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Abstract

Background

Hyperactivation of STAT3 via constitutive phosphorylation of tyrosine 705 (Y705) is com-

mon in most human cancers, including head and neck squamous carcinoma (HNSCC).

STAT3 is rarely mutated in cancer and the (epi)genetic alterations that lead to STAT3 acti-

vation are incompletely understood. Here we used an unbiased approach to identify geno-

mic and epigenomic changes associated with pSTAT3(Y705) expression using data

generated by The Cancer Genome Atlas (TCGA).

Methods and Findings

Mutation, mRNA expression, promoter methylation, and copy number alteration data were

extracted from TCGA and examined in the context of pSTAT3(Y705) protein expression.

mRNA expression levels of 1279 genes were found to be associated with pSTAT3(705)

expression. Association of pSTAT3(Y705) expression with caspase-8 mRNA expression

was validated by immunoblot analysis in HNSCC cells. Mutation, promoter hypermethyla-

tion, and copy number alteration of any gene were not significantly associated with

increased pSTAT3(Y705) protein expression.

Conclusions

These cumulative results suggest that unbiased approaches may be useful in identifying the

molecular underpinnings of oncogenic signaling, including STAT3 activation, in HNSCC.

Larger datasets will likely be necessary to elucidate signaling consequences of infrequent

alterations.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is a common and frequently lethal cancer.

Recent studies have elucidated the genetic landscape of HNSCC and demonstrated that muta-

tional activation of oncogenic drivers is uncommon in HNSCC. [1–3] The number of muta-

tions in an individual tumor ranged from 3 to 1433 with a median of 103 in a recent report

from The Cancer Genome Atlas (TCGA). [3] This genomic heterogeneity underscores the

challenges in developing targeted molecular therapies for HNSCC treatment. To date, the epi-

dermal growth factor receptor-directed monoclonal antibody cetuximab is the only molecu-

larly targeted agent that is FDA-approved for the treatment of HNSCC, though clinical

responses to cetuximab remain modest and predictive biomarkers are undefined. [4] Examina-

tion of oncogenic signaling pathways rather than any single genetic variant may be of use to

elucidate the molecular underpinnings of HNSCC. [5,6] Among the most common signaling

aberrations in HNSCC is constitutive activation of signal transducer and activator of transcrip-

tion-3 (STAT3).

STAT proteins comprise a family of transcription factors that transmit cytokine and growth

factor stimuli from cell surface receptors to the nucleus, leading to induction of a wide array of

genes involved in a multitude of normal and oncogenic cellular functions. Seven members of

the STAT protein family have been identified: STAT1-4, STAT5a, STAT5b, and STAT6, each

of which contains a DNA binding domain, a Src-homology 2 (SH2) domain, and a key tyro-

sine residue that is essential for activation. [7] Phosphorylation of STAT3 on tyrosine 705

(Y705) leads to robust pathway activation, and pSTAT3(Y705) expression represents a surro-

gate marker for active STAT3 signaling. STATs were first implicated in mammalian cell onco-

genesis when Src oncogene-transformed cells were found to express constitutively active

STAT3. [8] Furthermore, STAT3 activation has been identified as a requirement for Src-medi-

ated transformation [9], and constitutively active STAT3 was found to mediate transformation

of immortalized fibroblasts, leading to the recognition of STAT3 as a bona fide oncoprotein.

[10] Aberrant activation of STAT3 has been detected in a variety of cancers, including breast,

ovarian, prostate, multiple myeloma, leukemias, lymphomas, and HNSCC, among others. [11]

Although many upstream kinases that activate STAT3 via Y705 phosphorylation have been

defined, the genetic alterations associated with constitutive STAT3 phosphorylation and acti-

vation in HNSCC remain incompletely understood. The detailed information amassed by The

Cancer Genome Atlas (TCGA) provides an opportunity to interrogate the alterations that are

associated with increased expression of phospho-proteins assessed in The Cancer Proteome

Atlas (TCPA), including pSTAT3(Y705), in an unbiased manner. In the present study, we ana-

lyzed TCGA and TCPA data to identify genetic or epigenetic alterations, including somatic

mutation, promoter methylation, mRNA expression, and copy number alteration, which are

associated with elevated pSTAT3(Y705) expression in HNSCC in order to identify events that

contribute to STAT3 activation in this malignancy.

Methods

Computational Analyses and Statistics

HNSCC tumor data were retrieved from The Cancer Genome or Proteome Atlas. Our cohort

contained 206 HNSCC primary tumors with expression analysis of 200 proteins and phospho-

proteins, including pSTAT3(Y705), as assessed by reverse phase protein array (RPPA). For

each tumor, whole exome sequencing, DNA methylation (Illumina Infinium HM450 assay),

mRNA expression (RNASeq V2), and copy number alteration (Affymetrix SNP 6.0 array,
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interpreted using the GISTIC algorithm) data were retrieved from the TCGA Data Matrix.

RPPA data were retrieved from The Cancer Proteome Atlas. [12]

Categorical variables (mutation and hypermethylation) were analyzed using Wilcoxon tests

to assess a difference in pSTAT3(Y705) expression between mutated/hypermethylated com-

pared with wild-type/non-hypermethylated. As previously described, hypermethylation was

defined as a level of methylation for a genetic locus that is at least three standard deviations

greater than the mean methylation of the same locus in organ-matched normal tissue as deter-

mined by the TCGA. [13] For continuous variables such as mRNA expression, Spearman’s

correlation test was used to establish whether mRNA expression and pSTAT3(Y705) protein

expression were correlated. For copy number alteration, an ordinal variable, a two-tailed Jonc-

kheere-Terpstra statistic was calculated for each region. For all studies a false discovery rate

(FDR) < 0.1 was considered significant. Expected false discovery rates were based on the q

value [14] and were computed with the R package qvalue. [15]

Cells, Reagents, and Immunoblotting

UMSCC-47 cells (obtained from Dr. Thomas E. Carey, University of Michigan) stably express-

ing WT caspase-8 or vector control were grown in Dulbecco’s Modified Eagle’s Medium

(Corning, Corning, NY, USA) supplemented with 10% fetal bovine serum (Gemini Bio-Prod-

ucts, West Sacramento, CA, USA), 500 μg/mL G418 (Life Technologies, Carlsbad, CA, USA),

and 100 units/mL penicillin/streptomycin (Life Technologies). Western blotting was per-

formed with standard methodology. Primary antibodies were directed against pSTAT3(Y705),

total STAT3, and caspase-8 (Cell Signaling Technology, Danvers, MA) and were normalized

to β-tubulin (Abcam, Cambridge, MA) loading control. Densitometry was performed using

ImageJ software.

Results

Patient Characteristics

206 primary HNSCC tumors with available pSTAT3(Y705) RPPA data were included in this

study (Table 1). Most tumors presented at an advanced stage (64.7% clinical stage III-IV) and

were located in the oral cavity (66.0%) or larynx (28.2%). A history of smoking and/or heavy

drinking was common (83.5% and 60.7%, respectively). A small number of tumors in this col-

lection were associated with human papilloma virus (HPV) infection (14/200, 7.0%).

pSTAT3(Y705) Expression was not Associated with Clinical Characteristics at Presen-

tation. RPPA data for pSTAT3(Y705) were retrieved from TCPA and the distribution across

206 tumors was determined (Fig 1). For these tumors, the pSTAT3(Y705) RPPA scores, pre-

sented in log2 scale, were generally normally distributed with a median of -0.01875 and range

from -1.306 to 1.2934. Using univariate analyses, pSTAT3(Y705) protein expression was ana-

lyzed with respect to the clinical characteristics summarized in Table 1. No significant differ-

ence in pSTAT3(Y705) expression was detected in relation to age, smoking, alcohol

consumption, HPV infection, tumor stage, nodal stage, or primary tumor site, suggesting little

or no association between clinical characteristics at presentation and STAT3 pathway activa-

tion in HNSCC.

mRNA Expression of Many Genes was Associated with pSTAT3(Y705) Expression.

Protein expression of pSTAT3(Y705) was next analyzed with respect to mRNA expression in

HNSCC tumors for 14,789 genes using Spearman’s correlation test. Messenger RNA expres-

sion of 1279 of these genes was found to significantly correlate with pSTAT3(Y705) protein

expression (q < 0.1) (Fig 2 and S1 Table). The majority of the observed correlations were posi-

tive (919/1279, 71.9%), with an increase in pSTAT3(Y705) expression associated with an

pSTAT3 Correlates in HNSCC
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increase in mRNA expression of the given gene. All correlations were found to be of modest

magnitude, with CX3CR1, which codes for the CX3C chemokine receptor 1, exhibiting the

strongest positive correlation with pSTAT3(Y705) (rho = 0.361; S1 Fig). While CX3CR1 has

been detected in a subset of HNSCC cell lines [16], its oncogenic contribution is largely unde-

termined. We therefore further filtered statistically significant findings using the COSMIC

Cancer Gene Census [17] to prioritize associations of high biological interest. We identified 51

known cancer genes for which mRNA expression significantly correlated with pSTAT3(Y705)

expression in HNSCC tumors (S2 Table), of which 88.2% (45/51) were positive correlations.

Among these, the greatest absolute correlation coefficient value detected was 0.35 for STAT3,

indicating that STAT3 mRNA overexpression may contribute to increased STAT3 phosphory-

lation in HNSCC (Fig 3). This finding suggests that our unbiased analysis is sufficiently robust

to identify gene expression patterns that are likely to affect pSTAT3(Y705) expression in

HNSCC.

We next sought to evaluate the biologic plausibility of a representative significant associa-

tion that was mechanistically unexpected. Of particular interest was the observed correlation

between caspase-8 mRNA expression and pSTAT3(Y705) expression (rho = 0.283, p = 5.8E-

Table 1. Patient characteristics of 206 HNSCC tumors with RPPA and WES results.

Characteristics WES Tumors (n = 206)

Age, years

Median±SD 62 ±12.3

Sex, N (%)

Male 149 72.3%

Female 57 27.7%

Risk Factors, N (%)

Smoking history 172 83.5%

Alcohol history 125 60.7%

HPV infection* 14 7.0%

Tumor Stage, N (%)**

T1 12 6.1%

T2 58 29.3%

T3 50 25.3%

T4a 78 39.4%

T4b 0 0.0%

Nodal Stage, N (%)***

N0 71 43.3%

N1 21 12.8%

N2a 4 2.4%

N2b 43 26.2%

N2c 25 15.2%

Primary tumor site, N (%)

Oral Cavity 136 66.0%

Oropharynx 11 5.3%

Hypopharynx 1 0.5%

Larynx 58 28.2%

*N = 200 tumors assessed for HPV infection.

**N = 198 patients with tumor stage data.

***N = 164 patients with nodal stage data.

doi:10.1371/journal.pone.0166185.t001
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05). Constitutive STAT3 activation inhibits apoptosis. Therefore, it was surprising that expres-

sion of a pro-apoptotic gene was associated with pro-oncogenic STAT3 signaling. Further-

more, the CASP8 gene is altered in 16% of HNSCC tumors (9% of which are mutated)

according to The Cancer Genome Atlas. [3] To validate the association between pSTAT3

(Y705) and caspase-8 mRNA expression HNSCC cells engineered to overexpress caspase-8

and corresponding vector-transfected controls were analyzed by immunoblot. As shown in

Fig 4, stable overexpression of caspase-8 in UMSCC-47 cells was associated with a correspond-

ing increase in pSTAT3(Y705) expression, indicating that our unbiased in silico findings may

Fig 1. Distribution of pSTAT3(Y705) RPPA scores in HNSCC. The frequency distribution (A) or cumulative frequency (B) of pSTAT3(Y705) normalized

RPPA protein expression was plotted for 206 HNSCC tumors. The median for these data was -0.01875 and the range from -1.306 to 1.2934.

doi:10.1371/journal.pone.0166185.g001

Fig 2. mRNA expression of 1279 genes significantly correlates with pSTAT3(Y705) protein

expression. A positive correlation between mRNA expression and pSTAT3(Y705) expression was observed

for 919 genes, while a negative correlation was observed for 360 genes.

doi:10.1371/journal.pone.0166185.g002
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accurately predict unexpected biology. Interestingly, pSTAT3(Y705) expression also strongly

correlated with expression of caspase-10 mRNA (S1 Table and S1 Fig). Caspase-8 and -10 are

structurally closely related and both act as initiator caspases in the extrinsic apoptosis pathway.

The correlation of pSTAT3(Y705) expression with both caspase-8 and -10 hints at a novel

functional interaction between STAT3 signaling and mediators of the extrinsic apoptosis

pathway.

Low Frequency Somatic Mutations were Not Associated with pSTAT3

(Y705) Expression

We next sought to identify individual genes whose non-synonymous mutation was associated

with increased pSTAT3(Y705) expression. Of 14,596 genes analyzed, 7,984 exhibited non-

Fig 3. pSTAT3(Y705) expression correlates with STAT3 mRNA expression. Spearman’s test indicates a significant correlation

between STAT3 mRNA expression and pSTAT3(Y705) protein expression (p = 6.63x10-7,, correlation = 0.35).

doi:10.1371/journal.pone.0166185.g003
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silent mutations in at least 2 HNSCC tumors and were included for further analysis. We then

applied Student’s t-test to compare pSTAT3(Y705) expression in wild-type versus mutant

tumors for each of these genes and found significant differences for 242 genes (q < 0.1;

Table 2). Further analysis indicated that these apparent significant findings are artifacts of low

mutation frequency for each gene, indicating insufficiency of the t-test for these data (S2 Fig).

We alternatively applied the non-parametric Wilcoxon test and found no genes for which

somatic mutation was significantly associated with pSTAT3(Y705) expression (defined as

q< 0.1; Table 2).

Fig 4. Caspase-8 overexpression is associated with increased pSTAT3(Y705) expression in HNSCC

cells. Lysates from UMSCC-47 cells stably expressing caspase-8 or the corresponding vector control were

harvested and analyzed for pSTAT3(Y705) expression by immunoblot analysis. The experiment was

performed thrice with similar results.

doi:10.1371/journal.pone.0166185.g004
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Promoter Methylation and Copy Number Alteration were not Associated

with pSTAT3(Y705) Expression

Finally, we examined whether promoter hypermethylation or copy number alteration of any

gene or region is significantly associated with increased pSTAT3(Y705) expression. We

observed no significant differences in pSTAT3(Y705) protein expression upon hypermethyla-

tion of 7,286 genes (S3 Fig), or copy number alteration of 4,309 regions.

Discussion

STAT3 is frequently hyperactivated by Y705 phosphorylation in HNSCC and other cancers.

The determination of somatic alterations that lead to constitutive STAT3 pathway activation

may allow for the identification of predictive biomarkers of response to drugs that target

STAT3 signaling. In a subset of cancer types, activating mutations of upstream kinases lead to

persistent STAT3 pathway activation and predict response to kinase inhibition. Well-charac-

terized examples include the BCR-ABL translocation in Philadelphia chromosome-positive

leukemias, which confers sensitivity to the ABL tyrosine kinase inhibitor imatinib [18–20], as

well as epidermal growth factor receptor (EGFR)-mutant lung cancers, which are sensitive to

EGFR inhibition. [21–25] Additional studies have identified unexpected and low frequency

gene mutations that may also lead to pSTAT3(Y705) overexpression, including somatic muta-

tion of NDUFA13 (encoding GRIM-19; Gene associated with Retinoid Interferon-induced

Mortality-19) [26] or GNAS (encoding the Gαs subunit). [27]

Herein we sought to identify the alterations that are associated with STAT3 pathway activa-

tion in HNSCC. Activating kinase mutations are infrequent in HNSCC, indicating that such

mutations are unlikely to be of predictive value in this disease, with the notable exception of

PIK3CAmutation. [6] Instead, recent efforts have investigated the contribution of loss-of-

function of negative regulators of STAT3, especially receptor-like protein tyrosine phospha-

tases. [5,13,28] To date, most efforts have focused on defining phenotypes associated with rela-

tively narrow gene families or pathways of interest in a hypothesis-driven manner, limiting the

power to identify associations that would otherwise be unanticipated. For example, previous

studies in other cancers have focused on correlations between known pathway components

[29], a relatively narrow set of proteins/phospho-proteins [30], and/or make use of only one

data type (eg: RNA-Seq). [31] More recent efforts at integrating -omics data for identification

of targetable signaling modules have taken divergent approaches, including by multiple

hypothesis testing as described here. [32] To our knowledge, a cross-platform and genome-

wide search for unexpected alterations that may correlate with increased pSTAT3(Y705)

expression in HNSCC has not been reported.

The present study was undertaken to identify putative genomic or epigenomic alterations

that lead to STAT3 activation via Y705 phosphorylation in HNSCC. While STAT3 may be

alternatively activated by serine 727 (S727) phosphorylation in certain contexts [33,34], the

Table 2. Cumulative number of significant results for 7984 genes with 2 or more somatic mutations.

Test < 0.0001 < 0.001 < 0.01 < 0.025 < 0.05 < 0.1 < 1

Student’s T

p value 137 196 313 451 604 907 7984

q value 89 106 155 180 202 242 7984

Wilcoxon

p value 0 0 34 151 447 939 7944

q value 0 0 0 0 0 0 7802

doi:10.1371/journal.pone.0166185.t002
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absence of an antibody targeting pSTAT3(S727) in the TCPA array prevents unbiased correla-

tive analysis of this site. Our cohort comprised an atypical North American HNSCC popula-

tion, in which oral cavity cancers were overrepresented (66%) and oropharyngeal cancers

underrepresented (5%). pSTAT3(Y705) expression was not statistically associated with any

clinical parameters analyzed including age, sex, tumor site, tumor stage, HPV, smoking, or

drinking. We next analyzed mRNA expression data available from TCGA and found that

expression of 1279 genes significantly correlated (q< 0.1) with pSTAT3(Y705) protein expres-

sion, with the majority of these (919/1279; 71.9%) being positively correlated. Of these,

CX3CR1, which codes for the CX3C chemokine receptor 1, exhibited the strongest positive

correlation with pSTAT3(Y705) (rho = 0.36), though CX3CR1 is not included in the COSMIC

Cancer Gene Census. Interestingly, CX3CR1 and STAT3 have been reported to positively

cooperate in modulating the immune interaction between monocytes and smooth muscle

cells, indicating this observed signal may be tumor cell-autonomous. [35,36] When we further

filtered using the COSMIC Cancer Gene Census, we found that expression of 51 known cancer

genes is associated with pSTAT3(Y705) expression, with STAT3 mRNA demonstrating the

strongest positive correlation (rho = 0.35) among them. We and others have previously dem-

onstrated that STAT3 overexpression is an early event in HNSCC carcinogenesis, where

STAT3 is upregulated and constitutively activated in cancer patients relative to healthy con-

trols. [37] Furthermore, STAT3 expression is associated with disease stage, nodal status, tumor

size, relapse-free survival, and overall survival in early-stage oral SCC. [38] While it was unsur-

prising to detect a correlation between STAT3 mRNA and STAT3 pathway activation, we

observed an unexpected correlation between pSTAT3(Y705) and caspase-8 expression

(rho = 0.28), as well as caspase-10 expression (rho = 0.34). We sought to validate the caspase-8/

pSTAT3(Y705) relationship in HNSCC cells and observed that exogenous overexpression of

caspase-8 led to marked upregulation of pSTAT3(Y705) expression. We observed no upregula-

tion of total STAT3 following overexpression of caspase-8, indicating that STAT3 mRNA over-

expression and caspase-8 overexpression may be independent mechanisms of pSTAT3(Y705)

upregulation. While it has been demonstrated that STAT3 inhibition leads to caspase-8-medi-

ated apoptosis in several model systems [39–41], non-canonical caspase-8 signaling may alter-

natively lead to activation of NF-κB signaling [42], a pathway that exhibits extensive cross-talk

with STAT3. [43] These findings suggest that this type of analysis may uncover unanticipated

biology that contributes to oncogenic signaling.

We next analyzed whole exome sequencing data from the TCGA to identify any individual

genes for which non-synonymous mutation was statistically associated with STAT3 activation

in HNSCC tumors. When applying Student’s t-test, we found many mutant genes with an

apparent statistical association with pSTAT3(Y705) expression. Subsequent analysis indicated

these were due to in inappropriate application of the t test (2/206, < 1% in several cases), and a

failure to screen low-frequency mutations. Application of the more appropriate Wilcoxon test

failed to identify any significant association between somatic mutation and pSTAT3(Y705)

expression (defined as q < 0.1). These findings indicate first that caution should be taken

when interrogating large -omics data sets for identification of putative biomarkers, and sec-

ondly that larger cohorts will be required to identify downstream signaling consequences of

infrequent alterations.

Promoter methylation or copy number alteration represent additional prominent mecha-

nisms underlying oncogenic signaling in HNSCC. [44,45] We found that neither promoter

hypermethylation nor copy number alteration for any individual gene was correlated with

pSTAT3(Y705) expression, suggesting little direct contribution of gene silencing to STAT3

pathway overactivation. Alternatively, this may indicate that our methodology is too stringent

to detect effects of these particularly complex biologic events. For example, we recently

pSTAT3 Correlates in HNSCC
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reported that promoter hypermethylation of the PTPRT gene is strongly associated with

down-regulation of PTPRT mRNA, which in turn is associated with pSTAT3(Y705) overex-

pression. [13] In the present study, the absence of a direct statistically significant correlation

between PTPRT methylation and pSTAT3(Y705) expression may be reflective of the noise and

complexity of the many additional biologic steps between these two events rather than a true

lack of association. Nevertheless, our analyses implicate many alterations, especially somatic

mutation or alteration of mRNA expression, as potential mechanisms of STAT3 pathway acti-

vation in HNSCC. Further investigation may ultimately lead to deeper understanding of

HNSCC biology as well as the identification of putative biomarkers of response to STAT3

inhibitors.

Supporting Information

S1 Fig. Spearman correlations for the 12 genes for which mRNA is most highly correlated

with pSTAT3(Y705) expression. q < 0.005 for all depicted.

(TIF)

S2 Fig. Apparent significant T tests suggesting correlation between somatic mutations and

pSTAT3(Y705) expression are artifacts of low mutation frequency for any single gene.

(TIF)

S3 Fig. Hypermethylation of individual genes does not significantly correlate with

pSTAT3(Y705) expression. A tail strength analysis indicates a lack of significant correlation

between hypermethylation of any individual gene analyzed and pSTAT3(Y705) expression.

(TIF)

S1 Table. mRNA expression correlates with STAT3 phosphorylation for 1279 genes.

(XLSX)

S2 Table. mRNA expression of known cancer genes significantly correlates with pSTAT3

(Y705) protein expression. Genes are listed in order of descending rho value. Upregulation or

downregulation for each indicated gene denotes the percentage of tumors with mRNA expres-

sion greater or less than two standard deviations from the mean (Z-score), respectively. Bars

indicate relative up/downregulation frequency across genes.

(XLSX)
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