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Abstract
Immune checkpoint therapy (ICT) for cancer can yield dramatic clinical responses; however, these may only be observed in 
a minority of patients. These responses can be further limited by subsequent disease recurrence and resistance. Combination 
immunotherapy strategies are being developed to overcome these limitations. We have previously reported enhanced efficacy 
of combined intratumoral cowpea mosaic virus immunotherapy (CPMV IIT) and ICT approaches. Lymphocyte-activation 
gene-3 (LAG-3) is a next-generation inhibitory immune checkpoint with broad expression across multiple immune cell 
subsets. Its expression increases on activated T cells and contributes to T cell exhaustion. We observed heightened efficacy 
of a combined CPMV IIT and anti-LAG-3 treatment in a mouse model of melanoma. Further, LAG-3 expression was found 
to be increased within the TME following intratumoral CPMV administration. The integration of CPMV IIT with LAG-3 
inhibition holds significant potential to improve treatment outcomes by concurrently inducing a comprehensive anti-tumor 
immune response, enhancing local immune activation, and mitigating T cell exhaustion.

Keywords Intratumoral immunotherapy · Cowpea mosaic virus · Checkpoint therapy · Lag-3

Introduction

Immunotherapy has rapidly been integrated into first- and 
second-line treatment for numerous cancers, including 
melanoma, lung cancer, and gastrointestinal malignancies. 
The remarkable efficacy of first-generation immune check-
point therapy (ICT), which antagonize inhibitory receptors, 
cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or 
programmed cell death-(ligand)1 (PD-(L)1), became the 
driving force behind this paradigm shift. As ICT applica-
tions expanded and longer-term outcomes were evaluated, it 
became clear that the first-generation ICT only demonstrated 
efficacy in a minority of patients [1–5]. Over time, patients 
with initial responses developed recurrent and resistant dis-
ease, particularly those with solid tumors [6]. To overcome 
these limitations, preclinical and clinical development of 
immunotherapeutic strategies has emphasized combina-
tion approaches. These include multiple ICTs and multiple 
modalities, such as radiation and ICT [7] or chemotherapy 
and ICT [8, 9]. These combination approaches have yielded 
improved clinical responses over monotherapy alone. On-
going discovery and development of other immunothera-
peutic strategies, as well as the next generation of ICTs fur-
ther fuel opportunity for novel combination approaches in 
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immunotherapy [10, 11]. With the expansive and continually 
expanding range of therapeutic approaches, there is a need 
for preclinical data to help inform combinations put to clini-
cal trial. In this work, we aimed to determine the efficacy of 
a novel immunotherapeutic approach in combination with a 
second-generation ICT.

Intratumoral immunotherapy (IIT) is a distinctive strat-
egy, entailing the direct introduction of an adjuvant or 
immunostimulatory agent into a tumor. IIT can induce an 
adaptive immune response, which not only generates a sys-
temic, targeted response to the tumor, but can also lead to 
immunological memory against the tumor. This response is 
mediated by polyclonal effector T cells. IIT can also alter the 
tumor microenvironment (TME) to facilitate the anti-tumor 
immune response. The TME is often immunosuppressive 
or “cold”, comprising of immune checkpoints, pro-tumor 
cytokines, and recruitment of tumor-associated macrophages 
(TAMs), T cells (Tregs) and myeloid-derived suppressor 
cells (MDSCs) [12, 13]. It is a major physical and biologi-
cal obstacle to anti-tumor immune responses in solid tumors, 
even when there is evidence of a systemic adaptive response 
against the tumor [14–16]. Furthermore, IIT does not require 
exogenous targeting or modification of the therapy for each 
patient. Multiple strategies, including injection of mono-
clonal antibody (mAb), CAR-T cells, bacterial vectors, and 
viral vectors, have been employed in preclinical and clinical 
studies [17–21]. Clinical trials have revealed survival benefit 
in treatment of advanced stage and metastatic melanoma 
[22, 23] and hepatocellular carcinoma [24] with genetically 
modified oncolytic viruses administered intratumorally.

IIT with cowpea mosaic virus (CPMV), a plant virus, 
as the adjuvant has demonstrated distinctive efficacy across 
multiple murine model tumor types, including melanoma 
[25–27], ovarian [28, 29], colorectal [25], glioma [30], and 
breast [25] cancers, as well as in canine cancer patients 
with sporadic tumors [31, 32]. Intratumorally administered 
CPMV induces a systemic and durable immunological anti-
tumor response with immunological memory to prevent 
recurrence. Further, while CPMV is efficacious as a mono-
therapy, its efficacy is augmented in combination with radia-
tion [33], chemotherapy [34], and checkpoint inhibitors [35].

In this and our previous work, a “live” CPMV particle 
containing its bipartite RNA genome is used. CPMV is a 
non-enveloped positive sense RNA plant virus. “Live” 
CPMV is infectious toward plants, including black-eyed 
peas and other legumes, there are, however, no reports 
indicating CPMV to infect or replicate in mammals. There-
fore, this biologic drug candidate is distinct from oncolytic 
viruses that infect, replicate, and express proteins in target 
tumor cells [36]. CPMV IIT can relieve immunosuppres-
sion in the TME and prime systemic anti-tumor immunity 
[37, 38]. CPMV IIT interacts with the immune system in a 
multivalent manner, resulting in a cascade of events boosted 

by avidity to achieve unprecedented potency. CPMV binds 
activates multiple toll-like receptors (TLRs), TLR2, TLR4, 
and TLR7 [39–41]. Intratumoral CPMV primes the TME to 
become immunostimulatory by regulating the phenotypes 
of tumor-resident and infiltrated macrophages, promoting 
conversion from M2 to M1 types, expansion of plasmacytoid 
dendritic cells (pDCs), and the infiltration and activation 
of N1-type neutrophils and natural killer (NK) cells. These 
activated and mature innate immune cells process tumor-
associated antigens and neoantigens in the tumor to generate 
tumor-specific  CD4+ and  CD8+ effector and memory T cells 
[26, 28, 42, 43]. In previous work, we found that combined 
CPMV IIT with checkpoint therapy targeting PD1, OX40, 
or 4-1BB augmented potency beyond each as a single-agent 
treatment. [35, 44]

In this work, we focused on another combination 
approach utilizing CPMV IIT with a next-generation ICT, 
lymphocyte activation gene-3 (LAG-3) inhibition. Structur-
ally, LAG-3 possesses unique intracellular structural motifs 
suggesting a distinctive mechanism of action compared to 
other immune checkpoints. While its signaling mechanisms 
and the extent of its expression patterns remain an active 
area of investigation, LAG-3 is often implicated in tumor-
mediated immunosuppression and immune cell homeo-
stasis [45–47]. LAG-3 acts as a co-inhibitory receptor to 
major histocompatibility complex class II (MHCII) on the 
surface of T cells. LAG-3 binds to MHCII molecules with 
higher affinity than  CD4+. When engaged, it inhibits T cell 
activation, proliferation, and cytokine production. LAG-3 
expression increases on activated T cells and contributes 
to T cell exhaustion. Proliferation of activated  CD4+ T 
cells and their production of IL2, IL-4, IFN-γ, and TNFα 
were enhanced with LAG-3 blockade [48]. Therefore, the 
LAG-3 MHCII binding can inhibit the activation of  CD4+ T 
cells and negatively regulate their function [46–50]. LAG-3 
is expressed on Tregs and can enhance their suppressive 
function, leading to a more immunosuppressive TME [51]. 
LAG-3 is also expressed on NK cells and contributes to their 
regulation of their function. Blocking LAG-3 can restore 
NK cell-mediated cytotoxicity against tumor cells as well 
as the function of exhausted T cells and enhance anti-tumor 
immunity [45–47]. LAG-3 is also constitutively and most 
highly expressed on plasmacytoid dendritic cells (pDCs). 
pDCs are key in initiation of immune responses, but in the 
context of cancer they are also tolerogenic. [52]

LAG-3 inhibition has shown potential as a cancer ICT 
in both clinical and preclinical studies. Early clinical trials 
have shown safety and tolerability of LAG-3 inhibition in 
combination with chemotherapy [53–56]. Durable clinical 
responses, increased progression free-survival was also seen 
in combinations of anti-PD1 and Lag-3 inhibition [57, 58]. 
Both intratumoral CPMV therapy and LAG-3 inhibition act 
on a multiple immune cell types and pathways to promote 
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an anti-tumor immune response. We therefore, investigated 
the combination of CPMV IIT and LAG-3 blockade to treat 
an aggressive and immunosuppressive mouse model of mel-
anoma, B16F10 [59]. We also examined how CPMV IIT 
combination treatment altered the tumor microenvironment 
with respect to LAG-3 expression.

Methods

CPMV purification and characterization

CPMV was propagated in black-eyed pea no. 5 plants and 
purified as previously reported [60]. The concentration of 
the purified CPMV fraction was determined by UV–Vis 
spectroscopy ((ε of CPMV at 260 nm = 8.1 mL / (mg x 
cm)), and particle integrity was confirmed by NuPAGE, 
transmission electron microscopy (TEM), dynamic light 
scattering (DLS), and size exclusion chromatography 
(SEC). For NuPAGE analysis, 10 µg heat-denatured sam-
ples (mixed with 4 × lithium dodecylsulfate buffer, Thermo 
Fisher Scientific) were analyzed using a 4–12% NuPAGE gel 
in 1 × MOPS buffer (Thermo Fisher Scientific). Gels were 
stained with Coomassie brilliant blue and imaged using 
a ProteinSimple FluorChem R imager. For TEM, CPMV 
(2 µg) was applied to a glow-discharged carbon-coated 300-
mesh Cu grid and stained with 4 µL 1% (w/v) uranyl acetate 
(Electron Microscopy Sciences). The samples were imaged 
using a Talos TEM (Thermo Fisher Scientific) at a nomi-
nal magnification of 120,000 ×  DLS measurements were 
recorded using a Zetasizer Nano ZSP/Zen5600 instrument 
(Malvern Panalytical) and 100 µg CPMV (1 mg/mL). For 
SEC, we used a Superose 6 increase 10/300 GL column 
mounted on an ÄKTA purifier system (GE Healthcare). 
100 µg CPMV (1 mg/mL) was analyzed at a flow rate of 
0.5 mL/min, and the absorbance was monitored at 260 nm 
(RNA) and 280 nm (protein).

B16F10 melanoma tumor model and efficacy study

B16F10 tumor cells were cultured in Dulbecco's Modi-
fied Eagle's Medium containing fetal bovine serum at a 
final concentration of 10% by volume and supplemented 
with 1% (v/v) penicillin streptomycin. All mouse studies 
were carried out in accordance with the guidelines of the 
Institutional Animal Care and Use Committee (IACUC) of 
the University of California, San Diego (UCSD), and were 
approved by the Animal Ethics Committee of UCSD. We 
obtained 7-week-old female C57BL/6 J mice from Jackson 
Laboratories. C57BL/6 mice (n = 7–9) were intradermally 
implanted with B16F10 tumor cells (2 ×  105 cells). Tumor 
volume was measured using digital calipers and reported as 
[length x (short width)2]/2. Treatment began when tumor 

volume was reached between 40 and 60  mm3. Animals were 
randomly assigned the following groups: CPMV (100 µg), 
anti-LAG-3 monoclonal antibody (anti-LAG-3, C9B7W, 
IgG1, BioXcell; 100 µg), CPMV (100 µg) + anti-LAG-3 
(100 µg), Control mice were intratumoral injected with PBS. 
CPMV was administered intratumorally and anti-LAG-3 was 
injected intraperitoneally (i.p.) on day 7, 15, and 21. Treat-
ment efficacy is measured in terms of delayed tumor growth 
and overall survival. Treatment studies were repeated with 
reproducible results.

Expression profile of LAG‑3 in tumors upon CPMV 
treatment

To examine the expression profile of LAG-3, B16F10 tumor-
bearing C57BL/6 mice were intradermally treated with 
CPMV or PBS when tumors were palpable (40–60  mm3). 
Tumors were collected on day 1, 5, and 10 post-CPMV treat-
ment. Tumor dissociation and single-cell suspensions were 
obtained using a tumor dissociation kit (Miltenyi Biotec). 
LAG-3 expression was measured by flow cytometry or con-
focal imaging. Cells were washed in cold PBS containing 
2% (v/v) FBS. Fc receptors were blocked using anti-mouse 
CD16/CD32 (Biolegend) for 20 min at 4 °C (1:1000). Then 
staining was performed using anti-LAG-3 monoclonal anti-
body (CD223 (LAG-3), eBioC9B7W, 0.5 µg) for 2 h at RT. 
After washing with PBS for three times (in 10 min inter-
vals), cells were stained with secondary goat anti-rat IgG 
(H + L) antibody conjugated with Alexa Fluor™ Plus 488 
(1:1000, 45 min, RT). The stained cells were fixed in bio-
logical fixative solution (2% (v/v) formaldehyde in PBS) for 
10 min at RT. Flow cytometry was carried out using a using 
a BD Accuri C6 Plus flow cytometer (BD Biosciences), and 
the data were analyzed using FlowJo software. For confo-
cal microscopy, B16F10 tumors were snap frozen in liquid 
nitrogen and stored at –80 °C. The tumors were then sub-
merged in Tissue-Tek™ O.C.T. Compound (Sakura) and 
cryosectioned using the Leica CM1860 cryostat. Ten µm 
sections were collected on Superfrost™ Plus Microscope 
Slides (Fisherbrand) and placed at –80 °C. Staining of tissue 
section was carried out using primary rat anti-mouse CD45 
(cell signaling clone 30-F11; 1:800), anti-LAG-3 (eBi-
oC9B7W, 0.5 µg), and custom-made rabbit anti-CPMV anti-
bodies (1:1000) for 2 h at RT followed by labeling with sec-
ondary antibodies for 45 min using goat anti-rat IgG (H&L) 
conjugated with Alexa Fluor™ 555 (1:1000), anti-rat IgG 
(H&L) conjugated with Alexa Fluor™ 488 (1:1000), and 
goat anti-rabbit IgG (H&L) conjugated with Alexa Fluor™ 
647 (1:1000), respectively. All slides were then stained and 
mounted using Fluoroshield with DAPI (Millipore Sigma). 
Fluorescence images were obtained using a Nikon A1R con-
focal microscope with an Apo TIRF 100 × /1.49 oil objective 
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(Nikon). Collected images were analyzed using NIS-Ele-
ments AR Analysis v5.30 (Nikon).

Results

CPMV was purified from black-eyed pea plants at yields 
of ~ 35 mg per 100 mg of infected leaf tissue. Purity and 
structural integrity of purified CPMV was validated as 
follows (Fig. 1): UV–visible spectroscopy was used to 
determine the concentration and the A260/280 nm ratio 
of ~ 1.75 indicated that pure CPMV preparations were 
obtained. NuPAGE analysis showed the small (S) and large 
(L) coat proteins at ~ 24 kDa and ~ 42 kDa, respectively; 
protein contaminants were not apparent. Structural integ-
rity was further confirmed by TEM, which demonstrated 
monodispersed CPMV particles. DLS demonstrated a 
sharp size distribution of purified CPMV with an average 
particle size of 32.5 nm (PDI 0.023), consistent with a 
uniform population of particles. SEC showed the typical 

elution profile of CPMV at 11.17 mL from the Super 6 
increase column; the overlapping peak of CPMV genomic 
RNA (260 nm) and capsid protein (280 nm) was also con-
sistent with intact CPMV. SEC did not indicate the pres-
ence of aggregated or broken particles.

Efficacy of the CPMV IIT + anti-LAG-3 ICT combination 
was investigated against a dermal B16F10 melanoma mouse 
model (C67BL/6 J) mice. Female mice were inoculated i.d. 
with 2 ×  105 B16F10 cells on the right flank and then rand-
omized to one of four treatment groups (n = 7–9 per group): 
100 µg intratumoral (i.t.) CPMV, 100 µg i.p. anti-LAG-3, i.t. 
CPMV + i.p. anti-LAG-3, or PBS (control). Treatment began 
when tumors reached 40–60  mm3. Mice received doses on 
post-inoculation days 6, 11, and 16 (it is noted that animals 
in the PBS and anti-LAG-3 groups were already removed at 
day 16 based on humane endpoint defined at tumors reach-
ing 1000  mm3).

Outcomes of the efficacy study were demonstrated in 
tumor growth and survival curves (Fig. 2). Combined i.t. 
CPMV + i.p. anti-LAG-3 ICT was the most potent approach, 

Fig. 1  Purification and characterization of cowpea mosaic virus 
(CPMV) by NuPAGE denaturing SDS-PAGE (4–12%) of the coat 
proteins stained with Coomassie blue (top left), TEM of purified 

CPMV (negatively stained with 1% (w/v) uranyl acetate, top right), 
DLS (bottom left), and SEC (bottom right)
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with the most effective control of tumor growth and 66% sur-
vival rate at 60 days post-inoculation (study endpoint). Intra-
tumoral CPMV alone was also efficacious and controlled 
tumor growth, although to a lesser extent than the combined 
approach, with 29% of mice surviving at 60 days. This is 
consistent with our previous observation [25]. Finally, anti-
LAG-3 ICT alone conferred no efficacy against B16F10 mel-
anoma. Both PBS and anti-LAG-3 mAb treatment resulted 
in 100% mortality by day 16 in both groups.

Alteration of the TME with respect to LAG-3 expression 
was next examined. LAG-3 expression in B16F10 mela-
nomas upon following intratumoral CPMV treatment was 
examined. Mice-bearing B16F10 dermal melanoma received 
a single dose of 100 µg intratumoral CPMV. Tumors were 
collected on day 1, 5, or 10 following CPMV treatment. 
Single-cell suspensions were obtained and analyzed by 
flow cytometry. Cryosectioned tissues were analyzed by 
confocal microscopy. Five and 10 days post CPMV therapy, 
LAG-3 expression was significantly increased with ~ 44% 
and 74% of cells, respectively, staining positive for LAG-3 
(**** < 0.0001 vs. PBS) (Fig. 3). In addition, tumor sections 
collected on day 10 post-treatment were stained for immune 

cells  (CD45+) and LAG-3. LAG-3 expression was promi-
nently observed in tumors that received CPMV therapy, 
consistent with the flow cytometry results (Fig. 4).

Discussion and conclusion

This work represents an initial investigation into a combi-
nation immunotherapy strategy employing CPMV IIT and 
next-generation ICT, with LAG-3 inhibition, to treat B16F10 
mouse model of melanoma. We observed increased efficacy 
with the anti-LAG-3 + CPMV treatment, with more than 
double the survival rate of CPMV IIT as a single therapy. 
Anti-LAG-3 treatment alone showed no survival or tumor 
growth control benefit above the control vehicle group. Flow 
cytometric analysis of the tumor cell suspension and tumor 
section immunostaining provided insight into the state of 
LAG-3 expression among the diverse populations of cells 
in the TME. This analysis revealed little LAG-3 expression 
at baseline. With CPMV IIT, however, LAG-3 expression in 
the TME significantly increased.

ICT has demonstrated remarkable efficacy in treat-
ment of many tumors, albeit often within small subset of 
patients. As disease recurrence and resistance have arisen 
with ICT, combination therapies have been increasingly 
explored to address these limitations. Incorporating mul-
timodal cancer therapies and classic ICT, targeting PD-1/
PD-L1 and/or CTL4A, have bolstered efficacy both in 
preclinical and clinical studies. Multiple clinical investi-
gations of combination approaches incorporating LAG-3 

Fig. 2  Treatment of B16F10 dermal melanoma using CPMV + anti-
LAG-3 antibody therapy. C67BL/6 mice bearing dermal B16F10 
melanoma (n = 7–9) received 100  µg intratumoral CPMV (green), 
100  µg intraperitoneal anti-LAG-3 monoclonal antibody (mAb) 
(blue), CPMV + anti-LAG-3 mAb (pink), or PBS (control) (black). 
Treatment began when tumors reached 40–60  mm3 and mice received 
three doses on day 6, 11, and 16 (as indicated by red arrows). Top 
panel, Estimated tumor volume as calculated by volume = [(short 
length)2 × (long length)]/2. Bottom panel, Survival of treatment 
groups was plotted and statistical analysis was performed using a log-
rank (Mantel–Cox) test (anti-Lag-3 + CPMV vs. PBS ****p < 0.0001 
and CPMV vs. PBS ***p = 0.0003 

Fig. 3  LAG-3 expression on cell suspensions from B16F10 dermal 
melanomas after single therapy using intratumoral CPMV; tumors 
were collected, cell suspensions obtained and stained using an anti-
LAG-3 antibody, and analyzed by flow cytometry on day 1, 5, and 10 
post-CPMV intratumoral treatment. Statistical analysis was done by 
2-way Anova (****p < 0.0001 CPMV vs. PBS)
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inhibitors have demonstrated encouraging results with 
favorable safety and tolerability profiles in phase I and II 
clinical trials [53–56]. Phase III clinical trials in patients 
with advanced melanoma demonstrated increased progres-
sion free survival [57] and high pathologic response rates 
[58] with combined PD-1/PD-L1 inhibition and LAG-3 
inhibition over PD-1/PD-L1 inhibition alone. Similarly, 
our preclinical investigations have revealed synergy in 
therapeutic strategies combining CPMV IIT with ICTs 

[35, 44, 61]. Here, we also extend our investigations to 
include LAG-3. While beyond the scope of this work—
considering the encouraging clinical results using LAG-3 
and PD-1 in combination—one could also test CPMV in 
combination with LAG-3 and PD-1 and compare its effi-
cacy against single combinations using CPMV with either 
LAG-3 or PD1 blockade.

LAG-3 has broad patterns of expression and contributes 
to homeostasis and regulation of function of a wide variety 

Fig. 4  Immunofluorescence staining of B16F10 tumors 10 days post-CPMV or PBS treatment. Tissue sections were stained for CPMV, CD45, 
and LAG-3
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of cells, including  CD4+ T cells,  CD8+ T cells, NK cells, 
tumor cells, and pDCs. [45–47] Its expression on pDCs is 
greater than on any other immune cell subset. pDC plays 
an important role in induction of immune responses, how-
ever, these cells may contribute to immunosuppression in 
the TME. pDCs expressing LAG-3 have been shown to be 
activated by interaction with MHCII on human melanoma 
in vivo, leading to IL-6 production, which in this setting 
could contribute to MDSC recruitment [52]. In addition, 
it has been suggested that immunogenicity of a tumor 
determines the degree to which LAG-3 inhibition affects 
immune responses [47]. Hence, combination with a therapy, 
like CPMV IIT, that converts a “cold” tumor into a “hot” 
tumor could be particularly synergistic with LAG-3. Our 
data indicate that CPMV IIT induces significant expression 
levels of LAG-3 within the TME—considering that > 70% 
of the cell suspension from CPMV-treated B16F10 tumor 
stained positive for LAG-3 vs. approximately 30% for PBS 
control group (see Fig. 3). These data indicate that multi-
ple cell types may be involved—immune and tumor cells. 
Prior work has shown that CPMV primarily interacts with 
immune cells within the tumor, primary responders are 
neutrophils [25], however, uptake in other phagocyte cells 
(such as macrophages and DCs) [62] as well as tumor cells 
themselves has also been documented [63]. The immuno-
fluorescence analysis indicates that B16F10 tumors are infil-
trated by immune cells—independent of treatment. How-
ever, significant LAG-3 expression is only observed upon 
CPMV treatment, and the expression pattern of LAG-3 
appears to match the localization of CPMV-positive cells. 
Future functional assays should dissect which cells CPMV 
interacts with and whether CPMV uptake directly correlates 
with LAG-3 expression or whether expression is restricted 
to certain cell types.

Previous studies of CPMV IIT from our research group 
showed its remodeling of the TME, recruiting innate 
immune cells and pro-inflammatory cytokine release 
[26–28]. CPMV IIT also promotes tumor infiltration and 
activation of antigen presenting cells (APCs) and promotes 
priming of a systemic, targeted, long-term anti-tumor adap-
tive immune system response [26, 28]. CPMV’s ability to 
create a more immunogenic TME may also underlie the syn-
ergy of combined intratumoral CPMV and LAG-3 inhibition 
over LAG-3 inhibition alone. Additionally, combinations 
of CPMV and PD-1 inhibition, OX40 agonism, and 4-1BB 
inhibition have further yielded heightened efficacy beyond 
treatment with either therapy alone [35, 44, 61]. Intratu-
moral CPMV led to increased expression of PD-1/PD-L1 
and OX40 on  CD4+,  CD8+ T cells, and Tregs in multiple 
murine tumor models, including B16F10. [35]

We observed elevated LAG-3 expression in the tumor cell 
suspension and in immunostained tumor sections. Although 
an effective anti-tumor immune response was observed with 

the intratumoral CPMV alone, the efficacy was more than 
doubled, with respect to survival, by the addition of the anti-
LAG-3. This enhanced efficacy is likely related to blockade 
of the LAG-3, “neutralizing” its increased expression, in the 
tumor microenvironment following CPMV treatment. Thus, 
allowing a more potent intratumoral CPMV-primed immune 
response than that occurring in the absence of anti-LAG-3. 
A study of patients with metastatic melanoma also observed 
enhanced expression of LAG-3 following ICT treatment 
with dual anti-PD-1 and anti-LAG-3 therapy. Interestingly, 
enhanced LAG-3 expression in dendritic cells and tumor 
infiltrating lymphocytes (TILs) was significantly greater 
in patients that responded to therapy over non-responders 
[64]. Multiple other clinical studies have revealed substantial 
LAG-3 expression on cells within the TME. [65]

We have previously observed enhanced efficacy of treat-
ment with CPMV and ICTs primarily activating or disin-
hibiting effector T cells and in the case of 4-1BB, NK cells 
[35, 44, 61]. Inhibition of the varied expression pattern of 
LAG-3 could promote a more diverse pro-inflammatory 
response, involving all these cell types. Combination of 
these anti-LAG-3 effects with the pro-inflammatory TME 
transformation and immune response induced by CPMV IIT 
dramatically increases efficacy against a murine model of 
melanoma.
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