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A Linear Power Flow Formulation for
Three-Phase Distribution Systems

Hamed Ahmadi, Member, IEEE, José R. Martı́, Life Fellow, IEEE, and Alexandra von Meier, Member, IEEE

Abstract—Power flow analysis is one of the tools that is required
in most of the distribution system studies. An important charac-
teristic of distribution systems is the load unbalance in the phases
and a three-phase power flow analysis is needed. In this paper, a
three-phase linear power flow (3LPF) formulation is derived based
on the fact that in a typical distribution system, voltage angles and
magnitudes vary within relatively narrow boundaries. The accu-
racy of the proposed 3LPF is verified using several test cases. Po-
tential applications of the proposed method are in distribution sys-
tems state estimation and volt-VAR optimization.
Index Terms—Unbalanced power flow, voltage dependence.

NOMENCLATURE

Network admittance matrix.
Network conductance matrix.
Network susceptance matrix.
Active/reactive power demand.
Load equivalent current injection.
Real/imaginary parts of nodal voltages.
ZIP load model parameters.
Tap position for voltage regulators.

I. INTRODUCTION

A. Motivation

T HE modern Distribution Management System (DMS)
provides decision support in near-real-time to optimize

the performance of the system. Many of the computations done
inside the DMS, such as state estimation, power flow analysis,
volt-VAR optimization, network reconfiguration, etc., require
power flow solutions. Since these computations need to be
done at near-real-time, a fast and robust power flow solution
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method is needed. The authors have previously proposed the
Linear Power Flow (LPF) formulation, assuming a balanced
network [1]. This formulation is suitable for some of the op-
timization problems controlling three-phase equipment. For
instance, when optimizing the network configuration, avail-
able switches are opened/closed to alter the network topology
[2]. Since distribution system switches are often three-phase
units (gang-operated), the LPF is an efficient alternative to
other power flow analysis methods, e.g., the Newton-Raphson
method, which are nonlinear and non-convex. In some cases,
however, the unbalance between the phases cannot be ne-
glected. For example, some of the voltage regulators are
independent units installed on each phase. Distribution system
state estimation (DSSE) also requires a full consideration of
unbalances in the system model. In such cases, a three-phase
power flow solution is needed.
The main purpose of this paper is to extend the application of

the LPF method to unbalanced distribution systems. The 3LPF
source codes are available to the power systems community
under the GNU General Public License agreement at [3].
There are several well-known methods for power flow anal-

ysis in the literature. Newton-Raphson and Fast Decoupled are
the most common methods for transmission systems, while the
Backward/Forward Sweep is one of the widely usedmethods for
distribution systems. There are, however, some key differences
between transmission systems and distribution systems, such
smaller ratios, mixed overhead-underground cable sec-
tions, shorter lengths, phase unbalances, and often radial config-
uration and single point of supply. These special characteristics
sometimes cause difficulties in applying conventional power
flow analysis methods developed for transmission systems to
distribution systems. Often, a balanced case is considered in dis-
tribution systems planning since the unbalances may not highly
affect the decisions in the long-term planning stage. In addition,
the computation time may not be an important factor in system
planning studies. Therefore, the nonlinear and non-convex for-
mulation of the balanced power flow problem is sufficient for
most of the cases in system planning.When it comes to the near-
real-time analysis and optimization, on the other hand, computa-
tion time and robustness become binding factors. The proposed
3LPF algorithm in this paper addresses these needs.

B. Related Literature

A three-phase version of the Newton-Raphson power flow
analysis was formulated in [4] in complex form. Comparing the
solution proposed in [4] with the balanced case revealed that
this method takes 6 iterations to converge when the maximum
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tolerance is , while the balanced case takes only 4 itera-
tions to reach the same tolerance. Normally, optimization algo-
rithms have difficulties with complex numbers and having the
equations in complex form may not be suitable for optimization
routines. The Fast-Decoupled method, when applied to distri-
bution systems, may not perform well due to high ratios
in some cases. A method was proposed in [5] that uses a com-
plex impedance base, as opposed to the conventional magni-
tude base, to calculate the per-unit impedances. By doing so,
the ratio can be deliberately altered to avoid convergence
problems. This method has been shown to work for balanced
networks in [5]. Sequence networks, namely the positive, neg-
ative, and zero sequences, were adopted in [6] and [7] to solve
the unbalanced power flow. Sequence networks have some ad-
vantages in modeling DGs and transformers of various config-
urations [8] in the power flow framework.
The Backward/Forward Sweep method, originally developed

for radial systems, was improved in [9] and [10] to account for
networks with loops and laterals. A load-stepping technique was
proposed in [11] to address the convergence issue of sweep-
based methods in heavily loaded feeders. It should be noted that
the sweep-based methods do not admit a closed form formu-
lation of the power flow problem to be embedded in an opti-
mization algorithm. Three methods were compared in [12] in
terms of computational burden, namely the Newton, Dishonest
Newton, and Fixed-Point Iteration (FPI) methods. A modified-
augmented-nodal analysis method was used to construct the
system of power flow equations. It was shown that the FPI
method is faster than other competitors, especially the Forward/
Backward Sweep method. In the FPI method of [12], loads are
first represented as parallel R-L elements at the nominal voltage
and in the consecutive iterations, appropriate current injections
are added to the right-hand side to compensate for themismatch.
The implicit Gauss method was introduced in [13] for

power flow analysis. Loads and capacitor banks are replaced by
equivalent current injections and a fixed admittance matrix is
then factorized once to find the solution of a system of linear
equations for which only the right-hand side changes at each
iteration. Branch voltages, i.e., the difference between the volt-
ages at the two ends of a branch, were taken as state variables
to form the power flow equations in [14]. By doing so, the au-
thors of [14] reached better performance than the implicit
method.
The current injection method (CIM) for power flow analysis

was previously proposed by the authors of [15] for single-phase
balanced systems and was extended to the three-phase unbal-
anced cases in [16]. The CIM was adopted in [17], consid-
ering loops in the network instead of nodes, to form the power
flow equations. The CIM was also employed in [18] and the
impedance matrix was formed using an upper triangular matrix
that relates the branch currents to nodal current injections.
There have been a few linear approximations of power

flow equations in the literature. One linear approximation is
the so-called DC power flow, in which all voltage magnitudes
are assumed to be one per-unit, line resistances are ignored,
and voltage angles are assumed to be small. In a DC power
flow model, only active power flows can be approximated

and reactive power flows are not considered [19]. The as-
sumptions of DC power flow does not hold for a typical dis-
tribution system since the resistive and reactive parts of the
line impedances are comparable. One recent study proposed
the linearization of the nonlinear power flow manifold [20].
The power flow equations are linearized around the no-load
solution using a first-order approximation method in [20]. A
linear power flow approximation for a balanced distribution
system was proposed in [21] which introduces a relatively
large error in the solution but provides an upper and lower
bound on nodal voltages.
In this paper, two methods are discussed for power flow anal-

ysis. The first method, which is based on the fixed-point iteration
method, was obtained by slight modifications to the previously
proposed current injection method and is discussed for compar-
ison purposes only. The second method, called the 3LPF, is the
main contribution of this paper and is a linear approximation of
the first method. Amodified version of the CIM is described that
does not require the formation and updating of the coefficient
matrix at every iteration. This method is used later as a reference
to determine the error of the 3LPF. The modified version of the
CIM used here was inspired by the implicit method of [13].
The algorithm starts by replacing loads by their equivalent com-
plex current injection. At every iteration, the corresponding cur-
rent injections are updated according to the nodal voltages cal-
culated in the previous iteration. This way, the coefficient matrix
of the system of linear equations is constant at all iterations and,
therefore, the computational requirements are reduced. This is
an FPI method for solving the power flow problem using the
CIM. The FPI-based CIM is used as a reference to calculate the
error of the 3LPF solution proposed in this paper.
The rest of the paper is organized as follows. In Section II,

the FPI-based CIM for three-phase power flow analysis is de-
scribed. The derivation of the 3LPF is explained in Section III.
Simulation results are provided in Section IV, demonstrating the
accuracy of the 3LPF solution. The main findings of this study
are summarized in Section VI.

II. THE CLASSICAL CURRENT INJECTION METHOD

A. Branch Models
Distribution systems involve three-phase, double-phase, and

single-phase branches and loads. Four-wire sections can be
replaced by their three-phase equivalent obtained by applying
Kron's reduction technique [13]. The branch admittance matrix
can be found by taking the inverse of the branch impedance
matrix. The line capacitance (also referred to as line charging)
can be considered based on the -model representation of the
line. Half of the line total capacitance is added to one end and
the other half to the other end.

B. Load Models
The analysis in this paper is limited to the primary distribution

system, i.e., from the substation transformer to the distribution
transformers. There is usually minimal information available to
the utilities regarding the secondary distribution system in terms
of exact load values, length and type of service cables, etc. A
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common practice is to assume a typical voltage drop on the
secondary system and limit the power flow analysis to the pri-
mary distribution system. Loads may appear in Y or connec-
tions. When loads are connected in Y-grounded, the equivalent
current injection in complex form can be calculated as:

(1)

where stands for the phases. In rectangular
coordinates, (1) can be expressed as:

(2)

Loads are voltage-dependent elements. Conventionally, the
voltage dependence of loads is characterized by the so-called
ZIP model, given by

(3a)

(3b)

where the parameters are obtained using a curve-fitting
technique. Some typical values for these parameters were ob-
tained in, e.g., [22], for different load types. For instance, a
heater can be modeled as , with other parameters equal
to zero. Values for and in (3) are substituted in (2), ren-
dering the current injections as functions of the real and imagi-
nary parts of the corresponding nodal voltages.
Modeling of the Y-connected loads is straight forward. How-

ever, in some cases loads are connected in configuration, as
in Fig. 1(a). In such cases, equivalent current injections for each
phase can be obtained using the following equation:

(4)

where

(5)

and similar equations can be written for and . Using these
equivalent current injections, a -connected load can be repre-
sented by Y-connected current sources. Note that the sum of
these three currents is zero, which immediately follows from
(4). Load voltage dependence can also be considered for -con-
nected loads. The voltages in this case are line-to-line voltages.
Distributed generation units can be modeled in the 3LPF

framework as either constant-power (power factor control) or
constant-current elements (negative loads). The current version
of the 3LPF is not able to model PV nodes (voltage-controlled
nodes) in the network.

C. Ideal Voltage Regulator
Fig. 2 shows the diagram of a Y-connected voltage regulator.

Due to the daily and seasonal load variation, feeder voltage

Fig. 1. A -connected load and its equivalent Y-connected current injection.
(a) -connected load, (b) Equivalent current injection.

Fig. 2. The equivalent model of a Y-connected voltage regulator.

profiles need to be regulated to ensure all voltages along the
feeder are within the standard range. Also, voltage drop on long
feeders may exceed the standard values and a voltage regulator
can be placed in an appropriate location to adjust the voltage. A
common type of voltage regulator is the Y-connected type, with
independent operation on each phase. The voltage buck/boost
level applied by an ideal regulator to each phase is shown by

here, which is the ratio of the secondary voltage over the
primary voltage, i.e., . When the line drop
compensation (LDC) is activated, the control mechanism of the
regulator adjusts the voltage magnitude at an electrical distance,
given by the user-defined values for and for each
phase. Therefore, the monitored voltage for each phase is

.
In order to consider the regulator model within the nodal anal-

ysis, the primary and secondary sides are treated as separate
nodes. Dependent current sources are added to the Kirchhoff's
Current Law (KCL) equations written for the primary node.
Extra variables are then introduced to the problem, i.e., , and
extra equations for . The new admittance matrix is some-
times referred to as the augmented admittance matrix.
An alternative method for modeling voltage regulators was

discussed in [23], in which voltage buck/boost control is im-
posed by appropriate current injections at each end. Any other
component which can bemodeled as current injections or equiv-
alent series/shunt admittance can be incorporated into the 3LPF
framework. Modeling aspects of different transformer configu-
rations within the power flow algorithm have been discussed in
[24]. These models can be readily incorporated into the 3LPF
framework since they are based on the admittance matrix rep-
resentation of the system.
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D. Fixed-Point Iteration

The current injection method (CIM) is based on applying the
KCL at each node in the system. The sum of the currents drawn
from a node by the loads should be equal to the sum of the
currents injected into that node from the rest of the network.
Using load equivalent current injections, the following general
formulation can be reached for a systemwith nodes (including
all the existing phases):

(6)

where is the admittance matrix; is
the load equivalent current injections as a nonlinear function
of the nodal voltages . Starting from an initial guess
, under the condition that is invertible, (6) can be treated

as a fixed-point iteration (FPI) problem. The iteration method is
described in Algorithm 1. The process continues until the dif-
ference between the two consecutive solutions is less than the
predefined tolerance .

Algorithm 1 CIM using Fixed-Point Iteration

1: procedure FIXED-POINT ITERATION
2:
3: while do
4: Update current injections
5: Solve for
6:
7:
8: end while
9: end procedure

The nodal voltages in the unloaded case are considered as
the initial guess, i.e., all the voltages are equal to the substation
voltage. The FPI algorithm used here is different from the one
used in [12] in the sense that loads are converted to R-L equiva-
lents in [12] while they are considered as equivalent current in-
jections here. As reported in [12], the FPI method is about three
times faster than the Newton method and about two times faster
than the Dishonest Newton method for the IEEE 8500-Node
system.

III. THE LINEAR POWER FLOW METHOD

The CIM, compared to the Newton-Raphson equations, takes
the complexity and nonlinearities from the power flow equa-
tions and places them in the load modeling part. It is more ef-
fective to perform linearization on the load models where the
impacts on the solution accuracy are relatively small. Having a
closer look at (6) reveals that the only nonlinearity arises from
the right-hand side of the equations, i.e., the equivalent current
injections . Since (6) is written in complex form, a decom-
posed version is considered here which is in the real form:

(7)

in which and are the real and imaginary
parts of the augmented admittance matrix and

are the real and imaginary parts of the three-phase
nodal voltages , respectively; and are
the real and imaginary parts of the three-phase nodal current
injections , respectively. The terms in the right-hand side
of (7) were derived in (2) for Y-connected loads and can be
similarly derived for -connected loads using (4) and (5). Using
these equivalents for and , all the nonlinear terms turn out
to be functions of and . Substituting the corresponding
values of and from (3) into (2), and assuming
p.u., the relations in (8a) and (8b), shown at the bottom of the
page, can be derived.
Depending on the load voltage dependence characteristics,

four nonlinear terms appear in (8), as follows:

(9a)

(9b)
These nonlinear functions can be approximated with their
linear equivalents using a curve-fitting technique when and

vary within a certain range. The approximated linear func-
tions are then expressed as

(10)

(8a)

(8b)
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Fig. 3. Ranges of variation for phase and phase-to-phase voltages for %
change in magnitudes and degrees change in the angles.

The linearization process for is explained in Appendix A.
The parameters and are taken to the left-hand side
and added to the appropriate elements in the coefficient matrix
in (7). The resulting system of linear equations yields the exact
solution when all the loads are modeled as constant-impedance.
In other cases, a small error is introduced. The error associated
with these approximations is evaluated in Section IV for dif-
ferent scenarios.
The nonlinear terms for -connected loads need to be fur-

ther elaborated on. The terms resulting from decomposing (5)
into its real and imaginary parts have phase-to-phase voltages as
variables rather than phase-to-ground voltages. In this case, the
variables and in Appendix A are, e.g., and , respec-
tively. The phase-to-phase voltages can then be expressed as
the difference between the corresponding phase-to-ground volt-
ages, e.g., . The domains of variation for each
phase voltage and phase-to-phase voltage are shown in Fig. 3.
The filled areas show the variation of the arrow tips for each
variable. Phase voltage magnitudes are assumed to vary %
and the phase angles to vary degrees.
It is important to notice the difference between a linear

approximation of a function obtained at one point using its first
derivative (truncated Taylor series expansion) and its linear
approximation over a bounded domain centered by that same
point. For example, consider . The
first-order approximation of obtained around is

and its linear approximation within this range is
. The sum of squared errors for these approximations

over the given domain are 3.2 and 1.35, respectively. This also
helps understanding the difference between using the Jacobian
matrix versus the linearization technique applied here. The
first-order approximation of a nonlinear function is only valid
for a small variation around an operating point, whereas a
linearized version over a bounded region allows for larger
variations of variables by distributing the approximation error
over the given region [25].

A. Transmission Systems Versus Distribution Systems
The Canadian Standard Association (CSA) indicates the

voltage ranges for normal operation and extreme conditions, as

Fig. 4. Phasor diagram of voltages in a two-bus system for a typical transmis-
sion and distribution line. (a) Transmission System, (b) Distribution System.

TABLE I
STANDARD VOLTAGE RANGES FOR DISTRIBUTION SYSTEMS [26]

given in Table I. Based on these values, the range of voltage
variation used in the linearizations is justifiable. To understand
the range of variation of the voltage angle, a simple example
is analyzed here. Assume a load connected to a source via an
impedance. The vector diagrams of voltages and currents for
this simple two-bus system are shown in Fig. 4.
It is important to understand the differences between a

transmission system and a distribution feeder. In a transmission
system, lines are usually long with high ratio. Also, the
amount of power being transferred through the line is relatively
large. In a distribution feeder, on the other hand, lines are
shorter with smaller ratio and the amount of power being
transferred is relatively small. A common base for voltage and
power is used to find the per-unit values of the parameters
shown in Fig. 4. As can be seen, voltage angles are smaller in
distribution systems. Voltage angles depend on the value of load
and its power factor as well as the length of the line and its
ratio. The considered ranges for voltage angles and magnitudes
are derived here based on studying several operating conditions
and line configurations typical for distribution feeders.
Another important difference between transmission and dis-

tribution systems is related to the voltage drop contribution from
the resistive and reactive parts of the line impedances. As shown
in Fig. 4, voltage drop is mostly caused by the line reactance in a
transmission system while both the line resistance and reactance
contribute to the voltage drop in a distribution system. This is
one of the reasons for the DC power flow method not to be ap-
plicable to distribution systems.

IV. SIMULATION RESULTS
In order to demonstrate the performance of the 3LPF, a simple

3-Node test system is used here. This system is shown in Fig. 5.
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Fig. 5. The 3-Node test system.

Fig. 6. Relative error of the 3LPF for different feeder loadings.

The branch impedances and loads are given in Appendix C. Sev-
eral parameters can affect the accuracy of the 3LPF, including
the ratio, length of the lines, feeder loading , load
power factor , and load voltage dependence ( , and

portions). The errors associated with the 3LPF results are
calculated with respect to the results obtained using the CIM
method. Let the voltage magnitudes obtained by the 3LPF be

and those obtained by the CIM be . The relative
error, in %, is then calculated as

(11)

In each simulation, only one factor is altered and other param-
eters are fixed at the original values given in Appendix C. The
first parameter to be considered is the feeder loading, which is
altered by scaling the load and by a factor . Fig. 6 shows
the errors for each node in the system. In the same figure, the
system minimum voltage is also shown on the right vertical
axis. The loads are scaled up until the minimum voltage falls
below 0.90 per-unit. The maximum error in this case is less than
0.24%, associated with Phase A at Node 3. With normal feeder
loading, i.e., , the maximum error is less than 0.05%.
It is worthwhile mentioning that the unbalance caused by the
non-existing phase C at Node 3 contributed significantly to the
voltage unbalance, about 5% difference in magnitudes in phases
A and B, urging the application of a three-phase analysis.
The effect of the load power factor, , is shown in Fig. 7.

Here, the value of load active power is kept fixed and the reac-
tive power is determined based on the value of in Fig. 7. For

Fig. 7. Relative error of the 3LPF versus loads power factor.

instance, , and correspond to
lagging, and leading, respectively. The max-

imum error in this case is about 0.09%. As the load becomes
more capacitive (negative values for ), the voltage magnitudes
get closer to 1 p.u., increasing the accuracy of the 3LPF solution.
Loads are voltage-dependent elements, i.e., the amount of ac-

tive and reactive power demand changes as the voltage level
varies. In the standard IEEE test systems, loads are modeled as
constant-impedance (Z), constant-current (I), or constant-power
(PQ) [27]. The errors of the 3LPF solution for these three cases
are shown in Fig. 8. All loads, including their active and reactive
power components, are assumed to have the same voltage de-
pendence in these simulations. Note that the 3LPF is capable of
modeling any combinations of components of the ZIPmodel de-
scribed in (3). The highest error occurs for the constant-power
load model and the error of the constant-impedance model is
zero.
The ratio of the branches varies in distribution systems,

depending on the phase arrangement, type of conductors, over-
head lines or underground cables, voltage levels, etc. The values
for are kept constant in the test system and the values for
are calculated based on the ratio. It should be noted that all
the 9 elements of the three-phase resistance matrices are scaled
by the given factor. The impact of the ratio on the
error of the 3LPF solution is shown in Fig. 9. The maximum
error in this case is about 0.11%.
The feeder length is another important factor that can impact

the error of the 3LPF solution. The effect of the feeder length
on the accuracy of the 3LPF solution is shown in Fig. 10. The
feeder length is increased to the point that the maximum voltage
drop almost exceeds the standard limits. In this case, the max-
imum error is about 0.16%. Due to the relatively large hypothet-
ical values chosen for the line parameters, the voltage limits are
reached at 6 km. This happens while the voltage angles deviate
from the nominal values, i.e., , by less than
3 . Adding a voltage regulator brings the voltage magnitudes
within the standard limits, and the voltage angles may grow
larger. In our approximations, is considered for voltage
angles, which was derived based on numerous analyses of real
and hypothetical distribution systems.
The IEEE 13-Node, the IEEE 123-Node, and the IEEE 8500-

Node test systems, described in [27] and [28], are also used
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Fig. 8. Relative error of the 3LPF versus loads voltage dependence.

Fig. 9. Relative error of the 3LPF versus ratio of lines.

Fig. 10. Relative error of the 3LPF versus feeder length.

here to evaluate the accuracy of the 3LPF solution. The fol-
lowing modifications are made to the IEEE 13-Node system:
Transformer XFM-1 is replaced by a 3000 ft long L602 line;
The distributed load between Nodes 632 and 671 is assumed
to be connected at Node 632. The power flow solution for this
test system is provided in Table II. The histogram of error
given by (11), considering all the phases and nodes, is shown in
Fig. 12. The error in this case is less than 0.03%. This system
was also adopted in [20] to numerically evaluate their proposed
linearization method, referred to as the 1st Order method here.
A comparison is made in terms of the solution accuracy between
the 3LPF and the 1st Order method. Fig. 11 shows the error for
each node and phase. In the first scenario, shown in Fig. 11(a),

Fig. 11. Relative error of power flow solutions obtained by the 1st Order
method of [20] and the 3LPF for the IEEE 13-Node system. (a) Tap changer
set at , (b) Tap changer set at .

the voltage regulator taps are adjusted at [1.0625, 1.05, 1.0687].
The maximum relative errors in this case for the 1st Order
method and the 3LPF are 0.57% and 0.03%, respectively. In the
second scenario, shown in Fig. 11(b), the tap changer is set at
[1, 1, 1]. The maximum in this case is 1.44% and 0.21% for
the 1st Order method and the 3LPF, respectively.
In the IEEE 123-Node system, the transformer between nodes

61 and 610 is removed. The histogram of error for this system
is shown in Fig. 12. The error in this case does not exceed
0.025%.
The IEEE 8500-Node system is described in [28]. The total

load in the system is about 10.8 MW 2.7 MVAR. This system
consists of the primary network (12.47 kV), single-phase dis-
tribution transformers (7.2 kV/120 V/120 V), and a 50-ft ser-
vice cable that connects the loads to the customer service trans-
formers. In this study, only the primary network is considered.
The primary network consists of about 3680 nodes. The cus-
tomer service transformers are replaced by the equivalent load
connected to them. Voltage regulators are set at tap 1.02 on all
phases and are kept fixed. There are four capacitor banks, all of
which are assumed to be connected since the given loading is for
peak load conditions. The histogram of error for this system is
shown in Fig. 12. The error in this case does not exceed 0.06%.
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Fig. 12. Histogram of relative error of the 3LPF solution for the IEEE 13-,
123-, and 8500-Node systems, considering all phases at each node.

TABLE II
POWER FLOW SOLUTION FOR THE IEEE 13-NODE

TEST SYSTEM OBTAINED BY THE 3LPF

The CIM is an iterative solution method. The maximum error
at each iteration for the three test cases introduced above is
shown in Fig. 13. As can be seen, the maximum error for the
3LPF is slightly lower than the error for the CIM at its second
iteration. In other words, it takes the CIM up to three iterations
to exceed the accuracy of the 3LPF solution. At its first itera-
tion, the error of the CIM is about an order of magnitude larger
than the 3LPF method.

V. POTENTIAL APPLICATIONS OF THE 3LPF
While the 3LPF is directly useful in power flow analysis,

its major advantages are more evident when embedded in
optimization routines., where computational efficiency is of the
essence. This becomes especially pressing for on-line appli-
cations that are required to produce fast and robust solutions.
Distribution system state estimation (DSSE) is an important
case, which has received considerable attention due to the
new developments in the advanced metering infrastructure. It
has been shown that the presence of unbalances can signifi-
cantly affect the accuracy of the DSSE [29] and, therefore, a
three-phase model of the system should be used. The DSSE has
many applications in the tools provided by the modern DMS,
e.g., volt-VAR control methods [30]. One of the challenges in

Fig. 13. Maximum error in voltage magnitudes per iteration for the CIM solu-
tion for the IEEE 13, 123, and 8500-Node test systems. The 3LPF error is shown
using a red dashed line.

the DSSE is the lack of sufficient measurements, which leads
to an unobservable system and causes convergence issues in
the DSSE algorithm. Methods have been proposed to generate
pseudo-measurements to address this issue, e.g., [31]. Since
the conventional power flow equations are nonlinear and
non-convex, the DSSE problem is numerically intensive to
solve [32]. Computational challenges arising from the inclusion
of pseudo-measurements are likely to be alleviated substan-
tially by the 3LPF method.
Another challenge in DSSE is the presence of discrete

variables, e.g., status of switches, fuses, capacitor banks, and
voltage regulator taps. Besides, introducing integer variables to
the DSSE optimization problem creates a practically intractable
problem. It is expected that the proposed 3LPF formulation
paves the path for including the discrete variables within the
DSSE. With the 3LPF, the resulting optimization problem can
be solved using commercially available mixed-integer pro-
gramming solvers. Normally, in a typical distribution feeder,
there exist only a few number of voltage regulators and/or
capacitor banks. Also, most of the distribution feeders are
radial, which facilitates the idea of decomposing the problem
into several independent sub-problems, each dealing only with
a single feeder. These specific features of distribution systems
make it possible to take advantage of the fast mixed-integer
programming methods.
The optimal placement of new measurement devices for

DSSE has been a subject of research in several studies [33],
[34]. This problem can be formulated as a mixed-integer pro-
gramming problem, where the existence of a measuring device
can be modeled as a binary variable. The 3LPF formulation al-
lows for the introduction of integer variables to the optimization
problem of meter placement. In addition, the volt-VAR opti-
mization problem in distribution system requires three-phase
power flow analysis when voltage regulators and/or capac-
itor banks with single, double, and independently-operated
three-phase units are present. The LPF has been successfully
applied to this problem for a balanced case in [35]. The pro-
posed 3LPF formulation can be directly applied to unbalanced
cases. It should be noted that the 3LPF is still applicable even if
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voltages are outside the standard limits, although the associated
error may be slightly higher.
Due to the probabilistic and intermittent nature of some

renewable energy resources, e.g., wind and solar, probabilistic
power flow methods have been developed to find the expected
value and variance of the system state variables [36], [37].
There are also elements of uncertainty in load values as well as
load models in a distribution system. The proposed 3LPF is an
efficient alternative to nonlinear formulations for probabilistic
power flow analysis. The probabilistic power flow analysis
provides a bound for the nodal voltages and branch currents for
given bounds on the expected load/generation scenarios. This
is useful to ensure, with some definable probability, that the
system will operate within the standard limits under different
scenarios. The ever-increasing penetration of distributed energy
resources calls for these types of studies.
The error values reported in Section IV are acceptable for the

targeted applications mentioned above.

VI. CONCLUSION

The current injection method for a three-phase distribution
system was described and the fixed-point iteration method was
used to solve the resulting power flow equations. A three-phase
linear power flow (3LPF) formulation was derived based on
the fact that the nodal voltages vary within a bounded range.
The error associated with the 3LPF solution for various system
parameters was illustrated. An important application of the
3LPF is in distribution system optimization routines, such as
volt-VAR optimization, and distribution system state estima-
tion. With this linear set of equations, it is possible to include
integer variables to represent switches status, tap position for
voltage regulators, etc.

APPENDIX A
LINEAR APPROXIMATION OF A TWO-VARIABLE FUNCTION
Assume a nonlinear function defined on and

. A linear approximation of on the specified compact
domain is . Assume evenly distributed
points in the function domain, i.e., . In order to find
the best coefficients for that closely matches , the following
least-square problem should be solved:

(12)

Applying the Karush-Kuhn-Tucker conditions to the above
problem yields the following solution:

(13)

Note that this has to be solved for the four nonlinear functions
in (9) and for each phase separately. Therefore, in (10) rep-
resents for , and Phase .

APPENDIX B
CALCULATED FOR LINEAR APPROXIMATIONS

APPENDIX C
POWER-FLOW DATA FOR THE 3-NODE TEST SYSTEM

is in is in ; active power is in
(MW); reactive power is in MVAR; lengths are in miles.

From To Load Length
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