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Abstract

Operators on k-tableaux and the k-Littlewood–Richardson rule for a special case

by

Sarah Elizabeth Iveson

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Mark Haiman, Chair

This thesis proves a special case of the k-Littlewood–Richardson rule, which is analogous
to the classical Littlewood–Richardson rule but is used in the case for k-Schur functions.
The classical Littlewood–Richardson rule gives a combinatorial formula for the coefficients
cλµν appearing in the expression sµsν =

∑
λ c

λ
µνsλ for two Schur functions multiplied together.

k-Schur functions are another class of symmetric functions which were introduced by La-
pointe, Lascoux, and Morse and are indexed by and related to k-bounded partitions. We
investigate what occurs when multiplying two k-Schur functions with some restrictions. More
specifically, we investigate what happens when a k-Schur function is multiplied by a k-Schur
function corresponding to a partition of length two. In this restricted case we are able to pro-
vide a combinatorial description of the k-Littlewood–Richardson coefficients that appear in
the expansion of the product as a sum of k-Schur functions. These k-Littlewood–Richardson
coefficients can be computed in terms of the number of k-tableaux with a certain property
we call k-lattice. Furthermore, we conjecture that the result holds for any k-Schur functions,
even when no restrictions are imposed. The proofs presented rely on a class of operators on
k-tableaux which we introduce that are similar to the crystal operators on classical tableaux,
but we provide a specific example that implies they are not actually crystal operators on
k-tableaux. In addition to this, we also provide numerous examples and dedicate a chapter
to examples of computation for some k-Littlewood–Richardson coefficients.
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Chapter 1

Introduction

1.1 Introduction

k-Schur functions were introduced by Lapointe, Lascoux, and Morse in [3], first de-
veloped to assist in studying Macdonald polynomials. These symmetric functions are be-
lieved to play the same fundamental combinatorial role in the symmetric function subspace
Λk = Z[h1, . . . hk] as Schur functions play in Λ, the space of all symmetric functions. In
particular, they are believed to satisfy a k-Pieri rule, and a k-Littlewood–Richardson rule,
both of which would be analogous to the case of classical Schur functions. There are approx-
imately six definitions of k-Schur functions, all of which are conjectured to be equivalent.
For some of the definitions, the k-Pieri rule and k-Littlewood–Richardson rule are clear or
have been proven, and for others they are conjectured to hold.

In this thesis, we investigate some properties of the k-Schur functions from a combinato-
rial viewpoint. In particular, we derive a formula for some special cases of the k-Littlewood–
Richardson coefficients, cλ,kµν which appear in the expansion when we multiply two k-Schur
functions.

s(k)µ s(k)ν =
∑
λ

cλ,kµν s
(k)
λ (1.1)

Lam proved in [2] that the coefficients cλ,kµν appearing in the above expression are all non-
negative integers, using a geometric strategy. In this paper we investigate the possibility of
a combinatorial interpretation of the coefficients being positive. More specifically, we try
to find a set of combinatorial objects which can be used to count the coefficients, and in
a special case we are able to get such a description which is presented in the theorem be-
low. In addition, we also conjecture in Chapter 4 that the combinatorial description of the
k-Littlewood–Richardson coefficients, presented in the theorem below, holds in general for
any k-Schur functions.

Theorem 1.1. Let µ be a k-bounded partition with length 2, meaning µ = (a, b), and let
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λ be any k-bounded partition. Then the k-Littlewood–Richardson coefficient cλ,kµν appearing
in the expansion

s(k)µ s(k)ν =
∑
λ

cλ,kµν s
(k)
λ

is equal to the number of k-tableaux of shape c(λ)/c(ν) with k-weight µ that are k-lattice.

In Chapter 5 we are also able to define a recursive formula for the k-Littlewood–Richardson
coefficients which could potentially prove useful in some cases. More specifically, we prove
the following proposition.

Proposition 1.2. Let λ, µ, and ν be k-bounded partitions. Then we have the following
formula for the k-Littlewood–Richardson coefficient cλ,kµν :

cλ,kµν = K
(k)
λ/ν,µ −

∑
τBµ

K(k)
τµ c

λ,k
τν (1.2)

where K
(k)
λ/ν,µ is the number of skew k-tableaux of shape c(λ)/c(ν) and k-weight µ, and K

(k)
τµ

is the number of k-tableaux of shape τ and k-weight µ.

This proposition then allows us to conclude the same result as in Chapter 4 where we
give a combinatorial description of the k-Littlewood–Richardson coefficients.

1.2 Where k-Schur functions came from

As stated previously, k-Schur functions arose from a study of Macdonald polynomials.
Macdonald polynomials can be decomposed as a sum of Schur functions as

Hµ[X; q, t] =
∑
λ

Kλµ(q, t)sλ[X] (1.3)

where Hµ[X; q, t] is a Macdonald polynomial, obtained from a modification of the Macdonald
integral form Jµ[X; q, t], so Hµ[X; q, t] = Jµ[X/(1− t); q, t] and the coefficients Kλµ(q, t) are
the q, t-Kostka polynomials.

Lapointe, Lascoux, and Morse in [3] developed a family of symmetric functions denoted

by A
(k)
λ [X; t]λ1≤k which are called atoms, and are indexed by k-bounded partitions λ. These

are believed to form a basis of the space spanned by Macdonald polynomials Hµ[X; q, t] which
are indexed by k-bounded partitions µ. This then gives a refinement of the decomposition
given in Equation (1.3), in particular we have the following:

Hµ[X; q, t] =
∑

k−bounded ν

K(k)
νµ (q, t)A(k)

ν [X; t]
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A(k)
ν [X; t] =

∑
λ

πλν(t)sλ[X]

where the coefficients are believed to satisfy some positivity properties. It was proven in
[8] and [6] that K

(k)
νµ (q, t) ∈ N[q, t] and πλν(t) ∈ N[t] for k = 2, and it is believed that this is

true for all k.

In the original definition of k-Schur functions given in [3], the k-Schur functions are just
defined to be the restriction of the atoms to the case t = 1, meaning the k-Schur function sλ
is defined as

sλ[X] = A
(k)
λ [X; 1]

for λ being a k-bounded partition. This definition of k-Schur functions was very combinato-
rial in nature, and was useful for computing many examples of atoms and k-Schur functions,
but was not as good for proving properties of the k-Schur functions.

The definition of k-Schur functions that we will be using was developed by Lapointe and
Morse in [7]. The idea behind this definition is that the k-Kostka numbers, K

(k)
λµ , which we

will define more precisely in Chapter 2, satisfy a triangularity property. In particular, for
k-bounded λ and µ, K

(k)
µλ = 0 unless µ D λ, and K

(k)
λλ = 1. Therefore, the inverse of the

matrix ||K(k)
µλ || exists, and is denoted by ||K(k)||. Then the k-Schur functions can be defined

as s
(k)
λ =

∑
µDλK

(k)
λµ hµ, where λ and µ are of course k-bounded partitions.

This definition from [7] was shown by Lapointe and Morse in [4] to satisfy a k-Pieri rule
which is analogous to the classical Pieri rule for Schur functions. This k-Pieri rule will be
fundamental in our proofs of the k-Littlewood–Richardson rule for some special cases.

1.3 Strategies used to prove the

k-Littlewood–Richardson rule

As stated previously, the proofs in this thesis rely heavily on the k-Pieri rule. Thus it
should be made clear that the results presented in this thesis apply only to definitions of
k-Schur functions that have been proven to satisfy the k-Pieri rule, in particular for the
definition of k-Schur functions presented by Lapointe and Morse in [7]. If, as conjectured,
the proposed definitions of k-Schur functions are equivalent, then the results presented apply
to all of them.

We use two approaches to prove our results about the k-Littlewood–Richardson rule.
The first proof, presented in Chapter 4, works for a slightly more restricted case than the
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second proof which is given in Chapter 5. Both of these proofs rely on some operators on
k-tableaux that are defined in Chapter 3.

The three operators defined in Chapter 3 are used throughout this thesis. The notation
for and description of these operators is very similar to that of the usual crystal operators
on classical Schur functions, but the operators we use are not in fact crystal operators on
k-tableaux. We elaborate more on this in Chapter 7 giving an example that leads us to con-
clude that there are in fact no crystal operators for k-tableaux, meaning that our operators
defined in Chapter 3 are not crystal operators. Nonetheless, they are useful for proving the
theorems in this thesis. The operators act on the set of k-tableau by changing the k-weight
of a given tableau. We also describe the property for a k-tableau to be k-lattice, which is
used for the combinatorial description of the k-Littlewood–Richardson coefficients.

In Chapter 4, to prove our results about the k-Littlewood–Richardson rule we use a
strategy based on a proof of the classical Littlewood–Richardson rule given by Remmel and
Shimozono in [11]. For our proof using k-Schur functions though, we require that the µ

appearing in Equation (1.1) has hook length at most k, meaning s
(k)
µ = sµ, so the k-Schur

function is actually just a Schur function. Additionally, we require that µ = (a, b). We
provide an explanation for why this was necessary for our proof at the end of Chapter 4.
We then can use the determinantal expansion for sµ to express it in terms of homogeneous

symmetric functions, hτ . This then allows us to use the k-Pieri rule on the product s
(k)
λ sµ.

We then will have an expression for the k-Littlewood–Richardson coefficients cν,kλµ as a sum
of the number of k-tableaux with certain weight and shapes, some counted as positive and
some counted as negative. A bijection using the operators on k-tableaux defined in Chapter
3 then gives the desired result for the case of µ = (µ1, µ2).

The second strategy we use for the proof of the k-Littlewood–Richardson rule is given in
Chapter 5. We give a somewhat more direct proof after first proving a recursive formula for
k-Littlewood–Richardson coefficients that works for any µ. The proof of the k-Littlewood–
Richardson rule does not require the restriction on the hook length of µ, but it still does
require that µ have length at most 2, that is µ = (a, b). We get a result for a formula of the
k-Littlewood–Richardson coefficients in terms of other k-Littlewood–Richardson coefficients
and some k-Kostka numbers, which holds for any µ. Then for the case of µ = (a, b), we can
refine the result to give a combinatorial formula for k-Littlewood–Richardson coefficients in
terms of certain skew k-tableaux that have a property we call “k-lattice” which is analogous
to the property of being lattice for semistandard Young tableaux. This proof in Chapter 5
relies on the expansion of hλ in terms of k-Schur functions, and the k-Pieri rule. Chapter
6 provides some examples for how the k-Littlewood–Richardson coefficients can actually be
computed using the results presented.
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Chapter 2

Background

2.1 Partitions, tableaux, k + 1-cores

In this chapter we review basic combinatorial definitions and then some properties of
k + 1-cores, k-tableaux and k-tableaux, much of which can be found in [4] and [7]. But be-
fore we can begin working with k-tableaux and k-Schur functions, we will review some basic
combinatorial concepts which are the basis for the definitions and concepts presented later
in this section.

Before we can review the definition of k-tableaux, we first recall some basic properties
of partitions and the definition and properties of k + 1-cores, in particular, we review the
bijection between k + 1-cores and k-bounded partitions, which will be used later on.

A partition is a weakly decreasing sequence of positive integers λ = (λ1, . . . , λm). A com-
position α = (α1, . . . , αm) is a sequence of nonnegative integers, not necessarily decreasing.
The length of the partition, l(λ), is the number of parts of the partition, which would be m
for λ = (λ1, . . . , λm). For a partition of length m, |λ| is defined as λ1+. . .+λm, and if |λ| = n
we say that λ is a partition of n. Every partition can be visualized by a Ferrers diagram
which is a collection of boxes that are right and bottom aligned, with λi boxes in the ith row.
In this thesis we will be using the convention that the rows go from bottom-to-top. The box
(i, j) in a Ferrers diagram denotes the box in the ith row (counted from bottom-to-top) and
jth column (counted from left-to-right). Given a partition λ, the conjugate of λ is obtained
by reflecting the Ferrers diagram for λ over the line y = x. So the number of boxes in the
ith row of the conjugate is the number of boxes in the ith column of λ (where columns are
ordered from left-to-right). The conjugate partition is denoted λ′.

Example 2.1. Let λ = (3, 3, 1, 1). Then the Ferrers diagram for this partition, seen in
Figure 2.1, has 3 boxes in the first (bottom) row, 3 boxes in the second row, and 1 box
each in the third and fourth (top) rows. With the same λ = (3, 3, 1, 1), if we reflect the Fer-
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rers diagram across the diagonal, we will get a Ferrers diagram with 4 boxes in the bottom
row, then 2 boxes in the second and third rows. This diagram corresponds to the partition
λ′ = (4, 2, 2) which can also be seen in Figure 2.1.

λ = (3, 3, 1, 1) λ′ = (4, 2, 2)

Figure 2.1: Ferrers diagrams for λ = (3, 3, 1, 1) and its conjugate, λ′ = (4, 2, 2).

We say that λ = (λ1, . . . , λm) is a k-bounded partition if λ1 ≤ k. The set of all k bounded
partitions is denoted Pk, so λ ∈ Pk means λ is a k-bounded partition. A composition
α = (α1, . . . , αm) is k-bounded if αi ≤ k for all i.

In the previous examples, λ = (3, 3, 1, 1) is a 3-bounded partition, since every part has
length at most 3, but λ′ = (4, 2, 2) is not a 3-bounded partition, since the first part of λ′ is
4, which is greater than 3.

For two partitions µ and λ, we say that µ ⊆ λ if µi ≤ λi for all i. For partitions µ ⊆ λ,
we can obtain a skew diagram λ/µ which is the collection of boxes in the diagram of λ which
are not in the diagram of µ. For example, consider the partitions (2, 1) ⊆ (3, 2, 2, 1). The
skew diagram corresponding to (3, 2, 2, 1)/(2, 1) can be seen in Figure 2.2.

Figure 2.2: The skew diagram corresponding to (3, 2, 2, 1)/(2, 1).

There is a partial ordering on partitions of n, called the dominance order. With this
partial ordering, if λ and µ are two partitions of n (meaning |λ| = |µ| = n) we say that λDµ
if λ1 + . . .+λi ≥ µ1 + . . .+µi for all i. In this thesis, if we use the notation λBµ this means
that λ is strictly larger than µ with respect to the dominance order.
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For an example of dominance order, let λ = (3, 2, 2, 1), then under the dominance order,
(4, 4)D λ, and (3, 3, 1, 1)D λ, but µ = (3, 1, 1, 1, 1, 1) is not larger than λ with respect to the
dominance order, since the sum of the first two terms of µ is 3 + 1 which is less than the
sum of the first two terms of λ, 3 + 2.

For any box in a Ferrers diagram, the hook length of that box is the number of boxes
above it plus the number of boxes to the right of it, including the box itself. To see an
example of this, in Figure 2.3, for the box (2, 1), which is indicated with a dot, the hook
length is 4 since there are two boxes above it, one to the right of it, and the box itself.

·

Figure 2.3: The hook length for the box (2, 1) in the diagram of λ = (4, 2, 2, 1) is 4.

When we refer to the hook length of a partition, this is the hook length of the box (1, 1)
(the bottom-left corner box) in the diagram. So for the partition λ = (4, 2, 2, 1), we would
say the hook length of the partition, h(λ) is 7. Note that for any partition, the hook length
is h(λ) = λ1 + l(λ)− 1, that is, the number of boxes in the bottom row plus the number of
rows, minus one.

Given a Ferrers diagram corresponding to a partition λ, fill the diagram with the num-
bers 1, 2, . . ., according to the rule that numbers are strictly increasing going up columns
and weakly increasing from left to right in the rows. We call this filled in diagram a semis-
tandard Young tableau (in this thesis we will often just use the word tableau) of shape λ. If
there are αi boxes filled with the number i for all i, then we say that the tableau has weight
α = (α1, α2, . . .) where α is a composition.

4

2 3

1 1 1 3

Figure 2.4: An example of a tableau of shape (4, 2, 1) with weight (3, 1, 2, 1).

A k + 1-core is a partition that has no hooks of length k + 1. Given a k + 1-core, the
k + 1-residue of the square (i, j) is j − i mod k + 1. In Figure 2.5 we see an example of a
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k + 1-core with the k + 1 residues for each square labeled.

·
· · ·

1

2 3

3 0 1

0 1 2 3 0 1

Figure 2.5: The 4-core (6, 3, 2, 1) first showing all of the boxes with hook length greater than
4 are labeled with a dot (all other boxes have hook length less than 4), and then showing
the 4-residue of each box.

There is a bijection between k-bounded partitions and k + 1-cores, which was given by
Morse and Lascoux in [7]. We give a quick explanation of the bijection here, as it will be
necessary to use for proofs presented later.

Given a k-bounded partition λ, first place the top row in the Ferrers diagram for λ, then
take the next row down and slide it to the right as much as necessary so that there are no
k+1 hooks in the diagram, but do not slide it any further than necessary. Then do the same
thing with the next row down and so on. After placing the bottom row the same way, we will
have the unique skew diagram of shape τ/ν that contains λi boxes in row i, and has no k+1
hooks, but for all the boxes of τ that are in ν, the hook length is greater than k+ 1. Then τ
is the k + 1-core associated to λ. For this bijection, we let λ be a k-bounded partition, and
c(λ) be the k + 1-core associated to it. For the other direction of the bijection it is easy to
see we take a k+ 1-core τ , then remove all of the boxes with hook length greater than k+ 1,
then slide all of the rows in that skew diagram to the left to get a diagram c−1(τ) which will
be the diagram for a k-bounded partition. This bijection is illustrated in the Figure 2.6.

←→ ←→

λ = (3, 2, 2, 1) λ/3 = (6, 3, 2, 1)/(3, 1) c(λ) = (6, 3, 2, 1)

Figure 2.6: An example of the bijection between k-bounded partitions and k + 1-cores for
k = 3 (k + 1 = 4).

Note that for any k-bounded partition λ, c(λ) will be the k + 1-core which corresponds
to λ under the bijection described above. We will use this notation throughout this thesis.
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For a k-bounded partition λ, the k-conjugate of λ is denoted λωk and is defined as
λωk = c−1(c(λ)′). So with the partition λ = (3, 2, 2, 1) and k = 3 from Figure 2.6,
c(λ) = (6, 3, 2, 1), then the normal conjugate diagram of c(λ) is c(λ)′ = (4, 3, 2, 1, 1, 1),
and the k-conjugate of λ is λωk = c−1(c(λ)′) = (2, 2, 1, 1, 1, 1).

2.2 Symmetric functions and Schur functions

Let Λ denote the ring of symmetric functions over Q. The elements of this ring are formal
power series

f(x) =
∑
α

cαx
α

where α ranges over all compositions α = (α1, α2, . . .) of n, cα ∈ Q, and f(xω(1), xω(2), . . .) =
f(x1, x2, . . .) for every permutation ω of the positive integers. There are many bases of Λ,
but the bases that we will be most concerned with are the complete homogeneous symmetric
functions and Schur functions.

Let r be a positive integer, then we can define the symmetric function hr as

hr =
∑

i1≤...≤ir

xi1 · · ·xir .

For any partition λ = (λ1, . . . , λn), the complete homogeneous symmetric function hλ can
be defined in terms of all of the hλi

hλ = hλ1hλ2 · · · .
Note that for any positive integer n, we can take the subring of Λ consisting of symmetric

functions on the variables x1, x2, . . . , xn. This subring will be denoted Λn, and consists of
symmetric functions on the variables x1, x2, . . . , xn.

Consider the symmetric functions on 3 variables, Λ3. Then h2 = x21 + x1x2 + x1x3 + x22 +
x2x3 + x23, and h1 = x1 + x2 + x3. Then we can see that

h(2,1) = h2h1 = x21 + x22 + x23 + 2(x21x2 + x21x3 + x1x
2
2 + x1x

2
3 + x22x3 + x2x

2
3) + 3x1x2x3.

Another basis for symmetric functions are the monomial symmetric functions. Let λ =
(λ1, λ2, . . .) be a partition. Then we can define the monomial symmetric function mλ by

mλ =
∑
α

xα

where α = (α1, α2, . . .) ranges over all distinct permutations of the entries in λ, and xα =
xα1
1 x

α2
2 · · · .
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The Schur functions also are a basis for the ring of symmetric functions, and they are
indexed by partitions λ, and we denote them by sλ. The Schur functions have many nice
properties, some of which generalize nicely to the case of k-Schur functions.

Let λ be a partition of n and α be a composition of n, and let Kλα be the number of
semistandard Young tableaux of shape λ with weight α. Kλα is called a Kostka number. The
Kostka numbers also satisfy a triangularity property. Specifically, if µ and λ are partitions,
then Kλµ = 0 unless µ D λ (the dominance order), and Kλµ = 1 whenever µ = λ. We will
soon introduce the k-Kostka numbers, which satisfy a similar triangularity property. The
Kostka numbers give many nice relationships between the different bases of symmetric func-
tions. In particular, they satisfy the relationship sλ =

∑
µKλµmµ. In addition, they also

appear as the coefficients in the expansion of a homogeneous symmetric function in terms of
Schur functions, hλ =

∑
µKλµsλ. There is a formula for Schur functions which is analogous

to this, which is a consequence of the definition that we use for k-Schur functions.

The Schur functions also have another nice property, the Pieri rule for Schur functions,
which gives a combinatorial description of how to multiply a complete homogeneous sym-
metric function by a Schur function, and express the product in terms of Schur functions.

Let r be a positive integer, and let ν be a partition. Then the Pieri rule states that
hrsν =

∑
λ sλ, where λ runs over all partitions that can be obtained from ν by adding a

horizontal strip with r elements. When we say that λ is obtained by adding a horizontal
strip with r elements to ν, we mean that we can add r boxes to the Ferrers diagram for ν,
which are all in different columns (so no two boxes that we add are in the same column),
and the resulting Ferrers diagram corresponds to the partition λ.

Let µ and ν be partitions. Then using the Pieri rule we can get a formula for mul-
tiplying a Schur function by a homogeneous symmetric function. This rule states that
hµsν =

∑
λKλ/ν,µsλ where Kλ/ν,µsλ is called a skew Kostka number, and is the given by the

number of semistandard Young tableaux of shape λ/ν and weight µ.

Example 2.2. Let µ = (2, 1) and ν = (4, 2). To compute hµsν , we can use the formula
above, so h(2,1)s(4,2) =

∑
λKλ/(4,2),(2,1)sλ where Kλ/(4,2),(2,1) is the number of skew tableaux

of shape λ/(4, 2) and weight (2, 1). For λ = (5, 3, 1), there are three skew tableaux of shape
(5, 3, 1)/(4, 2) with weight (2, 1) seen in Figure 2.7. This means that K(5,3,1)/(4,2),(2,1) = 3 is
the coefficient of s(5,3,1) in the expansion of h(2,1)s(4,2) in terms of Schur functions.

Lastly, the Littlewood–Richardson rule for Schur functions is an important rule which we
attempt to generalize to k-Schur functions, and successfully do in some special cases. For
classical Schur functions, this rule gives a combinatorial description of how to multiply two
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T1 =
1

1

2

T2 =
1

2

1

T3 =
2

1

1

Figure 2.7: Skew tableaux of shape (5, 3, 1)/(4, 2) with weight (2, 1). Note that the empty
boxes are not really in the skew diagram, but we leave them in the diagrams for clarity on
the shape of the skew tableaux. This means K(5,3,1)/(4,2),(2,1) = 3

Schur functions, and express their product in terms of other Schur functions.

Let µ and ν be partitions. Then sµsν =
∑

λ c
λ
µνsλ, where the cλµν are known as the

Littlewood–Richardson coefficients, and they are equal to the number of skew tableaux of
shape λ/ν with content µ that are lattice. Recall that a tableau T is lattice if when we take
the reverse reading word w = w1w2 · · ·wm of a tableau by reading from right to left across
rows starting with the bottom row and then moving up, then for j = 1, . . . , n, the subword
w1w2 . . . wj contains at least as many i’s as i + 1’s for all i = 1, . . . , n− 1 (where T is filled
with the numbers 1, . . . , n). For example, the skew tableaux in Figure 2.8 has reverse reading
word w = 111232432, and is not lattice.

2 3 4

2 3

2

1 1 1

Figure 2.8: Skew tableau of shape (7, 4, 3, 3)/(4, 3, 1) with weight (3, 3, 2, 1) and reverse
reading word w = 111232432. Note that this skew tableau is lattice.

Example 2.3. Using the Littlewood–Richardson rule, if we want to compute the expansion
for s(2,1)s(4,2) in terms of Schur functions, we can do so for each λ by finding all of the skew
tableau of shape λ/(4, 2) with weight (2, 1) that are lattice, and this number will be the
Littlewood–Richardson coefficient cλ(2,1)(4,2) appearing in the expansion

s(2,1)s(4,2) =
∑
λ

cλ(2,1)(4,2)sλ.

Of the three skew tableaux of shape (5, 3, 1)/(4, 2) and weight (2, 1) seen in Figure 2.7 only
T2 and T3 are lattice. The reverse reading word of T1 is 211 which is not lattice since there
are initially more 2’s than there are 1’s. But for 121 and 112, the reverse reading words of T2
and T3, respectively, at any point in the word there are at least as many 1’s previous to that
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point as there are 2’s, so they are lattice. Thus c
(5,3,1)
(2,1)(4,2) = 2. A similar computation for the

other Littlewood–Richardson coefficients (which are the coefficients in the above equation)
gives the expansion

s(2,1)s(4,2) = s(6,3)+s(6,2,1)+s(5,4)+2s(5,3,1)+s(5,2,2)+s(5,2,1)+s(4,4,1)+s(4,3,2)+s(4,3,1,1)+s(4,2,2,1).

2.3 k-tableaux and k-Schur functions

All of the definitions presented in this section can be found explained in further detail in
[3], [7], and [4]. We begin by reviewing the definition of k-tableaux presented by Lapointe
and Morse [7] and presenting some examples, and then discussing the definition for k-Schur
functions introduced by Lapointe and Morse [4] that is used throughout this thesis.

Definition 2.4 (Lapointe, Morse [7]). Let γ be a k + 1-core, let m be the number of k-
bounded hooks in γ, and let α = (α1, . . . , αr) be a composition of m. Then a k-tableau with
shape γ and k-weight α is a filling of γ with the numbers 1, 2, . . . , r, in which rows are weakly
increasing and columns are strictly increasing and there are exactly αi distinct residues for
the cells occupied by the letter i.

41

32 33

23 20 41

10 11 22 23 20 41

Figure 2.9: An example of a k-tableau T for k = 4. The k-weight of T is (2, 3, 2, 1). Note
that the subscripts on the entries in the tableau correspond to the residues of the boxes.

The operators we introduce in Chapter 3 which act on skew k-tableau are used to prove
the k-Littlewood–Richardson rule in Chapters 4 and 5. This definition of k-tableau is ex-
tended by Lapointe and Morse to skew k-tableau as follows.

Definition 2.5 (Lapointe, Morse [4]). Let δ ⊆ γ be k + 1-cores, with m1 k-bounded hooks
in δ and m2 k-bounded hooks in γ. Let α = (α1, . . . , αr) be a composition of m2 − m1.
Then a skew k-tableau with shape γ/δ and k-weight α is a filling of a γ/δ with the numbers
1, 2, . . . , r in which rows are weakly increasing and columns are strictly increasing and there
are exactly αi distinct residues for the cells occupied by the letter i.
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Lapointe and Morse [7] proved a number of facts about k-tableaux. In particular they
proved that there is a characterization equivalent to the definition of k-tableaux which will
allow us to construct k-tableaux more easily. We present their result below in Theorem 2.6.

Theorem 2.6 (Lapointe, Morse [7]). Let T be a semistandard tableaux filled with the
numbers 1, . . . , n whose shape is a k + 1-core. Furthermore, for i = 1, . . . , n, let Si be the
part of T containing entries 1, . . . , i. Then T is a k-tableaux if and only if each Si can be
constructed from Si−1 by adding a sequence of boxes containing i to Si−1 according to the
rule that whenever we add a box of residue r, we add every box of residue r that still gives
a diagram whose shape is a partition.

To construct a k-tableaux, one way is of course to start with a k+1-core and fill all of the
boxes according to the rules. But sometimes we will only know that we want a k-tableaux
with a given k-weight µ = (µ1, . . . , µm). By Theorem 2.6, we can construct a k-tableau by
first adding boxes labeling them with the number 1 and keeping track of k + 1 residues.
Whenever we add a box with a given residue though, we must add every possible box of the
same residue while still having a shape that is a Ferrers diagram. Add enough boxes so there
are exactly m1 residues for the boxes occupied by the number 1. Next, continue by adding
boxes containing 2’s and keeping track of k + 1 residues, and again whenever we add a box
with a given residue, we must add every box of the same residue that still gives us a Ferrers
diagram. Continue until there are m2 residues for all the boxes occupied by the number 2.
Continue this process and we will eventually have a k tableaux of k-weight µ. This process
works to construct both k-tableaux or skew k-tableaux, except for the skew case we first
start drawing boxes outside of the shape c(ν).

Example 2.7. Suppose we want to construct a k-tableaux of k-weight µ = (2, 2, 1) for k = 3.
We begin by adding boxes containing 1’s. There is only one way to do this so we get the
following diagram

3 0

10 11 2 3

Notice that outside the boxes containing 1’s we write the residue of the corresponding
cells. Now, to add two residues containing 2’s, we have some choices. We will place the first
one in the cell of residue 2, and then if we place a 2 in the cell of residue 3, we must place a
2 in both of the cells with residue 3.

2

23 0

10 11 22 23 0

To add one residue containing a 3, we have the option of placing the 3 in the cell of
residue 2, or else in both of the cells of residue 0 (again, we have to add numbers in every
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cell of a given residue that will still give us a Ferrers diagram as the shape). If we choose
to place the 3 in the cell of residue 0, our final k-tableau is the following k-tableau of shape
c(3, 2) = (5, 2) (the k-bounded partition is (3, 2) which corresponds to the k + 1-core (5, 2)
for k = 3 and k + 1 = 4).

23 30

10 11 22 23 30

In addition to the characterization provided in Theorem 2.6, Lapointe and Morse [7] also
showed there is another characterization for k-tableaux, which is presented in the following
theorem.

Theorem 2.8 (Lapointe, Morse [7]). Let T be a semistandard tableaux filled with the
numbers 1, . . . , n whose shape is a k + 1-core. Furthermore, for i = 1, . . . , n, let Si be the
part of T containing entries 1, . . . , i, and let Pi be the partition corresponding to the shape
of Si. Then T is a k-tableaux if and only if the shape of Pi/Pi−1 is a horizontal strip and
the shape of P ωk

i /P ωk
i−1 is a vertical strip for each i. Recall that P ωk

i denotes the k-conjugate
as defined in Chapter 2.

The characterization of k-tableaux provided in Theorems 2.6 and 2.8 are used frequently
throughout the remainder of this thesis. Note that if T is a k-tableau, then the the Si as
defined in Theorems 2.6 and 2.8 are k-tableaux.

As mentioned previously, there are a number of definitions for k-Schur functions, all of
which are conjectured to be equivalent. For this thesis we will be using the definition given
by Lapointe and Morse [7]. All of definitions and facts presented below can be found ex-
plained in greater detail in [7] and [4].

Recall that the Kostka number Kµα is equal to the number of tableaux of shape µ with
weight α. This was generalized to k-tableaux by Lapointe and Morse [7], so the k-Kostka

number K
(k)
µα is the number of k-tableaux of shape c(µ) (the k + 1-core corresponding to µ)

and k-weight α. Lapointe and Morse [4] proved the following property of k-Kostka numbers
which we present as a theorem. This property is used implicitly in this thesis.

Theorem 2.9 (Lapointe, Morse [4]). Let λ and µ be two k-bounded partitions with |µ| = |λ|.
Then if α is any composition obtained by rearranging the parts of µ, then

K
(k)
λα = K

(k)
λµ .

It was shown in [7] that the k-Kostka numbers satisfy a triangularity property similar to

that of the Kostka numbers, in particular, for µ and λ partitions, K
(k)
µλ = 0 whenever µ 4 λ,

and K
(k)
µµ = 1. Because of this triangularity property, the inverse of the matrix ||K(k)

µλ ||λ,µ∈Pk



CHAPTER 2. BACKGROUND 15

exists and we denote it by ||K(k)||−1 = ||K(k)||. The k-Schur functions were defined in terms
of this inverted system as

s
(k)
λ =

∑
µDλ

K
(k)

µλhµ

where λ is a k-bounded partition and the sum runs over all k-bounded µD λ. Note that the
k-Schur functions are also symmetric functions. Additionally, if λ ∈ Pk and h(λ) ≤ k, then

s
(k)
λ = sλ, meaning if a partition has hook length at most k, then its corresponding k-Schur

function is actually just a classical Schur function [4]. In addition, this definition of k-Schur
functions implies that

hλ =
∑
µ

K
(k)
λµ s

(k)
λ .

Example 2.10. For k = 4, λ = (2, 2, 1, 1) is a k-bounded partition, and the k-Schur function

s
(3)
(2,2,1,1) can be expanded in terms of Schur functions,

s
(4)
(2,2,1,1) = s(2,2,1,1) + s(3,2,1).

For k = 4, λ = (4, 2) is also a k-bounded partition, and the k-Schur function s
(3)
(4,2) can also

be expanded in terms of Schur functions,

s
(4)
(4,2) = s(4,2) + s(5,1) + s(6).

For k = 4 λ = (3, 1) is k-bounded partition and also has hook length 4, so h(λ) ≤ k meaning
the k-Schur function is equal to a Schur function,

s
(4)
(3,1) = s(3,1).

As a side note, generally wherever we are using k-tableaux or k-Schur functions, we are
assuming k is fixed, and all of our partitions will be k-bounded unless otherwise noted.

This definition of k-Schur functions implies that the set of all k-Schur functions {s(k)λ }λ1≤k
forms a basis of Λk = Z[h1, . . . , hk], the space of all k-bounded symmetric functions, which
is a subspace of Λ. Lapointe and Morse proved [4] that this definition implies a k-Pieri rule
for multiplying a k-Schur function by hl where l ≤ k, which we present below.

Theorem 2.11 (Lapointe, Morse [4]). For ν ∈ Pk and l ≤ k,

hls
(k)
ν =

∑
µ∈H(k)

ν,l

s(k)µ

where H
(k)
ν,l = {µ ∈ Pk|µ/ν is a horizontal l strip and µωk/νωk is a vertical l strip}.
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The skew k-Kostka number K
(k)
λ/ν,µ is the number of skew k-tableaux of shape c(λ)/c(ν)

with k-weight µ. Lapointe and Morse [4] go further to prove the following corollary of the
previous theorem (the k-Pieri rule), which gives a combinatorial description for the coeffi-
cients of the k-Schur functions which appear when multiplying a homogeneous symmetric
function hλ by a k-Schur function.

Corollary 2.12 (Lapointe, Morse [4]). For any k-bounded partitions ν and µ,

hµs
(k)
ν =

∑
λ∈Pk

K
(k)
λ/ν,µs

(k)
λ

where K
(k)
λ/ν,µ is the number of skew k-tableaux of shape c(λ)/c(ν) with k-weight µ.

Example 2.13. h(2,1)s
(4)
(4,2) = s

(4)
(4,4,1) + 2s

(4)
(4,3,2) + s

(4)
(4,3,1,1) + s

(4)
(4,2,2,1). In this example, the coef-

ficient in front of s
(4)
(4,3,2) is K

(4)
(4,3,2)/(4,2),(2,1) which is the number of skew 4-tableaux of shape

c(4, 3, 2)/c(4, 2) = (7, 3, 2)/(6, 2) with 4-weight (2, 1). These 2 skew 4-tableaux are shown
below. (Note that the boxes left empty are not really in the skew diagram, but they are
included in the figure to clarify the shape of the skew diagram).

13 14

21

21

13 24

11

11

Lam proved in [2], using a geometric strategy, that when two k-Schur functions s
(k)
µ and

s
(k)
ν are multiplied, the k-Littlewood–Richardson coefficients cλ,kµν appearing in the expansion

s(k)µ s(k)ν =
∑
λ∈Pk

cλ,kµν s
(k)
λ

are all nonnegative integers. It would also be nice to also obtain a combinatorial description
for them which generalizes the combinatorial description of classical Littlewood–Richardson
coefficients. In Chapters 4 and 5 we give a combinatorial description of cλ,kµν for specific
partitions µ, which does in fact generalize the classical Littlewood–Richardson rule, and at
the end of Chapter 4 we conjecture that the combinatorial description does in fact hold even
when no restrictions are imposed on µ.

2.4 Properties of entries in k-tableaux

In this section we present the concepts of entries of k-tableaux being married, divorced,
and single. These concepts are of great importance for the operators we define in Chapter
3. The terminology and concepts were all developed by Lapointe and Morse in [4].
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Remark 2.14. Whenever we use the terms married, divorced, or single when referencing
entires i or i+ 1 of a k-tableau, we will be referencing the relation of i to i+ 1 or vice versa.
In other words we always have two consecutive entires (such as 2 and 3 or 5 and 6) that we
are discussing. So if we say an entry 2 is married, this could mean the 2 is married to a 1 or
the 2 is married to a 3, but our intentions regarding which we mean will always be clear.

Let T be a k-tableau. When a box of residue c is occupied by an i we say that T contains
an ic. For example, in the tableau seen in Figure 2.10 there is a 10, 21, 43, and 52.

T =

52

43

10 21 52

Figure 2.10: A k-tableau T for k = 3, with shape c(2, 1, 1) = (3, 1, 1) and k-weight
(1, 1, 0, 1, 1). Recall that the subscript on the entries refers to the residue of the box. For
instance, the box labeled 43 is meant to contain the number 4, and the residue of this entry
is 3.

Fix i and i + 1 to be consecutive entries in a tableau T . We say that two entries i and
i + 1 are married if they occur in the same column (so that the i + 1 is immediately above
the i). If we say that an entry i is married it will be implied that it is married to an i + 1
and vice versa. An entry containing an i (or i + 1) is divorced if it is not married but has
the same residue as a married i (or i + 1). If an entry containing an i or an i + 1 is not
married or divorced, then we say that it is single. In addition, when we say that an entry is
unmarried, we mean that it is not married and is therefore either divorced or single.

In Figure 2.10 for boxes containing 1 and 2, both the 10 and 21 are single. For boxes
containing 4 and 5, the 43 in the second row is married to the 52 in the third row (counting
rows from bottom to top), and the 52 in the bottom row is divorced.

For a row r in a tableau T (where we count the rows from bottom to top starting with the
bottom row being 1), we let UResr(i, i+1) be the set of all residues occupied by an unmarried
i or i + 1 in row r. In our example from Figure 2.10, URes1(4, 5) = {2}, URes2(4, 5) = ∅,
and URes1(1, 2) = {0, 1}. In [4] it is shown that there is an equivalence relation on rows
in a k-tableau T , which proves that whenever UResm(i, i + 1) ∩ UResr(i, i + 1) 6= ∅ for two
rows where r < m, then UResm(i, i + 1) ⊆ UResr(i, i + 1). This allowed the definition of
a fundamental row which is a row m such that UResm(i, i + 1) 6⊆ UResr(i, i + 1) for any
r where r < m (so the unmarried residues of i and i + 1 in the fundamental row are not
contained in the set of unmarried residues of i and i+ 1 for any higher row).
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In our example again from Figure 2.10, concerning 4 and 5, there is one fundamental
row, which is the bottom row (row 1), and concerning 3 and 4, the only fundamental row is
row 2 (there are no boxes containing a 3, so the 43 is single).

We now present a more in-depth example of all of the concepts presented in this section.

Example 2.15. We present here an example showing fundamental rows for two different
k-tableaux, and mention the single, married, or divorced status of some entries in them.
Consider first the following k-tableaux T for k = 5.

T =

52 53

33 44

24 20 41 52 53

10 11 22 33 44 40 41 52 53

In T , if we consider the fundamental rows for 4/5, the only fundamental row is the bottom
row, R1. In this row we have single entries 40, 41, and 52, and divorced entry 53. The 44 is
married. Notice that all of the other single or divorced 4’s or 5’s that appear in T have the
same residue as one of the 4’s or 5’s in the fundamental row R1.

Next we will consider a skew k-tableaux S, and the fundamental rows in S. The concepts
of fundamental rows work the same for skew k-tableaux as they do for k-tableaux.

S =

54

40 51

21 42

12 33 54

24 40 51

10 21 42 43 54

12 23 24 40 51

In S, there are two fundamental rows for 4/5, the bottom two rows: R1 and R2. In R1 we
have a married 40 and a divorced 51. In R2 we have married entries 42 and 54 and a single
43. In this example, any 4’s or 5’s appearing above the two fundamental rows are actually
married.
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Chapter 3

Some operators on k-tableaux

3.1 Definitions

In this section we define and describe properties of three operators on the set of k-tableaux
and skew k-tableaux. It should be noted here that while other operators on classical tableaux
(ei, fi, and si) are in fact crystal operators, the operators we introduce (e

(k)
i , f

(k)
i , and s

(k)
i )

are not crystal operators, but they have some nice properties similar to crystal operators,
and they work to help prove the special case of the k-Littlewood–Richardson rule in later
chapters. The similar notation that we use is merely to help clarify.

First, following Lascoux and Schützenberger [9], we recall three operators on words ei,
fi and si. Let w be a word on the letters 1, . . . , n, and let i be a positive integer such that
1 ≤ i ≤ n−1. Next, take the subword of w consisting of only the letters i and i+1. Replace
each i with a right parenthesis, and each i+ 1 with a left parenthesis. Pair the parentheses
according to the normal rules, and consider the unpaired ones. These will correspond to a
subword of the form ip(i + 1)q. The operators ei, fi and si replace the subword ip(i + 1)q

with a similar word according to the following rules.

• For ei, replace ip(i + 1)q by ip+1(i + 1)q−1. Note that we can only apply ei if q > 0,
meaning that u has an i/(i+ 1)-unpaired letter i+ 1.

• For fi, replace ip(i + 1)q by ip−1(i + 1)q+1. Note that we can only apply fi if p > 0,
meaning that u has an i/(i+ 1)-unpaired letter i.

• For si, replace ip(i+ 1)q by iq(i+ 1)p.

For an example of these operators, let w = 3212423224131. We will show how the oper-
ators e2, f2 and s2 act on this word so we will be acting on the number of 2’s and 3’s in the
word. First we take the subword of w consisting of only the 2’s and 3’s. Call this subword
u, so u = 32223223. If we replace the 2’s and 3’s with right and left parentheses, we get
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u = ()))())(. If we pair the parentheses according to the usual rules, we see that the third,
fourth, and last two are unpaired. We will replace those with the numbers that they corre-
spond to, so u = ()22()23. The operators will change the unpaired numbers left in u. e2 will
send the the unpaired 2223 = 2331 to 2222 = 2430. Then s2u = ()22()22 = 32223222, and
by replacing this back into w in place of u, we get s2w = 3212423224121 = 3212423224121.
The bold is just to emphasize the subword s2u that we replaced in w. Now f2u = ()22()33 =
32223233, so f2w = 3212423234131 = 3212423234131, and s2u = ()23()33 = 32233233, so
s2w = 3212433234131 = 3212433234131.

It is now time to define a particular subword of a k-tableau or skew k-tableau which we
call the fundamental i/(i+ 1) subword.

Definition 3.1. Let T be a k-tableau or skew k-tableau filled with 1, 2, . . . , n, and let i be
a positive integer, 1 ≤ i ≤ n− 1. Let R1, R2, . . . , Rm be the fundamental rows of T (for the
chosen i/i+ 1), ordered from top to bottom. Ignore all of the married and divorced entries
of i and i+ 1, and just take the word consisting of single i and i+ 1 entries reading from left
to right across R1, then R2, and so on, ending with Rm. We call this word the fundamental
i/(i+ 1) subword.

Definition 3.2. Let T be a k-tableau or skew k-tableau filled with 1, 2, . . . , n, and let i be
a positive integer, 1 ≤ i ≤ n− 1. Let R1, R2, . . . , Rm be the fundamental rows of T (for the
chosen i/i + 1), ordered from top to bottom. Let w be the fundamental i/(i + 1) subword
which consists of the letters i and i+1. Then perform the parentheses pairing after replacing
each i with a right parenthesis and each i + 1 with a left parenthesis. Take the subword u
which consists of all of the unpaired i and i+1 entries. We call this subword the fundamental
i/(i+ 1)-unpaired subword of T .

When we say that a tableau T has an i/(i + 1)-unpaired i (resp. i + 1), this just means
that in the fundamental i/(i+ 1)-unpaired subword of T , there is at least one i (resp. i+ 1).

The operators e
(k)
i , f

(k)
i , and s

(k)
i will be operators defined on k-tableaux and skew k-

tableaux as follows. First let T be a k-tableau or skew k-tableau. Take the fundamental
i/(i + 1)-unpaired word of T and call this u. For e

(k)
i replace u by eiu and put it back into

T in place of u. For f
(k)
i and s

(k)
i , do the same except replace u by fiu and siu, respectively.

Once we do this, we need to make a few adjustments so that we still have a k-tableau or
skew k-tableau as follows

1. In each of the fundamental rows, if there are any entries containing a lying to the right
of an entry we relabeled with i + 1, relabel it with i + 1, and if there is any entry
containing i+ 1 lying to the left of an entry that we relabeled with i, replace it with i.
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2. In the rows above the fundamental rows, relabel any unmarried i that has the same
residue as an i that was changed to an i+ 1 in step 1, and relabel any unmarried i+ 1
that has the same residue as an i+ 1 that was changed to an i in step 1.

Example 3.3. Let k = 8, and consider the following 8-tableau.

T =

34

25 36

16 17 48

20 31 32 43 44

12 13 24 25 36 37 48

16 17 18 20 31 32 43 44

We will perform the three operators on T for i = 2. First, the fundamental rows of T for
2’s and 3’s are the bottom two rows, so R1 contains 24, 25, 26, and 37, and row R2 contains
20, 21, and 32. The fundamental 2/3 subword of T is then w = 243637203132. Note that we
omitted the divorced 35 from the second row, since we disregard divorced entries. When we
perform the pairing on w, we find that the fundamental 2/3-unpaired subword of T is then

u = 24363132. So for e
(8)
2 , we will replace this with 34363132, because we will change the

right-most 2 in u to a 3. So we will first change the 24 in the fundamental row R1 to a 34.

34

25 36

16 17 48

20 31 32 43 44

12 13 34 25 36 37 48

16 17 18 20 31 32 43 44

Notice that there is a divorced 25 to the right of the 34, so we must change that to a 35.
After we do this, there are no entries to change in higher rows, so we are done.

e
(8)
2 T =

34

25 36

16 17 48

20 31 32 43 44

12 13 34 35 36 37 48

16 17 18 20 31 32 43 44

For f
(8)
2 T , we will change the fundamental 2/3-unpaired subword u = 24363132 to 24263132.

So we first change the 36 in the fundamental row R1 of T to a 26.
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34

25 36

16 17 48

20 31 32 43 44

12 13 24 25 26 37 48

16 17 18 20 31 32 43 44

There are no divorced entries containing a 2 to the right of the 3 that we changed, so we
only need to change the 36 in a higher row to 26, so we get the following:

f
(8)
2 T =

34

25 26

16 17 48

20 31 32 43 44

12 13 34 25 26 37 48

16 17 18 20 31 32 43 44

Finally, for s
(8)
2 T , we change u = 24363132 to 24262132, and then perform the same

corrections of changing divorced entries as needed and replacing entries in higher rows, and
we get the following:

s
(8)
2 T =

34

25 26

16 17 48

20 21 32 43 44

12 13 24 25 26 37 48

16 17 18 20 21 32 43 44

3.2 Properties of the operators

There remain a few facts to prove about the operators. First of all that the tableau we
get after performing any of the above operations is actually a k-tableau or skew k-tableau.
To do this we need to show that e

(k)
i T , f

(k)
i T and s

(k)
i T are all column-strict and weakly

increasing in rows, and then show that the k-weight changes appropriately. This is sufficient
to prove that they are k-tableau or skew k-tableau because if a k-tableau or skew k-tableau
is column strict, weakly increasing in rows, and has k-weight α where α is a composition
of the number of k-bounded hooks in the given tableau then it is clearly a k-tableau or
skew k-tableau by definition. e

(k)
i T , f

(k)
i T and s

(k)
i T are all weakly increasing in rows by the

definition of the operators, so it suffices to show that they are column strict and have the
appropriate k-weight. For simplicity, in the rest of this section when we say k-tableau we
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mean it to imply k-tableau or skew k-tableau. The proofs given all apply to both cases.

Before we begin our proofs we recall a fact given by Lapointe and Morse [4] which is
necessary for many of the proofs in this chapter.

Remark 3.4. (Lapointe, Morse [4]). Given a sequence of i and i + 1 entries in a row of a
k-tableau, the married i’s all lie at the beginning of the sequence, and the married i + 1’s
all lie at the end of the sequence. This is easy to see, since any unmarried i has an entry
larger than an i above it, so anything to the right of it must also be unmarried. Similarly,
any unmarried i + 1 has an entry smaller than i below it, so anything to the right of it is
unmarried.

We also will need the following property, also proven by Lapointe and Morse [4] which
we restate here.

Property 3.5. (Lapointe, Morse [4])

• Given an unmarried (i + 1)c (that is an i + 1 occupying a box with residue c) in a
k-tableau T , any ic ∈ T is married and lies weakly higher than the highest unmarried
(i + 1)c. Furthermore, ic occurs in T if and only if there is a divorced (i + 1)c−1
left-adjacent to the unmarried (i+ 1)c.

• Given an unmarried ic (that is an i occupying a box with residue c) in a k-tableau
T , any (i + 1)c ∈ T is married and lies strictly higher than the highest unmarried
ic. Furthermore, (i + 1)c occurs in T if and only if there is a divorced (i + 1)c+1

right-adjacent to the unmarried ic.

We can now continue with the proofs about our operators e
(k)
i , f

(k)
i , and s

(k)
i .

Proposition 3.6. If T is a k-tableau that has at least one i/(i+ 1)-unpaired i+ 1 (meaning

e
(k)
i T is defined) and k-weight α = (α1, . . . , αi, αi+1, . . . , αn), then e

(k)
i T is a k-tableau of the

same shape as T , with k-weight (α1, . . . , αi + 1, αi+1 − 1, . . . , αn).

Proof. The proof of this is similar to and follows a proof of a similar fact for a different
operator on k-tableau given by Lapointe and Morse in [4].

To prove that e
(k)
i is a k-tableau, it suffices to show that it is column strict and has the

appropriate k-weight, as explained previously.

We begin by showing that e
(k)
i is column strict. First note that in e

(k)
i T , the only entries

which were changed from T are unmarried i + 1’s. In any given row of T , if we change an
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unmarried i + 1 to an i, since T is column strict, the entry above i + 1 was strictly greater
than i+ 1 (and also greater than the i that we replaced the i+ 1 with), and since the i+ 1
was unmarried, any entry below the i+1 would have to be strictly less than i. Thus when we
replace the i+ 1 with an i, the entry below is still less. This shows that changing unmarried
i+ 1 entries to i does not affect column strictness, so e

(k)
i T is column strict.

Now we need only show that the k-weight changes appropriately for e
(k)
i T . Let αi and

αi+1 denote the number of residues occupied in T by the letters i and i + 1, respectively,

and βi and βi+1 denote the number of residues occupied in e
(k)
i T by the letters i and i + 1.

Then let αmi and αsi denote the number of residues occupied in T by married i and single i
entries, respectively. We use similar notation for married and single i + 1 entries in T , and
for married and single i and i+1 entries in e

(k)
i T . Then αi = αmi +αsi and αi+1 = αmi+1 +αsi+1

for the entries in T and βi = βmi + βsi and βi+1 = βmi+1 + βsi+1 for the entries in e
(k)
i T . But

since there is a one-to-one correspondence between married i and i + 1 entries in T , and
similarly in e

(k)
i T , we have αmi = αmi+1 and βmi = βmi+1. Also because any married i or i + 1

entry in T is still married in e
(k)
i T , and any unmarried entry that we changed from T to

e
(k)
i T is still unmarried, we have αmi = αmi+1 = βmi = βmi+1. Therefore to show that the weight

changes appropriately, we need only show that βsi = αsi + 1 and βsi+1 = αsi+1. In other words,

we need to show that e
(k)
i T has exactly one more single i than does T , and has exactly one

less single i+ 1 than T .

We only change one fundamental row under the operator e
(k)
i , let us call this row R.

Then in all other fundamental rows of T the number of single i and i + 1 entries stay the
same, so the only possible change must occur in row R. Let c be the residue of the single
i+ 1 in T which gets changed to an i in e

(k)
i T . This single i+ 1 that gets changed must be

the leftmost single i + 1 in row R, and because married i + 1 entries appear to the right of
single and divorced i+ 1 entries, any i+ 1 entry to the left of the one with residue c must be
divorced. When we perform e

(k)
i , we change the (i+ 1)c to an entry ic. The entry ic is either

single or divorced. By Property 3.5, since T contained an unmarried (i + 1)c, any ic ∈ T is
married and occurs if and only if there is a divorced (i+ 1)c−1 left-adjacent to the unmarried

(i+ 1)c. So if the (i+ 1)c in T is changed to a single ic in e
(k)
i , then this means there was no

married ic which occurred in T (otherwise the ic in row R would be divorced), and hence by
Property 3.5, there is no divorced (i + 1)c−1 left-adjacent to the unmarried (i + 1)c in row
R, so there are no entries to the left of the (i + 1)c in row R that get changed to an i. On
the other hand, if the (i + 1)c in T is changed to a divorced ic, then this means there was
a divorced (i + 1)c−1 left-adjacent to the (i + 1)c in row R in T . Then by the definition of

e
(k)
i , we must also change the (i+ 1)c−1 in row R to an ic−1. Then this ic−1 is either single or

divorced, and if we use the same argument repeatedly, we can see that the entries that are
changed in T are exactly a string of divorced i+ 1 entries which end with the single (i+ 1)c
at the right, and these are changed into a string of i entries, where the leftmost one is single
in e

(k)
i T , and all others are divorced. Therefore when we perform e

(k)
i on T we lose one single
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i+ 1, but gain one single i, as desired.

Proposition 3.7. Let T be a k-tableau and let u = ip(i+ 1)q be the fundamental i/(i+ 1)-

unpaired subword of T . If s
(k)
i u, e

(k)
i u, and f

(k)
i u, are the fundamental i/(i + 1)-unpaired

subwords of s
(k)
i T , e

(k)
i T , and f

(k)
i T , respectively, then we have the following

• s(k)i u = iq(i+ 1)p.

• e(k)i u = ip+1(i+ 1)q−1 for q > 1.

• f (k)
i u = ip−1(i+ 1)q+1 for p > 1.

Proof. First, we prove the proposition for e
(k)
i . When we perform e

(k)
i on T we are only

changing one single i + 1 to an i in a fundamental row R, and then changing any divorced
i+ 1’s which are to the left of the single i+ 1 that we changed in row R (and then changing
corresponding entries in higher rows). Then as explained in the proof of Proposition 3.6, in
row R we are changing a string of divorced i+ 1’s followed by a single i+ 1 to a string with
a single i at the left, followed by divorced i entries.

(i+ 1)d (i+ 1)d . . . (i+ 1)d (i+ 1)s

f
(k)
i ↑ ↓ e(k)i

is id . . . id id

Figure 3.1: How e
(k)
i and f

(k)
i change the entries in a fundamental row R. The subscripts d

and s refer to whether each entry is divorced or single.

So we gain a single i and lose a single i + 1 and it will be in the same relative position
in the fundamental i/(i+ 1)-unpaired subword, and all other single i and i+ 1’s will remain

unchanged. So e
(k)
i u = ip+1(i+ 1)q−1.

Similar reasoning proves the case for f
(k)
i u.

All that we have left is to consider the case of s
(k)
i u. But for this word, for each of the

i + 1 we change to an i or i we change to an i + 1, the same thing happens as when we do
e
(k)
i or f

(k)
i , so the fundamental i/(i+ 1)-unpaired subword will just change by swapping the

number of unpaired i and i+ 1’s, so s
(k)
i u = iq(i+ 1)p.
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One more important fact about the operators that we will need is the fact that f
(k)
i and

e
(k)
i are inverses.

Proposition 3.8. The operators e
(k)
i and f

(k)
i are inverses. That is, if T is a k-tableau on

which e
(k)
i is defined, then f

(k)
i e

(k)
i T = T . Likewise, if T is a k-tableau on which f

(k)
i is

defined, then e
(k)
i f

(k)
i T = T .

Proof. First, let T be a k-tableaux on which e
(k)
i is defined, and we will consider f

(k)
i e

(k)
i T .

Notice from the proof of Proposition 3.7 that the only thing e
(k)
i changes in T is a string of

divorced i+ 1 followed by a single i+ 1 in a fundamental row R of T , which it changes into a
string consisting of a single i followed by divorced i, and corresponding entries in higher rows
of T . This idea can be seen illustrated in Figure 3.2. But the location of the single i+ 1 in
the fundamental i/(i+1)-unpaired subword of T that we change is the same relative location
as the corresponding single i that it was changed into, in the fundamental i/(i+ 1)-unpaired

subword of e
(k)
i T . Since it was the leftmost unpaired i + 1 in the fundamental i/(i + 1)-

unpaired subword of T , it will be correspond to the rightmost unpaired i in the fundamental
i/(i + 1)-unpaired subword of e

(k)
i T . Hence when we perform f

(k)
i , that unpaired i will get

changed back to an i+ 1, and the entire string of entries that was changed in row R will get
changed back to what they were originally, along with the corresponding entries in higher
rows. We can visualize this by thinking that all e

(k)
i and f

(k)
i do are change a string of entries

in fundamental row R back and forth as in Figure 3.2, and the corresponding entries in
higher rows. So f

(k)
i e

(k)
i T = T . The argument that e

(k)
i f

(k)
i T = T is essentially the same.

3.3 The operator s
(k)
i e

(k)
i

The operator s
(k)
i e

(k)
i has some nice properties, and will be used in the bijection for our

proof of the k-Littlewood–Richardson rule in Chapter 4.

Lemma 3.9. Let T be a k-tableau or skew k-tableau filled with the letters 1, . . . , n and
k-weight w(µ + ρ) − ρ where µ = (µ1, . . . , µn) is a partition, w ∈ Sn is a permutation, and

ρ = (n− 1, . . . , 1, 0). Then if there is at least one i/(i + 1)-unpaired i + 1 in T , s
(k)
i e

(k)
i T is

defined, and s
(k)
i e

(k)
i T 6= T .

Proof. The k-weight of T is w(µ + ρ) − ρ = w(µ1 + n − 1, . . . , µi + n − i, µi+1 + n − (i +
1), . . . , µn+ 0)− (n−1, . . . , n− i, n− i+ 1, . . . , 0). In particular, T has µwi +n−wi− (n− i)
k + 1-residues filled with i, and µwi+1

+ n − wi+1 − (n − (i + 1)) k + 1-residues filled with

i+ 1. But then s
(k)
i e

(k)
i T has µwi+1

+ n−wi+1− (n− (i+ 1))− 1 k+ 1-residues filled with i,

and µwi + n − wi − (n − i) + 1 k + 1-residues filled with i + 1. If T and s
(k)
i e

(k)
i T were the

same k-tableau, then they would have the same number of k+ 1-residues filled with i, so we
would have

µwi + n− wi − (n− i) = µwi+1
+ n− wi+1 − (n− (i+ 1))− 1.
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But then simplifying this expression, we get µwi+1
− µwi = wi+1 − wi. But there are two

possible cases here.

• If wi+1 > wi, then µwi+1
≤ µwi , meaning µwi+1

− µwi ≤ 0 < wi+1 − wi.

• If if wi+1 < wi, then µwi+1
≥ µwi , meaning µwi+1

− µwi ≥ 0 > wi+1 − wi.

Either of these cases contradicts the above equality (µwi+1
− µwi = wi+1 − wi), meaning T

and s
(k)
i e

(k)
i T have different numbers of k + 1-residues occupied by i, and thus they cannot

be the same k-tableau.

Lemma 3.10. Let u be the fundamental i/(i+ 1)-unpaired subword of T , so u = ip(i+ 1)q.

If q ≥ p, then s
(k)
i T = (e

(k)
i )q−pT , otherwise if q < p, then s

(k)
i T = (f

(k)
i )q−pT .

Proof. First, suppose that q ≥ p. When we apply e
(k)
i to a k-tableau T , the rightmost

i/(i + 1)-unpaired i + 1 in the fundamental i/(i + 1)-unpaired subword of T is changed
to an i, but all of the i + 1’s that appeared to the right of the one we changed in the
fundamental i/(i+1)-unpaired subword are exactly the same as the i/(i+1)-unpaired i+1’s

in the fundamental i/(i + 1)-unpaired subword of e
(k)
i T . Performing the corrections from

the definition of e
(k)
i (which result in only changing some divorced i + 1’s to i’s) will not

change the positions of the i/(i+ 1)-unpaired i+ 1’s in the k-tableau. This means that if we

apply e
(k)
i to T a total of q − p times, the resulting k-tableau will be identical to the one we

would get by first changing the q− p leftmost i+ 1’s in u to i entries, and then perform the
correcting parts of the operators (changing any divorced i+ 1 in the fundamental rows to i
as needed, and changing unmarried i+ 1’s in rows above the fundamental rows as needed),

which is exactly s
(k)
i T by definition. A similar argument using the f

(k)
i operators proves the

remaining case.

Using Lemma 3.10 and Proposition 3.8, we will be able to prove the following corollary
which is necessary for our proof in Chapter 4.

Corollary 3.11. The operator s
(k)
i e

(k)
i is an involution on the set of k-tableau of a given

shape that have at least one i/(i+ 1)-unpaired i+ 1.

Proof. First of all, let u = ip(i + 1)q be the fundamental i/(i + 1)-unpaired subword of T .

Since there is at least one i/(i + 1)-unpaired i + 1, q > 0 and e
(k)
i T is defined. If we pay

attention to what happens to the fundamental i/(i + 1)-unpaired subword of T when we

apply e
(k)
i and then s

(k)
i , we see that

u = ip(i+ 1)q
e
(k)
i−→ ip+1(i+ 1)q−1

s
(k)
i−→ iq−1(i+ 1)p−1.
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By Lemma 3.10, since s
(k)
i is the same as applying e

(k)
i or f

(k)
i some number of times, and

since e
(k)
i and f

(k)
i are inverses by Proposition 3.8, this means for our specific k-tableau T

we can express s
(k)
i e

(k)
i T as (e

(k)
i )αT (where if α < 0 we interpret this as meaning s

(k)
i e

(k)
i T =

(f
(k)
i )−αT ). To find exactly what α is, we notice that the word u = ip(i+ 1)q must get sent

to the word iq−1(i+ 1)p−1, so α = q − p− 1. Let T ′ = s
(k)
i e

(k)
i T and consider what happens

to the word u′ = iq−1(i+ 1)p−1 of T ′ when we perform s
(k)
i e

(k)
i a second time.

iq−1(i+ 1)p−1
e
(k)
i−→ iq(i+ 1)p

s
(k)
i−→ ip(i+ 1)q.

By the same reasoning as before, s
(k)
i e

(k)
i T ′ = (e

(k)
i )βT ′, and in order for the word to change

appropriately, we need β = −q + p+ 1 = −α. But then

s
(k)
i e

(k)
i T ′ = (e

(k)
i )−αT ′ = (e

(k)
i )−α(e

(k)
i )αT = T.

3.4 The k-lattice property

The last section of this chapter introduces a property of a k-tableau T which we call the
k-lattice property. We define the property and give a few examples which demonstrate when
the k-lattice property holds and when it does not.

Definition 3.12. Let T be a k-tableau filled with the numbers 1, . . . , n. If T has no i/(i+1)-
unpaired i+ 1 for i = 1, . . . , n− 1, then we say that T is k-lattice.

Remark 3.13. A k-tableau T is k-lattice if and only if it does not admit any e
(k)
i operator.

This follows from the definition of e
(k)
i . Note that this is the same as in the classical case

(with “no k”) where a tableau T is lattice if an only if it does not admit any ei operator.

Recall that the property for a semistandard Young tableaux T filled with the num-
bers 1, . . . , n to be lattice is that when we take the reverse reading word of the tableau,
w = w1w2 · · ·wm, then in any left factor w1w2 · · ·wj the number of i’s is at least as great
as the number of i + 1’s (for i = 1, . . . , n) [12]. It is easy to see that if we take k to be
sufficiently large, then the k-lattice definition becomes the traditional lattice definition for a
tableau. The k-lattice property is of importance in this thesis because it is used in giving a
combinatorial description of the k-Littlewood–Richardson coefficients.

Remark 3.14. For the proofs presented in Chapters 4 and 5, we will only be filling k-
tableaux with the numbers 1 and 2. In this case the k-lattice property will just be that there
is no 1/2-unpaired 2 in a tableau T .

We now present two examples illustrating the k-lattice property.
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Example 3.15. Let k = 9 and let T be the following 9-tableau:

T =

26 37 38

17 18 19

21 22

16 17 18 19

If we take the word consisting of all single 1’s and 2’s in fundamental rows, reading from right
to left, top to bottom, we get 2122161819, and after pairing them using parenthesis rules, we
get the fundamental 1/2-unpaired subword consisting of just 19. So there is no 1/2-unpaired
2. Looking at single 2’s and 3’s in fundamental rows we get the word 2637362122, and after
parenthesis pairing we are left with the fundamental 2/3-unpaired subword 26. This means
there is also no 2/3-unpaired 3, so T is k-lattice.

Note that if only one i violates the k-lattice property, then the tableau will not be k-
lattice. This can be seen in the following example.

Example 3.16. Let k = 9 and let T be the following 9-tableau:

T =

36 37 38

17 28 29

11 12

36 37 38 39

In T , the fundamental 1/2-unpaired subword will consist of 17, so there is no 1/2-unpaired
2, so the 1’s and 2’s do not violate the lattice property. But if we consider the 2’s and 3’s,
the fundamental 2/3-unpaired subword is 3639, so there is a 2/3-unpaired 3, which violates
the k-lattice property. Hence T is not k-lattice.
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Chapter 4

A proof of the
k-Littlewood–Richardson rule in a
restricted case

4.1 The proof of the k-Littlewood–Richardson rule

In this section we follow the methods used by Remmel and Shimozono in [11] to prove the
k-Littlewood–Richardson rule in the restricted case, which we restate after first reviewing
the definition of k-Littlewood–Richardson coefficients.

Definition 4.1. Let µ, ν, and λ be any k-bounded partitions. Then the k-Littlewood–
Richardson coefficients cλ,kµν is the coefficient of s

(k)
λ appearing in the expansion of the product

of the two k-Schur functions s
(k)
µ and s

(k)
ν

s(k)µ s(k)ν =
∑
λ

cλ,kµν s
(k)
λ

where the sum is taken over all k-bounded partitions λ.

Theorem 4.2 (The k-Littlewood–Richardson rule for a special case). Fix an integer k > 0
and let µ, ν, and λ be k-bounded partitions, and require that the hook length of µ is at
most k (h(µ) ≤ k). Furthermore, require that l(µ) ≤ 2. Then the k-Littlewood–Richardson
coefficient cλ,kµν can be described combinatorially as the number of skew k-tableaux of shape
λ/ν with content µ that are k-lattice.

We begin by setting up some notation and recalling some facts that will be used. Recall
the determinantal expansion for Schur functions, sµ = det(hµi+i−j)1≤i,j≤n. Expanding out
the determinant we see sµ =

∑
ω∈Sn(−1)ω

∏n
i=1 hµω(i)+ω(i)−i =

∑
ω∈Sn(−1)ωhω(µ+ρ)−ρ where ρ
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is the partition (n−1, n−2, . . . , 1, 0). For the rest of this chapter, we will take n to be equal
to l(µ). Also, for simplicity throughout this chapter, when we use say that T is a k-tableau,
we mean that T is either a k-tableau or skew k-tableau.

Let µ be a k-bounded partition with hook length at most k, meaning h(µ) ≤ k, so then

s
(k)
µ = sµ [7]. We do not yet require that l(µ) ≤ 2. Then for any other k-bounded partition
ν,

s(k)µ s(k)ν = sµs
(k)
ν =

∑
ω∈Sn

(−1)ωhω(µ+ρ)−ρs
(k)
ν . (4.1)

We will apply a consequence of the k-Pieri rule (given in Corollary 4.4) to the terms in the
previous equation, but first we need the following lemma to be sure that ω(µ + ρ) − ρ is
k-bounded (otherwise we cannot use Corollary 4.4).

Lemma 4.3. If µ is a partition with hook length at most k, meaning h(µ) ≤ k, then
ω(µ + ρ) − ρ is a composition with all parts having length at most k for any ω ∈ Sn. This
means that for i = 1, . . . , n, µω(i) + ρω(i) − ρ(i) ≤ k.

Proof. For any i = 1, . . . , n, µω(i) + ρω(i)− ρ(i) = µω(i) +n−ω(i)− (n− i) = µω(i)−ω(i) + i.
The largest that this term can possibly be is if ω(i) = 1 and i = n. So µω(i) + ρω(i) − ρ(i) ≤
µ1 − 1 + n = h(µ) ≤ k.

We need to use a consequence of the k-Pieri rule which was derived by Lapointe and
Morse [4]. This is a formula which gives a combinatorial rule for the coefficients when we
multiply a homogeneous symmetric function and a k-Schur function which we previously
stated in Chapter 2 but review again here.

Corollary 4.4 (Lapointe, Morse [4]). For any k-bounded partitions ν and τ ,

hτs
(k)
ν =

∑
λ∈Pk

K
(k)
λ/ν,τs

(k)
λ (4.2)

where K
(k)
λ/ν,λ is the number of skew k-tableaux of shape c(λ)/c(ν) and k-weight λ, and Pk

denotes the set of all k-bounded partitions.

Suppose that we fix k and let ν and λ be any k-bounded partitions, and µ = (a, b) be a
k-bounded partition of length 2, with h(λ) ≤ k (this is our restriction on µ for this chapter).
Then combining Equations (4.1) and (4.2), we have the following

s(k)µ s(k)ν = sµs
(k)
ν =

∑
ω∈Sn

∑
λ∈Pk

(−1)ωK
(k)
λ/ν,ω(µ+ρ)−ρs

(k)
λ . (4.3)
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Lemma 4.5. Let ν and λ be any k-bounded partitions, and µ be a k-bounded partition
with l(µ) ≤ 2 and h(µ) ≤ k. Then the k-Littlewood–Richardson coefficient appearing in the

expansion s
(k)
µ s

(k)
ν =

∑
λ∈Pk c

λ,k
µν s

(k)
λ can be expressed as

cλ,kµν =
∑
ω∈Sn

(−1)ωK
(k)
λ/ν,ω(µ+ρ)−ρ

where K
(k)
λ/ν,ω(µ+ρ)−ρ is the number of k-tableaux of shape c(λ)/c(ν) and k-weight ω(µ+ρ)−ρ.

Proof. This formula can be obtained easily from Equation (4.3) by rearranging terms slightly.

We are ready to prove Theorem 4.2. To prove the k-Littlewood–Richardson rule in our
special case and give a combinatorial description of the k-Littlewood–Richardson coefficients,
we will construct a bijection that cancels terms on the right hand side of the equation in the
above Lemma.

Proof of Theorem 4.2 (The k-Littlewood–Richardson rule for a special case). First, for l(µ) =
1, we take n = 1, and S1 consists of just the identity permutation. Then the expression
from Lemma 4.5 becomes cλ,kµν = K

(k)
λ/ν,µ where K

(k)
λ/ν,µ is the number of k-tableaux of shape

c(λ)/c(ν) and k-weight µ. But since l(µ) = 1, the k-tableaux are just filled with 1’s, so they
will all be k-lattice. Therefore cλ,kµν is equal to the number of k-tableaux of shape c(λ)/c(ν)
and k-weight µ which are k-lattice when l(µ) = 1. It remains to prove the case when l(µ) = 2.

For the case where l(µ) = 2, we take n = 2 by convention, and S2 consists of two
permutations, σ = (12) and the identity, 1. There are thus two possibilities for ω(µ+ ρ)− ρ.

• If ω = 1, then ω(µ+ ρ)− ρ = (a, b).

• If ω = σ, then ω(µ + ρ) − ρ = σ((a, b) + (1, 0)) − (1, 0) = σ((a + 1, b)) − (1, 0) =
(b, a+ 1)− (1, 0) = (b− 1, a+ 1).

We can simplify the expression from Lemma 4.5 slightly, since for our case µ = (a, b) and
Sn = S2.

cλ,k(a,b)ν =
∑
ω∈S2

(−1)ωK
(k)
λ/ν,ω((a,b)+(1,0))−(1,0) = K

(k)
λ/ν,(a,b) −K

(k)
λ/ν,(b−1,a+1),

where K
(k)
λ/ν,(a,b) is the number of k-tableaux of shape c(λ)/c(ν) and k-weight (a, b), and

K
(k)
λ/ν,(b−1,a+1) is the number of k-tableaux of shape c(λ)/c(ν) and k-weight (b− 1, a+ 1).

For the bijection, let T be a skew k-tableaux of shape c(λ)/c(ν) with k-weight (a, b) that

is not k-lattice. Then T has at least one 1/2-k-unpaired 2. Then s
(k)
1 e

(k)
1 T is defined and is
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a skew k-tableaux of the same shape, with k-weight (b− 1, a+ 1) (this is because e
(k)
1 T has

k-weight (a+1, b−1)) so then s
(k)
1 e

(k)
1 T has k-weight (b−1, a+1). For the other direction of

the bijection, given any skew k-tableau T ′ of shape c(λ)/c(ν) of k-weight (b− 1, a+ 1), then
we must have at least one 1/2-k-unpaired 2, since b ≤ a, meaning b − 1 < a + 1, so there

are more k-residues occupied with 2 than with 1 in T ′. This means s
(k)
1 e

(k)
1 (T ′) is defined,

and it will be a skew k-tableau of the same shape, with k-weight (a, b). By Corollary 3.11

in Chapter 3, s
(k)
1 e

(k)
1 is an involution, which gives our bijection between skew k-tableaux

of shape c(λ)/c(ν) with k-weight (a, b) that are not k-lattice, and skew k-tableaux of shape
c(λ)/c(ν) with k-weight (b−1, a+ 1). Therefore in the above expression, we get cancellation
between these terms and are left with cλ,k(a,b)ν being equal to the number of k-tableaux of shape

c(λ)/c(ν) with k-weight (a, b) that are k-lattice.

4.2 An example of the bijection used for the proof

To see a short example illustrating the bijection used in the proof of Theorem 4.2, let
k = 3, µ = (2, 1) and ν = (3, 2) and λ = (3, 3, 2). As before n = l(µ) = 2, so in the
expression for the k-Littlewood–Richardson coefficient from Corollary 4.5, we have

c
(3,3,2),3
(2,1)(3,2) =

∑
ω∈S2

(−1)ωK
(3)
(3,3,2)/(3,2),ω((2,1)+(1,0))−(1,0) = K

(3)
(3,3,2)/(3,2),(2,1) −K

(3)
(3,3,2)/(3,2),(0,3).

If we compute all of the k-tableaux of shape c(3, 3, 2)/c(3, 2) = (5, 3, 2)/(3, 2) with k-weight
(2, 1), we get the following two k-tableau:

T1 =

13 14

21

13 14

T2 =

13 24

11

13 24

Computing all of the k-tableaux of shape c(3, 3, 2)/c(3, 2) = (5, 3, 2)/(3, 2) with k-weight
(0, 3), there is only one, which we call T3.

T3 =

23 24

21

23 24

For this example, the bijection in the proof of Theorem 4.2 is a bijection between the
k-tableau of shape c(3, 3, 2)/c(3, 2) and k-weight (1, 2) which are not k-lattice, and the k-

tableau of shape c(3, 3, 2)/c(3, 2) and k-weight (0, 3), with the operator s
(3)
1 e

(3)
1 being used to

provide the bijection in either direction. First note that of the two k-tableaux with k-weight
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(1, 2), T1 is k-lattice, and T2 is not k-lattice. This is because when we take the 1/2 funda-
mental subword of T1, we get 211314, then after we perform the parenthesis matching, we are
left with the fundamental 1/2-unpaired subword being 14. There are no unpaired 2’s, so T1
is k-lattice. On the other hand, the 1/2 fundamental subword of T2, we get 111324, then even
after we perform the parenthesis matching, we are left with the fundamental 1/2-unpaired
subword 111324. There is an unpaired 2, so T2 is not k-lattice.

For the bijection, notice that e
(3)
1 T2 is the following tableau.

e
(3)
1 T2 =

13 14

11

13 14

Then s
(3)
1 e

(3)
1 T2 = T3, so with the bijection the k-tableaux T2 and T3 cancel out, and we

are left with only one k-tableau T1 contributing to the k-Littlewood–Richardson coefficient,
meaning that c

(3,3,2),3
(2,1)(3,2) = 1.

4.3 An explanation of the requirements on µ and

problems with generalizing the proof

In the proofs of the k-Littlewood–Richardson rule in both Chapters 4 and 5 we use the
restriction that µ has length 2 (µ = (a, b)). The expression for the k-Littlewood–Richardson

coefficients from Lemma 4.5, cλ,kµν =
∑

ω∈Sn(−1)ωK
(k)
λ/ν,ω(µ+ρ)−ρ, actually still holds for any µ

with h(µ) ≤ k, even if µ has length greater than 2. It is possible then that there may be
some sign reversing involution to generalize our proof for µ of any length. In [11], for the
proof of the classical Littlewood–Richardson rule, Remmel and Shimozono used a similar
involution where if T was a tableau, and i was the smallest number 1 ≤ i ≤ n − 1 that
violated the lattice condition on T , then the involution sent T to sieiT . Then in sieiT , i is
still the smallest number violating the lattice condition. This does not exactly generalize to
the case of k-tableau though, for the following reason which we present as a remark.

Remark 4.6. If T is a k-tableau, and i is the smallest number 1 ≤ i ≤ n− 1 that violates
the k-lattice condition, meaning that there is an i/(i + 1)-unpaired i + 1, but there is no

j/(j + 1)-unpaired j for any j < i, then when we perform any of the operators e
(k)
i , s

(k)
i , or

f
(k)
i , i may not be the smallest number violating the k-lattice condition anymore.

The following example presents a case where the problem mentioned above occurs.
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Example 4.7. Let T be the following k-tableau for k = 5.

T =

33

14 35 30

33 34 35 30 31

Then T is a 5-tableau of shape c(5, 3, 3, 1)/c(3, 3) and 5-weight (1, 0, 5). Note that the
fundamental 2/3-unpaired subword of T is 3334353031, and the fundamental 1/2-unpaired
subword of T is 14. Thus 2 is the smallest i such that i/i+ 1 violates the k-lattice condition.

We will now compute e
(5)
2 T and s

(5)
2 e

(5)
2 T .

e
(5)
2 T =

23

14 35 30

23 34 35 30 31

s
(5)
2 e

(5)
2 T =

23

14 25 20

23 24 25 20 31

The fundamental 1/2-unpaired and 2/3-unpaired subwords of e
(5)
2 T are ∅ (the empty

word) and 2334353031, respectively, so 2 is still the smallest i such that i/(i+ 1) violates the

k-lattice condition. The fundamental 1/2-unpaired and 2/3-unpaired subwords of s
(2)
2 e

(5)
2 T

are 242520 and 2324252031, respectively, so we can see that although 2/3 still violates the
k-lattice condition, now 1/2 does as well since there are 1/2-unpaired 2’s. So even though 2
was the smallest i such that i/(i+ 1) violates the k-lattice condition in T , 1 is the smallest

such number in s
(2)
2 e

(5)
2 T .

Despite this, it still appears in examples that have been computed that our k-lattice
definition for k-Littlewood–Richardson coefficients may work. For instance, consider the
following example where µ = (3, 2, 1), ν = (3, 3), and k = 5 in which the above problem was
observed.

Example 4.8. Let µ = (3, 2, 1), ν = (3, 3) and k = 5. Then it was computed that

s
(5)
(3,2,1)s

(5)
(3,3) = s

(5)
(3,3,3,2,1) + s

(5)
(4,3,2,2,1) + s

(5)
(4,4,2,1,1), which means the k-Littlewood–Richardson

coefficients are cλ,5(3,2,1)(3,3) = 1 when λ = (3, 3, 3, 2, 1), (4, 3, 2, 2, 1), or (4, 4, 2, 1, 1), and

cλ,5(3,2,1)(3,3) = 0 for all other λ. If we compute all 5-tableaux of shape c(λ)/c(3, 3) and 5-

weight (3, 2, 1) for any λ, we find that exactly 3 are k-lattice.

T1 =

32

23 24

14 15 10

32

23 24

T2 =

32

23 24

14 15

32

13 14 15

T3 =

32

23

14 15

22 23

13 14 15
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These k-tableaux are of shapes c(3, 3, 3, 2, 1)/c(3, 3) (for T1), c(4, 3, 2, 2, 1)/c(3, 3) (for
T2), and c(4, 4, 2, 1, 1)/c(3, 3) (for T3). Notice that the shapes correspond to the λ for which
cλ,5(3,2,1)(3,3) = 1, which leads us to conclude that in at least some other cases, the k-lattice
condition seems to work, even without taking the restriction on µ.

While computing a large number of other examples, it does appear that the definition
of k-lattice is correct (in at least all of the cases that were computed) for determining the
k-Littlewood–Richardson coefficients cλ,kµν in terms of k-lattice k-tableaux of shape c(λ)/c(ν)
and k-weight µ, which leads us to the following conjecture.

Conjecture 4.9. Fix an integer k > 0 and let µ, ν, and λ be k-bounded partitions (with
no restrictions on µ). Then the k-Littlewood–Richardson coefficient cλ,kµν is conjectured to be
equal to the number of skew k-tableaux of shape λ/ν with content µ that are k-lattice.

The reason why this would hold in general is not clear, but it is possible that the tech-
niques presented in the Chapter 5 may help lead to a proof since some of the results presented
there do not require imposing any restrictions on µ.
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Chapter 5

An alternate proof of the
k-Littlewood–Richardson rule for
µ = (a, b)

5.1 The alternate proof

We will present an alternate proof here which slightly generalizes the result found in
Chapter 4. For the first few things we prove here, we do not require any restriction on
the partitions we use other than the fact that they are k-bounded. We will specifically
mention when we need to restrict to the case µ = (a, b). First of all, recall that the k-

Littlewood–Richardson coefficient cλ,kµν is the coefficient of s
(k)
λ appearing in the expansion

of s
(k)
µ s

(k)
ν =

∑
λ c

λ,k
µν s

(k)
λ . We will also be using a specific notation convention stated in the

following remark.

Remark 5.1. Given two partitions µ and τ , we say τ D µ if τ is larger than or equal to
µ with respect to the dominance order which we reviewed in Chapter 2. When we use the
notation τ B µ this means that τ is strictly larger than µ with respect to the dominance
order, so in particular τ 6= µ. Also, when we use the notation τ D µ or τ B µ, where µ is a
k-bounded partition, we require τ to be k-bounded as well. If τ is not k-bounded, then the
k-Kostka numbers which appear are all zero [7], so those terms for τ not k-bounded would
not appear anyway.

Proposition 5.2. Let λ, µ, and ν be k-bounded partitions. Then we have the following
formula for the k-Littlewood–Richardson coefficient cλ,kµν

cλ,kµν = K
(k)
λ/ν,µ −

∑
τBµ

K(k)
τµ c

λ,k
τν (5.1)

where K
(k)
λ/ν,µ is the number of skew k-tableaux of shape c(λ)/c(ν) and k-weight µ, and K

(k)
τµ

is the number of k-tableaux of shape c(τ) and k-weight µ.
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Note that Proposition 5.2 holds for any k-bounded partitions λ, µ, and ν. We only make
a restriction on µ further on.

Proof. Recall that by the definition of k-Schur functions that we are using [7], we have

hµ =
∑
τDµ

K(k)
τµ s

(k)
τ

where λ is a k-bounded partition. If we multiply the above equation by s
(k)
ν , where ν is a

k-bounded partition, we will have

hµs
(k)
ν =

∑
τDµ

K(k)
τµ s

(k)
τ s(k)ν .

Using the fact that s
(k)
τ s

(k)
ν =

∑
λ c

λ,k
τν s

(k)
λ , and substituting this into the above equation and

then simplifying, we get

hµs
(k)
ν =

∑
λ

(∑
τDµ

K(k)
τµ c

λ,k
τν

)
s
(k)
λ . (5.2)

Alternately, we have the formula proven by Lapointe and Morse [4] using the Pieri rule
for k-Schur functions

hµs
(k)
ν =

∑
λ

K
(k)
λ/ν,µs

(k)
λ . (5.3)

If we set Equations (5.2) and (5.3) equal to each other, we get∑
λ

(∑
τDµ

K(k)
τµ c

λ,k
τν

)
s
(k)
λ =

∑
λ

K
(k)
λ/ν,µs

(k)
λ .

The coefficients of s
(k)
λ on each side of this must be equal since the k-Schur functions form

a basis. Thus we get ∑
τDµ

K(k)
τµ c

λ,k
τν = K

(k)
λ/ν,µ.

Now we are almost at our desired result, but this is not completely simplified. It was
shown in [7] that the k-Kostka numbers K

(k)
τµ satisfy a triangularity property similar to the

one for the Kostka numbers, so this means that in particular K
(k)
µµ = 1, which can be used

to can simplify the above expression a bit.

K(k)
µµ c

λ,k
µν +

∑
τBµ

K(k)
τµ c

λ,k
τν = K

(k)
λ/ν,µ

cλ,kµν +
∑
τBµ

K(k)
τµ c

λ,k
τν = K

(k)
λ/ν,µ

The last expression is of course our desired result.
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From this result, we can derive some specific combinatorial formulas for the k-Littlewood–
Richardson coefficients in a more specific case. Specifically we can get expressions for any
partition of the form µ = (a, b) where µ is k-bounded and a ≥ b and a combinatorial
description of the coefficients, which implies their positivity in our specific case.

Theorem 5.3. Let µ be a k-bounded partition of the form µ = (a, b), and let λ and ν be
any k-bounded partitions. Then

cλ,kµν = K
(k)
λ/ν,µ −K

(k)
λ/ν,µ+(1,−1), (5.4)

where cλ,kµν is the k-Littlewood–Richardson coefficient appearing in the expression s
(k)
µ s

(k)
ν =∑

λ c
λ,k
µν s

(k)
λ , and K

(k)
λ/ν,µ and K

(k)
λ/ν,µ+(1,−1) are the number of k-tableaux of shape c(λ)/c(ν)

and k-weights µ and µ+ (1,−1), respectively.

Note that this means if µ = (k, b), meaning the first part of µ is k, then the second term

in the expansion K
(k)
λ/ν,µ+(1,−1) is zero, since there are no k-tableaux of weight (k + 1, b− 1),

so in this case cλ,k(k,b)ν = K
(k)
λ/ν,(k,b). Before we prove Theorem 5.3 we state and prove a Lemma

that will be used in the proof.

Lemma 5.4. Let µ = (a, b) be a k-bounded partition, and let 0 ≤ t ≤ k − a, then τ =

(a+ t, b− t) is a k-bounded partition and K
(k)
τµ = 1.

Proof. First of all, since 0 ≤ t ≤ k − a, τ = (a + t, b − t) is a k-bounded partition since

a+ t ≤ a+ k − a = k. K
(k)
τµ is the number of k-tableaux of shape c(τ) and k-weight µ. But

given any diagram of shape c(τ), in order to get a k-tableau with k-weight µ, we must fill it
with a 1’s and b 2’s. But in order to do this, we must put all of the 1s in the bottom row,
and then fill the remaining boxes with 2s. Thus there is only one possible way to do this, so
K

(k)
τµ = 1.

Now we can continue to the proof of Theorem 5.3.

Proof of Theorem 5.3. First of all, note that if τ Dµ where µ = (a, b) is k-bounded, then the

only possibilities for τ are τ = (a+ t, b− t) where 0 ≤ t ≤ k − a. This means that K
(k)
τµ = 1

for all τ D µ by Lemma 5.4. Using this fact in Equation (5.1), we get

cλ,kµν = K
(k)
λ/ν,µ −

∑
τBµ

cλ,kτν . (5.5)

We will now proceed to prove the theorem by induction on a.

First of all, the largest that a can possibly be is a = k. Then there are no k-bounded
partitions larger than µ = (k, b) with respect to the dominance order, so from Equation
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(5.5), we get cλ,kµν = K
(k)
λ/ν,µ since there are no τ B µ.

Next, suppose that Equation (5.4) holds for a = k, k − 1, . . . k − (s − 1). We will prove
that it holds for a = k− s. If µ = (k− s, b) then the possibilities for τ if τ is k-bounded and
τ B µ are τ = (k − (s− i), b− i) where i = 1, . . . , s. Then using Equation (5.5),

cλ,k(k−s,b)ν = K
(k)
λ/ν,(k−s,b) −

∑
τB(k−s,b)

cλ,kτν ,

but by assumption, for any τ B (k − s, b), cλ,kτν = K
(k)
λ/ν,τ −K

(k)
λ/ν,τ+(1,−1), so we can substitute

this in and get

cλ,k(k−s,b)ν = K
(k)
λ/ν,(k−s,b) −

∑
τB(k−s,b)

(K
(k)
λ/ν,τ −K

(k)
λ/ν,τ+(1,−1)).

But since τ = (k − (s− i), b− i) where i = 1, . . . , s,

cλ,k(k−s,b)ν = K
(k)
λ/ν,(k−s,b) −

s∑
i=1

(K
(k)
λ/ν,(k−(s−i),b−i) −K

(k)
λ/ν,(k−(s−i)+1,b−i−1)).

Notice that when i = s, K
(k)
λ/ν,(k−(s−i)+1,b−i−1) = K

(k)
λ/ν,(k+1,b−s−1) = 0 since there are no

k-tableaux of k-weight (k + 1, b− s− 1). Next we split up this sum and simplify a bit

cλ,k(k−s,b)ν = K
(k)
λ/ν,(k−s,b) −

s∑
i=1

K
(k)
λ/ν,(k−(s−i),b−i) +

s−1∑
i=1

K
(k)
λ/ν,(k−(s−i)+1,b−i−1)

cλ,k(k−s,b)ν = K
(k)
λ/ν,(k−s,b) −

s∑
i=1

K
(k)
λ/ν,(k−(s−i),b−i) +

s∑
i=2

K
(k)
λ/ν,(k−(s−i),b−i)

In this expression, all the terms for i = 2, . . . s in the left sum cancel with the correspond-
ing terms in the right sum, and we are left with just the term for i = 1.

cλ,k(k−s,b)ν = K
(k)
λ/ν,(k−s,b) −K

(k)
λ/ν,(k−(s−1),b−1) = K

(k)
λ/ν,(k−s,b) −K

(k)
λ/ν,(k−s+1,b−1)

By induction, since this holds for a = k − s, we have our desired result.

Corollary 5.5. In this case where µ = (a, b) is a k-bounded partition, and λ and ν are also
k-bounded partitions, the k-Littlewood–Richardson coefficient cλ,kµν is equal to the number of
skew k-tableaux of shape c(λ)/c(ν) with k-weight µ that are k-lattice.

Proof. We will use the expression for cλ,kµν from Theorem 5.3 to construct a bijection be-
tween skew k-tableaux of shape c(λ)/c(ν) with k-weight µ that are not k-lattice and skew
k-tableaux of shape c(λ)/c(ν) with k-weight µ+ (1,−1). This gives cancellation that leaves
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us with the desired result.

Let T be a skew k-tableaux of shape c(λ)/c(ν) with k-weight µ that is not k-lattice. Then

T has at least one 1/2-k-unpaired 2. Then e
(k)
1 T is defined and is a skew k-tableaux of the

same shape, with k-weight µ + (1,−1). For the other direction of the bijection, given any
skew k-tableau T ′ of k-weight µ + (1,−1) = (a + 1, b − 1), then we must have at least one
1/2-k-unpaired 1, since a ≥ b, meaning a+ 1 > b− 1 so there are more k-residues occupied

with 1 than with 2 in T ′. This means f
(k)
1 (T ′) is defined, and it will be a skew k-tableau of

the same shape, with k-weight µ.

This is in fact a bijection between skew k-tableaux of shape c(λ)/c(ν) with k-weight µ
that are not k-lattice and skew k-tableaux of shape c(λ)/c(ν) with k-weight µ + (1,−1),

because e
(k)
1 and f

(k)
1 are inverses by Proposition 3.8. This means that in Equation (5.4),

cλ,kµν = K
(k)
λ/ν,µ −K

(k)
λ/ν,µ+(1,−1),

all of the skew k-tableaux of shape c(λ)/c(ν) with k-weight µ that are not k-lattice totally
cancel with all of the skew k-tableaux of shape c(λ)/c(ν) with k-weight µ+(1,−1), so we are
left with cλ,kµν being equal to the number of skew k-tableaux of shape c(λ)/c(ν) with k-weight
µ that are k-lattice.

5.2 Problems with generalizing the classical case and

an example

For classical Schur functions, in the case where λ and ν are any partitions, and µ = (a, b),
a similar formula holds. It can be proven in a similar way to the k-Schur case, and also can
be derived from the k-Schur case by taking k to be sufficiently large. So in the classical case,
we have the formula

Kλ/ν,µ =
∑
τDµ

Kτµc
λ
τν

where Kλ/ν,µ is the number of skew tableaux of shape λ/ν and weight µ, Kτµ is the number
of tableaux of shape τ and weight µ, and cλτν is the usual Littlewood–Richardson coefficient.
When µ = (a, b), this gives the formula

cλ(a,b)ν = Kλ/ν,(a,b) −Kλ/ν,(a+1,b−1).

We can see that in the case of µ = (a, b) the k-Schur Littlewood–Richardson coefficient
has a formula that is nearly identical to the classical case with the exception that we use
k-Kostka numbers instead of the classical Kostka numbers. This leads to the question of
whether we can just generalize the formulas from the classical case for partitions µ which
are not of the form µ = (a, b) to the k-Schur case by just adding in a k everywhere. The
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answer unfortunately appears to be no, we cannot. We will illustrate the fact that it does
not always generalize with the following example.

Example 5.6. Let µ = (4, 2, 1) and k = 5. In order to compute the k-Littlewood–Richardson
coefficient cλ,5τ(4,2,1) we need to use Proposition 5.2; Theorem 5.3 does not apply here since

l(µ) > 2. The only possibilities for k-bounded τ D µ are τ = (4, 2, 1), (4, 3), (5, 1, 1), or

(5, 2). We do not need to consider τ that are not k-bounded, since K
(k)
τµ = 0 when τ is not

k-bounded, since there are no k-tableaux of shape c(τ) for non-k-bounded τ .

We must first compute the k-Kostka numbersK
(5)
τ,(4,2,1) which are the number of k-tableaux

of shape c(τ) and k-weight (4, 2, 1) for k = 5. We have illustrated all of these k-tableaux for
τ D (4, 2, 1) in the following table.

µ = (4, 2, 1) µ = (4, 3)

K
(5)
(4,2,1)(4,2,1) = 1 K

(5)
(4,3)(4,2,1) = 1

34

25 20

10 11 12 13

25 20 31

10 11 12 13

µ = (5, 1, 1) µ = (5, 2)

K
(5)
(5,1,1)(4,2,1) = 1 K

(5)
(5,2)(4,2,1) = 1

34

25

10 11 12 13 24 25

25 30

10 11 12 13 24 25 30

Table 5.1: All of the k-tableaux of shape c(τ) with k-content λ = (4, 2, 1) for k = 5 and the

k-Kostka numbers K
(k)
τ(4,2,1) for all τ D (4, 2, 1).

We can see that the k-Kostka number K
(k)
τ,(4,2,1) = 1 for all k-bounded τ D (4, 2, 1).

Plugging this into Equation (5.1), we get the formula

cλ,5(4,2,1)ν = K
(5)
λ/ν,(4,2,1) −

∑
τB(4,2,1)

cλ,5τν . (5.6)

We must compute the k-Littlewood–Richardson coefficients for µ B (4, 2, 1). For µ =
(5, 2) and µ = (4, 3) we can use the formula from Proposition 5.2, and we get

cλ,5(5,2)ν = K
(5)
λ/ν,(5,2).
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cλ,5(4,3)ν = K
(5)
λ/ν,(4,3) −K

(5)
λ/ν,(5,2).

For µ = (5, 1, 1), the calculation takes a bit more effort, but we can compute it using the
same strategy we are using for this example.

cλ,5(5,1,1)ν = K
(5)
λ/ν,(5,1,1) −K

(5)
λ/ν,(5,2).

Next, we substitute these into Equation (5.6).

cλ,5(4,2,1)ν = K
(5)
λ/ν,(4,2,1) − (K

(5)
λ/ν,(4,3) −K

(5)
λ/ν,(5,2))− (K

(5)
λ/ν,(5,1,1) −K

(5)
λ/ν,(5,2))−K

(5)
λ/ν,(5,2).

cλ,5(4,2,1)ν = K
(5)
λ/ν,(4,2,1) −K

(5)
λ/ν,(4,3) +K

(5)
λ/ν,(5,2) −K

(5)
λ/ν,(5,1,1).

We just computed the k-Littlewood–Richardson coefficient cλ,5(4,2,1)ν , where our partition

(4, 2, 1) is not of the form µ = (a, b). If we use the analogous strategy to compute the
classical Littlewood–Richardson coefficient cλ(4,2,1),ν , we get

cλ(4,2,1)ν = Kλ/ν,(4,2,1) −Kλ/ν,(4,3) +Kλ/ν,(6,1) −Kλ/ν,(5,1,1).

We can see from this, that while the formulas are similar, it does not appear that it is
as simple as just turning the Kostka numbers to k-Kostka numbers to go from the classical
Littlewood–Richardson coefficients to the k-Littlewood–Richardson coefficients, since the
classical case contains the term Kτ/ν,(6,1), while the k = 5 case contains the term K

(5)
τ/ν,(5,2).

So while we have nice a nice formula that generalizes the classical case for µ = (a, b) it does
not appear that there is an analogous generalization for other µ.
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Chapter 6

A strategy for computing
k-Littlewood–Richardson coefficients

The purpose of this chapter is to compute some examples and discuss how one may go
about finding k-Littlewood–Richardson coefficients. In practice, we may want to find all of
the k-Littlewood–Richardson coefficients cλ,kµν for a given µ, ν, and k, where λ can be any
k-bounded partition. We first give an example using this strategy.

Example 6.1. Let µ = (2, 1), ν = (3, 2) and k = 4. We will construct k-tableaux of shape
c(λ)/c(ν) and k-weight µ = (2, 1) (so 2 residues filled with 1’s, and 1 residue filled with a
2). We begin by first drawing c(ν) = (3, 2) taking note of the residues of empty cells where
we can start adding numbers. We first will fill 2 residues with 1’s, and then after that fill
another residue with a 2.

3 4

1

3 4

First we need to fill two residues with 1’s, and our options are either to use the residues
3 and 4, or else 1 and 3. We first consider the case of placing 1’s in boxes with residues 3
and 4. We then get the following k-tableau:

2

13 14

1

13 14 0

There are three residues for boxes in which we can place a 2, so we get the following
three k-tableaux with weight (2, 1).
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T1 =

22

13 14

13 14

T2 =

13 14

21

13 14

T3 =

13 14

13 14 20

We could have, on the other hand, placed the 1’s in boxes of residues 1 and 3. In this
case, we would have the following k-tableau:

2

13 4

11 2

13 4

There are now two residues for boxes in which we can place our one 2, either residue 2
or residue 4. Thus we get the following two k-tableaux with k-weight (2, 1):

T4 =

22

13

11 22

13

T5 =

13 24

11

13 24

So there are five 4-tableaux of shape c(λ)/c(3, 2) and 4-weight (2, 1) where λ can be any
4-bounded partition. Of these, T1, T2, and T4 (of shapes c(3, 2, 2, 1)/c(3, 2), c(3, 3, 2)/c(3, 2),
and c(3, 3, 1, 1)/c(3, 2), respectively) are k-lattice, and T3 and T5 are not. Therefore we get
the following for the k-Littlewood–Richardson coefficients in this case.

cλ,4(2,1)(3,2) = 1 for λ = (3, 2, 2, 1), (3, 3, 2), or (3, 3, 1, 1).

cλ,4(2,1)(3,2) = 0 for all other λ.

Our other strategy for computing k-Littlewood–Richardson coefficients is if we have a
specific λ that we would like to compute it for. In this case, we first find the shape c(λ)/c(ν)
and the residues of each box in the shape, and then determine how we can fill in the boxes
with k-weight µ.

Example 6.2. Let k = 5, µ = (2, 2), ν = (3, 2, 1), and λ = (3, 3, 2, 1, 1). Then if

we want to compute c
(3,3,2,1,1),5
(2,2)(3,2,1) , we first determine the shape of c(3, 3, 2, 1, 1)/c(3, 2, 1) =

(4, 4, 2, 1, 1)/(3, 2, 1) and the k + 1-residues of each box in the skew diagram.

2

3

5

1 2

3
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It turns out that with these residues there are exactly two ways to label 2 residues with
the number 2, and 2 residues with the number 1.

T1 =

22

13

15

21 22

13

T2 =

22

13

25

11 22

13

Of these, T1 is not k-lattice, since the fundamental 1/2-unpaired subword of T1 is 1521,
but T2 is k-lattice, since the fundamental 1/2-unpaired subword of T3 is ∅ (so there are no

1/2-unpaired 2’s, meaning it is k-lattice). Therefore, we see that c
(3,3,2,1,1),5
(2,2)(3,2,1) = 1, since there

is exactly one k-lattice k-tableaux of shape c(3, 3, 2, 1, 1)/c(3, 2, 1), with k-weight µ = (2, 2)
for k = 5.
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Chapter 7

The scalar product of a dual k-Schur
function and a Schur function

We will be considering the scalar product of a Schur function with a certain symmetric
function related to k-Schur functions, the dual skew k-Schur function. The dual skew k-
Schur function S

(k)
ν/µ was defined by Lapointe and Morse [5]. We start off by reviewing their

definition. Note that S
(k)
λ/ν is a symmetric function.

Definition 7.1 (Lapointe, Morse [5]). The dual skew k-Schur function S
(k)
λ/ν is defined as

S
(k)
λ/ν =

∑
T

xk-weight(T )

where the sum is over all skew k-tableaux of shape c(λ)/c(ν).

We first recall the usual scalar product on symmetric functions 〈f, g〉 where f and g are
symmetric functions, and some facts about it, which can be found in [10], and [12]. Recall
that Schur functions form an orthonormal basis of the space of symmetric functions, mean-
ing that 〈sλ, sµ〉 = δλµ, where δµµ = 1 and δλµ = 0 for λ 6= µ. It is also worth noting that

Lapointe and Morse showed that 〈S(k)
λ/ν , s

(k)
µ 〉 = cλ,kµν in [5].

In this chapter though, we will be concerned with taking the scalar product of a dual
k-Schur function and a classical Schur function. We will give an example of a dual k-Schur
function S

(k)
λ/ν , that when we take the inner product of it with certain Schur functions, we

are able to get negative integer results. The reason that this example is of interest to us is in
relation to whether or not there exist crystal operators on k-tableaux. If there were crystal
operators, then the dual k-Schur functions would be Schur-positive, meaning 〈S(k)

λ/ν , s
(k)
µ 〉 ≥ 0

for all k-bounded λ and ν, and all partitions µ [1]. But in this chapter we present an example
that proves the dual k-Schur functions are in fact not Schur-positive.
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Let λ = (3, 2, 2, 1), ν = (1, 1) and k = 3. We will be considering the dual k-Schur function

S
(k)
λ/ν = S

(3)
(3,2,2,1)/(1,1). It is not too difficult of a computation to find all skew k-tableaux of

shape c(3, 2, 2, 1)/c(1, 1) = (6, 3, 2, 1)/(1, 1) and k-weight µ for all partitions µ. First of all,
for there to be a k-tableaux of that shape and k-weight µ, the length of µ must be at least
3, and µ must also be a partition of 6. So the only possibilities we must consider for µ
are (3, 2, 1), (3, 1, 1), (2, 2, 2), (2, 2, 1, 1), (2, 1, 1, 1, 1), and (1, 1, 1, 1, 1, 1). We have listed all
of the possibilities for those partitions which can be seen in Table 7.2 which can be found
at the end of this chapter. To compute S

(3)
(3,2,2,1)/(1,1) =

∑
T x

k-weight(T ) it is enough that
we have computed all of the skew k-tableaux where the weight is a partition µ, as these
will correspond to the monomial symmetric functions mµ that show up in the expansion for

S
(3)
(3,2,2,1)/(1,1). More specifically, the number of skew k-tableaux of k-weight µ will be the

coefficient of mµ in the expansion. So we have the following:

S
(3)
(3,2,2,1)/(1,1) = m(3,2,1) + 2m(3,1,1,1) +m(2,2,2) + 2m(2,2,1,1) + 3m(2,1,1,1,1) + 4m(1,1,1,1,1,1).

It turns out that this expansion in terms of Schur functions is the following:

S
(3)
(3,2,2,1)/(1,1) = s(3,2,1) − s(2,2,2) − s(2,2,1,1) + 2s(1,1,1,1,1,1).

This expansion of S
(3)
(3,2,2,1)/(1,1) in terms of Schur functions demonstrates that the dual

k-Schur functions are not Schur-positive, since the coefficients of s(2,2,2) and s(2,2,1,1) are
negative. In particular, we also have the following values of the scalar product between
S

(3)
(3,2,2,1)/(1,1) and sµ illustrated in Table 7.1.

µ 〈S(3)
(3,2,2,1)/(1,1), sµ〉

(3, 2, 1) 1
(2, 2, 2) −1

(2, 2, 1, 1) −1
(1, 1, 1, 1, 1, 1) 2

All other partitions µ 0

Table 7.1: Table of values of the scalar product 〈S(3)
(3,2,2,1)/(1,1), sµ〉 for different partitions µ.

Notice that the scalar product can be positive, negative, or zero.
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µ = (3, 2, 1)

21

12 33

20 21

11 12 13 20 21

µ = (3, 1, 1, 1)

41

12 33

20 41

11 12 13 20 41

31

12 43

20 31

11 12 13 20 31

µ = (2, 2, 2)

31

12 33

20 31

11 12 23 20 31

µ = (2, 2, 1, 1)

41

12 33

20 41

11 12 23 20 41

31

12 43

20 31

11 12 23 20 31

µ = (2, 1, 1, 1, 1)

51

12 43

30 51

11 12 23 20 51

41

12 53

30 41

11 12 23 30 41

51

12 33

20 51

11 12 33 40 51

µ = (1, 1, 1, 1, 1, 1)

51

22 63

40 51

11 22 33 40 51

61

22 53

40 61

11 22 33 40 61

61

22 43

30 61

11 22 43 50 61

61

32 43

20 61

11 32 43 50 61

Table 7.2: All possible k-tableaux of shape c(3, 2, 2, 1)/c(1, 1) for k = 3 with k-weight µ
where µ is a partition.
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