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Three-phase Model of Visco-elastic Incompressible Fluid Flow 
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Shixin Xu1, Mark Alber1,2,*, Zhiliang Xu2,*

1Department of Mathematics, University of California, Riverside, Riverside, CA, 92521, USA

2Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, 
Notre Dame, IN, 46556, USA

Abstract

Energetic Variational Approach is used to derive a novel thermodynamically consistent three-

phase model of a mixture of Newtonian and visco-elastic fluids. The model which automatically 

satisfies the energy dissipation law and is Galilean invariant, consists of coupled Navier-Stokes 

and Cahn-Hilliard equations. Modified General Navier Boundary Condition with fluid elasticity 

taken into account is also introduced for using the model to study moving contact line problems. 

Energy stable numerical scheme is developed to solve system of model equations efficiently. 

Convergence of the numerical scheme is verified by simulating a droplet sliding on an inclined 

plane under gravity. The model can be applied for studying various biological or biophysical 

problems. Predictive abilities of the model are demonstrated by simulating deformation of venous 

blood clots with different visco-elastic properties and experimentally observed internal structures 

under different biologically relevant shear blood flow conditions.

Keywords

Phase field method; Energetic Variational Approach; multi-phase flow; visco-elasticity; variable 
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1. Introduction

Phase field models [3, 5, 19, 28, 29, 40, 44, 46, 84, 86, 87] derived using the energy-based 

variational formulation, are widely used for studying multi-phase fluid flow problems. 

Labeling function or phase function is used in a phase field model to represent each of the 

phases. The sharp interface separating different species is replaced by narrow transition layer 

in which species mix. Free energy density functional of the labeling functions is constructed 

for coupling different phases. (See, among others, [3, 47, 41] for reviews of phase field 

approach.) A careless design of the free energy density functional may lead to meta stable 

states [11]. For instance, traditional pairwise combinations of double-well free energy 

functionals for coupling multiple fluid components may give rise to non-physical results, 
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such as growth of one phase due to the presence of saddle points inside the Gibbs triangle 

[88].

Additional problems with deriving a phase field model arise when some fluid components 

are non-Newtonian. Many existing non-Newtonian flow phase field models [2, 7, 10] do not 

satisfy the energy dissipation law. This implies that numerical schemes designed for solving 

system of equations of these models likely do not to satisfy the discrete energy dissipation 

law either, and can result in large numerical errors [50]. These numerical errors significantly 

undermine accuracy of numerical model solutions over long time periods.

While most of the existing models [1, 3, 5, 17, 18, 37, 47, 52, 86, 89] focus on two-phase or 

Newtonian fluids, many biological and biophysical applications require multi-phase or non-

Newtonian fluid flow models. There are only few existing three (or more)-phase field 

models [20, 45, 46, 79]. In particular, Wu and Xu [79] established the unisolvent property of 

coefficient matrix involved in N-phase models based on pairwise surface tensions. By using 

obtained matrix, authors derived an N-phase inherently invariant Cahn-Hillard model from 

the free energy functional. Important properties of Wu and Xu models are that the dynamics 

of concentrations are independent of the choice of phase variable, and the symmetric 

positive-definite property of the coefficient matrix can be proved equivalent to some physical 

condition for pairwise surface tensions. Among other multi-phase models, the model in [45] 

does not include components representing hydrodynamics, and models in [20, 46, 79] 

describe only Newtonian fluids. We use the Energy Variational Approach (EnVarA) [21, 83] 

to derive in this paper a novel thermodynamically consistent phase field model of three-

phase incompressible fluid system with visco-elastic fluid components. Main novel 

modeling and numerical contributions of the paper in comparison with existing models, are 

as follows.

• A systematic approach is introduced to derive phase field model coupling 

Newtonian and Non-Newtonian fluids with large variations in densities or 

viscosities of individual fluid components. The Boussinesq approximation under 

the assumption that density ratio between two fluids is relatively small [51, 50] is 

not needed in our model. Components of the fluid mixture are combined in a 

binary tree manner [12, 73]. The feasibility of this approach is demonstrated by 

deriving a three-phase fluid flow model, in which two of the fluid components 

are visco-elastic. The resulting model can be reduced in a physically consistent 

manner to the two-phase model [51].

• The derived model is Galilean invariant and automatically satisfies the energy 

dissipation law resulting in straightforward development of an efficient and 

energy stable numerical scheme. All model equations are described in the 

Eulerian coordinate system which makes computational implementation of the 

model convenient. This is in contrast with many computational models coupling 

Navier-Stokes equations and elastic equations for simulating fluid-structure 

interaction problems, in which Navier-Stokes equations are solved on a fixed 

mesh while elastic equations are solved on the Lagrangian mesh. Computational 

implementation of interpolation between meshes to impose boundary condition 

at the fluid-structure interface is not trivial.
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• Modified General Navier Boundary Condition (GNBC) [58, 59, 60] with fluid 

elasticity taken into account is used for solving the moving contact line problem 

[40, 58, 63, 77] which describes movement of an interface separating visco-

elastic and pure Newtonian fluids on the solid wall.

• Efficient and energy stable numerical scheme is developed for solving the 

obtained model system with large variations in densities or viscosities. The 

model system which couples Navier-Stokes and Cahn-Hilliard equations, is 

solved by using combination of the energy splitting method [22, 23] and the 

pressure stabilization method [68].

Convergence study of the new energy stable scheme is accomplished by simulating 

deformation and motion of visco-elastic droplets on solid surface. Creep-relaxation test of 

complex fluid is used to validate the approach adopted by the model for representing visco-

elasticity of the fluid. Additionally, simulations of a droplet wetting process are used to 

demonstrate differences between fluid visco-elasticity models which give fluid-like and 

solid-like behaviors, respectively.

To demonstrate the feasibility of the new model for studying biological and biophysical 

problems involving non-Newtonian fluids, it is applied for studying stability of venous blood 

clots with specific multi-component structures observed in experiments [43, 82]. 

Simulations of deformation of hemophilic and normal blood clots, which consist of platelet 

aggregates and fibrin network, under physiologically relevant shear blood flows, are shown 

to be in good agreement with experimental observations.

The paper is organized as follows. Section 2 describes derivation of the three-phase field 

model with variable densities and viscosities of fluid components. Moreover, two of the fluid 

components in the model are visco-elastic. An energy stable numerical scheme is introduced 

in Section 3 for solving model equations described in Section 2. Section 4 describes 

simulation results. Conclusions are provided in Section 5.

2. Derivation of the Three-phase Model using EnVarA

A three-phase model describing mixture of Newtonian and non-Newtonian fluid components 

is derived in this section by using binary tree approach and applying the EnVarA to ensure 

that the derived model satisfies the energy dissipation law. We first outline below the general 

idea of the EnVarA and then describe in detail steps employed to derive the three-phase 

model.

The EnVarA is based on the energy dissipation law [21, 26, 60, 66, 83], the Least Action 

Principle (LAP), the Maximum Dissipation Principle (MDP) [25, 30, 39, 53, 54, 76], and 

Newton’s force balance law.

Under the assumption that the system is isothermal, the model derived using the EnVarA 

should obey the energy dissipation law, which states that the entropy change balances with 

the energy dissipation
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d
dtEtotal + Δ = 0 d

dtEtotal = − Δ . (2.1)

Here Etotal = K + U − TS = K + ℋ is the total energy of the system. K is the kinetic 

energy, U is the internal energy, T  is the temperature, S is the entropy, and ℋ is the 

Helmholtz free energy. Δ is the dissipation functional which is usually represented as a 

quadratic function of certain rates such as the fluid velocity u. (Other notations used in the 

paper are explained in Appendix A.)

The action functional for a Hamiltonian (or conservative) system is defined as follows 

A = ∫0
t*∫Ω(K − ℋ)dxdt. The LAP states that the action functional can be optimized with 

respect to the flow map x(t) = x(X, t) (with x(X, 0) = X(t = 0)) by taking the variation with 

respect to x. Here X stands for the Lagrangian coordinate system, which is called the 

reference configuration, and x is the Eulerian coordinate, which is called deformed 

configuration. This gives rise to the variational derivative δA of the action functional 

δA = ∫0
t*∫Ω0 ℱcon ⋅ δxdXdt, where ℱcon is the conservative force, Ω0 is the Lagrangian 

reference domain of Ω, and the trajectory x(t) is the path that particle X moves from position 

x(X, 0) at time t = 0 to position x(X, t*) at time t = t* [4].

The MDP states that variation of Δ with respect to certain rate (e.g., velocity u) in the 

Eulerian coordinate system results in the dissipative force ℱdis, which satisfies 

δ 1
2Δ = ∫Ω ℱdis ⋅ δudx. Note that the factor 1

2  is due to the underlying assumption that Δ is 

a quadratic function of u. In the end, the equation of motion is obtained by using the force 

balance law, i.e., ℱcon = ℱdis.

The rest of this section is devoted to derivation of the three-phase model describing 

Newtonian and non-Newtonian fluids mixture by using the EnVarA. A novel general Navier 

boundary condition is also introduced for imposing the wall boundary condition for studying 

moving contact line problem involving visco-elastic fluid. This boundary condition includes 

contribution of the elasticity of the non-Newtonian fluid to the contact line slip velocity.

2.1. Three-phase model derivation

We consider in this section a complex fluid mixture consisting of visco-elastic fluids A and 

B, and Newtonian fluid C. These three fluid components of the mixture are separated in two 

groups: the visco-elastic fluids mixture AB composed of fluids A and B, and the Newtonian 

fluid C. The volume fraction of the visco-elastic fluids mixture AB is denoted by ϕ2 (ϕ2 ∈ 
[0, 1]), while the volume fraction of the fluid C is 1 – ϕ2. Furthermore, ϕ1 (ϕ1 ∈ [0,1]) is 

introduced to represent the volume fraction of fluid A in the mixture AB, and 1 – ϕ1 is the 

volume fraction of fluid B in the mixture AB.

2.1.1. Definition of total energy and dissipation functionals—The total energy 

functional of the modeled complex fluid is defined as
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Etotal = Ekin
Macroscale

+ Ecoℎ + Eela + Ew
Microscale

,
(2.2)

where Ekin is the kinetic energy, Ecoh is the mixing energy, Eela is the elastic energy, and Ew 

is the specific wall energy.

The kinetic energy accounts for the transport of the trinary fluid mixture and is defined as:

Ekin = ∫
Ω

1
2ρ |u|2 dx, (2.3)

where ρ = ρ(x, t) = ρ(ϕ1, ϕ2, ρa, ρb, ρc, t) is the mixture density with ρi being the density of 

phase i, i = A, B, C, and u the velocity of the fluid mixture, respectively.

According to the Cahn and Hilliard approach [13], the mixing energy Ecoh represents 

competition between a homogeneous bulk mixing energy density term G(ϕ) (‘hydrophobic’ 

part) that establishes total separation of the phases into pure components, and a gradient 

distortional term |∇ϕ|2
2  (‘hydrophilic’ part) that represents the nonlocal interactions between 

different components and penalizes spatial heterogeneity. Therefore, the mixing energy is 

defined as follows:

Ecoℎ = Ecoℎ1 + Ecoℎ2

= ∫
Ω

λ1ϕ2
2 G1 ϕ1 +

γ1
2

2 ∇ϕ1
2 dx

+ ∫
Ω

λ2 G2 ϕ2 +
γ2

2

2 ∇ϕ2
2 dx,

(2.4)

where λi is the mixing energy density, γi is the capillary width of the interface, 

G1 ϕ1 = αϕ1
3(

ϕ1
4 − β) [73], which has a nonzero minimum, is the hydrophobic energy of the 

visco-elastic mixture AB. The choice of this cohesion energy G1(ϕ1) is for the purpose of 

using this model to describe complex fluids such as hydro-gel in which polymer network 

forms physical links and entanglements. The double well potential G2 ϕ2 = 1
4ϕ2

2 1 − ϕ2
2

[86] is the hydrophobic energy of the Newtonian and visco-elastic fluid mixture. In the 

mixing energy Ecoh1, a factor ϕ2
2 is included because this energy makes sense only when the 

volume fraction of the visco-elastic mixture AB is not zero.

To account for the visco-elastic property of the fluid mixture AB, we introduce an elastic 

free energy Eela. In the present paper, the Kelvin-Voigt model [56] is used to describe the 

fluid visco-elasticity. Following the results in [49], the deformation gradient tensor F(X, t) 

defined by Fij =
∂xi
∂Xj

, in which x is the current (Eulerian) coordinate and X is the reference 

(Lagrangian) coordinate, is introduced to write the elastic energy in the Eulerian framework,
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Eela = ∫
Ω

λe1ϕ2
2

2 |F |2dx = ∫
Ω

λe1ϕ2
2

2 tr FF T dx, (2.5)

where λe1 = λe1(ϕ1, λA, λB) is the elastic energy density of non-Newtonian fluid mixture 

AB. λA and λB are the elastic energy density of fluids A and B, respectively. ϕ2
2 is used to 

ensure that only the elasticity of the mixture AB is considered, tr(FFT) is the trace of FFT.

If ∇ · F(X, 0) = 0 is satisfied at t = 0, ∇ · F = 0 for t ≥ 0 by the transport equation of F [49]. 

Moreover, there exists a vector Ψ = (Ψ1, Ψ2)T in the two-dimensional space [49], such that

F =
− ∂x2Ψ1 − ∂x2Ψ2
∂x1Ψ1 ∂x1Ψ2

.

In the end, the elastic energy can be represented by using Ψ as

Eela = ∫Ω
λe
2 |F |2dx = ∫Ω

λe
2 tr FFT dx

= ∫Ω
λe
2 ∂x1Ψ1

2 + ∂x2Ψ1
2 + ∂x1Ψ2

2 + ∂x2Ψ2
2 dx

= ∫Ω
λe
2 | ∇Ψ|2dx,

where λe = ϕ2
2λe1.

For numerical study of the moving contact line problem [29, 40, 58, 59, 63, 64] involving 

the interface of fluids intersecting with the wall, a wall free energy Ew is introduced into the 

total energy functional to mimic the interaction between the fluid interface and the wall. The 

moving contact line problem studied in this paper has an interface separating the non-

Newtonian fluids mixture AB from the Newtonian fluid C. The wall free energy Ew in this 

case is defined on the wall w and adopts the following form [84]

Ew = σ2∫
w

fw ϕ2 ds, (2.6)

where fw is as follows:

fw ϕ2 = −
2ϕ2 − 1 3 − 2ϕ2 − 1 2

4 cos θs . (2.7)

Here σ2 is the surface tension of the visco-elastic mixture and θs is the static contact angle 

[63, 64].

For the purpose of using Cahn-Hilliard equations to describe evolution of ϕ1 and ϕ2, the 

chemical potentials μ1 and μ2 are defined as the variational derivative of the Helmholtz free 

energy functional ℋ = Ecoℎ + Eela and are as follows:
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μ1 = δℋ
δϕ1

= λ1 ϕ2
2G1′ ϕ1 − γ1

2∇ ⋅ ϕ2
2∇ϕ1 + 1

2 ∂1λe | ∇Ψ|2 , (2.8)

and

μ2 = δℋ
δϕ2

= λ2 G2′ ϕ2 − γ2
2Δϕ2

+ 2λ1ϕ2 G1 ϕ1 +
γ1

2

2 |∇ϕ1|2 + 1
2 ∂2λe | ∇Ψ|2 .

(2.9)

For the sake of simplicity, here and in the rest of the paper, ∂i denotes ∂ϕi for i = 1,2.

Remark 2.1: There exist different definitions of the chemical potential. In papers [41, 50], 
the chemical potential is defined as the variational derivative of the total energy. When the 

mixed fluids have variable densities, there is a term ρ′ |u|2
2  in the chemical potential, which is 

not Galilean invariant. However, as values of the mobility parameters in the Cahn-Hilliard 
system approach zero, the whole system converges to a Galilean invariant system. The 
chemical potential in [1, 34] is defined as the variational derivative of the mixing energy, 

which eliminates the ρ′ |u|2
2  term. In our work, we define the chemical potential as the 

variational derivative of the sum of the mixing energy and elastic energy. This introduces the 
1
2 ∂iλe | ∇Ψ|2 term in the chemical potentials. The reason to include the elastic energy is to 

ensure that the obtained system satisfies the energy dissipation law. When a complex fluid 
with variable elasticities is considered, it is difficult, if not impossible, to prove that the 
obtained system satisfies the energy dissipation law in case the elastic energy is not included 
in the derivation of the chemical potential. We note that, in fact, the Cahn-Hilliard type of 
dynamics should not be viewed strictly as a physics law. Rather, it is just a relaxation of the 
pure transport equation [41].

The dissipation functional is defined as

Δ = ∫
Ω

η
2 |D |2 + M1|∇μ1|2 + M2|∇μ2|2 dx + ∫

w
κ|ϕ̇2|2 + βs|us|2 ds, (2.10)

where η = η (ϕ1, ϕ2, ηA, ηB, ηC, t) is the viscosity of the mixture, with ηi being the viscosity 

of phase i, i = A, B, and C. Mi is the phenomenological mobility coefficient of the phase i. 

D = ∇u + (∇u)T . κ is the phenomenological relaxation time of ϕ on the wall. βs is the slip 

friction coefficient, and us is the slip speed on the wall.

2.1.2. Microscale transport of ϕ1 and ϕ2—We assume that ϕ1 and ϕ2 satisfy the 

following conservation laws:

∂tϕ1 + ∇ ⋅ u∇ϕ1 = 0, (2.11)
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∂tϕ2 + ∇ ⋅ u∇ϕ2 = 0. (2.12)

Equations (2.11) and (2.12) are approximated in the phase field method by the following 

Cahn-Hilliard equations

∂tϕ1 + ∇ ⋅ u∇ϕ1 = ∇ ⋅ M1∇μ1 , (2.13)

∂tϕ2 + ∇ ⋅ u∇ϕ2 = ∇ ⋅ M2∇μ2 . (2.14)

In addition, ϕ2 satisfies the following relaxation boundary condition on the solid wall 

boundary w:

κϕ2
.

+ L ϕ2 = 0, (2.15)

where L ϕ2 = λ2γ2
2∇nϕ2 + fw′ , and ϕ2

.
= ∂tϕ2 + u ⋅ ∇ϕ2 is the material derivative of ϕ2 on the 

wall.

2.1.3. Macroscale momentum equation—The conservative and dissipative forces are 

obtained by applying the LAP to the Hamiltonian part of the system and the MDP to the 

dissipative part of the system, respectively.

Application of the LAP yields that

ℱcon = − 1
2 ρ ∂tu + u ⋅ ∇u + ∂t(ρu) + ∇ ⋅ (ρu ⊗ u) +

+ λ2γ2
2∇ ⋅ ∇ϕ2 ⊗ ∇ϕ2 + λ1γ1

2∇ ⋅ ϕ2∇ϕ1 ⊗ ∇ϕ1
+ ∇ ⋅ λe(∇Ψ)T ∇Ψ + ∇P1 .

(2.16)

By using the MDP and the flow incompressibility constraint, we obtain the following 

dissipative force for deriving the equation of motion in the bulk flow region

ℱdis = − ∇ ⋅ (ηD) + ∇P2, (2.17)

and the dissipative force on the wall w

ℱdis, w = τ ⋅ (ηD) ⋅ n + κϕ̇2∂τϕ2 + βsus . (2.18)

Finally, the Navier-Stokes type of equation of motion for the macroscopic trinary fluid 

mixture is obtained as a result of the macroscopic force balance, i.e., ℱcon = ℱdis:
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1
2 ρ ∂tu + u ⋅ ∇u + ∂t(ρu) + ∇ ⋅ (ρu ⊗ u) = ∇ ⋅ (ηD) − ∇P

− λ2γ2
2∇ ⋅ ∇ϕ2 ⊗ ∇ϕ2 − λ1γ1

2∇ ⋅ ϕ2∇ϕ1 ⊗ ∇ϕ1
− ∇ ⋅ λe(∇Ψ)T ∇Ψ

(2.19)

where P = P1 + P2.

The following slip boundary condition is used for the equation (2.19),

βsus = − τ ⋅ ηD − λe(∇Ψ)T ∇Ψ ⋅ n + L ϕ2 ∂τϕ2 . (2.20)

If the elastic property of fluid is not considered, i.e., λe = 0, then the above slip boundary 

condition is reduced to the General Navier Boundary Condition (GNBC) [58, 59, 60]. In 

other words, the boundary condition (2.20) is a generalized form of the GNBC for the 

moving contact line problem involving visco-elastic fluid.

Remark 2.2: Details of using the LAP and MDP to derive the three-phase fluid model are 

described in Appendix B.

After the right hand side of the Navier-Stokes equation (2.19) is simplified by using the 

method described in Appendix B, we obtain the following three-phase Navier-Stokes Cahn-

Hilliard model

1
2 ρ ∂tu + u ⋅ ∇u + ∂t(ρu) + ∇ ⋅ (ρu ⊗ u) + ∇P = ∇ ⋅ (ηD)

− ∇μ1ϕ1 − ∇μ2ϕ2 − ∇Ψ T ∇ ⋅ λe ∇Ψ ,
∇ ⋅ u = 0,
∂tΨ + u ⋅ ∇Ψ = 0,
∂tϕ1 + ∇ ⋅ uϕ1 = ∇ ⋅ M1∇μ1 ,
∂tϕ2 + ∇ ⋅ uϕ2 = ∇ ⋅ M2∇μ2 ,

μ1 = λ1 ϕ2
2G1′ ϕ1 − γ1

2∇ ⋅ ϕ2
2∇ϕ1 + 1

2 ∂1λe | ∇Ψ|2 ,

μ2 = λ2 G2′ ϕ2 − γ2
2Δϕ2 + 2λ1ϕ2 G1 ϕ1 +

γ1
2

2 |∇ϕ1|2

+ 1
2 ∂2λe | ∇Ψ|2 .

(2.21)

The initial and the wall boundary conditions are given as follows:
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u ⋅ n = 0, ∇nμ1 = ∇nμ2 = 0, ∂nϕ1 = 0
κϕ̇2 = − L ϕ2 = − ε∇nϕ2 + fw′ ,

βsus = − τ ⋅ ηD − λe(∇Ψ)T ∇Ψ ⋅ n + L ϕ2 ∂τϕ2,
ϕ1( ⋅ , 0) = ϕ10, ϕ2( ⋅ , 0) = ϕ20, Ψ( ⋅ , 0) = Ψ0 .

(2.22)

Remark 2.3: This three-phase model satisfies the following conditions proposed in [11, 88]:

• When a phase does not present in the mixture at the initial time, this phase 
should not appear during the time evolution of the system. E.g., if ϕi(·, t = 0) = 0, 

then ϕi(·, t) ≡ 0, ∀t > 0, i = 1 or 2. This is to make sure that each phase does not 
appear without basis.

• The three-phase model should be reduced to the two-phase model by setting one 
of the phase to be equal to zero. For example, if let ϕ1 ≡ 1 and λe = 0, the system 
(2.21) is reduced to the two-phase model proposed in [50].

2.2. Energy dissipation law

The following dimensionless form of the system (2.21)–(2.22) for convenience of discussion 

is obtained by scaling the density, viscosity, elasticity, length and velocity by ρa, ηa, λa, L 
and U, respectively,

Re1
2 ρ ∂tu + u ⋅ ∇u + ∂t(ρu) + ∇ ⋅ (ρu ⊗ u) + ∇P

= ∇ ⋅ (ηD) − ϕ1∇μ1 − ϕ2∇μ2 − αe ∇Ψ T ∇ ⋅ λe ∇Ψ ,
∇ ⋅ u = 0,
∂tΨ + u ⋅ ∇Ψ = 0,
∂tϕ1 + u ⋅ ∇ϕ1 = ∇ ⋅ M1∇μ1 ,
∂tϕ2 + u ⋅ ∇ϕ2 = ∇ ⋅ M2∇μ2 ,

(2.23)

where

μ1 = α1
1
ε1

G1′ϕ2
2 − ε1∇ ⋅ ϕ2

2∇ϕ1 + αe
|∇Ψ|2

2 ∂1λe, (2.24)

and

μ2 = α2
1
ε2

G2′ − ε2Δϕ2 + 2α1ϕ2
1
ε1

G1 + ε1
2 |∇ϕ1|2

+ αe
|∇Ψ|2

2 ∂2λe .
(2.25)

The initial and the wall boundary conditions for the system (2.23) are given by
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u ⋅ n = 0, ∇nμ1 = ∇nμ2 = 0, ∂nϕ1 = 0
κϕ̇2 = − L ϕ2 ,

ls−1us = − τ ⋅ ηD − αeλe(∇Ψ)T ∇Ψ ⋅ n + α2L ϕ2 ∂τϕ2,
ϕ1( ⋅ , 0) = ϕ10, ϕ2( ⋅ , 0) = ϕ20, Ψ( ⋅ , 0) = Ψ0,

(2.26)

where the dimensionless constants are Re =
ρALU

ηA
, ε1 =

γ1
L , ε2 =

γ2
L , α1 =

λ1γ1
ηAU , α2 =

λ2γ2
ηAU , 

αe =
λAL
ηAU , M1 =

M1ηA
L2 , M2 =

M2ηA
L2 , and κ = κ

Lλ2γ2/U .

One advantage of using the EnVarA is that the obtained system automatically satisfies the 

energy dissipation law. Theorem 2.4 states the energy dissipation law that the system (2.23)–

(2.26) satisfies.

Theorem 2.4—If ϕ1, ϕ2, Ψ, u and P are smooth solutions of the above system (2.23)–

(2.26), then the following energy law is satisfied:

d
dtℰtotal = d

dt ℰkin + ℰcoℎ + ℰela + ℰw

= − η1/2D 2

2 − M1 ∇μ1
2 − M2 ∇μ2

2

− κα2 ϕ̇2 w
2 − ls1/2us w

2 ,

(2.27)

where ζ = ρ, ℰkin = Re
2 ζu 2

,

ℰcoℎ = ∫Ω
α1ϕ2

2 G ϕ1
ε1

+
ε1
2 |∇ϕ1|2 dx + ∫Ω

α2
G ϕ2

ε2
+

ε2
2 |∇ϕ2|2 dx,

ℰela = αe∫Ω
1
2λe | ∇Ψ|2dx, and ℰw = α2∫w

fwds .

Proof—The main idea of the proof is to show how the left hand side of the equation (2.27) 

can be obtained by multiplying the Navier-Stokes equation by u, the phase transport 

equations by μi; the chemical potentials by ϕi,i = 1, 2, and the gradient of the equation for Ψi 

by αeλe∇Ψi, and summing them up. The dissipation terms on the right hand side of the 

equation (2.27) are obtained by using integration by parts and the boundary conditions 

specified in equations (2.26).

By using the fact that ∫Ω(∇ ⋅ (ρu ⊗ u) + ρu∇u, u)dx = 0, if we multiply the first equation of 

the system (2.23) by u and use integration by parts, the rate of change of kinetic energy 
d
dtℰkin is calculated

d
dtℰkin = d

dt
Re
2 ‖ζu‖2 = − 1

2 η1/2D 2 − ϕ1∇μ1, u − ϕ2∇μ2, u

− αe (∇Ψ)Tω, u + ητ ⋅ D ⋅ n, us w,
(2.28)
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where ω = ∇ · (λe∇Ψ).

By taking the gradient of each component of the third equation of (2.23), the following 

equation is obtained

∂k ∂tΨi + ∂k uj∂jΨi = 0. (2.29)

Inner product of above equation with αeλe∂kΨi has the form

αe λe ∇Ψ: ∇ ∂tΨ
= αe λe ∂kΨi, ∂k ∂tΨi
= − αe λe ∂kΨi, ∂k uj∂jΨi
= αe ∂k λe ∂kΨi , uj∂jΨi − αe λe ∂kΨi∂jΨi nk, uj w
= αe (∇Ψ)Tω, u − αe τ ⋅ λe(∇Ψ)T ∇Ψ ⋅ n, us w .

(2.30)

Adding equation (2.28) to (2.30) and using the third boundary condition in (2.26) result in 

the following equation

d
dtℰkin

= − 1
2 η1/2D 2 − ϕ1∇μ1, u − ϕ2∇μ2, u

− αe λe ∇Ψ, ∇ ∂tΨ − ls−1/2us w
2 + α2 L ϕ2 ∂τϕ2, us w

= − 1
2 η1/2D 2 − ϕ1∇μ1, u − ϕ2∇μ2, u

− αe λe ∇Ψ, ∇ ∂tΨ − ls−1/2us w
2 − α2 κϕ̇2, us∂τϕ2 w .

(2.31)

Taking inner product of the fourth and fifth equations in system (2.23) with μ1 and μ2, 

respectively, results in the following system

∂tϕ1, μ1 − uϕ1, ∇μ1 + M1 ∇μ1
2 = 0, (2.32)

∂tϕ2, μ2 − uϕ2, ∇μ2 + M2 ∇μ2
2 = 0. (2.33)

Inner product of the chemical potential (2.24) with −∂tϕ1 yields

− ∂tϕ1, μ1 = − α1 ϕ2
2G1′

ε1
, ∂tϕ1 − α1 ε1ϕ2

2∇ϕ1, ∇ ∂tϕ1

− αe
|∇Ψ|2

2 ∂1λe, ∂tϕ1 .
(2.34)

Inner product of the chemical potential (2.25) with −∂tϕ2 and integration by parts, together 

with the dynamics boundary condition of ϕ2 on the wall, result in the following equation
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− ∂tϕ2, μ2 = − d
dtℰcoℎ2 − α1

G1
ε1

+ ε
2|∇ϕ1|2, 2ϕ2∂tϕ2

− αe ∂2λe
|∇Ψ|2

2 , ∂tϕ2 − α2 κϕ̇2 + fw′ , ∂tϕ2 w .
(2.35)

Summing up the equations (2.31)–(2.35) gives rise to

d
dtℰtotal = d

dt ℰkin + ℰcoℎ + ℰela + ℰw

= − η1/2D 2
2 − M1 ∇μ1 2 − M2 ∇μ2 2

− α2 κϕ̇2, ∂tϕ2 w − α2 κϕ̇2, us∂τϕ2 w − ls1/2us w
2 ,

= − η1/2D 2
2 − M1 ∇μ1 2 − M2 ∇μ2 2

− κα2 ϕ̇2 w
2 − ls1/2us w

2 .

■

3. Numerical Scheme for Solving Model Equations

Many techniques were proposed to improve stability and efficiency of numerical schemes 

for solving the Cahn-Hilliard equation [24, 35, 44, 73]. Here we use the energy convex 

splitting method [22, 23, 28, 29, 67, 69], which discretizes the chemical potentials related to 

the convex energy implicitly and the rest explicitly. Traditional projection-like methods [8, 

15, 33, 72] for the variable density Navier-Stokes equations require solving an elliptic 

equation with variable coefficient to obtain the pressure or related scalar quantity. This is 

time consuming, especially when there is a large variation in fluid density. To overcome this 

difficulty, we choose the pressure stabilization method [29, 32, 50, 68] to solve the Navier-

Stokes equation, which only involves solving pressure Poisson equation with constant 

coefficient and treats the divergence free condition as a penalty.

In [50], the authors proposed a decoupled scheme by introducing a half-step velocity when 

solving the Navier-Stokes Cahn-Hilliard system numerically. If we ignore the elastic terms 

in the system (2.23)–(2.26), the decoupled scheme can also be used for solving the Cahn-

Hilliard equations in our model by setting the half-step velocity 

u* = un − Δt
Reρn + 1 ϕ1

n∇μ1
n + 1 + ϕ2

n∇μ2
n + 1 . For solving the system (2.23)–(2.26), the half-

step velocity should be set to be 

u* = un − Δt
Reρn + 1 ϕ1

n∇μ1
n + 1 + ϕ2

n∇μ2
n + 1 − αe ∇Ψn T ∇ ⋅ λe∇Ψn + 1 . However, according 

to the boundary conditions (2.26), it can be found that u* · n is not zero. This means the 

decoupled scheme developed in [50] might not work for the system (2.23)–(2.26).

We propose in this section an efficient and energy stable scheme based on the convex 

splitting method [28, 29] for solving the coupled system (2.23)–(2.26) without using the 

half-step velocity. The first-order accurate version of the scheme is described here. Stability 

analysis of the scheme is described in Appendix C.
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The first-order accurate energy stable scheme is constructed as follows. Given initial 

condition ϕ1
0, ϕ2

0, P0, u0, Ψ0 , numerical solution ϕ1
n + 1, ϕ2

n + 1, un + 1, Pn + 1, Ψn + 1  is 

updated for n ≥ 1 by

ϕ1
n + 1 − ϕ1

n

Δt + ∇ ⋅ un + 1ϕ1
n + 1 = ∇ ⋅ M1∇μ1

n + 1 ,

ϕ2
n + 1 − ϕ2

n

Δt + ∇ ⋅ un + 1ϕ2
n + 1 = ∇ ⋅ M2∇μ2

n + 1 ,

∂nϕ1
n + 1 = 0,

κϕ̇2
n + 1 = κ ϕ2

n + 1 − ϕ2
n

Δt + usn + 1∂τϕ2
n + 1 = − L ϕ2

n + 1 ,

(3.1a)

Re ρn + 1un + 1 − ρnun

2Δt + 1
2 ∇ ⋅ ρn + 1un + 1 ⊗ un

+Re ρn un + 1 − un

2Δt + ρn + 1

2 un ⋅ ∇un + 1

= − ∇ 2Pn − Pn − 1 + ∇ ⋅ ηn + 1D un + 1 − ϕ1
n + 1∇μ1

n + 1

−ϕ2
n + 1∇μ2

n + 1 − αe ∇Ψn T ∇ ⋅ λe
n + 1∇Ψn + 1

ls−1usn + 1 = − ηn + 1τ ⋅ D un + 1 − αeλe
n + 1 ∇Ψn T ∇Ψn + 1 ⋅ n

+α2L ϕ2
n + 1 ∂τϕ2

n + 1,

Ψn + 1 − Ψn

Δt + un + 1 ⋅ ∇Ψn = 0,

(3.1b)

Δ Pn + 1 − Pn = ρ
ΔtRe∇ ⋅ un + 1

∂nPn + 1 = 0,
(3.1c)

where

μ1
n + 1 = α1μ1

n + 1 − α1ε1∇ ⋅ ϕ2
n + 1 2

∇ϕ1
n + 1

+ αe
1
2 ϕ2

n + 1 2
1 − α12 |∇Ψn|2,
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μ2
n + 1 = α2μ2

n + 1 − α2ε2Δϕ2
n + 1 + α1ϕ2

n + 1ε1|∇ϕ1
n|

2

+ αe ϕ2
n + 1 ϕ1

n + 1 − ϕ1
n α12 |∇Ψn|2,

μ1
n + 1 =

s1
ε1

ϕ1
n + 1 −

s1
ε1

ϕ1
n − ϕ2

n 2 1
ε1

G1′ ϕ1
n ,

μ2
n + 1 =

S2
ε2

ϕ2
n + 1 −

S2
ε2

ϕ2
n − 1

ε2
G2′ ϕ2

n −
2ϕ2

n

ε1
G1 ϕ1

n ,

ρn + 1 = ρ13 1 − ϕ2
n + 1 + ϕ2

n + 1 ϕ1
n + 1 + 1 − ϕ1

n + 1 ρ12 ,

λen + 1 = ϕ2
n + 1 2

ϕ1
n + 1 + 1 − ϕ1

n + 1 α12 ,

L ϕ2
n + 1 = ε2∂nϕ2

n + 1 + fw′ ϕ2
n + αw ϕ2

n + 1 − ϕ2
n ,

with ρ12 =
ρ2
ρ1

, ρ13 =
ρ3
ρ1

, ρ = min 1, ρ12, ρ13  and α12 =
λB
λA

.

The following theorem with proof provided in Appendix C shows that the above discrete 

system satisfies discrete energy law.

Theorem 3.1

Let N = maxϕ2
n | 2

2 2ϕ2
n − 1 cos θs | . If αw ≥ N, and s1 and s2 satisfy the condition in the 

lemma described in Appendix C.1, then the solution ϕ1
n + 1, ϕ2

n + 1, un + 1, Pn + 1, Ψn + 1  of 

the scheme (3.1) satisfies the following discrete energy law for any Δt > 0:

ℰn + 1 + ( △ t)2

2ρRe ∇Pn + 1 2 + Δt 1
2 η1/2D un + 1 2

+ Δt M1
1/2∇μ1

2 + M2
1/2∇μ2

2

+ Δt ls−1/2usn + 1 w
2 + κα2 ϕ̇2

n + 1
w
2

≤ ℰn + (Δt)2

2ρRe ∇Pn 2

(3.2)

Remark 3.2

In the actual numerical implementation, we use finite element method to discretize the 

space. The nonlinear terms ∇ · (uϕi) are discretized in time as ∇ ⋅ unϕi
n + 1  to make the 

resulting numerical equations easy to solve [29]. Even though this treatment introduces a 
CFL-like constraint for choosing the time step size Δt, it decouples the system (3.1) into 
three independent subsystems. This makes the numerical implementation much easier than 
implementation which involves solving a large nonlinear system by iteration method. 

Moreover, ϕ2
n + 1, μ2

n + 1  is updated by using the nth step information on the numerical 

implementation before computing other unknowns. Then they are used to update 

ϕ1
n + 1, μ1

n + 1 . (Ψn+1, un+1, pn+1) are calculated in the end.
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4. Simulation Results

4.1. Droplet sliding on an inclined plane under gravity

Dynamics of a droplet sliding on an inclined plane under gravity [64, 65, 80] is used in this 

subsection to demonstrate convergence of the numerical scheme proposed in the previous 

section. The gravitational force ρG is added to the right hand side of the Navier-Stokes 

equation. Initial profile of the droplet is chosen in the form of a circular cap with contact 

angle 90°. Computational domain is chosen to be [0, 1.5] × [0, 0.5]. (See also Fig. 1.)

Droplet in this study is treated as a two-phase fluid. The droplet and the ambient fluid 

surrounding the droplet make the three-phase system. Densities of the two fluid components 

of the droplet are ρA = ρB = 103kg/m3, their viscosities are ηA = ηB = 100cP, and elasticities 

are λA = 1Pa, λA = 0.5Pa respectively. The density ratio of the droplet to the ambient fluid 

is 1000 and the viscosity ratio is 10. Values of non-dimensional parameters corresponding to 

the characteristic length L = 1 × 10−3m and velocity U = 1 × 10−2m/s, are listed in Table 1. 

The static contact angle of the droplet is 90°, and the inclination angle of the wall is α = 45°. 

Evolution of the advancing contact point xa and the receding contact point xr of the droplet 

from the initial time t = 0 to the time t = 5 was computed using three different meshes with 

mesh sizes h = 1/64, 1/128 and 1/256, respectively. Fig. 2 demonstrates convergence of the 

numerical solution computed by the proposed numerical scheme.

4.2. Creep-recovery test

The Kelvin-Voigt model [42, 56] is used to represent behavior of a solid-like material 

undergoing reversible, visco-elastic deformation. Namely, the material described by the 

Kelvin-Voigt model deforms at a decreasing rate, and approaches asymptotically the steady-

state strain under a constant stress. When the stress is released, the material gradually relaxes 

towards it initial un-deformed configuration. However, complete recovery to the initial 

configuration is never achieved in finite time. This is called creep-recovery.

In this section, we use a half circular-shaped droplet on a plane to do the creep-recovery test 

numerically. The droplet is surrounded by a constant shear Newtonian flow. Values of non-

dimensional parameters corresponding to the characteristic length L = 1 × 10−3m and 

velocity U = 1 × 10−2m/s are the same as ones listed in Table 1. Computational domain is 

chosen to be [0, 1.5] × [0, 0.5]. From the time t = 0tot = 1, a constant inlet flow condition 

with velocity v = 20(0.5 − y)y is added on the left of the boundary. After t = 1, the inlet flow 

is stopped and the droplet gradually recovers.

In Fig. 3, we show the creep-recovery test result. It shows that before t = 1, the droplet strain 

increases monotonically, i.e., the droplet undergoes creep process. After t = 1, the droplet 

strain decreases with time to a constant value, which is called permanent deformation due to 

dissipation of the system. Snapshots of the droplet profiles are presented in Fig. 4. The 

largest permanent deformation is around the left comer of the droplet. This is caused by the 

dissipation on the boundary with rate κα2|ϕ̇2|2 See also Theorem 2.4. This numerical study 

confirms that our model produces visco-elastic behavior of the fluid described by the 

Kelvin-Voigt model.
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In the next section, we compare simulations by using the Oldroyd-B and Kelvin-Voigt 

models for describing fluid visco-elasticity to reveal their differences.

4.3. Droplet spreading test for Oldroyd-B and Kelvin-Voigt models

As we mentioned in the previous section, the Kelvin-Voigt model is used for describing 

behavior of solid-like visco-elastic materials. For fluid-like visco-elastic materials, one of 

the most popular model is the Oldroyd-B model [9, 27, 77, 85, 90]. Conceptually, the 

Oldroy-B model is constructed by connecting a spring and a dashpot sequentially. The 

deformation of the spring is finite, while the dashpot retains deformation when the load is 

removed. Therefore, a material described by the Oldroyd-B model is more like a fluid than a 

solid.

In this section, we describe simulations of a droplet spreading on a plane, with its visco-

elastic property described by the Kelvin-Voigt model and the Oldroy-B model, respectively. 

We also simulate a pure Newtonian droplet spreading for comparison. Initial shapes of these 

droplets are all chosen to be a half circle with radius 0.2 and center (0.75, 0). Other 

parameters values are the same as those in [77]. Computational domain is chosen to be [0, 

1.5] × [0, 0.5]. For the Oldroyd-B model simulation, we use the equation (6) in [77] to 

describe evolution of the visco-elastic tensor, and couple it with the Cahn-Hilliard Navier-

Stokes equations in our model.

Fig. 5 shows the interface profiles of these droplets at different times. It can be seen that the 

Oldroyd-B droplet (blue dash line) spreads much faster than the pure Newtonian droplet 

(black line) before t = 1.5. After that, the spreading speed of the pure Newtonian droplet is 

greater than the Oldroyd-B droplet as observed in [77]. The Kevin-Voigt droplet (red dash 

dot line) spreads slower than the pure Newtonian droplet as expected.

The dynamics of contact angles of different type droplets are shown in Fig. 6(a). The results 

shows the contact angles quickly decay from initial 150° to 60° and then slowly approach 

equilibrium angle 45°. Fig. 6(b) describes evolution of spreading radius, which is defined as 

the distance between two contact points. The Oldroyd-B droplet and the pure Newtonian 

droplet achieve the same spreading radius (d = 0.8146) when they reach steady state. While 

the spreading radius of the Kelvin-Voigt droplet (d = 0.776) is 5% smaller than the pure 

Newtonian droplet. This result is consistent with the findings in [77]. Thus our simulations 

also showed importance of including physical properties of fluids when studying its 

dynamics. Moreover, when the Weissenberg number Wi = λOU/L, which compares elastic 

force to viscous force, where λ0 is the relaxation time in the Oldroyd-B model, increases 

from 2 to 5, the Oldroyd-B droplet spreading speed also increases. For the Kevin-Voigt 

droplets, the spreading speeds decrease with increasing shear modulus.

4.4. Deformation of Venous Blood Clot under Shear Flow

To demonstrate applicability and relevance of the novel three-phase model introduced in this 

paper for studying variety of problems in science and engineering, the model has been 

applied for studying the role of mechanical properties of a blood clot formed in a vein [82] 

in determining its stability under biologically relevant flow conditions. This is an important 
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biomedical problem for many reasons. For example, fragile blood clot may break to form 

several large pieces, or emboli, which can end up in lungs and subsequently cause fatal 

outcomes for patients [14]. Also, hemophilia patients suffer from bleeding disorder, which is 

partially attributed to the mechanical properties of the clots. Fibrin networks in a hemophilic 

clot are more sparse than in a clot formed in normal blood, and they are less resistent to the 

shear stress generated by the blood flow [43]. The three-phase model simulations presented 

here reveal how changes in bulk properties of blood clots result in different responses of 

normal and hemophilic blood clots to the blood flow. Parameter values of elasticities of 

blood clot components in our simulations used the experimental data provided in Tables 4 

and 5 of Section 3 of reference [43].

For simplicity, we consider stability of small blood clots formed in micron size blood 

venules. We assume that a blood clot, which is a porous and visco-elastic gel type substance, 

consists of three major components: plasma, fibrin network and platelet aggregates. (See 

Fig. 7(a) for an example of its structure.) Fibrin network is composed of thin fibers [31, 75]. 

Platelet aggregates are formed by the activated platelets, which change their shapes after 

activation and tightly adhere with each other [36, 91]. Experimental image Fig. 7(b) shows 

that stabilized non-occluding blood clot formed in vein has a dense core (in yellow color) 

consisting mainly of aggregates of activated platelets and fibrin network. A porous shell (in 

green color) which covers the core, has high concentration of fibrin network and low 

concentration of platelets. This clot structure was used as the initial structure for clot 

simulations presented in this section.

Fibrin network and platelet aggregates are treated in the model as visco-elastic fluids, and 

plasma is treated as a Newtonian fluid. The initial value of the volume fraction of the 

simulated blood clot (ϕ2) is set to be close to 1 and 0.7 in the core and shell regions, 

respectively. Initial values of the volume fraction of platelets (ϕ1) are 0.7 and 0.5 in the core 

and shell regions of the simulated blood clot, respectively. The maximum volume fraction of 

the fibrin network is assumed to occur near the surface of the clot (Fig. 7(f)) to mimic the 

fiber cap observed in the experiments [43, 48]. Fig. 7(d–f) shows the initial distributions of 

the volume fractions of components of the simulated clot, which correspond to the 

experimental observations described in [48]. Small spike-like extensions on the surface of 

the clot, which are similar to the ones seen in experimental figures (8–9) from [81], are 

added to the initial surface of the simulated blood clot to represent its surface in more 

realistic way.

Computational domain is chosen to be [0, Lx] × [0, Ly], where Lx = 800 × 10−6m and Ly = 

320 × 10−6m are the length and width of the domain, respectively. The inlet flow velocity 

imposed on the left boundary of the domain is given by uin = 4umax
y Ly − y

Ly2
, 0 , where umax 

= 3.2 × 10−2m/s. (See also Fig. 7(c).) Based on the experimental results in [57, 74], we 

assume that densities of the plasma and the blood clot are both ρ = 1.025 × 103kg/m3. 

Adhesion between blood clot and vessel wall [70, 71, 78] prevents the blood clot from 

moving on the vessel wall. Therefore, the no-slip boundary condition is used for the Navier-

Stokes equations in the simulations.
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The viscosity of the fibrin network ηn in a hemophilia clot is varied in simulations between 

4cP and 40cP [55]. The viscosity of the platelet aggregate ηp is chosen to be 40cP [38]. 

Also, the viscosity of the fibrin network in a normal clot is set to be 400cP, and the viscosity 

of the platelet aggregate is varied between 40cP and 400cP [38, 62]. The viscosity of the 

plasma is assumed to be ηf = 4cP [81]. The elastic modulus λn of the fibrin network of 

hemophilia clots is about O(1Pa) [43]. The elastic modulus of the fibrin network generated 

by using normal blood varies between O(10Pa) and O(100Pa) [43]. Simulations are stopped 

when no blood clot deformation is detected.

Panels (a-b) of the Fig. 8 demonstrate that small spike-like extensions, which mainly consist 

of fibrin, on the surface of a hemophilia clot develop into extensively elongated thin 

structures (emboli) (breakup of the emboli is not shown); while panels (c-d) of the Fig. 8 

show that normal clots deform only slightly. The simulations reveal a possible novel 

mechanism of destabilization of a hemophilia clot. Since surfaces of clots in general are not 

smooth, emboli can develop by the fibrin network on hemophilia clot surface even under 

normal blood flow conditions, and subsequently detach from the clot. This makes formation 

of a stable clot in hemophilia blood much harder than in normal blood. Simulations also 

predict that size of hemophilia clot was significantly smaller than normal clot. Volume 

changes of normal (red circles) and hemophilia (blue triangles) clots with respect to time are 

shown in Fig. 8e. The volume of the hemophilia clot gradually decreases after 0.5s by flow 

removal of the emboli and reaches a constant value around 1s, which is about 28.9% of its 

initial volume. On the other hand, the volume of the normal clot almost does not change. 

This is consistent with the experimentally observed clots [55]. Note that our simulation did 

not consider blood clot growth. This is why size of the simulated hemophilia clot reaches a 

constant value around 1s.

Simulations were used to study effects of changes in elasticity of the fibrin network on clot 

stability. The following values of the elasticity modulus of the fibrin network [43] are used 

in simulations: 0.1Pa, 1Pa, 10Pa and 50Pa. Viscosities of the fibrin network and platelet 

aggregate are fixed at 40cP. Fig. 9 shows that the clot with 0.1Pa elasticity modulus of the 

fibrin network is stretched to form a long and thin tail. When value of the elasticity modulus 

of the fibrin network increases, the clot becomes less deformable. This is consistent with the 

results in [43], and shows how elasticity of fibrin network affects clot deformation. Note that 

viscosities of the fibrin network and platelet aggregate used in these simulations are for 

hemophilia clots. Our simulations predicted that compared with viscosities of the fibrin 

network and platelet aggregate, the elasticity of the fibrin network played major role in 

resisting clot deformation induced by blood flow.

Fig. 10 shows that increase of fibrin network elasticity decreases the average speed of the 

intrathrombous flow, which also indicates that clot is less deformable. Simulations described 

in this section suggest that clots forming in hemophilia patients can develop emboli resulting 

in them being much less stable then clots developing in healthy individuals.
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5. Conclusions

Novel thermodynamically consistent three-phase Navier-Stokes Cahn-Hilliard model for 

simulating complex fluids is presented in the paper. The new model which is derived by 

using the EnVarA, is shown to be capable of simulating fluids with large density and 

viscosity ratios, and satisfy the energy dissipation law. Energy stable numerical scheme is 

also developed to solve obtained system of model equations. Convergence of the numerical 

scheme is demonstrated by simulating droplet sliding on an inclined plane. Modified 

General Navier Boundary Condition with fluid elasticity taken into account is introduced for 

purpose of simulating contact line problems.

Differences between outcomes obtained using Kelvin-Voigt and Oldroyd- B models 

representing visco-elasticity of complex fluids axe studied by using creep-recovery test for 

fluids and droplet spreading. Simulations suggest that the Kelvin-Voigt model is suitable for 

modeling complex fluid with reversible, visco-elastic deformation. While the Oldroyd-B 

model is more suitable for modeling complex fluid with fluid-like behavior.

Obtained model was used for studying deformation and stability of micron size blood clots 

under physiologically relevant blood flow conditions. Blood clot simulations showed that 

hemophilia clots are more deformable and unstable than blood clots obtained using normal 

blood [55]. Model simulations revealed that different responses of hemophilia and normal 

clots to blood flow are partially due to different structures and densities of fibrin networks. 

Notice that the viscosity and elasticity of platelet aggregates were varied in simulations as 

well.

The three-phase model can be generalized to study lysis (disintegration) of a blood clot due 

to activity of thrombolytic agents. It has been shown in [70, 71] that intra-thrombus 

molecular transport is affected by the structure of the blood clot. Therefore the model 

described in this paper can be coupled with the anti-coagulation transport sub-models to 

predict conditions of the gradual resolution of a blood clot [6].

Our model includes three phases. It can be viewed as a special case of the models described 

in the reference [79] with additional modification. This modification was motivated by the 

fact that for N-phase (N > 3) system, the surface tension between two phases cannot be 

uniquely represented by phase specific surface tension. Many previous works let surface 

tensions be homogeneous in this situation. In order to include non-homogeneous surface 

tensions and ensure no phase appears artificially, we couple phases hierarchically. Namely, 

the phase function in our model is treated not in a pairwise way but by using the binary tree 

approach. The binary tree approach is used to avoid deriving complicated algebraic relations 

between pairwise surface tension and phase specific surface tension for N ≥ 3 phases. Note 

that our model also satisfies Assumptions 2 and 3 in [79]. Moreover, the mixing energy as 

Λ = ϕ2
2 0

0 1
 described in our paper is a generation of the case Λ = I described in [79]. 

Therefore, our binary tree approach provides a simple alternative for coupling N-phase (N ≥ 

3) fluids.
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Appendix A. Mathematical notations used in the paper

Mathematical notations used in this paper are as follows. Suppose a 2-rank tensor is denoted 

as F, its l2 norm is |F |2 = ∑ij = 1, 2Fij
2 . If A and B are two 2-rank tensors, then 

(AB)ij = ∑kAikBkj and the double dot product of these two tensors is A:B = ∑ijAijBij. If a 

and b are two vectors, the outer product a ⊗ b means (a ⊗ b)ij = aibj. L2 norm of the smooth 

function f in the domain Ω, ∫Ω|f |2dx 1/2
, is denoted by ||f||Ω and the L2 norm on the 

boundary w, ∫Γ |f |2ds 1/2
, is denoted by ||f||w. If f and g are two smooth functions in Ω, (f, g) 

stands for the inner product of these two functions and it is defined by (f, g) = ∫Ωfgdx.

Appendix B. Derivation of the three-phase model

We first use LAP to derive the conservative force. The action functional is defined as 

follows:

A = ∫
0

t * ∫
Ω

1
2ρ |u |2 − ∫

0

t * ∫
Ω

λ1ϕ2
2 G1 ϕ1 +

γ1
2

2 |∇ϕ1|2 dx

− ∫
0

t * ∫
Ω

λ2 G2 ϕ2 +
γ2

2

2 |∇ϕ2|2 dx − ∫
0

t * ∫
Ω

λe
2 | ∇Ψ|2dx .

(B.1)

We use 1-parameter family of volume preserving diffeomorphisms to perform the variation 

xε, such that x0 = x and dxε
dε |ε = 0 = y, where y is smooth function with compact support and 

satisfies y(X, 0) = y(X, t*) = 0 for any X ϵ Ω0. For any ε, xε is required to satisfy det 

∂xε
∂X = 1. This leads to the divergence free condition for y(X, t) = y(x(X, t), t), i.e. ∇x ⋅ y = 0. 

For LAP, we use the variations xε of x as described above. The variation of action functional 

A is calculated as follows:
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d
dε |ε = 0A xε

= d
dε |ε = 0∫0

t*∫Ω0

ρ ϕ10(X), ϕ20(X)
2 |xt|2 dXdt

− d
dε |ε = 0∫0

t*∫Ω0
λ1ϕ20(X) G1 ϕ10 +

γ1
2

2 |F −T ∇Xϕ10(X)|2 dXdt

− d
dε |ε = 0∫0

t*∫Ω0
λ2 G2 ϕ20(X) +

γ2
2

2 |F −T ∇Xϕ20(X)|2 dXdt

− d
dε |ε = 0∫0

t*∫Ω0
1
2λe ϕ0(X) |∇XΨ0F −1|2 dXdt

= I1 + I2 + I3 + I4 .

(B.2)

Here ϕi(x) =
ϕi, 0
det F  [83], for i = 1, 2, is used, det F = 1 for the incompressible fluid.

This yields the following form of the first term of the right hand side of equation (B.2)

I1 = ∫
0

t*∫Ω0
ρ ϕ10, ϕ20 xtytdXdt

= − ∫
0

t*∫Ω0
ρ ϕ10, ϕ20 xtty dXdt

= − ∫
0

t*∫
Ω

ρ ϕ1, ϕ2 ∂tu + u ⋅ ∇u, y dxdt .

(B.3)

At the same time,if we draw back from Lagrangian to Eulerian and then do the integration 

by parts, we have

I1 = ∫
0

t*∫Ω0
ρ ϕ10, ϕ20 xtytdXdt

= ∫
0

t*∫
Ω

ρ ϕ1, ϕ2 u, yt + u ⋅ yt dxdt

= − ∫
0

t*∫
Ω

∂t(ρu) + ∇ ⋅ (ρu ⊗ u), y dxdt .

(B.4)

In this work, we combine above two formula as shown in [41]

I1 = − ∫
0

t*∫
Ω

1
2ρ ∂tu + u ⋅ ∇u , y dxdt

− ∫
0

t*∫
Ω

1
2 ∂t(ρu) + ∇ ⋅ (ρu ⊗ u) , y dx

(B.5)

dFε
dε |ε = 0 = − F −1 ∇Xy F −1[26] results in the following form of the second and third terms
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I2 = − ∫
0

t*∫Ω0
λ1γ1

2ϕ20 F −T ∇Xϕ10(X), −F −T ∇Xy TF −T ∇Xϕ10 dXdt

= − ∫
0

t*∫
Ω

λ1γ1
2 ϕ2∇ϕ1, − ∇y∇ϕ1 dxdt

= − ∫
0

t*∫
Ω

λ1γ1
2∇ ⋅ ϕ2∇ϕ1 ⊗ ∇ϕ1 ydxdt .

(B.6)

I3 = − ∫
0

t*∫
Ω

λ2γ2
2∇ ⋅ ∇ϕ2 ⊗ ∇ϕ2 ydxdt . (B.7)

The fourth term are transformed in a similar way as follows

I4 = − ∫
0

t*∫Ω0
λe ϕ10, ϕ20 ∇XΨ0 F −1: − ∇XΨ0 F −1 ∇Xy F −1 dXdt

= − ∫
0

t*∫
Ω

λe ϕ1, ϕ2 (∇Ψ:( − ∇Ψ∇y))dxdt

= − ∫
0

t*∫
Ω

∇ ⋅ λe(ϕ)(∇Ψ)T ∇Ψ , y dxdt .

(B.8)

Combining formula from (B.5) to (B.8), and taking into account of the incompressibility and 

the Weyl’s decomposition or Helmholtz’s decomposition, for some P1 ϵ W1,2(Ω) yields

ℱcon = − 1
2ρ ∂tu + u ⋅ ∇u + 1

2 ∂t(ρu) + ∇ ⋅ (ρu ⊗ u) +

+ λ2γ2
2∇ ⋅ ∇ϕ2 ⊗ ∇ϕ2 + λ1γ1

2∇ ⋅ ϕ2∇ϕ1 ⊗ ∇ϕ1
+ ∇ ⋅ λe(∇Ψ)T ∇Ψ + ∇P1 .

Variation of the dissipation functional with respect to uε = u + εv with ∇ • v = 0 in Ω and v • 

n = 0 on the wall w, where n is an outer normal vector of the wall, in the Eulerian coordinate 

system is as follows

1
2

δΔ
δu = ∫

Ω
( − ∇ ⋅ (ηD))vdx + ∫

w
τ ⋅ (ηD) ⋅ n + κϕ̇2∇τϕ2 + βsus vτds, (B.9)

where vτ = v · τ and τ is a tangential vector to the wall. The following expressions are also 

taken into account u · τ = us and ϕ̇ = ∂tϕ2 + us∂τϕ2. The following expression for the 

dissipative force in the equation of motion in the bulk region is obtained using MDP and the 

incompressible constraint

ℱdis = − ∇ ⋅ (ηD) + ∇P2 . (B.10)

Finally, after using the force balance in the bulk region, i.e., ℱcon = ℱdis, we obtain the 

equation of motion for the macroscopic fluid mixture
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1
2 ρ ∂tu + u ⋅ ∇u + ∂t(ρu) + ∇ ⋅ (ρu ⊗ u)

= ∇ ⋅ (ηD) − ∇P − λ2γ2
2∇ ⋅ ∇ϕ2 ⊗ ∇ϕ2

− λ1γ1
2∇ ⋅ ϕ2∇ϕ1 ⊗ ∇ϕ1 − ∇ ⋅ λe(∇Ψ)T ∇Ψ ,

(B.11)

where P = P1 − P2. The right hand side terms of the previous equation can be written

λ1γ1
2∇ ⋅ ϕ2 ∇ϕ1 ⊗ ∇ϕ1

= λ1γ1
2∇ ⋅ ϕ2∇ϕ1 ∇ϕ1 +

γ1
2

2 λ1ϕ2∇|∇ϕ1|2

= − λ1 −γ1
2∇ ⋅ ϕ2∇ϕ1 + ϕ2G1′ ϕ1 ∇ϕ1 + λ1ϕ2∇ G1 ϕ1 +

γ1
2

2 |∇ϕ1|2

= − μ1∇ϕ1 + λ1ϕ2∇ G1 ϕ1 +
γ1
2

2 |∇ϕ1|2 + ∂1λe
1
2 | ∇Ψ|2 ∇ϕ1,

λ2γ2
2∇ ⋅ ∇ϕ2 ⊗ ∇ϕ2

= λ2γ2
2Δϕ2∇ϕ2 +

γ2
2λ2
2 ∇|∇ϕ2|2

= − λ2 −γ2
2Δϕ2 + G2′ ϕ2 ∇ϕ2 + λ2∇

γ2
2

2 |∇ϕ2|2 + G2 ϕ2

= − μ2∇ϕ2 + λ2∇
γ2
2

2 |∇ϕ2|2 + G2 ϕ2 + λ1 G1 +
γ1
2

2 |∇ϕ1|2 ∇ϕ2

+ ∂2λe
1
2 | ∇Ψ|2 ∇ϕ2

with the form of the elastic force term

∇ ⋅ λe(∇Ψ)T ∇Ψ = (∇Ψ)Tω +
λe
2 ∇ | ∇Ψ|2

where ω = ∇ ⋅ λe∇Ψ . This results in the following form of the equation (B.11)

∇ ⋅ λe(∇Ψ)T ∇Ψ + λ2γ2
2∇ ⋅ ∇ϕ2 ⊗ ∇ϕ2 + λ1γ1

2∇ ⋅ ϕ2∇ϕ1 ⊗ ∇ϕ1
= − μ1∇ϕ1 − μ2∇ϕ2 + ∇Ψ Tω + ∇P

with

P = λ2
γ2
2

2 |∇ϕ2|2 + λ2G2 ϕ2 + λ1G1 +
λ1γ1

2

2 |∇ϕ1|2 ϕ2 +
λe
2 | ∇Ψ|2 .

Finally, this yields the macroscale momentum equation of the three-phase model
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1
2 ρ ∂tu + u ⋅ ∇u + ∂t(ρu) + ∇ ⋅ (ρu ⊗ u)

= ∇ ⋅ (ηD) − ∇P − ∇μ1ϕ1 − ∇μ2ϕ2 − ∇Ψ Tω,

where P = P − μ1ϕ1 − μ2ϕ2.

Remark Appendix B.1

Notice that w the variation is taken in the Lagrangian coordinate system when using LAP 
approach and it is taken in the Eulerian coordinate system in the MDP method. This is done 
because the variation of the action functional is taken with respect to the flow map (or 
trajectory x(X,t)) and it is more convenient to use the LAP in the Lagrangian coordinates.

Appendix C. Stability analysis of the numerical scheme

We present in this section the stability analysis of the numerical scheme (3.1). We start by 

proving the following lemma similar to the one in [29]. This lemma will be used in proving 

Theorem 3.1.

Lemma Appendix C.1

Let E = Ec − Ee, where Ec = ∫Ω
s1

2ε1
|ϕ1|2 +

s2
2ε2

|ϕ2|2 dx, 

Ee = ∫Ω
s1

2ε1
|ϕ1|2 +

s2
2ε2

|ϕ2|2 − 1
ε2

G2 ϕ2 −
ϕ2

2

ε1
G1 ϕ1 dx. If 

s1 ≥ max G1′′ ϕ1
n ϕ2

n 2, G1′′ ϕ1
n ϕ2

n 2 − 2ϕ2G1′ ϕ1
n , 

s2 ≥ max G2′′ ϕ2
n +

2ε2
ε1

G1, G2′′ ϕ2
n +

2ε2
ε1

G1 − ϕ2G1′ ϕ1
n , and supx ∈ Ω |ϕ1

n|, |ϕ2
n| ≤ C with a 

constant C > 0 then for given ϕ1
n and ϕ2

n, we have

E ϕ1
n + 1, ϕ2

n + 1 − E ϕ1
n, ϕ2

n ≤ μ1
n + 1, ϕ1

n + 1 − ϕ1
n + μ2

n + 1, ϕ2
n + 1 − ϕ2

n , (C.1)

where μ1 =
s1
ε1

ϕ1
n + 1 −

s1ϕ1
n

ε1
− ϕ2

n 2G1′ ϕ1
n

ε1
, μ2 =

s2
ε2

ϕ2
n + 1 −

s2ϕ2
n

ε2
−

G2′ ϕ2
n

ε2
− 2ϕ2

n G1 ϕ1
n

ε1
.

Proof

By mean value theorem, we have

Ec ϕ1
n, ϕ2

n − Ec ϕ1
n + 1, ϕ2

n + 1 ≥ δEc
δϕ1

, ϕ1
n − ϕ1

n + 1 + δEc
δϕ2

, ϕ2
n − ϕ2

n + 1

+ s1
ε1

|ϕ1
n − ϕ1

n + 1|2 + s2
ε2

|ϕ2
n − ϕ2

n + 1|2 .
(C.2)

Similarly, we can get
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Ee ϕ1
n + 1, ϕ2

n + 1 − Ee ϕ1
n, ϕ2

n

= δEe ϕ1
n, ϕ2

n

δϕ1
, ϕ1

n + 1 − ϕ1
n + δEe ϕ1

n, ϕ2
n

δϕ2
, ϕ2

n + 1 − ϕ2
n

+ H11, ϕ1
n + 1 − ϕ1

n 2 + 2H12, ϕ1
n + 1 − ϕ1

n ϕ2
n + 1 − ϕ2

n

+ H22, ϕ2
n + 1 − ϕ2

n 2 ,

(C.3)

where

H =

s1
ε1

− ϕ1
2

ε1
G1′′ ϕ1 − 2ϕ2

ε1′
G1′ ϕ1

− 2ϕ2
ε1

G1′ ϕ1
s2
ε2

−
G2′′ ϕ2

ε2
− 2G1 ϕ1

ε1

. (C.4)

If s1 ≥ max G1′′ ϕ1
n ϕ2

n 2, G1′′ ϕ1
n ϕ2

n 2 − 2ϕ2G1′ ϕ1
n , 

s2 ≥ max G2′′ ϕ2
n +

2ε2
ε1

G1, G2′′ ϕ2
n +

2ε2
ε1

G1 − ϕ2G1′ ϕ1
n , then matrix H is a positive defined 

matrix.

Then, there exist two constants C1 and C2, such that

Ee ϕ1
n + 1, ϕ2

n + 1 − Ee ϕ1
n, ϕ2

n

≥ δEe ϕ1
n, ϕ2

n

δϕ1
, ϕ1

n + 1 − ϕ1
n + δEe ϕ1

n, ϕ2
n

δϕ2
, ϕ2

n + 1 − ϕ2
n

+ C1|ϕ1
n − ϕ1

n + 1|2 + C2|ϕ2
n − ϕ2

n + 1|2 .

(C.5)

Adding (C.2) with (C.5) together gives

E ϕ1
n + 1, ϕ2

n + 1 − E ϕ1
n, ϕ2

n ≤ μ1
n + 1, ϕ1

n + 1 − ϕ1
n + μ2

n + 1, ϕ2
n + 1 − ϕ2

n .

By using above Lemma and multiplying each equation in system (3.1) with proper function, 

we can prove the energy stable Theorem (3.1) in Section 3.

Theorem 3.1

Let N = maxϕ2
n | 2

2 2ϕ2
n − 1 cos θs | . If s1 and s2 satisfy the condition in Lemma Appendix 

C.1 and αw ≥ N, then the solution ϕ1
n + 1, ϕ2

n + 1, un + 1, Pn + 1, Ψn + 1  of the scheme (3.1) 

satisfies the following discrete energy law for any Δt > 0:
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ℰn + 1 + ( △ t)2

2ρRe ∇Pn + 1 2 + Δt 1
2 η1/2D un + 1 2

+ Δt M1
1/2∇μ1

2 + M2
1/2∇μ2

2

+ Δt ls−1/2usn + 1 w
2 + κα2 ϕ̇2

n + 1
w
2

≤ ℰn + (Δt)2

2ρRe ∇Pn 2

(C.6)

Proof of Theorem 3.1

By the definition of λe in Section 3, inner product of ∂iλe
n + 1 |∇Ψn|2

2  and ϕi
n + 1 − ϕi

n, i = 1, 2, 

respectively, and summing them up, result in the following

1
2 ϕ2

n + 1 2 1 − α12 ϕ1
n + 1 − ϕ1

n, |∇Ψn|2

+ ϕ2
n + 1 ϕ1

n + 1 − ϕ1
n α12 ϕ2

n + 1 − ϕ2
n, |∇Ψn|2

= 1
2 ϕ2

n + 1 2 ϕ1
n + 1 + 1 − ϕ1

n + 1 α12 , |∇Ψn|2

− 1
2 ϕ2

n + 1 2 ϕ1
n + 1 − ϕ1

n α12 , |∇Ψn|2

+ 1
2 ϕ2

n + 1 2 ϕ1
n + 1 − ϕ1

n α12 , |∇Ψn|2

− 1
2 ϕ2

n 2 ϕ1
n + 1 − ϕ1

n α12 , |∇Ψn|2

+ 1
2 ϕ2

n + 1 − ϕ2
n 2 ϕ1

n + 1 − ϕ1
n α12 , |∇Ψn|2

= 1
2 λe

n + 1 1/2∇Ψn 2
− 1

2 λe
n 1/2∇Ψn 2

+ 1
2 ϕ2

n + 1 − ϕ2
n 2 ϕ1

n + 1 − ϕ1
n α12 , |∇Ψn|2

(C.7)

And for the hydrophilic term, inner product of ∇ ⋅ ϕ2
n + 1 2∇ϕ1

n + 1  and ϕ2
n + 1|∇ϕ1

n|2 by 

ϕ1
n + 1 − ϕ1

n and ϕ2
n + 1 − ϕ2

n, respectively, and summing them up have the form

−ε1 ∇ ⋅ ϕ2
n + 1 2∇ϕ1

n + 1 , ϕ1
n + 1 − ϕ1

n + ε1 ϕ2
n + 1|∇ϕ1

n|2, ϕ2
n + 1 − ϕ2

n

= ε1 ϕ2
n + 1 2∇ϕ1

n + 1, ∇ϕ1
n + 1 − ∇ϕ1

n + ε1 |∇ϕ1
n|2ϕ2

n + 1, ϕ2
n + 1 − ϕ2

n

= ε1
2 ϕ2

n + 1 2, |∇ϕ1
n + 1|2 − |∇ϕ1

n|2 + |∇ ϕ1
n + 1 − ∇ϕ1

n |2

+ ε1
2 |∇ϕ1

n|2, ϕ2
n + 1 2 − ϕ2

n 2 + ϕ2
n + 1 − ϕ2

n 2

= ε1
2 ϕ2

n + 1∇ϕ1
n + 1 2 − ε1

2 ϕ2
n∇ϕ1

n 2

+ ε1
2 ϕ2

n + 1 ∇ ϕ1
n + 1 − ϕ1

n 2 + ε1
2 ϕ2

n + 1 − ϕ2
n ∇ϕ1

n 2 .

(C.8)
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Combining equations (C.7)–(C.8) and Lemma Appendix C.1, results in the following 

inequality

ℰcoℎ
n + 1 + ℰw

n + 1 − ℰcoℎ
n + ℰw

n

+ αe
2 λe

n + 1 1/2∇Ψn 2
− λe

n 1/2∇Ψn 2

≤ μ1
n + 1, ϕ1

n + 1 − ϕ1
n + μ2

n + 1, ϕ2
n + 1 − ϕ2

n

+ α2 L ϕ2
n + 1 , ϕ2

n + 1 − ϕ2
n w .

(C.9)

After taking the inner product of the first and second equations in (3.1a) with Δtμ1
n + 1 and 

Δtμ2
n + 1, respectively, we have

ϕ1
n + 1 − ϕ1

n, μ1
n + 1 − Δt un + 1ϕ1

n + 1, ∇μ1
n + 1 + △ tM1 ∇μ1

n + 1 2 = 0, (C.10)

ϕ2
n + 1 − ϕ2

n, μ2
n + 1 − Δt un + 1ϕ2

n + 1, ∇μ2
n + 1 + ΔtM2 ∇μ2

n + 1 2 = 0. (C.11)

Taking the inner product of the first equation in (3.1b) with Δtun+1 yields

Re ρn + 1un + 1 − ρnun

2Δt + ρn un + 1 − un

2Δt , un + 1 (C.12)

= Re 1
2 ρn + 1 + ρn un + 1 − ρnun, un + 1 (C.13)

= Re
2 ζn + 1un + 1 2 − ζnun 2 + ζn un + 1 − un 2

(C.14)

= − Δt
2 η ϕn + 1 1/2D un + 1 2

+ Δt ∇ −2Pn + Pn − 1 , un + 1

− Δt ϕ1
n + 1∇μ1

n + 1, un + 1 − △ t ϕ2
n + 1∇μ2

n + 1, un + 1

− αeΔt ∇Ψn Tωn + 1, un + 1 + Δt η ϕn + 1 τ ⋅ D ϕn + 1 ⋅ n, usn + 1
w,

where ωn + 1 = ∇ ⋅ λe
n + 1∇Ψn + 1 . Here we use the fact that 

∫Ω ∇ ⋅ ρn + 1un + 1 ⊗ un + ρn + 1un ⋅ ∇un + 1, un + 1 dx = 0.

By using the same argument as in [29], the pressure can be estimated as follows
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Δt un + 1, ∇ −2Pn + 1 + Pn

≤ (Δt)2

2ρRe − ∇ Pn − Pn − 1 2 − ∇Pn + 1 2 + ∇Pn 2

+ Re
2 ζn un + 1 − un 2 .

(C.15)

Taking gradient of each component of the third equation in (3.1b), yields

∂jΨi
n + 1 − ∂jΨi

n

△ t + ∂j uk
n + 1∂kΨi

n = 0. (C.16)

The inner product of above equation with αeΔtλe
n + 1∂kΨi

n + 1 results in

αe
2 λe

n + 1 1/2Ψn + 1 2
− λe

n + 1 1/2Ψn 2

≤ αeΔt ∇Ψn Tωn + 1, un + 1

− αe τ ⋅ ϕ2
n + 1 2 ∇Ψn T ∇Ψn + 1 ⋅ n, usn + 1

w
.

(C.17)

Adding equation (C.12) to the equation (C.17) yields

Re
2 ζn + 1un + 1 2 − ζnun 2 + ζn un + 1 − un 2

+ αe
2 λe

n + 1 1/2Ψn + 1 2
− λe

n + 1 1/2Ψn 2

≤ − Δt
2 η ϕn + 1 1/2D un + 1 2

+ Δt ∇ −2Pn + Pn − 1 , un + 1

− Δt ϕ1
n + 1∇μ1

n + 1, un + 1 − △ t ϕ2
n + 1∇μ2

n + 1, un + 1

− ls1/2usn + 1 w
2 + α2 L ϕ2

n + 1 ∂τϕ2
n + 1, usn + 1

w .

(C.18)

Combing equations (C.9)–(C.11), (C.18) with pressure estimation (C.15) results in the 

equation (3.2). ■
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Appendix D. Additional Simulation Figures

Figure D.11: 
Profiles of velocity norm at steady state with different values of elasticity for fibrin network 

and platelet aggregate. (a) λn = 0.1Pa, λp = 1Pa. (b) λn = 1Pa, λp = 10Pa. (c) λn = 10Pa, λp 

= 10Pa. (d) λn = 50Pa, λp = 10Pa.
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Figure 1: 
Diagram of the droplet sliding on an inclined plane under gravitational force.
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Figure 2: 
Convergence study of the numerical scheme by simulating droplet sliding on an inclined 

plane, (a) Motion of the receding contact point xr by using different meshes, (b) Motion of 

the advancing contact point xa with different meshes, (c) Velocity of the receding contact 

point xr by using different meshes.
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Figure 3: 
Creep and Recovery. The inlet flow velocity specified by u = 20(0.5 – y)y is added until t = 

1 on the left boundary of the domain. Then the inlet flow velocity is set to be zero.
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Figure 4: 
Interface of the droplet at time (a) t = 0.1, (b) t = 1, (c) t = 2, and (d) t = 3 for creep-recovery 

test. The Kelvin-Voigt model is used for describing droplet visco-elasticity.
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Figure 5: 
Spontaneous plot of interface profiles of the simulated droplets when they spread on the 

plane. Due to symmetry, only parts of the interfaces in x > 0 plane are plotted. (a) t = 0.5; (b) 

t = 1; (c) t = 1.5; and (d) t = 5. Black line: Pure Newtonian droplet. Blue dash line: Droplet 

with the Oldroyd-B model. Red dash dot line: Droplet with the Kelvin-Voigt model.
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Figure 6: 
(a) Contact angles and (b) radius of simulated spreading droplets. Black line corresponds to 

the pure Newtonian droplet. Red, brown and purple dash dot lines correspond to the Kelvin-

Voigt type visco-elastic droplet with different shear modulus, αe = 2, 5, 10, respectively. 

Blue and green dash lines indicate data for the Oldroyd-B visco-elastic droplets with 

different relaxation times Wi = 2, 5, respectively.
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Figure 7: 
Initial structure of the blood clot in a vein, (a) Reconstructed three-dimensional image of a 

venule blood clot from in vivo experiments in mice. (Original image was published in [43, 

82].) Platelets are indicated in red, fibrin is in green, yellow indicates combination of 

platelets and fibrin, and black is used for other blood cells. Images show that platelet 

aggregate in the middle of the clot is covered by the fibrin network and that the surface of 

the blood clot consists mainly of the fiber network, (b) yz cross section of the reconstructed 

image of the blood clot; (c) Schematic diagram of the clot structure used in simulations of a 

blood clot deformation under shear flow. Blood flow enters on the left side of the simulation 

domain with a parabolic profile and exits on the right side of the domain, (d) Initial 

distribution of the volume fraction of the blood clot represented by the phase function ϕ2(t = 

0). (e) Initial distribution of the volume fraction of platelets represented by ϕ1(t = 0). (f) 

Initial distribution of the volume fraction of the fibrin network represented by (1 − ϕ1(t = 0)).
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Figure 8: 
Shapes of clots with different values of viscosity described by steady state solutions of the 

model system of equations with fixed elasticity modulus λn = 1Pa, λp = 10Pa. (a) ηn = 4cP, 

ηp = 40cP, (b) ηn = 40cP, ηp = 40cP, (c) ηn = 400cP, ηp = 40cP, (d) ηn = 400cP, ηp = 

400cP. ηp and ηn are the viscosities of the platelet aggregate and fibrin network, 

respectively, (e) Dynamics of total volumes of the clot. Blue triangle: ηn = 4cP, ηp = 40cP. 

Red circle: ηn = 400cP, ηp = 400cP.
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Figure 9: 
Shapes of clots with different values of elasticity modulus described by steady state 

solutions of the model system of equations, (a) λn = 0.1Pa, λp = 1Pa. (b) λn = 1Pa, λp = 

10Pa. (c) λn = 10Pa, λp = 10Pa. (d) λn = 50Pa, λp = 10Pa. λp and λn are elasticity moduli 

of the platelet aggregates and fibrin networks, respectively.
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Figure 10: 
Evolution of averaged velocity inside clot ∫ΩχClot |u |dx/∫ΩχClotdx. λp and λn are elasticity 

moduli of the platelet aggregates and fibrin networks, respectively.
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Table 1:

The parameters used in convergence study.

Re ls ε α βg

0.1 0.005 0.01 10 20

Here Re is the Reynolds number; ls is the slip length; ε = 0.01 is the capillary width; α =
λAL
ηAU  is the mixture energy coefficient; 

βg =
ρAgL2

ηAU = 20 is the gravitational force.
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