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C O N D E N S E D  M A T T E R  P H Y S I C S

Magnetic Hamiltonian parameter estimation using 
deep learning techniques
H. Y. Kwon1*, H. G. Yoon2, C. Lee2, G. Chen3, K. Liu3,4, A. K. Schmid5,  
Y. Z. Wu6, J. W. Choi1, C. Won2*

Understanding spin textures in magnetic systems is extremely important to the spintronics and it is vital to extra
polate the magnetic Hamiltonian parameters through the experimentally determined spin. It can provide a better 
complementary link between theories and experimental results. We demonstrate deep learning can quantify the 
magnetic Hamiltonian from magnetic domain images. To train the deep neural network, we generated domain 
configurations with Monte Carlo method. The errors from the estimations was analyzed with statistical methods 
and confirmed the network was successfully trained to relate the Hamiltonian parameters with magnetic structure 
characteristics. The network was applied to estimate experimentally observed domain images. The results are 
consistent with the reported results, which verifies the effectiveness of our methods. On the basis of our study, we 
anticipate that the deep learning techniques make a bridge to connect the experimental and theoretical approaches 
not only in magnetism but also throughout any scientific research.

INTRODUCTION
Low-dimensional magnetic systems are an interesting topic of re-
search due to their scientific significance and potential applications 
in next-generation electronic devices. In particular, unique spin tex-
tures in two-dimensional magnetic systems, such as magnetic stripe 
domains (1–5) and magnetic skyrmions (6–10), and their connec-
tion to various magnetic Hamiltonian parameters have been exten-
sively studied. To quantitatively understand the properties of these 
magnetic structures, not only experimental methods (11–14) but also 
various theoretical methods (15–21) including numerical calculations 
have been used. In general, the results from numerical calculations 
or analytical approaches cannot be directly compared with experi-
mental results, since not all experimental factors can be considered 
in theoretical calculations. Therefore, the development of a method 
of directly converting the experimental data to various essential pa-
rameters for the theoretical studies is an important issue not only in 
magnetism but also throughout scientific research in general.

Meanwhile, machine learning techniques, which first emerged 
decades ago, have been used in diverse fields, showing much en-
hanced performance and capabilities over conventional techniques. 
In particular, the deep learning that a machine learning technique 
using an artificial neural network with multiple layers between the 
input and output, which is called deep neural network (22), have 
been used to address many scientific challenges, including search-
ing for the ab initio solution of many-electron systems (23), predict-
ing protein structures (24), solving quantum many-body problems 
(25, 26), and finding ground states of various magnetic systems (27). 
In particular, a previous study (28) showed the potential of deep learn-

ing techniques for predicting various properties of simulated low- 
dimensional magnetic systems.

In this study, we have used deep learning techniques to develop 
a method to estimate the magnetic Hamiltonian parameters from 
the experimentally observed images of magnetic domains formed in 
two-dimensional magnetic systems. The schematic diagram of this 
study is shown in Fig. 1.

First, energy-minimized spin configurations were generated using 
Monte Carlo–simulated annealing methods in which the tempera-
ture was decreased from above the Curie temperature to zero tem-
perature. During the annealing process, the spontaneous symmetry 
breaking involves the formation of spin textures, so the domains and 
domain walls in the generated spin configurations have various mor-
phological characteristics (Fig. 1A). Using these spin configurations 
as the input, several neural network structures were trained to estimate 
the magnetic Hamiltonian parameters, which were used to generate 
the input spin configurations (Fig. 1B). Error analysis was performed 
to test the validity of the trained network (Fig. 1C). Last, to further 
prove the effectiveness of the method, we used the trained network 
to estimate the magnetic Hamiltonian parameters from experimen-
tally observed magnetic domain images using spin-polarized low- 
energy electron microscopy (SPLEEM) (Fig. 1D) (29).

RESULTS
Dataset generation, noise injection, and network capacity
We generated a total spin configuration dataset appearing in a two- 
dimensional magnetic system under the Hamiltonian in Eq. 1

                H = − J    <i,j>      → S    i   ∙    
→ S    j   −    <i,j>      

→
    ij   ∙ (   → S    i   ×    → S    j   )  

                  − D     i,j≠i       
3(   → S    i   ∙    → r    ij   ) (   → S    j   ∙    → r    ij   ) −    → S    i   ∙    

→ S    j    ∣   → r    ij  ∣   2 
   ────────────────────  

 ∣   → r    ij  ∣   5 
       − K     i    S i,z  

2    

(1)

where J is the exchange interaction strength,    (   
→

    ij   =    ̂     ij  )  is the 
Dzyaloshinskii-Moriya interaction (DMI) strength (30, 31), D is the 
magnetic dipolar interaction strength,     → r    ij    is a dimensionless dis-
placement vector between i and j grid sites, and K is the perpendicular 
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magnetic anisotropy (PMA) strength. All ij pairs are counted once 
in the summations. Since the range of each parameter used to 
generate the spin configurations is different, we defined the nor-
malized parameters N, KN, and DN using the relation,   Y  N   =   Y −  Y  min   _  Y  max   −  Y  min     
where Y stands for all , K, or D and Ymin and Ymax indicate the re-
spective minimum and maximum values of each parameter range. 
These normalized parameters are used to train the networks, and 
the estimated parameters from the trained network are transformed 
into prenormalized values using a reverse process.

The goal of our study is to estimate Hamiltonian parameters 
from experimentally observed magnetic domain images. Whereas 
the experimental data have noises for various inevitable reasons, the 
spin configurations generated by simulation are noiseless in the fi-
nal state of the simulated annealing process. The total generated 
spin configurations were divided into three “noiseless” datasets 
with a ratio of 70, 20, and 10% for training, validating, and testing 
the neural network, respectively, as shown in fig. S1. To investigate 
the effect of noises on magnetic domain images, we also constructed 
“noisy” training and validation datasets by injecting artificial noises 
with random amplitude into each spin configuration in the noiseless 
datasets (fig. S2A). In the case of the test datasets, the amplitude of 
the injected noises, Ts, was adjusted step by step for a detailed analysis 
on the noise resistance of neural networks (fig. S2B). The details 
about the datasets and training process are described in Methods.

We built three network structures, ResNet18, ResNet50, and cus-
tomized convolutional neural network (CNN) structures, as described 
briefly in fig. S3. ResNet (32) structures are well-known deep neural 
networks exhibiting a great performance in extracting features from 
images. A customized CNN was used to represent a non–deep neural 
network with relatively less network capacity than the ResNet struc-
tures, and the comparison with the latter highlights the importance 
of a deep neural network. Each neural network was trained sepa-
rately using the noisy and noiseless datasets, and the mean absolute 
error (MAE) values were obtained using each test dataset after the 
training process as shown in Fig. 2.

As the injected noise amplitude Ts increases, the accuracy of 
parameter estimation tends to decrease for all cases (Fig. 2), since 
the injected noises make it difficult to extract detailed characteris-
tics of magnetic domain structures in the input images. Note that 
the networks trained using noisy images (left column in Fig. 2) are 
much more robust on various noise amplitudes in the test dataset 
than the networks trained only with noiseless images (right column 
in Fig. 2); there is almost one order difference in scale between the y 
axes ranges in the left and right columns in Fig. 2. The network, 
overfitted with the noiseless feature of the datasets, loses the accuracy 
rapidly as the strength of Ts increases.

The network capacity also affects noise resistance. The ResNet18 
structure, which has a medium size network capacity among the 
three network structures in our study, shows the most stable per-
formances on various values of Ts. Meanwhile, both the ResNet50 
and the customized CNN, which have more deep and less deep 
structures than the ResNet18, are unstable and inaccurate com-
pared to the ResNet18, respectively. The customized CNN is inac-
curate for all parameter estimation when Ts > 0.5 (left column of 
Fig. 2), and the ResNet50 trained only with noiseless dataset behaves 
in an unstable way when it is tested by the dataset with injected 
noises. This shows that small network capacity can make it difficult 
to extract sophisticated features from an image and that large net-
work capacity can make overfitting problems serious (33). It means 
that there is a proper network capacity around the ResNet18. The 
capacity may be further optimized; however, the goal of this study is 
not to find the most optimal network. Therefore, given that ResNet18 
already shows stable performance on noise resistance, the ResNet18 
model trained with the noisy dataset was chosen for our further 
discussion.

Error estimation and error vector distribution
The characteristics of the magnetic domains shown in the input im-
ages are important for the trained network to estimate Hamiltonian 
parameters. The estimation errors are also affected by the domain 

Fig. 1. Schematic diagram of our study. (A) Data generation process showing the sampled spin configurations generated through the simulated annealing process. The 
color wheel indicates the in-plane magnetization directions, and the grayscale indicates the out-of-plane magnetization directions. (B and C) The training and testing 
processes used in this study. (D) The additional validation process with experimentally observed magnetic domain images.
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characteristics, and there can be specific relations between them. 
Figure 3 maps the input domain images and absolute error values 
from the test dataset on the same KN and DN parameter space.

It is found that the accuracies of the parameter estimation for , 
K, and D are not uniform in the parameter space. In the case of  = 0 
(first row in Fig. 3), the parameter estimation around KN ≈ 0 and 
DN ≈ 0 becomes inaccurate, which is reasonable, since the generated 
spin configurations under this condition are in-plane single domains 
without any domain wall structures (uniform color images in the 
left bottom corner of Fig. 3A). Without domain wall structures,  
cannot be estimated correctly, since the DMI directly affects the do-
main wall characteristics in two-dimensional perpendicular mag-
netic systems (18, 20). In addition to DMI strength, the anisotropy 
and dipolar interaction strength are also inaccurately estimated 
from in-plane single domains, since they have a wide range in K < 
2D (18) and are not determined to a specific set of values. In the 
case of  = 3D (second row in Fig. 3), there is also a tendency that 
the accuracy of the parameter estimation decreases when the an-
isotropy becomes strong, indicated by the gray shades in left side of 
the heatmaps in Fig. 3 (F to H). One of the possible reasons for this 
is that other parameter values can generate comparable structural 
features shown in the domain images. In general, it is difficult to 
pinpoint what structural features of domain images were extracted 
by the trained networks and how the trained network estimates 
Hamiltonian parameters, since the network is too complex to be 
fully analyzed by a mathematical approach. Additional studies on what 
characteristics are extracted by the trained network from the input 
magnetic domain image are necessary to fully develop this approach.

One can notice that the estimation error values of anisotropy 
and dipolar interaction strength are strongly correlated. To investi-
gate whether the inaccuracies of parameters are related, we defined 
the error vector as    → ∆  = (∆ , ∆ K, 2 ∆ D) , which is composed of three 
error values, and investigated how    → ∆   are distributed. Figure 3I shows 
the tips of the error vectors as gray dots in a three-dimensional error 
space. We note that the estimation errors are not spherically dis-
persed but rather exhibit a two-dimensional flat distribution in a 
three-dimensional space. We performed a principal components 
analysis (PCA) (34) on error vectors to see how the uncertainties of 
estimations are related. The PCA, a statistical procedure using an 
orthogonal transformation, searches for the principal components 
that can best explain the variance in the data and reveals the internal 
structure of the data. The PCA results on the error vectors indicate 
that a specific axis, ∆K ≅ 2∆D, is the most dominant principal 
component; this axis corresponds to a linear relationship between 
the error values of PMA and dipolar interaction strength. This does 
not merely mean that the estimation difficulties on K are related to 
those on D but rather implies that ∆K was compensated by 2∆D in 
the parameter estimation; D is overestimated/underestimated when 
K is overestimated/underestimated.

This is a notable result: We did not build the algorithm ex-
plicitly to include a specific relation between PMA and shape an-
isotropy from short-range dipolar interaction; yet, the neural network 
realized spontaneously through the training process that it is the 
effective anisotropy Keff( = K − 2D) that is the key criterion deter-
mining the characteristics of out-of-plane magnetic domain structure, 
which is a well-known parameter in low-dimensional magnetism. 
The trained network has also realized that the minimization of 
∣∆Keff∣( = ∣∆K − 2∆D∣) is the most important factor for estimat-
ing the magnetic Hamiltonian parameters accurately from the two- 
dimensional spin configurations. One of the main advantages of 
deep learning techniques is that an efficient method can be obtained 
through the training process even without intrinsic programming. 
The spontaneous realization of the importance of Keff by our neural 
network clearly exemplifies the advantage of deep learning techniques.

We also investigated how much the errors shown in Fig. 3 affect 
the structural characteristics of magnetic domains. Most of  ∣   → ∆  ∣  
values are about 0.01, and these small errors do not significantly 
affect the characteristics of magnetic domain structures. More dis-
cussion is given in section S4.

Validation with SPLEEM data
To verify the validity and effectiveness of the trained network, we 
applied our network to the experimentally observed magnetic do-
main images of the Ni/[Co/Ni]2/Ir/Pt(111) system shown in Fig. 4A. 
In the previous work (35), the effective magnitude and sign of the 
DMI were tuned by adjusting the Ir layer thickness, as the effective 
anisotropy strength was kept constant (fig. S5).

Figure 4B shows the SPLEEM images of magnetic domains sep-
arated by the chiral domain walls. We transformed the raw experi-
mental images to colored images using the same color scheme as in 
the simulated results (Fig. 4C). Several subpanels with 100 by 100 pixels 
sizes were cropped from the colored images with 370 by 400 pixels 
to be used as input data of our trained network. The estimated val-
ues of K and D remain almost constant, while the estimated DMI 
parameter gradually changes from positive to negative values, as the 
Ir thickness increases (Fig. 4D). The estimations are consistent with 
the results reported in the experimental study (35).

Fig. 2. Noise resistances and network capacities. Estimation errors for each of  
(A and B), K (C and D), and D (E and F). The networks were trained using noisy (left 
column) and noiseless (right column) datasets. MAEY is 〈∣YTrue − YEst.∣〉Ts where 
Y stands for , K, and D. The subscripts True and Est. indicate true and estimated 
parameters, respectively. Data points are calculated using each noisy test dataset 
with different Ts values.
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To quantitatively evaluate whether the predicted parameters 
are proper values, which can be used to simulate the system shown 
in SPLEEM images, we compared the domain wall profiles from 
a SPLEEM image and a simulation result using the estimated 
param eters (Fig. 4E). From the fitting curves, we obtained the 
fitting parameter for domain wall length scale, w, to be 2.238 and 
2.241 from the SPLEEM image and the simulation result, respec-
tively. Since the size of single pixel in a SPLEEM image is around 
25 nm (~10-m field of view/400 pixels), each domain wall width 
can be approximated as 175.8 and 176.0 nm. This subpixel order 
difference of domain wall width indicates that the estimated 
parameters from the SPLEEM images properly simulates the sys-
tem and suggests that our algorithm can be used to extract mag-

netic parameters from experimentally observed magnetic domain 
images.

The long-range dipolar energy constant of the system shown in 
Fig. 4A is calculated to be 0.171 meV from    ( d  Co      Co   +  d  Ni      Ni  )   2  ___________ 

  a  ∥     3 
   , which is 

used to estimate ferromagnetic multilayered systems in previous 
studies (3, 35–37), where B = 9.274 × 10−21 erg G−1, Co = 1.7 B, Ni = 
0.6 B, and   a  ∥   = 2.49  A ̊   . It is known that the DMI considered in 
this study directly competes with the dipolar interaction to form Néel 
domain walls in two-dimensional magnetic systems (20). Hence, we 
can convert the range of the estimated DMI parameters to units of 
energy using a simple relation,   D  L   ×    _ D  , where DL = 0.171 meV. The 
 written in energy unit when dIr = 0 is 0.187 meV without Ir, and 
it changes to−0.115 meV, as Ir thickness increases. This value has 

Fig. 3. Input spin configurations and heatmaps of estimation errors. (A) Examples of simulated spin configurations and heatmaps for (B) 〈∣∆∣〉, (C) 〈∣∆K∣〉, and 
(D) 〈∣∆D∣〉 represented in KN and DN parameter space when  = 0. (E) Examples of simulated spin configurations and (F to H) heatmaps representations for each 〈∣∆∣〉, 
〈∣∆K∣〉, and 〈∣∆D∣〉 when  = 3D. The noiseless images are used in (A) and (E). The values located at the same (KN, DN) point of each heatmap were averaged. (I) Three- 
dimensional representation of the estimation errors. Nearly 8000 data points are sampled from the test dataset to be displayed in (I), where blue, red, and green dots are 
projections onto each plane. Black arrows show the principal components, and the numbers near the tips of arrows show the variance ratios from PCA [the most domi-
nant component is along (0.005, 0.689, and 0.725) with an 89.4% variance ratio].

Fig. 4. Estimation results based on SPLEEM images. (A) Schematic diagram of the Ni/[Co/Ni]2/Ir/Pt(111) system, where dIr is the thickness of iridium in the unit of mono-
layer (ML). (B and C) Raw (B) and postprocessed (C) images of observed magnetic domain and domain wall structures by SPLEEM. The field of view for (B) and (C) is 10 and 
3 m, respectively. White and black in the three columns in (B) correspond to magnetizations along +Sx/−Sx, +Sy/−Sy, and −Sz/+Sz, respectively. The color wheel represents 
the direction of in-plane magnetization in (C). (D) The K, D, and  parameter values estimated by the trained network using SPLEEM images with various Ir thicknesses. The 
dotted lines in (D) show the mean values for the estimated K and 2D. The letter B on the Ir thickness axis indicates the case of a bulk Ir crystal. (E) Domain wall (DW) 
profiles from a SPLEEM image and simulated spin configurations using the estimated parameters when dIr = 2.5 ML. The DW profiles are shifted so that they do not over-
lap. The dashed lines in (E) are fitting curves using the function Tanh((x − c)/w), where c and w are fitting parameters and x is for a lateral position.
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similar magnitude with those shown in the previous study (35), except 
when Ir is thin. It is expected that the estimation accuracy will be en-
hanced if we use a larger dataset with a variety of domain characteristics.

DISCUSSION
We applied a deep learning algorithm to estimate magnetic Hamiltoni-
an parameters from magnetic domain images. By varying magnetic 
Hamiltonian parameter values, ~80,000 spin configurations were 
generated through a simulated annealing process by a Monte Carlo 
method. The effects of noise, which is unavoidable in experimental 
data, were considered in the generated dataset. The noise-injected 
dataset was used to train, validate, and test several neural network 
structures. It was found that deep neural networks are necessary to 
have sufficient resistance to noise. The error values of the magnetic 
parameters estimated through the trained network are analyzed us-
ing heatmap analysis and PCA to evaluate the performance of the 
trained network and to investigate whether there are specific rela-
tions between the error values. From the analysis, we found that the 
network learned that the accurate estimation of the effective anisot-
ropy is a key factor to determine the magnetic Hamiltonian param-
eters from the out-of-plane magnetic domain structures formed in 
a two-dimensional magnetic system.

We applied the trained network to estimate magnetic Hamiltoni-
an parameters from magnetic domain images observed by SPLEEM 
and showed that the behaviors of estimated parameters are consis-
tent with the published results in the previous studies. This test 
demonstrates the effectiveness of applying the deep learning method 
to determine the strengths of magnetic interactions from experimen-
tally observed images.

METHODS
Details of dataset generation
A large dataset of various spin configurations was generated show-
ing the magnetic domain structures and the corresponding magnetic 
Hamiltonian parameters. A simulated annealing process using a 
Monte Carlo method with the magnetic Hamiltonian in Eq. 1 was 
performed to obtain the spin configurations in a 100 by 100 square 
grid lattice. We intentionally modulated the annealing rate of the 
simulation so that the resulting spin configurations do not neces-
sarily represent the ground-state domain configurations. The ground- 
state spin configurations may be helpful to train the network to 
extract the characteristics of domain structures, but it can cause an 
overfitting problem on some limited structural features of magnetic 
domains in the ground state; i.e., when only using ground states, the 
network cannot learn the structural diversity of the magnetic domains 
in local energy minimum states (38).

We fixed J = 1, and the other parameters were scaled to their ra-
tio with J. Other Hamiltonian parameters were varied as  = − 3D ~ 3D 
and K = 0.1Kshape ~ 1.2Kshape, where Kshape = 2D and D = 0.05 ~ 0.13 
to generate a diverse set of magnetic domains on the 100 by 100 grid 
system. These parameter variation ranges are based on previous 
studies (17, 18, 20). The step sizes used to vary each of the , K, and 
D parameters were 0.3D, 0.02Kshape, and 0.005, respectively. As 
shown in Fig. 3A, the out-of-plane domains are formed when the 
 = 0 and the K is stronger than the dipole shape anisotropy Kshape, 
i.e., KN > 0. This result is consistent with the previous studies (17, 20), 
showing the formation of magnetic stripe domains under the K > 

Kshape conditions. The tendency that the stripe domain width is pro-
portional to J/D was also found in theoretical and numerical calcu-
lations of previous studies (17). In the presence of DMI, as shown in 
Fig. 3E, domain width is reduced compared with Fig. 3A, which 
agrees with previous reports (18, 20). Therefore, within the param-
eter space used to generate the spin configurations in this study, it is 
confirmed that the proper magnetic domains were created by the 
simulated annealing process.

We generated 20 spin configurations for each magnetic param-
eter set and divided the spin configurations into 14, 4, and 2 spin 
configurations each for training, validation, and testing datasets, 
respectively. Since the magnetic domain shape is determined by 
spontaneous symmetry breaking during the simulated annealing 
process, each of 20 spin configurations that are generated using the 
same magnetic parameter set shows different magnetic domain 
shapes as shown in fig. S1. This means that the total dataset contains 
essentially no duplicated data. The total number of generated spin 
configurations was about 80,000.

Noise injection on each dataset
We injected arbitrary noises in spin configurations in our training 
and validation dataset using     ̂  S     *   (x, y)  i   = L  2  Norm.  (  ̂  S    (x, y)  i   +    i    ̂  R    (x, y)  i  ) , 
where i is for an index of a spin configuration in each dataset,  
    ̂  S     * (x, y)  and    ̂  S  (x, y)  are noisy and noiseless spin configurations, re-
spectively, i is a randomly chosen noise amplitude between 0 and 1,  
   ̂  R  (x, y)  is a unit vector map composed of arbitrary directions, and 
L2Norm. indicates the normalization process to make unit vectors. The 
sampled spin configurations from a noisy dataset are shown in fig. S2A.

For the test dataset, we injected stepped increased noises on them 
to investigate the robustness of trained networks with various noise 
amplitudes. The same relation mentioned above is used except that 
the i is replaced by Ts increased with 0.1 step size. An example of 
a noisy test dataset is shown in fig. S2B.

Training process
The cost that should be minimized to train our networks is the mean 
squared error value between the estimated magnetic Hamiltonian 
parameters from our networks and true parameters, which were 
used to generate the input spin configurations. In this process, to 
avoid the results from the biased training caused by the scale differ-
ences among the parameters, the normalized true parameters, N, 
KN, and DN, are used to calculate the cost value.

One epoch is defined as one complete run of the training process 
using the entire training dataset. A total of 1000 epochs were run. A 
validation dataset was used to monitor the training process at the end of 
each epoch. We chose the trained neural network model with the lowest 
validation cost value for the testing process after the whole training process. 
We shuffled the entire training dataset randomly, and the mini- batches 
of the dataset were used as the input data with 200 batch size. Adam 
optimizer (39) is used to train the network with a 10−4 learning rate.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/39/eabb0872/DC1
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