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Abstract

A Rayleigh Quotient Fixed Point Method for
Criticality Eigenvalue Problems in Neutron Transport

by

Mario I. Ortega

Doctor of Philosophy in Engineering – Nuclear Engineering
and the Designated Emphasis in

Computational Science and Engineering

University of California, Berkeley

Assistant Professor Rachel N. Slaybaugh, Chair

The alpha- and k-effective eigenproblems describe the criticality and fundamental neutron
flux mode of a nuclear system. Traditionally, the alpha-eigenvalue problem has been solved
using methods that focus on supercritical systems with large, positive eigenvalues. These
methods, however, struggle for very subcritical problems where the negative eigenvalue can
lead to negative absorption, potentially causing the methods to diverge. The k-effective
eigenvalue problem has generally been solved using power iteration. For problems with
dominance ratios close to one, however, power iteration can be intractably slow.

We present the Rayleigh Quotient Fixed Point (RQFP) methods, nonlinear fixed-point
methods that are applied to the primitive discretizations of the neutron transport eigenvalue
equations. We prove that the discretized eigenvalue equations form a primitive linear sys-
tem for one-dimensional slab geometry where the unique, positive angular flux eigenvectors
are guaranteed to exist from the Perron-Frobenius Theorem for primitive matrices. These
methods are capable of solving subcritical and supercritical alpha- and k-effective eigenvalue
problems. The derived eigenvalue updates are proven to be optimal in the least squares sense
and positive eigenvector updates are guaranteed from the properties of primitive matrices.
We consider infinite-medium, one-dimensional slabs and spheres, two-dimensional cylinders,
and three-dimensional quarter core benchmark problems and show the ability of the Rayleigh
Quotient Fixed Point method to obtain the fundamental eigenvalue and eigenvector of these
systems, even when the discretized eigenvalue equations no longer form a primitive sys-
tem. We also consider the use of Anderson acceleration to accelerate the convergence of the
Rayleigh Quotient Fixed Point methods.

We demonstrate that for alpha-eigenvalue problems, the Rayleigh Quotient Fixed Point
method substantially reduces the number of iterations required for convergence when com-
pared to traditional alpha-eigenvalue methods such as the critical search method. For a wide
variety of problems, the RQFP method for alpha-eigenvalue problems reduces the number of
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iterations required by up to factors of 50 and converges problems that other methods are un-
able to converge. For k-effective problems, the RQFP method provides moderate reductions
of iterations required for convergence when compared to power iteration. In particular, the
RQFP method does well for infinite-medium problems or problems where the eigenvector is
highly localized. We also demonstrate acceleration of the RQFP method by Anderson accel-
eration. For slowly converging alpha-eigenvalue problems solved using the RQFP method,
Anderson acceleration can provide acceleration of the linear fixed-point method convergence
by a factor of up to ten.

By looking at the linear algebraic structure of the discretized neutron transport eigenvalue
problems, the RQFP method guarantees the existence of the positive angular flux eigenvec-
tor and its corresponding eigenvalue. By examining a wide variety of problems of interest to
nuclear engineers, we show that the RQFP method is robust, easily implementable in neu-
tron transport codes, and an efficient solution method for eigenvalue problems in neutron
transport.
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Chapter 1

Introduction

The discovery of nuclear fission in 1939 precipitated a revolution in science and politics. The
construction of the first experimental nuclear reactor and the detonation of the world’s first
nuclear weapon forced societies throughout the world to grapple with this newfound energy
source, whose use could power societies for centuries or bring ruin to its cities within hours.
As countries throughout the world built nuclear reactors for energy, the nuclear weapon states
built up nuclear arsenals of unfathomable destructive power. With the ever looming threat
of nuclear warfare and nuclear reactor accidents in the latter half of the twentieth century,
nuclear energy became feared, despite its utility in medicine and electric power production.
Nuclear energy and nuclear technologies remain controversial to this day. Fear of radiation
(perhaps irrational in certain circumstances), nuclear weapon proliferation (a valid concern
given the proliferation of nuclear weapons in the past three decades), and the open question
of what to do with nuclear waste (a question of both engineering and policy), have slowed
the spread of peaceful nuclear technologies. However, as the demand for clean, sustainable
energy increases throughout the world and global climate change threatens societies, nuclear
energy is once again poised to deliver the answer to an energy hungry world. Soothing
the fears of nuclear energy requires forward thinking, where science and engineering come
together with policy to create a culture of safety, risk management, and certainty.

To this end, advances in nuclear engineering technologies have given scientists and en-
gineers the tools necessary to solve the problems of nuclear energy and design even safer,
more sustainable nuclear technologies. Whereas seventy years ago the design of nuclear sys-
tems required much approximation due to the limited knowledge of neutron transport and
the nature of computation, today, designers take advantage of larger computing power and
memory to model increasingly complex designs and problems with less approximation. No
longer limited by memory, the complex nature of neutron interactions as modeled by material
cross sections can be more fully captured. No longer limited by computation, high-fidelity
models taking into account complex geometric designs and complex nuclear cross section
data can be solved for large numbers of unknowns, giving insight into the time-behavior of
materials, reaction rates, and energy production. Continued advances in the mathematical
field of neutron transport have allowed for the design of efficient solution algorithms, taking
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complete advantage of computing power.
However, despite the progress made in the last few decades in the modeling and design of

nuclear systems, much remains to be done. With increasingly complex reactor and accelera-
tor designs, the modeling and numerical techniques of before may no longer work the best or
work at all. With increasing computational resources, the problems designers seek to solve
have scaled along with them. Once again, we find ourselves stretching the ability of our com-
putational knowledge and our methods. Now, algorithms are required that efficiently scale
and make use of the computational resources available. Mathematical methods are required
whose properties are known and understood for systems consisting of thousand of materials
and irregular and unique geometries. The problems that must be solved are only limited by
the imagination. That same sort of imagination is now required for the design of efficient
solution algorithms capable of taking complete advantage of our newfound computing power.
It is here that this dissertation seeks to make a new contribution to the field.

This dissertation presents a new method, the Rayleigh Quotient Fixed Point (RQFP)
method, to solve the alpha- and k-effective eigenproblems of neutron transport. These
eigenproblems describe the criticality and fundamental neutron flux mode of nuclear systems.
Using a Rayleigh quotient minimization principle that is applied to demonstrably primitive
discretizations of the neutron transport eigenvalue problems and the properties of primitive
matrices, a new iterative method is derived. The derived eigenvalue updates are optimal
in the least squares sense and positive eigenvector updates are guaranteed from the Perron-
Frobenius Theorem for primitive matrices [1] [2]. For alpha-eigenvalue problems, whereas
traditional techniques have focused on supercritical problems and were limited in subcritical
cases [3], this method allows for the solution of both subcritical and supercritical systems.
Traditionally, for k-effective eigenvalue problems, the update for the eigenvalue has been
taken to be some norm of the angular flux. In particular, the total fission rate over the
domain is often used to update k. It has been observed that using the Rayleigh quotient
can improve the efficiency of the power method [4]. We show this is due to the eigenvalue
update being optimal in the least squares sense. We discuss the development, applicability,
strengths and weaknesses of the method in this dissertation. The dissertation proceeds as
follows:

• Chapter 2 discusses neutron transport, the criticality eigenvalue problems of neutron
transport, the methods used to solve these problems, as well as a review of linear
algebra and fixed-point iteration.

• Chapter 3 discusses the discretization of the continuous criticality eigenvalue problems
into matrix equations. These matrix equations are shown to be primitive matrices.

• Chapter 4 derives the Rayleigh Quotient Fixed Point method for alpha- and k-effective
eigenvalue problems. Using the properties of primitive matrices, a fixed-point method
is derived to determine the eigenvalue and eigenvector of the system. The Jacobians
of the non-linear fixed-point methods are derived and their implication regarding the
convergence of the methods discussed.



CHAPTER 1. INTRODUCTION 3

• Chapter 5 discusses the performance of the Rayleigh Quotient Fixed Point method for
infinite-medium problems. Both one-speed and multigroup benchmarks and analytical
test problems are used to demonstrate the correctness of the method and benchmark
its performance as compared to other standard eigenproblem methods used in the field.
The chapter also discusses in which circumstances the method might fail to converge.

• Chapter 6 discusses the performance of the method for one-dimensional slab and
spherical geometries. Benchmark and analytical test problems are used to show the
wide applicability of the method for various realistic cross section sets, one-speed and
multigroup-in-energy problems, and heterogeneous media.

• Chapter 7 discusses the performance of the Rayleigh Quotient Fixed Point method for
two- and three-dimensional Cartesian geometry and two-dimensional cylindrical geom-
etry. Two- and three-dimensional fuel pin and fuel assembly problems are considered
and the method compared to standard nuclear engineering eigenproblem methods.

• Chapter 8 discusses the use of Anderson Acceleration to accelerate the Rayleigh Quo-
tient Fixed Point method for alpha-eigenvalue problems. We discuss the benefits and
costs for using acceleration in the context of neutron transport.

• Chapter 9 summarizes and reviews the Rayleigh Quotient Fixed Point method for
criticality eigenvalue problems and discusses future work.

• Appendix A discusses the discretization of the one-dimensional slab alpha-eigenvalue
neutron transport equation.

• Appendix B contains the MATLAB implementation of Anderson Acceleration discussed
in Chapter 8.

We find that the Rayleigh Quotient Fixed Point method allows for the solution of subcrit-
ical, critical, and supercritical alpha-eigenvalue problems for all types of nuclear systems of
interest. The RQFP method solves problems where the traditional method fails to converge,
specifically subcritical systems and systems without fissile material. The RQFP method also
drastically reduces the number of iterations required to converge the solution when com-
pared to traditional alpha-eigenvalue methods. The RQFP method applied to k-effective
eigenvalue gives designers another solution method. In specific circumstances, like infinite-
medium problems, the RQFP method for k-effective eigenvalue problems improves upon the
performance of traditional eigensolvers used in nuclear engineering. We find that in specific
circumstances, the alpha- and k-effective eigenvalue problems form primitive linear systems.
By using the properties of primitive linear systems, the RQFP method provides a robust and
easily implementable method for the solution of alpha- and k-effective eigenvalue problems
of interest to the nuclear engineering community.
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Chapter 2

Background

2.1 Neutron Transport
Neutron transport is the study of the motion and interactions of neutrons in matter. Neu-
trons interact with the nuclei of matter and can be absorbed or scattered, depending on the
properties of the matter. Neutrons can also leak through a boundary, having passed through
matter without being absorbed. Absorption of a neutron leads to one less neutron in the
system. The scattering of a neutron does not remove the neutron from the system but rather
changes its energy and direction. If a neutron causes fission, it is lost. However, the fission
of nuclei leads to the production of neutrons in the system. Neutrons born from fission
may either appear immediately (prompt) or at a later time (delayed). If delayed neutron
production is neglected, this accounting of the number of neutrons present in a system at a
specific time leads to the fundamental equation of neutron transport, the linear Boltzmann
transport equation:[

1

v(E)

∂

∂t
+ Ω̂ · ∇+ σ(~r, E)

]
ψ(~r, Ω̂, E, t)

=

∫ ∞
0

dE ′
∫

4π

dΩ̂′ σs(~r, E
′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E ′, t)

+

∫ ∞
0

dE ′ ν(E ′)χ(E ′ → E)σf (~r, E
′)

∫
4π

dΩ̂′ ψ(~r, Ω̂′, E ′, t), (2.1)

where the quantities are located at position ~r, traveling in direction Ω̂, and at energy E,
and σ, σs, σf , and v are the total, scattering, fission macroscopic cross sections, and neutron
speed, respectively. χ(E ′ → E) is the prompt fission neutron spectrum, which describes
the probability of a prompt fission neutron appearing in energy range dE around E, caused
by an incoming neutron with energy E ′. ν(E) is the average number of prompt neutrons
emitted in fission when the neutron causing fission has energy E. The angular neutron flux
density (usually referred to as the angular neutron flux), denoted by ψ(~r, Ω̂, E, t), gives the
number of neutrons per unit length squared per steradian per energy per unit time and is
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Figure 2.1: Neutron Direction Angle Space

the unknown distribution of neutrons in seven-dimensional phase space we are looking to
solve for. The streaming term of Eq. 2.1 can be rewritten using the angle space shown in
Figure 2.1. If the direction vector Ω̂ is given by

Ω̂ = µx̂+ ηŷ + ξẑ, (2.2)

where x̂, ŷ, and ẑ are unit vectors, then it follows that the streaming term is given by

Ω̂ · ∇ψ(~r, Ω̂, E, t) = µ
∂ψ

∂x
+ η

∂ψ

∂y
+ ξ

∂ψ

∂z
. (2.3)

The linear Boltzmann transport equation is used in solving many problems in nuclear engi-
neering [5]. We refer to the linear Boltzmann transport equation as the neutron transport
equation for the rest of this dissertation. The neutron transport equation is an integro-
differential equation for the neutron angular flux and is a function of seven independent
variables: three spatial variables, two direction variables, energy, and time.

Solving the neutron transport equation with appropriate initial conditions and boundary
conditions yields the expected number of neutrons within a geometry as a function of space,
direction, energy, and time. However, the neutron transport equation for neutrons is an
integro-differential equation and in general, few analytic solutions exist [6]. For this reason,
it is necessary to use numerical methods to solve problems of interest. For neutron transport,
there are two classes of computational methods: deterministic and Monte Carlo. In determin-
istic methods, the position, direction, energy, and time phase space of the transport equation
is discretized and a system of algebraic equations solved iteratively. Approaches such as the
discrete ordinates method, where the neutron transport equation is solved along ordinates
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and quadrature is used to approximate integrals in angle, and the diamond differencing or
step differencing methods in space, used to approximate spatial derivative quantities, can be
used to fully discretize the neutron transport equation in various ways. This discretization
process introduces truncation errors and the discretization of irregular geometries can be
problematic. In addition, deterministic methods require appropriately homogenized in space
and energy nuclear cross sections for system materials, which introduces another source of
error due to the averaging process. Monte Carlo methods treat the phase space as contin-
uous, allowing for the detailed modeling of geometry and use of continuous cross section
data. The Monte Carlo method does not solve the transport equation directly, instead it
stochastically simulates the transport of a finite number of neutrons through the problem
geometry [7]. After obtaining a large number of particle interaction histories, averages of
particle interactions are extracted, giving the number of neutrons in some part of the phase
space, the number of reactions occurring, and other important physical values, within some
uncertainty. Monte Carlo methods introduce stochastic uncertainty and can require large
number of particle simulations to achieve acceptable uncertainties on calculated parameters.

2.2 The Criticality Problem of Neutron Transport
The ability to fission certain nuclei with neutrons to produce additional neutrons leads to
the criticality problem. Given a system with a certain material composition and geometry, is
it possible to have a self-sustaining chain reaction? If a system is capable of a self-sustaining
chain reaction, we call this system critical, where the loss and production of neutrons are
perfectly in balance, allowing the neutron population to be constant in time. If the system
is unable to sustain a chain reaction, the system to said to be subcritical. If the neutron
population in the system grows without bound, the system is said to be supercritical [8].
It is rare to immediately find a system geometry or material composition that is critical.
Instead, some parameter is introduced into the transport equation that forces the system to
be critical. Given the sign or magnitude of this parameter, we can judge how far a system is
from critical and whether or not the system is subcritical or supercritical. This parameter is
the eigenvalue for which we solve numerically. There is no unique way to form an eigenvalue
problem [9], and depending on the application, one eigenvalue formulation may be more
useful than others [10]. In this dissertation we focus on the α- and k-eigenvalue problems
due to their widespread use in nuclear engineering applications.

2.2.1 The Alpha-Eigenvalue Problem

If we are interested in the time asymptotic behavior of neutron flux in a system, the alpha-
eigenvalue problem gives the exponential time-dependent flux behavior and criticality eigen-
pair of the system [8]. The time asymptotic behavior of the neutron flux is given by the sign
of the eigenvalue, which determines whether or not the neutron flux decays to zero, remains
constant in time, or grows without bound. We derive the alpha-eigenvalue problem by at-
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tempting to solve Eq. 2.1 for some initial condition ψ0(~r, E, Ω̂, t = 0) and vacuum boundary
conditions [6]. Defining the operator A as

A ≡ v(E)

[ ∫
4π

dΩ̂′
∫ ∞

0

dE ′ ν(E ′)χ(E ′ → E)σf (~r, E
′)

+

∫
4π

dΩ̂′
∫ ∞

0

dE ′σs(~r, E
′ → E, Ω̂′ · Ω̂)− Ω̂ · ∇ − σ(~r, E)

]
, (2.4)

we can write the initial value problem as

∂ψ

∂t
= Aψ. (2.5)

We expect the previous equation to have solutions in the form of

ψ = ψ0e
αt, (2.6)

where we obtain the eigenvalues α from the equation

αψ = Aψ. (2.7)

Obtaining the solution of the time-dependent neutron transport equation becomes a matter
of determining the eigenvalues (spectrum) of A [8]. Taking the Laplace transform of Eq. 2.5,
we define

ψα ≡
∫ ∞

0

dt eαtψ(~r, E, Ω̂, t), (2.8)

and obtain
αψα − ψ0 = Aψα → (α−A)ψα = ψ0. (2.9)

To solve this equation we invert the left-hand side of the previous equation (resolvent oper-
ator) and obtain

ψα = (α−A)−1ψ0. (2.10)

Applying the inverse Laplace transform, we obtain the solution to the initial value problem

ψ =
1

2πi

∫ b+i∞

b−i∞
dα (α−A)−1ψ0e

αt. (2.11)

Equation 2.11 is the formal solution of Eq. 2.5. However, this solution still requires that
we perform a complex contour integral. To integrate the solution, we must know where
the singularities of the integrand operator are located. Assume the operator has a discrete
number of poles, then the integral can be performed by extending and closing the contour
path to pick up all residue contributions as can be seen in Figure 2.2.

Defining
f(α) = (α−A)−1ψ0e

αt, (2.12)
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Im α

b+ i∞

b− i∞

Figure 2.2: Contour Integration in Complex Plane of the Operator A

the solution to the initial value problem can be expressed as

ψ =
1

2πi

∫ b+i∞

b−i∞
dα f(α) =

∮
C

dα f(α) = 2πi
n∑
k=1

Res(f(α), αk). (2.13)

where αk are the eigenvalues from Eq. 2.7. While Eq. 2.13 is the general solution for the
initial value problem, usually we are only interested in the asymptotic time solution since
at long times it is expected that only the dominant eigenvalue and fundamental mode will
remain. Rather than taking the Laplace Transform of Eq. 2.5, the α-eigenvalue problem is
formed by assuming the angular flux solution is separable in time, giving the asymptotic
solution

ψ(~r, Ω̂, E, t) = ψ(~r, Ω̂, E) exp(αt). (2.14)

Substituting the asymptotic solution into the neutron transport equation (Eq. 2.1) yields
the α-eigenvalue neutron transport equation:[

α

v(E)
+ Ω̂ · ∇+ σ(~r, E)

]
ψ(~r, Ω̂, E)

=

∫
dE ′

∫
dΩ̂′ σs(~r, E

′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E ′)

+

∫
dE ′ ν(E ′)χ(E ′ → E)σf (~r, E

′)

∫
dΩ̂′ ψ(~r, Ω̂′, E ′). (2.15)

We define the operator form of Eq. 2.15 as

(H + αV−1)ψ = (S + F)ψ, (2.16)
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where the operators are continuous and given by

H = Ω̂ · ∇+ σ(~r, E),

V−1 =
1

v(E)
,

S =

∫
dE ′

∫
dΩ̂σs(~r, E

′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E ′),

F =

∫
dE ′ ν(E ′)χ(E ′ → E)σf (~r, E

′)

∫
dΩ̂′ ψ(~r, Ω̂′, E ′).

(2.17)

In general, there will be a spectrum of eigenvalues for which there are solutions to Eq. 2.15
but at long times, only a unique, positive eigenvector, ψ0, corresponding to the algebraically
largest eigenvalue, α0, remains. The asymptotic solution can be written as [11]

ψasym(~r, Ω̂, E, t) ∝ ψ0(~r, Ω̂, E) exp(α0t). (2.18)

The criticality of the system can be defined by the sign of α0

α0


> 0, supercritical,
= 0, critical,
< 0, subcritical.

The fundamental eigenvalue and eigenvector are real (α0 ∈ R, ψ0 ∈ RN) but any of the
higher eigenvalues and eigenvectors may be negative and complex. The α-eigenvalues are
ordered by their real part

α0 > Re(α1) ≥ Re(α2) ≥ · · · ≥ Re(αn). (2.19)

Let T be the transport operator defined as

T = V(S + F −H), (2.20)

then it follows that the alpha-eigenvalue problem can be written as

αψ = T ψ. (2.21)

Since complex eigenvalues are possible in the spectrum for the real transport operator T , it
follows that the complex conjugate of these eigenvalues are also in the spectrum. We prove
this as follows:

Theorem 2.1. If there exists a complex eigenvalue in the spectrum, then its complex conju-
gate is also in the spectrum.

Proof. Consider the linear transport operator T ∈ R. If λ ∈ C is a complex eigenvalue of T
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and v ∈ Cn is a non-zero eigenfunction of T , then by definition

T v = λv. (2.22)

Taking the complex conjugate of Eq. 2.22 yields

T v = T v = λv, (2.23)

since T is real and linear.

Given the entire set of eigenvalue and eigenvectors for this eigenvalue problem, any initial
condition angular flux can be expressed as a combination of the eigenvectors and eigenvalues.
In addition, these eigenvalues exist for systems without fissile material, with the operator
T defined without the fission operator, F . The α-eigenvalues have units of inverse time
as they give a characteristic time of the slowest neutron to leak or be absorbed in the
system. In the literature, these eigenvalues are also know as natural, time [3], or λ [5]
eigenvalues. For simple problems such as one-speed slabs and multigroup-in-energy slab and
spherical problems, various features of the α-eigenvalue spectrum have been identified. We
discuss these results in Section 2.2.1. It must be noted that the existence of a fundamental
eigenvalue is not guaranteed for all problems. In particular, optically thin slabs have been
shown to have no fundamental eigenvalue [12]. In contrast to incredibly subcritical problems,
for incredibly supercritical systems, two real, positive eigenvalues have been observed [12].
In general, the existence of a sole dominant eigenvalue has also yet to be proven for all cases
of interest.

The Alpha-Eigenvalue Spectrum

In this section we examine previous work on the α-eigenvalue spectrum. Initial examination
of the spectrum by Lehner and Wing [13] for the linear transport operator T assumed the
one-speed, slab geometry form

T (x, µ) = −µ ∂

∂x
+
c

2

∫ 1

−1

dµ′. (2.24)

where
c =

ν̄σf + σs
σ

. (2.25)

Additional studies by Jörgens extended the spectral analysis to multi-energy media [14].
Larsen extended the spectral analysis to more general geometries [15] and the multigroup
neutron transport operator for bounded spatial domains [16]. Larsen found that the spectrum
of T for more general problems consists of points, line, and in some cases, a continuum of
eigenvalues. An example of the spectrum of T can be seen in Figure 2.3. The spectrum
of T includes more scalars than just the α-eigenvalues. The α-eigenvalues are the point
and line spectrum of T [17]. The point spectrum is finite, all-real set lying in the positive
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half-plane λ > −λ∗, where λ∗ is the minimum value of vσ(v). The features of the spectrum
of T are highly dependent on the type of problem being examined. For example, for slab
geometry problems, the continuum of eigenvalues occurs due to the possibility a neutron can
travel parallel to one of the faces indefinitely before scattering or leaving the slab [18]. The
continuous spectrum is contained in the negative half-plane Re λ ≤ −λ∗. The dividing limit,
−λ∗, called the Corngold limit, marks the minimum physically-possible α-eigenvalue.

Theorem 2.2. The Corngold limit, −λ∗ = −vσ(v), is the minimum physically possible
α-eigenvalue.

Proof. We use the facts that the α- and k-effective eigenvalue problems are equal for an
exactly critical system and the eigenfunctions corresponding to these eigenvalues are equal
[19]. The k-effective eigenvalue is discussed in Section 2.2.2. Consider the infinite-medium,
one-energy group eigenvalue problems:

σφ = σsφ+
ν̄σf
k∞

φ, (2.26)

α∞
v
φ = σsφ+ ν̄σfφ− σφ, (2.27)

where ν̄ is the average number of neutrons emitted in fission and k∞ and α∞ are the infinite-
medium k-effective and alpha-eigenvalues, respectively. Dividing out the fluxes and combin-
ing the two equations yields a relationship for the two eigenvalues for the infinite-medium,
one-group problem [12]

α∞
vσ

= (k∞ − 1)

(
1− σs

σ

)
. (2.28)

The minimum possible α-eigenvalue occurs when there is no fissile material (k∞ = 0) or
scattering (σs = 0) present. Substitution of these values into Eq. 2.28 yields

α∞ = −vσ = −λ∗, (2.29)

which is the Corngold limit.

The minimum velocity, vmin, has interesting impacts on the spectrum of the operator T .
Studies on finite media problems where the minimum velocity is greater than zero (vmin > 0)
show that the continuous part of the spectrum disappears [14]. Instead of a continuous
spectrum, point and line spectra fill the half-space. If the minimum neutron velocity is
allowed to approach small speeds, vmin = 0, the continuous part of the spectrum reappears.
The presence of line spectra results from considering the continuous dependence of the α-
eigenvalues on neutron velocity. As the velocity varies from some v to vmin, some eigenvalues
trace out curves in the complex plane or remain stationary [15].

Studies suggest that the case where the minimum neutron velocity is bounded away from
zero is the more physically valid representation. As the neutron velocity minimum is allowed
to go to zero, the neutron wavelength is comparable to the mean free path, thus rendering the
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Figure 2.3: Example Spectrum of the Transport Operator for the One-Speed Slab Geometry
Problem

neutron transport equation invalid [5]. In this dissertation, the neutron transport equation
is discretized and energy-dependent cross sections are bounded away from zero. α-eigenvalue
spectra will then contain only point spectra.

Applications of the Alpha-Eigenvalue

The alpha-eigenvalue and its corresponding eigenvector determine the time-dependence of
the neutron flux in a nuclear system of interest. For subcritical problems, given some external
source, the alpha-eigenvalue measures the length of time necessary for all neutrons to leave
the system. One type of system of interest is accelerator-driven subcritical (ADS) systems.
ADS systems are subcritical configurations containing multiplying material that are pulsed
with a large number of neutrons. These neutrons are generated by an accelerator colliding
protons or ions onto a spallation or fissile target creating large amounts of neutrons [20]. ADS
systems have received renewed interest because of their ability to address nuclear reactor
waste disposal concerns. These systems are able to transmute radioactive isotopes to stable
or shorter half-life isotopes by fissioning the radioactive nuclei of concern using high-energy
spallation neutrons. The transmutation of long-lived actinides and fission products provide
an alternative to geological disposal. Also, the fissioning of nuclei in the system can provide
enough power to supply the accelerator, making ADS systems self-sustainable.

The alpha-eigenvalue and eigenvector are necessary to characterize the neutron flux time
and spatial variation when the ADS system is in a subcritical state. With the addition of
spallation or fission neutrons into the system, the alpha-eigenvalue describes the length of
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time necessary for the neutron flux to decay. Knowledge of the spatial and time variations in
the neutron flux also allows designers to determine the efficient placement of actinides and
other fission products in the system for optimal consumption.

Another application of the alpha-eigenvalue is for nuclear systems that are supercriti-
cal for short periods of time like fast-burst nuclear reactors. Fast-burst reactors generate
high-flux neutron pulses that are used in materials radiation testing, electronic hardware
hardening testing, and other applications. These supercritical systems return to a subcrit-
ical state through some sort of feedback, either geometric or thermal. Since the neutron
flux is a time-dependent function, the alpha-eigenvalue gives a measure of the growth rate
of the neutron flux. For purely supercritical systems, the neutron flux increases without
bound in time and the alpha-eigenvalue measures the e-folding time, the time required by
the exponentially growing neutron population to increase by a factor of e [5]. To see this,
consider Eq. 2.28

α∞
vσ

= (k∞ − 1)

(
1− σs

σ

)
.

Multiplying by vσ and using the relation σa = σ − σs , we can write

α∞ = v(νσf − σa). (2.30)

Noting that for an infinite-medium, homogeneous, energy independent system k∞ is given
by k∞ = ν̄σf/σa and the neutron lifetime is given by ` = 1/vσa, we obtain

α∞ =
k∞ − 1

`
. (2.31)

The time rate change of the number of neutrons N(t) in an infinite medium is given by the
ordinary differential equation

dN

dt
=

(k∞ − 1)

`
N(t), (2.32)

with solution
N(t) = N0 exp

[
k∞ − 1

`
t

]
. (2.33)

Comparing the relationship for α∞ and Eq. 2.33, we see that we can write

N(t) = N0 exp(α∞t). (2.34)

Relating α∞ to the reactor period T (e-folding time), we see that

T =
1

α∞
. (2.35)

We also note that Eq. 2.31 gives the maximum time eigenvalue for a homogeneous system [12].
Higher alpha-eigenvalues are used in reactor kinetics to determine neutron flux responses
to reactivity insertions and feedback mechanisms [21]. We only focus on the dominant
eigenvalue in this dissertation, however, since we are interested in the criticality of nuclear
systems.
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Calculating the Alpha-Eigenvalue

In this section we describe various numerical methods used to determine the alpha-eigenvalue
and eigenvector in discrete ordinates neutron transport codes. Methods other than those
described in this section exist and this by no means is a full review of all methods. However,
the methods presented here are those used predominantly in neutron transport codes or
methods used to determine analytical eigenvalues and eigenvectors for benchmarking.

The Critical Search Method : The workhorse method in neutron transport codes for the
numerical solution of the alpha-eigenvalue problem is the critical search method [3]. The
critical search method is the primary alpha-eigenvalue solver for supercritical problems in
codes such as ARDRA [22] and PARTISN [23]. For Eq. 2.36, the critical search performs
multiple k-effective calculations for various values of α:[

α`

v(E)
+ Ω̂ · ∇+ σ(~r, E)

]
ψ(~r, Ω̂, E, t)

=

∫
dE ′

∫
dΩ̂′ σs(~r, E

′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E ′, t)

+
1

k`

∫
dE ′ ν(E ′)χ(E ′ → E)σf (~r, E

′)

∫
dΩ̂′ ψ(~r, Ω̂′, E ′, t), (2.36)

where α` and k` are the alpha- and k-effective eigenvalues at iteration `. The critical search
method is described in Algorithm 2.1. Using various guessed values for the alpha-eigenvalue,
intermediate k-effective eigenvalue calculations are done. The true alpha-eigenvalue is then
found by extrapolation using the (α, k) pairs to find the alpha-eigenvalue such that the
system is exactly critical. This extrapolation might require multiple iterations to bracket
the eigenvalue.

In this method, the alpha-eigenvalue introduces artificial absorption into the problem. For
sufficiently subcritical systems, negative absorption is possible, potentially causing solution
methods to diverge [3]. For systems close to critical, many interpolations/extrapolations of
alpha-eigenvalue iterates are required and the critical search method might become unaccept-
ably slow. In addition, for systems close to critical, the intermediate k-effective calculation
convergence might become slow, increasing the cost of the method in the intermediate stage.
The question of how converged the k-effective eigenvalue calculations must be remains open.
Using unconverged k-effective eigenvalues in the estimation of the alpha-eigenvalue may slow
down or prevent the convergence to the true alpha-eigenvalue. For an eigenvalue that is too
tightly converged, iterations are wasted and the method becomes inefficient.
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Algorithm 2.1 Critical Search Method [3]

1: Make an initial guess for α0.
2: Solve Eq. 2.36 for k0.
3: Obtain a second guess α1 by adjusting α0 by some eigenvalue modifier value: α1 =
α0 + EMV.

4: Solve Eq. 2.36 for k1.
5: while |k` − 1|/k` > tolerance do
6: Using (α`, k`) and (α`−1, k`−1), perform a linear extrapolation of k(α) to find α`+1 such

that k`+1(α`+1) = 1.
7: Solve Eq. 2.36 for k`+1.
8: end while

Green’s Function Method (GFM): Green’s Function Method [12] uses Green’s functions
to model one-speed, multiplying, multi-region slabs and obtain boundary flux values for an
eigenvalue search. The one-group neutron transport equation for a homogeneous material
with isotropic scattering is[

µ
∂

∂x
+ σ +

α

v

]
ψ(x, µ) =

νσf + σs
2

∫ −1

−1

dµ′ ψ(x, µ′). (2.37)

Dividing by the total cross section we obtain[
µ

σ

∂

∂x
+ α′

]
ψ(x, µ) =

c

2

∫ 1

−1

dµ′ ψ(x, µ′), (2.38)

where
α′ = 1 +

α

vσ
and c =

νσf + σs
σ

. (2.39)

Eq. 2.38 is measured in mean free paths. For infinite-medium problems, α′ ≥ 0. This can
be seen by allowing α to be the Corngold limit, the smallest possible alpha-eigenvalue, and
evaluating for α′.

The GFM is useful for multi-region systems because of Placzek’s lemma [24]. Placzek’s
lemma states that the angular flux solution in a finite slab can be expressed in terms of a
solution in an infinite medium by converting boundary angular flux sources into equivalent
volumetric sources. Using the lemma, each slab region can be treated as an infinite homo-
geneous medium with a specified source based on the angular flux boundary conditions. For
an infinite medium, the angular flux can be expressed by the Green’s function

ψ(x, µ) =

∫ ∞
−∞

dx′
∫ 1

−1

dµ′
[
µ′ψ(0, µ′)δ(x′)− µ′ψ(∆, µ′)δ(x′ −∆, µ′)

]
G(x− x′, µ|µ′), (2.40)

where the Green’s function satisfies the integro-differential equation[
µ
∂

∂x
+ α′

]
G(x, µ | µ′) =

c

2

∫ 1

−1

dµ′′G(x, µ′′ | µ′) + δ(x)δ(µ− µ′), (2.41)
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and ∆ is the width of the finite slab in mean free paths.
The solution, G(x, µ | µ′), to Eq. 2.41 is in the form of the solution to the anisotropic

plane source emitting particles in direction µ′ for an infinite homogeneous medium problem
with scattering parameter c. Taking a Fourier transform of Eq. 2.41, integrating over the
scattering angle µ, inverting the transform, and using Placzek’s lemma to connect individual
slab regions through boundary angular fluxes, an integral equation for the angular flux in
the multi-region medium is found:

ψi(0
+,−µ) +

∫ 1

0

dµ′ µ′ψi(0
+,−µ′)

[
Gc(0

−, µ | µ′)±Gc(−∆i,−µ′ | µ′)
]

± ψi(∆−i , µ)±
∫ 1

0

dµ′ µ′ψi(∆
−
i , µ

′)
[
Gc(0

−, µ | µ′)±Gc(−∆i,−µ | µ′)
]

∓ ψi−1(∆−i−1, µ) exp

(
−α′∆i

µ

)
−
∫ 1

0

dµ′ µ′ψi−1(∆−i−1, µ
′)
[
Gc(0

+,−µ | µ′)

±Gc(∆
−
i , µ | µ′)

]
− ψi+1(0+,−µ) exp

(
−α′∆i

µ

)
∓
∫ 1

0

dµ′ µ′ψi+1(0+,−µ′)
[
Gc(0

+,−µ | µ′)±Gc(∆
−
i , µ | µ′)

]
= 0,

(2.42)

where
Gc(x, µ | µ′) =

c

2α′
1

µ′ − µ
[
h(x, µ′)− h(x, µ)

]
, (2.43)

h(x, µ) =
µ

2π

∫ ∞
−∞

dk
eikx

α′ + ikµ

1

1− c
α′
L
(
k
α′

) , (2.44)

and

L(z) =
1

2

∫ 1

−1

dµ
1

1 + izµ
=

tan−1 z

z
. (2.45)

The eigenvalue problem is formulated by construction of a matrix of the interactions of
slab boundary angular fluxes for each region as given by Eq. 2.42. The matrix consists of sub-
matrices for each region where the integrals are approximated using numerical quadrature.
Eigenvalues are then determined using a brute force search routine where all possible values
for the eigenvalue within some search space are tested until a value is found such that the real
and imaginary parts of the matrix determinant are zero. This value is then the eigenvalue
of the system. GFM allows for the calculation of higher eigenvalues and eigenmodes. GFM
provides benchmark-quality calculations for the alpha-eigenvalues in heterogeneous media
slab problems.

The increase of computational difficulty increases with the number of regions present
in the system. In addition, the search space might become large, especially if there is no
estimate of the eigenvalue. The numerical quadrature of the integrals also present another
cost, as improper integrals must be approximated in each region of the problem to some
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Figure 2.4: Discretized Alpha-Eigenvalue Spectrum for a Subcritical System

tolerance. Determination of the matrix determinant requires a complex LU decomposi-
tion routine. Further, the scope of GFM is limited to slab geometry, though by using the
slab-spherical equivalence [24] the eigenvalues of one-dimensional spherical systems can be
determined by solving an equivalent slab geometry problem when certain conditions are met.

Direct Evaluation: Another numerical method capable of obtaining the alpha-eigenvalue
and higher eigenvalues involves forming the matrix problem from the discretized form of
the one-speed, one-dimensional transport equation [25] using discrete ordinates in angle and
diamond differencing in space. Using a process similar to the one described in Chapter 3
with M directions in angle and N cells in space yields a generalized eigenvalue problem of
the form

Aψ = αBψ. (2.46)

Using standard eigenvalue solvers, the method gives NM eigenpairs. Given the discretization
of the problem, the method gives far more eigenvalues than expected from theory as the dis-
cretization process introduces additional eigenvalues that are artifacts from the discretization
process. The spectrum is composed of the real eigenvalue spectrum and additional eigenval-
ues that are a product of the discretization of the problem. An example spectrum can be
seen in Figure 2.4. If only the dominant eigenvalue and vector are required, the formation of
the matrices and the eigenvalue solver could be too costly. Direct evaluation works well for
homogeneous and multi-region slabs with isotropic scattering. However, the method quickly
becomes complicated and expensive for problems involving complex geometries, anisotropic
scattering, and multiple energy groups.

2.2.2 The k-Effective Eigenvalue

In the k-effective eigenvalue problem, the time-dependence of the problem is eliminated and
it is assumed there is no external source present [8]. Instead, a time-independent solution
is obtained by weighting ν by a parameter k, which expresses the deviation from critical.
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Substituting ν/k for ν yields the k-eigenvalue problem:[
Ω̂ · ∇+ σ(~r, E)

]
ψ(~r, Ω̂, E)

=

∫
dE ′

∫
dΩ̂′ σs(~r, E

′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E ′)

+
1

k

∫
dE ′ ν(E ′)χ(E ′ → E)σf (~r, E

′)

∫
dΩ̂′ ψ(~r, Ω̂′, E ′). (2.47)

We define the operator form of Eq. 2.47 as

Hψ =

(
S +

1

k
F
)
ψ. (2.48)

For Eq 2.48, there are multiple eigenvalues and eigenvectors, but the only positive eigenvector
corresponds to the largest real eigenvalue, k0. The k-effective eigenvalue exists for any system
containing fissile material and corresponding to the eigenvalue is a non-negative eigenvector.
For a system containing no fissile material, the k-effective eigenvalue is undefined. The
criticality of a system can be defined by the value of k:

k


> 1, supercritical,
= 1, critical,
< 1, subcritical.

The spectrum of eigenvalues for the k-effective eigenvalue problem is real and positive.
The spectrum is ordered

k0 > k1 > k2 > . . . kN , (2.49)

where k0 = k is the dominant eigenvalue and N is the total number of eigenvalues. For the
one-speed case with isotropic scattering, it can be shown that there exists an infinite set of
discrete real eigenvalues and associated real eigenfunctions [26]. A similar result exists for
problems with anisotropic scattering [27]. An example of a k-effective eigenvalue spectrum
can be seen in Figure 2.5. The full set of k-eigenvalues and eigenvectors have applications
in perturbation theory and provide a measure of numerical convergence for methods like the
power method [6]. The dominance ratio, the ratio k1/k0, provides a measure of convergence
for the power method, the standard eigensolver for k-effective eigenvalue problem in nuclear
engineering applications [6]. If a designer is interested in how far a system is from a critical
configuration, the k-effective eigenvalue is a good measure as it represents the ratio between
the fission source and losses due to leakage and absorption. For an exactly critical system,
the eigenvector corresponding to k is the flux shape within the reactor. For systems close to
critical, the eigenvector is a good approximation of the flux shape. The k-effective eigenvalue
has another simple physical interpretation: it is the ratio of neutrons in the next generation
to those in the current generation [9].
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Figure 2.5: Example Spectrum for k-Effective Eigenvalue

Iterative Methods for the k-Effective Eigenvalue

In this section we describe two standard iterative methods used to calculate the k-effective
eigenvalue of a nuclear system, the power method and shifted inverse iteration. As discussed
in Section 2.2.2, the criticality of the nuclear system is given by the largest real k-effective
eigenvalue and corresponding to this eigenvalue is the only positive eigenvector. This positive
eigenvector is the neutron angular flux of the nuclear system.

Discretization of Eq. 2.47 can lead to various large algebraic linear systems with different
properties. For example, discretization of Eq. 2.47 by the method of discrete ordinates leads
to large sparse linear systems, which makes the use of direct eigenvalue solvers (such as
the QR method) too expensive or unfeasible. In addition, most transport codes apply the
discretized operators of Eq. 2.47 through matrix-vector multiplication or transport sweeps,
defined as inversions of the operator H [28], to invert operators and do not construct the
large sparse matrices [6]. Given that determining the criticality and fundamental flux mode
only requires the dominant eigenvalue, it is instead preferably to use iterative eigenvalue
methods.

Power Method with Fission Norm Update: The most basic method for solving
for the k-effective eigenvalue is the power method [6]. To apply the method, we write the
k-effective criticality problem as the standard eigenvalue problem

kψ = (H− S)−1Fψ. (2.50)

The power method, described in Algorithm 2.2, consists of iteratively applying the oper-
ator on the right of Eq. 2.50 to some eigenfunction approximation at iteration i, ψi+1. The
eigenfunction is then usually normalized by some norm of the angular flux.
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Algorithm 2.2 Power Method [6]

1: Make initial guess ψ(0), k(0).
2: for i = 0, 1, 2, · · · , do
3: Compute ψ(i+1) = 1

k(i)
(H− S)−1Fψ(i).

4: Normalize ψ(i+1) by some norm, compute k(i+1).
5: Check for convergence: |k(i+1) − k(i)|/k(i+1) < tolerance
6: end for

There are various ways to compute the eigenvalue iterate. One simple estimate of the
eigenvalue is given by the expression

k(i+1) = k(i)

∥∥ψ(i+1)
∥∥

‖ψ(i)‖
, (2.51)

where ‖ψ‖ is some discrete norm taken over the problem domain. However, only a normal-
ization is necessary and a norm is not required. In many implementations the norm takes
into account only the isotropic scalar flux component as this is usually the required unknown
[4]. However, there is no mathematical justification for this norm and any consistent norm
can be used. Traditionally, in neutron transport codes, the eigenvalue is estimated using the
total fission rate in the problem [4] which is given by

‖φ‖ ≡ ‖φ‖F =
G∑
g=1

∑
s∈D

νσf,g,sφ0,g,s (2.52)

where the summation is over all energy groups and over all spatial cells in the problem
domain, D. Another possible eigenvalue update is the Rayleigh quotient [29], where the
Rayleigh quotient is defined as

R(M,x) =
ψ̂TMψ̂

ψ̂T ψ̂
, (2.53)

where M ∈ RN×N is the discretized form of the operatorM, defined asM = (H− S)−1F ,
and ψ̂ ∈ RN×1 is the discretized form of ψ. It has been observed that using the Rayleigh
quotient can at times improve the efficiency of the power iteration by providing a better
estimate of the eigenvalue earlier in the iterative process [4].

The power method converges to the eigenvector corresponding to the largest eigenvalue
in modulus provided that the eigenvalue is simple and the initial eigenvector guess contains
a component in the eigendirection [30]. It has been shown that k is the largest eigenvalue
in modulus for various types of problems in nuclear engineering [31]. However, it is possible
the power iteration will not converge. For instance, for multigroup energy problems, it is
not known if the dominant eigenvalue is always real and given an all real initial eigenvector
guess, it is possible the method will not converge. In addition, the power method converges
with rate equal to the dominance ratio, k1/k0, and for problems with dominance ratios close
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to one, convergence can be unacceptably slow. Problems with dominance ratios close to one
include highly scattering nuclear reactor problems such as heavy water reactors and boiling
water reactors. Despite these limitations, the simplicity of the power method makes it the
default eigenvalue solver method of choice in neutron transport codes [5].

The Wielandt Method : Another method to calculate the k-effective eigenvalue is the
Wielandt method or Wielandt acceleration (Algorithm 2.3) [32]. The Wielandt method, as
it is known in the neutron transport community, is a shifted inverse iteration method [33]
applied to the k-effective eigenvalue problem. In the shifted inverse iteration method, the
power method is applied to the shifted problem of the form

(H− S − βF)ψ = (λ− β)Fψ, (2.54)

where λ = 1/k and the shift β is selected such that 0 < |λ1 − β| < |λ2 − β| ≤ |λj − β|,
j > 2. It can be shown that this yields a method with speed of convergence determined by
|λ1 − β|/|λ2 − β| [33]. For an appropriately selected shift β, the method can be faster than
the power method. For criticality problems in nuclear engineering, the systems are expected
to be close to critical and the shift can be selected to be β = 1. The power method can
be considered a special case of the shifted inverse iteration method with no shift. Despite
its improved theoretical convergence rate, the shifted inverse iteration shift requires a priori
knowledge of the dominant eigenvalue magnitude. Given a poor shift, convergence of the
method may be delayed.

Algorithm 2.3 Shifted Inverse Iteration [33]

1: Make initial guess ψ(0).
2: for i = 0, 1, 2, · · · , do
3: Define shift β(i).
4: Compute ψ(i+1) such that (H− S − β(i)F)ψ(i+1) = Fψ(i).
5: Normalize ψ(i+1) by some norm.
6: Check for Convergence
7: end for

2.3 Review of Linear Algebra Fundamentals
We review and introduce some definitions of linear algebra concepts used in this disserta-
tion. Of particular interest are the concepts of positivity and primitivity, which guide the
derivation of the method later in this dissertation. Definitions and theorems are from [29],
[34], [35]. The theory of Perron-Frobenius for positive, irreducible, and primitive matrices is
discussed and its results are used heavily throughout this dissertation.
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2.3.1 Nonnegativity, Positivity, and the Spectral Radius of a
Matrix

Definition 2.3. A real matrix A is nonnegative (or positive) if all entries of A are nonneg-
ative (or positive). We write A ≥ 0 or A > 0.

Definition 2.4. Let A = (ai,j) be an n× n matrix with eigenvalues λi, 1 ≤ i ≤ n. Then

ρ(A) ≡ max
1≤i≤n

|λi|

is called the spectral radius of the matrix A.

2.3.2 Irreducible and Reducible Matrices

Definition 2.5. For n ≥ 2, an n × n real matrix A is reducible if there exists an n × n
permutation matrix P such that

PAPT =

[
A1,1 A1,2

0 A2,2

]
Definition 2.6. A matrix A that is not reducible is said to be irreducible.

2.3.3 Primitive and Cyclic Matrices

Definition 2.7. Let A ≥ 0 be an irreducible n × n matrix, and let k be the number of
eigenvalues of A with modulus ρ(A). If k = 1, then A is primitive.

Definition 2.8. Let A ≥ 0, A is primitive if there is some n such that An > 0 [29].

Definition 2.9. Let A ≥ 0 be an irreducible n × n matrix, and let k be the number of
eigenvalues of A with modulus ρ(A). If k > 1, then A is cyclic of index k.

From the previous definitions, the following can be shown:

Lemma 2.1. Let A ≥ 0 be a primitive n× n matrix. Then A is irreducible.

2.3.4 Perron-Frobenius Theorem for Irreducible Matrices

Theorem 2.10. Let A ≥ 0 be an irreducible n× n matrix. Then,

1. A has a positive real eigenvalue, λ1, equal to its spectral radius, and which is greater
than or equal to (in absolute value) all other eigenvalues.

2. For ρ(A) there is a corresponding eigenvector x > 0.

3. ρ(A) is a simple eigenvalue of A.
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2.3.5 Perron-Frobenius Theorem for Primitive Matrices

Theorem 2.11. Let A ≥ 0 be a primitive n× n matrix. Then,

1. A has a positive real eigenvalue, λ1, equal to its spectral radius, and which is greater
than (in absolute value) all other eigenvalues.

2. For ρ(A) there is a corresponding eigenvector x > 0.

3. ρ(A) is a simple eigenvalue of A.

2.3.6 Kronecker (Tensor) Product

Throughout this dissertation we use the Kronecker (tensor) product to simplify various ma-
trix operations and forms required to discretize the neutron transport eigenvalue equations.
We review some of the properties [36] of this product in this section.

For matrices A ∈ Rm×n and B ∈ Rk×l, the Kronecker product of A and B is the mk×nl
matrix denoted by

A⊗B ≡

a11B . . . a1nB
... . . . ...

am1B . . . amnB

 , (2.55)

where A = (aij). More explicitly:

A⊗B =



a11b11 a11b12 · · · a11b1l · · · · · · a1nb11 a1nb12 · · · a1nb1l

a11b21 a11b22 · · · a11b2l · · · · · · a1nb21 a1nb22 · · · a1nb2l
...

... . . . ...
...

... . . . ...
a11bk1 a11bk2 · · · a11bkl · · · · · · a1nbk1 a1nbk2 · · · a1nbkl

...
...

... . . . ...
...

...
...

...
... . . . ...

...
...

am1b11 am1b12 · · · am1b1l · · · · · · amnb11 amnb12 · · · amnb1l

am1b21 am1b22 · · · am1b2l · · · · · · amnb21 amnb22 · · · amnb2l
...

... . . . ...
...

... . . . ...
am1bk1 am1bk2 · · · am1bkl · · · · · · amnbk1 amnbk2 · · · amnbkl



. (2.56)

Kronecker products have various interesting properties. We list the ones relevant to this
dissertation:

• If A and B are nonsingular, then A⊗B is nonsingular with (A⊗B)−1 = A−1⊗B−1,

• (A⊗B)T = AT ⊗BT ,
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• Given matrices A, B, C, and D, (A⊗B) · (C⊗D) = AC⊗BD, as long as both sides
of the equation make sense,

• (A + B)⊗C = A⊗C + B⊗C, and

• A⊗ (B + C) = A⊗B + A⊗C.

2.4 Review of Fixed-Point Iteration
In this section we review fixed-point iteration methods. Definitions and theorems are from
[37]. Many nonlinear equations can be naturally formulated as a fixed-point problem

x = g(x) (2.57)

where g, called the fixed-point map, may be nonlinear. We begin by defining a fixed point
of some equation g(x):

Definition 2.12. A point x0 is called a fixed point of g(x) if it satisfies

x0 = g(x0). (2.58)

Next, we define an attractive fixed point of a function g(x):

Definition 2.13. A point x0 is an attractive fixed point of g(x) if for any value of x in the
domain that is sufficiently close to x0, the iterated function sequence

x, g(x), g(g(x)), g(g(g(x))), . . . (2.59)

converges to x0.

Given these two definitions, we can define an iterative method to find the fixed point of
some function g(x) as

xn+1 = g(xn). (2.60)

The convergence of this fixed-point iteration method depends on the existence and uniqueness
of the fixed point in the domain of the function g(x). We introduce and prove the following
theorem

Theorem 2.14. Existence and Uniqueness of Fixed Point

1. Existence: If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g has a fixed point in
[a, b].

2. Uniqueness: If, in addition, g′(x) exists on (a, b) and a positive constant k < 1 exists
with

|g′(x)| ≤ k, for all x ∈ (a, b),

then there is exactly one fixed point in [a, b].
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Proof. We note the following:

• g ∈ C[a, b]− g is continuous in [a, b].

• g(x) ∈ [a, b]− g takes values in [a, b].

1. Existence: If g(a) = a or g(b) = b, then g has a fixed point at that endpoint. Otherwise,
g(a) > a and g(b) < b. We define a new function h(x) = g(x) − x such that h(a) =
g(a) − a > 0, h(b) = g(b) − b < 0, and h(x) is continuous. By the intermediate value
theorem, there exists p ∈ (a, b) for which h(p) = 0 which implies g(p) = p.

2. Uniqueness: Assume |g′(x)| ≤ k < 1. Suppose there are two fixed points p and q. By
the mean value theorem, there is a number ξ between p and q such that

g′(ξ) =
g(p)− g(q)

p− q
. (2.61)

This implies

|p− q| = |g(p)− g(q)| = |g′(ξ)||p− q| ≤ k|p− q| < |p− q|, (2.62)

which is a contradiction. This implies there is only one fixed point and it is unique.

The previous concepts extend to vector valued functions. Consider the general iteration

xn+1 = F (xn), (2.63)

where F : Rn → Rn is a vector valued function. A solution of the equation x = F (x) is
called a fixed point of F . Unlike iterative methods for linear equations, it is usually only
possible to analyze the convergence of Eq. 2.63 in a neighborhood about a fixed point. For
any initial guess x0 in that neighborhood, the general iteration in Eq. 2.63 will converge to
the fixed point if the fixed point is a point of attraction. More precisely, we define a fixed
point as a point of attraction as follows:

Definition 2.15. A fixed point x∗ of F : Rn → Rn is a point of attraction of the iteration
given in Eq. 2.63 if there is an open neighborhood S of x∗ such that when x0 ∈ S, the iterates
are well defined and converge to x∗.

Before we give the basic local convergence theorem for Eq. 2.63, we discuss the Jacobian
matrix of the vector valued function F . The Jacobian matrix of the vector valued function
F is denoted by J(x) and is defined as follows:
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Definition 2.16. The Jacobian matrix of the vector valued function F is defined as

J(x) =


∂F1(x)
∂x1

· · · ∂F1(x)
∂xn...
...

∂F1(x)
∂xn

· · · ∂Fn(x)
∂xn

 . (2.64)

It is assumed that the Jacobian matrix is at least continuous at the fixed point x∗. It can
be shown that if the Jacobian matrix is continuous at x∗, then F is differentiable at x∗ [37].

We now introduce Ostrowski’s Theorem [38], the local convergence theorem for the iter-
ation given by Eq. 2.63.

Theorem 2.17. Ostrowski’s Theorem: Assume that F : Rn → Rn is differentiable at the
fixed point x∗ and that ρ(J(x∗)) < 1. Then x∗ is a point of attraction for the general iteration
given by Eq. 2.63.

It is important to note that the previous theorem is a sufficient but not necessary condition
for the convergence of the non-linear fixed-point iteration.

2.5 Conclusion
Starting from the time-dependent neutron transport equation, the alpha- and k-effective
eigenvalue problems of neutron transport were derived and their properties discussed. We
discussed the physical interpretations of the eigenvalues along with their mathematical prop-
erties. For the two eigenvalue problems, we examined various methods used in practice to
determine the eigenpairs and discussed their strengths and weaknesses. Finally, we reviewed
linear algebra concepts and fixed-point iteration concepts that are used heavily throughout
the dissertation. We now move on to the linear algebraic development of the criticality
eigenvalue problems of neutron transport and the derivation of a new method, the Rayleigh
Quotient Fixed Point method.
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Chapter 3

Discretization and Primitivity of the
Neutron Transport Criticality
Eigenvalue Problems

In this section we describe the discretization of the neutron transport criticality eigenvalue
equations for three-dimensional Cartesian geometry. The discretization follows a similar
approach to that of Brown [39] [40] [41]. First, we derive semi-discretized forms of the
eigenvalue equations by applying the multigroup-in-energy approximation and a spherical
harmonics expansion for the scattering integral. We then discretize the spatial and angular
variables using step differencing and the discrete ordinates approach. Finally, we write down
the discretized matrix forms of the criticality eigenvalue equations for three-dimensional
Cartesian geometry. For the one-dimensional slab geometry discretized alpha-eigenvalue
problem, we prove that the discretized transport equation matrix is primitive. A similar
result can be shown for the two-dimensional and three-dimensional Cartesian discretized
eigenvalue equations.

We begin with the linear alpha-eigenvalue neutron transport equation in a three-dimen-
sional box geometry. For a description of the discretization process for the one-dimensional
slab neutron transport eigenvalue equations see Appendix A. The spatial domain is the box
D ≡ {~r = (x, y, z) | ax ≤ x ≤ bx, ay ≤ y ≤ by, and az ≤ z ≤ bz}, the direction variable is
Ω̂ ∈ S2, the unit sphere in R3, the energy variable is E ∈ (0,∞), and the equation for the
angular flux ψ(~r, Ω̂, E) is given by

[
α

v(E)
+ Ω̂ · ∇+ σ(~r, E)

]
ψ(~r, Ω̂, E)

=

∫ ∞
0

dE ′
∫

4π

dΩ̂′ σs(~r, E
′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E ′)

+

∫ ∞
0

dE ′ ν(E ′)χ(E ′ → E)σf (~r, E
′)

∫
4π

dΩ̂′ ψ(~r, Ω̂′, E ′), (3.1)
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where
∇ψ ≡

(
∂ψ

∂x
,
∂ψ

∂y
,
∂ψ

∂z

)
, (3.2)

and ∫
4π

dΩ̂ = 1. (3.3)

In the discretization of Eq. 3.1 it is assumed that χ(E ′ → E) is not a function of the incident
neutron energy E ′. Therefore, we have

χ(E ′ → E) = χ(E). (3.4)

Boundary conditions must be specified to make Eq. 3.1 well-posed. Various boundary
conditions can be specified such as a reflecting condition on a face or a Dirichlet condition
where an incident flux is specified on a face. We consider vacuum boundary conditions in
this dissertation, a special case of the Dirichlet boundary condition where no incident flux is
imposed:

ψ(~r, Ω̂, E) = 0 for all ~r ∈ ∂D and Ω̂ ∈ S2 with ~n(~r) · Ω̂ < 0, (3.5)

where ~n(~r) is the outward pointing unit normal at ~r ∈ ∂D.

3.1 Discretization of the Alpha-Eigenvalue and
k-Effective Eigenvalue Equations

In this section, we discuss the discretization of the alpha- and k-effective eigenvalue neutron
transport equations. We begin by approximating the energy dependence of the neutron
transport equations using the multigroup-in-energy approximation. We then discretize the
angular flux and scattering cross sections using a surface harmonics expansion. Finally, the
spatial and angular dependences of the eigenvalue equations are then approximated using
step differencing in space and the discrete ordinates approach in angle.

3.1.1 The Multigroup-in-Energy Discretization and Surface
Harmonics Expansion of the Angular Flux

The Multigroup-in-Energy Approximation

We begin by discretizing Eq. 3.1 in energy using the multigroup approximation [5]. We
restrict the energy E to a finite interval and partition the interval into groups:

Emax = E0 > E1 > · · · > EG = Emin.
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The eigenvalue equation is then integrated over each group Eg < E < Eg−1 and the cross sec-
tions are approximated by a flat-flux weighting over each energy group to yield the following
semi-discretization of Eq. 3.1:

[
α

vg
+ Ω̂ · ∇+ σg(~r)

]
ψg(~r, Ω̂) =

G∑
g′=1

∫
4π

dΩ̂′ σs,g,g′(~r, Ω̂
′ · Ω̂)ψg′(~r, Ω̂

′)

+ χg

G∑
g′=1

νσf,g′(~r)

∫
4π

dΩ̂′ ψg′(~r, Ω̂
′), (3.6)

for g = 1, . . . , G, where

ψg(~r, Ω̂) ≡
∫
g

dE ψ(~r, Ω̂, E), (3.7)

σg(~r) ≡
1

∆Eg

∫
g

dE σ(~r, E), (3.8)

σs,g,g′(~r, Ω̂
′ · Ω̂) ≡ 1

∆Eg′

∫
g

∫
g′
dE ′ dE σs(~r, E

′ → E, Ω̂′ · Ω̂), (3.9)

νσf,g(~r) ≡
1

∆Eg

∫
g

dE ν(E)σf (E), (3.10)

χg ≡
∫
g

dE χ(E), (3.11)

with ∫
g

dE =

∫ Eg−1

Eg

dE. (3.12)

We note that
G∑
g=1

χg = 1 (3.13)

in the multigroup formulation since ∫ ∞
0

dE χ(E) = 1. (3.14)

The Surface Harmonics Expansion of the Angular Flux

For each flux ψg(~r, Ω̂), the flux is expanded in surface harmonics according to

ψg(~r, Ω̂) =
∞∑
n=0

n∑
m=−n

φg,n,m(~r)Y m
n (Ω̂), (3.15)
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where Y m
n (Ω̂) is a surface harmonic defined as

Y m
n (Ω̂) = amn P

|m|
n (ξ)τm(ϕ), (3.16)

Ω̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), (3.17)

τm(ϕ) =

{
cosmϕ, if m ≥ 0,

sin|m|ϕ if m < 0,
(3.18)

and P |m|n is an associated Legendre polynomial [5]. The constants amn are defined by

amn =

[
2(2n+ 1)(n− |m|)!
(1 + δm0)(n+ |m|)!

]1/2

. (3.19)

where δn,n′ is the Kronecker delta. The (n,m)th moment of ψ(~r, Ω̂), φn,m is given by

φn,m(~r) =

∫
4π

dΩ̂ψ(~r, Ω̂)Y m
n (Ω̂). (3.20)

From the properties of the surface harmonics, we have∫
4π

dΩ̂Y m
n (Ω̂)Y m′

n′ (Ω̂) = δn,n′δm,m′ , for all n, n′ = 0, 1, . . . , |m| ≤ |n|, |m′| ≤ |n′|. (3.21)

The scattering integral can be then be written in the form∫
4π

dΩ̂′ σs,g,g′(~r, Ω̂
′ · Ω̂)ψg′(~r, Ω̂

′) =
∞∑
n=0

σs,g,g′,n(~r)
n∑

m=−n

φg′,n,m(~r)Y m
n (Ω̂), (3.22)

where

σs,g,g′,n(~r) ≡ 1

2

∫ 1

−1

dµ0 σs,g,g′(~r, µ0)Pn(µ0), (3.23)

and µ0 is the cosine of the scattering angle. The infinite series in Eq. 3.22 is truncated to a
finite number of terms Ns, where Ns is the maximum value for n. If fission is not assumed
to be isotropic the fission integral can be written similarly with the infinite series truncated
after Nf terms. If fission is isotropic, the expansion simplifies to only a function of the
neutron scalar flux. The multigroup equations can then be written as[

α

vg
+ Ω̂ · ∇+ σg(~r)

]
ψg(~r, Ω̂) =

G∑
g′=1

Ns∑
n=0

σs,g,g′,n(~r)
n∑

m=−n

φg′,n,m(~r)Y m
n (Ω̂)

+ χg

G∑
g′=1

Nf∑
n=0

νσf,g′,n(~r)
n∑

m=−n

φg′,n,m(~r)Y m
n (Ω̂), (3.24)

for g = 1, . . . , G.
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3.1.2 Step Differencing in Space and Discrete Ordinates in Angle

Step Differencing

We continue the discretization of Eq. 3.24 by using a Step finite differencing method [6] for
the spatial variable ~r. We start with the three-dimensional mono-energetic alpha-eigenvalue
equation for group g with scattering and fission source f :{

α
v
ψ + Ω̂ · ∇ψ + σψ = f in D

ψ(~r) = 0 for all ~r ∈ ∂D with ~n(~r) · Ω̂ < 0.
(3.25)

We discretize the domain D into zones and define

∆xi = xi − xi−1, for i = 1, . . . ,M, (3.26)

∆yj = yj − yj−1, for j = 1, . . . , J, (3.27)

∆zk = zk − zk−1, for k = 1, . . . , K. (3.28)

We define the nodes rijk = (xi, yj, zk) and the zone volume ∆rijk = ∆xi∆yj∆zk. The
function values at the set of nodes, {rijk} are called nodal values. We assume that σ and f
have constant values, denoted as σijk and fijk respectively, on each zone defined as

Zijk ≡ {r|xi−1 < x < xi, yj−1 < y < yj, zk−1 < z < zk}. (3.29)

We define ψijk to denote the approximation to ψ(rijk), the true solution at the point rijk.
For a direction in the positive orthant, Ω̂ = (µ, η, ξ) > 0, the Step differencing equation

for the zone Zijk is

α

v
ψijk + µ

ψijk − ψi−1,jk

∆xi
+ η

ψijk − ψi,j−1,k

∆yj
+ ξ

ψijk − ψij,k−1

∆zk
+ σijkψijk = fijk. (3.30)

For Eq. 3.30, we have (M+1)(J+1)(K+1) unknowns ψijk. There areMJK zonal equations
with JM + JK +M + J +K + 1 boundary equations.

To write the discretized system in matrix form, we define the discrete angular flux vector

Ψ ∈ R(M+1)(J+1)(K+1), (3.31)

defined for all nodes ordered by i first, then j, and finally k. We define the diagonal matrices

∆x ≡ diag(∆x1, . . . ,∆xM), (3.32)

∆y ≡ diag(∆y1, . . . ,∆yJ), (3.33)

∆z ≡ diag(∆z1, . . . ,∆zK), (3.34)
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and the matrices expressing the discretized spatial derivatives

DM ∈ RM×(M+1) ≡

−1 1
. . . . . .
−1 1

 , SM,+ ∈ RM×(M+1) ≡

0 1
. . . . . .

0 1

 , (3.35)

DJ ∈ RJ×(J+1) ≡

−1 1
. . . . . .
−1 1

 , SJ,+ ∈ RJ×(J+1) ≡

0 1
. . . . . .

0 1

 , (3.36)

DK ∈ RK×(K+1) ≡

−1 1
. . . . . .
−1 1

 , SK,+ ∈ RK×(K+1) ≡

0 1
. . . . . .

0 1

 . (3.37)

We define the total cross section matrix as

Σ ≡ diag(σ111, . . . , σMJK), (3.38)

and the inverse neutron velocity matrix as

V −1 ≡ diag(1/v111, . . . , 1/vMJK). (3.39)

The matrices describing the spatial derivatives with respect to a spatial variable Cx, Cy, and
Cz are defined by

Cx ≡ SK,+ ⊗ SJ,+ ⊗∆x−1DM , (3.40)

Cy ≡ SK,+ ⊗∆y−1DJ ⊗ SM,+, (3.41)

Cz ≡ ∆z−1DK ⊗ SJ,+ ⊗ SM,+, (3.42)

while the matrix associating the correct total cross section to each cell is defined as

S ≡ SK,+ ⊗ SJ,+ ⊗ SM,+. (3.43)

With these matrices defined, we can write the MJK zone-centered equations for the
unknown vector Ψ as

(αV −1 + C + ΣS)Ψ = F, (3.44)

where
C ≡ µCx + ηCy + ξCz, (3.45)

and
F ≡ (fijk) ∈ RMJK . (3.46)

We note that if the quadrature point Ω̂ is not in the positive octant, then the definitions
of the corresponding Cx, etc., matrices would instead use the matrices SM,−, SJ,− and SK,−
depending on the signs of (µ, η, ξ). The matrix SM,− is defined as
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SM,− ∈ RM×(M+1) ≡

1 0
. . . . . .

1 0

 , (3.47)

where SJ,− and SK,− are defined similarly.
Boundary values are isolated by noting that for a positive direction vector Ω̂, ψ satisfies

the Dirichlet condition for all ~r = r0jk, ri0k, or rij0. These locations correspond to one of the
three faces with coordinate x = x0, y0, or z0 of the box. For a positive direction vector Ω̂, we
define the vector ΨB with length equal to the length of Ψ. The vector ΨB is nonzero at all
indices corresponding to boundary points where there is some incoming angular flux. The
discrete boundary conditions can be written

E000(Ψ−ΨB) = 0, (3.48)

where we define E000 as

E000 =

 eT0K ⊗ IJ+1 ⊗ IM+1

(0, IK)⊗ eT0J ⊗ IM+1

(0, IK)⊗ (0, IJ)⊗ eT0M

 , (3.49)

where the vectors e0J and e0K are the standard unit vectors and I is the identity matrix of
size given by the subscript. There are different E matrices for other directions. For three-
dimensional Cartesian geometry, there are eight different matrices, Eijk, corresponding to
boundary points i = 0,M , j = 0, L, and k = 0, K.

Equation 3.44 is the discretized equation for quadrature point Ω̂ and energy group g. We
generalize for multiple quadrature points and energy groups by introducing the indices ` and
g, where ` is the index of quadrature point Ω̂ = Ω̂` and g is the energy group index. The
vectors Ψ and ΨB and matrix C of Eq. 3.44 become Ψg,`, ΨB,g,`, and C`.

We define the matrices Z and Zb by

Z ≡
(
IMJK

0

)
∈ R(M+1)(J+1)(K+1)×MJK (3.50)

and

Zb ≡
(

0
I(M+1)(J+1)(K+1)−MJK

)
∈ R(M+1)(J+1)(K+1)×(M+1)(J+1)(K+1)−MJK . (3.51)

The matrices Z and Zb inject zone-centered vectors into the nodal vector space. We note
the following properties:

ZTZ = IMJK , (3.52)

ZT
b Zb = I(M+1)(J+1)(K+1)−MJK , (3.53)

and
ZTZb = 0. (3.54)



CHAPTER 3. DISCRETIZATION AND PRIMITIVITY 34

Then the matrix representation of Eq. 3.25 for energy group g and direction ` can be written
as

(αV −1
g,` +Hg,`)Ψg,` = ZFg,` + ZbB`ΨB,g,`, (3.55)

where
Hg,` ≡ Z(C` + ΣgS) + ZbB`, (3.56)

and
V −1
g,` ≡ ZV −1

g S, (3.57)

with B` = Eijk for the appropriate choice of i, j, and k and C` is defined as

C` ≡ µ`Cx + η`Cy + ξ`Cz. (3.58)

The matrix Hg,` operates on nodal vectors. We define the angular quadrature scheme in the
next section.

The Discrete Ordinates Method

To integrate functions on the unit sphere, we consider symmetric quadrature rules of the
form [42]: ∫

4π

dΩ̂ψ(Ω̂) ≈
L∑
`=1

w`ψ(Ω̂`), (3.59)

where Ω̂ ≡ (µ`, η`, ξ`), for all ` = 1, . . . , L, with L = ν(ν+2) and ν is the number of direction
cosines (ν = 2, 4, 6, . . . ). It is assumed that w` > 0 for all `. We note that

L∑
`=1

w` = 1, (3.60)

since ∫
4π

dΩ̂ = 1. (3.61)

The symmetry requirement is met using symmetry through the origin. Namely, if Ω̂` is
a quadrature point with corresponding weight, w`, then −Ω̂` is also a quadrature point.
Letting `− denote the index, we can write Ω̂`− = −Ω̂`. It is also true that w−` = w` [42].

We define discretized representations of the angular flux moment operators in Eq. 3.25.
These operators operate on zone-centered vectors and are easily seen to be given byMJK×
LMJK size matrices

Ln,m ≡ (ln,mW )⊗ IMJK , (3.62)

where
ln,m ≡

(
Y m
n (Ω̂1), Y m

n (Ω̂2), . . . , Y m
n (Ω̂L)

)
, (3.63)

and
W ≡ diag(w1, w2, . . . , wL). (3.64)
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If the vector Ψg approximates ψg(~r, Ω̂), then Ln,mΨg approximates the (n,m)th moment of
ψg(~r, Ω̂), φg,n,m(~r). Similarly, we define LMJK ×MJK size matrices

L+
n,m ≡ lTn,m ⊗ IMJK . (3.65)

If a vector Φ approximates φ(~r), then L+
n,mΦ approximates Y m

n (Ω̂)φ(~r). We define the
grouped matrices Ln and L+

n , where

Ln =

Ln,−n...
Ln,n

 and L+
n =

(
L+
n,−n, . . . , L

+
n,n,
)

(3.66)

and the further grouped block matrices

LN =

L0
...
LN

 and LN,+ =
(
L+

0 , . . . , L
+
N

)
. (3.67)

GivenN = Ns, the number of terms in the scattering kernel, it is assumed that the symmetric
quadrature rule is such that the spherical harmonics of order Ns and less satisfy

L∑
`=1

Y m
n (Ω̂`)Y

m′

n′ (Ω̂`) = δn,n′δm,m′ , for all 0 ≤ n, n′ ≤ Ns, |m| ≤ n, |m′| ≤ n′. (3.68)

In matrix form, this can be written more compactly as

LNsLNs,+ = I(Ns+1)2 ⊗ IMJK . (3.69)

For boundary terms, we define the block diagonal matrices B and C by

B ≡ diag(B1, B2, . . . , BL) (3.70)

and
C ≡ diag(C1, C2, . . . , CL). (3.71)

The scattering kernel matrix is defined by letting

Σs,g,g′,n ≡ I2n+1 ⊗ Σ̂s,g,g′,n, (3.72)

where
Σ̂s,g,g′,n ≡ diag(σs,g,g′,n,111, . . . , σs,g,g′,n,MJK), n = 0, 1, . . . (3.73)

The fission matrix is defined by letting

Σf,g,g′,n ≡ I2n+1 ⊗ Σ̂f,g,g′,n, (3.74)
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where
Σ̂f,g,g′,n ≡ diag(χgνσf,g′,n,111, . . . , χgνσf,g′,n,MJK), n = 0, 1, . . . (3.75)

We define the matrix Z̄, which injects zone-centered vectors into the nodal vector space,
as

Z̄ ≡ IL ⊗ Z, (3.76)

along with the matrix Z̄B
Z̄B ≡ IL ⊗ Zb. (3.77)

We note that properties of Z and Zb remain true for the matrices Z̄ and Z̄B. We define the
matrix S̄, which averages nodal vectors to obtain zone-centered vectors, as

S̄ ≡ IL ⊗ S. (3.78)

Finally, we define the total cross section matrix for all quadrature points Σ̄g as

Σ̄g ≡ IL ⊗ Σg, (3.79)

and the inverse velocity matrix V̄ −1 as

V̄ −1 ≡ IL ⊗ V −1. (3.80)

Using the previously defined matrices, we can define the matrix Hg, the leakage and total
cross section matrix for energy group g as

Hg ≡ diag(Hg,1, Hg,2, . . . , Hg,L) = Z̄(C + Σ̄gS̄) + Z̄BB, (3.81)

along with the matrix V −1
g

V −1
g ≡ diag(V −1

g,1 , V
−1
g,2 , . . . , V

−1
g,L ) = Z̄V̄ −1S̄. (3.82)

The matrices Z̄ and Z̄B are necessary since Hg operates on nodal vectors while the matrices
Σs,g,g′,n and Σf,g,g′,n operate on zone-centered vectors. Assuming only Ns + 1 terms in the
scattering and fission operators, then the complete discretization of Eq. 3.25 can be written
as

(
αV −1

g +Hg

)
Ψg = Z̄

G∑
g′=1

Ns∑
n=0

L+
nΣs,g,g′,nLnS̄Ψg′

+ Z̄
G∑

g′=1

Ns∑
n=0

L+
nΣf,g,g′,nLnS̄Ψg′ , g = 1, . . . , G. (3.83)

Finally, we can write the fully discretized in space, angle, and energy matrix equation
analog of Eq. 3.1. We first define the complex multigroup scattering and fission matrices

Σs ≡

ΣNs
s,11 . . . ΣNs

s,1G
... . . . ...

ΣNs
s,G1 . . . ΣNs

s,GG

 , (3.84)



CHAPTER 3. DISCRETIZATION AND PRIMITIVITY 37

where
ΣNs

s,gg′ ≡ diag
(
Σs,g,g′,0, . . . ,Σs,g,g′,Ns

)
, (3.85)

and

Σf ≡

ΣNs
f,11 . . . ΣNs

f,1G
... . . . ...

ΣNs
f,G1 . . . ΣNs

f,GG

 , (3.86)

where
ΣNs

f,gg′ ≡ diag
(
Σf,g,g′,0, . . . ,Σf,g,g′,Ns

)
. (3.87)

We define the following matrices
S ≡ IG ⊗ S̄, (3.88)

Z ≡ IG ⊗ Z̄, (3.89)

ZB ≡ IG ⊗ Z̄B, (3.90)

L+ ≡ IG ⊗ LNs,+, (3.91)

L ≡ IG ⊗ LNs , (3.92)

and
B ≡ IG ⊗B. (3.93)

Finally, we define the matrices H and V−1 as

H ≡ diag
(
H1, H2, . . . , HG

)
, (3.94)

and
V−1 ≡ diag

(
V −1

1 , V −1
2 , . . . , V −1

G

)
. (3.95)

With these matrices defined, we can write Eq. 3.1 as the matrix equation(
αV−1 + H

)
Ψ = ZL+

(
Σs + Σf

)
LSΨ, (3.96)

where the angular flux vector, Ψ, is defined as

Ψ ≡


Ψ1

Ψ2
...

ΨG

 . (3.97)

Equation 3.96 is the discretized alpha-eigenvalue neutron transport problem in matrix form
for the node-centered angular flux. Similarly, the k-effective eigenvalue problem can be
written as

HΨ = ZL+

(
Σs +

1

k
Σf

)
LSΨ. (3.98)
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Equations 3.96 and 3.98 are eigenvalue equations for the criticality eigenvalue and the
node-centered angular flux eigenvector. In the derivation of the Rayleigh Quotient Fixed
Point method, we require an inner product. However, the inner product is defined for zone-
centered vectors, whereas the unknown angular flux eigenvectors in Eqns. 3.96 and 3.98
are node-centered. To satisfy this requirement, we write Eqns. 3.96 and 3.98 using zone-
centered angular flux eigenvectors. We denote Ψz as the zone-centered unknown and Hz as
the zone-centered version of H. To write Eqns. 3.96 and 3.98, we use the following lemma.

Lemma 3.1. For all ` = 1, 2, . . . , L,

B`(ZS + ZbB`)
−1Z = 0 · IMJK and S(ZS + ZbB`)

−1Z = IMJK . (3.99)

Proof. The matrix ZS + ZbB` is nonsingular for all ` = 1, 2, . . . , L. [39]. Therefore,

IMJK = ZS(ZS + ZbB`)
−1 + ZbB`(ZS + ZbB`)

−1. (3.100)

Multiplying by ZT
b and using the fact ZTZb = 0 gives

ZT
b = B`(ZS + ZbB`)

−1. (3.101)

Multiplying on the right by Z gives the first assertion in Eq. 3.99. Using the fact ZTZ = IMJK

and ZTZb = 0, multiplying Eq. 3.100 on the left by ZT gives

ZT = S(ZS + ZbB`)
−1. (3.102)

Multiplying on the right by Z gives the second assertion in Eq. 3.99.

Given a zone-centered angular flux vector Ψz, the nodal angular flux vector Ψ defined
by

Ψg,` ≡ (ZS + ZbB`)
−1ZΨz,g,` for all g = 1, 2, . . . , G and ` = 1, 2, . . . , L, (3.103)

satisfies B`Ψg,` = 0 and SΨg,` = Ψz,g,` for all g and `. Defining the matrices

C ≡ IG ⊗ C, (3.104)

B ≡ IG ⊗B, (3.105)

ZB ≡ IG ⊗ Z̄B, (3.106)

and
Σ ≡ diag(Σ̄1, Σ̄2, . . . , Σ̄G), (3.107)

then H and V−1 can be rewritten as

H = Z(C + ΣS) + ZBB, (3.108)
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and
V−1 = ZV−1S. (3.109)

For the nodal-centered angular flux Ψ, we have from Lemma 3.1 that

Ψ = (ZS + ZBB)−1ZΨz. (3.110)

Substituting Eq. 3.110 into Eq. 3.96 and 3.98 and multiplying on the left by ZT gives(
αV−1

z + Hz

)
Ψz = L+(Σs + Σf )LΨz, (3.111)

where
Hz ≡ C(ZS + ZBB)−1Z + Σ, (3.112)

and
V−1

z ≡ V−1S(ZS + ZBB)−1Z. (3.113)

Following the same procedure for the k-effective eigenvalue neutron transport equation
yields the discretized equation:

HzΨz = L+

(
Σs +

1

k
Σf

)
LΨz. (3.114)

We consider Eqns. 3.111 and 3.114 in the derivation of the Rayleigh Quotient Fixed Point
method.

3.2 Primitivity of the Discretized Alpha-Eigenvalue and
k-Effective Eigenvalue Equations

In this section we show that the matrices

A(α) = H−1
z

(
− αV−1

z + Σs + Σf

)
(3.115)

and
T(k) = H−1

z

(
Σs +

1

k
Σf

)
(3.116)

are primitive for the one-dimensional slab geometry problem. To simplify notation, in this
section we define the scattering and fission matrices as Σs ≡ L+ΣsL and Σf ≡ L+ΣfL,
respectively. The discretization of the one-dimensional slab geometry alpha-eigenvalue can
be seen in Appendix A. Though there are various definitions of a primitive matrix (see
Section 2.3.3), it suffices to show that for some nonnegative matrix A, if there is some n
such that An > 0, then A is primitive.

It is assumed that there is fissile material in all spatial cells and spatial cell widths
are small enough to guarantee the positivity of H−1

z for diamond differencing [43]. Step
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differencing also guarantees this condition is met. In practice, the requirement for fissile
material in all cells can be relaxed as long as sum of the fission and scattering matrices
couple all energy and direction groups. It also assumed that a symmetric about the origin
angular quadrature is used.

Given these assumptions, we begin with matrix A(α). To prove the primitivity of A(α),
we first specify the location of positive elements in each of the matrices H−1

z ,V−1,Σs, and
Σf .

The matrix H−1
z can be partitioned into G block matrices corresponding to the total

number of energy groups in the following manner

H−1
z =

H
−1
1

. . .
H−1
G

 . (3.117)

Each energy block matrix can be further partitioned into L block matrices, with each
block matrix corresponding to one angular ordinate:

H−1
g =

H
−1
g,−L/2

. . .
H−1
g,L/2

 . (3.118)

Let g = 1, 2, . . . , G and ` = −L/2,−L/2 + 1, . . . , L/2, then the block matrix corresponding
to energy group g and direction ` is given by H−1

g,` .
The block matrices H−1

g,` are of size M where M is the number of spatial cells in the
x-direction. The block matrices are either nonnegative lower or upper triangular matrices:

H−1
g,`,ij =

{
> 0 if µ` > 0 and i ≤ j

> 0 if µ` < 0 and i ≥ j.
(3.119)

Given that the angular quadrature is symmetric about the origin, we have

µ−` = −µ`, ` = 1, 2, . . . , L/2. (3.120)

Using this fact, we have the following

Lemma 3.2.
H−1
g,` +H−1

g,−` > 0. (3.121)

From the previous fact, we have the following for the elements of the matrix H−1
z

(H−1
z )g,`,ij


= 0, if µ` > 0, and i > j,

= 0, if µ` < 0, and i < j,

> 0, otherwise.
(3.122)

An example of the H−1
z for five spatial cells (M = 5), S2 discrete ordinates angular quadrature

(L = 2), and two energy groups (G = 2) can be seen in Figure 3.1.
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g

g′

`

`′

Figure 3.1: Structure of H−1
z

The structure of H−1
z . The matrix is blocked into block matrices corresponding to energy

groups. The block energy are indexed using g, g′ = 1, 2, . . . , G. There are a total of (GL)2

block matrices each of size M . Each energy block matrix can be blocked into direction
matrices with indices `, `′ = 1, 2, . . . , L. The block lower and upper triangular matrices
correspond to positive (blue) and negative (red) directions, respectively.
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For the fission matrix Σf , if the problem domain of interest has fissile material throughout
the domain and fission is possible in any energy group, we have the following for the elements
of the matrix

(Σf )gg′,``′,ij

{
= 0, if i 6= j,

> 0, otherwise,
(3.123)

for all g, g′ = 1, 2, . . . , G and `, `′ = −L/2,−L/2+1, . . . , L/2. We assume fission is isotropic.
The fission matrix Σf is a block matrix with square block matrices size of M that are only
nonzero on the diagonal (see Figure 3.2). For isotropic fission, we have the following for the
block matrices of Σf

Lemma 3.3.
(Σf )gg′,``′ = (Σf )gg′,−`−`′ . (3.124)

An example of the matrix Σf for five spatial cells and fission possible in all energy groups
is seen in Figure 3.2

g

g′

`

`′

Figure 3.2: Structure of Σf for Two Energy Groups, Five Spatial Cells, and Fission in All
Energy Groups
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For a positive scattering kernel in the entire problem domain where only downscattering
is allowed, we have the following for the elements of the matrix Σs

(Σs)gg′,``′,ij


= 0, if g < g′,

= 0, if i 6= j,

> 0, otherwise,
(3.125)

for `, `′ = −L/2,−L/2+1, . . . , L/2. Σs is composed of block diagonal matrices on and under
the diagonal each with size M that are only nonzero on the diagonal of that block matrix.

An example of the matrix Σs for five spatial cells and only downscattering is possible is
seen in Figure 3.3.

g

g′

`

`′

Figure 3.3: Structure of Σs for Two Energy Groups, Five Spatial Cells, and Downscattering
Only

For all energy groups, the inverse velocity matrix is a diagonal matrix. For the matrix
V−1

z we have the following

(V−1
z )gg′,``′,ij

{
= 0, if g 6= g′, ` 6= `′, i 6= j

> 0, otherwise
, (3.126)

An example of the matrix V−1
z is seen in Figure 3.4.
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g

g′

`

`′

Figure 3.4: Structure of V−1
z for Five Spatial Cells

Given the location of nonzero elements in the transport, fission, scattering, and inverse
velocity matrices, we set out to prove the primitivity of the matrix H−1

z Σf . The block matrix
of size M of the matrix H−1

z Σf is given by the product of the block matrices of H−1
z and Σf(

H−1
z Σf

)
gg′,``′

=
∑
g′′,`′′

(
H−1

z

)
gg′′,``′′

(
Σf

)
g′′g′,`′′`′

=
(
H−1

z

)
g,`

(
Σf

)
gg′,``′

(3.127)

The matrices are either lower or upper triangular block matrices depending on the sign of
µ`: (

H−1
z Σf

)
gg′,``′

{
= aij > 0, if µ` < 0 and i ≥ j

= aij > 0, if µ` > 0 and i ≤ j
(3.128)

for all g, g′ = 1, 2, . . . , G and `, `′ = −L/2,−L/2 + 1, . . . , L/2 (see Figure 3.5).
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g

g′

`

`′

Figure 3.5: Structure of H−1
z Σf for Two Energy Group Example

With these facts, we prove the following lemma:

Lemma 3.4. The matrix ΣfH
−1
z Σf is positive.

Proof. The block matrix of size M , ΣfH
−1Σf , is given by(

ΣfH
−1Σf

)
gg′,``′

=
∑
g′′,`′′

(
Σf

)
gg′′,``′′

(
H−1Σf

)
g′′g′,`′′`′

. (3.129)

We can further simplify the previous expression to(
ΣfH

−1Σf

)
gg′,``′

=
∑
g′′,`′′

(
Σf

)
gg′′,``′′

(
H−1

z

)
g′′,`′′

(
Σf

)
g′′g′,`′′`′

. (3.130)

We can rearrange the sum into opposite-signed direction and write

∑
g′′

L/2∑
`′′=−L/2

(
Σf

)
gg′′,``′′

[(
H−1

z

)
g′′,−`′′ +

(
H−1

z

)
g′′,`′′

](
Σf

)
g′′,g′,`′′,`′

, (3.131)

where we have used Lemma 3.3. Using Lemma 3.2, we have[(
H−1

z

)
g′′,−`′′ +

(
H−1

z

)
g′′,`′′

]
> 0. (3.132)
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Since the matrices
(
Σf

)
gg′′,``′′

and
(
Σf

)
g′′,g′,`′′,`′

are nonnegative block diagonal matrices
with positive entries on the main diagonal, then the product of the positive matrix times the
nonnegative matrices is entirely positive. Therefore ΣfH

−1
z Σf is positive.

Using Lemma 3.4, we prove the following lemma:

Lemma 3.5. The nonnegative matrix H−1
z Σf is primitive with index of primitivity of two.

Proof. Multiplying, we obtain(
H−1

z ΣfH
−1
z Σf

)
gg′,``′

=
∑
g′′,`′′

(
H−1

z

)
g′′,`′′

(
ΣfH

−1
z Σf

)
g′′g′,`′′`′

. (3.133)

Since every element of ΣfH
−1
z Σf is positive, a zero element in H−1

z ΣfH
−1
z Σf is possible only

if the elements of
(
H−1

z

)
g′′,`′′,ij

= 0∀ i = 1, 2, . . . ,M which is not possible since the elements
on row i of

(
H−1

z

)
gg,``,ij′

are not all zero. Therefore,
(
H−1

z ΣfH
−1
z Σf

)
gg′,``′′

> 0 ∀ (g, g′, `, `′),
which implies the matrix H−1

z Σf is primitive with index of primitivity of two.

Using the previous results, we prove the primitivity of the matrix H−1
z (Σs + Σf ):

Theorem 3.1. If
(
H−1

z Σf

)2
> 0 and Σs ≥ 0, then H−1

z (Σs + Σf ) is primitive.

Proof. By multiplication[
H−1

z (Σs + Σf )
]2

=
(
H−1

z Σs

)2
+
(
H−1

z Σf

)(
H−1

z Σs

)
+
(
H−1

z Σs

)(
H−1

z Σf

)
+
(
H−1

z Σf

)2
> 0, (3.134)

since
(
H−1

z Σf

)2
> 0 and the matrices

(
H−1

z Σf

)
and

(
H−1

z Σs

)
are nonnegative.

We now show that for α < αmax, where αmax is defined as

αmax = max{α | −αV−1
z + Σs + Σf ≥ 0, α ∈ R}, (3.135)

the matrix A(α) = H−1
z (−αV−1

z + Σs + Σf ) is primitive with index of primitivity of two.

Theorem 3.2. If H−1
z (Σs +Σf ) is primitive, then H−1

z (−αV−1
z +Σs +Σf ) is primitive with

index of primitivity equal to two.

Proof. Let M = −αH−1
z V−1

z and N = H−1
z (Σs + Σf ). By multiplication,[

H−1
z (−αV−1

z + Σs + Σf )

]2

=

[
M + N

]2

= M2 + MN + NM + N2 > 0, (3.136)

since N2 =
[
H−1

z (Σs + Σf )
]2
> 0 and the matrices M2, MN, and NM are nonnegative

since α ≤ αmax.
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Now we prove that the matrix T(k) = H−1
z

(
Σs + (1/k)Σf

)
is primitive.

Theorem 3.3. If (H−1
z Σf )

2 is primitive, then H−1
z (Σs + (1/k)Σf ) is primitive with index

of primitivity equal to two.

Proof. By multiplication[
H−1

z

(
Σs +

1

k
Σf

)]2

=
(
H−1

z Σs

)2
+ (1/k)

(
H−1

z Σf

)(
H−1

z Σs

)
+ (1/k)

(
H−1

z Σs

)(
H−1

z Σf

)
+ (1/k)2

(
H−1

z Σf

)2
> 0, (3.137)

since
(
H−1

z Σf

)2
> 0, the matrices

(
H−1

z Σf

)
and

(
H−1

z Σs

)
are nonnegative, and k > 0.

3.3 Conclusion
Starting with a three-dimensional Cartesian geometry, the continuous neutron transport
criticality eigenvalue equations were discretized using step differencing in space, discrete
ordinates angular quadrature, and the multigroup-in-energy approximation. The matrix
forms of the alpha- and k-effective eigenvalue equations were derived and the structure and
properties of the transport, scattering, fission, and velocity matrices were described. Finally,
the primitivity of the discretized one-dimensional slab alpha-eigenvalue equation was proven.
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Chapter 4

The Rayleigh Quotient Fixed Point
Method

In this chapter we derive the Rayleigh Quotient Fixed Point method for alpha- and k-
effective eigenvalue problems. We begin with the matrix form of the eigenvalue equations
and proceed to develop a fixed point method for the angular flux eigenvector. Since the
eigenvector corresponds to the alpha- or k-effective eigenvalue, we require an update for the
eigenvalue at each iteration. We derive an eigenvalue update that is optimal in the least
squares sense by relating the alpha- or k-effective eigenvalue to the dominant eigenvalue of a
primitive matrix (see Section 2.3). This primitive matrix serves as the fixed point function
to determine the solution of the eigenvalue problem. Since the dominant eigenvalue of a
primitive matrix corresponds to the only positive eigenvector of the matrix, this eigenvector
also solves the discretized criticality eigenvalue neutron transport problem. We end this
chapter with a discussion of the primitivity of the discretized alpha- and k-effective eigenvalue
matrix equations.

4.1 Derivation of the Rayleigh Quotient Fixed Point
Method for Alpha-Eigenvalue Problems

We begin with the discretized alpha-eigenvalue matrix equation:(
αV−1

z + Hz

)
Ψz = L+

(
Σs + Σf

)
LΨz. (4.1)

Solution of Eq. 4.1 consists of finding the eigenpair (α,Ψ) that satisfies the equation with α
a real number and the vector Ψ positive. We write a fixed point equation for Eq. 4.1 in the
form

Ψz = H−1
z

(
− α(Ψz)V

−1
z + L+

(
Σs + Σf

)
L
)
Ψz ≡ A(α(Ψz))Ψz. (4.2)

where the alpha-eigenvalue is function of the eigenvector, α(Ψz). For all subcritical and
critical systems, the right-hand side of Eq. 4.2 is nonnegative since for isotropic scattering
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the scattering matrix is nonnegative. For supercritical systems, there is an αmax such that
the right-hand side is still nonnegative. Various fixed-point equations can be written for
the angular flux eigenvector Ψz. However, this form was selected as it only requires the
inversion of the matrix Hz. In standard neutron transport codes [22] [23], the matrix Hz

is inverted without being formed by sweeping across the domain in space and angle. The
updated eigenvector iterate is obtained by the action of the inverted operator on the source.
By writing the fixed point in this way, the Rayleigh Quotient Fixed Point method can be
implemented easily without needing to form the matrices. Instead, all that is required is
the action of the matrix H−1

z on the source vector, adjusted by the alpha-eigenvalue inverse
velocity vector. This matrix-free form of the algorithm can be easily implemented easily in
production neutron transport codes.

We define an iterative method to find the fixed point (see Section 2.4) of Eq. 4.2 as

Ψz
(i+1) = A(α(i))Ψz

(i). (4.3)

From some initial positive starting vector Ψz
(0), the subsequent eigenvector iterate is de-

termined by the action of inversion of the matrix Hz on the scattering and fission source
adjusted by the alpha-eigenvalue. At each iteration, an update for the eigenvalue is required.
A natural choice of update is that the eigenvalue be a function of the eigenvector iterate.
Given an eigenpair, (α∗,Ψ

∗
z) to Eq. 4.1, it follows that

Ψ∗z = A(α∗)Ψ
∗
z (4.4)

is also an eigenvalue problem for the fixed matrix A(α∗) with eigenpair (1,Ψ∗z).
If the matrix A(α) is a primitive matrix, it follows from the Perron-Frobenius Theorem for

Primitive Matrices that there is only one unique positive eigenvector of A(α) corresponding
to the dominant eigenvalue. This fact allows us to derive an update for the alpha-eigenvalue
at each iteration.

If (Ψ∗z, λ) is an eigenpair of the matrix A(α∗), then

‖A(α∗)Ψ
∗
z − λΨ∗z‖

2
2 = 0. (4.5)

However, suppose Ψ(i) is an approximate eigenvector and we seek to find the best approxi-
mate eigenvalue λ̂ such that

λ̂ = arg min
µ

∥∥A(α(i)

)
Ψ(i) − µΨ(i)

∥∥2

2
. (4.6)

This is a linear least squares problem in the variable µ. It is found that [29]

λ̂ =
ΨT

(i)A
(
α(i)

)
Ψ(i)

ΨT
(i)Ψ(i)

, (4.7)

the Rayleigh quotient, minimizes the residual in the least squares sense. Setting the Rayleigh
quotient to one, the eigenvalue corresponding to the unique positive eigenvector, and solving
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Algorithm 4.1 Rayleigh Quotient Fixed Point Method for the Alpha-Eigenvalue Problem
while residual > tolerance do

α(i) =
ΨT

(i)H
−1
z L+

(
Σs + Σf

)
LΨ(i) −ΨT

(i)Ψ(i)

ΨT
(i)H

−1
z V−1

z Ψ(i)

Ψ(i+1) = H−1
z

(
− α(i)V

−1
z + L+

(
Σs + Σf

)
L

)
Ψ(i)

residual =

∥∥Ψ(i+1) −Ψ(i)

∥∥
2∥∥Ψ(i+1)

∥∥
2

end while

for the approximate alpha-eigenvalue α(i), we obtain the alpha-eigenvalue update for an
approximate eigenvector Ψ(i)

α(i) =
ΨT

(i)H
−1
z L+

(
Σs + Σf

)
LΨ(i) −ΨT

(i)Ψ(i)

ΨT
(i)H

−1
z V−1

z Ψ(i)

. (4.8)

Given Eq. 4.8, we introduce Algorithm 4.1, an iterative scheme to determine the alpha-
eigenvalue and its corresponding eigenvector. The eigenvalue update is optimal in the least
squares sense. For alpha-eigenvalue problems, whereas traditional techniques have focused
on supercritical problems and were limited in subcritical cases [3], this method allows for
the solution of both subcritical and supercritical systems.

For each iteration in Algorithm 4.1 two transport sweeps (inversions of Hz) and three
vectors of size GLMJK are necessary to calculate the alpha-eigenvalue and angular flux
iterates. To reduce the number of transport sweeps and vectors required, we note that
Eq. 4.8 can be written as

α(i) =
ΨT

(i)L
+
(
Σs + Σf

)
LΨ(i) −ΨT

(i)HzΨ(i)

ΨT
(i)V

−1
z Ψ(i)

. (4.9)

Using the fact that

HzΨ(i) =

(
− α(i−1)V

−1
z + L+

(
Σs + Σf

)
L

)
Ψ(i−1) ≡ q(i−1), (4.10)

where q is the scattering and fission source vector, we can write Eq. 4.9 as

α(i) =
ΨT

(i)L
+
(
Σs + Σf

)
LΨ(i) −ΨT

(i)q(i−1)

ΨT
(i)V

−1
z Ψ(i)

. (4.11)
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We introduce a one-sweep variant of Algorithm 4.1 in Algorithm 4.2. For the first iteration
(i = 0), α(0) = 0. Algorithm 4.2 requires only one transport sweep per iteration of the
method. However, the method still requires two vectors per iteration, one to store the
angular flux vector and another to store the previous fission and scattering source vector.

Algorithm 4.2 One-Sweep Rayleigh Quotient Fixed Point Method for the Alpha-Eigenvalue
Problem
while residual > tolerance do
if i = 0 then

q(0) =

(
L+
(
Σs + Σf

)
L

)
Ψ(0)

Ψ(1) = H−1
z q(0)

else

α(i) =
ΨT

(i)L
+
(
Σs + Σf

)
LΨ(i) −ΨT

(i)q(i−1)

ΨT
(i)V

−1
z Ψ(i)

.

q(i) =

(
− α(i)V

−1
z + L+

(
Σs + Σf

)
L

)
Ψ(i)

Ψ(i+1) = H−1
z q(i)

end if

residual =

∥∥Ψ(i+1) −Ψ(i)

∥∥
2∥∥Ψ(i+1)

∥∥
2

end while
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4.2 Derivation of the Rayleigh Quotient Fixed Point
Method for k-Effective Problems

Derivation of the k-effective RQFP method follows a similar procedure as the alpha-eigen-
value RQFP method. We begin with the discretized k-effective eigenvalue matrix equation:

HzΨz = L+

(
Σs +

1

k
Σf

)
LΨz, (4.12)

Once again, we search for the eigenpair (k,Ψ) that satisfies Eq. 4.12. We write Eq. 4.12 in
the fixed-point form

Ψz = H−1
z

[
L+

(
Σs +

1

k(Ψz)
Σf

)
L

]
Ψ ≡ T(k(Ψz))Ψz, (4.13)

where the k-effective eigenvalue is a function of the eigenvector, k(Ψz). For all systems, the
right-hand side of Eq. 4.13 is nonnegative for isotropic scattering and nonnegative k [4]. The
fixed-point form is selected to only require the inversion of the matrix Hz. We define an
iterative method to find the fixed point of Eq. 4.13 as

Ψz
(i+1) = T(k(i))Ψz

(i). (4.14)

From some initial positive starting vector Ψz
(0), the subsequent eigenvector iterate is de-

termined by the action of inversion of the matrix Hz on the scattering and fission source,
where the fission source is adjusted by the k-effective eigenvalue as seen in Eq. 4.13. At each
iteration, an update for the eigenvalue is required. If (k∗,Ψ

∗
z) is an eigenpair of Eq. 4.14, it

follows that
Ψ∗z = T(k∗)Ψ

∗
z (4.15)

is also an eigenvalue problem with eigenpair (1,Ψ∗z).
Similar to the alpha-eigenvalue matrix A(α), if the matrix T(k) is a primitive matrix,

it follows from the Perron-Frobenius Theorem for Primitive Matrices that there is only one
unique positive eigenvector of T(k) corresponding to the dominant eigenvalue. This fact
allows us to derive an update for the k-effective eigenvalue at each iteration.

Suppose Ψ(i) is an approximate eigenvector and we seek to find the best approximate
eigenvalue λ̂ such that

λ̂ = arg min
µ

∥∥T(k(i)

)
Ψ(i) − µΨ(i)

∥∥2

2
. (4.16)

This is, once again, a linear least squares problem in the variable µ. From before, it is found
that the Rayleigh quotient given by

λ̂ =
ΨT

(i)T
(
k(i)

)
Ψ(i)

ΨT
(i)Ψ(i)

, (4.17)
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Algorithm 4.3 Rayleigh Quotient Fixed Point Method for the k-Effective Eigenvalue Prob-
lem
while residual > tolerance do

k(i) =
ΨT

(i)H
−1
z LΣfL

+Ψ(i)

ΨT
(i)Ψ(i) −ΨT

(i)H
−1
z LΣsL+Ψ(i)

Ψ(i+1) = H−1
z

[
L+

(
Σs +

1

k(i)

Σf

)
L

]
Ψ(i)

residual =

∥∥Ψ(i+1) −Ψ(i)

∥∥
2∥∥Ψ(i+1)

∥∥
2

end while

minimizes the residual in the least square sense. Setting the Rayleigh quotient to one and
solving for the k-effective eigenvalue k(i), we obtain the k-effective eigenvalue update for
eigenvector iterate Ψ(i)

k(i) =
ΨT

(i)H
−1
z LΣfL

+Ψ(i)

ΨT
(i)Ψ(i) −ΨT

(i)H
−1
z LΣsL+Ψ(i)

. (4.18)

Given Eq. 4.18, we introduce Algorithm 4.3, an iterative scheme to determine the k-
effective eigenvalue and its corresponding eigenvector. The eigenvalue update is optimal in
the least squares sense.

For each iteration of Algorithm 4.3, two transport sweeps are required to determine the
transported fission and scattering terms. To require only one transport sweep, we rewrite
Eq. 4.18 as

k(i) =
ΨT

(i)LΣfL
+Ψ(i)

ΨT
(i)HzΨ(i) −ΨT

(i)LΣsL+Ψ(i)

. (4.19)

Using the fact that

HzΨ(i) =

[
L+

(
Σs +

1

k
Σf

)
L

]
Ψ(i−1) ≡ q(i−1), (4.20)

we can write the update, Eq. 4.19 as

k(i) =
ΨT

(i)LΣfL
+Ψ(i)

ΨT
(i)q(i−1) −ΨT

(i)LΣsL+Ψ(i)

. (4.21)

We introduce Algorithm 4.4, a one-sweep variant of Algorithm 4.3. For the initial iteration,
k(0) = 1. Algorithm 4.4 requires only one transport sweep per iteration of the method.
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Algorithm 4.4 One-Sweep Rayleigh Quotient Fixed Point Method for the k-Effective Eigen-
value Problem
while residual > tolerance do
if i = 0 then

q(0) =
[
L+
(
Σs + Σf

)
L
]
Ψ(0)

Ψ(1) = H−1
z q(i)

else

k(i) =
ΨT

(i)LΣfL
+Ψ(i)

ΨT
(i)q(i−1) −ΨT

(i)LΣsL+Ψ(i)

.

q(i) =

[
L+

(
Σs +

1

k(i)

Σf

)
L

]
Ψ(i)

Ψ(i+1) = H−1
z q(i)

end if

residual =

∥∥Ψ(i+1) −Ψ(i)

∥∥
2∥∥Ψ(i+1)

∥∥
2

end while

However, it requires three vectors to store the angular flux and fission and scattering sources.
For some angular flux iterates, it has been observed that the k-effective eigenvalue iterate
can be negative for some iterations. However, in practice, this has not prevented convergence
of the method to a positive eigenvalue.
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4.3 Jacobian of the Rayleigh Quotient Fixed Point
Method for Alpha-Eigenvalue Problems

The convergence of the non-linear fixed-point method for the alpha-eigenvalue problem is
determined by the Jacobian of the fixed-point method evaluated at the fixed point of interest
(see Section 2.4). To be more precise, if the spectral radius of the Jacobian matrix at the
fixed point is greater than one, the fixed point is a point of repulsion and the fixed-point
method may not converge to the fixed point. If the spectral radius of the Jacobian matrix
is less than one at the fixed point, the fixed-point method is guaranteed to converge to the
fixed point as long as the iterates are within some neighborhood of the fixed point. If the
spectral radius is equal to one, then the fixed-point method might or might not converge. To
determine the behavior of the fixed-point method at the fixed point of interest, we determine
the Jacobian of the non-linear fixed-point iteration.

We begin by defining the matrices U and W as

U = H−1
z L+

(
Σs + Σf )L, (4.22)

W = H−1
z Vz

−1, (4.23)

and writing Eq. 4.2 as
Ψ = −α(Ψ)WΨ + UΨ, (4.24)

where Ψ is the zone-centered angular flux vector and the subscript has been dropped for
compactness. The alpha-eigenvalue update is then given by

α(Ψ) =
ΨTUΨ−ΨTΨ

ΨTWΨ
. (4.25)

We obtain the Jacobian of the Rayleigh quotient Fixed Point method for the alpha-eigenvalue
problem by differentiating Eq. 4.2 with respect to the vector Ψ:

Jα(Ψ) = −WΨα′(Ψ)T − α(Ψ)W + U. (4.26)

The Rayleigh quotient update derivative is given by

α′(Ψ) =
[(U + UT )Ψ− 2Ψ](ΨTWΨ)− (ΨTUΨ−ΨTΨ)[(W + WT )Ψ]

(ΨTWΨ)2
. (4.27)

Using Eq. 4.25, Eq. 4.27 can be written as

α′(Ψ) =
[(U + UT )Ψ− 2Ψ]− α(Ψ)[(W + WT )Ψ]

(ΨTWΨ)
. (4.28)

The Jacobian matrix for the Rayleigh Quotient Fixed Point method can then be written as

Jα(Ψ) = −WΨ

[
[(U + UT )Ψ− 2Ψ]− α(Ψ)[(W + WT )Ψ]

(ΨTWΨ)

]T
− α(Ψ)W + U. (4.29)
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4.4 Jacobian of the Rayleigh Quotient Fixed Point
Method for k-Effective Eigenvalue Problems

Similar to the Rayleigh Quotient Fixed Point method for the alpha-eigenvalue problem, we
determine the Jacobian of the fixed-point iteration for the k-effective eigenvalue problem.
We define the matrices X and Y

X = H−1
z L+ΣsL, (4.30)

Y = H−1
z L+ΣfL. (4.31)

Equation 4.13 can then be written as

Ψ = XΨ + γ(Ψ)YΨ, (4.32)

where the k-effective eigenvalue update (Eq. 4.18) is given by

γ(Ψ) =
ΨTΨ−ΨTXΨ

ΨTYΨ
=

1

k(Ψ)
. (4.33)

Differentiating Eq. 4.32 with respect to the vector Ψ, we obtain the Jacobian of the Rayleigh
quotient Fixed Point method for k-effective eigenvalue problems:

Jk(Ψ) = YΨγ′(Ψ)T + X + γ(Ψ)Y. (4.34)

The inverse Rayleigh quotient update derivative is given by

γ′(Ψ) =
[2Ψ− (X + XT )Ψ](ΨTYΨ)− (ΨTΨ−ΨTXΨ)[(Y + YT )Ψ]

(ΨTYΨ)2
. (4.35)

Simplifying, we obtain

γ′(Ψ) =
[2Ψ− (X + XT )Ψ]− γ(Ψ)[(Y + YT )Ψ]

(ΨTYΨ)
. (4.36)

The Jacobian matrix for the Rayleigh Quotient Fixed Point method for k-effective eigenvalue
problems can then be written as

Jk(Ψ) = YΨ

[
[2Ψ− (X + XT )Ψ]− γ(Ψ)[(Y + YT )Ψ]

(ΨTYΨ)

]T
+ X + γ(Ψ)Y (4.37)

4.5 Conclusion
We have derived a Rayleigh quotient fixed point method for alpha- and k-effective eigen-
value problems. From the matrix form of the criticality eigenvalue equations, a fixed-point
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iteration that requires only a transport sweep was developed. Using the properties of prim-
itive matrices, an eigenvalue update that is optimal in the least squares sense was obtained.
This eigenvalue corresponds to the positive angular flux eigenvector that solves the criti-
cality eigenvalue problems. The Jacobians of the fixed point methods were derived for the
alpha- and k-effective Rayleigh Quotient Fixed Point methods to determine if a problem was
expected to converge. In the next chapter, we examine various problems where the RQFP
method does not converge and we use the spectral radius of the Jacobian to characterize this
behavior. In practice, calculating the Jacobian requires forming the matrices. However, for
simple problems, the Jacobian is a useful measure of the convergence behavior and rate of
the RQFP methods.
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Chapter 5

Eigenvalues for Infinite-Medium
Problems

In this chapter we describe the performance of the Rayleigh quotient methods for various
infinite-medium problem selected from the Analytical Benchmark Test Set for Criticality
Code Verification [44] or analytical benchmark solutions. Some problems were selected that
did not meet the assumptions used in deriving the RQFP methods to test the general ap-
plicability of the methods. For example, problems with anisotropic scattering and fissioning
only in specific energy groups were selected to verify whether the RQFP methods would con-
verge when the primitivity condition no longer applied. The Rayleigh quotient method was
compared to the critical search method [3] for alpha-eigenvalue problems and to standard
power iteration for k-effective eigenvalue problems. The total number of transport sweeps,
the action of H−1

z on the source vector, was compared for each method as they represent the
majority of computational expense in standard transport codes. The methods were imple-
mented in ARDRA, a 1D, 2D, and 3D deterministic discrete ordinates neutron and gamma
transport code developed and maintained by Lawrence Livermore National Laboratory [22].

5.1 Criticality Benchmark One-Speed Verification for
Various Critical and Supercritical Problems

A set of six one-material infinite-medium supercritical problems were selected from the Ana-
lytical Benchmark Test Set for Criticality Code Verification [44] to test the Rayleigh Quotient
Fixed Point method for both alpha-eigenvalue and k-effective eigenvalue problems. Each
problem was modeled as a slab with reflective boundary conditions on both sides. The slab
was discretized using diamond differencing discretization in space (M = 2) and S2 discrete
ordinates Legendre quadrature (L = 2) in angle [6]. The eigenvector/eigenvalue residual
was converged to a tolerance of 10−12. These problems were selected as they contained
cross sections of commonly used fissile isotopes in nuclear engineering applications such as
plutonium-239 and uranium-235 (Table 5.1). Sood Criticality Benchmark Problems 1 and
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Table 5.1: Sood Criticality Benchmark Infinite-Medium Problem Cross Sections (cm−1) in
[44]

Cross Section Set σ νσf σs v [cm/s]

Sood Prob. 1 0.32640 0.264384 0.225216 1.0
Sood Prob. 5 0.231744 0.264384 0.225216 1.0

(a) Plutonum-239-like Cross Section Sets

Cross Section Set σ νσf σs v [cm/s]

Sood Prob. 11 0.32640 0.176256 0.248064 1.0
Sood Prob. 15 0.32640 0.18259475328 0.248064 1.0
Sood Prob. 17 0.32640 0.17673306624 0.248064 1.0
Sood Prob. 19 0.32640 0.17489804544 0.248064 1.0

(b) Uranium-235-like Cross Section Sets

5 consisted of two sets of plutonium-239-like cross sections, each with a different k∞ values.
Sood Criticality Benchmark Problems 11, 15, 17, and 19 consisted of four uranium-235-like
cross section sets used to characterize a system approaching the critical state. The reference
eigenvalues for these problems can be seen in Table 5.2. For one-speed problems, the velocity
was set to 1 cm/s unless otherwise noted.

For the supercritical one-speed criticality benchmark problems, the alpha-eigenvalue
Rayleigh Quotient Fixed Point method performed substantially better than the critical search
method, reducing the number of transport sweeps by a factor of 30 (Table 5.2a). Reduc-
tions in transport sweeps were achieved by removing the need for intermediate k-effective
eigenvalue calculations. In the critical search method, two sets of k-effective eigenvalue cal-
culations are required before the linear interpolation or extrapolation of the alpha-eigenvalue
can be done. Subsequent updates of the alpha-eigenvalue are dependent on the bracketing
procedure finding the correct alpha-eigenvalue. With each update of the alpha-eigenvalue
requiring a converged k-effective eigenvalue calculation, the number of transport sweeps in-
creases rapidly. The computational expense of one iteration of the alpha-eigenvalue RQFP
method is the same as one iteration of the k-effective eigenvalue calculation. Since there
is no need for any intermediate calculations, the Rayleigh Quotient Fixed Point method
can calculate the eigenvalue/eigenvector pair directly, avoiding this drawback of the critical
search method and drastically reducing the number of total sweeps necessary. In one partic-
ular instance, the bracketing procedure of the critical search method failed and the method
did not converge. An example of the convergence behavior of the alpha-eigenvalue RQFP
method is shown for one plutonium cross section set infinite-medium problem in Figure 5.1a.
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These plots show that the convergence rate for the RQFP methods is linear in general for all
problems. For these very supercritical systems, the Rayleigh Quotient Fixed Point method
was able to calculate the supercritical alpha-eigenvalues without issue.

The RQFP for the k-effective eigenvalue reduces the number of sweeps by a factor of
three (Table 5.2b) as compared to the power method with the fission source norm update.
In these particular problems, all cells contain fissile material and the angular flux is exactly
equal to the fission source to some constant. The rapid convergence of the angular flux by
the Rayleigh Quotient Fixed Point method as compared to the power method with fission
source norm update results in a substantial reduction in the number of transport sweeps
necessary to converge the eigenvector/eigenvalue. While the convergence of the method is
linear, it appears in practice to have a lower asymptotic constant coefficient than the power
method as seen in Figure 5.1b.
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Table 5.2: Reference Eigenvalues and Transport Sweep Comparisons for Sood Criticality
Benchmark Infinite-Medium Problems in [44]

Transport Sweeps

Cross Section Set Reference α∞ [s−1] RQFP Critical Search

Sood Prob. 1 0.1632 29 7,361
Sood Prob. 5 0.257856 40 *
Sood Prob. 11 0.09792 28 6,101
Sood Prob. 15 0.104258753 28 6,426
Sood Prob. 17 0.0983970662 28 6,114
Sood Prob. 19 0.0965620454 28 5,995

*Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

Cross Section Set Reference k∞ RQFP Power Method

Sood Prob. 1 2.612903 41 111
Sood Prob. 5 2.290323 34 96
Sood Prob. 11 2.25 29 130
Sood Prob. 15 2.330917 30 132
Sood Prob. 17 2.256083 27 131
Sood Prob. 19 2.232667 33 131

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps
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5.2 Infinite-Medium Multigroup Problems
In this section, we consider various analytical multigroup infinite-medium problems with
analytic expressions for the alpha- and k-effective eigenvalues. The problems are divided into
subcritical, critical, and supercritical problems. The subcritical and critical problems consist
of ten variations of a three energy-group problem cross section set. For the supercritical case,
we examine three 81 energy-group cross section sets. We discuss the performance of the
Rayleigh Quotient Fixed Point method for these problems and discuss various cases where
the method fails to converge to the correct eigenvalue. The alpha-eigenvalue spectra of these
problems are examined to demonstrate in what cases the method is expected to fail and
how violating the assumptions used in deriving the methods affects the performance of the
method.

5.2.1 Analytical Subcritical & Critical Problems

Problem 5.2.1.1: We consider a three energy group problem from [45] with cross sections
shown in Table 5.3. The problem only has fissions in the fast energy group, g = 3, emitting
ν̄ neutrons in energy group g = 1. There is no upscattering, and downscattering only occurs
into the next group. We vary ν̄ from zero neutrons emitted in fission to ν̄ = 3 to create
various subcritical systems. The analytic k-eigenvalue is given by

k =
ν̄σf,1σs12σs23

σ1σ2σ3

, (5.1)

and the analytical alpha-eigenvalue can be calculated from the system−v1σ1 v1σs12 0
0 −v2σ2 v2σs23

v1ν̄σf1 0 −v3σ3

φ1

φ2

φ3

 = α

φ1

φ2

φ3

 . (5.2)

The reference eigenvalues and the number of transport sweeps needed to converge the eigen-
vector residuals to a value of 10−8 are seen in Table 5.4.

For alpha-eigenvalue problems, the Rayleigh Quotient Fixed Point method is able to
converge the various subcritical problems to the correct eigenvalue. The number of sweeps
necessary varies, with the most subcritical and closest to critical problems requiring more
sweeps to converge the angular flux. The critical search method is unable to converge these
problems as the sum of the total cross section and the negative eigenvalue introduces negative
absorption into the system (Table 5.4a). This pseudo-absorption term causes instabilities in
the transport sweep algorithm and forces the method to terminate before convergence. We
see that for even simple, three energy group, subcritical problems, the Rayleigh Quotient
Fixed Point method is able to converge very subcritical problems and critical problems
without difficulty.

For k-effective eigenvalue problems, the Rayleigh Quotient Fixed Point method requires a
similar number of sweeps for all values of k∞. It requires approximately 40% more iterations
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than the traditional power method (Table 5.4b). One reason for this is that the fission
source of Problem 5.1.1 is simple, with fissions only occurring in the highest energy group
and neutrons are only born in the lowest energy group. Using the fission distribution as
the norm is better in this particular case because it does not require all energy group scalar
fluxes to converge.

Table 5.3: Infinite-Medium Subcritical Problem Cross Sections (cm−1) for Problem 5.2.1.1

g σ σf σsg,g+1 χ vg [cm/s]

1 6.0 0.0 5.0 1.0 4.0
2 5.0 0.0 4.0 0.0 2.0
3 4.0 2.0 0.0 0.0 1.0

Table 5.4: Reference Eigenvalues/Transport Sweeps for Convergence for Problem 5.2.1.1

Transport Sweeps Transport Sweeps

ν̄ α∞ RQFP Critical Search ν̄ α∞ RQFP Critical Search

0.30 -3.30687 89 * 1.80 -1.15114 48 *
0.60 -2.75305 48 * 2.10 -0.83485 56 *
0.90 -2.28186 35 * 2.40 -0.53965 66 *
1.20 -1.86682 38 * 2.70 -0.26222 77 *
1.50 -1.49303 43 * 3.00 0.00000 91 *

*Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps Transport Sweeps

ν̄ k∞ RQFP Power Method ν̄ k∞ RQFP Power Method

0.30 0.10 76 53 1.80 0.60 74 50
0.60 0.20 74 49 2.10 0.70 74 51
0.90 0.30 74 40 2.40 0.80 72 51
1.20 0.40 74 48 2.70 0.90 72 51
1.50 0.50 74 50 3.00 1.00 72 52

(b) k-Effective Eigenvalue: Comparison of RQFP and Power Method Transport Sweeps
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5.2.2 Analytical Infinite-Medium Supercritical Problems

Problem 5.2.2.1: We consider a G = 81 energy group medium with cross sections shown in
Table 5.5 from [45]. Neutrons can only downscatter to the next energy group (σs,gg = 0 ∀ g)
and prompt fissions in energy group g = 81 emit ν̄ = 2.5 neutrons per fission into energy
group g = 1.

The total cross sections σg, neutron speeds vg, and neutron removal cross sections are the
same for all groups. With these cross sections, this unphysical problem yields an analytical
solution for both k-effective and alpha-eigenvalues. The k-effective eigenvalue is given by

k =
ν̄σf (σsg,g+1)G−1

(σg)G
= 1.11663. (5.3)

Using the multigroup equations, the analytical expression for the alpha-eigenvalues is found
to be

αn
v

= −(σg − σf ) + σsg,g+1

[
ν̄G−1 exp

(
2πin

G

)
− 1

]
, for n = 0, . . . , G− 1. (5.4)

The alpha-eigenvalues are located along a circle in the complex plane centered on the real axis
at Re(α) = −(σg − σf ) with radius r = ν̄G−1σgs,s+1. Using this expression, the fundamental
alpha-eigenvalue is found to be α0 = 0.13765 s−1.

The number of transport sweep needed to converge to a eigenvalue residual of 10−8

for Problem 5.2.2.1 can be seen in Table 5.6. We note that the alpha-eigenvalue Rayleigh
Quotient Fixed Point method does not converge for this problem. The failure to converge
for this problem can be explained as follows. The alpha-eigenvalue spectrum for Problem
5.2.2.1 can be seen in Figure 5.2 and shows that all eigenvalues lie on a circle. Therefore,
there are some eigenvalues that are equal in magnitude to the eigenvalue that corresponds to
the positive eigenvector that we are seeking to find. Since the Rayleigh Quotient Fixed Point
method is looking for the positive eigenvector corresponding to the dominant eigenvalue, it is
unable to find the unique eigenvalue corresponding to the positive eigenvector. The spectral
radius of the Jacobian matrix of the Rayleigh Quotient Fixed Point method at the fixed
point (Section 4.3) was found to be larger than one, implying the method will not converge.
It is interesting to note the method cycles with period 81, indicating that it goes through
every single eigenvalue unsuccessfully before failing to converge.

Both the k-effective eigenvalue Rayleigh Quotient Fixed Point method and the power
method converge for this particular problem requiring a similar number of iterations. The
fact that the k-effective eigenvalue is the dominant eigenvalue with a corresponding posi-
tive eigenvector allows the Rayleigh Quotient Fixed Point method to converge to the right
eigenvalue and eigenvector. In this particular problem, all other eigenvalues except for the
dominant eigenvalue are zero. Both methods require a large number of iterations, reflecting
the unphysical nature of the problem cross sections.
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Table 5.5: Infinite-Medium 81-Group Problem Cross Sections (cm−1)

g σ σf σsg,g+1 χ vg [cm/s]

1 101.0 0.0 100.0 1.0 1.0
2-80 101.0 0.0 100.0 0.0 1.0
81 101.0 100.0 0.0 0.0 1.0
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Figure 5.2: Alpha-Eigenvalue Spectrum for Problem 5.2.2.1
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Table 5.6: Transport Sweep Comparisons for Problem 5.2.2.1

Transport Sweeps

α (s−1) RQFP Critical Search

0.13765 * 63,843

*Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Sweeps

Transport Sweeps

keff RQFP Power Method

1.11663 6,701 6,707

(b) k-Effective: Comparison of RQFP and Critical Search Sweeps

Problem 5.2.2.2: We consider a problem similar to Problem 5.2.1.1 where the energy
group velocities are group-dependent. The velocity of each group is given by vg = 82−g and
the cross sections are the same as Problem 5.2.1.1 (Table 5.7). The k-effective eigenvalue
remains 1.11663 as only the velocity terms have been modified. The problem no longer has
an analytical expression for the alpha-eigenvalue spectrum. The dominant alpha-eigenvalue
is found to be 2.2464 s−1 from numerical eigenvalue solvers. With the change in the velocity,
the alpha-eigenvalue spectrum eigenvalues are no longer on a circle (Figure 5.3). Instead,
the eigenvalues are along elliptical shapes with very negative real eigenvalues now existing.

Similar to Problem 5.2.2.1, the alpha-eigenvalue Rayleigh Quotient Fixed Point method
does not converge for this method. The spectral radius of the Jacobian matrix for the fixed-
point formulation evaluated at the fixed point is found to be larger than one, implying the
method will not converge for this problem. The critical search method is able to converge
the alpha-eigenvalue. However, it requires a large number of iterations (Table 5.8a).

Also similar to Problem 5.2.2.1, both the Rayleigh Quotient Fixed Point method and
power method were able to converge the k-effective eigenvalue. This is expected as the
only change from Problem 5.2.2.1 was in the group velocities, which do not matter in the
k-effective eigenvalue problem. The number of transport sweeps required to converge the
problem did not change (Table 5.8b).
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Table 5.7: Infinite-Medium 81-Group Problem Cross Sections (cm−1), Velocity Modification

g σ σf σsg,g+1 χ vg [cm/s]

1 101.0 0.0 100.0 1.0 1.0
2-80 101.0 0.0 100.0 0.0 2.0-80.0
81 101.0 100.0 0.0 0.0 81.0
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Figure 5.3: Alpha-Eigenvalue Spectrum for Problem 5.2.2.2
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Table 5.8: Transport Sweep Comparisons for Problem 5.2.2.2

Transport Sweeps

α (s−1) RQFP Critical Search

2.2464 * 50,773

*Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Sweeps

Transport Sweeps

keff RQFP Power Method

1.11663 6,701 6,707

(b) k-Effective: Comparison of RQFP and Critical Search Sweeps

Problem 5.2.2.3: We consider another problem similar to Problem 5.2.1.1 where we
now allow downscattering from energy group g → g′ over several energy groups with equal
probability where g + 1 ≤ g′ ≤ g + 5. For the last five energy groups, the downscattering
cross section is equally distributed among the remaining groups where g + 1 ≤ g′ ≤ G. The
total scattering cross section remains unchanged. The k-effective eigenvalue is 1.8853 and
the alpha-eigenvalue is 2.2914 s−1.

The alpha-eigenvalue spectrum seen in Figure 5.4 is significantly different to that of
Problem 5.2.2.1. The spectrum contains more eigenvalues with large real negative parts.
This is due to neutrons being able to downscatter quickly by skipping several energy groups.

The alpha-eigenvalue Rayleigh Quotient Fixed Point method was able to converge on
the analytical alpha-eigenvalue. By allowing downscattering to more energy groups, the
Jacobian of the fixed-point method at the fixed point is now less than one, allowing the
convergence of the method (Section 4.3). In this particular problem, the alpha-eigenvalue
RQFP method vastly outperforms the critical search method. The critical search method
requires 20 times the number of sweeps the RQFP method does (Table 5.9a). This is caused
by the need for multiple k-effective eigenvalue calculations to bracket the alpha-eigenvalue.

Both the Rayleigh Quotient Fixed Point method and power method with fission norm
update were able to converge the eigenvalue and eigenvector for the k-effective eigenvalue
problem requiring a similar number of iterations (Table 5.9b).
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Figure 5.4: Alpha-Eigenvalue Spectrum for Problem 5.2.2.3

Table 5.9: Transport Sweep Comparisons for Problem 5.2.2.3

Transport Sweeps

α (s−1) RQFP Critical Search

2.2914 5,516 105,570

(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Sweeps

Transport Sweeps

keff RQFP Power Method

1.8853 5,306 5,080

(b) k-Effective: Comparison of RQFP and Critical Search Sweeps
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5.3 Conclusion
The RQFP method for alpha- and k-effective eigenvalues performs well for infinite-medium
problems, reducing in certain cases the number of iterations up to a factor of twenty. For the
alpha-eigenvalue RQFP method, the method is able to converge subcritical systems without
issue. For a certain class of problems with unphysical cross sections, the alpha-eigenvalue
RQFP method fails to converge. This failure to converge is caused by the structure of the
alpha-eigenvalue spectrum. However, these problems are special cases, with unphysical data
such as unit velocity in all energy groups. For these particular problems, it is found that the
spectral radius of the Jacobian matrix implies convergence is not possible. For this reason,
we believe the alpha-eigenvalue RQFP method is robust for all infinite-medium problems
of interest. The RQFP method for k-effective eigenvalue calculations performed better or
similar to the power method with a fission norm update for the eigenvalue. For problems
where only the number of neutrons emitted in fission was varied, the RQFP method took
a similar number of iterations to converge for all problems, no matter the criticality of the
system. This suggests that the method’s convergence is determined by the eigenvector shape
rather than the eigenvalue.
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Chapter 6

Eigenvalues of Slabs and Spheres

In this chapter we verify the correctness and examine the performance of the Rayleigh
Quotient Fixed Point methods for one-dimensional media such as slabs and one-dimensional
spheres. In slab geometry, the phase space of the neutron transport equation is simplified
with only one position variable x and one angular variable µ defined as the x-direction
cosine. For slab geometry, the alpha- and k-effective eigenvalue neutron transport equations
are given by Eq. 6.1 and Eq. 6.2, respectively:

[
µ
∂

∂x
+

α

v(E)
+ σ(x,E)

]
ψ(x, µ,E)

= χ(E)

∫ ∞
0
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∫ 1

−1

dµ′ ψ(x, µ′, E ′)

+

∫ ∞
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dE ′ σs(x,E
′ → E)

∫ 1

−1

dµ′ ψ(x, µ′, E ′), (6.1)
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∫ 1

−1

dµ′ ψ(x, µ′, E ′)

+

∫ ∞
0

dE ′ σs(x,E
′ → E)

∫ 1

−1

dµ′ ψ(x, µ′, E ′). (6.2)

Various homogeneous and heterogeneous slab geometry problems with vacuum boundary
conditions were modeled in ARDRA. These slab media problems consist of multiplying and
non-multiplying materials with thicknesses ∆. Alpha- and k-effective eigenvalues were calcu-
lated and the number of transport sweeps compared to various methods such as the critical
search method and the power method. To verify the correctness of the Rayleigh Quotient
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Fixed Point method, the method was compared to various methods such as Green’s Func-
tion Method (GFM) and Direct Evaluation (DE) and compared to other discrete ordinate
neutron transport codes such as Los Alamos National Laboratory’s PARTISN/DANT [23].

In one-dimensional spherical geometry, there is only one position variable r, the radial
position from the center of the sphere, and one angular variable µ defined as the direction
cosine with respect to the radial direction. For spherical geometry, the alpha- and k-effective
eigenvalue neutron transport equations are given by Eq. 6.4 and Eq. 6.3, respectively:
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For one-dimensional spherical geometry, various homogeneous and heterogeneous spher-
ical problems with vacuum boundary conditions were modeled in ARDRA. Using the same
cross-sections for multiplying and non-multiplying materials as the slab media problems,
equivalent spherical systems were created using the Davison sphere-equivalence theorem
[46] and the alpha-eigenvalue calculated. To verify the correctness of the RQFP for one-
dimensional spherical geometry, the method was compared to GFM. Performance of the
RQFP for one-dimensional spherical problems was measured by comparing the number of
transport sweeps necessary for convergence as compared to the critical search method.

6.1 One-Speed Verification for Slab Geometry
In this section, we verify the correctness of the RQFP method in slab geometry for various
one-speed cross section sets. These cross section sets are from [12] and have analytical
alpha-eigenvalues determine by the GFM [12], described in Section 2.2.1. These analytical
alpha-eigenvalues were used to verify the correctness of the RQFPmethod. Each cross section
set was used in a variety of problems where problem parameters such as slab thickness, the
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number of neutrons emitted in fission, and materials were varied to achieve various alpha-
eigenvalues. Verification of the RQFP method for alpha-eigenvalue problems was determined
by comparing RQFP-calculated alpha-eigenvalues to the analytical values determined by the
GFM.

6.1.1 A Set of Non-Multiplying Purely Scattering Slabs

The first cross section set considered consisted of a non-multiplying purely scattering material
with cross sections given in Table 6.1. The neutron speed was set to v = 1 cm/s as in [12]
and the total cross section set to unity, σ = 1 cm−1.

Table 6.1: Non-Multiplying Purely Scattering Material Cross Sections (cm−1) from [12]

σ νσf σs v [cm/s]

1.0 0.0 1.0 1.0

Five slabs of thicknesses ∆ = 1, 5, 10, 25, and 25 mean free paths (mfps) were modeled
using diamond difference discretization (M = 500 cells) and S64 discrete ordinates quadrature
(L = 64). 500 spatial cells and 64 angular quadrature points were selected to guarantee the
positivity of the flux solution for all slab widths.

Compared to the GFM alpha-eigenvalues, the RQFP-calculated alpha-eigenvalues showed
good agreement with relative error being less than 0.1% for all five slab thicknesses as shown
in Table 6.2. The greatest discrepancy between the two methods was for ∆ = 1.0 mfp. In
[12], it is noted that the GFM has difficulty obtaining accurate eigenvalue results for thin
slabs. This is due to the sensitivity of the alpha-eigenvalue to the discretization process where
different discretization parameters can substantially change the calculated alpha-eigenvalue
of the system. The RQFP method also shares the same behavior as discretization can change
the alpha-eigenvalue of the system. However, as the slab thickness increases, the alpha-
eigenvalue becomes less sensitive to discretization and both methods are in closer agreement
with the relative error between RQFP and the GFM decreasing. We note that the number of
transport sweeps necessary to converge the alpha-eigenvalue to a tolerance of 10−12 increases
as problem thickness increases. Physically, this can be explained as follows: as the slab
thickness increases, neutrons will have to travel longer before leaking from the system. Since
the alpha-eigenvalue is determined the by the last neutron to leave the system, the increased
transit time means a neutron will undergo many more interactions before finally exiting
the system, thus increasing the number of iterations required to converge the fundamental
angular flux mode. For problems without any multiplication, the k-effective eigenvalue is
not defined.
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Table 6.2: Comparison of RQFP- and GFM-calculated Alpha-Eigenvalues for a Homogeneous
Scattering Slab

Alpha-Eigenvalue/Percent Relative Error

∆ RQFP GFM RQFP/GFM % Relative Error

1 −6.08420× 10−1 −6.08072× 10−1 0.057189
5 −8.10966× 10−2 −8.10933× 10−2 0.004113
10 −2.53506× 10−2 −2.53500× 10−2 0.002349
20 −7.18015× 10−3 −7.17962× 10−3 0.007358
25 −4.71736× 10−3 −4.71722× 10−3 0.002966

M = 500, L = 64, Tolerance = 10−12

6.1.2 A Set of Multiplying Homogeneous Slabs

A fissile material cross section set was considered for 22 one-speed slabs of varying thickness
∆. The total cross section was set to unity and the slab neutron multiplication set to
νσf = 0.25. The scattering cross section was set to σs = 0.9 cm−1 as seen in Table 6.3.

Table 6.3: Multiplying Homogeneous Material Cross Sections (cm−1) from [12]

σ νσf σs v [cm/s]

1.0 0.25 0.9 1.0

For slabs of thicknesses ranging from ∆ = 1.0 to ∆ = 50.0 mfp the RQFP-calculated
alpha-eigenvalues showed good agreement with the GFM-calculated eigenvalues with the
exception of thin slabs. For thin slabs of up to width ∆ = 1.0 mfp, percent relative error
was substantial with percent relative error as high as 17%.. As before, this was caused
by the sensitivity of the alpha-eigenvalue to the discretization used by both the GFM and
the RQFP method. Similar to the non-multiplying slabs, as the slab thickness increased,
agreement was substantially better as shown in Table 6.4, with percent relative error being
less than 0.1% for all slabs of thickness greater than one mfp.

With the correctness of the RQFP method verified, the alpha-eigenvalue RQFP method
was compared to the critical search method (Table 6.5a). The RQFP method substantially
outperformed the critical search method in all cases and was able to converge subcritical
alpha-eigenvalues that the critical search method could not determine. As the problem
thickness increased, the slab problem became more supercritical and the number of transport
sweeps necessary to converge increased for both methods. For the most supercritical slab
(∆ = 50.0 mfp), the number of sweeps necessary for the RQFP method to converge was
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less than the number of transport sweeps necessary for critical search to converge for the
∆ = 4.0 mfp case. Since the RQFP method requires no intermediate k-effective eigenvalue
calculations, the method substantially reduced the number of transport sweeps necessary as
there was no need to do multiple k-effective eigenvalue calculations to bracket the alpha-
eigenvalue.

For the one-speed homogeneous multiplying slabs of varying thickness, the k-effective
eigenvalue RQFP method was compared to the power method with the fission norm update.
It was seen that the number of transport sweeps for convergence increased as the k-effective
eigenvalue increased as shown in Table 6.5b. The RQFP method required far more sweeps
than the power method, requiring many more sweeps when the slab became more supercrit-
ical. For the largest slab, the RQFP method required five times the transport sweeps as the
power method.
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Table 6.4: Comparison of RQFP- and GFM-calculated Alpha-Eigenvalues for a Homogeneous
Scattering Multiplying Slab

Alpha-Eigenvalue/Percent Relative Error

∆ RQFP GFM RQFP/GFM % Relative Error

0.25 −1.15480 −9.90300× 10−1 16.611352
0.30 −1.06633 −9.74300× 10−1 9.446240
0.35 −9.98584× 10−1 −9.49350× 10−1 5.186069
0.40 −9.42114× 10−1 −9.17000× 10−1 2.738758
0.45 −8.91833× 10−1 −8.79460× 10−1 1.406940
0.50 −8.44920× 10−1 −8.38790× 10−1 0.730822
0.75 −6.34756× 10−1 −6.34060× 10−1 0.109818
1 −4.69398× 10−1 −4.69160× 10−1 0.050762
2 −1.36335× 10−1 −1.36310× 10−1 0.018335
3 −1.39888× 10−2 −1.39790× 10−2 0.070397
4 4.36998× 10−2 4.37050× 10−2 0.011811
5 7.54667× 10−2 7.54690× 10−2 0.003096
6 9.48296× 10−2 9.48310× 10−2 0.001470
7 1.07508× 10−1 1.07510× 10−1 0.002137
8 1.16263× 10−1 1.16260× 10−1 0.002344
9 1.22563× 10−1 1.22560× 10−1 0.002390
10 1.27248× 10−1 1.27250× 10−1 0.001492
15 1.39126× 10−1 1.39130× 10−1 0.002605
20 1.43649× 10−1 1.43650× 10−1 0.000663
30 1.47066× 10−1 1.47070× 10−1 0.002483
40 1.48317× 10−1 1.48320× 10−1 0.001982
50 1.48910× 10−1 1.48910× 10−1 0.000004

M = 500, L = 64, Tolerance = 10−12
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Table 6.5: Transport Sweep Comparisons for Homogeneous Multiplying Slabs

Transport Sweeps Transport Sweeps

∆ RQFP Critical Search Δ RQFP Critical Search

0.25 95 * 5 70 33,036
0.30 98 * 6 85 44,655
0.35 99 * 7 103 55,242
0.40 95 * 8 122 63,851
0.45 91 * 9 143 71,181
0.50 84 * 10 166 78,002
0.75 52 * 15 308 89,627
1 34 * 20 495 97,267
2 32 * 30 1,002 98,087
3 43 * 40 1,682 106,055
4 56 21,044 50 2,530 113,189

M = 500, L = 64, Tolerance = 10−12, *Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Sweeps

Transport Sweeps Transport Sweeps

∆ RQFP Power Method Δ RQFP Power Method

0.25 16 17 5 67 37
0.30 16 17 6 81 40
0.35 17 18 7 97 44
0.40 18 19 8 115 47
0.45 18 19 9 133 51
0.50 19 19 10 154 55
0.75 21 21 15 280 81
1 23 22 20 445 115
2 33 27 30 892 206
3 43 31 40 1,490 238
4 54 34 50 2,235 481

M = 500, L = 64, Tolerance = 10−12

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps
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6.1.3 Heterogeneous Slabs

Problem 6.1.3.1-Non-multiplying Heterogeneous Slab: Five one-speed heterogeneous
slab problems consisting of two materials were examined and the RQFP-calculated alpha-
eigenvalues compared to the GFM, direct evaluation (DE) [25], and DANT/PARTISN [23].

For the subcritical heterogeneous medium shown in Figure 6.1, five problems were con-
structed by varying the grain sizes of alternating slabs consisting of materials with the cross
sections shown in Table 6.6 from [12]. With a fixed maximum medium width, material slabs
of thickness ∆ were alternated until reaching the maximum fixed width. The impact of
material widths on the alpha-eigenvalue was examined for this non-multiplying medium.

Table 6.6: Non-Multiplying Heterogeneous Material Cross Sections (cm−1) from [12]

Material σ νσf σs vg [cm/s]

1 10.0 0.0 10.0 1.0
2 10.0 0.0 9.0 1.0

Homogeneous 10.0 0.0 9.5 1.0

The maximum width of the domain was fixed at 10.0 mfp as in [12]. Grain sizes of
0.5, 1, 2.5, and 5 mfp were examined. One case consisting of a homogenized material was
considered. In all cases, the RQFP method showed good agreement with DANT/PARTISN
(Table 6.7a), Green’s Function Method (Table 6.7b), and Direct Evaluation (Table 6.7c) with
percent relative error within 0.15%. The number of transport sweeps required to obtain the
eigenvalue and eigenvector increased as the problem approached critical and the number of
regions increased. The scalar fluxes for the four heterogeneous region problems can be seen
in Figure 6.2

0.0 10.0

Material 1 Material 2 · · ·

∆1 = Grain Size ∆2 = ∆1

Figure 6.1: Heterogeneous Slab Benchmark Problem Domain
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Table 6.7: Comparison of RQFP-calculated eigenvalues to various methods for multi-region
scattering slab (M = 500, L = 64, Tolerance = 10−12)

Alpha-Eigenvalue/Percent Relative Error

Grain Size RQFP DANT/PARTISN % Relative Error

5 (2 slabs) −5.51528× 10−1 −5.50813× 10−1 0.129782
2.5 (4 slabs) −7.03144× 10−1 −7.03134× 10−1 0.001470
1 (10 slabs) −7.48808× 10−1 −7.48793× 10−1 0.001942
0.5 (20 slabs) −7.57221× 10−1 −7.57199× 10−1 0.002882
0 (homogeneous) −7.63513× 10−1 −7.63507× 10−1 0.000848

(a) Comparison of RQFP- and DANT/PARTISN-calculated alpha-eigenvalues

Alpha-Eigenvalue/Percent Relative Error

Grain Size RQFP GFM % Relative Error

5 (2 slabs) −5.51528× 10−1 −5.50812× 10−1 0.129964
2.5 (4 slabs) −7.03144× 10−1 −7.03133× 10−1 0.001612
1 (10 slabs) −7.48808× 10−1 −7.48792× 10−1 0.002075
0.5 (20 slabs) −7.57221× 10−1 −7.57198× 10−1 0.003014
0 (homogeneous) −7.63513× 10−1 −7.63507× 10−1 0.000848

(b) Comparison of RQFP- and GFM-calculated alpha-eigenvalues

Alpha-Eigenvalue/Percent Relative Error

Grain Size RQFP GFM % Relative Error

5 (2 slabs) −5.51528× 10−1 −5.50812× 10−1 0.129964
2.5 (4 slabs) −7.03144× 10−1 −7.03133× 10−1 0.001612
1 (10 slabs) −7.48808× 10−1 −7.48792× 10−1 0.002075
0.5 (20 slabs) −7.57221× 10−1 −7.57198× 10−1 0.003014
0 (homogeneous) −7.63513× 10−1 −7.63507× 10−1 0.000848

(c) Comparison of RQFP- and DE-calculated alpha-eigenvalues
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Figure 6.2: Scalar Flux Results for Alternating Slabs Grain Size Problems

Problem 6.1.3.2-Multiplying Two Region Heterogeneous Slab: A two-region
multiplying slab was examined with material properties as seen in Table 6.8. The problem
consisted of a 1.5 mfp region on the right and a 1.0 mfp region to the left. Both materials
were multiplying and the system was supercritical [47].

Table 6.8: Multiplying Heterogeneous Slab Material Cross Sections (cm−1)

Material σ νσf σs vg [cm/s]

1 1.0 0.6 0.9 1.0
2 1.0 0.3 0.2 1.0

For the two-region slab problem shown in Figure 6.3), the calculated alpha-eigenvalue and
scalar flux were compared to the Green’s Function Method. The calculated alpha-eigenvalue
α = 0.142473 s−1 agreed with the GFM eigenvalue. The alpha-eigenvalue RQFP method
required 48 iterations to converge the problems to a tolerance of 10−12. The critical search
method required 22076 iterations, requiring multiple bracketing attempts. The multiple
bracketing attempts were required since the system was close to critical. To verify the
correctness of the RQFP alpha-eigenvalue scalar flux, the scalar flux was compared to the
GFM scalar flux. The fluxes were found to be in agreement within tolerance (Figure 6.4).
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The k-effective eigenvalue of the supercritical two-region medium was found to be 1.28656.
The RQFP method was found to require 46 transport sweeps to converge to a tolerance of
10−12. The power method with fission norm update required 36 transport sweeps.

0.0 2.5 mfp1.5

Material 1
σs = 0.9
νσf = 0.6

Material 2
σs = 0.2
νσf = 0.3

Figure 6.3: Heterogeneous Multiplying Slab Benchmark Problem Domain from [47]
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Figure 6.4: Alpha-Eigenvalue Scalar Flux Results for Two-Region Multiplying Slab
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Problem 6.1.3.3-Multiplying Five Region Fuel-Pin: Four one-speed five region
slab problems consisting of fuel, moderator, and absorber materials were examined and the
RQFP method alpha-eigenvalue compared to the GFM. The leftmost fuel pin width was
allowed to vary. The alpha-eigenvalue was calculated for different fuel width thicknesses
with the fuel having νσf = 0.3 or 0.7. Cross sections for the three materials are seen in
Table 6.9.

Table 6.9: Five Region Slab Material Cross Sections (cm−1)

Material σ νσf σs vg [cm/s]

Fuel 1.0 0.3/0.7 0.8 1.0
Moderator 1.0 0.0 0.8 1.0
Absorber 1.0 0.0 0.1 1.0

The five region fuel-pin-like domain shown in Figure 6.5 was modeled (M = 1000 and
L = 64) and the alpha-eigenvalues compared to GFM for four cases. For cases one and two,
the fuel-pin domain consisted of five regions, fuel, moderator, absorber, moderator, and fuel,
with the leftmost fuel pin having a width of one mean free path. For cases three and four,
the fuel-pin domain also consisted of five regions. However, the leftmost fuel pin instead had
a width of 1.1 mean free paths.
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Figure 6.5: Five Region Heterogeneous Slab Benchmark Problem Domain
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For case one and two, the fuel fission cross section was set to νσf = 0.3 and νσf = 0.7,
respectively. The alpha-eigenvalues were α = −0.3197041 s−1 and α = −0.0062120 s−1 for
the νσf = 0.3 and νσf = 0.7 cases, respectively. The RQFP method eigenvalues matched
the GFM-calculated alpha-eigenvalues within tolerance as shown in Table 6.10. Convergence
of the νσf = 0.3 and νσf = 0.7 cases for the RQFP method required 30 and 27 transport
sweeps, respectively. The scalar fluxes for both cases matched GFM within tolerance and
are seen in Figure 6.6.

For cases three and four, the leftmost fuel pin width was set to 1.1 mfp. The alpha-
eigenvalues for νσf = 0.3 and νσf = 0.7 were found to be -0.2932897 s−1 and 0.0375543 s−1,
respectively. The RQFP method eigenvalues matched the GFM-calculated alpha-eigenvalues
within tolerance (Table 6.10). For the supercritical case, the alpha-eigenvalue RQFP required
502 sweeps as compared to 13,099 sweeps for the critical search method.

For leftmost fuel pin width of one mean free path, the k-effective eigenvalue of the five
region fuel-pin-like was determined to be 0.42428 and 0.98998 for the νσf = 0.3 and νσf = 0.7
cases, respectively. For the νσf = 0.3 fuel pin, the RQFP method required 29 transport
sweeps while the power method with fission norm update required 22 transport sweeps. For
the νσf = 0.7 fuel pin, the RQFP method required 28 transport sweeps while the power
method with fission norm update required 21 transport sweeps. For leftmost fuel pin width
of 1.1 mean free paths, the k-effective was determined to be 0.45554 and 1.06316, respectively,
for νσf = 0.3 and νσf = 0.7. For the νσf = 0.3 fuel pin, the RQFP method required 514
transport sweeps while the power method with fission norm update required 355 transport
sweeps. For the νσf = 0.7 fuel pin, the RQFP method required 513 transport sweeps while
the power method with fission norm update required 355 transport sweeps.

Table 6.10: Comparison of RQFP- and GFM-calculated Alpha-Eigenvalues for Multiplying
Five-Region Fuel-Pin

Alpha-Eigenvalue/Percent Relative Error

∆ νσf RQFP GFM RQFP/GFM % Relative Error

1 0.3 −3.197041× 10−1 −3.196537× 10−2 1.58× 10−2

1 0.7 −6.212026× 10−3 −6.156369× 10−3 9.041× 10−1

1.1 0.3 −2.932897× 10−1 −2.93247× 10−1 1.46× 10−2

1.1 0.7 3.75543× 10−2 3.759991× 10−2 1.213× 10−1

M = 1000, L = 64, Tolerance = 10−12
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Figure 6.6: Case One and Two Scalar Flux Results for Five-Region Multiplying Slab-Two
Cases
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6.1.4 Multiplying Homogeneous Slabs with Anisotropic Scattering

Sood Criticality Benchmark Problems 32-35: Four one-group critical slab problems
with anisotropic scattering from [44] were examined to demonstrate the performance of
the RQFP method for problems with anisotropic scattering. Sood Criticality Benchmark
Problem 32 consists of a plutonium-like cross section set with a small anisotropic scattering
cross section solved using a P1 scattering expansion. Sood Criticality Benchmark Problem
33 uses the same cross section set but is instead solved using a P2 scattering expansion. Sood
Criticality Benchmark Problems 34 and 35 consider another plutonium-like material with a
much higher anisotropic scattering cross section. The cross sections for the plutonium-like
materials are shown in Table 6.11. In these problems, the scattering kernel is non-negative.
All problems were exactly critical with the critical half-width, rc, defined in Figure 6.7, given
in Table 6.12.

For the alpha-eigenvalue problems, the RQFP-calculated alpha-eigenvalues are seen in
Table 6.12a. All problems were slightly subcritical but within 10−5 of the actual alpha-
eigenvalue of zero. The RQFP method took 22-26 transport sweeps to converge the eigen-
vector `2 norm residual to 10−12 (Table 6.12a). Since the problems were too close to critical
and slightly subcritical, the critical search method could not converge the problem.

For k-effective eigenvalue problems, the RQFP-calculated eigenvalues are seen in Ta-
ble 6.12b The problems had a calculated k-effective eigenvalue slightly below the true eigen-
value of one. The RQFP method took 22-26 transport sweeps to converge the `2 norm
eigenvector residual to 10−12. The power method with the fission source update required 3-4
transport sweeps less than the RQFP method for all problems.

rc

Figure 6.7: Critical Width of Slab
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Table 6.11: Sood Criticality Benchmark Problems 32-35 Cross Sections (cm−1) in [44]

Cross Section Set σ νσf σs0 σs1 v [cm/s]

Sood Prob. 32 0.32640 0.176256 0.248064 0.042432 1
Sood Prob. 34 0.32640 0.176256 0.248064 0.212160 1

Table 6.12: Calculated Eigenvalues and Transport Sweep Comparisons for Sood Criticality
Benchmark Problems 32-35 in [44]

Transport Sweeps

Cross Section Set rc [cm] Calculated α [s−1] RQFP Critical Search

Sood Prob. 32-P1 Scattering 0.77032 −3.50639× 10−5 24 *
Sood Prob. 34-P1 Scattering 0.76378 −6.16666× 10−5 26 *
Sood Prob. 32-P2 Scattering 0.79606 −5.29475× 10−5 24 *
Sood Prob. 34-P2 Scattering 0.78396 −2.72628× 10−5 22 *

M = 500, L = 64, Tolerance = 10−12, *Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

Cross Section Set rc [cm] Calculated keff RQFP Power Method

Sood Prob. 32-P1 Scattering 0.77032 0.99995 25 22
Sood Prob. 34-P1 Scattering 0.76378 0.99991 26 24
Sood Prob. 32-P2 Scattering 0.79606 0.99993 22 18
Sood Prob. 34-P2 Scattering 0.78396 0.99996 24 21

M = 500, L = 64, Tolerance = 10−12

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps
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6.2 Multigroup Verification for Slab Geometry
In this section, we examine the performance of the RQFP method for various multigroup-
in-energy, homogeneous and heterogeneous slab benchmark problems listed in [44]. These
problems are exactly critical, though in practice some problems are found to be slightly sub-
critical or supercritical. Problem cross sections and critical radii are given for all benchmarks.
The benchmark problems provide a diverse set of nuclear system physics problems, includ-
ing fast spectrum plutonium slabs, a uranium-aluminum system, highly-enriched uranium
for research reactors system, and uranium-heavy water reactors.

6.2.1 Multigroup Multiplying Homogeneous Slabs

Sood Criticality Benchmark Problem 45: The alpha and k-effective eigenvalues for a
two-group plutonium-239 critical slab were calculated and the RQFP method performance
compared to the critical search and power methods. The plutonium-239 cross sections, listed
in Table 6.13a, allowed for fission in both energy groups. Fission neutrons can be born in both
energy groups with more neutrons being born in the highest energy group. The scattering
cross sections of the problem do not allow for upscattering (Table 6.13b).

For the critical slab width given in Table 6.14, the alpha-eigenvalue of the system was
found to be α = −4.64633× 10−5 s−1, requiring 48 transport sweeps to converge the eigen-
vector residual norm to a tolerance of 10−12 (Table 6.14a). As the problem was slightly
subcritical because of numerical error, the critical search method did not converge to the
correct eigenvalue. The k-effective eigenvalue was determined to be k = 0.99988 requiring 48
transport sweeps for the RQFP method as compared to 46 transport sweeps for the power
method using the fission source normalization (Table 6.14b). As the system is incredibly
close to critical, the number of transport sweeps required by the RQFP method for both
eigenvalues is the same. This is due to the fact that the fundamental eigenvectors are equal
for both the alpha- and k-effective eigenvalue problems when a nuclear system is exactly
critical.
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Table 6.13: Sood Criticality Benchmark Problem 45 Cross Sections (cm−1) in [44]

g σg νg σfg χg vg [cm/s]

1 0.2208 3.10 0.0936 0.575 2.0
2 0.3360 2.93 0.08544 0.425 1.0

(a) Pu-239 Cross Sections

g′ → g 1 2

1 0.0792 0.0432
2 0.0 0.23616

(b) Pu-239 Scattering Block

Table 6.14: Calculated Eigenvalues and Transport Sweep Comparisons for Sood Criticality
Benchmark Problem 45 in [44]

Transport Sweeps

rc [cm] Calculated α [s−1] RQFP Critical Search

1.795602 −4.64633× 10−5 48 *

M = 500, L = 64, Tolerance = 10−12, *Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

rc [cm] Calculated keff RQFP Power Method

1.795602 0.99988 48 46

M = 500, L = 64, Tolerance = 10−12

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps
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Sood Criticality Benchmark Problem 48: The alpha and k-effective eigenvalues
were calculated for a critical slab consisting of a uranium-235-like material. The material
cross sections, seen in Table 6.15a, consist of two energy groups, with fission possible in both
groups. Fission neutrons can be born in both groups with a preference for the higher energy
group. The material scattering cross sections (Table 6.15b) did not allow for upscattering.

The alpha-eigenvalue of the system was calculated to be α = −1.28364 × 10−5 s−1, re-
quiring 62 transport sweeps to converge to a tolerance of 10−12 for the RQFP method. The
critical search method was not able to converge (Table 6.16a). The k-effective eigenvalue
was determined to be k = 0.99995, requiring 62 transport sweeps for the RQFP method to
converge the eigenvector. The power method required slightly fewer transport sweeps, re-
quiring 58 transport sweeps. Similar to the plutonium-239 problem, the number of transport
sweeps required by the RQFP method for both eigenvalues was the same. This was due to
how close the problem was to being exactly critical.

Table 6.15: Sood Criticality Benchmark Problem 48 Cross Sections (cm−1)

g σg νg σfg χg vg [cm/s]

1 0.2160 2.70 0.06192 0.575 2.0
2 0.3456 2.50 0.06912 0.425 1.0

(a) U-235 Cross Sections

g′ → g 1 2

1 0.078240 0.0720
2 0.0 0.26304

(b) U-235 Scattering Block
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Table 6.16: Calculated Eigenvalues and Transport Sweep Comparisons for Sood Criticality
Benchmark Problem 48 in [44]

Transport Sweeps

rc [cm] Calculated α [s−1] RQFP Critical Search

3.006375 −1.28364× 10−5 62 *

M = 500, L = 64, Tolerance = 10−12, *Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

rc [cm] Calculated keff RQFP Power Method

3.006375 0.99995 62 58

M = 500, L = 64, Tolerance = 10−12

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps

Sood Criticality Benchmark Problem 51: The eigenvalues of critical slab consisting
of a uranium/aluminum (U/Al) mixture similar to those seen in nuclear reactor applications
were calculated. The material cross sections (Table 6.17a) consist of two energy groups with
fission occurring in the lower energy (thermal) group. All fission neutrons are born in the
fast energy group. The material does not allow for upscattering (Table 6.17b) but does have
a large self-scattering cross section in the lowest energy group.

The alpha-eigenvalue was calculated to be −6.39646× 10−6 s−1 and required 492 trans-
port sweeps to converge (Table 6.18a). The increase in transport sweeps as compared to
the plutonium and uranium problem is due to the increased scattering present in this prob-
lem. The increase in scattering, caused by the inclusion of aluminum in the cross sections,
increases the number of iterations necessary to suppress higher eigenmodes in the problem.
The critical search method was unable to converge the eigenvalue/eigenvector pair. The
k-effective eigenvalue was determined to be k = 0.99985 for the system. The RQFP method
required a substantially larger number of transport sweeps as compared to power method.
The RQFP method required 592 iterations as compared to 82 (Table 6.18b). The degrada-
tion of the performance of the RQFP method is due to the fact that the method converges
the eigenvector as opposed to the fission source. Converging the eigenvector requires many
more sweeps due to the increased scattering present in the system causing the spectral radius
of the Jacobian to be very close to one.
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Table 6.17: Sood Criticality Benchmark Problem 51 Cross Sections (cm−1) in [44]

g σg νg σfg χg vg [cm/s]

1 0.26817 0.0 0.0 1.0 2.0
2 1.27698 2.83 0.06070636042 0.0 1.0

(a) U/Al Cross Sections

g′ → g 1 2

1 0.020432 0.247516
2 0.0 1.21313

(b) U/Al Scattering Block

Table 6.18: Calculated Eigenvalues and Transport Sweep Comparisons for Sood Criticality
Benchmark Problem 51 in [44]

Transport Sweeps

rc [cm] Calculated α [s−1] RQFP Critical Search

7.830630 −6.39646× 10−6 492 *

M = 500, L = 64, Tolerance = 10−12, *Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

rc [cm] Calculated keff RQFP Power Method

7.830630 0.99985 592 82

M = 500, L = 64, Tolerance = 10−12

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps
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Sood Criticality Benchmark Problem 54: A highly-enriched uranium slab was mod-
eled and the number of transport sweeps required for convergence compared between the
RQFP method and standard methods. The highly-enriched uranium cross sections are sim-
ilar to those found in research reactors across the world. The cross section set (Table 6.19a)
consists of two energy groups. Fission occurs in both energy groups, with most fissions tak-
ing place in the lower energy group. However, fission neutrons are only born in the highest
energy group. The cross section set allows only for downscattering of neutrons through the
two energy groups with a much larger within-group scattering cross section in the low energy
group (Table 6.19b).

The alpha-eigenvalue of the slab was determined to be −3.28714× 10−7 s−1. The RQFP
method required 1188 transport sweeps to converge the eigenvector, the increase in sweeps a
product of the high amount of scattering in the system. The critical search method was not
able to converge the eigenvector. The k-effective eigenvalue was found to be k = 0.99999. The
RQFP method required 1188 transport sweeps to converge, similar to the alpha-eigenvalue
calculation due to how close the system was to critical. The RQFP method for the k-effective
eigenvalue required 10 times more iterations than the power method. The degradation of
performance is caused by the increased scattering of the system.

Table 6.19: Sood Criticality Benchmark Problem 54 Cross Sections (cm−1) in [44]

g σg νg σfg χg vg [cm/s]

1 0.65696 2.50 0.0010484 1.0 2.0
2 2.52025 2.50 0.050632 0.0 1.0

(a) 93% Enriched Uranium Cross Sections

g′ → g 1 2

1 0.62568 0.029227
2 0.0 2.44383

(b) 93% Enriched Uranium Scattering Block
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Table 6.20: Calculated Eigenvalues and Transport Sweep Comparisons for Sood Criticality
Benchmark Problem 54 in [44]

Transport Sweeps

rc [cm] Calculated α [s−1] RQFP Critical Search

7.566853 −3.28714× 10−7 1188 *

M = 500, L = 64, Tolerance = 10−12, *Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

rc [cm] Calculated keff RQFP Power Method

7.566853 0.99999 1,188 98

M = 500, L = 64, Tolerance = 10−12

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps

Sood Criticality Benchmark Problem 68: To analyze the performance of the RQFP
method for highly scattering systems, a two-energy group uranium/heavy water critical slab
problem with cross sections given in Table 6.21 was modeled. Fission occurs in both energy
groups with all fission neutrons born in the higher energy group. However, the fission cross
sections are substantially smaller than in previous systems. The system allows no upscat-
tering but has large within-group scattering cross sections for both groups (Table 6.21b).
The critical width of the slab is much larger than previous problems, due to the small fission
cross sections and highly scattering nature of the problem.

For the critical width listed in Table 6.22a, the alpha-eigenvalue was determined to be
−6.93314×10−7 s−1. The RQFP method required 451,136 transport sweeps for convergence,
a substantial increase as compared to the previous problems (Table 6.22a). The critical
search method was unable to converge the eigenvalue and eigenvector pair. The k-effective
eigenvalue was determined to be k = 0.99887. The RQFP method required 451,136 transport
sweeps, performing far worse than the power method, which only required 52,964 transport
sweeps to converge (Table 6.22b). The sensitivity of the RQFP method to scattering cross
sections caused the Jacobian spectral radius at the fixed point to be very close to one.
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Table 6.21: Sood Criticality Benchmark Problem 68 Cross Sections (cm−1) in [44]

g σg νg σfg χg vg [cm/s]

1 0.33588 2.50 0.002817 1.0 2.0
2 0.54628 2.50 0.097 0.0 1.0

(a) U-D2O Cross Sections

g′ → g 1 2

1 0.31980 0.004555
2 0.0 0.42410

(b) U-D2O Scattering Block

Table 6.22: Calculated Eigenvalues and Transport Sweep Comparisons for Sood Criticality
Benchmark Problem 68 in [44]

Transport Sweeps

rc [cm] Calculated α [s−1] RQFP Critical Search

846.632726 −6.93314× 10−7 451,140 *

M = 2000, L = 64, Tolerance = 10−12, *Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

rc [cm] Calculated keff RQFP Power Method

846.632726 0.99887 451,136 52,964

M = 2000, L = 64, Tolerance = 10−12

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps
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6.2.2 Multigroup Reflected Slabs

Two water-reflected research reactor-like slab problems, Sood Criticality Benchmark Problem
58 and Sood Criticality Benchmark Problem 60, were considered. For the cross section sets
shown in Table 6.23 and Table 6.24, fissile material slabs were reflected by a water reflector
on the right side of the slab that made the problem exactly critical. The two-group cross
section sets allowed for upscattering. The fissile slab width along with slab and reflector
width are listed in Table 6.25.

The reflected slab problems were found to be slightly subcritical (Table 6.25a). Using the
Rayleigh Quotient Fixed Point method for the alpha-eigenvalue, the alpha-eigenvalue and
eigenvector were determined in 2042 and 3192 transport sweeps, respectively. Due to the
large amount of scattering in the reflector, the convergence rate of the method was slowed and
required many more transport sweeps compared to problems with less scattering. Attempting
to calculate the alpha-eigenvalue with the critical search method was unsuccessful due to the
negative alpha-eigenvalue. Despite the problems only being slightly subcritical, the critical
search method was unable to converge the problems.

For the k-effective eigenvalue, the Rayleigh Quotient Fixed Point method underperformed
the power method with fission source update dramatically (Table 6.25b). The RQFP method
required 20-30 times the number of iterations as compared to the default method. Since the
reflected slabs were only slightly subcritical, the number of transport sweeps required to
converge the alpha- and k-effective eigenvalues were similar. With convergence of the fixed-
point methods determined by the scattering present in the problems, the scattering in the
water reflector slowed down convergence dramatically. With the fission source update only
concerned with fissile regions of the problem, convergence was achieved faster as the water
reflector had less of an impact on the convergence rate.
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Table 6.23: Sood Criticality Benchmark Problem 58 Cross Sections (cm−1) in [44]

g σg νg σfg χg vg [cm/s]

1 0.88721 2.50 0.000836 1.0 2.0
2 2.9727 2.50 0.029564 0.0 1.0

(a) Fissile Material Cross Sections

g′ → g 1 2

1 0.83892 0.04635
2 0.000767 2.9183

(b) Fissile Material Scattering Block

g σg νg σfg χg vg [cm/s]

1 0.88798 0.0 0.0 0.0 2.0
2 2.9865 0.0 0.0 0.0 1.0

(c) H2O Cross Sections

g′ → g 1 2

1 0.83975 0.04749
2 0.000336 2.9676

(d) H2O Scattering Block
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Table 6.24: Sood Criticality Benchmark Problem 60 Cross Sections (cm−1) in [44]

g σg νg σfg χg vg [cm/s]

1 0.88655 2.50 0.001648 1.0 2.0
2 2.9628 2.50 0.057296 0.0 1.0

(a) Fissile Material Cross Sections

g′ → g 1 2

1 0.83807 0.04536
2 0.00116 2.8751

(b) Fissile Material Scattering Block

Table 6.25: Calculated Eigenvalues and Transport Sweep Comparisons for Sood Criticality
Benchmark Problem 60 in [44]

Transport Sweeps

Cross Section Set rc [cm] rc + rrefl [cm] Calculated α [s−1] RQFP Critical Search

Sood Prob. 58 6.696802 7.822954 −1.10466× 10−7 2,042 *
Sood Prob. 60 4.863392 10.494149 −5.92658× 10−9 3,192 *

*Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

Cross Section Set rc [cm] rc + rrefl [cm] Calculated keff RQFP Power Method

Sood Prob. 58 6.696802 7.822954 0.99999 2,038 112
Sood Prob. 60 4.863392 10.494149 0.99999 3,280 94

M = 2000, L = 64, Tolerance = 10−12

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps
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6.3 One-Speed Verification for Spherical Geometry
In certain circumstances, alpha-eigenvalue results for slab geometry also apply to spherical
geometry problems. This slab-sphere equivalence holds for isotropically scattering hetero-
geneous media where the total cross section is equal for all regions [46]. More generally, a
convenient property of spherically symmetric systems is that if the mean free path in the
system is independent of position and scattering is isotropic, then the determination of the
spherically symmetric neutron distribution of these systems is reduced to the determination
of these distributions in certain systems with plane symmetries. Thus, for all homogeneous
slab and symmetric heterogeneous slab systems where each region has the same total cross
section, it follows that there exists a spherical equivalent for the problems studied in the
previous sections. Specifically, it can be shown that the second eigenvalue of a slab system
is identical to the fundamental eigenvalue for the equivalent sphere. In this section, we ex-
amine the performance of the RQFP method for one-dimensional spherical problems which
are equivalent to the slab problems from before. We verify the correctness of the method
for this subset of problems and compare its performance to the critical search and power
methods.

6.3.1 Non-Multiplying Homogeneous Spheres

To verify the correctness of the RQFP method for one-dimensional spherical geometry, four
non-multiplying homogeneous slab problems in [47] with a second eigenvalue listed were
modeled as equivalent spherical problems with radii of ∆/2 mfp. The dominant alpha-
eigenvalue of the equivalent spherical systems is the second eigenvalue of the slab problems.
The calculated alpha-eigenvalues were then compared to the GFM-calculated eigenvalues.
The purely homogeneous scattering spheres used the cross sections listed in Table 6.1. For
all problems, the percent relative error between the RQFP- and GFM-calculated eigenvalues
was less than 0.005 % (Table 6.26) for diamond differencing discretization (M = 500) and an
S64 discrete ordinates quadrature in angle (L = 64). As the radius of the spheres increases,
the system approaches the critical state and the alpha-eigenvalue approaches zero. However,
as there is no fissile material, the eigenvalue can never reach zero.

6.3.2 Multiplying Homogeneous Spheres

For homogeneous slab problems with multiplication (Cross sections Table 6.3), the equivalent
spherical problems were modeled and the performance and correctness of the RQFP methods
for alpha- and k-effective eigenvalue calculations were examined.

To verify the correctness of the RQFP method for alpha-eigenvalue problems, the RQFP-
calculated eigenvalues were compared to the GFM-calculated eigenvalues listed in [47]. The
problems were modeled using diamond differencing (M = 500) and an S64 discrete ordinates
quadrature in angle (L = 64). For spherical problems with diameters ranging from three
to 50 mean free paths, it was found that the eigenvalues agreed within 0.02% relative error
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Table 6.26: Comparison of RQFP- and GFM-Calculated Alpha-Eigenvalues for a Homoge-
neous Scattering Sphere

Alpha-Eigenvalue/Percent Relative Error

∆ RQFP GFM % Relative Error

5 −3.41177× 10−1 −3.41216× 10−1 0.0114
10 −1.02973× 10−1 −1.02978× 10−1 0.0049
20 −2.88443× 10−2 −2.88447× 10−2 0.0014
25 −1.89226× 10−2 −1.89228× 10−2 0.0011

M = 500, L = 64, Tolerance = 10−12

(Table 6.27). Alpha-eigenvalue agreement increased as the spherical system became larger.
In all cases, the RQFP method was able to correctly determine the criticality of the system,
even for systems that were slightly subcritical or supercritical.

The performance of the RQFP method for alpha-eigenvalue problems was compared to
the critical search method. The number of transport sweeps required to converge the eigen-
vector norm residual to a tolerance of 10−12 for various spherical radii is seen in Table 6.28a.
For problem that were subcritical (∆ = 3 − 7 mfp), the RQFP method was able to con-
verge to the correct eigenvalue while the critical search method was not able to converge the
problem. As problems became increasingly supercritical, the number of transport sweeps
required to converge increased for both the RQFP and critical search methods. This is due
to the fact that as the systems become larger, neutrons can survive longer before being ab-
sorbed or leaking out of the system. These longer lived neutrons cause the increase in the
alpha-eigenvalue but more transport sweeps are required before reaching the fundamental
mode of the angular flux. For the supercritical cases, the critical search method was able
to correctly determine the eigenvalue of the spherical systems. However, in all cases, the
number of transport sweeps required by the RQFP method was approximately 20-40 times
less than the critical search method.

The RQFP method was compared to the power method with a fission norm update for
the k-effective eigenvalue. In all cases, the power method performed better than the RQFP
method. The number of transport sweeps necessary to converge was similar to subcritical
and slightly supercritical problems for both methods. However, as the problems became
more supercritical, the RQFP method’s performance deteriorated (Table 6.28b).
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Table 6.27: Comparison of RQFP- and GFM-Calculated Alpha-Eigenvalues for a Homoge-
neous Scattering Multiplying Sphere

Alpha-Eigenvalue/Percent Relative Error

∆ RQFP GFM % Relative Error

3 −5.68218× 10−1 −5.6833× 10−1 0.0197
4 −3.00486× 10−1 −3.0054× 10−1 0.0180
5 −1.60321× 10−1 −1.6035× 10−1 0.0181
6 −7.72739× 10−2 −7.7292× 10−2 0.0234
7 −2.38450× 10−2 −2.3857× 10−2 0.0503
8 1.26235× 10−2 1.2616× 10−2 0.0594
9 3.86541× 10−2 3.8649× 10−2 0.0132
10 5.78980× 10−2 5.7894× 10−2 0.0069
15 1.06258× 10−1 1.0626× 10−1 0.0019
20 1.24512× 10−1 1.2451× 10−1 0.0016
30 1.38248× 10−1 1.3825× 10−1 0.0014
40 1.43262× 10−1 1.4326× 10−1 0.0014
50 1.45638× 10−1 1.4564× 10−1 0.0014

M = 500, L = 64, Tolerance = 10−12
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Table 6.28: Transport Sweep Comparisons for Homogeneous Multiplying Spheres

Transport Sweeps Transport Sweeps

∆ RQFP Critical Search Δ RQFP Critical Search

3 46 * 10 128 29,645
4 46 * 15 227 61,303
5 52 * 20 357 84,353
6 67 * 30 707 100,433
7 81 * 40 1,176 99,135
8 96 10,865 50 1,761 97,037
9 111 21,555

*Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Sweeps

Transport Sweeps Transport Sweeps

∆ RQFP Power Method Δ RQFP Power Method

3 49 43 10 127 62
4 57 47 15 214 79
5 66 49 20 329 103
6 76 52 30 636 167
7 87 54 40 1049 253
8 99 56 50 1562 360
9 113 59

M = 500, L = 64, Tolerance = 10−12

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps
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6.3.3 Multiplying Homogeneous Spheres with Anisotropic
Scattering

Three exactly critical multiplying homogeneous spheres with anisotropic scattering from
[44], Sood Criticality Benchmark Problems 39, 41, and 43, were modeled to determine the
impacts of higher scattering order cross sections on the performance of the RQFP methods.
Three sets of uranium-heavy water cross sections sets (Table 6.29) were examined, each with
different anisotropic scattering cross section orders. In particular, cross section set U-D2O (c)
had a negative anisotropic scattering cross section. The critical radii for the three problems
are listed in Table 6.30. These problems were modeled using the diamond differencing scheme
in space (500 cells), and S64 discrete ordinate angular quadrature.

For alpha-eigenvalue problems, the RQFP method calculated alpha-eigenvalues that were
within 10−7 of the true alpha-eigenvalue of zero. For two cases, Sood Criticality Bench-
mark Problem 39 and 41, the problems were slightly supercritical, while for Sood Criticality
Benchmark Problem 43 the problem was subcritical. For the two supercritical cases, both the
RQFP and critical search methods were able to converge to the same eigenvalue. The RQFP
method required approximately half the transport sweeps as the critical search method (Ta-
ble 6.30a). For the subcritical case, the critical search method could not converge to the
correct eigenvalue as the problem was slightly subcritical. For the RQFP method, the num-
ber of transport sweeps required to converge the case with a negative anisotropic scattering
cross section increased by a factor of 1.5 compared to non-negative anisotropic cross sec-
tions. This further suggests the negative anisotropic cross section can impact the rate of
convergence of the RQFP method.

For k-effective eigenvalue problems, the RQFP method calculated k-effective eigenvalues
were within 10−7 of the true value of keff = 1.00000. In all three cases, the RQFP method
required approximately double the iterations the power method with fission norm update
did. (Table 6.30b). Similar to the alpha-eigenvalue problems, the inclusion of a negative
anisotropic scattering cross section increased the number of transport sweeps necessary to
converge to a tolerance of 10−12.

Table 6.29: Sood Criticality Benchmark Problems 39, 41, and 43 Cross Sections (cm−1) in
[44]

Cross Section Set σ νσf σs0 σs1 v [cm/s]

Sood Prob. 39 0.54628 0.098788237268 0.464338 0.056312624 1
Sood Prob. 41 0.54628 0.100574846008 0.464338 0.112982569 1
Sood Prob. 43 0.54628 0.0926709392 0.464338 -0.27850447 1
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Table 6.30: Calculated Eigenvalues and Transport Sweep Comparisons for Sood Criticality
Benchmark Problems 39, 41, and 43 in [44]

Transport Sweeps

Cross Section Set rc [cm] Calculated α [s−1] RQFP Critical Search

Sood Prob. 39 18.30563081 3.165772× 10−7 299 513
Sood Prob. 41 18.30563081 3.930857× 10−7 270 476
Sood Prob. 43 18.30563081 −6.613381× 10−7 456 *

*Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

Cross Section Set rc [cm] Reference keff RQFP Power Method

Sood Prob. 39 18.30563081 1.000003 301 118
Sood Prob. 41 18.30563081 1.000003 273 106
Sood Prob. 43 18.30563081 0.999993 456 207

M = 500, L = 64, Tolerance = 10−12

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps
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6.3.4 A Spherical Shell Problem

To verify the correctness of the alpha-eigenvalue RQFP method in spherical geometry, two
spherical shell problems were modeled and the calculated alpha-eigenvalues compared to the
GFM-calculated value in [47]. For any symmetric heterogeneous slab problem, an equivalent
spherical shell problem can be modeled. As before, the second eigenvalue of the hetero-
geneous slab problem is the dominant eigenvalue of the spherical shell problem. Using the
five-region fuel pin from Figure 6.5 with the right fuel pin width set to one mean free path, an
equivalent spherical problem shown in Figure 6.8 was modeled. For this particular problem,
the width of each material section remained the same as in the five region slab case. Cross
sections for the three materials were the same as the slab geometry problem (Table 6.9).
Similar to the five region slab problem, two cases were examined where νσf = 0.3 and 0.7.

The RQFP- and GFM-calculated alpha-eigenvalues are listed in Table 6.31. For the νσf =
0.3 case, the alpha-eigenvalues matched within 0.5%. For the νσf = 0.7 case, agreement was
within 2.2%. The higher discrepancy in the eigenvalue was most likely due to differences in
how ARDRA and the GFM treated the neutron angular redistribution of spherical geometry.
The GFM-calculated alpha-eigenvalue uses analytic Green’s Functions and then determines
the eigenvalues numerically through a search process and does not discretize the underlying
integro-differential equation like ARDRA.

Absorber

Moderator

Fuel

Figure 6.8: Five Region Fuel Pin Spherical Equivalent from [12]
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Table 6.31: Comparison of RQFP- and GFM-calculated Alpha-Eigenvalues for a Three Re-
gion Multiplying Sphere

Alpha-Eigenvalue/Percent Relative Error

νσf RQFP GFM % Relative Error

0.3 −3.213384× 10−1 −3.229855× 10−1 5.10× 10−1

0.7 −6.300281× 10−3 −6.440766× 10−3 2.18

M = 1000, L = 64, Tolerance = 10−12

6.4 Multigroup Verification for Spherical Geometry
In this section, we examine the performance of the RQFP method for three multigroup-in-
energy, reflected, critical spheres from the International Handbook of Evaluated Criticality
Safety Benchmark Experiments [48]. The handbook contains criticality safety benchmark
specifications that have been derived from various experiments performed at various facil-
ities throughout the world. These specifications are intended to help researchers validate
calculation techniques and methods by providing researchers with integral quantities such
as k-effective and energy spectra. The problems examined in this section provide a diverse
set of critical systems consisting of a large number of materials, large cross-section libraries,
anisotropically scattering materials, and other characteristics intended to test the perfor-
mance of the RQFP methods for realistic problems.

6.4.1 A Plutonium-Nitrate Solution Critical Sphere

The alpha- and k-effective eigenvalues and eigenvectors of a plutonium-nitrate solution cov-
ered with cadmium were calculated and the number of transport sweeps required for conver-
gence compared to standard eigensolver methods. The benchmark problem (Cross Section
Evaluation Working Group (CSEWG) ID: T-15 and International Criticality Safety Bench-
mark Evaluation Project (ICSBEP) ID: PU_SOL_THERM_011) consisted of an 18-inch diameter
sphere of a plutonium-nitrate solution with density 22.35 grams/liter covered with stainless
steel and cadmium shells. The fissile sphere radius, rU, and stainless steel and cadmium
shell thicknesses, δSS and δCd, respectively, are listed in Table 6.32 and material composition
and number fractions in Table 6.33. The problem was modeled using a 230 neutron energy
group cross section set with a scattering order of five.

For the alpha-eigenvalue problem, the RQFP method required 106,200 transport sweeps
to converge the alpha-eigenvalue and eigenvector to a tolerance of 10−6 (Table 6.34a). For the
modeled problem, the system was found to be slightly supercritical with an alpha-eigenvalue
of 2.287638 × 10−4 µs−1. The critical search method was able to converge the eigenpair,
requiring 219,650 transport sweeps to converge to the same tolerance. The group scalar flux
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for the alpha-eigenvalue problem was compared to the benchmark reference solution. The
absolute difference between the two fluxes is seen in Figure 6.9. The largest differences were
located in the fast region of the energy spectrum but were only on the order of 10−4. Overall,
the absolute difference was less than 10−6, within the tolerance of the solution method.

For the k-effective eigenvalue problem, the problem was found to have an eigenvalue of
k = 1.012216. For this particular problem, the RQFP method was unable to converge the
k-effective eigenvalue and eigenvector (Table 6.34b). At each iteration step, the eigenvalue
iterate was found to be negative. Though this behavior has been seen before with the RQFP
method, it is usually found that the eigenvalue eventually becomes positive and converges to
a physically possible k-effective eigenvalue. In this particular problem, that did not occur.
It was found that a better initial guess for the eigenvector allowed for convergence, but this
required using the eigenvector solution from the power method. The power method with
the fission source update assures the positivity of the eigenvalue at each iteration. For this
particular problem, the power method with fission source update required 58,650 transport
sweeps.

Problem Dimensions [cm]

ICSBEP ID rPu δSS δCd

PU_SOL_THERM_001 22.6974 0.127 0.0508

Table 6.32: Fissile Material Radius and Shell Thicknesses for Plutonium-Nitrate Solution
Benchmark
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Table 6.33: Material Composition for Plutonium-Nitrate Solution System

Material Number Temperature (◦C) Component Density (g/cm3) Number Fraction

1 20.0 1001 1.066 6.484E-01
7014 7.358E-03
8016 3.437E-01
26000 1.280E-05
94239 5.638E-04
94240 2.344E-05

2 20.0 24000 7.998 1.921E-01
26000 6.945E-01
28000 1.134E-01

3 20.0 48000 11.72 1.000E+00

4 20.0 7014 1.293E-03 7.800E-01
8016 2.200E-01
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Table 6.34: Calculated Eigenvalues and Transport Sweep Comparisons for Plutonium-Nitrate
Solution System

Transport Sweeps

ICSBEP ID Calculated α [µs−1] RQFP Critical Search

PU_SOL_THERM_011 2.287638× 10−4 106,260 219,650

M = 137, L = 128, Tolerance = 10−6

(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

ICSBEP ID Calculated keff RQFP Power Method

PU_SOL_THERM_001 1.012216 * 58,650

M = 137, L = 128, Tolerance = 10−6, *Did Not Converge
(b) k-Effective: Comparison of RQFP and Critical Search Transport Sweeps
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Figure 6.9: Absolute Error Between RQFP Method and Reference Solution for the Alpha-
Eigenvalue Energy Spectrum
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6.4.2 A Plutonium/Highly Enriched Uranium Mixture Critical
Sphere

The alpha- and k-effective eigenvalues and eigenvectors of a plutonium/highly enriched ura-
nium (PU/HEU) mixture spherical assembly were calculated. The number of transport
sweeps required by the RQFP method for convergence of the eigenpair was compared to the
standard eigenvalue methods for the alpha- and k-effective eigenvalue problems. The bench-
mark problem (International Criticality Safety Benchmark Evaluation Project (ICSBEP) ID:
MIX_MET_FAST_001) consisted of a plutonium metal sphere surrounded by a uranium-235 and
uranium-238 shell. The plutonium sphere radius and uranium shell thickness are listed in
Table 6.35. Material compositions and number fractions are listed in Table 6.36. The prob-
lem was modeled using a 230 neutron energy group cross section set with a scattering order
of five.

The problem as modeled in ARDRA was found be slightly subcritical with alpha-eigen-
value α = −4.114757× 10−1 µs−1. The RQFP method required 22,310 transport sweeps to
converge the eigenvalue and eigenvector to a tolerance of 10−6 (Table 6.37a). The critical
search method was unable to converge the eigenpair. Despite the slightly subcritical nature
of the system, the alpha-eigenvalue introduced sufficient negative absorption to prevent the
critical search method from converging.

The k-effective eigenvalue was determined to be k = 0.999063. The RQFP method re-
quired 7130 transport sweeps to converge the eigenvalue/eigenvector pair to a tolerance of
10−6. The power method with fission source update only required 4,370 transport sweeps
Table 6.37b). The high amount of scattering in this problem appears to degrade the perfor-
mance of the RQFP method in comparison to the power method.

Problem Dimensions [cm]

ICSBEP ID rPu δU

MIX_MET_FAST_001 5.0419 1.6637

Table 6.35: Fissile Material Radius and Shell Thicknesses for PU/HEU Mixture Benchmark
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Table 6.36: Material Composition for PU/HEU System

Material Number Temperature (◦C) Component Density (g/cm3) Number Fraction

1 20.0 31069 1.578E+01 2.012E-02
31071 1.336E-02
94239 9.162E-01
94240 4.736E-02
94241 2.996E-03

2 20.0 92235 1.880E+01 9.328E-01
92238 6.720E-02

3 20.0 7014 1.293E-03 7.800E-01
8016 2.200E-01

Table 6.37: Calculated Eigenvalues and Transport Sweep Comparisons for PU/HEU System

Transport Sweeps

ICSBEP ID Calculated α [µs−1] RQFP Critical Search

MIX_MET_FAST_001 −4.114757× 10−1 22,310 *

M = 1042, L = 128, Tolerance = 10−6, *Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

ICSBEP ID Calculated keff RQFP Power Method

MIX_MET_FAST_001 0.999063 7,130 4,370

M = 1042, L = 128, Tolerance = 10−6

(b) k-Effective: Comparison of RQFP and Critical Search Transport Sweeps
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6.4.3 A Uranium-233 Critical Sphere

The alpha- and k-effective eigenvalue and eigenvectors of a 0.481 inch uranium-233 sphere
reflected by an HEU shell were calculated and the number of transport sweeps necessary
for converge compared to standard eigenproblem solvers. The uranium-233 system was a
fast energy spectrum critical benchmark problem (ICSBEP ID: U233_MET_FAST_002). The
critical sphere radius and shell thickness are listed in Table 6.38. Material compositions and
number fractions are shown in Table 6.39. This benchmark problem also used a 230 energy
group cross section library.

For the alpha-eigenvalue of the uranium-233 system, the eigenvalue was determined to
be −5.158602 × 10−1 µs−1 as listed in Table 6.40a. For this subcritical system, the RQFP
method required 30,590 transport sweeps to converge the alpha eigenpair to a tolerance of
10−6. The critical search method was unable to converge the eigenpair.

The k-effective eigenvalue was determined to be k = 0.998474. For this particular bench-
mark problem, the RQFP method underperformed the power method with fission source
update, requiring 15,640 transport sweeps to the power method’s 10,580 (Table 6.40b).

Problem Dimensions [cm]

ICSBEP ID rU233 δU

U233_MET_FAST_002 5.0444 6.2661

Table 6.38: Fissile Material Radius and Shell Thicknesses for Uranium-233 Benchmark

Table 6.39: Material Composition for Uranium-233 System

Material Number Temperature (◦C) Component Density (g/cm3) Number Fraction

1 20.0 92233 1.862E+01 9.822E-01
92234 1.096E-02
92238 6.854E-03

2 20.0 92235 1.880E+01 9.328E-01
92238 6.720E-02

3 20.0 7014 1.293E-03 7.800E-01
8016 2.200E-01
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Table 6.40: Calculated Eigenvalues and Transport Sweep Comparisons for a Uranium-233
System

Transport Sweeps

ICSBEP ID Calculated α [µs−1] RQFP Critical Search

U233_MET_FAST_002 −5.158602× 10−1 30,590 *

M = 1042, L = 128, Tolerance = 10−6, *Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

ICSBEP ID Calculated keff RQFP Power Method

U233_MET_FAST_002 0.998474 15,640 10,580

M = 526, L = 128, Tolerance = 10−6

(b) k-Effective: Comparison of RQFP and Critical Search Transport Sweeps

6.5 Conclusion
The RQFP method for alpha-eigenvalue performs well for various slab and spherical ge-
ometry benchmark problems. Through the various benchmark problems examined in this
chapter, the correctness of the method was verified by comparisons to other methods such as
Green’s Function Method and to other codes such as PARTISN. The RQFP method is able
to converge problems that violate the assumptions of slab geometry, isotropic scattering,
and fissile regions used in deriving the method. The method, applied to spherical systems,
successfully obtained the eigenpair of interest. The RQFP method was able to obtain an-
alytical and measured alpha-eigenvalues of various benchmark problems from the literature
and substantially reduced the number of transport sweeps necessary to obtain the alpha-
eigenvalue/eigenvector as compared to the traditional critical search method. For various
subcritical problems, the RQFP method was able to converge the eigenpair when the critical
search failed. This gives evidence that the Rayleigh Quotient Fixed Point method for alpha-
eigenvalue problems is robust enough to handle large one-dimensional, multigroup-in-energy
problems where the assumptions made in deriving the method might not be true.

The RQFP method for k-effective problems was found to be less successful. The RQFP
method for k-effective eigenvalue problems underperforms for most problems considered in
this chapter. The method appears to be more sensitive to the violation of assumptions made
in its derivation as compared to the RQFP method for alpha-eigenvalue problems. Never-
theless, the RQFP method provides another option to solve k-effective eigenvalue problems.
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Chapter 7

Higher Dimensional Eigenvalues

In this chapter we verify the correctness and examine the performance of the Rayleigh Quo-
tient Fixed Point methods for higher-dimensional problems. We consider realistic two- and
three-dimensional problems involving fuel rods and fuel assemblies. For higher dimensions,
the phase space of the neutron transport equation is a function of two (x, y) or three (x, y, z)
spatial variables and two Ω̂ = (µ, η) or three Ω̂ = (µ, η, ξ) angular variables defined as the x-,
y-, and z-direction cosines. For higher-dimensional Cartesian geometry, the two-dimensional
and three-dimensional alpha-eigenvalue neutron transport equations are given by Eq. 7.1
and Eq. 7.2, respectively:

[
µ
∂

∂x
+ η

∂

∂y
+

α

v(E)
+ σ(x, y, E)

]
ψ(x, y, Ω̂, E)

= χ(E)

∫ ∞
0

dE ′ν(E ′)σf (x, y, E
′)

∫
2π

dΩ̂′ ψ(x, y, Ω̂′, E ′)

+

∫ ∞
0

dE ′σs(x, y, E
′ → E)

∫
2π

dΩ̂′ ψ(x, y, Ω̂′, E ′), (7.1)

[
µ
∂
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+ η

∂

∂y
+ ξ

∂

∂z
+

α

v(E)
+ σ(x, y, z, E)

]
ψ(x, y, z, Ω̂, E)

= χ(E)

∫ ∞
0

dE ′ν(E ′)σf (x, y, z, E
′)

∫
4π

dΩ̂′ ψ(x, y, z, Ω̂′, E ′)

+

∫ ∞
0

dE ′σs(x, y, z, E
′ → E)

∫
4π

dΩ̂′ ψ(x, y, z, Ω̂′, E ′). (7.2)

The three-dimensional k-effective eigenvalue neutron transport equation is given by 7.3:
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[
µ
∂

∂x
+ η

∂

∂y
+ ξ

∂

∂z
+ σ(x, y, z, E)

]
ψ(x, y, z, Ω̂, E)
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χ(E)

k

∫ ∞
0

dE ′ν(E ′)σf (x, y, z, E
′)

∫
4π

dΩ̂′ ψ(x, y, z, Ω̂′, E ′)

+

∫ ∞
0

dE ′σs(x, y, z, E
′ → E)

∫
4π

dΩ̂′ ψ(x, y, z, Ω̂′, E ′). (7.3)

We also consider two-dimensional cylindrical geometry problems. For cylindrical geome-
try problems, the complexity is increased due to the fact that for one spatial dimension, two
angular variables are required to describe the angular flux. For two-dimensional cylindrical
problems, the alpha-eigenvalue neutron transport equation is given by

µ

ρ

∂

∂ρ
(ρψ) + ξ

∂ψ

∂z
− 1

ρ

∂

∂ω
(ηψ) +

α

v(E)
ψ(ρ, Ω̂, E) + σ(ρ, E)ψ(ρ, Ω̂E)

= χ(E)

∫ ∞
0

dE ′ν(E ′)σf (ρ, E
′)

∫
4π

dΩ̂′ ψ(ρ, Ω̂′, E ′)

+

∫ ∞
0

dE ′σs(ρ, E
′ → E)

∫
4π

dΩ̂′ ψ(ρ, Ω̂′, E ′), (7.4)

where ρ is the radial distance from the origin and µ = (1−ξ2)1/2 cosω and η = (1−ξ2)1/2 sinω
(Figure 7.1).
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Figure 7.1: Cylindrical Space-Angle Coordinate System in Three Dimensions
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Reactor fuel assemblies and fuel pins were modeled in ARDRA. These benchmark prob-
lems consisted of detailed heterogeneous domains with many nuclei of interest to reactor
design and physics. The higher dimension geometry of the problems along with the many
energy-group cross section libraries allowed for analysis of the Rayleigh Quotient Fixed Point
method for alpha- and k-effective eigenvalue problems in situations where assumptions of
positivity might no longer be valid.

7.1 Critical Cylinder Benchmark Problems
We consider homogeneous and heterogeneous two-dimensional cylindrical problems in this
section. In the homogeneous case, a critical infinite cylinder domain is modeled with critical
radius rc and height zc to approximate an infinite cylinder in the z-direction (Figure 7.2). In
the heterogeneous case, an infinite cylinder is surrounded by some reflector (such as water).
The inclusion of the reflector introduces regions in the problem domain where fission is
not possible and only downscattering is allowed. This violates the conditions necessary for
primitivity (see Section 3.2). We find that the inclusion of non-fissile reflector material does
not impact the ability of the Rayleigh Quotient Fixed Point method for alpha- and k-effective
eigenvalue problems to obtain the fundamental eigenpair.

rc

Figure 7.2: Critical Radius of Infinite Cylinder
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7.1.1 Homogeneous Critical Cylinder Problems

Five exactly critical homogeneous cylinder problems from Sood [44] were considered with
cross sections listed in Table 7.1. These problems consisted of plutonium (Sood Criticality
Benchmark Problem 7), uranium-235 (Sood Criticality Benchmark Problems 13, 36, and 37)
and heavy-water/uranium mixture (Sood Criticality Problem 23) cylinders with critical radii
listed in Table 7.2. All problem cross-sections were one-group and two problems included
anisotropic scattering.

The number of transport sweeps necessary for convergence for the RQFP and critical
search method can be seen in Table 7.2a. For the plutonium problem (Sood Prob. 7),
the RQFP method required 38 sweeps to converge the alpha-eigenvalue and eigenvector.
The critical search method required 461 transport sweeps. In this particular problem the
RQFP method reduced the number of transport sweeps necessary by a factor of 10. For the
uranium-235 with isotropic scattering problem (Sood Prob. 13), the RQFP method required
45 transport sweeps as compared to 455 sweeps for the critical search method, a factor
of 10 reduction. For the heavy-water/uranium mixture (Sood Prob. 23), the number of
transport sweeps required to converge the eigenpair increased dramatically. For this set of
cross section data, 319 transport sweeps were required by the RQFP method to converge
the fundamental mode and eigenvalue. The critical search method was not able to converge
the alpha-eigenvalue as the system as modeled was slightly subcritical. For the uranium-235
cross sections with anisotropic scattering (Sood Prob. 36 and 37), the RQFP method was
found to take 41 and 53 transport sweeps each. The critical search method was unable to
converge these methods despite the fact that the systems were slightly supercritical. The
critical search method was unable to converge the alpha-eigenvalue and eigenvector due to
the fact that the k-effective eigenvalue becomes negative in the interpolation part of the
algorithm.

The number of transport sweeps necessary for convergence for the RQFP and power
method with fission source update can be seen in Table 7.2b. The RQFP method requires a
similar number of sweeps to converge the k-effective eigenvalue problem except for the heavy-
water/uranium mixture problem. In this case, the RQFP method requires 320 transport
sweeps to only 121 transport sweeps for the power method with fission source update. This
implies that the convergence rate of the RQFP method is much more strongly influenced by
the amount of scattering in the system than the power method. In all cases, the number of
sweeps required by the RQFP method to converge the k-effective eigenvalue was similar to
the number of sweeps required to converge the alpha-eigenvalue problem.
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Table 7.1: One-Group Cross Sections for Infinite Cylinder Critical Problems (cm−1) in [44]

Cross Section Set σ νσf σs0 σs1 v [cm/s]

Sood Prob. 7 0.32640 0.231744 0.225216 0.0 1
Sood Prob. 13 0.32640 0.176256 0.248064 0.0 1
Sood Prob. 23 0.54628 0.0928676 0.464338 0.0 1
Sood Prob. 36 0.32640 1.76256 0.248064 0.042432 1
Sood Prob. 37 0.32640 1.76256 0.248064 0.212160 1

Table 7.2: Calculated Eigenvalues and Transport Sweep Comparisons for Critical Infinite
Cylinder Problems in [44]

Transport Sweeps

Cross Section Set rc [cm] Calculated α [s−1] RQFP Critical Search

Sood Prob. 7 4.279960 3.783833× 10−4 38 461
Sood Prob. 13 5.284935 1.973082× 10−4 45 455
Sood Prob. 23 16.554249 −1.007328× 10−4 319 *
Sood Prob. 36 5.514296811 2.012672× 10−4 41 *
Sood Prob. 37 6.940205668 1.906997× 10−4 53 *

M = 500, L = 10, Tolerance = 10−12, *Did Not Converge
(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

Cross Section Set rc [cm] Calculated keff RQFP Power Method

Sood Prob. 7 4.279960 1.001419 43 40
Sood Prob. 13 5.284935 1.000989 49 42
Sood Prob. 23 16.554249 0.998935 320 121
Sood Prob. 36 5.514296811 1.000997 48 40
Sood Prob. 37 6.940205668 1.000870 37 43

M = 500, L = 10, Tolerance = 10−12

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps
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7.2 Two- and Three-Dimensional Cartesian Benchmark
Problems

We consider three versions of the MOX Fuel Assembly 3D Extension Case from the Bench-
mark on Deterministic Transport Calculations Without Spatial Homogenisation [49]. The
benchmark geometry is a three-dimensional representation of sixteen assembly (quarter core
symmetry) C5G7 MOX fuel reactor problem described in [50]. The benchmark problem is
meant to provide a challenging test of the ability of three-dimensional methods to handle
spatial heterogeneities.

The benchmark problem materials consist of seven materials: UO2 fuel-clad, 4.3% MOX
fuel, 7.0%MOX fuel, 8.7%MOX fuel, the fission chamber, the guide tube, and the moderator.
Each material has a seven-energy cross section set with energy group boundaries and group
speeds listed in Table 7.3. The seven-energy-group, isotropic scattering cross sections for the
UO2 fuel-clad are provided in Table 7.4. The seven-energy-group, isotropic scattering cross
sections for the three enrichments of MOX are listed in Table 7.5, Table 7.6, and Table 7.7,
respectively, while the cross sections for the fission chamber, guide tube, and moderator are
listed in Table 7.8, Table 7.9, and Table 7.10, respectively. We note that the material cross
sections include a group transport cross section, σg,tr, defined as

σg,tr = σg − µ̄
6∑

g′=0

σs,g′g, (7.5)

where µ̄ is the average cosine of the neutron scattering angle. Also included is a group
absorption cross section, σg,a, defined as the sum of the parasitic absorption cross section,
σγ,g, and the fission cross section, σf,g.

The quarter core has dimensions 64.26 cm by 64.26 cm by 214.20 cm. Each fuel pin cell has
width 1.26 cm and the radius of the fuel cylinder is 0.54cm.The quarter core model consists
to two types of assemblies, UO2 and MOX surrounded by moderator as seen in Figure 7.3.
Each fuel assembly has a pin layout as shown in Figure 7.4. Reflected boundary conditions
are imposed on the bottom and right quarter core boundaries. Vacuum boundary conditions
are imposed on the top and left edges of the quarter core. The k-effective eigenvalue of the
system benchmark problem is k = 1.186550.

Three variations of the benchmark problem were considered. Two two-dimensional vari-
ants of the benchmark problem were modeled where reflective boundary conditions were
placed on the top and bottom of the quarter core. In the first problem, a coarse spatial
homogenization was done on a high-fidelity geometric model created for the LLNL Monte
Carlo code COG [51] and the problem solved using ARDRA. In the second case, a finer
spatial homogenization was done on the high-fidelity geometric model. Finally, a full three-
dimensional calculation with coarse spatial homogenization was done. The performance of
the RQFP method for alpha- and k-effective eigenvalues was investigated for all problems
and compared to traditional eigenvalue solution methods in the field.
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Figure 7.3: Assembly Layout for MOX Fuel Assembly Benchmark

Figure 7.4: Fuel Pin Layout for MOX Fuel Assembly Benchmark from [49]
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7.2.1 Two-Dimensional MOX Fuel Core with Coarse Spatial
Discretization

A coarse spatial homogenization of the benchmark problem led to the assembly geometry
shown in Figure 7.5. In particular, the coarse homogenization procedure led to the inclusion
of moderator in assembly regions where there was none previously. Spatial discretization was
done using diamond differencing with twenty spatial cells in both the x- and y- directions.
S16 discrete ordinates quadrature was used to model the two-dimensional problem.

Given the coarse spatial homogenization, it was expected the k-effective eigenvalue of
the system would be greater than the reference k = 1.184977 due to decreased absorption
in the system caused by the coarse discretization. The k-effective eigenvalue of the problem
was found to be k = 1.185404. The alpha-eigenvalue was found to be α = 1.492999 × 10−1

µs−1. The RQFP method for both the alpha- and k-effective eigenproblems obtained the
same eigenvalue as the critical search method and power iteration.
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Figure 7.5: Coarse Spatial Homogenization of MOX Fuel Assembly Benchmark Problem
Each material is given a number which corresponds to the color shown in the figure: UO2 =
0, 4.3% MOX Fuel = 1, 7.0% MOX Fuel = 2, 8.7% MOX Fuel = 3, Guide Tube = 4, Fission
Chamber = 5, Moderator = 6.
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For the alpha-eigenvalue, the RQFP method required 6,776 transport sweeps to converge
the eigenvalue/eigenvector residual to a tolerance of 10−6 as seen in Table 7.11a. The critical
search method required 81,445 transport sweeps after requiring seven intermediate k-effective
calculations. The group scalar fluxes for the seven groups can be seen in Figures 7.6a-7.6g.
The RQFP method was able to converge the alpha-eigenvalue/eigenvector despite the system
being highly supercritical. While not all cells contained fissile material and the moderator
contained only downscattering, the violation of the primitivity condition did not affect the
ability of the method to converge.

For the k-effective eigenvalue, the RQFP method required 9,064 transport sweeps as
compared to 9,681 transport sweeps for the power method with fission source norm update
(Table 7.11b). As the problem was substantially supercritical, the performance of the RQFP
method was not degraded by the large amounts of scattering in the moderator regions of
the problem because of the localization of the group eigenvectors in the fissile regions of the
problem. This allowed the RQFP method to converge the solution in fewer iterations than
the power method. The k-effective eigenvalue group scalar fluxes were substantially different
from the alpha-eigenvalue group scalar fluxes as expected since the problem was not close to
critical. This is expected as the fundamental modes are expected to be substantially different
as the positive alpha-eigenvalue hardens the neutron energy spectra while the k-effective
eigenvalue softens the spectrum. Unlike previous problems that were critical or close to
critical, the number of transport sweeps required to converge both eigenvector problems was
substantially different, with the k-effective eigenvector requiring approximately 33% more
sweeps. This result gives more evidence of the sensitivity of the RQFP method to the shape
of the eigenvectors. An example of the difference in the alpha- and k-effective eigenvectors
is shown for the thermal group (g = 6) in Figure 7.7. The absolute difference between the
alpha-eigenvalue and k-effective eigenvectors for energy group six shows major differences in
the boundaries of the core where neutron leakage is different for both eigenproblems.
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Table 7.11: Calculated Eigenvalues and Transport Sweep Comparisons for 2D MOX Fuel
Core with Coarse Spatial Discretization

Transport Sweeps

Benchmark Problem Calculated α [µs−1] RQFP Critical Search

2D MOX Coarse Discretization 1.492999× 10−1 6,776 81,445

M = 20× 20, L = 16, Tolerance = 10−6

(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

Benchmark Problem Calculated keff RQFP Power Method

2D MOX Coarse Discretization 1.184977 9,064 9,681

M = 20× 20, L = 16, Tolerance = 10−6

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps
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(a) Scalar Flux for Energy Group Zero
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(b) Scalar Flux for Energy Group One
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(c) Scalar Flux for Energy Group Two
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(d) Scalar Flux for Energy Group Three
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(e) Scalar Flux for Energy Group Four
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(f) Scalar Flux for Energy Group Five
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(g) Scalar Flux for Energy Group Six

Figure 7.6: Alpha-Eigenvalue Group Scalar Fluxes for 2D MOX Fuel Assembly Benchmark
Problem - Coarse Spatial Discretization
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Figure 7.7: Absolute Difference between Alpha- and k-Effective Eigenvalue Group Six Scalar
Fluxes (Coarse Homogenization)
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7.2.2 Two-Dimensional MOX Fuel Core with Fine Spatial
Discretization

A fine spatial homogenization of the benchmark led to the assembly geometry shown in
Figure 7.8. The fine spatial homogenization allowed for high-fidelity modeling of the assem-
bly, with individual fuel pins, guide tubes, and fission chambers resolved in the model. For
the fine spatial discretization, diamond differencing was used with 340 spatial cells in both
the x- and y-direction. The problem used S16 discrete ordinates angular quadrature. For
the fine spatial homogenization, the k-effective eigenvalue of the problem was found to be
k = 1.185303. The alpha-eigenvalue was found to be α = 1.396240× 10−1 µs−1. The RQFP
method for both the alpha- and k-effective eigenproblems obtained the same eigenvalue as
the critical search method and power iteration.
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Figure 7.8: Fine Spatial Homogenization of MOX Fuel Assembly Benchmark Problem
The color in each cell corresponds to the material in that cell. Each material is given a
number which corresponds to the color shown in the figure: UO2 = 0, 4.3% MOX Fuel
= 1, 7.0% MOX Fuel = 2, 8.7% MOX Fuel = 3, Guide Tube = 4, Fission Chamber = 5,
Moderator = 6.
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Determining the alpha-eigenvalue and eigenvector using the RQFP method required 4,096
transport sweeps while the critical search method required 39,942 transport sweeps as shown
in Table 7.12a. The RQFP method reduced the number of transport sweeps necessary to
converge the eigenpair to a tolerance of 10−6 by approximately a factor of ten. The critical
search required 12 intermediate k-effective eigenvalue calculations. The alpha-eigenvalue
group scalar fluxes for all seven groups are shown in Figures 7.9a-7.9g. Similar to the coarse
spatial homogenization problem, the RQFP method is able to resolve the alpha-eigenvalue
and eigenvector despite the presence of cells that violate the assumptions made in deriving
the method.

For the k-effective eigenvalue, the RQFP method required 5,579 transport sweeps to con-
verge as compared to 5,523 transport sweep for the power method with fission norm update.
Unlike the coarse spatial homogenization, the RQFP method underperformed the power
method slightly. Despite this, the RQFP method provides another competitive solution
method to the eigenvalue problem. As compared to the alpha-eigenvalue RQFP method, the
k-effective RQFP method required approximately 40% more transport sweeps to converge
the eigenvalue/eigenvector to the same tolerance. The absolute difference between the ther-
mal energy alpha-eigenvalue scalar flux and the thermal energy k-effective scalar flux is seen
in Figure 7.10.

Table 7.12: Calculated Eigenvalues and Transport Sweep Comparisons for 2D MOX Fuel
Core with Fine Spatial Discretization

Transport Sweeps

Benchmark Problem Calculated α [µs−1] RQFP Critical Search

2D MOX Fine Discretization 1.396240× 10−1 4,046 39,942

M = 340× 340, L = 16, Tolerance = 10−6

(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

Benchmark Problem Calculated keff RQFP Power Method

2D MOX Fine Discretization 1.185303 5,579 5,523

M = 340× 340, L = 16, Tolerance = 10−6

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps
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(a) Scalar Flux for Energy Group Zero
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(b) Scalar Flux for Energy Group One
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(c) Scalar Flux for Energy Group Two
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(d) Scalar Flux for Energy Group Three
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(e) Scalar Flux for Energy Group Four
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(f) Scalar Flux for Energy Group Five
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(g) Scalar Flux for Energy Group Six

Figure 7.9: Alpha-Eigenvalue Group Scalar Flux for 2D MOX Fuel Assembly Benchmark
Problem - Fine Spatial Discretization
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Figure 7.10: Absolute Difference between Alpha- and k-Effective Eigenvalue Group Six Scalar
Fluxes (Fine Homogenization)
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7.2.3 Three-Dimensional MOX Fuel Core with Coarse Spatial
Discretization

A coarse spatial homogenization of the three-dimensional quarter core benchmark led to
the assembly geometry shown in Figure 7.11. Spatial discretization was done using the
diamond difference method with the coarse spatial homogenization using twenty cells in the
x-, y-, and z-directions each. This benchmark problem used S8 discrete ordinates angular
quadrature. A reflective boundary condition was placed on the bottom of the assembly
and a vacuum boundary condition was placed on the top of the assembly. The k-effective
eigenvalue of this assembly benchmark model was k = 1.182340, slightly less supercritical
than the benchmark k-effective of k = 1.186550. Differences in the k-effective eigenvalue were
caused by the spatial homogenization of the benchmark input model. The alpha-eigenvalue of
the benchmark was α = 1.467369× 10−1 µs−1. Once again, the RQFP-obtained eigenvalues
agreed with those obtained by the critical search method and power iteration.
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Figure 7.11: Coarse Spatial Homogenization of Three-Dimensional MOX Fuel Assembly
Benchmark Problem
The color in each cell corresponds to the material in that cell. Each material is given a
number which corresponds to the color shown in the figure: UO2 = 0, 4.3% MOX Fuel
= 1, 7.0% MOX Fuel = 2, 8.7% MOX Fuel = 3, Guide Tube = 4, Fission Chamber = 5,
Moderator = 6.
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To determine the alpha-eigenvalue and eigenvector of the three-dimensional assembly
problem to a tolerance of 10−6, the RQFP method required 38,521 transport sweeps as
compared to 286,566 transport sweeps for the critical search method as shown in Table 7.13a.
The critical search method required 12 k-effective eigenvalue calculations in order to converge
the alpha-eigenvalue and eigenvector, with some individual k-effective calculations requiring
a similar number of transport sweeps as the RQFP method. The alpha-eigenvalue group
scalar fluxes are seen in Figures 7.12a-7.12g.

The RQFP method required 43,309 transport sweeps to converge the k-effective eigen-
value and eigenvector (Table 7.13b). The power method with fission source update required
43,666 transport sweeps. Both methods were converged to a tolerance of 10−6. The RQFP
method performed slightly better than the power method for the three-dimensional fuel as-
sembly benchmark problem. Compared to the alpha-eigenvalue problem, the RQFP method
required approximately 12% more transport sweeps to converge the k-effective eigenvalue
and eigenvector to the same tolerance.

Table 7.13: Calculated Eigenvalues and Transport Sweep Comparisons for 3D MOX Fuel
Core with Coarse Spatial Discretization

Transport Sweeps

Benchmark Problem Calculated α [µs−1] RQFP Critical Search

3D MOX Coarse Discretization 1.467369× 10−1 38,521 286,566

M = 20× 20× 20, L = 8, Tolerance = 10−6

(a) Alpha-Eigenvalue: Comparison of RQFP and Critical Search Transport Sweeps

Transport Sweeps

Benchmark Problem Calculated keff RQFP Power Method

3D MOX Coarse Discretization 1.182330 43,309 43,666

M = 20× 20× 20, L = 8, Tolerance = 10−6

(b) k-Effective: Comparison of RQFP and Power Method Transport Sweeps
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(a) Scalar Flux for Energy Group Zero
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(b) Scalar Flux for Energy Group One
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(c) Scalar Flux for Energy Group Two
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(d) Scalar Flux for Energy Group Three
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(e) Scalar Flux for Energy Group Four
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(f) Scalar Flux for Energy Group Five
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(g) Scalar Flux for Energy Group Six

Figure 7.12: Alpha-Eigenvalue Group Scalar Flux for 3D MOX Fuel Assembly Benchmark
Problem - Coarse Spatial Discretization
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7.3 Conclusion
The Rayleigh Quotient Fixed Point method was applied to alpha- and k-effective eigenvalue
problems for higher dimensional benchmark problems. Homogeneous critical cylinder prob-
lems were examined and the performance of the RQFP method compared to traditional
eigensolvers. For alpha-eigenvalue problems, the RQFP method required approximately ten
times fewer transport sweeps for critical cylinder problems and was able to converge problems
that the critical search method failed to converge. It was found that the rate of convergence
of the RQFP method was influenced by the size of the critical system and the amount of
scattering present. For k-effective eigenvalue problems, the RQFP method required a simi-
lar number of transport sweeps as the traditional power method with fission source update.
Both the alpha-eigenvalue and k-effective eigenvalue RQFP methods required a similar num-
ber of iterations for each benchmark, as expected due to the similarity of the eigenvectors
for both eigenvalue problems.

Three quarter-core benchmarks consisting of MOX fuel assemblies were analyzed and
the performance of the RQFP method compared to traditional eigensolvers. The criticality
eigenvalues of two two-dimensional benchmark problems with coarse and fine spatial homog-
enizations were determined, and it was found that the alpha-eigenvalue RQFP method re-
quired approximately ten times fewer transport sweeps than the critical search method. The
RQFP method for k-effective eigenvalues reduced the number of transport sweeps required for
convergence by approximately 10%. For a coarse spatial homogenization three-dimensional
benchmark problem, the RQFP method for the alpha-eigenvalue required one-tenth of the
transport sweeps required by the critical search method. For the k-effective eigenvalue, the
RQFP method required fewer iterations than the power method. The RQFP methods were
able to determine the fundamental angular flux eigenvector of highly heterogeneous sys-
tems. In particular, these systems do not meet all the primitivity requirement made in the
derivation of the methods. However, the RQFP method still converges to the eigenvalue
and eigenvector of interest and provides substantial reductions in the number of transport
sweeps required to converge realistic reactor benchmark problems.

The two- and three-dimensional benchmark problems used to test the RQFP method
demonstrate that the RQFP method is robust enough to solve realistic nuclear reactor
problems composed of many materials. The transport sweep reductions it provides for
alpha-eigenvalue problems greatly reduce the computational cost of determining the alpha-
eigenvalue and eigenvector of interest in comparison to the critical search method. For
k-effective problems, the RQFP method provides another robust and competitive solution
method when compared to the power method. In cases where the primitivity condition is
not met by the discretized transport equations, the RQFP method is still able to determine
the fundamental eigenvector. For highly supercritical problems, the RQFP method rapidly
converges the eigenvector for both the alpha- and k-effective eigenvalue problems. However,
for problems exhibiting large amounts of scattering, the RQFP method converges slowly. In
these cases, it might be necessary to accelerate the RQFP method in some manner.
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Chapter 8

Acceleration of the Alpha-Eigenvalue
Rayleigh Quotient Fixed Point Method
by Anderson Acceleration

Like all fixed-point methods, the alpha-eigenvalue Rayleigh Quotient Fixed Point method
exhibits only linear convergence. In most cases, this rate of convergence is acceptable when
other methods are unable to converge the alpha-eigenvalue and eigenvector of interest. How-
ever, there exists a set of problems where the alpha-eigenvalue Rayleigh Quotient Fixed
Point method converges unacceptably slowly. These problems are characterized by large
domains where neutrons experience a large amount of scattering before finally being ab-
sorbed or leaking out of the domain. For these problems, it might become necessary to use
acceleration methods to mitigate slow convergence. In this chapter, we discuss the use of
Anderson acceleration on the Rayleigh Quotient Fixed Point method for alpha-eigenvalue
problems. We examine various slow converging criticality problems of interest and describe
the performance of Anderson acceleration. We discuss the reduction in transport sweeps,
the associated memory costs of the method, and the practical considerations when using
Anderson acceleration.

8.1 Anderson Acceleration
We begin by describing Anderson acceleration. Anderson acceleration originated in the
work of Anderson [52] for the solution of nonlinear integral equations. More recently, work by
Walker and Ni [53] and Toth and Kelley [54] have focused on the use of Anderson acceleration
in other applications such as multiphysics problems.

Consider the fixed-point problem

G(u) = u, G : RN → RN .
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Let u∗ be the fixed point of Eq. 8.1. We assume that the iteration converges (ρ(G′(u∗)) < 1)
[38]. Anderson acceleration maintains a history of residuals

f(u) = G(u)− u (8.1)

of depth at most m+ 1, where m is a parameter in the algorithm. An Anderson acceleration
iteration that uses m residual histories is referred to as Anderson(m). Anderson(0) is fixed-
point iteration by definition. Anderson acceleration for the fixed-point problem, Eq. 8.1, is
given by Algorithm 8.1.

Algorithm 8.1 Anderson Acceleration
Set u0 = an initial guess and m ≥ 1
u1 = G(u0)
for n = 0, 1, 2, . . . until convergence do

Set mn = min(m,n)
Set Fn = (fn−mn , . . . , fn), where fi = G(ui)− ui
Determine αn = (α

(n)
0 , . . . , α

(n)
mn) that solves minα

∥∥FnαT∥∥2
such that

∑mn

i=0 αi = 1

Set un+1 =
∑mn

i=0 α
(n)
i G(un−mn+i)

Test for convergence
end for

At each iteration, Anderson acceleration determines mn weights, αn = (α
(n)
0 , . . . , α

(n)
mn),

such that the sum of the residual vectors is minimized in some sense. Any norm can be used
in the minimization step. However, the `2 is typically used so that the minimization problem
can be formulated as a linear least squares problem [53].

In practice, each mn may be further modified to maintain acceptable conditioning of Fn.
In most applications mn is small. mn = 1 or mn = 2 is common for large systems due to
memory constraints and conditioning requirements.

In the original formulation of Anderson acceleration [52], the formulation of the next
iterate can be made more general using the expression

un+1 = (1− βn)
mn∑
i=0

α
(n)
i un−mn+i + βn

mn∑
i=0

α
(n)
i G(un−mn+i) (8.2)

=
mn∑
i=0

α
(n)
i un−mn+i + βn

( mn∑
i=0

α
(n)
i G(un−mn+i)−

mn∑
i=0

α
(n)
i un−mn+i

)
, (8.3)

where βn is a relaxation parameter. The relaxation parameters βn are usually determined
heuristically. In practice, βn is a damping parameter (0 < βn ≤ 1) and is used to improve
convergence by reducing step lengths when iterates are not near the fixed-point solution.
Setting βn = 1 gives the update in Algorithm 8.1.
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Algorithm 8.1 requires solving the constrained linear least-squares problem:

minα
∥∥FnαT∥∥2

s.t.

mn∑
i=0

αi = 1. (8.4)

Instead, the least squares problem can be formulated [52] into an equivalent unconstrained
problem. This unconstrained Anderson acceleration algorithm is shown in Algorithm 8.2.

Algorithm 8.2 Unconstrained Anderson Acceleration
Set u0 = an initial guess and m ≥ 1
u1 = G(u0)
for n = 0, 1, 2, . . . until convergence do

Set mn = min(m,n)
∆Fn = (∆fn−mn , . . . ,∆fn−1) where ∆fi = fi+1 − fi and fi = G(ui)− ui
Determine γ(n) = (γ

(n)
0 , . . . , γ

(n)
mn−1) that solves minγ

∥∥fn −∆Fnγ
T
∥∥

2

Set un+1 = G(un)−
∑mn−1

i=0 γ
(n)
i ∆gn−mn+i with ∆gi = G(ui+1)−G(ui)

Test for convergence
end for

Determining the coefficients γ(n) = (γ
(n)
0 , . . . , γ

(n)
mn−1) is done by a QR factorization

∆Fn = QnRn, (8.5)

Rnγ
(n) = QT

nfn. (8.6)
The need for a QR factorization increases the computation cost of one iteration of Anderson
acceleration. However, various fast and inexpensive QR factorization methods are available.
Despite the increased cost per iteration, if Anderson acceleration substantially reduces the
number of iterations required for convergence then this cost may be acceptable.

It is usually desirable to do multiple fixed-point iterations before beginning acceleration.
Doing fixed-point iterations may allow the vector iterates to get closer to the region of
convergence of the fixed point. This is easily implementable in the Anderson acceleration
algorithms by prescribing the number of fixed-point iteration evaluations to be done before
starting the acceleration.

It is Algorithm 8.2 that is applied to the acceleration of the alpha-eigenvalue Rayleigh
Quotient Fixed Point method.

8.2 Anderson Acceleration of Slowly Converging
Alpha-Eigenvalue Rayleigh Quotient Fixed Point
Problems

In this section we consider various critical slab problems that are slow to converge using the
alpha-eigenvalue Rayleigh Quotient Fixed Point method. These problems are characterized
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by long slab widths and high amounts of scattering. Since the alpha-eigenvalue is related
to the time it takes for a neutron to be absorbed or leak out of the system, the wide slabs
with many scattering interactions require many transport sweeps to converge. We apply
Anderson acceleration to these problems and explore the performance of the acceleration
method for various parameters of the method. We look at the effects of the number of
residual vectors used in the calculation of the next iterate, the number of initial fixed-point
iterations done before beginning acceleration, and the impacts of the relaxation parameter
βn. All calculations were done in Matlab [55], with reference eigenvalues determined by
forming the neutron transport matrices and the Matlab eigenvalue function to determine the
dominant alpha-eigenvalue. The implementation of Anderson acceleration used to examine
these problems is shown in Appendix B.

8.2.1 Uranium-Heavy Water Critical Slab (Sood Criticality
Benchmark Problem 68)

In Section 6.2.1, the uranium-heavy water critical slab problem, Sood Criticality Problem
68, was examined. The problem was characterized by large in-group scattering cross sections
and a large critical width. Due to these characteristics, the Rayleigh Quotient Fixed Point
method for alpha-eigenvalue problems was slow to converge. Unlike previous problems, Sood
Criticality Problem 68 required hundreds of thousands of transport sweeps to converge. We
reexamine Sood Criticality Problem 68 and apply Anderson acceleration. The problem cross
sections are seen in Chapter 6, Table 6.21 and the problem critical width and reference
alpha-eigenvalue for one hundred spatial cells, step-differencing, and S16 discrete ordinates
angular quadrature are shown in Table 8.1.

The number of iterations required to converge the eigenvalue/eigenvector fixed point is
shown in Table 8.2. In this chapter, we define one iteration to equal the transport sweep
plus the cost of the Anderson acceleration. It follows that for the alpha-eigenvalue Rayleigh
Quotient Fixed Point Method, one iteration is equal to one transport sweep. Zero, five, ten,
20, 50, and 100 fixed point iterations were done before beginning acceleration. Table 8.2
shows results for relaxation parameter βn = 1. The Rayleigh Quotient Fixed Point method
(Anderson(0)) required 23,796 transport sweeps to converge to the fixed point to a `2 residual
tolerance of 10−8. The tolerance for Anderson accelerated calculations was set to 10−12 to
prevent false convergence as mentioned in [53]. For zero initial fixed-point iterations, it is

Table 8.1: Sood Criticality Problem 68 Critical Width and Reference Alpha-Eigenvalue [44]

Cross Section Set rc [cm] Reference α [s−1]

U-D2O(68) 846.632726 −1.508539× 10−5

M = 100, L = 16, Tolerance = 10−12
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seen that Anderson(1), the variant of the method which only keeps the most current residual
vector, does not converge to the correct eigenvalue. By increasing number of initial fixed-
point iterations, we see in Table 8.2 that this resulted in the reduction of iterations required
to converge to the fixed point and allowed Anderson acceleration variants to converge to the
correct eigenvalue/eigenvector that would otherwise not converge. In other circumstances,
we see some Anderson acceleration variants require more iterations than variants with fewer
residual vectors or fixed-point iterations. This is caused by iterates leaving the region of
convergence and requiring additional iterations to reenter the region. In most circumstances,
the preliminary fixed-point iterations allowed for the iterates to approach the region of
convergence of the fixed point thus allowing for convergence.

Increasing the number of residual vectors also allows the method to converge to the
correct eigenvalue and results in substantial reductions in the number of iterations required
for convergence. However, this comes at a cost as each additional residual vector is of
size GLM and using many residual vectors quickly becomes untenable for large problems.
Additionally, the QR factorization increases the computational complexity at each iteration.
The memory cost for each Anderson(m) acceleration variant is given by

memory cost = (2 +m)GLM, (8.7)

which for realistic transport problems might grow rapidly in size.
The number of floating-point operations (flops) required by the Rayleigh Quotient Fixed

Point method is determined as follows. At each iteration, the method requires three vector
dot products each requiring 2GLM flops and one inversion of the matrix Hz. Inversion of
the matrix is done by the sweeping and is equivalent to solving G upper or lower triangular
matrices of size LM . For one-group problems, the floating-point operation cost is then
approximately (LM)2. For one iteration of the RQFP method, the number of floating-point
operations can be roughly estimated as

flopsRQFP ≈ O
(
N2
)
, (8.8)

where N = LM . Each iteration of Anderson acceleration requires a QR factorization of
a matrix with size (N × m). In Matlab, the QR factorization is done by the Householder
algorithm [56] and requires approximately O

(
Nm2

)
flops. The total number of flops re-

quired by Anderson acceleration applied to the RQFP method for one iteration is then
approximately

flopsAndersonRQFP ≈ O
(
Nm2

)
+O

(
N2
)
≈ O

(
N2
)
, (8.9)

since m � N . From this analysis, we see that the number of flops required are approxi-
mately the same and that memory is the major limitation of Anderson acceleration. Reduc-
tion in the number of iterations required to converge a problem results in large reductions
of flops as compared to the RQFP method. While additional residual vectors allow for
convergence to the correct fixed point, it comes at the cost of additional very large vectors.
Effective use of Anderson acceleration requires determining the least number of residual
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vectors that can be used to achieve convergence while minimizing the amount of memory
required. Additional fixed-point iterations can be used to increase the robustness of the
method without increasing memory costs.

Figure 8.1 shows the convergence behavior of the Anderson acceleration variants that
converge to the correct eigenvalue for no initial fixed-point iterations. Compared to the
monotonic decrease in the residual of the Rayleigh Quotient Fixed Point method, the An-
derson acceleration variants show significant oscillations. These oscillations make it possible
to converge prematurely and for this reason a tighter tolerance is required. The increase of
residual vectors used damped out the oscillations faster and allowed the acceleration method
to converge with fewer iterations at the cost of additional memory.

Given the tendency of the acceleration method to oscillate, the relaxation parameter βn
can be used to reduce these oscillations. For relaxation parameter βn = 0.5, Figure 8.2
shows the convergence of behavior of Anderson acceleration. The relaxation parameter
increased the number of iterations required to converge the problem but also allowed for
the Anderson(1) variant of the problem to converge to the correct eigenvalue though it
underperformed Anderson(0) acceleration. This increase in iterations is seen in the shift of
the residual to the right in Figure 8.2. The relaxation parameter βn can be used to force the
method to converge to the correct fixed point at the cost of additional iterations.

In most variants of Anderson acceleration, we see that increasing the number of residual
vectors improves the performance of the acceleration method. However, in certain circum-
stances we see that using five vectors degraded the performance of the method. In these
cases, it is thought that the condition number of the system has become large. This can
be avoided by deleting rows of the system. However, given this fact, for Sood Criticality
Benchmark Problem 68, it is recommended that three or four residual vectors be used with
any number of initial fixed-point iterations or relaxation parameter βn. Anderson accelera-
tion provides substantial reductions in the number of iterations required for converge despite
it requiring a tighter tolerance than the alpha-eigenvalue Rayleigh Quotient Fixed Point
method.
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Table 8.2: Anderson Acceleration for Sood Criticality Problem 68 (βn = 1,M = 100, L = 16)

Anderson(mn) Calculated α [s−1] Iterations

Anderson(0) −1.508539× 10−5 23,796
Anderson(1) −8.790638× 10−4 30,872
Anderson(2) −1.508539× 10−5 7,130
Anderson(3) −1.508539× 10−5 6,976
Anderson(4) −1.508539× 10−5 3,596
Anderson(5) −1.508539× 10−5 2,668

Initial Fixed-Point Iterations = 0

Anderson(mn) Calculated α [s−1] Iterations

Anderson(1) −8.790638× 10−4 19,447
Anderson(2) −1.508539× 10−5 8,782
Anderson(3) −1.508539× 10−5 3,148
Anderson(4) −1.508539× 10−5 1,964
Anderson(5) −1.508539× 10−5 2,624

Initial Fixed-Point Iterations = 5

Anderson(mn) Calculated α [s−1] Iterations

Anderson(1) −1.508539× 10−5 18,514
Anderson(2) −1.508539× 10−5 5,813
Anderson(3) −1.508539× 10−5 4,664
Anderson(4) −1.508539× 10−5 2,806
Anderson(5) −1.508539× 10−5 4,669

Initial Fixed-Point Iterations = 10
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Anderson(mn) Calculated α [s−1] Iterations

Anderson(1) −1.508539× 10−5 16,665
Anderson(2) −1.508539× 10−5 5,944
Anderson(3) −1.508539× 10−5 5,430
Anderson(4) −1.508539× 10−5 1,498
Anderson(5) −1.508539× 10−5 1,729

Initial Fixed-Point Iterations = 20

Anderson(mn) Calculated α [s−1] Iterations

Anderson(1) −1.508539× 10−5 13,396
Anderson(2) −1.508539× 10−5 10,641
Anderson(3) −1.599327× 10−4 8,375
Anderson(4) −1.508539× 10−5 3,441
Anderson(5) −1.508539× 10−5 2,416

Initial Fixed-Point Iterations = 50

Anderson(mn) Calculated α [s−1] Iterations

Anderson(1) −1.508539× 10−5 11,729
Anderson(2) −1.508539× 10−5 7,066
Anderson(3) −1.508539× 10−5 4,748
Anderson(4) −1.508539× 10−5 1,894
Anderson(5) −1.508539× 10−5 3,280

Initial Fixed-Point Iterations = 100
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Figure 8.1: Anderson Acceleration Convergence for Sood Criticality Problem 68 (βn = 1),
No Initial Fixed-Point Iterations
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Figure 8.2: Anderson Acceleration Convergence for Sood Criticality Problem 68 (βn = 0.5),
No Initial Fixed-Point Iterations
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8.2.2 Uranium-Heavy Water Critical Slab (Sood Criticality
Benchmark Problem 73)

In this section we examine another uranium-heavy water critical slab problem that is slow to
converge when using the Rayleigh Quotient Fixed Point method. Similar to Sood Criticality
Benchmark Problem 68, Sood Criticality Benchmark Problem 73 has large amounts of scat-
tering and a large critical width. This problem also contains anisotropic scattering where
some of these cross sections are negative. Table 8.3 lists the two-group cross sections and
Table 8.4 lists the critical width of the slab and the reference alpha-eigenvalue. The problem
was modeled using one hundred spatial cells, step differencing, and S16 discrete ordinates
angular quadrature.

The number of iterations required to converge the eigenvalue/eigenvector is shown in
Table 8.5. Zero, five, ten, 20, 50, and 100 preliminary fixed-point iteration variants were
studied with relaxation factor βn = 1. The Rayleigh Quotient Fixed Point (Anderson(0))
required 22749 iterations to converge the eigenvalue/eigenvector to an `2 residual of 10−8. As
before, the tolerance of the Anderson acceleration calculations was set to 10−12 to prevent
false convergence. Unlike Sood Criticality Benchmark Problem 68, it was found that all
Anderson acceleration variants converged to the correct eigenvalue. As the number of residual
vectors increased, the number of iterations decreased except in the case of five residual
vectors. For this number of residual vectors, it was found that the linear system was poorly
conditioned.

Increasing the number of initial fixed-point iterations before acceleration only reduces
the number of total iterations in some cases. As the number of initial fixed-point iterations
increases, it was seen that the number of iterations either remained the same or increased
(Table 8.5). By allowing for more initial iterations, it is possible that the vector iterates
ended up much further from the fixed point. If instead the acceleration were turned on
sooner, the iterates would instead end up in the region of convergence much sooner.

Figure 8.3 shows the convergence behavior of the different Anderson acceleration vari-
ants (βn = 1, zero initial fixed-point iterations) and the Rayleigh Quotient Fixed Point
method. The Anderson acceleration variants oscillate substantially until converging to the
fixed point. While Anderson(1) only reduced the number of iterations required by a factor
of 20%, Anderson(3) and Anderson(4) reduced iteration number by up to factor of 10. Using
relaxation parameter βn = 0.5, the number of iterations increased. We see a shift toward the
right of the convergence behavior in Figure 8.4. For this particular problem, the relaxation
parameter is not necessary since all Anderson acceleration variants converge onto the right
fixed point.

For this particular problem, Anderson acceleration provided substantial reductions in
iterations. However, for certain combinations of residual vector number, relaxation parame-
ters, and initial fixed-point iterations, it was found that the acceleration method would not
perform as well. Similar to the previous problem, using three or four residual vectors with
five or ten initial fixed-point iterations was found to give the best results. This problem,
however, shows that the various parameters of Anderson acceleration require optimization.
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Table 8.3: Two-Group U-D2O Problem Cross Sections (cm−1)

g σg νg σfg χg vg [cm/s]

1 0.33588 2.50 0.002817 1.0 2.0
2 0.54628 2.50 0.097 0.0 1.0

(a) U-D2O(73) Cross Sections

g′ → g 1 2

1 0.31980 0.004555
2 0.0 0.42410

(b) U-D2O(73) Scattering Block-σs0

g′ → g 1 2

1 0.06694 -0.0003972
2 0.0 0.05439

(c) U-D2O(73) Scattering Block-σs1

Table 8.4: Sood Criticality Problem 73 Critical Width and Reference Alpha-Eigenvalue [44]

Cross Section Set rc [cm] Reference α [s−1]

U-D2O(73) 1000.506133 −1.221913× 10−5

M = 100, L = 16, Tolerance = 10−12
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Table 8.5: Anderson Acceleration for Sood Criticality Problem 73 (βn = 1,M = 100, L = 16)

Anderson(mn) Calculated α [s−1] Iterations

Anderson(0) −1.221913× 10−5 22,749
Anderson(1) −1.221913× 10−5 17,620
Anderson(2) −1.221913× 10−5 4,814
Anderson(3) −1.221913× 10−5 2,777
Anderson(4) −1.221913× 10−5 1,854
Anderson(5) −1.221913× 10−5 6,008

Initial Fixed-Point Iterations = 0

Anderson(mn) Calculated α [s−1] Iterations

Anderson(1) −1.221913× 10−5 17,775
Anderson(2) −1.221913× 10−5 9,204
Anderson(3) −1.221913× 10−5 2,583
Anderson(4) −1.221913× 10−5 1,407
Anderson(5) −1.221913× 10−5 6,172

Initial Fixed-Point Iterations = 5

Anderson(mn) Calculated α [s−1] Iterations

Anderson(1) −1.221913× 10−5 12,186
Anderson(2) −1.221913× 10−5 11,382
Anderson(3) −1.221913× 10−5 4,809
Anderson(4) −1.221913× 10−5 2,626
Anderson(5) −1.221913× 10−5 3,603

Initial Fixed-Point Iterations = 10
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Anderson(mn) Calculated α [s−1] Iterations

Anderson(1) −1.221913× 10−5 12,241
Anderson(2) −1.221913× 10−5 3,604
Anderson(3) −1.221913× 10−5 6,713
Anderson(4) −1.221913× 10−5 5,430
Anderson(5) −1.221913× 10−5 2,925

Initial Fixed-Point Iterations = 20

Anderson(mn) Calculated α [s−1] Iterations

Anderson(1) −1.221913× 10−5 17,166
Anderson(2) −1.221913× 10−5 7,363
Anderson(3) −1.221913× 10−5 4,205
Anderson(4) −1.221913× 10−5 1,729
Anderson(5) −1.221913× 10−5 2,253

Initial Fixed-Point Iterations = 50

Anderson(mn) Calculated α [s−1] Iterations

Anderson(1) −1.221913× 10−5 17,313
Anderson(2) −1.221913× 10−5 14,811
Anderson(3) −1.221913× 10−5 10,654
Anderson(4) −1.221913× 10−5 3,923
Anderson(5) −1.221913× 10−5 3,657

Initial Fixed-Point Iterations = 100
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8.3 Conclusion
Anderson acceleration was applied to the Rayleigh Quotient Fixed Point method for alpha-
eigenvalue problems. Anderson acceleration and its constrained and unconstrained formu-
lations were presented. The unconstrained formulation of Anderson acceleration was im-
plemented in MATLAB and applied to the RQFP method. Two slowly converging one-
dimensional slab geometry problems were considered and the number of iterations compared
for various variants of the acceleration scheme. The effects of different numbers of resid-
ual vectors, relaxation parameters, and initial fixed-point iterations before acceleration were
considered and their effects on the ability of the method to converge to the fundamental
eigenvector and eigenvalue were discussed. It was found that while larger numbers of resid-
ual vectors produced faster convergence, the memory required quickly increased. Instead it
was found that using a combination of initial fixed-point iterations and a lesser number of
residual vectors produced substantial speedups. In particular, the initial fixed-point itera-
tions were found to help the method to converge to the correct eigenpair by allowing the
vector iterate to enter the region of convergence for the fixed point. Using a relaxation pa-
rameter also improves the ability of the method to converge by reducing step lengths when
the vector iterate is not near the fixed-point solution. Despite the fact Anderson acceleration
required tighter tolerance to prevent false convergence, the reduction in iterations required
for convergence is substantial and should be considered for slowly converging problems.
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Chapter 9

Conclusion

This dissertation described the derivation and mathematical foundation of the Rayleigh
Quotient Fixed Point method and its use to determine the alpha- and k-effective eigenvalue
criticality problems in neutron transport. The Rayleigh Quotient Fixed Point method is a
non-linear fixed-point method that uses the proven primitivity property of the discretized
neutron transport eigenvalue equations to find the positive angular flux eigenvector solution
and corresponding eigenvalue. This dissertation discusses the application of the Rayleigh
Quotient Fixed Point method to infinite media, one-dimensional slabs and spheres, as well
as realistic two- and three-dimensional reactor models using the neutral particle transport
code ARDRA [22].

For alpha-eigenvalue problems, previous methods were limited to transport-based matrix
methods or criticality search iterative schemes. For transport-based matrix methods, the
discretized matrices of the alpha-eigenvalue were formed and traditional eigenvalue solution
methods were applied. These methods become increasingly expensive in memory and com-
putational effort as problems increase in complexity. For criticality search iterative schemes,
the alpha-eigenvalue is determined by relating the eigenvalue to another eigenvalue problem,
the k-effective eigenvalue. These methods require multiple k-effective eigenvalue calcula-
tions to converge the alpha-eigenvalue, increasing the number of transport sweeps required
to converge the alpha-eigenvalue. A substantial number of iterations are therefore spent
determining an eigenvalue not of interest to the problem. Furthermore, there remain open
questions as to how converged the proxy eigenvalue calculation must be to allow for conver-
gence of the alpha-eigenvalue problem. These methods also historically have been applied to
supercritical nuclear systems, being of limited use for subcritical problems that are becoming
more of interest in the recent years. With growing interest in subcritical accelerator-driven
reactor systems and subcritical experiment design, a numerical method that is able to deal
with subcritical systems is required. The Rayleigh Quotient Fixed Point for alpha-eigenvalue
problems is an iterative method that is able to solve subcritical, critical, and supercritical sys-
tems, providing a more general solution method to alpha-eigenvalue problems. The Rayleigh
Quotient Fixed Point method directly updates the alpha-eigenvalue, not requiring knowledge
of any other eigenvalue, substantially reducing the number of iterations required for conver-
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gence. For a wide variety of problems, the RQFP method for alpha-eigenvalue problems
reduced the number of iterations required by up to factors of 50. It is also shown that the
method uses an eigenvalue update that is optimal in the least squares sense.

For k-effective problems, power iteration is the traditional workhorse method and it
typically uses a fission source update for the eigenvalue at each iteration. By using the
Rayleigh Quotient Fixed Point method, the k-effective eigenvalue problem can be viewed as
a non-linear fixed-point method where an optimal update for the eigenvalue can be derived.
In certain circumstances, such as infinite-medium problems used to determine homogenized
cross sections or problems where the angular flux eigenvector is highly localized, this provides
a reduction in transport sweeps necessary to converge the eigenvalue and eigenvector of
interest.

Throughout the derivation of the Rayleigh Quotient Fixed Point method, the primitivity
property of the discretized eigenvalue equations was used to guarantee the existence of a
unique positive eigenvector corresponding to the spectral radius as stated in the Perron-
Frobenius theory for primitive matrices. It was shown that for a one-dimensional slab geom-
etry eigenvalue problem discretized with diamond differencing in space, discrete ordinates
angular quadrature, and the multigroup-in-energy approximation, the discretized linear sys-
tem is a primitive system with index of primitivity of two. This result is similar to that
of Mokhtar-Kharroubi, where it was found that the continuous neutron transport equation
eigenvalue problem was positivity-improving, or primitive with index of primitivity of two
[57]. The existence of a unique eigenvector and a way to relate it to either the alpha- or
k-effective eigenvalue provided a powerful tool to derive a fixed-point method capable of
determining the eigenvalue and the physical, positive angular flux eigenvector.

The Rayleigh Quotient Fixed Point method for alpha- and k-effective eigenvalues accu-
rately determined the alpha- and k-effective eigenvalues of various analytic, infinite-medium
problems by Betzler [45]. The failure of the method was also demonstrated in certain cir-
cumstances such as when the conditions of irreducibility and primitivity failed to exist. For
these failure cases, it was shown that these problems were unphysical in most cases. Next,
the alpha-eigenvalue RQFP method was validated for one-dimensional slabs and spheres and
compared to the Green’s Function Method of Kornreich and Parsons [12]. The number of
transport sweeps required by the Rayleigh Quotient Fixed Point method was compared to
the standard method, critical search. It was found that the RQFP method provided major
reductions in the number of iterations required for convergence and provided the ability to
converge problems where other methods failed. Next, realistic two-dimensional cylindrical
problems and two- and three-dimensional fuel assembly benchmark problems were analyzed
to show the general applicability of the RQFP method even when some of the assumptions
made in deriving the method did not apply. In these problems, the alpha-eigenvalue RQFP
method provided substantial reductions in transport sweeps for realistic reactor problems
with large amounts of materials, energies, and other heterogeneities.

For k-effective problems, the RQFP method provided moderate reductions of transport
sweeps required for convergence. In particular, the RQFP method did well for infinite-
medium problems. For one-dimensional slab and sphere problems, the k-effective eigenvalue



CHAPTER 9. CONCLUSION 160

RQFP method was competitive with the traditional power method with fission norm update
method. For realistic two- and three-dimensional reactor problems, the RQFP method for k-
effective eigenvalue problems provides another solution method that is easily implementable
in neutron transport codes.

Acceleration of the Rayleigh Quotient Fixed Point method was shown to be possible using
Anderson acceleration [53]. For slowly converging alpha-eigenvalue problems solved using the
RQFP method, Anderson acceleration provided acceleration of the linear fixed-point method
convergence by a factor of up to ten. These slowly converging alpha-eigenvalue problems
were characterized by large amounts of scattering and long critical widths. Neutrons in
these systems would experience a large amount of scattering before finally being absorbed
or leaking out of the system, slowing down convergence of the method.

By using a number of residual vectors, Anderson acceleration solves a constrained least
squares problem for a set of weights used to generate a new vector iterate from a combina-
tion of residual vectors and the previous vector iterate. From a basic analysis, it was shown
that each iteration of the Anderson acceleration method applied to the RQFP method was
not much more expensive than one iteration of the RQFP method. However, the accel-
eration comes at the cost of increased memory. The number of residual vectors used in
the acceleration scheme impacts the convergence of the method, with more residual vectors
decreasing the number of iterations required for convergence. However, in practice, each
additional residual vector requires the same size of memory as the eigenvector of interest,
with the memory cost quickly becoming prohibitive for large problems. This can be mit-
igated through the use of initial fixed-point iterations or relaxation coefficients, which can
help to increase the likelihood of the acceleration method converging to the correct eigen-
value/eigenvector pair. This increased memory cost requires a careful balancing of method
parameters for each alpha-eigenvalue problem of interest. However, Anderson acceleration
provides a useful option for the acceleration of the Rayleigh Quotient Fixed Point method.

The Rayleigh Quotient Fixed Point method for alpha- and k-effective eigenvalue prob-
lems reformulates two standard eigenvalue problems in nuclear engineering into non-linear
fixed-point methods. The existence of a positive angular flux eigenvector is guaranteed by
showing that in specific circumstances, the discretized eigenvalue problems form primitive
systems of linear equations. For the alpha-eigenvalue problem, the RQFP method is capable
of solving subcritical, critical, and supercritical problems for all types of problems of interest
in nuclear engineering. In particular, the RQFP method is capable of converging subcritical
systems that the traditional method, the critical search method, fails to solve. In comparison
to the critical search method, the RQFP method provides a robust method that provides
substantial reductions in the number of transport sweeps required for convergence, no matter
the criticality of the system. For k-effective problems, the RQFP method provides another
way to look at the eigenvalue problem. The method is competitive for various systems of
interest when compared to the power method and excels in specific circumstances, such as
infinite-medium problems. By looking at the linear algebraic structure of the discretized
neutron transport eigenvalue problems, a method that guarantees the existence of the posi-
tive angular flux eigenvector and its corresponding eigenvalue was derived and shown to be
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robust, easily implementable in neutron transport codes, and an efficient solution method
for eigenvalue problems of interest to nuclear engineers.

Future work required involves the proof of primitivity for two- and three-dimensional
Cartesian geometry problems. In these problems, approximation of spatial derivatives by
diamond differencing using a sufficiently small cell width no longer guarantees positivity of
the angular flux solution [43]. Instead, step differencing is required in space. Given this
limitation, it is sought to prove that the two- and three-dimensional Cartesian geometry
discretized alpha- and k-effective eigenvalue equations form primitive systems. Another
avenue for possible future work is the determination of the asymptotic constant coefficient
describing the rate of converge of the system. It is thought that the asymptotic constant
coefficient is related to the scattering cross section of the system but this has not been
determined rigorously. Continued investigation into the use of Anderson acceleration is
required to determine the optimal number of residual vectors given memory limitations and
calculation costs. Given this acceleration method, slowly converging problems can be solved
in fewer iterations allowing for the Rayleigh Quotient Fixed Point method to be widely
applicable in all problems of interest.
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Appendix A

Discretization of the Alpha-Eigenvalue
Problem For Slab Geometry

In Appendix A, we describe the discretization of the alpha-eigenvalue problem for one-
dimensional slab geometry using a matrix formalism similar to that of three-dimensional
Cartesian geometry. In one dimension, the discretization of the continuous eigenvalue equa-
tion is substantially simpler and it may be helpful to the reader to study this case before
analyzing the three-dimensional problem.

We begin with the alpha-eigenvalue neutron transport equation in one-dimensional slab
geometry with isotropic scattering. The spatial domain is the interval [a, b] in x, µ is the
angle cosine in [−1, 1], the energy variable is E ∈ [0,∞), and the equations for the angular
flux ψ(x, µ,E) are given by[

µ
∂

∂x
+

α

v(E)
+ σ(x,E)

]
ψ(x, µ,E)

= χ(E)

∫ ∞
0

dE ′ν(E ′)σf (x,E
′)

∫ 1

−1

dµ′ψ(x, µ′, E)

+

∫ ∞
0

dE ′σs(x,E
′ → E)

∫ 1

−1

dµ′ψ(x, µ′, E ′). (A.1)

We assume vacuum Dirichlet conditions

ψ(a, µ, E) = 0, 0 < µ ≤ 1, (A.2)
ψ(b, µ, E) = 0, −1 ≤ µ < 0. (A.3)

The discretization of Eq. A.1 is done using diamond differencing in space, multigroup-in-
energy, and discrete ordinates collocation in angle.
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A.1 Discretization of the One-Dimensional Slab
Geometry Problem

We begin by discretizing Eq. A.1 in energy using the multigroup approximation. We restrict
the energy E to a finite interval and partition the interval into groups:

Emax = E0 > E1 > · · · > EG = Emin. (A.4)

The eigenvalue equation is then averaged over each group Eg < E < Eg−1 and the cross
sections are approximated by a flux-weighted average over each energy group. In the spatial
dimension, we introduce a spatial grid

a ≡ x0 < · · · < xi+1 < xi < · · · < xM ≡ b, (A.5)

and let
∆xi = xi − xi−1. (A.6)

We refer to the xi as nodes and function values at the nodes are called nodal values. We
assume that σg, σs,g,g′ , and νσf,g, the total, scattering, and fission cross sections for energy
group g, are constant on the zone xi−1 < x < xi and denote these values by σg,i, σs,g,g′,i and
νσf,g,i. We use a discrete ordinates collocation of Eq. A.1 at an even number of Gauss points
µ` with

− 1 < µ1 < · · · < µL/2 < 0 < µL/2+1 < · · · < µL < 1, µL+1−` = −µ`. (A.7)

The integrals in angle in Eq. A.1 are then approximated by

1

2

∫ 1

−1

dµψg(x, µ) ≈
L∑
`=1

w`ψg(x, µ`). (A.8)

Using diamond differencing in the spatial dimension [6], we obtain the fully discretized set
of equations for the eigenvalue problems

µ`
ψg,`,i − ψg,`,i−1

∆xi
+
α

vg

ψg,`,i + ψg,`,i−1

2
+ σg,i

ψg,`,i + ψg,`,i−1

2

=
χg
2

G∑
g′=1

νσf,g′,i
2

L∑
`′=1

w`′

(
ψg′,`′,i + ψg′,`′,i−1

2

)
+

G∑
g′=1

σs,g,g′,i
2

L∑
`′=1

w`′

(
ψg′,`′,i + ψg′,`′,i−1

2

)
,

(A.9)

for g = 1, . . . , G, i = 1, . . . ,M , and ` = 1, . . . , L. The discretized boundary conditions are
given by

ψg,`,M = 0 for ` = 1, . . . , L/2, (A.10)
ψg,`,0 = 0 for ` = L/2 + 1, . . . , L. (A.11)
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Using cell-centered flux values, it follows that Eq. A.9 is a system of GL(M+1) equations
for GL(M + 1) unknowns.

To write Eq. A.9 in matrix form, we define the angular flux vector for a single energy
group g as

Ψg ≡

Ψg,1
...

Ψg,L

 ∈ RL(M+1) with Ψg,` ≡

 ψg,`,0
...

ψg,L,M

 ∈ RM+1. (A.12)

To write the matrix form of the diamond difference discretized operator µ`∂/∂x+ 1/vg +σg,
we define the block diagonal matrix

S̄ ≡ diag(S1, . . . , SL) ∈ RLM×L(M+1) (A.13)

with

S` = S =
1

2

1 1
. . . . . .

1 1

 ∈ RM×(M+1), (A.14)

for all `. The matrix S interpolates nodal vectors into zone-centered vectors by averaging
the nodal values. Now we define the total cross section and inverse velocity matrices for
energy group g as

Σg ≡ diag(σg,1, . . . , σg,M) ∈ RM×M , (A.15)

V −1
g ≡ diag(1/vg,1, . . . , 1/vg,M) ∈ RM×M . (A.16)

We define the following matrices to describe the discretized derivative term

∆x ≡ diag(∆x1, . . . ,∆xM) ∈ RM×M (A.17)

and

D ≡

−1 1
. . . . . .
−1 1

 ∈ RM×(M+1). (A.18)

Boundary values are isolated by defining the row vector

B` ≡

{
eTM if ` ≤ L/2,

eT0 if ` > L/2,
∈ RM+1, (A.19)

where the indices on the standard basis vectors e` are from 0 to M . Finally, we define the
matrices Z and Zb as

Z ≡
(
IM
0

)
∈ R(M+1)×M and Zb ≡ eM . (A.20)
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We can now define the matrix form of the diamond difference representation of µ`∂/∂x +
α/vg + σg as

Hg + αV −1
g ≡ diag(Hg,1, . . . , Hg,L) + α diag(V −1

g,1 , . . . , V
−1
g,L ) ∈ RL(M+1), (A.21)

where
Hg,` + αV −1

g,` ≡ Z(µ`∆x
−1D + ΣgS`) + ZbB` + αZV −1

g S`. (A.22)

It can be shown that Hg + αV −1
g is nonsingular for the diamond difference method if α is

not too negative [43].
We now define discretized representations of angular flux moment operators. The matri-

ces operate on zone-centered vectors and are in RM×LM . We define the matrix

Ln ≡ (lnW )⊗ IM , (A.23)

where ln ≡ (Pn(µ1), Pn(µ2), . . . , Pn(µL)) are the Legendre polynomials and the quadrature
weights are given by W ≡ diag(w1, . . . , wL). If the vector Ψg approximates ψg(x, µ), then
LnΨg approximates taking the nth moment of the angular flux φg,n(x). We also define the
matrix

L+
n ≡ (2n+ 1)lTn ⊗ IM ∈ RLM×M . (A.24)

If a vector Φ approximates φ(x), then L+
nΨ will approximate Pn(µ)φ(x). We define the

grouped matrices for Ns moments as

LN =

L0
...
LN

 and LN,+ = (L+
0 , . . . , L

+
N). (A.25)

We can define the scattering and fission matrices as

Σs,g,g′,n ≡ diag(σs,g,g′,n,1, . . . , σs,g,g′,n,M) ∈ RM×M (A.26)

and
Σf,g,g′,n ≡ diag(χgνσf,g′,n,1, . . . , χgνσf,g′,n,M) ∈ RM×M . (A.27)

We now define matrices that inject zone-centered vectors into nodal vector space and vice
versa. We define the matrices

Σ̄g ≡ IL ⊗ Σg ∈ RLM×LM , (A.28)

¯V −1
g ≡ IL ⊗ V −1

g ∈ RLM×LM , (A.29)

Z̄ = IL ⊗ Z ∈ RL(M+1)×LM , (A.30)

Z̄B = IL ⊗ Zb ∈ RL(M+1)×L, (A.31)

B = diag(B1, . . . , BL) ∈ RL×L(M+1), (A.32)
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and
C = diag(µ1∆x−1D, . . . , µL∆x−1D) ∈ RLM×L(M+1). (A.33)

Using the above matrices, we can write the matrix Hg + V −1
g as

Hg + V −1
g ≡ diag(Hg,1, . . . , Hg,L) + diag(V −1

g,1 , . . . , V
−1
g,L )

= Z̄(C + Σ̄gS̄) + Z̄BB + Z̄V̄ −1S̄. (A.34)

The discretized multigroup eigenvalue equations can then be written in the matrix form as

HgΨg + αV −1
g Ψg = Z̄

G∑
g′=1

Ns∑
n=0

L+
nΣs,g,g′,nLnS̄Ψg′ + Z̄

G∑
g′=1

Ns∑
n=0

L+
nΣf,g,g′,nLnS̄Ψg′ , (A.35)

Finally, we can write the multigroup discretized eigenvalue equations if we define the matrices

Ψ ≡


Ψ1

Ψ2
...

ΨG

 , Σs ≡

ΣNs
s,11 . . . ΣNs

s,1G
... . . . ...

ΣNs
s,G1 . . . ΣNs

s,GG

 , Σf ≡

ΣNs
f,11 . . . ΣNs

f,1G
... . . . ...

ΣNs
f,G1 . . . ΣNs

f,GG

 , (A.36)

where
ΣNs

s,gg′ ≡ diag(Σs,g,g′,0, . . . ,Σs,g,g′,Ns) (A.37)

and
ΣNs

f,gg′ ≡ diag(Σf,g,g′,0, . . . ,Σf,g,g′,Ns). (A.38)

Defining the following matrices
S ≡ IG ⊗ S̄, (A.39)

Z ≡ IG ⊗ Z̄, (A.40)

H + V−1 ≡ diag(H1 + V −1
1 , H2 + V −1

2 , . . . , HG + V −1
G ), (A.41)

L+ ≡ IG ⊗ LNs,+, (A.42)

L ≡ IG ⊗ LNs , (A.43)

then Eq. A.35 can be written as(
H + αV−1

)
Ψ = ZL+

(
Σs + Σf

)
LSΨ. (A.44)

Similarly, the discretized k-eigenvalue problem can be written as

HΨ = ZL+

(
Σs +

1

k
Σf

)
LSΨ. (A.45)

Equations A.44 and A.45 are eigenvalue equations for the criticality eigenvalue and the
node-centered angular flux eigenvector. In the derivation of the Rayleigh Quotient Fixed
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Point method, an inner product is required. However, the inner product is defined for zone-
centered vectors, whereas the unknown angular flux vectors in Eqns. A.44 and A.45 are
node-centered. To satisfy this requirement, Eqns. A.44 and A.45 are rewritten using zone-
centered angular flux eigenvectors. We denote Ψz as the zone-centered unknown and Hz as
the zone-centered version of H.

Given a zone-centered angular flux vector Ψz, the nodal angular flux vector Ψ defined
by

Ψg,` ≡ (ZS + ZbB`)
−1ZΨz,g,` for all g = 1, 2, . . . , G and ` = 1, 2, . . . , L, (A.46)

satisfies B`Ψg,` = 0 and SΨg,` = Ψz,g,` for all g and `. Defining the matrices

C ≡ IG ⊗ C, (A.47)

B ≡ IG ⊗B, (A.48)

ZB ≡ IG ⊗ Z̄B, (A.49)

and
Σ ≡ diag(Σ̄1, Σ̄2, . . . , Σ̄G), (A.50)

then H and V−1 can be rewritten as

H = Z(C + ΣS) + ZBB, (A.51)

and
V−1 = ZV−1S. (A.52)

For the nodal-centered angular flux Ψ, we have from Lemma 3.1 that

Ψ = (ZS + ZBB)−1ZΨz. (A.53)

Substituting Eq. A.53 into Eq. A.44 and A.45 and multiplying on the left by ZT gives(
αV−1

z + Hz

)
Ψz = L+(Σs + Σf )LΨz, (A.54)

where
Hz ≡ C(ZS + ZBB)−1Z + Σ, (A.55)

and
V−1

z ≡ V−1S(ZS + ZBB)−1Z. (A.56)

Following the same procedure for the k-effective eigenvalue neutron transport equation
yields the discretized equation:

HzΨz = L+

(
Σs +

1

k
Σf

)
LΨz. (A.57)

Equations A.54 and A.57 are the cell-centered eigenvalue equations for one-dimensional
slab geometry.
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Appendix B

Implementation of Anderson
Acceleration in Matlab for the
Alpha-Eigenvalue Rayleigh Quotient
Fixed Point Method

In Appendix B we describe the implementation of Anderson acceleration for the Rayleigh
Quotient Fixed Point method for alpha-eigenvalue problems. We include the Matlab code for
future use. First, we describe the one-sweep alpha-eigenvalue Rayleigh Quotient Fixed Point
method implementation and its inputs and outputs. We then describe the implementation of
the unconstrained Anderson acceleration algorithm and describe the various features of the
method. We describe the solution process for the update and the matrix deletion required
to maintain acceptable conditioning of the system.

B.1 Alpha-Eigenvalue Rayleigh Quotient Fixed Point
Method Matlab Implementation

The Matlab function AlphaRQSweep performs one iteration (transport sweep) of the Rayleigh
Quotient Fixed Point method for alpha-eigenvalue problems. The function requires the
matrices H, S, F, iV, the numerical matrix representations of the matrices Hz, V−1

z , Σs,
and Σf described in Chapter 3. The function also requires input vectors x and q, the previous
angular flux vector and previous source, respectively, as described in Chapter 4. The function
calculates the alpha-eigenvalue and returns it to alpha and determines the next angular flux
iterate and source. AlphaRQSweep is used as the fixed-point function evaluation in Anderson
acceleration. The Matlab code is shown in Listing B.1.
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function [x, alpha, q] = AlphaRQSweep(H, S, F, iV, x, q)

%[x,alpha,q] = AlphaRQSweep(H,S,F,iV,x,q) is the one−sweep
%alpha−eigenvalue Rayleigh Quotient Fixed Point. The function
%performs one sweep of the system.

%Input: H − Leakage/Transport Matrix
% S − Scattering Matrix
% F − Fission Matrix
% iV − Inverse Velocity Matrix
% x − Previous Angular Flux Vector Iterate
% q − Previous Scattering and Fission Source Vector

%Output: x − New Angular Flux Iterate
% alpha − New Alpha−Eigenvalue Iterate
% q − New Scattering and Fission Source Vector

%Check if source is nonzero
if ( sum(q) == 0 )

alpha = 0;
else

%Alpha−eigenvalue RQ update
alpha = (x'*(S+F)*x − x'*q)/(x'*iV*x);

end

%Set new source
q = (−alpha*iV + S + F)*x;

%Transport Sweep
x = H\q;

return

Listing B.1: AlphaRQSweep-Alpha-Eigenvalue RQFP Matlab Implementation
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B.2 Anderson Acceleration Matlab Implementation
The Matlab function AndersonAcc performs the Anderson acceleration of the Rayleigh Quo-
tient Fixed Point method for alpha-eigenvalue problems. The function requires the matrices
H, S, F, iV, the number of maximum iterations, maxits, the `2 norm tolerance, tol, the
maximum number of residual vectors to be used in the method, mmax, the number of initial
fixed-point iterations, fpiters, and the relaxation parameter, beta. These parameters are
described in Chapter 8.

The function AndersonAcc initializes the initial angular flux guess and source and then
performs a fixed number of initial fixed-point function evaluations given by the input argu-
ment fpiters before beginning the acceleration of the fixed-point method. The fixed-point
evaluation is done by calling the function AlphaRQSweep, described in Section B.1. The
function then performs the maximum number of iterations given by maxiters or until the
residual tolerance is less than the value given by the input argument tol. The function then
performs one fixed-point function evaluation of AlphaRQSweep, calculates the residual and
sets the residual vector matrix, deletes old residual vector columns, performs a QR decom-
position, and then sets the new angular flux iterate. The function returns the converged
alpha-eigenvalue, the converged angular flux vector, and a vector of residuals. The Matlab
code is shown in Listing B.2.

function [alpha,x,residual] = AndersonAcc(H,S,F,iV,maxits,tol,mmax,fpiters,
beta)

%[alpha,x,residual] = AnderAccel(H,S,F,iV,maxits,tol,mmax,fpiters,beta) is
%the Anderson acceleration implementation for the alpha−eigenvalue Rayleigh
%Quotient Fixed Point method.

%Input: H − Leakage/Transport Matrix
% S − Scattering Matrix
% F − Fission Matrix
% iV − Inverse Velocity Matrix
% maxits − Maximum Number of Iterations
% tol − L2 Norm Residual Tolerance
% mmax − Maximum Number of Residual Vectors used by Anderson
% Acceleration
% fpiters − Initial Fixed−point Iteration Function Evaluations
% beta − Relaxation Parameter

%Output: alpha − Converged Alpha−Eigenvalue
% x − Converged Angular Flux Vector
% residual − Residual vector
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%Initialize initial angular flux guess and source
x = ones(length(H),1);
q = zeros(length(H),1);

fold = 0;

maa = 0;
G = [];

%Initial fixed−point iterations
for i = 1:fpiters
[x,alpha,q] = AlphaRQSweep(H,S,F,iV,x,q);
end

%Start Anderson acceleration
for k = 0:maxits

%Fixed−point iteration evaluation
xold = x;
[gcur, alpha, q] = AlphaFcn(H,S,F,iV,x,q);
fcur = gcur − x;

%Form residual and function matrices
if ( k > 0 )

dF = fcur − fold;
dG = gcur − gold;
if ( maa < mmax )

G = [G,dG];
else

G = [G(:,2:maa),dG];
end
maa = maa + 1;

end
fold = fcur;
gold = gcur;

%Gram−Schmidt orthogonalization
if ( maa == 0 )

x = gcur;
else

if ( maa == 1 )
Q(:,1) = dF/norm(dF); R(1,1) = norm(dF);
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else
if ( maa > mmax )

[Q,R] = qrdelete(Q,R,1); %Delete matrix column
maa = maa − 1;

end
for i = 1:maa − 1

R(i,maa) = Q(:,i)'*dF;
dF = dF − R(i,maa)*Q(:,i); %QR decomposition

end
Q(:,maa) = dF/norm(dF); R(maa,maa) = norm(dF);

end
gamma = R\(Q'*fcur); %Solve for gamma coefficients
x = gcur − G*gamma; %Set next iterate
x = x − (1−beta)*(fcur − Q*R*gamma); %Relaxation Coefficient

end

residual(k+1) = norm(x−xold)/norm(x);

fprintf('Iter: %i alpha = %e residual = %e \n',...
k+1, alpha, residual(k+1));

%Termination criterion
if ( residual(k+1) < tol )

break
end

%Break if NaN
if (isnan(alpha) == 1 )

break
end

end

return

Listing B.2: AndersonAcc-Anderson Acceleration Matlab Implementation
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