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1. Introduction

Events such as market crashes or cases of individual financial distress regularly
point out the potential effects of fat-tails in unconditional return distributions.
Empirical research in finance aims at a careful modeling of such extreme events
and at the same time provides a basis for financial risk management. To this
end, extreme value theory models the asymptotic extremal characteristics of dis-
tributions of stationary return series. Theory allows us to make inferences about
return distributions not only within, but also beyond, the observed range of sam-
ple returns and to obtain an adequate characterization of the extremal behavior
of returns. Estimation of the so-called tail index turns out to be essential and
theory offers a variety of approaches; see for example Embrechts et al. (1997) and
Coles (2001). Previous studies of the tail index of return distributions include
Dacorogna et al. (1995), Danielsson and de Vries (1997), Huisman et al. (1998,
2001), Jondeau and Rockinger (1999), Lauridsen (2000), and McNeil and Frey
(2000), among others.

The present paper contributes to the empirical finance literature on model-
ing fat-tailed distributions with the perspective put on extremal exchange rate
changes as in the seminal papers by Koedijk et al. (1990) and Loretan and
Phillips (1994) who give results on weekly and daily exchange rate data, respec-
tively. Based on earlier studies, the student-t specification as proposed by Clark
(1973) was found to provide a suitable model for the distribution of exchange rate
changes; also, recent empirical results e.g. by Bond (2000) indicate that general-
ized autoregressive conditional heteroskedastic (GARCH) models with student-t
innovations (GARCH-t) are a good benchmark model which is hardly outper-
formed by an asymmetric distributional alternative. Hence, we examine the small
sample properties of adaptive tail index estimators under the class of student-t
marginal distribution functions including the ARCH-type dependent case; Kearns
and Pagan (1997) point out that the latter can have a substantial impact on tail
index estimation. Based on our simulation results, we then derive a bias-corrected,
GARCH-t model based, adaptive tail index estimation approach. In a first step
the model is estimated as a benchmark model for the overall exchange rate data,
yielding a prior tail index estimate together with its simulated small sample prop-
erties under the model. In the second step, we follow the philosophy of extreme
value theory to “let the tails speak for themselves” and derive the actual estimate
of the tail index of the exchange rate changes from a subset of extremal sample
observations.



The tail index estimation approaches which we examine go back to the pro-
posal by Hill (1975). The Hill estimator is established as one of the most suitable
for financial applications. The approach is based on the assumption that the
underlying distribution is in the maximum domain of attraction of the Fréchet
extreme value distribution. This generally holds for fat-tailed distributions as
analyzed in finance. Considering alternative estimation methodologies, we point
out that, tail index estimation is typically based on maximum likelihood or other
methods of statistical inference jointly with asymptotic arguments from extreme
value theory. The choice of a threshold which yields a sample fraction of extreme
observations is essential to the bias/variance trade-off for all estimation proce-
dures. Comprehensive theoretical arguments for the case of the Hill estimator are
given for example in Segers (2001).

Our simulation results indicate that the interpretation of tail index estimation
results in small samples heavily relies on a what is assumed to be a suitable
model for the underlying series in the first place. The novelty of our approach
is to study effects under general parametrizations of GARCH(1,1)-t models and
to compare them to the independent identically distributed (iid) student-t case.
Recent findings by Gomes and Oliveira (2001) and Matthys and Beirlant (2000)
document the small sample properties of adaptive estimators under various iid
distributional model assumptions also pointing out small sample bias. Based
on our results, we propose a bias-corrected, two-step, GARCH-t model based,
adaptive estimation approach. In the first step, the GARCH-t model parameters
are estimated based on the overall dataset. Numerical integration thereby yields
an assessment of the tail index which may be considered as a raw prior and which
is not derived from the tails of the distribution only. However, this prior together
with the underlying GARCH-t model allows us to simulate the small sample
properties of tail index estimates and to derive an optimal estimator under the
model. In the second step, we use a subsample of extremal sample observations
and derive the estimate of the tail index from a series of Hill estimates given
the information from our first step. Using several Hill estimates instead of one
single estimate is also done e.g. in the regression approach by Huisman et al.
(2001). We follow the approach by Drees et al. (2000) which aims at choosing an
estimate of the tail index within a “stable” region of the so-called Hill plot; see
also Embrechts et al. (1997).

There are two important points which we have to point out regarding related
work in the literature. (i) The proposed procedure allows us to derive uncondi-
tional tail estimates for the marginal distribution of exchange rate returns. An



alternative methodology is to model conditional returns and estimate the model
innovations based an a GARCH specification; see McNeil and Frey (2000) and
Lauridsen (2000). With our unconditional approach, we refer to the small sample
distributional properties from our simulations as well as to theoretical results. The
theoretical robustness results in Hsing (1991) and Resnick and Stérica (1998) show
that consistency of the Hill estimator is given not only under independence but
also under quite general forms of dependence including ARCH-type dependence.
Ignoring dependence, thereby fitting the tail of the marginal distribution, has
the advantage that the tail estimator is derived from the original dataset, with-
out the disturbing effects of potential mis-specification of the conditional model
including estimation error and questions of robustness. Furthermore, the vast
empirical findings on ARCH modelling in finance point out that the usefulness
of those models lies in predicting periods of increased, decaying return variance
after exogenous shocks to return variance have occurred. However, risk manage-
ment in face of extremal events will also be concerned with unpredictable, i.e.
unconditional, shocks to return variance that may cause large portfolio losses.
(ii) The literature recently offers an increasing number of methods which reduce
estimation bias in Hill estimation applications. An alternative Hill plot based
estimation approach is the Huisman et al. (1998, 2001) regression approach. Al-
though our method is not restricted to applications under the GARCH-t model,
it is indeed more model-specific; i.e. it relies on a what is assumed to be a suit-
able model for the underlying series. Huisman et al. (2001) document favorable
small sample properties for their estimator under a particular given GARCH(1,1)
model. Our approach may account for small sample bias explicitly by taking model
parametrization and hence also the magnitude of the tail index into account; such
a procedure appears appropriate as our simulation results indicate that, for the
estimators studied, small sample bias is sensitive with respect to the parameters
of a particular GARCH specification.

In our empirical investigation we measure tail-thickness for a given sample of
daily US-Dollar/Deutschemark exchange rate changes. Simulating small sample
bias under the fitted GARCH model, we find that bias is a dominant issue to
cope with in financial risk assessment and apply our model-based adaptive tail
index estimation approach. Compared to more traditional approaches, our in-
ference indicates a 40 percent deviation in the estimate of tail-thickness; given
the assumption that the class of student-t distributions is a suitable model, it
also implies that the existence of the forth and even the third moment of the un-
derlying distribution is questionable; this adds to the earlier findings by Loretan



and Phillips (1994) who used a conventional Hill estimator. Whereas Huisman
et al. (2001) find that tail fatness tends to be overestimated for weekly exchange
rate data, we find that the direction of bias is generally ambiguous; for our given
sample of daily exchange rates, tail fatness turns out to be underestimated by
conventional methods and our method indicates substantially higher risk in the
tails of the exchange rate distribution. This finding also has implications for high
quantile estimation.

Following this introduction, the remainder of the present paper is divided into
four main sections. Section 2 presents an outline of the extreme value methodol-
ogy. This includes results on the asymptotics of extremes of iid and ARCH series,
the Hill estimator, a selection of adaptive methods for Hill estimation as well as
our bias-corrected extension. The adaptive methods used in our study include
sequential, bootstrap and Hill plot-based approaches. Section 3 documents the
results of a simulation study for the estimators’ small sample properties under the
class of marginal student-t distributions. Section 4 contains our empirical study
of extremal daily exchange rate changes. Section 5 concludes.

2. The Methodological Background

2.1. Extreme Value Theory: The Classical Case

Classical extreme value theory is concerned with the asymptotic distribution of
standardized maxima from a series of iid random variables (R;)1<;<r with a com-
mon distribution function F. Without loss of generality, we assume that the
variables R; denote time-t log-returns of some financial asset in the following. For
given normalizing constants, ar > 0, by € R, and My = max(Ry, ..., Ry), the
classical result by Fisher/Tippett and Gnedenko states that if H exists as the
non-degenerate distributional limit of the standardized maximum

Pr{a;'(Mr —by) <7} = F'(agr +br) — H(r) as T — oo, (2.1)

then H(r) is equal to one of three different types of extreme value distributions.
The latter are nested within the so-called generalized extreme value distribution

RO (—(1 +§r)*1/5) , for £#0
He(r) = { exp (—exp(—r1)), for £€=0" (2:2)

where 1 4+ &r > 0. The shape parameter, £ € R, also denoted as tail index,
characterizes the extremal behavior of the distribution function.



Condition (2.1) states that F' belongs to the maximum domain of attraction
of He, F € MDA(H). Fat-tailed distribution functions, which are of interest in
financial applications, particularly belong to the maximum domain of attraction
of the Fréchet type extreme value distribution, ' € M DA(®¢), where: ®¢(r) =
exp(—r~Y¢), r >0, € > 0. From a theorem by Gnedenko, it is well-known that
the condition F' € MDA(®¢) is satisfied if and only if the tail F(r) =1 — F(r)
of the distribution function F' is regularly varying at infinity with parameter
—1/£ <0, ie.

F(r) = L(r)r Y, r>0, (2.3)
where the function L(r) is slowly varying at infinity:

. L(sr)
TILIEIO L(T)

=1, s>0.

2.2. Extreme Value Theory: ARCH-type Dependence

Extreme value theory for iid series can be extended to the case where the variables
(Rt)1<t<r have a stationary marginal distribution F.. We consider the case of
ARCH which is a well-known model class for non-linear dependence in financial
time series (see e.g. Bollerslev et al. (1992)). A detailed discussion of ARCH as
a model for exchange rate changes is given in Diebold (1988).

Assuming a constant expectation and excess returns R; with a conditional
time-varying variance o7, the prominent GARCH(1,1) process has the represen-
tation:

R, = o074,
U? = 50+513t2—1+ﬂ2(7?—17 Bo, B1, B2 > 0. (2-4)

The random variables Z,; are standardized iid draws from some symmetric, possi-
bly fat-tailed, distribution function with density g(z) : R — R™. In our simulation
study and in the empirical application, g(z) will be given by the student-t density
with v € N degrees of freedom. This yields the GARCH(1,1)-t(~) model.

As outlined for example in Mikosch and Staricd (2000) and the literature given
therein, a stationary marginal distribution F' for the GARCH(1,1) process (2.4)
exists if

/00 In |3,2° + 85| g(2)dz < 0, S, > 0. (2.5)



It can then be shown that the tail index £ of the stationary marginal distribution
F'is given as a solution to an integral equation such that

F(ry~cr Y >0 ¢>0, asr— oo,

which is equivalent to the implication of result (2.3) from the previous section.
For the ARCH(1) process, solutions for the tail index are discussed in de Haan et
al. (1989). For the GARCH(1,1) process (2.4), the tail index & can be determined
numerically as a solution to the following integral equation:!

I(¢) = /_ 8,2 + 52|ﬁ g(2)dz—1=0, £>0. (2.6)

2.3. Semi-parametric Tail Index Estimation

The above results show that the upper? tail of a fat-tailed marginal distribution
F' behaves asymptotically like the tail of the Pareto distribution. For the latter,
given the order statistics Ryr < --- < Ry < --- < R; 7, the maximum likelihood
estimator (MLE) of £ is given by

k

-~ 1

Sk = Z E In R; 7 —In Ry 7, (2.7)
=1

where k = T. As the series (R;)1<¢<r has a_stationary marginal distribution which
behaves only asymptotically Pareto-like, F(r) ~ c¢r~'/¢ as r — oo, optimality of
the MLE (2.7) does not apply.

2.3.1. Asymptotic Tail Behavior: Where does the Tail begin?

Hill (1975) proposed a conditional MLE approach. Based on a known high thresh-
old u > 0 let model (2.3) hold for r > w. Given that k is a realization of
K = #{i : R;r > u}, select a subsample of k& < T' largest observations in (2.7)
and the Hill estimator is given as a MLE of £ conditional on w. The number
k = k(T) of order statistics should increase with the overall sample size T, while

! This result is based on a set of regularity conditions as well as on the assumption that the
tail of the innovations is thinner than that of the conditional standard deviation of the GARCH
process; see e.g. Mikosch and Starica (2000) for details.

2The focus on the upper tail is an arbitrary choice. The results hold equivalently for the
lower tail since min(Ry, ..., Ry) = —max(—Ry, ..., —Rr).



on the other hand, it should be small relative to the overall sample size T In the
literature this is frequently made precise by the condition

k(T) — oo, k(T)/T — 0, as T — oo. (2.8)

Under model (2.3) and condition (2.8), the Hill estimator can be shown to have
following properties: (i) the estimator is consistent (see e.g. Embrechts et al.
(1997), Example 4.1.12); (ii) under additional assumptions on the asymptotic tail
behavior of F, asymptotic normality follows

VEEer — €) —5 N(Bg; €), (2.9)

where B, denotes some asymptotic bias term, see e.g. de Haan and Peng (1998)
and Segers (2001); (iii) the Hill estimator obtains a theoretically derived opti-
mal rate of convergence, being superior to other popular estimators proposed in
the literature; see Drees (1998); (iv) the results by Hsing (1991) indicate that
the Hill estimator is asymptotically quite robust with respect to deviations from
independence; Resnick and Staricd (1998) prove consistency under ARCH-type
dependence.

Several approaches to the determination of an optimal sample fraction k(T)
for the Hill estimator have been studied. Theoretical results on an optimal
bias/variance trade-off can be derived using the asymptotic mean squared er-
ror (AMSE) as the optimality criterion. The results are based on the so-called
Hall model, which forms a generalization of the Pareto model. It imposes a second
order condition on the asymptotic behavior of the tail of the distribution function
F. By assuming L(r) = ¢; (1 + cor /¢ + o(r=/%)) in (2.3) it follows that

F(r) = cr V¢ (1+ car ¢ + O(T_p/g)) » A8 T — 00, (2.10)

where ¢; > 0, co € R and p > 0. The above model gives an asymptotic charac-
terization of the tail of the underlying distribution and at the same time robus-
tifies the semi-parametric estimation approach against deviations from the exact
Pareto tail. The model holds for distribution functions such as the Fréchet and
the student-t.

We consider two Hill-based adaptive tail index estimation approaches. Both
approaches rely on model (2.10) and select a MSE-optimal sample fraction k.

e Drees and Kaufmann (1998) derive a sequential estimator of the optimal k by
extending previous theoretical work on the asymptotic bias and variance of
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the Hill estimator. A stopping time criterion for a sequence of Hill estimators
is used in order to approximate the number of upper order statistics k£ under
which the bias in the Hill estimator starts to dominate the maximum random
fluctuation of the series v/i ’5 ir— & ‘ , 2 <1 < k, given some threshold

ur > 0:

%(ur) = min {k €{2,..T}: max (\/E

Ei,T _Ek,TD > UT} .

The second order parameter p in (1.7) is either set equal to a constant or
given by a consistent estimator such as
) |

max (\/z
PN )

- 1 2<i<[Nk(ur)]
gi,T - fE(uT),TD

~ ~

§ir — Ek(ur),T

priur,A) = —1n — (\/Z‘ (2.11)

2<i<k(ur)

where A € (0,1) and [z] denotes the largest integer smaller or equal to
x. Then, for a given p and a consistent initial estimator of £, a consistent
estimator of the optimal k is derived. The procedure yields a Hill estimator
with minimal asymptotic MSE (Drees and Kaufmann (1998), Theorem 1).

Dacarogna et al. (1995) as well as Danielsson and de Vries (1997) and
Danielsson et al. (2001) use a subsample bootstrap approach derived from
Hall (1990) to estimate the optimal sample fraction. The approach is based
on bootstrap subsamples of size T} < T. The estimate of the optimal sub-
sample fraction can be derived from

%1 = arg min E <(§k,T1 _gT>2

1<k<T,

(Ry, ., RT)) , (2.12)

where * denotes estimates based on resamples drawn from (Rj, ..., Rr). ET
denotes a consistent initial Hill estimator. The expectation operator is ap-
proximated by a given number of bootstrap runs. Instead of applying the
bootstrap to the MSE of the Hill estimator directly as in (2.12), an asymp-
totically equivalent criterion which does not depend on the choice of an
initial estimator is proposed in Danielsson et al. (2001). Their alternative



bootstrap estimate is given by?

T = arg min B (Mg, = 2E5)%?| Ry, Br) (2.13)

1<k<Ty

where M, 1, k < T, is a second order moment estimator of the form:

My =

el e

k
Z(ln R@T —In R]H_LT)Q.
i=1

The estimate for the optimal overall sample fraction k,, can then, most
simply as in Hall (1990) and Danielsson and de Vries (1997), be derived
from:

Foopt = [I (T T3)2/@0)] (2.14)

Again, the second order parameter p is either e.g. estimated by equation
(2.11) or set equal to a constant.

2.3.2. Hill Plot based Estimation and Optimal Scaling

A different class of Hill-based adaptive tail index estimation approaches is based
on a series of Hill estimates

{(k&or): 1<k <TY, (2.15)

also denoted as Hill plot. We apply the consistent estimator by Drees et al.
(2000) which is based on the frequent recommendation of choosing an estimate
of the tail index within a “stable” region of the Hill plot. Rescaling the axis of
the number of upper order statistics £ by a continuous parameter ¢, yields the
so-called alternative Hill plot proposed by Resnick and Staricd (1997)

{(Soag[Tﬂ,T) 10<p <1} (2.16)

3In case the maximum sample realization is drawn at least twice in a bootstrap resample,
the MSE equivalent criterion yields a zero value for k = 1 (and possibly for k > 1), whereas the
MSE criterion yields the squared initial estimator. We enter the squared initial estimator value
in this case.




When the underlying distribution is not exactly Paretian, Drees et al. show that
superior properties of the estimator result under the alternative Hill plot (2.16) as
compared to the standard plot (2.15); hence we use the corresponding estimator

~

©
G = 08 [ Lo e 21
with an upper boundary 0 < < 1 and a scaling constant m > 0. The parameter
& denotes a consistent initial Hill estimator which is used as an estimate of the
standard deviation of the alternative Hill plot, [T¢]~1/2¢, for varying ¢; see also
(2.9).

The estimator defined by (2.17) is denoted maximal occupation time (MOT)
estimator. Thereby occupation in a neighborhood of some tail index value is
defined by an interval, which is constructed from the standard deviation of the
Hill estimator times the scaling constant m. The sensitivity of the tail index

estimator (2.17) with respect to m can be visualized by what may be labelled a
MOT plot

{(m, &) : 0 < m < 00} (2.18)

As we are facing a bias/variance trade-off in (2.9), an optimal choice of m will
not only consider estimation variance but also estimation bias. We therefore
propose a MSE-based method for choosing m given model estimates which provide
information about the underlying distribution function F'.

In particular, assume that the marginal distribution function F' is given by
the dynamics of a GARCH(1,1) model according to (2.4) where the stationarity
condition (2.5) holds. Given the parameters 6 of the GARCH model, let the
variable £ > 0 denote the tail index which follows as a solution to I(£) = 0
according to equation (2.6). A MSE-optimal scaling constant m conditional on
the model point estimates is then given as:

~

m = arg rngleig@ ((é’m,T - ZT)Q‘ 5T) : (2.19)

In applications, the optimal m > 0 can be determined by a grid search within
a set G C R* and a set of discrete values for the parameter ¢ in (2.17). The
expectation operator is approximated by a given number of independent Monte
Carlo simulation runs. Based on the MSE-optimal scaling constant, . ;- serves
as a model-based optimal MOT estimator of the tail index.

10



3. Small Sample Performance of Tail Index Estimators

In the previous section we gave a summary of theoretical results on the Hill
estimator showing that the estimator has favorable asymptotic properties under
quite general model assumptions. However, there remain open questions in small
samples where the asymptotic results may only give a crude approximation to
the estimator’s true sampling properties. In particular, little is known about
how ARCH-type dependence influences the bias component and the bias/variance
trade-off under adaptive subsample selection criteria. In this section, we perform a
simulation study on the small sample performance of the Hill estimators outlined
above.

Previous simulation studies e.g. by Gomes and Oliveira (2001) and Matthys
and Beirlant (2000) compare different adaptive estimation procedures under iid
variables. They document the small sample properties of the procedures point-
ing out small sample bias. Turning to dependent series, the special case of an
integrated GARCH (IGARCH) process which implies infinite second moments is
discussed in Kearns and Pagan (1997). Huisman et al. (2001) give simulation re-
sults on their estimator under a GARCH(1,1) model with typical parameterization
and normal innovations.

The general class of “nearly integrated”, stationary GARCH(1,1) models with
student-t innovations is studied in the following. Table 3.1 contains an overview of
the return models for our simulation study. The models include the iid symmetric
student-t(v) return model (“stud/£”) as well as the GARCH(1,1) return generat-
ing process (2.4) with student-t(v) innovations (“arch/£”). The tail indices ¢ for
the latter model are calculated by solving equation (2.6). Note that the model
parameters are chosen such that the tail indices of the marginal distributions are
approximately equal to those of the iid student models. When studying the prop-
erties of the tail index estimators, this allows us to distinguish between the effects
of the magnitude of the tail index on the one hand and ARCH-type dependence
on the other hand. Referring to empirical evidence from GARCH estimation in
finance, the parameters (3, and (3, are chosen such that 8, + 8, S 1, i.e. the
models are what may be called “nearly integrated”.

3.1. Estimator Settings and Definitions

In order to characterize the small sample properties of the various adaptive Hill
estimators presented above, we study the estimators’ error distributions and par-

11



Table 3.1
Student-t models, model parameters and the corresponding tail index of the
stationary marginal distribution.

Parameter 13 1/¢ v Go | 54 B,

Model: Label:

iid student-t(v) stud/0.17 | 0.17 6 6 — — —
stud/0.25 | 0.25 4 4 — — —
stud/0.33 | 0.33 3 3 — — —

GARCH(L,1)-t(v) | arch/0.17 | 0.17 6 9 [10°]0.05 | 0.92
arch/0.25 | 0.25 4 5 |107° | 0.03 | 0.94
arch/0.33 | 0.33 3 4 [107%{0.03 | 093

ticularly their root mean squared error in a series of Monte Carlo simulations.
Without loss of generality, the sample size T" will be defined as the number of
positive sample observations from the upper distribution tail. We exploit the
property that all our return models are based on distribution functions which are
symmetric around zero by simulating 7' observations and taking absolute values.
The corresponding overall size of a sample of observed returns will then equal T’
if one assumes symmetry or N = 27" if one is interested in inferences about each
of both tails separately.

The adaptive estimators that were outlined in Section 2.3 above require the
choice of several variables, where we rely on the suggestions made in the literature.
Altogether, four different estimators are calculated: H-INI, H-DK, H-BS, and H-
MOT. The initial estimator, {7 = & 2v/7,r> 1S gIlven as a naive estimator labelled
H-INI. Following Drees and Kaufmann (1998), the second order parameter p in
the asymptotic tail expansion (2.10) is estimated by (2.11) with A = 0.6, giving the
estimator H-DK. For the bootstrap approach we choose the subsample sizes 177 =
[7/10] as in Danielsson and de Vries (1997). The asymptotically MSE-equivalent
criterion proposed by Danielsson et al. (2001) is chosen, which yields an optimal
subsample fraction according to (2.13). Handling the second order parameter p
as in the Drees/Kaufmann approach, (2.14) yields the estimated optimal sample
fraction and the estimator H-BS. For the Drees et al. (2000) maximum occupation
time estimator (2.17), the continuous parameter ¢ is approximated by a grid
with stepsize 0.05, where the upper bound @ = In([7"/2])/In(7T") corresponds to
k < [T/2]. Together with the standard scaling constant m = 1, this defines the

12



estimate H-MOT.

3.2. Simulation Results

Given the six return models from Table 3.1, our simulations are based on time
series samples of two different sizes: (i) a shorter sample with 7" = 500 upper tail
observations (corresponds to N = 1000 observations) and (ii) a longer sample with
T = 1500 upper tail observations (corresponds to N = 3000 observations). We
report mean error (ME), standard deviation (STD) and root mean squared error
(RMSE) where all our simulation results are based on 500 independent simulation
runs, under each of which 100 bootstrap runs are performed for calculating the
bootstrap estimator H-BS. The results for 7' = 500 are given in Table 3.2, the
results for 7" = 1500 are given in Table 3.3. Our conclusions from the simulations
are given in the following subsections.

3.2.1. Magnitude of the Tail Index and Estimation Precision

From the result on the asymptotic sampling distribution of the Hill estimator
it is known that the asymptotic bound to its standard deviation, &/+/k(T), is
linearly increasing in &. Interestingly however, we observe in Tables 3.2 and 3.3
that higher degrees of fat-tailedness (i.e. larger values of ) frequently show quite
stable or even decreased RMSE statistics for the estimators.* This decrease in
RMSE with an increase in £ deserves further consideration recalling that MSE =
STD? + ME?. With, for example k(T) = [2v/T] and sample size T = 1500, the
asymptotic standard deviations are 0.019 for ¢ = 0.17, 0.028 for £ = 0.25 and 0.038
for £ = 0.33, respectively. In Table 3.3, the corresponding simulated standard
deviations for the initial estimator H-INI are 0.028, 0.033 and 0.041 respectively;
i.e. particularly under the smaller tail indices, the standard deviations have not
yet reached their asymptotic bounds. The observation that the RMSE remains
stable or even decreases for increasing tail index ¢ is therefore partly explainable
by a slower convergence to the asymptotic standard deviations for models with
small tail index. The main explanation of our findings, however, is the behavior of

4For example, in Table 3.2, the RMSE for the bootstrap estimator H-BS is 0.080 for the
student-t model with £ = 0.17 and 0.071 for the student-t model with £ = 0.33. The RMSE for
the initial Hill estimator H-INI is 0.091 for the student-t model with £ = 0.17 and declines by
roughly a third to 0.063 when the tail index is nearly doubled to £ = 0.33.
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Table 3.2
Small sample properties of the Hill estimators: mean error (ME), standard deviation
(STD), and root mean squared error (RMSE), T = 500

| [ H-INI | H-DK | H-BS | H-MOT |

ME ME ME ME
STD STD STD STD
RMSE RMSE RMSE RMSE
(Nioder_] | | | |
0.12 0.10 0.081 0.074
stud/0.17 0.039 0.061 0.062 0.059
0.12 0.12 0.10 0.095
0.093 0.092 0.072 0.066
stud/0.25 0.050 0.068 0.074 0.068
0.11 0.11 0.10 0.094

0.072 0.079 0.057 0.038
stud/0.33 | 0.057 0.072 0.083 0.069

0.092 0.11 0.10 0.079
0.14 0.12 0.096 0.081
arch/0.17 | 0.055 0.084 0.083 0.070
0.15 0.15 0.13 0.11
0.086 0.074 0.046 0.036
arch/0.25 | 0.055 0.079 0.081 0.069
0.10 0.11 0.093 0.078
0.049 0.038 0.015 —0.0097

arch/0.33 | 0.065 0.098 0.093 0.072
0.081 0.11 0.094 0.072

14



Table 3.3
Small sample properties of the Hill estimators: mean error (ME), standard deviation
(STD), and root mean squared error (RMSE), T" = 1500

| [ H-INI | H-DK | H-BS | H-MOT |

ME ME ME ME
STD STD STD STD
RMSE RMSE RMSE RMSE
Model: |
0.087 0.080 0.067 0.053
stud/0.17 0.028 0.041 0.047 0.046
0.091 0.090 0.082 0.070
0.064 0.067 0.052 0.039
stud/0.25 0.033 0.045 0.056 0.058
0.072 0.081 0.077 0.070
0.048 0.060 0.048 0.030
stud/0.33 0.041 0.047 0.056 0.064
0.063 0.076 0.074 0.070
0.10 0.090 0.069 0.049
arch/0.17 0.043 0.063 0.069 0.058
0.11 0.11 0.098 0.075
0.069 0.060 0.041 0.016
arch/0.25 0.052 0.069 0.078 0.066
0.086 0.092 0.088 0.067
0.030 0.027 0.0001 —0.030
arch/0.33 0.062 0.087 0.098 0.071
0.069 0.092 0.098 0.077
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the sample bias (ME). A decreasing absolute bias tends to more than compensate
for increasing estimation variance.®

In summary, these results indicate that the bias/variance trade-off is complex
with small sample bias playing an important role in overall small sample estima-
tion precision. While estimation STD increases for larger values of the tail index,
this is not necessarily the case for estimation MSE.

3.2.2. GARCH versus iid Student Models

In comparing the results for the iid student-t and GARCH models, a first glance
at the tables may lead to the conclusion that there is a relatively high overall
mean squared error-robustness of the tail index estimators with respect to het-
eroskedasticity. Again, as in the case of increases in the magnitude of the tail
index ¢ in the preceding section, unchanged or even improved RMSE results un-
der GARCH come from a compensating effect of a reduction in estimation bias
ME. ARCH-type volatility clustering leads to clustering in the extremes which
increases estimation error for the tail index. This is confirmed by our results
when we look at the STD statistics of the estimators which mostly show a notable
increase in estimation variance under GARCH.

An interesting finding in the tables is that the MOT estimator’s sample vari-
ance is relatively large under iid student-t data, but is hardly affected by ARCH-
type dependence. This robustness characteristic under dependence appears to be
due to the construction of the estimator based on an entire series of Hill estima-
tors.

3.2.3. Increasing the Sample Size

Comparing the results for the sample size T' = 500 in Table 3.2 with those for
the sample size T" = 1500 in Table 3.3 indicates that the relative performance
ranking of the estimation approaches under the student-t and GARCH models is
basically unaffected by an increase in the sample size; M-MOT and M-BS achieve
the best RMSE results irrespective of sample size. Apart from that, the results
suggest that an increased sample size yields larger performance improvements for
the bootstrap as compared to the maximum occupation time estimator.

’For example, in the case mentioned in the previous footnote, when RMSE falls from 0.091
to 0.063, we see that the bias falls from 0.087 to 0.048, more than offsetting the increase in
standard deviation from 0.028 to 0.041.
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Considering estimation precision as measured by STD, an increase in the sam-
ple size causes improvements in the estimators’ standard deviations, especially
under the iid student-t model with a small tail index. Interestingly, there is a
notable difference in the reduction of estimation variance between the GARCH
and the iid models. Under the GARCH models with ¢ = 0.25 and £ = 0.33 the
standard deviation of the Hill estimator can hardly be improved by increasing the
sample size. This shows that the convergence to the asymptotic lower bounds
for the estimator’s standard deviation can be very slow under ARCH-type de-
pendence in the data. Hence, large sample sizes may be considered a necessary
although not sufficient condition for a successful application of tail estimation
procedures.

3.2.4. Comparing the Estimation Approaches

Although, it is impossible to conclude from our simulation results that a partic-
ular estimator under consideration is dominant, the bootstrap and the maximum
occupation time approach seem to be appropriate choices for parameter estima-
tion in small samples. The H-BS shows advantages under the increased sample
size. The H-MOT estimation approach is less sensitive with respect to sample
size and ARCH-type dependence.’

Interestingly, it turns out that all the approaches show a common tendency
to be positively biased for smaller values of the tail index. Under the GARCH
models there is also a tendency towards negative bias for larger values of the tail
index especially for the MOT estimator.” Hence, bias as a function of ¢ appears
to be a critical issue in tail index estimation in that it causes the estimated degree
of fat-tailedness to be systematically biased. In order to reduce such potential
small sample bias, the model-based optimal MOT estimator defined by equations
(2.17) and (2.19) will be applied to exchange rate data in the following. Inferring
a priori knowledge about the approximate magnitude of the tail index, we thereby
simulate the small sample properties of our estimation approach under GARCH.

0The simulation results in Wagner and Marsh (2000) indicate that slightly dominant overall
small sample results can be obtained by replacing the Hill estimator with a Hill-derived moment
ratio estimator. A detailed discussion is beyond the scope of this paper.

"The simulation results for a GARCH model with ¢ > 0.33 in the following section confirm
this conclusion.
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4. Empirical Study of Extremal Exchange Rate Changes

The preceding simulations made obvious that the small sample properties of the
Hill estimator depend critically on our assumption of the underlying return model.
In particular, not only estimation variance but also bias depend on the magnitude
of the tail index both being also affected by potential ARCH-effects.

In this section, we study these effects for a given dataset of daily changes in the
exchange rate of one US-dollar versus Deutschemarks (USD/DEM). We proceed
in three steps. First, based on the prior assumption that a GARCH(1,1)-t(v)
specification is a suitable model for the given exchange rate dynamics, GARCH
model parameter estimation is carried out. Second, we perform a simulation
study of tail index estimation small sample properties under the specific model
and derive the model-based optimal MOT estimator. Finally, the tail index of the
marginal distribution of our exchange rate changes is estimated. The three-step
procedure allows us to calibrate the MOT estimator under the assumed model
while maintaining a general approach to tail index estimation based on extreme
value theory. The estimation results obtained are compared to those of a bootstrap
approach.

L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600

Figure 4.1: Plot of the logarithmic USD/DEM exchange rate changes
ry, t=1,...,1716; January 2, 1988 to December 30, 1994.

4.1. The Data and GARCH Model Estimation

The empirical investigation is based on logarithmic changes r;, t = 1, ..., T, in daily
USD/DEM exchange rates during the period 1988 to 1994. This series contains
T = 1716 non-zero observations as obtained from Datastream. The pre-EURO
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Table 4.1
MLE point estimates of GARCH(1,1)-t(~) model parameters for the exchange rate
changes, T' = 1716; start values were obtained from fitting the model under the
assumption of normally distributed innovations; standard errors in parenthesis.

Parameter & v By B4 B
GARCH(L1)1-t() | 04l 6.01 12810 ° | 0.0410 | 0.937
(0.89) | (6.17-10°7) | (0.0108) | (0.0184)

sample period was chosen as a period of exchange rates without severe exogenous
policy impact or structural breaks which makes the assumption of a stationary
underlying distribution plausible. Figure 4.1 plots the logarithmic exchange rates
changes in the sample period.

Estimation of the GARCH model with student-t innovations (2.4) is carried
out by maximum likelihood as outlined in Hamilton (1994), where the parameter
vector is given by 6 = (3,, 8, O, V). The parameter estimation results are given in
Table 4.1. As typically observed for GARCH estimation in finance, all estimates
differ from zero at high confidence levels and the sum of the point estimates is
close to, but smaller than, one. The maximum likelihood estimate of v turns out
to be close to six.®

4.2. Small Sample Error Simulation

The simulation of the sample properties of the Hill estimators is carried out for
the estimated GARCH(1,1)-t(v) model. Given our above point estimates and
setting v = 6, the stationarity condition (2.5) for the GARCH model can be
verified numerically. Solving the integral equation (2.6) results in a theoretical
model tail index £, = 0.41. This theoretical tail index gives an approximate
prior estimate of the tail index of the marginal distribution of the exchange rate
changes. Under a sample size of T" = 1716 we then simulate the error distributions

8GARCH model estimation diagnostics indicate a good fit of the GARCH model; these
include QQ-plots as well as autocorrelation, partial autocorrelation and Ljung-Box statistics
for the model residuals and the squared model residuals; note that in the latter case standard
confidence levels are conservative under nonexistence of the forth moment of the underlying
return distribution. Detailed results are available from the authors upon request.
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Table 4.2
Small sample properties of Hill estimators under the estimated GARCH(1,1)-t(v)
model: mean error (ME), standard deviation (STD), and root mean squared error
(RMSE), T' = 1716; H-BS with 100 bootstrap runs and second order parameter set
equal to one; H-MOT with T obtained from the grid {1, 1.5, ..., 10} under 250

simulation runs in (2.19).

[ H-INI | H-BS | H-MOT | | | |

ME ME ME ME ME ME
STD STD STD STD STD STD
RMSE | RMSE | RMSE | RMSE | RMSE | RMSE
| Model: | | | m=1] m=3 | m=55] m=10 |
—0.10 | —0.15 | —0.17 [ —0.077 | —0.035 | —0.059
arch/0.41 | 0.052 | 0.073 | 0.061 0.059 0.040 0.043
0.12 0.17 0.18 0.096 0.054 0.076

of the bootstrap estimator H-BS and the maximum occupation time estimator
MOT.? Additionally, we determine the optimal scaling factor m for the optimal
H-MOT estimator by minimizing (2.19) via a grid search. The grid for varying
m is thereby set as G = {1,1.5,...,10} where 250 Monte Carlo runs approximate
MSE in (2.19) for each grid element.

As in Section 3, Table 4.2 reports the mean error (ME), the standard deviation
of the errors (STD) and the square root of the mean squared errors (RMSE)
of the estimation approaches under 500 independent Monte Carlo runs. The
simulation results reveal a negative bias for all estimation approaches; i.e. all
estimators underestimate tail thickness for the given GARCH(1,1)-t(~) model.
The maximum occupation time estimator with MSE-optimal scaling factor m =
5.5 substantially reduces bias under the simulated model.

4.3. Estimation Results

We now turn back to our sample of exchange rate changes and examine the tail
behavior for the absolute changes |ry|, t = 1,...,1716. A classical Hill plot (2.15)

9All estimator and simulation settings remain unchanged from Section 3. Only for compu-
tational simplification, the second order parameter p was set equal to one in simulating the
bootstrap estimation approach. Simulation results unreported here indicate equivalent small
sample performance. Refer to Wagner and Marsh (2000) for details.
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for the series is given in Figure 4.2. As is well-known, time series dependence
strongly influences the properties of the Hill plot. Obviously the plot in Figure
4.2 does not converge against some limit as k becomes larger and positive bias
enters in the estimates of £. As our simulation results indicate, the Hill estimates
may also exhibit bias in that the entire Hill plot is shifted up- or downward which
may well be due to the non-linear dependence in the data.! Apart from these
difficulties, visual inspection of the plot reveals a nearly flat area of Hill estimates
with moderate variability in an interval roughly between k£ = 60 and k£ = 90. A
classical approach would be to choose an estimator from that range which would
imply a tail index estimate in the interval [0.25;0.27]. A glance at the alternative
Hill plot (2.16) in Figure 4.3 indicates that rescaling the Hill plot for small values
of k reveals a flat area for ¢ € [0.2;0.4] which relates to k € [4;20]. Note that
choosing k = 20 would yield a tail index estimate of about 0.18.

The above discussion makes obvious that it seems quite difficult to decide on
the choice of a subsample fraction for the given dataset via graphical methods
alone. The results for the adaptive, i.e. data-driven, Hill estimation results are
summarized in Table 4.3. The bootstrap estimator H-BS yields results similar
to our visual inspection for the standard Hill plot. The choice of an optimal
subsample fraction k& = 84 yields an estimate of 0.25; a result which happens to
be nearly identical to that by the H-INI estimator. The maximum occupation
time estimators’ behavior corresponds well to our previous simulation results: H-
MOT with m = 10 for example, yields a larger estimate of a £ than H-MOT with
m = 3 which again is larger than the estimate by H-MOT with m = 1. This is
due to the observation that, as £ becomes larger, positive bias enters in the Hill
plot. The application of our model-based MSE-optimal MOT estimator yields a
tail index estimate of 0.35 indicating a 40 percent deviation in the estimate of tail-
thickness as compared to the results mentioned above. For a sensitivity analysis
of our result we refer to Figure 4.4. The given MOT plot appears to be quite
stable for a wide range of scaling factors m € [2; 8] including our choice of . All
these scaling factors yield tail index estimates equal to or, mostly, substantially
larger than 0.25.

When using estimates of 1/¢ as an indication of the existence of higher order
moments, one should therefore rather doubt the existence of the forth moment
of the underlying distribution F'. Once we conclude that the tail index for the
exchange rate changes is potentially larger than 0.33, we would even doubt the
existence of the third moment of the underlying distribution, although an inter-

10See also the discussion e.g. in Embrechts et al. (1997), p. 343-344.
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pretation of traditional results would not yield such implication.

L L L L L L L
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k

Figure 4.2: Hill plot, {(k:,/f\kT) : 1 < k <400}, for the sample of exchange rate
changes, T' = 1716.
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Figure 4.3: Alternative Hill plot, {(QD,E[T%T) : 0 < ¢ < 0.9}, for the sample of
exchange rate changes, T' = 1716.
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Table 4.3
Tail index estimation results for the exchange rate changes, symmetric tail estimated
from | Ry|: naive estimator H-INI, H-BS with 100 bootstrap runs and second order
parameter set equal to one, H-MOT with different scaling parameters m. Estimated
asymptotic standard errors in parenthesis.

| [ H-INI | H-BS | H-MOT | | | |

| [ k=82 | k=84 | m=1 |[m=3|m=55|m=10]
: 0.25 0.25 018 | 030 | 035 | 031

(0.028) | (0.028) = —~ — —

L L L L L L L L
1 2 3 4 5 6 7 8
m

Figure 4.4: MOT plot, {(m,gmyT) : 0 < m < 8}, for the sample of exchange rate
changes, T' = 1716.

Our findings also have implications for high quantile estimation: Under tail
symmetry, which was assumed throughout, let the p-percent quantile r, be defined
by P(|R: < r,) = p. Then, under the Pareto tail, the corresponding quantile
estimate is (e.g. Embrechts et al. 1997)

—£
(1 - P)> |Rt|k,T7

- T+c
Ty = k:

where the sample size T" of upper tail observations is corrected by the number ¢ > 0
of zero returns in the sample. |R|;r denotes the kth upper order statistic from
the absolute exchange rate changes. For the subsample size we choose k£ = 84 as
given by H-BS (which could be replaced by other choices); i.e. we model a fraction
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Table 4.4
Quantile estimation results 7, - 100 for the exchange rate changes: k = 84, alternative
probability levels and tail index estimates.

| | €]0.25]0.30]0.35 |
||

p=0.95 141 1.39 | 1.37
p=0.99 2.10 | 2.25 | 241
p = 0.999 3.74 | 4.49 | 5.39

of approximately five percent of the largest absolute exchange rate changes. Table
4.4 reports quantile estimates 7, for different probabilities and tail index estimates.
The quantile estimates indicate that the 95 percent quantile estimate is robust
under differences in estimates of the tail index: the five in a hundred days quantile
is estimated to equal roughly 1.4 percent. Moving to the higher probability levels
indicates economically significant differences in estimated quantiles: under a tail
estimate of 0.35 the one in a hundred days estimated quantile increases from a
2.1 percent change to a 2.4 percent change, the one in a thousand days estimated
quantile increases from a 3.7 percent change to a 5.4 percent change in asset value.

5. Conclusion

This paper focused on measuring tail thickness of the marginal distribution of
stationary ARCH-type financial time series. By the very nature of extreme value
theory, small sample bias and variance play an important role in estimation. Our
simulation study documents that measuring tail thickness relies on proper assump-
tions about the underlying return model and its time series properties; i.e. what
tail index estimation results tell us about the extremal behavior of the returns
cannot be separated from a priori assumptions. An example is the interpretation
of classical methods such as the Hill plot which should be treated with care given
the dependence structure in financial data.

Hence, while the extreme value theory offers a general methodology for specifi-
cally modeling the distribution tails, suitable modeling of the overall data remains
essential in practical applications where a limited amount of independent data is
available. One practical approach was outlined here. A drawback of the approach
is that it is relatively cumbersome, since it requires a pre-analysis of the financial
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time series which may even be extended by additional exploratory methods. It
follows that the estimation results will not be readily available; once they are
available, they are subject to prior judgement. Further integration of models of
the overall time series with models of the tails seems an interesting issue to address
in future work on extremes in finance.
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