) as in figure 6.9(a). 

For L > Le, where L is the distance between the loops and Le is determined by the 
size of the loops, there is no stable string worldsheet configuration connecting the two 
loops, as in figure 6.9(b). The string worldsheet that connects the loops as in figure 
6.10(a) collapses and the two disks are now connected by a tube of string scale size as 
in figure 6.1 O(b), resembling the strong coupling lattice QCD picture. The correlation 
function is then mediated by a supergraviton exchange between the disks. Thus, the 
supergravitons are identified with the glueball states and the lowest glueball masses 
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turn out to be proportional to liRa [291J. 

L<Lc L>Lc 

u=uo (a) (b) 

Figure 6.9: The Wilson loop correlation function in figure (a) is computed by mini­
mization of the string worldsheet that interpolates between them. When the distance 
between the loops L is larger than Lc there is no stable string worldsheet configuration 
connecting the two loops as in figure (b). 

As in strong coupling lattice QCD, to make the connection with the actual QCD4 

theory we need to sum the strong coupling expansion Mg = F(g~N)1 Ro and take the 
limit of Ra ---+ 0 and g4 ---+ 0 with 

1 
g~ N ---+ I ) as Ro ---+ 0 . blog(l RoAQCD 

(6.53) 

Again, we hope that in the limit (6.53) we will get a finite glueball mass proportional 
to AQCD . 

In the limit (6.53) the background (6.38) is singular. Thus, to work at large N in 
this limit we need the full tree level string theory description and not just the SUGRA 
limit. The supergravity description will provide us with information analogous to 
that of strong coupling lattice QCD with a finite cutoff. However, since as discussed 
before the regularization here is done via a higher dimensional theory, we will have the 
advantage of a full Lorentz invariant description in four dimensions. What we should 
be worried about is whether we, capture the physics of the higher dimensions as well 
(which from the point of view of QCD4 correspond to additional charged fields). 

In order to compute the mass gap we consider the scalar glueball 0++. The 0++ 
glueball mass spectrum is obtained by solving the supergravity equation for any mode 
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(a) 

(b) 

L>Lc . 

C I 0 supergraviton 0 C2 ----------------------- -~-

Figure 6.10: The string worldsheet that connects the loops in figure ( a) collapses and 
the two disks are now connected by a tube of a string scale as in figure (b). The 
correlation function is mediated by a supergraviton exchange between the disks and 
the supergravitons are identified with the glueball states. 

f that couples to 0++ glueball operators; we expect (and this is verified by the calcu­
lation) that the lightest glueball will come from a mode that couples to the operator 
Tr(F 2

). There are several steps to be taken in order to identify this mode and its 
supergravity equation. First, we consider small fluctuations of the supergravity fields 
on the background (6.38), (6.39). The subtlety that arises is the need to disentangle 
the mixing between the dilaton field and the volume' factor which has been done in 
[679]. One then plugs the appropriate "diagonal" combinations of these fields into the 
supergravity equations of motion. The field/operator identification can then be done 
by considering the Born-Infeld action of the D4 brane in the gravitational background. 

To compute the lowest mass modes we consider solutions of the form f = f( u )eikx 

which satisfy the equation 

(6.54) 

The eigenvalues M2 are the glueball masses. The required solutions are normalizable 
and regular at the horizon. The eigenvalues M2 can be determined numerically [679] 
or approximately via WKB techniques [669]. 

As in QCD3 one finds that: 
(i) There are no solutions with eigenvalues M2 ~ o. 
(ii) There is a discrete set of eigenvalues M2 > o. 

This exhibits the mass gap property of the supergravity picture. 
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The 0++ mass spectrum in the WKB approximation closely agrees with the more 
accurate numerical solution. It takes the form 

M2 '" 0.74n(n + 2) 
'" R5 ' n=I,2,3,··· (6.55) 

As in QCD3 , the ratios of the glueball excited state masses with n > 1 in (6.55) and the 
lowest mass n = 1 state are in good agreement with the available lattice computations 
[679, 666]. 

As another example consider the 0-+ glueballs. The lowest dimension operator with 
these quantum numbers is Tr(F F). As we discussed previously, on the D4 brane 
world volume it couples to the RR I-form AT (6.46). Its equation of motion is given by 
(6.49). We look for solutions of the form AT = fT(u)e ikx . Plugging this into (6.49) we 
get. 

(6.56) 

As for the 0++ glueball states, the ratios of the 0-+ glue ball masses are found to be in t 

good agreement with the lattice computations [679]. 

Finally, we note that the ratio of the lowest masses 0++ and 0-+ glueball states [679] 

(
Mo-+) 
Mo++ supergravity 

1.20, 

(
Mo-+ ) 
Mo++ lattice 

= 1.36 ± 0.32 , (6.57) 

agrees with the lattice results too. Similar types of agreements in mass spectrum 
computations were claimed in strong coupling lattice QCD [680]. However, note that 
(as discussed above for QCD3 ) other ratios, such as the ratio of the glueball masses to 
the square root of the string tension, are very different in the SUGRA limit from the 
results in QCD. 

The computation of the mass gap in the dual supergravity picture is in the opposite 
limit to QCD. As in the supergravity description of QCD3 , also here the Kaluza-Klein 
modes do not decouple. In this approach, in order to perform the computation in the 
QCD regime we need to use string theory. The surprising agreement of certain mass 
ratios with the lattice results may be a coincidence. Optimistically, it may have an 
underlying dynamical reason. 

Confinement-Deconfinement Transition 

We will now put the above four dimensional QCD-like theory at a finit-e temperature 
T (which should not be confused with 2?r~). We will see that there is a deconfinement 
transition. In order to consider the theory at finite temperature we go to Euclidean 
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space and we compactify the time direction tE on a circle of radius {3 with antiperiodic 
fermion boundary conditions. Since we already had one circle (labeled by T in (6.38)), 
we now have two circles with antiperiodic boundary conditions. So, we can have 
several possible gi·avity solutions. One is the original extremal D4 brane, another 
is the solution (6.38) and a third one is the same solution (6.38) but with T and 
tE interchanged. These last two solutions are possible only when the fermions have 
antiperiodic boundary conditions on the corresponding circles. One of the last two 
solutions always has lower free energy than the first, so we concentrate on these last 
two. 

It turns out that the initial solution (6.38) has the lowest free energy for low tem­
peratures, when {3 = liT> 27r Ro, while the one with T +-+ tE has the lowest free 
energy for {3 = liT < 27rRo (high temperatures). The entropy of these two solutions 
is very different, and therefore there is a first order phase transition, in complete anal­
ogy with the discussion in section 3.6. We do not know of a proof that there are no 
other solutions, but these two solutions have different topological properties, so there 
cannot be a smoothly interpolating solution. In any case, for very low and very high 
temperatures they are expected to be the dominant configurations (see [657])5. The 
entropy of the the high temperature phase is of order N 2 , while the entropy of the low 
temperature phase is essentially zero since the number of states in the gravity picture 
is independent of the Newton constant. 

If we compute the potential between a quark and an antiquark then in the low 
temperature phase it grows linearly, so that we have confinement, while in the high 
temperature phase the strings coming from the external quarks can end on the horizon, 
so that the potential vanishes beyond a certain separation. Thus, this is a confiriement­
deconfinement transition. It might seem a bit surprising at first sight that essentially 
the same solution can be interpreted as a confined and a deconfined phase at the same 
time. The point it that quark worldlines are timelike, therefore they select, one of 
the two circles, and the physical properties depend crucially on whether this circle is 
contractible or not in the full ten-dimensional geometry. 

Other Dynamical Aspects 

In this subsection we comment on various aspects of QCD4 as seen by the string 
description. We first show how the baryons appear in the dual string theory (M theory) 
picture. We will then compute other properties of the QCD vacuum, the topological 
susceptibility and the gluon condensate, as seen in the dual description. 

Baryons 

5There are other singular solutions [614], but the general philosophy is that we do not allow singular 
solutions unless we can give a physical interpretation for the singularity. 
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The baryon is an SU(N) singlet bound state of N quarks. Since we do not have 
quarks in our theory, we need to put in external quarks as described in section 3.5, 
and then there is a baryon operator coupling N external quarks. As in the conformal 
case, also here it can be constructed as N open strings that end on a D4 brane that is 
wrapped on S4 [291, 214], as in figure 6.11. If we view this geometry as arising from 
M-theory, then the strings are M2 branes wrapping the circle with periodic fermion 
boundary conditions and the D4 brane is an M5 fivebrane also wrapping this circle. 
Then, N M2 branes can end on this M5 brane as in [214]. There is a very similar 
picture of a barYOJi in strong coupling lattice QCD as is depicted in figure 6.12, where 
quarks are connected by flux links to a vertex. 

U=UO 

Figure 6.11: The baryon is an SU(N) singlet bound state of N quarks. It is constructed 
as N open strings that join together at a point in the bulk AdS black hole geometry. 

Several aspects of baryon physics can be seen from the string picture of figure 6.11 
[214, 291]. The baryon energy is proportional to the string tension (6.41) and (in the 
limit of large distances between the quarks) to the sum of the distances between the N 
quark locations and the location of the baryon vertex in the four dimensional x-space 
[291, 389, 390]. (There is some subtlety in evaluating the baryon energy, and it was 
clarified in [391] in the case of N = 4 gauge theory. See also [392, 396].) We may 
consider the baryon vertex as a fixed (non-dynamical) point in the Born Oppenheimer 
approximation. In such an approximation, the N quarks move independently in the 
potential due to the string stretched between them and the vertex. The baryon mass 
spectrum can be computed by solving the one body problem of the quark in this 
potential. Corrections to this spectrum can be computed by taking into account the 
potential between the quarks and the dynamics' of the vertex. A similar analysis has 
been carried out in the flux tube model [681] based on the Hamiltonian strong coupling 
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Figure 6.12: A baryon state in strong coupling lattice QCD. The quarks located at 
lattice sites are connected by flux links to a vertex. A similar picture is obtained by 
projecting the baryon vertex in figure 6.11 on x space. 

lattice formulation [682]. 

In a confining theory we do not expect to see a· baryonic configuration made from 
k < N quarks. This follows for the above description. If we want to separate a quark 
we will be left with a string running to infinity, which has infinite energy. 

Topological Susceptibility 

The topological susceptibility Xt measures the fluctuations of the topological charge 
of the QCD vacuum. It is defined by 

Xt = (16~2)2 J d4 x(Tr(F F(x))Tr(F F(O))) . (6.58) 

At large N the Witten-Veneziano formula [683, 684] relates the mass m7)1 in SU(N) 
Yang-Mills gauge theory with Nf quarks to the topologicCi,1 susceptibility of SU(N) 
Yang-Mills theory without quarks: 

(6.59) 

Equation (6.59) is applicable at large N where {; '" N. In this limit m7)1 goes to zero 
and we have the r!, - 7r degeneracy. 

Nevertheless, plugging the phenomenological values Nf = 3, N = 3, m7)1 '" 1 GeV, J1r '" 
0.1 GeV in (6.59) leads to a prediction Xt r"V (180 M eV)\ which is in surprising agree-
ment with the lattice simulation for a finite number of colors [685]. ~ 

Evaluating the 2-point function from the type IIA SUGRA action for the RR I-form 
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(6.48) with the solution (6.50), we get the topological susceptibility 

2.A3 

(6.60) 

The supergravity result (6.60) depends on two parameters, .A and Ro. This is the 
leading asymptotic behavior in 1/.A ofthe full string theory expression Xt '" (F(.A)/ Ro)4. 
We would have liked to compute F(.A), take the limit (6.53) and compare to the lattice 
QeD result. However, this goes beyond the currently available calculational tools. 

It may be instructive, though, to consider the following comparison. Let us assume 
that there is a cross-over between the supergravity description and the continuum 
QeD description. We can estimate the cross-over point. In perturbative QeD we find 
F(.A)", e- l21r / ll -\ therefore the cross-over point (to the F '" .A3 / 4 behavior of (6.60)) 
can be estimated to be at .A '" 12rr /11. Also, since the mass scale in the QeD regime is 
AQCD, at the cross-over point T = 1/2rrRo '" A QCD '" 200 MeV. Of course, we should 
bear in mind that at the cross-over point both the supergravity and perturbative QeD 
are not applicable descriptions. If we compare the topological susceptibility (6.60) at 
the correspondence point with the lattice result we get 

(X~UGRA) 1/4 _ 
X-rattice - 1.7 . (6.61 ) 

It may be an encouraging sign that the number we get is of order one, though its level 
of agreement is not as good as the mass ratios of the glueball spectrum. 

Gluon Condensation 

The gluon condensate (~Tr(F2(0))) is related by the trace anomaly to the energy 
density TJ1.J1. of the QeD vacuum. In the supergravity picture the one point function of 
an operator corresponds to the first variation of the supergravity action. This quantity 
is expected to vanish by the equations of motion. However, the first variation is only 
required to vanish up to a total derivative t~rm. Since asymptotically anti-de Sitter 
space has' a time-like boundary at infinity, there is a possible boundary contribution. 
Indeed, unlike the N = 4 case, the one point function of the Tr( F2) operator in the 
dual string theory description of QeD does not vanish. 

It can be computed either directly or by using th~ relation between the thermal 
partition function and the free energy Z(T) = exp( -F /T). This relates the free 
energy associated with the string theory (supergravi ty) background to the expectation 
value of the operator Tr(F2

). One gets [679] 

1 2 ( ) 1 N
2 

2 
(4g~ Tr(FJ1.v 0 )) = 8rr TO' . (6.62) , 
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The relation (6.62) between the gluon condensate and the string tension is rather 
general and applies for other regular backgrounds that are possible candidates for a 
dual description [686]. 

If we attempt again a numerical comparison with the lattice computation [687, 688] 
we find at the cross-over point 

( 

SUGRA) 1/4 ..:...( G_Iu_o_n_c_o_n_d_e_n_sa_t_e..:...) -;--:-~ = 
Lattice 0.9 . 

(Gluon condensate) 
(6.63) 

We should note that in field theory the gluon condensate is divergent, and there are 
subtleties (which are not completely settled) as to the relation b~tween the lattice 
regularized result and the actual property of the QCD vacuum. 

Finally, for completeness of the numerical status, . we note that if we compare the 
string tension (6.41) at the cross-over point and the lattice result we get 

(QCD strmg tensIOn) _ 2 
( 

. . SUGRA) 1/2 

(QCD string tension)Lattice -. 
(6.64) 

6.2.3 Other Directions 

In this subsection we briefly review other possible ways of describing non supersym­
metric asymptotically free gauge theories via a dual string description. Additional 
possibilities are described in section 4.3. 

Different Background Metrics 

The string models dual to QCDp that we studied exhibit the required qualitative prop­
erties, such as confinement, a mass gap and the () dependence of the vacuum energy, 
already in the supergravity approximation. We noted that besides the glueball mass 
spectrum there exists a spectrum of Kaluza-Klein modes at the same mass scale. This 
indicates that the physics of the higher dimensions is not decoupling from the four 
dimensional physics6

. The Kaluza-Klein states did not decouple upon the inclusion 
of the (:/3 correction, but one hopes that they do decouple in the full string theory 
framework. In the following we discuss an approach to removing some of them already 
at the supergravity level. It should be stressed, however, that this does not solve the 
issue of a possible mixing between the glueball states and states that correspond to 
the scalar and fermion fields, which for large A are at the same mass scale in the field 
theory. 

6From the field theory point of view it indicates that SU(4}-charged fields and KK modes of five 
dimensional fields contribute in addition to the four dimensional gluons. 
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Again, the analogy with lattice gauge theory is -,lseful. It is well known in the lattice 
framework that the action one starts with has a significant effect on the speed at which 
one gets to the continuum limit. One can add to the-lattice action deformations which 
are irrelevant in the continuum limit and arrive at an appropriate effective description 
of the continuum theory while having a larger lattice spacing. Such actions are called 
improved actions. 

A similar strategy in the dual supergravity descript_ion amounts to a modification of 
the background metric. The requirement is that the modification will better capture the 
effective description of the gauge theory while still having a finite cutoff (corresponding 
to finite.x in our case). On the lattice a criterion for improvement is Lorentz invariance. 
Here, since the cutoff is provided by a higher dimensional theory we have the full 
Lorentz invariance in any case. The improvement will be measured by the removal 
of the Kaluza-Klein modes. Note that we are attempting at an improvement in the 
strong coupling regime. Such ideas have only now begun to be explored on the lattice 
[689]. Till now, the effort of lattice computations was directed at the computation of 
the strong coupling expansion series. 

Models that generalize the above background by the realization of the gauge theories 
on non-extremal rotating branes have been studied in [690, 686, 318]. The deformation 
of the background is parametrized by the angular momentum parameter. Kaluza­
Klein modes associated with the circle have the form <P = feu )eikx ein-r, n > O. It has 
been shown that as one varies the angular momentum one decouples these Kaluza-Klein 
modes, while maintaining the stability of the glueball mass spectrum. This deformation 
is not sufficient to decouple also the Kaluza-Klein modes associated with the sphere 
part of the metrics (6.22) and (6.38), so we are still quite far from QCD. 

The number of non-singular backgrounds is limited by the no hair theorem. One 
may consider more angular momenta, for instance. However, this does not seem to 
be sufficient to decouple all the Kaluza-Klein states [691, 692]. It is possible that 
we will need to appeal to non regular backgrounds in order to fully decouple the 
higher dimensional physics. Some non supersymmetric singular backgrounds of Type 
II supergravity that exhibit confinement were constructed and discussed in [418, 419, 
420, 423]. 

Type 0 String Theory 

The Type 0 string theories have worldsheet supersymmetry but no space-time super­
symmetry as a consequence of a non-chiral GSO projection [693, 694]. Consider two 
types of such string theories, Type OA and Type OB. They do not have space-time 
fermions in their spectra. Nevertheless, they have a modular invariant partition func­
tion. The bosonic fields of these theories are like those of the supersymmetric Type 
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IIA and Type IIB string theories, with a doubled set of Ramond-Ramond fields. Type 
o string theories can be formally viewed as the high temperature limit of the Type II 
string theories. They contain a tachyon field T. 

Type 0 theories have D-branes. As in the Type II case, we can consider the gauge 
theories on the world volume of N such branes. These theories do not contain an open 
string tachyon. Moreover, the usual condensation of the tachyon could be avoided in 
the near horizon region as we explain below. 

One particular example studied in [695] is the theory nn N flat D3 branes in Type 
OB theory. Since there is a doubled set of RR 4-form fields in Type OB string theory, 
the D3 branes can carry two charges, electric and magnetic. The worldvolume theory 
theory of N flat electric D3 branes is a U (N) gauge theory with six scalars in the 
adjoint representation of the gauge group. There are no fermionic fields. The classical 
action is derived by a dimensional reduction of the pure SU(N) gauge theory action 
in ten dimensions. The six scalars are the components of the gauge fields in the re­
duced dimensions. The classical theory has an SO(6) global symmetry that rotates 
the six scalars. This allows several possible parameters (from the point of view of 
renormalizable field theory) :a gauge coupling gy M, a mass parameter for the scalars 
m and various scalar quartic potential couplings gi, one of which appears in the clas­
sical Lagrangian. In the classical world volume action, the mass parameter is zero and 
the gi are fixed i!l terms of gYM, it is just the dimensional reduction of the ten dimen­
sional bosonic Yang-Mills theory. Quantum mechanically, the parameters are corrected 
differently and can take independent values. The theory has a phase diagram depend­
ing on these parameters. Generically we expect to see in the diagram Coulomb-like 
(Higgs) phases, confinement phases and maybe non trivial RG fixed points arising from 
particular tunings of the parameters. 

As in the case of D branes in Type II theories, one can conjecture here that the 
low-energy theory on the electric D3 branes has a dual non supersymmetric string 
description. At first sight this should involve a solution of AdS5 x S5 type. The closed 
string tachyon might be allowed in AdS if the curvature is of the order of the string 
scale, since in that case the tachyon .would obey the Breitenlohner-Freedman bound 
(2.42). The fact that the curvatures are of the order of the string scale renders the 
gravity analysis invalid. In principle we should solve the worldsheet string theory. Since 
we do not know how to do that at present we can just do a gravity analysis and hope 
that the full string theory analysis will give similar results. It was observed in [695] 
that the tachyon potential includes the terms 

~m2e-2~T2 + IFI2 (1 + T + ~2) , (6.65) 

where F is the electric RR five form field strength .( the magnetic one couples in a similar 
way but with T -T -T). The fact that the RR fields contribute positively to the mass 
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allows curvatures which, numerically, are a bit less than the string scale. Furthermore, 
it has been noticed in [696] tha.t the first string correction to this background seems 
to vanish. These conditions on the curvature translate into the condition 9sN < O( 1) 
which is precisely what we expect to get in QCD. 

An interesting feature is that, due to the potential (6.65) the tachyon would have 
a nonzero expectation value and that induces a variation .of the dilaton field cI> in the 
radial coordinate via the equation [669, 696] 

2 2 
m =--. 

a' 
(6.66) 

Since the radial coordinate is associated with the energy scale of the gauge theory, 
this variation may be interpreted as the flow of the coupling. In the UV (large radial 
coordinate) the tachyon is constant and one finds a metric of the form AdS5 x 55. This 
indicates a UV fixed point. The coupling vanishes at the UV fixed point, and this 
makes the curvature of the gravity solution infinite in the UV, but that is precisely 
what is expected since the field theory is UV free. The running of the coupling is 
logarithmic, though it goes like 1/ (log E)2. However, the quark-antiquark potential 
goes as 1/ log E due to the square root in (3.95). 

In the IR (small radial coordinate) the tachyon vanishes and one finds again a solution 
of the form AdS5 x 55. In the IR the coupling is infinite. Therefore this solution seems 
to exhibit a strong coupling IR fixed"point. However, since the dilaton is large, classical 
string theory is not sufficient to study the fixed point theory. The gravity solution at 
all energy scales u has not been constructed yet. 

Generically one expects the gauge theory to have different phases parametrized by 
the possible couplings. The IR fixed point should occur as a particular tuning of the 
couplings. Indeed, other solutions at small radial coordinate were constructed in [697] 
that exhibit confinement and a mass gap. Moreover they were argued to be more 
generic than the IR fixed point solution. 

It was pointed out in [698] that the theories on the D3 branes of Type OB string 
theory are particular examples of the orbifold models of N = 4 theory that we studied 
in section 4.1.1. The R-symmetry of N = 4 theory is SU( 4), the spin cover of SO(6). 
It has a center Z4 and one can orbifold with respect to it or its subgroups f. The 
theory on N fiat electric D3 branes arises when the action of f on the Chan-Paton 
(color) indices is in a trivial representation. This orbifold is not in the class of "regular 
representations" which we discussed in section 4.1.1; in particular, in this case the beta 
function does not vanish in the planar diagram limit. If we study instead the theory 
arising on N self-dual D3-branes of type 0 (which may be viewed as bound states of 
electric and magnetic D3-branes) we find a theory which is in the class of "regular 
representation orbifolds" [699], and behaves similarly to type II D3-branes in the large 
N limit. We will not discuss this theory here. 
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As with the D branes in Type II string theory, we can construct a large number of non 
supersymmetric models in Type 0 theories by placing the D branes at singularities. One 
example is the theory of D3 branes of Type OB string theory at a coni fold singularity. 
As discussed in section 4.1.3, when placing N D3 branes of Type IIB string theory 
at a conifold the resulting low-energy worldvohime theory is .N = 1 supersymmetric 
SU(N) x SU(N) gauge theory with chiral superfields Ak , k = 1,2 transforming in the 
(N, R) representation and B/, l = 1,2 transforming in the (R, N) representation, and 
with some superpotential. 

On the worldvolume of N electric D3 branes of Type OB string theory at a conifold 
there is a truncation of the fermions and one gets an SU(N) x SU(N) gauge theory 
with complex scalar fields Ak , k = 1,2 transforming in the (N, R) representation and 
B/, l = 1,2 transforming in the (R, N) representation. This theory (at l'east if we set to 
zero the coefficient of the scalar potential which existed in the supersymmetric case) is 
asymptotically free. The gravity description of this model has been analyzed in [700j. 
In the UV one finds a solution of the form AdS5 X Tlt l which indicates a UV fixed 
point. The effective string coupling vanishes in accord with the UV freedom of the 
gauge theory. In the IR one finds again a solution of the form AdS5 x TI,1 with infinite 
coupling that points to a strong coupling IR fixed point. Of course, one expects the 
gauge theory to have different phases parametrized by the possible couplings. Indeed, 
there are other more generic solutions that exhibit confinement and a mass gap [700j. 

Other works on dual descriptions of gauge theories via the Type 0 D branes are 
[701, 702, 703, 704, 705, 706, 707j. 
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Chapter 7 

Summary and Discussion 

We, conclude by summarizing some of the successes and remaining open problems of 
the AdS/eFT correspondence. 

From the field theory point of view we have learned and understood better many 
properties of the large N limit. Since 't Rooft's work [3] we knew that the large N limit 
of gauge theories should be described by strings, if the parameter g} MN is kept fixed. 
Through the correspondence we have learned that not only does this picture really' 
work (beyond perturbation theory where it was first derived), but that the Yang-Mills 
strings (made from gluons) are the same as the fundamental strings. Moreover, these 
strings move in higher dimensions, as was argued in [45]. These extra dimensions 
arise dynamically in the gauge theory. For some field theories the curvatures in the 
higher dimensional space could be small. The prototypical example is N = 4 super­
Yang-Mills with large N,g}MN. From this example we can obtain others by taking 
quotients, placing branes at various singularities, etc. (section 4.1). In all cases for 
which we can find a low-curvature gravity description we can do numerous calculations 
in the large N limit. We can calculate the spectrum of operators and states (sections 
3.2, 3.4). We can calculate correlation functions of operators and of Wilson loops 
(sections 3.3, 3.5). We can calculate thermal properties, like the equation of state 
(section 3.6), and so on. 

If the field theory is conformal the gravity solution will include an AdS factor. It is 
possible, in principle, to deform the theory by any relevant operators. In some cases 
fairly explicit solutions have been found for flows between different conformal field 
theories (section 4.3). A "c-theorem" for field theories in more than two dimensions 
was proven within the gravity approximation. It would be very interesting to generalize 
this beyond this approximation. It would also be interesting to understand better 
exactly what it is the class of field theories which have a gravity approximation. One 
constraint on such four dimensional conformal field theories, described in section 3.2.2, 
is that they must have a = c. 
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It is possible to give a field theory interpretation to various branes that one can have 
in the AdS description (section 4.2). Some correspond to baryons in the field theory, 
others to various defects like domain walls, etc. In the AdS5 case D-instantons in the 
string theory correspond to gauge theory instantons in the field theory. 

In general, the large N limit of a gauge theory should have a string theory descrip­
tion. Whether it also has a gravity description depends on how large the curvatures 
in this string theory are. If the curvatures are small, we can have an approximate 
classical gravity description. Otherwise, we should consider all string modes on the 
same footing. This involves solving the worldsheet theories for strings in Ramond­
Ramond backgrounds. This is a problem that only now is beginning to be elucidated 
[522, 708, 709, 710, 711, 712, 713, 714, 715]. For non-supersymmetric QeD, or other 
theories which are weakly coupled (as QeD is at high energies), we expect to have 
curvatures at least of the order of the string scale, so that a proper understanding of 
strings on highly curved spaces seems crucial. 

It is also possible to deform the N = 4 field theory, breaking supersymmetry and 
conformal invariance, by giving a mass to the fermions or by compactifying the theory 
on a circle with supersymmetry breaking boundary conditions. Then, we have a theory 
that should describe pure Yang-Mills theory at low energies (sections 4.3, 3.6, 6.2). In 
the case of field theories compactified on a circle with supersymmetry breaking bound­
ary conditions and large g~ M N at the compactification scale, one can show that the 
theory is confining, has a mass gap, has O-vacua with the right qualitative properties 
and has a confinement-de confinement transition at finite temperature. However, in the 
regime where the analysis can be done (small curvature) this theory includes many 
additional degrees of freedom beyond those in the standard bosonic Yang-Mills the­
ory. In order to do quantitative calculations in bosonic Yang-Mills one would have to 
do calculations when the curvatures are large, which goes beyond the gravity approx­
imation and requires understanding the propagation of strings in Ramond-Ramond 
backgrounds. Unfortunately, this is proving to be very difficult, and so far we have not 
obtained new results in QeD from the correspondence. As discussed in section 6.2, 
the gravity approximation resembles the strong coupling lattice QeD description [658], 
where the a' expansion of string theory corresponds to the strong coupling expansion. 
The gravity description has an advantage over the strong coupling lattice QeD de­
scription by being fully Lorentz invariant .. This allows, for instance, the analysis of 
topological properties of the vacuum which is a difficult task in the lattice description. 
The AdS/eFT correspondence does provide direct evidence that QeD is describable 
as some sort of string theory (to the extent that we can use the name string theory for 
strings propagating on spaces whose radius of curvature is of the order of the string 
scale or smaller). -. 

One of the surprising things we learned about field theory is that there are various 
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new large N limits which had not been considered before. For instance, we can take 
N --+ 00 keeping gYM fixed, and the AdS/CFT correspondence implies that many 
properties of the field theory (like correlation functions of chiral primary operators) 
have a reasonable limiting behavior in this limit, though there is no good field theory 
argument for this. Similarly, we find that there exist large N limits for theories which 
are not gauge theories, like the d = 3, N = 8 and d = 6, N = (2,0) superconformal 
field theories, and for various theories with less supersymmetry. The existence of these 
limits cannot be derived directly in field theory. 

The correspondence has also been used to learn about the properties of field theories 
which were previously only poorly understood. For instance, it has been used [341] to 
understand properties of two dimensional field theories with singular target spaces, and 
to learn properties of "little string theories", like the fact that they have a Hagedorn 
behavior at high energies. The correspondence has also' been used to construct many 
new conformal field theories, both in the large N limit and at finite N. 

Another interesting case is topological Chern Simons theory in three dimensions, 
which is related to a topological string theory in six dimensions [327]. In this case one 
can solve exactly both sides of the correspondence and see explicitly that it works. 

The correspondence is also useful for studying non-conformal gauge theories, as we 
discussed in section 6.1.3. A particularly interesting case is the maximally supersym­
metric quantum mechanical SU(N) gauge theory, which is related to Matrix theory 
[24, 716, 717, 641, 718, 719, 720, 721, 722, 723, 724]. 

From the quantum gravity point of view we have now an explicit holographic de­
scription for gravity in many backgrounds involving an asymptotically AdS space. The 
field theory effectively sums over all geometries whi~h are asymptotic to AdS. This 
defines the theory non-perturbatively. This also implies that gravity in these spaces is 
unitary, giving the first explicit non-perturbative construction of a unitary theory of 
quantum gravityl, albeit in a curved space background. Black holes are some mixed 
states in the field theory Hilbert space. Explicit microscopic calculations of black hole 
entropy and greybody factors can be done in the AdS3 case (chapter 5). 

Basic properties of quantum gravity, such as approximate causality and locality at 
low energies, are far from clear in this description [179,277,169,177, 175,725,180]' 
and it would be interesting to understand them better. We are also still far from having 
a precise mapping between general configurations in the gravitational theory and in 
the field theory (see [726, 176] for some attempts to go in this direction). 

In principle one can extract the physics of quantum gravity in flat space by taking 
the large radius limit of physics in AdS space. Since we have not discussed this yet 

1 In the context of Matrix theory [24] we need to take a large N limit which is n~t well understood 
in order to describe a theory of gravity in a space with rio closed light-like curves. 
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in the review, let us expand on this here, following [727, 728, 178, 729J (see also [176, 
730, 731, 732]). We would like to be able to describe processes in fiat space which 
occur, for instance, at some fixed string coupling, with the energies and the size of the 
interaction region kept fixed in string (or Planck) units. Computations on AdS space 
are necessarily done with some finite radius of curvature; however, we can view this 
radius of curvature as a regulator, and take it to infinity at the end of any calculation, 
in such a way that the local physics remains the same. Let us discuss what this means 
for the Ad55 x 55 case (the discussion is similar for other cases). We need to keep the 
string coupling fixed, and take N -t 00 since the radius of curvature in Planck units is 
proportional to N 1

/
4

• Note that this is different from the 't Hooft limit, and involves 
taking .x -t 00. In order to describe a scattering process in space-time which has finite 
energies in this limit, it turns out that the energies in the field theory must scale as 
N 1

/
4 (measured in units of the scale of the 53 which the field theory is compactified 

on; we need to work in global AdS coordinates to describe fiat-space scattering). In 
this limit the field theory is very strongly coupled and the energies are also very high, 
and there are no known ways to do any computations on the field theory side. It 
would be interesting to compute anything explicitly in this limit. For example, it 
would be interesting to compute the entropy of a small Schwarzschild black hole, much 
smaller than the radius of Ad5, to see fiat-space Hawking radiation, and so on. If we 
start with Ad55 x 55 this limit gives us the physics in fiat ten dimensional space, and 
similarly starting with Ad54 x 57 or Ads7 x 54 we can get the physics in flat eleven 
dimensional space. It would be interesting to understand how the correspondence can 
be used to learn about theories with lower dimension, where some of the dimensions 
are compactified. A limit of string theory on Ad53 x 53 X M4 may be used to give 
string theory on ~5,1 X M 4 , but it is not clear how to get four dimensional physics out 
of the correspondence. 

One could, in principle, get four dimensional fiat .space by starting from Ad52 x 52 
compactifications. However, the correspondence in the case of Ad52 spaces is not 
well understood. Ad52 spaces arise as the near horizon geometry of extremal charged 
Reissner-Nordstrom black holes. Even though fields propagating in Ad52 behave sim­
ilarly to the higher dimensional cases [733], the problem is that any finite energy 
excitation seems to destroy the Ad52 boundary conditions [340J. This is related to 
the fact that black holes (as opposed to black p-branes, p > 0) have an energy gap 
(see section 5.7), so that in the extreme low energy limit we seem to have no exci­
tations. One possibility is that the correspondence works only for the ground states. 
Even then, there are instantons that can lead to a fragmentation of the spacetime into 
several pieces [734J. Some conformal quantum mechanics systems that are, or could 
be, related to Ad52 were studied in [735, 736, 737, 723J. Aspects of Hawking radiation 
in Ad52 were studied in [738J. 
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In all the known cases of the correspondence. the gravity solution has a timelike 
boundary2. It would be interesting to understand how the correspondence works when 
the boundary is light-like, as in Minkowski space. It -seems that holography must work 
quite differently in these cases (see [739, 740] for discussions of some of the issues in­
volved). In the cases we understand, the asymptotic space close to the boundary has 
a well defined notion of time, which is the one that is associated to the gauge the­
ory. It would be interesting to understand how holography works in other spacetimes, 
where we do not have this notion of time. Interesting examples are spatially closed 
universes, expanding universes, de-Sitter spacetimes, etc. See [741, 742, 743, 744] for 
some attempts in this direction. The precise meaning of holography in the cosmological 
context is still not clear [745, 746, 747, 748, 749, 750, 751]. 

To summarize, the past 18 months have seen much progress in our understanding of 
stringjM theory compactifications on AdS and related spaces, and in our understand­
ing of large N field theories. However, the correspondence is still far from realizing the 
hopes that it initially raised, and much work still remains to be done. The correspon­
dence gives us implicit ways to describe QeD and related interesting field theories in" 
a dual "stringy" description, but so far we are unable to do any explicit computations 
in the field theories that we are really interested in. The main hope for progress in' 
this direction lies in a better understanding of string theory in RR backgrounds. The 
correspondence also gives us an explicit example of a unitary and holographic theory 
of quantum gravity. We hope this example can be used to better understand quan­
tum gravity in fiat space, where the issues of unitarity (the "information problem") 
and holography are still quite obscure. Even better, one could hope that the corre­
spondence would hint at a way to formulate string/M theory independently of the 
background. These questions will apparently have to wait until the next millennium. 
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