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Abstract

Inverse Limit Reflection and the Structure of L(Vλ+1)

by

Scott Stefan Cramer

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor W. Hugh Woodin, Chair

We explore the technique of inverse limits, a tool first introduced by Laver in the context
of rank-into-rank embeddings. We extend reflection results of Laver using inverse limits
up to and including embeddings of the form L(Vλ+1) → L(Vλ+1). Isolating this technique
as ‘inverse limit reflection,’ we use it to prove structural results of L(Vλ+1) very similar
to properties of L(R) under ADL(R). We then define a representation, first introduced
by Woodin, for subsets of Vλ+1, and prove basic closure properties of this representation.
Employing the technique of inverse limit reflection we then prove an important property
called the Tower Condition and analyze certain measures generated from fixed points of
embeddings to broaden the extent of these representations in L(Vλ+1).
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Chapter 1

Introduction

The study of L(Vλ+1) is motivated primarily by the two goals of uncovering the structure
of large cardinal axioms just below the limitation of Kunen’s Theorem, and understanding
the relationship between L(Vλ+1) and L(R) (see [Lav02] for a survey of the subject). In this
manuscript, we develop techniques for solving questions which arise in the first area, and
then we use these techniques to further our understanding in the second area.

Large cardinal hierarchy serves as a fundamental measurement of consistency strength
in set theory, and the computation of equiconsistency with large cardinals is a fundamental
goal in set theory. At the highest reaches of the large cardinal hierarchy, however, there are
more basic questions about the structure of large cardinals: first, large cardinal axioms must
be identified; second, the relationship between these axioms must be understood; and third,
basic justification for their consistency must be given.

For the first task, there is an analogy with models of determinacy which has proven very
useful in discovering new axioms. This analogy stems from the similarity between the two
structures L(Vλ+1) and L(R), and is potentially a source of deep connections between the
two theories. The second task can involve understanding the reflection properties of large
cardinals, a subject which we will spend considerable time considering below. The third task
might involve showing interesting structural results follow from the axioms. In our case, we
will be concerned with how large cardinals affect the structure of L(Vλ+1).

Large cardinal axioms, for our purposes, are generally of the form: there exists a non-
trivial elementary embedding j : V → M , where M has a certain amount of agreement
with V . Kunen’s Theorem gives an upper bound for such axioms; it states that under ZFC
there is no elementary embedding V → V (see Section 1.1.1 for more details; we assume all
embeddings are non-trivial). Below this axiom, we are concerned with the following general
divisions in the large cardinal hierarchy (see Sections 1.1.1 and 5.1.1 for definitions). On
the left we indicate whether or not the axioms are potentially consistent with the Axiom of
Choice.
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¬AC V → V embeddings
E0
α-hierarchy

AC L(Vλ+1)→ L(Vλ+1) embeddings
rank-into-rank embeddings

Clearly, whether or not it is consistent for such choiceless V → V embeddings to exist is a
fundamental question at this level, and in order to tackle this question, understanding the
structure of the axioms just below this division is likely of paramount importance. Here we
take the first step towards such an analysis by studying the structure of L(Vλ+1).

We begin by studying the reflection properties of L(Vλ+1) → L(Vλ+1) embeddings. The
main tool we use is the inverse limit of a sequence of elementary embeddings. Laver ([Lav97],
[Lav01]) first introduced inverse limits in the study of reflecting rank into rank embeddings.
An inverse limit is an embedding Vλ̄+1 → Vλ+1 for some λ̄ < λ which is built out of an ω-
sequence of embeddings Vλ+1 → Vλ+1 (see Section 2.1). The basic question of inverse limits is
to what extent for all α there exists an ᾱ such that the inverse limit extends to an elementary
embedding Lᾱ(Vλ̄+1) → Lα(Vλ+1); inverse limit reflection is the statement that an inverse
limit does have such an extension as long as the embeddings that make up the inverse limit
are sufficiently strong. In Sections 2.2-2.5 we show through several different proofs that
inverse limit reflection holds up through the hierarchy of axioms below L(Vλ+1) → L(Vλ+1)
embeddings. As a culmination to this analysis, we show that the existence of an elementary
embedding

L(V #
λ+1)→ L(V #

λ+1)

with critical point less than λ implies that there is some λ̄ < λ such that there is an
elementary embedding

L(Vλ̄+1)→ L(Vλ̄+1)

with critical point less than λ̄.
In Chapter 3, using inverse limit reflection at level α we show a number of structural

properties of L(Vλ+1). Let Θ be the sup of β such that there exists a surjection Vλ+1 → β in
L(Vλ+1). In L(Vλ+1), let κ < Θ be a cardinal with cofinality bigger than λ, let α < λ be an
infinite cardinal, and let

Sα = {β < κ| cof(β) = α}.

Assume there exists an elementary embedding j : L(Vλ+1) → L(Vλ+1). Woodin showed
that in L(Vλ+1), κ is measurable, and this is witnessed by the club filter restricted to a
stationary set. However, he also showed that if α > ω then it is consistent that the club
filter restricted to Sα is not an ultrafilter. This theorem leaves open the case of α = ω, and
we show, under the above assumptions, that Sω cannot be partitioned into two stationary
sets which are in L(Vλ+1). Woodin showed a similar result follows from the existence of
U(j)-representations (see Chapter 4), but it is unclear at present if all subsets of Vλ+1 in
L(Vλ+1) have U(j)-representations (see Section 4.4).
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Along these same lines, Xianghui Shi and Woodin showed that the Perfect Set Property
in L(Vλ+1) follows from a forcing argument and the generic absoluteness of Theorem 4.5.2.
In Section 3.2 we prove an analogous result using inverse limit reflection.

This relationship between inverse limit reflection and the structure of L(Vλ+1) has an
interesting consequence (see Corollary 2.5.11). Suppose that X ⊆ Vλ+1 and there exists an
elementary embedding j : L(X, Vλ+1) → L(X, Vλ+1). Then one might expect the analysis
of L(Vλ+1) to carry over to L(X, Vλ+1), and that this more general situation is really the
appropriate area to study. We show, however, that inverse limit X-reflection cannot hold
in general, and that the set of X ⊆ Vλ+1 such that inverse limit X-reflection holds is very
restricted. As inverse limit reflection is a very natural property one would expect of these
structures, this fact highlights L(Vλ+1) and its extensions satisfying inverse limit reflection
as the most natural objects to study at this level.

Furthermore, while it seems as though the existence of an elementary embedding j :
L(Vλ+1)→ L(Vλ+1) is an analogous assumption for L(Vλ+1) as assuming the axiom of deter-
minacy holds in L(R) is for L(R), we argue that inverse limit reflection is actually a more
appropriate analog of determinacy. Indeed, we will see that the structures L(X, Vλ+1) which
have analogous embeddings j : L(X, Vλ+1) → L(X, Vλ+1) do not generally have structural
properties which are analogous to the structural properties of models of determinacy, while
those structures satisfying inverse limit reflection do have these properties.

Some of the above structural results which we obtain from inverse limit reflection were
shown by Woodin to follow from U(j)-representations. In fact he showed that even stronger
reflection properties follow from these representations (see Theorem 4.5.2). The similarity in
the structural consequences of inverse limit reflection and U(j)-representations suggests that
there might be some connection between the two. We explore this connection in Sections 4.2
and 4.3 and as a result are able to significantly expand the collection of U(j)-representable
sets (see Section 4.4).

Considering these results, it seems likely that all sets in V
L(Vλ+1)
λ+2 are U(j)-representable

in L(Vλ+1), a conjecture which has been shown to have many interesting consequences (see
Section 4.5). Proving this conjecture therefore appears to be the most natural extension of
our work here.

While we concentrate here on studying L(Vλ+1), the above results likely extend to stronger
axioms. We define the E0

α hierarchy in Section 5.1.1, which was first introduced by Woodin
in analogy with the definition of the minimal model of ADR in the context of determinacy.
Extending the above results on inverse limits and U(j)-representation to this hierarchy is a
natural next step in the above analysis, and it might be the key to understanding the even
stronger V → V axioms (see Section 5.1.2).
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1.1 The structure L(Vλ+1)

1.1.1 Very large cardinals

Large cardinals are the fundamental measure of consistency strength in set theory. At the
lowest level, for instance, there are strongly inaccessible cardinals: a cardinal κ is strongly
inaccessible if κ is regular and is a strong limit, so for all α < κ, 2α < κ. So if there exists a
strongly inaccessible cardinal, Con(ZFC) holds.

For our purposes, large cardinals are of the following general form: κ is the critical point
of j : V → M where M has a certain amount of agreement with V . κ is measurable if it is
the critical point of such an embedding j : V → M where no agreement between M and V
is required. In general, the more agreement M has with V , the stronger the large cardinal
axiom. So for instance we have the following:

Fact 1.1.1. Suppose that κ = crit (j) where j : V → M is elementary. Suppose that
Vκ+2 ⊆M . Then κ is a limit of measurable cardinals.

Proof. Let U ⊆ P (κ) be the normal ultrafilter induced by j. So A ∈ U iff κ ∈ j(A). We
have that U ∈ Vκ+2 and hence κ is measurable in M . But by the elementarity of j, κ must
be a limit of measurables in V .

This phenomenon that stronger large cardinals reflect weaker large cardinals is a funda-
mental property of these axioms, although it becomes much more difficult to show for some
of the strongest axioms in the large cardinal hierarchy.

A question which immediately arises in the study of large cardinals from elementary
embeddings is: how much agreement is possible between M and V ? Kunen’s Theorem gives
an upper bound under ZFC.

Theorem 1.1.2 (Kunen [Kun71]). (ZFC) There is no (non-trivial) elementary embedding
j : V → V .

In fact the proof gives the following upper bound for rank into rank embeddings.

Theorem 1.1.3 (Kunen (see [Kan94])). (ZFC) Suppose that α is such that there exists an
elementary embedding j : Vα → Vα. Then for λ = supi<ω κi where κ0 = crit j and for i < ω,
κi+1 = j(κi), we have

1. Either λ = α or λ+ 1 = α.

2. For all β such that crit j ≤ β < λ, j(β) > β.

Figure 1.1.1 gives a picture of rank-into-rank embeddings which we obtain from this
theorem.

A fundamental question is whether it is possible to have an elementary embedding j :
V → V under ZF.
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Figure 1.1: Rank-into-rank embeddings.

The following is a list of large cardinal axioms, ordered in decreasing strength, which
we will be considering in this paper (λ is always the sup of the critical sequence of j, so in
particular crit (j) < λ; see Section 1.2 for basic definitions).

Name Definition
Reinhardt Cardinal ∃j : V → V

∃j : Vλ+2 → Vλ+2

I#
0 ∃j : L(V #

λ+1)→ L(V #
λ+1)

I0 ∃j : L(Vλ+1)→ L(Vλ+1)
I1 ∃j : Vλ+1 → Vλ+1

I3 ∃j : Vλ → Vλ

There is further subdivision between I0 and I1, for instance, where for a fixed α we
demand the existence of an elementary embedding j : Lα(Vλ+1)→ Lα(Vλ+1). A similar type
of subdivision exists between I#

0 and I0, and so on.

1.1.2 Comparison with L(R)

Besides arising in the study of very large cardinals, L(Vλ+1) is an example of a structure
L(Vα+1) for some singular strong limit α. The case cof(α) = ω is special, however, by the
following theorem of Shelah.

Theorem 1.1.4 (Shelah). Suppose λ is a singular strong limit of uncountable cofinality.
Then L(P (λ)) |= ZFC.
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If I0 holds at λ we have L(Vλ+1) |= ¬AC, and so we have a similarity between L(Vλ+1)
assuming I0 at λ and L(R) assuming ADL(R). Before exploring this connection further, we
fix some notation and note other obvious similarities in a lemma.

Definition 1.1.5. Fix λ. Call an ordinal α good if every member of Lα(Vλ+1) is definable
over Lα(Vλ+1) from a member of Vλ+1. Define

Θ = Θλ := sup{α| (∃σ(σ : Vλ+1 → α is a surjection))L(Vλ+1)}.

Lemma 1.1.6. Fix λ a strong limit such that cof(λ) = ω. Then the following hold:

1. L(Vλ+1) |= ZF + λ-DC.

2. The good ordinals are cofinal in Θλ.

3. Θλ is regular in L(Vλ+1).

4. LΘλ(Vλ+1) |= ZF−.

5. Suppose that j : Lα(Vλ+1)→ Lβ(Vλ+1) is elementary for α good. Then j is induced by
j � Vλ.

Proof. 1, 3, and 4 are as in the L(R) case. For 2 and 5, see [Lav01].

The following is a selection of results which show a significant similarity between the two
structures L(R) and L(Vλ+1).

Theorem 1.1.7 (Woodin [Woo11]). Fix λ such that there exists an elementary embedding
j : L(Vλ+1)→ L(Vλ+1). Then the following hold in L(Vλ+1):

1. For cofinally many κ < Θλ, κ is measurable, and this is witnessed by the club filter
restricted to a stationary subset of κ.

2. If α < Θλ then P (α) ∈ LΘλ(Vλ+1).

There are important differences between L(R) and L(Vλ+1) however. As an example we
consider the case of the club filter on λ+. Solovay showed that if ADL(R) holds then the club
filter is an ultrafilter on ω1 in L(R). One might expect such a result to hold in L(Vλ+1), but
there are two reasons it cannot. First of all, if Sα = {κ < λ+| cof(κ) = α} then the set of Sα
for α < λ regular is a collection of disjoint stationary subsets of λ+. This problem however
appears to be fairly trivial as we could simply modify our question by asking instead if the
club filter restricted to each Sα is an ultrafilter for each regular α < λ. This leads to a second
more serious problem, which is displayed by the following theorem.
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Theorem 1.1.8 (Woodin). Fix λ and let κ < λ be an uncountable regular cardinal. Let
Sκ = {α < λ+| cof(α) = κ} and let F be the club filter on λ+. If G ⊆ Coll(κ, κ+) is
V -generic then

L(V [G]λ+1) |= F restricted to Sκ is not an ultrafilter.

In fact for any β < λ, there exists a poset P such that if G ⊆ P is V -generic then in
L(V [G]λ+1) there is a partition 〈Tα|α < γ〉 of Sκ into stationary sets for some γ ≥ β, such
that for all α < γ, F restricted to Tα is an ultrafilter.

This second problem is part of a larger issue which we call the ‘right V problem’: the
theory of Vλ can be changed by small forcing, while the theory of Vω cannot. Hence a
property of L(Vλ+1) might depend on the theory of Vλ, and thus not be provable from the
existence of the elementary embedding alone.

There are several ways one might try to get around the right V problem. One might
restrict the question to those cases which are not generically fragile. In the case of the club
filter on λ+, whether the club filter restricted to Sω is an ultrafilter in L(Vλ+1) is left open
by the above theorem. We will give evidence below towards proving that this is indeed the
case (see Theorems 3.1.8 and 3.1.11).

Secondly, one could ask the question instead in the L(Vλ+1) of some canonical L-like
inner model. Such an analysis would surely be possible and enlightening if such an inner
model exists. We do not attempt such an analysis here.

Thirdly, one could modify the question in order to circumvent the right V problem. Such
a modification would presumably restrict attention to generically stable objects. An example
of such a modification is the generic absoluteness given by U(j)-representations (see Theorem
4.5.2).

The following table lists some differences and similarities between L(R) and L(Vλ+1).

L(R) assuming ADL(R) L(Vλ+1) assuming I0 at λ

Θ is a limit of measurable cardi-
nals (Kechris and Woodin, see Kechris
[Kec85])

Θ is a limit of measurable cardinals
(Woodin [Woo11])

∀α < Θ, P (α) ∈ LΘ(R) (Moschovakis
[Mos80])

∀α < Θ, P (α) ∈ LΘ(Vλ+1) (Woodin
[Woo11])

the club filter on ω1 is an ultrafilter (Solo-
vay, see [Kan94])

for all β < λ regular, there exists a par-
tition 〈Tα|α < κ〉 for some κ < λ of Sβ
into stationary subsets, such that for each
α < κ, the club filter restricted to Tα is
an ultrafilter (Woodin [Woo11]; also see
Corollary 3.1.9)

the perfect set property holds (Davis
[Dav64])

the λ-splitting perfect set property holds
(see Theorem 3.2.3)
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1.2 Set theory definitions and conventions

We denote by Vα for α an ordinal the stratification of V according to rank. So V0 =
∅, Vα+1 = P (Vα) and Vλ =

⋃
α<λ Vα for λ a limit. For a transitive set A, L(A) is the

constructible hierarchy built on top of A. So L0(A) = A, Lα+1(A) = Def(Lα(A)) and
Lλ(A) =

⋃
α<λ Lα(A) for λ a limit. By L(X,A) we mean the constructible hierarchy built

on top of A, with X as a predicate. So L0(X,A) = A, Lα+1(X,A) = Def(Lα(A), X ∩Lα(A))
and Lλ(X,A) =

⋃
α<λ Lα(X,A) for λ a limit.

Suppose that M and N are models of a fragment of set theory. Then j : M → N is an
elementary embedding if for all φ[x1, . . . , xn] and a1, . . . , an ∈M we have that

M |= φ(a1, . . . , an)⇒ N |= φ(j(a1), . . . , j(an)).

We use the convention that all elementary embeddings are nontrivial, so j 6= id. So crit (j)
is the least ordinal α such that j(α) > α.

Suppose that 〈ai| i < ω〉 is a sequence of sets. Then by a = limi→ω ai we mean that

a = {b| ∃n∀i ≥ n(b ∈ ai)}.

So for instance, if each ai is an ordinal and the sequence converges to an ordinal β, then
limi→ω ai = β.

When we say that j : L(Vλ+1)→ L(Vλ+1) is an elementary embedding we will always be
assuming that crit (j) < λ unless we specifically say otherwise. The same thing holds for
embeddings Vλ+1 → Vλ+1, Lα(Vλ+1)→ Lα(Vλ+1) and so on.

When referring to a vector ~j, we will almost always be assuming that it is of the form

~j = 〈ji| i < ω〉 .

We will many times use this shorthand without explicitly specifying the indices.
Many times we will say, let an = (j0 ◦ · · · ◦ jn−1)(a) for n < ω. By this we mean that

a0 = a, a1 = j0(a), . . . .
When referring to elementary embeddings j, k : Vλ+1 → Vλ+1 we will many times apply

j(k), although this strictly does not make sense. By this we mean that we apply j(k � Vλ)
and then look at the natural extension to an embedding on Vλ+1.

Also note that when referring to an elementary embedding j, it is many times standard
in the literature to refer to the iterates of j as jn. We will globally defy this convention, as
we are most concerned with sequences of embeddings which we label as jn. When we wish
to refer to the iterate of j, we will use the notation j(n).
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Chapter 2

Inverse Limits

2.1 Basic properties

In this section we introduce the theory of inverse limits. These structures are most
readily used for reflecting large cardinal hypotheses of the form: there exists an elementary
embedding Lα(Vλ+1)→ Lα(Vλ+1). The use of inverse limits in reflecting such large cardinals
is originally due to Laver (see Laver [Lav97], [Lav01]).

Suppose there exists an elementary embedding j : Vλ → Vλ. Then if j extends to an
elementary embedding j∗ : Vλ+1 → Vλ+1 we have j∗(A) =

⋃
i j(A ∩ Vλi) for 〈λi| i < ω〉

any cofinal sequence in λ, as λ is a continuity point. Hence any elementary embedding
Vλ+1 → Vλ+1 can be coded as an element of Vλ+1.

Suppose that 〈ji| i < ω〉 is a sequence of elementary embeddings such that the following
hold:

1. For all i, ji : Vλ+1 → Vλ+1 is elementary.

2. There exists λ̄ < λ such that crit j0 < crit j1 < · · · < λ̄ and limi<ω crit ji = λ̄.

Then we can form the inverse limit

J = j0 ◦ j1 ◦ · · · : Vλ̄ → Vλ

by setting
J(a) = lim

i→ω
(j0 ◦ · · · ◦ ji)(a)

for any a ∈ Vλ̄.

Claim 2.1.1 (Laver). J : Vλ̄ → Vλ is elementary.

Proof. It is enough to see that supα<λ̄ J(α) = λ. To see this let Ji = ji ◦ ji+1 ◦ · · · . Set
αi = supα<λ̄ Ji(α). Then we have

α0 ≥ α1 ≥ · · ·
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as ji(αi+1) = αi for all i < ω. Let n be large enough so that for all i ≥ n, αn = αi. Then
we have that jn(αn) = αn. But since λ ≥ αn > crit jn, we must have that αn = λ. But then
α0 = λ since α0 = (j0 ◦ · · · ◦ jn−1)(αn).

So since J : Vλ̄ → Vλ is elementary, it can be extended to a Σ0-embedding

J∗ : Vλ̄+1 → Vλ+1

by J(A) =
⋃
i J(A∩Vλ̄i) for

〈
λ̄i| i < ω

〉
any cofinal sequence in λ̄. Furthermore by a theorem

of Laver [Lav97], if for all i, ji extends to an elementary embedding Vλ+1 → Vλ+1, then J∗

is elementary. We defer the proof of this theorem to Section 2.2. In fact we will always
assume that J∗ : Vλ̄+1 → Vλ+1 is elementary and define the inverse limit of 〈ji| i < ω〉 to
be J = J∗ : Vλ̄+1 → Vλ+1. But we will sometimes treat J as if it were an element of Vλ+1.
We write λ̄J for the unique λ̄ such that J : Vλ̄+1 → Vλ+1. We will often drop reference
to the sequence 〈ji| i < ω〉 in our notation when talking about the inverse limit J , though
the sequence is not unique for a given inverse limit J (for instance, by simply grouping the
embeddings as, say, J = (j0 ◦ j1) ◦ j2 ◦ · · · ); it will always be clear from context which
embeddings we mean when referring to 〈ji| i < ω〉.

Suppose J = j0 ◦ j1 ◦ · · · is an inverse limit. Then for i < ω we write Ji := ji ◦ ji+1 ◦ · · · ,
the inverse limit obtained by ‘chopping off’ the first i embeddings. For i < ω we write

J (i) := (j0 ◦ · · · ◦ ji)(J)

and for n < ω,
j(i)
n := (j0 ◦ · · · ◦ ji)(jn).

Then we can rewrite J in the following useful ways:

J = j0 ◦ j1 ◦ · · · = · · · (j0 ◦ j1)(j2) ◦ j0(j1) ◦ j0
= · · · j(1)

2 ◦ j
(0)
1 ◦ j0

and

J = j0 ◦ J1 = j0(J1) ◦ j0 = J
(0)
1 ◦ j0

= (j0 ◦ · · · ◦ ji−1)(Ji) ◦ j0 ◦ · · · ◦ ji−1 = J
(i−1)
i ◦ j0 ◦ · · · ◦ ji−1

for any i > 0. Hence we can view an inverse limit J as a direct limit (see Figure 2.1), though
both perspectives are useful in different situations. We let E be the set of inverse limits. So

E = {(J, 〈ji| i < ω〉)| J = j0 ◦ j1 ◦ · · · : Vλ̄J+1 → Vλ+1}.

Lemma 2.1.2. If (K,~k) ∈ E and A ∈ Vλ+1 are such that A ∈ rngK, then for all i,
A ∈ rng (k0 ◦ · · · ◦ ki).
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Figure 2.1: Direct limit decomposition of an inverse limit.
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Proof. It is enough to see this for any A ∈ Vλ. But then there is an Ā and an n such that

K(Ā) = (k0 ◦ · · · ◦ kn)(Ā) = A,

and for all i > n, ki(Ā) = Ā. Hence for all i we have that A ∈ rng (k0 ◦ · · · ◦ ki).

Suppose j, k : Vλ+1 → Vλ+1. Then we say k is a square root of j if k(k) = j (thinking of
k and j as elements of Vλ+1, so actually k(k � Vλ) = j � Vλ). We use the same terminology
for j, k : Lα(Vλ+1)→ Lα(Vλ+1) where α is good. We have the following ‘square root lemma’
which says that strength of the embedding gives a large number of square roots. This is the
key lemma which takes advantage of the strength of our embeddings, and we will use many
variations of it below.

Lemma 2.1.3 (Martin). Suppose α is good. If j : Lα+1(Vλ+1)→ Lα+1(Vλ+1) is elementary
then for all A,B ∈ Vλ+1 and β < crit (j) there exists a k : Lα(Vλ+1) → Lα(Vλ+1) such that
k is a square root of j, k(A) = j(A), B ∈ rng k and β < crit (k) < crit (j).

Proof. Given α, j, A, B, and β as in the hypothesis, we want to show that Lα+1(Vλ+1) |=
∃k : Vλ → Vλ which induces k̂ : Lα(Vλ+1)→ Lα(Vλ+1) such that

β < crit k < crit j, j(A) = k(A) and B ∈ rng (k).

Note that since α is good, an elementary embedding k : Lα(Vλ+1) → Lα(Vλ+1) is induced
by k � Vλ. Applying j, this is equivalent to Lα+1(Vλ+1) |= ∃k : Vλ → Vλ which induces k̂ :
Lα(Vλ+1) → Lα(Vλ+1) such that j(β) < crit k < crit j(j), j(j)(j(A)) = k̂(j(A)) and j(B) ∈
rng (k̂). But j � Vλ satisfies this second statement. So we are done by elementarity of j.

Note that we can replace A and B with any sequence of length less than crit j by coding.
We will do so below without any comment.

Define

Eα = {(J,~j) ∈ E| ∀i < ω (ji extends to an elementary embedding Lα(Vλ+1)→ Lα(Vλ+1))}.

Lemma 2.1.4 (Laver). Suppose there exists an elementary embedding

j : Lα+1(Vλ+1)→ Lα+1(Vλ+1)

where α is good. Then Eα 6= ∅.

Proof. Inductively define ji as follows, repeatedly using Lemma 2.1.3. Let j0 be such that
crit j0 < crit j and j0 : Lα(Vλ+1)→ Lα(Vλ+1) is elementary. Having chosen

j0, . . . , ji : Lα(Vλ+1)→ Lα(Vλ+1)

such that
crit j0 < crit j1 < · · · < crit ji < crit j,
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let ji+1 be such that
crit ji < crit ji+1 < crit j

and ji+1 extends to ji+1 : Lα(Vλ+1)→ Lα(Vλ+1).
Then clearly we have that

crit j0 < crit j1 < · · · < crit j

and hence limi→ω crit ji = λ̄ < λ for some λ̄. Let J = j0 ◦ j1 ◦ · · · .

Remark 2.1.5. While the motivation for using inverse limits for reflection is fairly clear, we
will find below that inverse limits have a wide array of uses which go far beyond their initial
use as reflection embeddings. In fact, for some applications (for instance Theorem 4.2.3)
we do not even use inverse limits as embeddings, but rather as a sort of operator. This
might seem somewhat bizarre at first, but it is perhaps somewhat clarified by the following
alternative definition of a restricted class of inverse limits:

Suppose j : Vλ+1 → Vλ+1 is elementary and 〈ki| i < ω〉 is a sequence such that the
following hold for all i < ω.

1. ki : Vλ+1 → Vλ+1 is elementary.

2. ki is a square root of j.

3. ki � Vλ ∈ rng ki+1.

Then we have
crit k0 < crit k1 < · · · < crit j < λ,

and hence for K = k0 ◦ k1 ◦ · · · , (K, 〈ki| i < ω〉) is an inverse limit.
To see this, note for instance that since k0 � Vλ ∈ rng k1, that crit k0 ∈ rng k1. But if

crit k1 ≤ crit k0 then, since
k1(crit (k1)) = crit j > crit k0,

we must have crit k0 /∈ rng k1, a contradiction. Hence crit k0 < crit k1 < crit j. And we have
crit k0 < crit k1 < · · · < crit j < λ similarly by induction.

So an inverse limit is a natural outcome of repeated applications of the square root lemma.
In fact this restricted class of inverse limits has many useful properties which we will make
use of in Section 4. In light of this fact, we make the following definition:

Definition 2.1.6. Suppose (K,~k) ∈ E and j : Vλ+1 → Vλ+1 are such that the following hold:

1. For all i, ki(ki � Vλ) = j � Vλ.

2. For all i, k0 � Vλ, . . . , ki � Vλ ∈ rng ki+1.

Then we say that (K,~k) is an inverse limit root of j.



CHAPTER 2. INVERSE LIMITS 14

There is a corresponding square root lemma for inverse limits. Suppose

(J, 〈ji〉), (K, 〈ki〉) ∈ E .

Then we say that K is a limit root of J if there is n < ω such that λ̄J = λ̄K and

∀i < n (ki = ji) and ∀i ≥ n (ki(ki) = ji).

We say K is an (n-close) limit root of J if n witnesses that K is a limit root of J .

Lemma 2.1.7 (Laver [Lav97]). Suppose α is good. If (J,~j) ∈ Eα+1 then for all Ā ∈ Vλ̄+1

and B ∈ Vλ+1 there exists a (K,~k) ∈ Eα such that K is a limit root of J , K(Ā) = J(Ā) and
B ∈ rngK.

While Laver’s original statement did not include the notion of being a limit root, the
proof is identical.

Proof. We use Lemma 2.1.3 ω-many times to j0, j1, . . . in succession. Define k0, k1, . . . by
induction as follows. Let k0 : Lα(Vλ+1) → Lα(Vλ+1) be given by Lemma 2.1.3 such that
B ∈ rng k0 and for all i

j0((j1 ◦ · · · ◦ ji)(Ā)) = k0((j1 ◦ · · · ◦ ji)(Ā)).

After defining k0, . . . , kn let kn+1 : Lα(Vλ+1)→ Lα(Vλ+1) be given by Lemma 2.1.3 such that

(k0 ◦ · · · ◦ kn)−1(B) ∈ rng kn+1,

crit jn < crit kn+1 < crit jn+1 and for all i

jn((jn+1 ◦ · · · ◦ jn+i)(Ā)) = kn((jn+1 ◦ · · · ◦ jn+i)(Ā)).

A calculation shows that crit k0 < crit k1 < · · · < λ̄, limi→ω crit (ki) = λ̄, and for

K := k0 ◦ k1 ◦ · · ·

we have K(Ā) = J(Ā) and B ∈ rngK:
To see that K(Ā) = J(Ā), note that it is enough to see that for all β < λ̄, if Ā′ = Ā∩Vβ,

then K(Ā′) = J(Ā′). Let n be large enough so that crit (kn) > β. Then we have that

J(Ā′) = (j0 ◦ · · · ◦ jn−1)(Ā′)

= (j0 ◦ · · · ◦ jn−2)(kn−1(Ā′))

= (j0 ◦ · · · ◦ jn−3)((kn−2 ◦ kn−1)(Ā′)) = · · ·
= (k0 ◦ · · · ◦ kn−1)(Ā′) = K(Ā′)
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To see that B ∈ rngK, let κ̄i = crit ki and set κi = K(κ̄i). It is enough to see that for all
i < ω, if B′ = B ∩ Vκi , then B′ ∈ rngK. Let i < ω. Then we have that (k0 ◦ · · · ◦ ki)−1(B′)
is defined since

K(κ̄i) = (k0 ◦ · · · ◦ ki)(κ̄i).

But then we have that
K((k0 ◦ · · · ◦ ki)−1(B′)) = B′,

which is what we wanted.

A key difference between embeddings for square roots and being a limit root for inverse
limits is that if k(k) = j then crit k < crit j whereas if K is a limit root of J then critK ≤
crit J . So while there is no sequence k0, k1, . . . such that for all i < ω, ki+1(ki+1) = ki, we
have the following lemma for limit roots.

Lemma 2.1.8. Suppose that α is good and (J,~j) ∈ Eα+ω. Then there exists a sequence〈
(Ki, ~ki)| i < ω

〉
such that the following hold:

1. K0 = J .

2. For all i, (Ki, ~ki) ∈ Eα.

3. For all i, Ki+1 is a limit root of Ki.

Proof. Let (J,~j) ∈ Eα+ω. Set K0 = J , and choose (Km+1, ~km+1) by induction as follows.

Suppose that (K0, ~k0), . . . , (Km, ~km) have been chosen so that (Km, ~km) ∈ Eα and there
exists 〈nmi | i < ω〉 such that for all i < ω, nmi < ω, kmi extends to

k̂mi : Lα+nmi
(Vλ+1)→ Lα+nmi

(Vλ+1),

and limi→ω n
m
i =∞. Let i be large enough so that for all i′ ≥ i, nmi′ > 0. Then by the proof

of Lemma 2.1.7, there is Km+1 which is an i-close limit root of Km such that for all i′ ≥ i,
km+1
i′ extends to

k̂m+1
i′ : Lα+nm

i′ −1(Vλ+1)→ Lα+nm
i′ −1(Vλ+1).

We have that
lim
i→ω

(nmi − 1) =∞,

and hence we can continue the induction. The sequence we produce
〈

(Ki, ~ki)| i < ω
〉

clearly

satisfies the lemma.

Of course, if we considered the more restrictive notion of being a 0-close limit root, then
such sequences as in Lemma 2.1.8 would indeed be impossible. We will see though that the
added benefit afforded by Lemma 2.1.8 will be very useful. As a first example, we obtain
sets of inverse limits which are in a sense closed under the square root lemma.
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Definition 2.1.9. Suppose E ⊆ E . Then we say that E is saturated if for all (J,~j) ∈ E

there exists an i < ω such that for all A ∈ Vλ̄J+1, and B ∈ Vλ+1, there exists (K,~k) ∈ E
such that K is an i-close limit root of J , Ki(A) = Ji(A) and B ∈ rngKi. We set i(E, J) =
the least such i.

Note that if K is an i-close limit root of J and Ki(A) = Ji(A) then K(A) = J(A).
However, we cannot conclude that B ∈ rngK if B ∈ rngKi. For instance if i = 1 then we
always have that crit (J) = crit (K) /∈ rngK.

We will use the same terminology of being saturated for E such that there is α good such
that for all (J,~j) ∈ E and i < ω, ji : Lα(Vλ+1)→ Lα(Vλ+1) is elementary.

As a corollary to the proof of Lemma 2.1.8 we have:

Corollary 2.1.10. Suppose that α is good and (J,~j) ∈ Eα+ω. Then there exists a saturated
set E ⊆ Eα such that (J,~j) ∈ E.

Proof. Let E be the set of all (K,~k) ∈ Eα such that there exists a sequence 〈ni| i < ω〉 such
that limi→ω ni =∞ and for all i < ω, ni < ω and ki extends to

k̂i : Lα+ni(Vλ+1)→ Lα+ni(Vλ+1).

Since (J,~j) ∈ Eα+ω we must have that (J,~j) ∈ E. So the lemma follows by the proofs of
Lemmas 2.1.7 and 2.1.8.

Lemma 2.1.11. Suppose E ⊆ E is saturated. Let (J,~j) ∈ E, Ā ∈ Vλ̄J+1, and suppose

J(Ā) = A ∈ Vλ+1.

Set
E(Ā, A) = {(K,~k) ∈ E|K(Ā) = A}.

Then E(Ā, A) is saturated.

Proof. Suppose (K,~k) ∈ E(Ā, A). Then (K,~k) ∈ E, so there is i < ω such that for all

C ∈ Vλ̄J+1 and B ∈ Vλ+1 there exists (K ′, ~k′) ∈ E, an i-close limit root of K such that
Ki(C) = K ′i(C) and B ∈ rngK ′i. But then i is such that for all C ∈ Vλ̄J+1 and B ∈ Vλ+1

there exists K ′ ∈ E, an i-close limit root of K such that Ki(C) = K ′i(C), K ′i(Ā) = Ki(Ā) = A

and B ∈ rngK ′i. So K ′(Ā) = K(Ā) = A and hence (K ′, ~k′) ∈ E(Ā, A). Hence E(Ā, A) is
saturated.

Finally note that if k(k) = j and A ∈ rng k, then k(A) = j(A). To see this suppose
k(B) = A, and notice

k(A) = k(k(B)) = k(k)(k(B)) = j(k(B)) = j(A).

We can show a similar property for inverse limits:
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Lemma 2.1.12. Suppose that (K,~k), (J,~j) ∈ E and K is a limit root of J . Let λ̄ = λ̄J .
Suppose Ā ∈ Vλ̄ and A = J(Ā). Then if A ∈ rngK, we have

K(Ā) = A = J(Ā).

Proof. Let An for n < ω be defined by induction as

A0 = (j0)−1(A) and for n ≥ 0, An+1 = (jn+1)−1(An).

Then we have (case 1)

k0 is a squareroot of j0 and A ∈ rng k0 ∩ rng j0

⇒ A0 = j−1
0 (A) ∈ rng k0 ⇒ k0(A0) = j0(A0)⇒ A0 ∈ rngK1

and (case 2)
k0 = j0 ⇒ k0(A0) = j0(A0)⇒ A0 ∈ rngK1.

Similarly, for n ≥ 0, (case 1)

kn+1 is a squareroot of jn+1 and An ∈ rng kn+1 ∩ rng jn+1

⇒ An+1 = j−1
n+1(An) ∈ rng kn+1 ⇒ kn+1(An+1) = jn+1(An+1)⇒ An+1 ∈ rngKn+2

and (case 2)

kn+1 = jn+1 ⇒ kn+1(An+1) = jn+1(An+1)⇒ An+1 ∈ rngKn+2.

Hence we have that
K(Ā) = A = J(Ā)

as in the proof of Lemma 2.1.7

We note the following two lemmas for completeness, although we will not use them.
Lemma 2.1.14 provides a slight generalization of Lemma 2.1.3, and it is in fact implied by
that lemma in the case that J ∈ rngK. Lemmas 2.1.12-2.1.14 provide a somewhat complete
picture of the agreement between an inverse limit and its limit root. Note that Lemma 2.1.13
displays a strict limitation on the agreement of Lemma 2.1.14. And hence the agreement of
Lemma 2.1.12 is in some sense much stronger.

Lemma 2.1.13. Suppose (J,~j) ∈ E and A ∈ Vλ. Then there exists an i such that A ∈
rng J

(i−1)
i .

Proof. Let α < λ be such that A ∈ Vα. Then since
〈

crit J
(i−1)
i | i < ω

〉
is cofinal in λ, there

is an i such that α < crit J
(i−1)
i . Clearly then we have that A ∈ rng J

(i−1)
i .
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Lemma 2.1.14. Suppose that (K,~k), (J,~j) ∈ E, K is a limit root of J and for all i,

k0 � Vλ, . . . , ki � Vλ ∈ rng ki+1.

Let λ̄ = λ̄0 = λ̄J and
λi = (j0 ◦ · · · ◦ ji−1)(λ̄).

Suppose Ā ∈ Vλ0+1 and A = J(Ā). Then if i is such that Ā ∈ rngK
(i−1)
i , then

K
(i−1)
i ((j0 ◦ · · · ji−1)(Ā)) = A = J(Ā).

Proof. Without loss of generality we assume i = 1. Then we have that Ā ∈ rng k
(0)
1 . But

since k0 ∈ rng k1, we have j0 ∈ rng k
(0)
1 . Hence j0(Ā) ∈ rng k

(0)
1 . And so since k

(0)
1 is a square

root of j
(0)
1 , we have that

k
(0)
1 (j0(Ā)) = j

(0)
1 (j0(Ā)) = (j0 ◦ j1)(Ā).

And since
(k

(0)
1 )−1(Ā), k

(0)
1 ∈ rng k

(0)
2

we have Ā ∈ rng k
(0)
2 . Furthermore k0 ∈ rng k2 implies that j0 ∈ rng k

(0)
2 , so we have that

j0(Ā) ∈ rng k
(0)
2 . And hence that

k
(0)
1 (j0(Ā)) ∈ rng k

(0)
1 (k

(0)
2 ) = k

(1)
2 .

But this shows that

k
(1)
2 (k

(0)
1 (j0(Ā))) = j

(1)
2 (k

(0)
1 (j0(Ā))) = j

(1)
2 (j

(0)
1 (j0(Ā))) = (j0 ◦ j1 ◦ j2)(Ā)

since k
(1)
2 is a square root of j

(1)
2 .

Continuing this way we have that

(j0 ◦ · · · ◦ ji−1)(Ā) = (k
(0)
1 ◦ · · · ◦ k

(0)
i−1)(j0(Ā))

for all i > 0, which proves the lemma.

2.1.1 Sequences of inverse limits

We will show in this section that sequences of inverse limit roots have a powerful con-
tinuity property. We will use this property many times below. As usual, we often write

〈Ki| i < ω〉 instead of
〈

(Ki, ~ki)| i < ω
〉

for a sequence of inverse limits, with the underlying

embeddings being understood.
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Lemma 2.1.15. Suppose 〈Ki| i < ω〉 is such that for all i, Ki+1 is a limit root of Ki. Then
there exists an increasing sequence 〈in|n < ω〉 such that for all n < ω and s ≥ in, we have
that ksn = kinn .

Proof. Suppose the lemma does not hold and n is least such that there is no in such that for
all s > in, ksn = kinn . Then there is a sequence 〈si| i < ω〉 such that 〈ksin | i < ω〉 is such that
for all i > 0 there exists an m such that

(ksin )(m) = ksi−1
n

where we write j(m) for the m-th iterate of an embedding j. But there can be no such
sequence since for all i > 0, crit (ksin ) < crit (k

si−1
n ). So the lemma follows.

For 〈Ki| i < ω〉 such that there exists 〈in|n < ω〉, an increasing sequence satisfying that
for all n < ω and s ≥ in, ksn = kinn , we call

K = ki00 ◦ ki11 ◦ · · ·

the common part of 〈Ki| i < ω〉, and

〈in|n < ω〉

a common part index sequence for 〈Ki| i < ω〉.
The following is a key continuity property of inverse limit sequences.

Lemma 2.1.16. Suppose that for i < ω, (J i,~ji) ∈ E. And suppose the common part of
〈J i| i < ω〉 is K and λ̄J0 = λ̄K = λ̄. Then for all Ā ∈ Vλ̄+1 such that for all i, J0(Ā) = J i(Ā),
we have K(Ā) = J0(Ā).

Proof. Let J0(Ā) = A and let 〈in|n < ω〉 be a common part index sequence for 〈J i| i < ω〉.
It is enough to show that for cofinally many κ̄ < λ̄, K(Ā ∩ Vκ̄) = A ∩ Vκ, where κ = K(κ̄).
Let κ̄ < λ̄, and let n < ω be least such that crit (kn) > κ̄. Then we have that

K(Ā ∩ Vκ̄) = (k0 ◦ · · · ◦ kn−1)(Ā ∩ Vκ̄).

On the other hand, for some κ∗ < λ,

A ∩ Vκ∗ = J in(Ā ∩ Vκ̄) = (jin0 ◦ · · · ◦ jinn−1)(Ā ∩ Vκ̄) = (k0 ◦ · · · ◦ kn−1)(Ā ∩ Vκ̄).

And hence κ∗ = K(κ̄), and K(Ā ∩ Vκ̄) = A ∩ Vκ∗ , as desired.

It is possible that if K is the common part of 〈J i| i < ω〉 then λ̄K < λ̄J0 . To avoid this
possibility, we can fix a sequence

〈
λ̄n|n < ω

〉
cofinal in λ̄J0 . Then we add to our requirement

on J i+1 that for all m < ω if n is largest such that crit jim > λ̄n, then crit ji+1
m > λ̄n. In this

case we say that J i+1 is a limit root of J i, supported by
〈
λ̄n|n < ω

〉
.

Definition 2.1.17. Suppose E ⊆ E is a set of inverse limits. Then we let CL(E) be the set

CL(E) = {(K,~k) ∈ E| ∃ ~K (K is the common part of ~K, λ̄K = λ̄K0 , and

∀i < ω ((Ki, ~ki) ∈ E))}.
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2.2 Reflecting I1

In the next several sections we will use inverse limits to prove a number of reflection
results. These will culminate in Section 2.5 where we will show that I#

0 reflects I0. That
proof is in fact independent of the proofs in the preceding sections, and the reader can skip
to that proof if desired. However the following progression of proofs provides a more gentle
introduction to using inverse limits and therefore can help motivate the methods of the final
proof.

In this section, as an introduction to the use of inverse limits for reflecting large cardinals,
we prove the following theorem of Laver.

Theorem 2.2.1 (Laver). Suppose (J,~j) is an inverse limit such that for all i,

ji : Vλ+1 → Vλ+1

is elementary. Then J : Vλ̄J+1 → Vλ+1 is elementary.

The key tool is the following square root lemma.

Lemma 2.2.2 (Martin). Fix n > 0 odd. Suppose that j : Vλ+1 → Vλ+1 is Σn-elementary.
Let a, b ∈ Vλ+1 and α < crit (j). Then there is k : Vλ+1 → Vλ+1 which is Σn−2-elementary if
n > 1 and Σ0-elementary if n = 1 such that k(a) = j(a), b ∈ rng k and α < crit (k) < crit (j).

Proof. First suppose that n = 1. We first note that the elementary embeddings Vλ → Vλ
are the branches of a tree on Vλ. Furthermore, the elementary embeddings k : Vλ → Vλ such
that k(a) = j(a), b ∈ rng k, and α < crit (k) < crit (j) are also the branches of a tree T on
Vλ. So we just need to show that this tree is not well founded. But we must have that j
is an infinite branch of j(T ). And hence by the Σ1-elementarity of j, we have that T must
have an infinite branch.

Now suppose that n > 1. The main point is that the statement ‘k : Vλ+1 → Vλ+1 is
Σn−2’ is Πn−1 over Vλ+1. Hence the existence of such an embedding k such that k(a) = j(a),
b ∈ rng k and α < crit (k) < crit (j) is Σn. So applying j to this statement, we want an
embedding k such that

k(j(a)) = j(j)(j(a)) = j(j(a)),

j(b) ∈ rng k and
j(α) = α < crit (k) < crit j(j).

But j is such a witness, so pulling back the statement by j, we are done.

Lemma 2.2.3 (Martin). Suppose that j : Vλ+1 → Vλ+1 is Σn elementary for n odd. Then j
is Σn+1 elementary.
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Proof. We prove this by induction on n. First suppose n = 1. Suppose that Vλ+1 |= ∃xφ[x, a]
where φ is Π1. Then we want to show that Vλ+1 |= ∃xφ[x, j(a)]. But if x0 is a witness then
we must have that Vλ+1 |= φ[x0, a] implies Vλ+1 |= φ[j(x0), j(a)] as j is Σ1-elementary.

For the converse, suppose that

Vλ+1 |= ∃xφ[x, j(a)]

where φ is Π1. Let x0 be a witness to this. We have that by Lemma 2.2.2 there is a
k : Vλ+1 → Vλ+1 such that x0 ∈ rng k and j(a) = k(a) and k is Σ0-elementary. So since φ is
Π1,

Vλ+1 |= ¬φ[k−1(x0), a]⇒ Vλ+1 |= ¬φ[x0, j(a)].

Hence
Vλ+1 |= φ[x0, j(a)]⇒ Vλ+1 |= φ[k−1(x0), a],

and so Vλ+1 |= ∃xφ[x, a] as we wanted.
Assume n > 1. Suppose that Vλ+1 |= ∃xφ[x, a] where φ is Πn. Then we want to show

that Vλ+1 |= ∃xφ[x, j(a)]. But if x0 is a witness then we must have that Vλ+1 |= φ[x0, a]
implies Vλ+1 |= φ[j(x0), j(a)] as j is Σn-elementary.

For the converse, suppose that Vλ+1 |= ∃xφ[x, j(a)] where φ is Πn. Let x0 be a witness
to this. We have that there is a k : Vλ+1 → Vλ+1 such that x0 ∈ rng k and j(a) = k(a) and
k is Σn−2-elementary. So by induction k is Σn−1-elementary. So since φ is Πn,

Vλ+1 |= φ[x0, j(a)]⇒ Vλ+1 |= φ[k−1(x0), a].

So Vλ+1 |= ∃xφ[x, a] as we wanted.

We now show that inverse limits have a corresponding square root property.

Lemma 2.2.4 (Laver). Suppose (J,~j) is an inverse limit such that for all i, ji : Vλ+1 → Vλ+1

is Σn+2-elementary. Then for all a ∈ Vλ̄J+1 and b ∈ Vλ+1 there is a (K,~k) such that for all
i, ki : Vλ+1 → Vλ+1 is Σn-elementary, λ̄J = λ̄K, J(a) = K(a) and b ∈ rngK.

Proof. Choose a sequence ki, bi for i < ω such that the following hold:

1. k0(b0) = b.

2. For all i < ω, ki+1(bi+1) = bi.

3. For all i < n < ω, ki((ji+1 ◦ · · · ◦ jn−1)(a)) = ji((ji+1 ◦ · · · ◦ jn−1)(a)).

4. For all i < ω, crit (ji) < crit (ki+1) < crit (ji+1).

5. For all i < ω, ki : Vλ+1 → Vλ+1 is Σn-elementary.
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We claim that (K,~k) witnesses the lemma holds. We have by construction that (K,~k) is
an inverse limit and λ̄J = λ̄K . We want to show that K(a) = J(a) and b ∈ rngK. To see
that K(a) = J(a), it is enough to show that for all κ < λ̄, that K(a ∩ Vκ) = J(a ∩ Vκ). Let
i < ω be large enough so that crit (ji) > crit (ki) > κ. Let a∗ = a ∩ Vκ. Then we have that

J(a∗) = (j0 ◦ · · · ◦ ji−1)(a∗) = k0((j1 ◦ · · · ◦ ji−1)(a∗)) = k0(k1((j2 ◦ · · · ◦ ji−1)(a∗))) = · · ·
= (k0 ◦ · · · ◦ ki−1)(a∗) = K(a∗).

Now we want to see that b ∈ rngK. In fact, let b̄ = limi→ω bi. We show that K(b̄) = b.
It is enough to show that for all κ < λ̄ that K(b̄ ∩ Vκ) = b ∩ VK(κ). Let b∗ = b ∩ Vκ. Let
i < ω be large enough so that crit (ki) > κ. Then we have that

K(b∗) = (k0 ◦ · · · ◦ ki−1)(b∗) = (k0 ◦ · · · ◦ ki−1)(bi−1 ∩ Vκ) = b ∩ VK(κ)

which is what we wanted. Hence (K,~k) witnesses the lemma.

We finally prove the following by induction, from which Theorem 2.2.1 follows immedi-
ately.

Theorem 2.2.5 (Laver). Fix n < ω. Suppose (J,~j) is an inverse limit such that for all i,
ji : Vλ+1 → Vλ+1 is Σn-elementary. Then J : Vλ̄J+1 → Vλ+1 is Σn-elementary.

Proof. The case n = 0 is immediate from the fact that supα<λ̄ J(α) = λ. Assuming the
theorem for n− 1 we prove it for n.

So suppose (J,~j) is an inverse limit such that for all i, ji : Vλ+1 → Vλ+1 is Σn-elementary.
Then J : Vλ̄J+1 → Vλ+1 is Σn−1-elementary by induction and preserves Σn statements up-
wards. We show that it preserves Σn statements downwards.

Suppose that Vλ+1 |= ∃xφ(x, J(a)) where φ is Πn−1. Let x0 be a witness, and let (K,~k)
be such that K(a) = J(a), x0 ∈ rngK, λ̄J = λ̄K , and for all i, ki : Vλ+1 → Vλ+1 is Σn−2 (or
Σ0 if n = 1). Then K preserves Πn−1 statements downwards, and hence

Vλ+1 |= φ(x0, J(a))⇒ Vλ+1 |= φ(K−1(x0), a).

So we have that J is Σn as desired.

We can now use the proof of Theorem 2.2.1 to reflect the axiom I1.

Theorem 2.2.6 (Laver). Suppose there exists an elementary embedding j : L1(Vλ+1) →
L1(Vλ+1). Then there exists a λ̄ < λ and an elementary embedding k : Vλ̄+1 → Vλ̄+1.

Proof. By the proofs of Lemmas 2.1.4 and 2.1.7 there exists (J,~j) ∈ E such that J(j̄) =
j � Vλ. Furthermore by Theorem 2.2.1, J : Vλ̄+1 → Vλ+1 is elementary. By elementarity,
we have that j̄ : Vλ̄ → Vλ̄ is elementary and that j̄ extends to a Σ0-elementary embedding
j̄∗ : Vλ̄+1 → Vλ̄+1. We show that j̄∗ is fully elementary.
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To see this this suppose that φ is a Σn-formula and ā ∈ Vλ̄+1. We wish to show that
Vλ̄+1 |= φ[ā] ⇐⇒ Vλ̄+1 |= φ[j̄∗(ā)]. But we have that

Vλ+1 |= φ[J(ā)] ⇐⇒ Vλ+1 |= φ[j(J(ā))] ⇐⇒ Vλ+1 |= φ[J(j̄∗(ā))].

So by elementarity of J we have

Vλ̄+1 |= φ[ā] ⇐⇒ Vλ̄+1 |= φ[j̄∗(ā)].

And hence j̄∗ is elementary as desired.

2.3 Reflecting below the least admissible

Laver in fact extended Theorem 2.2.1 significantly beyond reflecting I1. For instance he
showed the following.

Theorem 2.3.1 (Laver). Suppose that (J,~j) ∈ Eλ++ω. Then J : Vλ̄+1 → Vλ+1 extends to an
elementary embedding

Ĵ : Lλ̄+(Vλ̄+1)→ Lλ+(Vλ+1).

The proof uses projective prewellorderings to code how the extension should map ordinals,
and so the result extends in fact to the sup of the projective prewellorderings of Vλ+1. We
do not present this proof, and instead we prove a similar result up to the least admissible,
a point which is strictly beyond the sup of the projective prewellorderings. Instead of using
prewellorderings to guide the extension on ordinals, we use the failure of admissibility and
the corresponding local surjections of Vλ+1 onto the levels of L(Vλ+1) as a guide.

The following is an obvious generalization of the technique of Martin used above.

Lemma 2.3.2. Suppose that M̄ and M are transitive sets, X̄ ⊆ M̄ and X ⊆ M . Suppose
〈Ei| i < ω〉 is such that

1. For i < ω, Ei ⊇ Ei+1.

2. For all i, for all j ∈ Ei, j : (M̄, X̄)→ (M,X) is a Σ0-elementary embedding.

3. For all i and n, j ∈ Ei+1, ā1, . . . , ān ∈ M̄ , b1, . . . , bn ∈ M , there exists k ∈ Ei such
that for all m, 1 ≤ m ≤ n,

j(ām) = k(ām) and bm ∈ rng (k).

Then for all i, if j ∈ Ei, j : (M̄, X̄) → (M,X) is Σi elementary. And hence for j ∈
⋂
iEi,

j is elementary.
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Proof. We prove the lemma by induction. The case i = 0 is by assumption. Assume it true
for i. We prove it for i + 1. Let j ∈ Ei+1. We want to show that j is Σi+1-elementary.
Suppose that M |= ∃xφ(x, j(~a), X) for ~a ∈ M̄ and φ a Πi-formula. Let x0 be a witness, and
let k ∈ Ei be such that j(~a) = k(~a) and x0 ∈ rng (k), say k(x̄0) = x0. Then we have

(M,X) |= φ(x0, j(~a), X)⇒ (M̄, X̄) |= φ(x̄0,~a, X̄),

using that by induction k is Σi-elementary. Hence (M̄, X̄) |= ∃xφ(x,~a, X̄).
Now for the opposite direction assume that (M̄, X̄) |= ∃xφ(x,~a, X̄). Then if x̄0 ∈ M̄ is

a witness, we have that since j is Σi,

(M̄, X̄) |= φ(x̄0,~a, X̄)⇒ (M,X) |= φ(j(x̄0), j(~a), X).

So (M,X) |= ∃xφ(x, j(~a), X).
Hence j is Σi+1 elementary, and by induction we are done.

The following is a slight generalization of the technique of Laver used above.

Lemma 2.3.3. Suppose that M̄ and M are transitive sets, X̄ ⊆ M̄ and X ⊆ M . Suppose
〈Ei| i < ω〉 is such that

1. For all i, for all (J, 〈ji| i < ω〉) ∈ Ei, J : (M̄, X̄) → (M,X) is a Σ0-elementary
embedding, and for all i, ji : (M,Xi+1)→ (M,Xi) is an elementary embedding, where
for i < ω, Xi ⊆ M and X0 = X. And for all i there exists Ji : (M̄, X̄) → (M,Xi)
such that

J = j0 ◦ · · · ◦ ji ◦ Ji+1.

2. For all i and n0, (J, 〈ji| i < ω〉) ∈ Ei+1, ā0, . . . , ān0 ∈ M̄ , b = 〈bn|n < ω〉 such that
bn ∈ M for n < ω, there exists (K, 〈ki| i < ω〉) ∈ Ei and i0 < ω such that for all m,
1 ≤ m ≤ n0,

Ji0(ām) = Ki0(ām) and ∀n < ω (bn ∈ rng (Ki0)).

Then for all i, if (J, 〈ji| i < ω〉) ∈ Ei, then J : (M̄, X̄) → (M,X) is Σi elementary. And
hence for (J, 〈ji| i < ω〉) ∈

⋂
iEi, J is elementary.

Proof. We prove the lemma by induction in a similar fashion as the proof of Lemma 2.3.2.
The case i = 0 is by assumption. Assume it true for i. We prove it for i+ 1. Let (J, 〈ji〉) ∈
Ei+1. We want to show that J is Σi+1-elementary. Suppose that M |= ∃xφ(x, J(~a), X) for
~a ∈ M̄ and φ a Πi formula. Then for all i, we have that

M |= ∃xφ(x, Ji(~a), Xi).

For i < ω, let xi be a witness to the formula with parameters Ji(~a) and Xi. Let (K, 〈ki〉) ∈ Ei
be such that for some i0 < ω, Ji0(~a) = Ki0(~a) and xi ∈ rng (Ki0) for all i < ω, say
Ki0(x̄i) = xi. Then we have

(M,X) |= φ(xi0 , Ji0(~a), Xi0)⇒ (M̄, X̄) |= φ(x̄i0 ,~a, X̄),
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using that by induction K is Σi. Hence (M̄, X̄) |= ∃xφ(x,~a, X̄).
The opposite direction is exactly same is in the proof of Lemma 2.3.2. Hence J is Σi+1

elementary, and by induction we are done.

We will mostly be using Jensen’s J-hierarchy to stratify L(Vλ+1). The above results hold
for the J-hierarchy with the same proofs, and we will use these analogous results without
comment. We will also use the following stronger notion of goodness.

Definition 2.3.4. Call an ordinal α strongly good if it is not the case that

Jα(Vλ+1) ≺Σ1(Vλ+1∪{Vλ+1}) Jα+1(Vλ+1).

For α strongly good, A ∈ Vλ+1 and φ a Σ1 formula, say that (A, φ) λ-tags α if α is least such
that

Jα+1(Vλ+1) |= φ[A, Vλ+1].

Much of the time it will be easier to work with structures of the form (Vλ+1, X) for
X ⊆ Vλ+1. Along these lines, we make the following definition.

Definition 2.3.5. Suppose that X ⊆ Vλ+1. Let E(X) be the set

E(X) := {(J,~j)| ∀i < ω (ji : (Vλ+1, X)→ (Vλ+1, X) is elementary),

∃λ̄ < λ, X̄ ∈ Vλ̄+1 (crit (j0) < crit (j1) < · · · < λ̄,

lim
i→ω

crit (ji) = λ̄, J = j0 ◦ j1 ◦ · · · , and

J : (Vλ̄+1, X̄)→ (Vλ+1, X) is Σ0-elementary)}.

We use the terminology limit root, saturated, etc. with the obvious definitions for E(X).

Lemma 2.3.6. Suppose X ⊆ Vλ+1 and E ⊆ E(X) is saturated. Suppose that X̄ ⊆ Vλ̄+1, X ⊆
Vλ+1, A ∈ Vλ+1 and Ā ∈ Vλ̄+1 are such that for all (J,~j) ∈ E with J(Ā) = A we have

J : (Vλ̄+1, X̄)→ (Vλ+1, X)

is Σ0-elementary. Furthermore assume that for all (J,~j) ∈ E and i < ω, ji extends to
an elementary embedding J1(Vλ+1, X) → (Vλ+1, X). Then there is a unique extension Ĵ :
J1(Vλ̄+1, X̄) → J1(Vλ+1, X) which is elementary. And hence if κ < Θλ, α < κ, ᾱ and φ are
such that (A, φ) λ-tags α, and such that X and X̄ code Jα(Vλ+1) and Jᾱ(Vλ̄+1) respectively,
then (Ā, φ) λ̄-tags ᾱ.

Proof. This follows from Lemma 2.3.3 with Ei = E for all i. The Lemma immediately gives
us elementarity of the maps J : (Vλ̄+1, X̄)→ (Vλ+1, X) for J ∈ E. Hence we have that J ∈ E
extends uniquely to Ĵ : J1(Vλ̄+1, X̄)→ J1(Vλ+1, X) is Σ0. We similarly get by induction that
J ∈ E extends to Jn(Vλ̄+1, X̄) → Jn(Vλ+1, X) for any n < ω. So the rest of the lemma
follows.
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Remark 2.3.7. At first glance it might seem as though Lemma 2.3.6 gives a straightforward
generalization of Theorem 2.2.1 to any X ⊆ Vλ+1, showing that for any (J,~j) ∈ E(X), if
there exists a saturated E ⊆ E(X) with (J,~j) ∈ E, then there exists an X̄ ⊆ Vλ̄J+1 such
that

J : (Vλ̄+1, X̄)→ (Vλ+1, X)

is elementary. This is not the case, however, with the key point being that the hypothesis of
Lemma 2.3.6 requires a fixed X̄ for all elements of E. In fact almost all of the reflection proofs
below boil down to fixing this X̄. Furthermore, we will see that such a general X-reflection
result does not hold (see Corollary 2.5.11).

Recall an ordinal α is admissible relative to Vλ+1 if α is a limit and Jα(Vλ+1) satisfies
Σ0-collection. We use the following standard property of admissibility:

Lemma 2.3.8. Suppose κ is the least admissible relative to Vλ+1 and that α < κ. Then there
exists a surjection σ : a→ Jα(Vλ+1) such that a ⊆ Vλ+1, a ∈ Jα(Vλ+1), and σ is Σ1-definable
over Jα(Vλ+1) from some parameter B ∈ Vλ+1.

Sketch. We prove this by induction on α. Assume that for all β < α there is a surjection
σ : b → Jβ(Vλ+1) such that b ∈ Jβ(Vλ+1), b ⊆ Vλ+1, and σ is Σ1-definable over Jβ(Vλ+1)
from some parameter B ∈ Vλ+1. Since α is not admissible there is a cofinal map σ : a → α
Σ0-definable over Jα(Vλ+1) where a ∈ Jα(Vλ+1). We can assume that a ⊆ Vλ+1 by induction.
But then we can define a surjection onto Jα(Vλ+1) from⋃

x∈a,B∈Vλ+1

{x} × {B} × aσ(x),B → Jα(Vλ+1)

by (x,B,C) maps to τB,σ(x)(C) where τB,β is the least Σ1-definable from B surjection of an
element aβ,B ∈ Jβ(Vλ+1) onto Jβ(Vλ+1) such that aβ,B ⊆ Vλ+1.

For A ∈ Vλ+1 and φ a Σ1 formula, we say that (A, φ) λ-tags α if α is least such that
Jα+1(Vλ+1) |= φ(A).

Theorem 2.3.9. Let κ be the least admissible relative to Vλ+1. Suppose that there exists an
elementary embedding

j : Jκ+1(Vλ+1)→ Jκ+1(Vλ+1).

Then there exists λ̄ < λ such that for all α < κ there exists ᾱ < λ and an elementary
embedding

Jᾱ(Vλ̄+1)→ Jα(Vλ+1).

Proof. First using the fact that there is an elementary embedding

j : Jκ+1(Vλ+1)→ Jκ+1(Vλ+1),
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there must be a sequence of elementary embeddings 〈ji : i < ω〉 such that for all i,

ji : Jκ(Vλ+1)→ Jκ(Vλ+1),

and such that
crit (j0) < crit (j1) < · · · < crit (j) < λ.

Hence letting λ̄ = supi<ω crit (ji), we have that λ̄ < λ. We fix this λ̄. Let

Ee = {(K, 〈ki| i < ω〉)| ∀i ∃αi (αi is good and ki : Jαi(Vλ+1)→ Jαi(Vλ+1)),

crit (k0) < crit (k1) < · · · ↑ λ̄, and K = k0 ◦ k1 ◦ · · · }.

And let for β an ordinal,

Ee≥β = {(K, 〈ki| i < ω〉) ∈ Ee| ∀i ∃γi ≥ β (γi is good and ki : Jγi(Vλ+1)→ Jγi(Vλ+1))},

and

Eeβ = {(K, 〈ki| i < ω〉) ∈ Ee| ∀i (ji(β) = β or ki : Jβ(Vλ+1)→ Jβ(Vλ+1))}.

We define by induction for each (J, 〈ji| i < ω〉) ∈ Ee, a function πJ on ordinals (we omit the
〈ji| i < ω〉 from the notation, though it does depend on 〈ji〉).

Let Φ(α) be the statement that for all α′ < α we have:

For all (J, 〈ji| i < ω〉) ∈ Ee≥ω·α′+ω+1 if (A, φ) λ-tags α′ and J(Ā) = A for some
Ā ∈ Vλ̄+1, then there exists ᾱ such that (Ā, φ) λ̄-tags ᾱ, πJ(ᾱ) = α′, and πJ � ᾱ
extends to

Ĵ : Jᾱ(Vλ̄+1)→ Jα′(Vλ+1)

which is elementary.

Now suppose that Φ(α) holds and α < κ is a limit. Then we extend the definition of π
and prove Φ(α + 1). Suppose that (J, 〈ji〉) ∈ Ee≥ω·α+ω+1, (A, φ) λ-tags α and J(Ā) = A for
some Ā ∈ Vλ̄+1. There are two cases: either for all i, ji(α) = α, or not:

First assume that this is not the case, so there exists an i such that ji(α) > α. Then we
have for

Ai := (j0 ◦ · · · ◦ ji)−1(A), αi := (j0 ◦ · · · ◦ ji)−1(α)

that for all i, (Ai, φ) λ-tags αi (note that α ∈ rng (j0 ◦ · · · ◦ ji) since it is definable from
Ai in Jβ(Vλ+1) for any β > α). But then by assumption there is some i such that αi < α.
So by our induction hypothesis applied to Ji+1 we have that πJi+1

(ᾱ) = αi for some ᾱ such
that (Ā, φ) λ̄-tags ᾱ. And so setting πJ(ᾱ) = (j0 ◦ · · · ◦ ji ◦ πJi+1

)(ᾱ), we are done by the
elementarity of j0, . . . , ji.
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Now assume that for all i, ji(α) = α. Then (J, 〈ji| i < ω〉) ∈ Eeω·α+ω+1. Recall that (A, φ)
λ-tags α. Let p ∈ Jα+1(Vλ+1) be a witness to φ with parameter A. Let s ∈ Jα(Vλ+1) be such
that p is definable over Jα(Vλ+1) from s.

Since α < κ there is a surjection σ : a → Jα(Vλ+1) such that a ⊆ Vλ+1, a ∈ Jα(Vλ+1)
and σ is Σ1(Jα(Vλ+1)) from some parameter b ∈ Vλ+1. Let α′ < α be such that a, b, and
s are definable over Jα′(Vλ+1) from formulas ψ1, ψ2, ψ3 and parameters B1, B2, B3 ∈ Vλ+1,
respectively. Let (A′, φ′) λ-tag α′. By Lemma 2.1.7 there is K ∈ Eeω·α+ω such that

K(Ā) = J(Ā), K(B̄1) = B1, K(B̄2) = B2, K(B̄3) = B3, K(Ā′) = A′,

for some B̄1, B̄2, B̄3, Ā
′ ∈ Vλ̄+1. Let ᾱ′ be the ordinal which (by induction) is λ̄-tagged by

(Ā′, φ′). Let ā, b̄, and s̄ be defined the same as a, b, and s but with parameters B̄1, B̄2, B̄3

and over Jᾱ′(Vλ̄+1). Let σ̄ have the same definition (over L(Vλ̄+1)) as σ (over L(Vλ+1)) but
with parameter b̄. Then (we will prove) there is an ᾱ such that σ̄ is a surjection of ā onto
Jᾱ(Vλ̄+1). Define πJ(ᾱ) = α.

Let C̄ ∈ Vλ̄+1 code (Ā, B̄1, B̄2, B̄3, Ā
′).

Claim 2.3.10. There is some ᾱ such that σ̄ is a surjection of ā onto Jᾱ(Vλ̄+1).

Proof. Now let ᾱ be least such that σ̄′′ā ⊆ Jᾱ(Vλ̄+1). We claim that σ̄ is a surjection onto
Jᾱ(Vλ̄+1). Suppose that s̄ ∈ Jᾱ(Vλ̄+1). We want to show that s̄ ∈ rng σ̄. Let δ̄ < ᾱ be
large enough so that s̄ ∈ Jδ̄(Vλ̄+1), and let t̄ ∈ Jδ̄(Vλ̄+1) be such that for some c̄ ∈ Vλ̄+1,
σ̄(c̄) = t̄ and assume δ̄ is least such that this is true. Set t = σ(K(c̄)), and let β < α be big
enough so that (σ)Jβ(Vλ+1)(K(c̄)) = t. Suppose (B′, ψ′) λ-tags β. By Lemma 2.1.7 there is a
K ′ ∈ Eeω·α+1 such that

K ′(C̄) = K(C̄), K ′(c̄) = K(c̄), K̂ ′(t̄′, B̄′) = (t, B′)

for some t̄′ and B̄′, where by induction

K̂ ′ : Jβ̄(Vλ̄+1)→ Jβ(Vλ+1)

is elementary (to get t in the range of K̂ ′, we use Lemma 2.1.7 to get a parameter in Vλ+1

from which s is definable over Jβ(Vλ+1) into the range, and then define s̄′ analogously over

Jβ̄(Vλ̄+1) and use the elementarity of K̂ ′ to show that K̂ ′(s̄′) = s. We will omit this type of
argument in the future without much comment). And by elementarity we must have that
t̄′ = t̄, since (σ)Jβ(Vλ+1)(K(c̄)) = t implies

K̂ ′(t̄′) = t = (σ(K ′(c̄)))Jβ(Vλ+1) = K̂ ′((σ̄(c̄))Jβ̄(Vλ̄+1)) = K̂ ′(t̄),

the last equality following from the fact that since σ̄(c̄) is defined in Jβ̄(Vλ̄+1) (by elemen-
tarity), it must be t̄, since σ̄ is Σ1-definable. But then by elementarity we have that
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δ̄ ∈ dom(K̂ ′), and hence that s̄ ∈ dom(K̂ ′). Now let β1 < α be such that β1 ≥ β and
K̂ ′(s̄) ∈ rng (σ)Jβ1

(Vλ+1). Then as above we can get K ′′ ∈ Eeω·α such that

K̂ ′′ : Jβ̄1
(Vλ̄+1)→ Jβ1(Vλ+1)

is elementary,
K̂ ′′(s̄) = K̂ ′(s̄) and K ′′(C̄, c̄) = K(C̄, c̄).

But since K̂ ′(s̄) ∈ rng (σ)Jβ1
(Vλ+1) we have that s̄ ∈ rng (σ̄)Jβ̄1

(Vλ̄+1), which is what we wanted.
Now, for any c̄ ∈ ā, we have by a very similar argument that there is a β̄ such that c̄ ∈

(dom(σ̄))Jβ̄(Vλ̄+1). Namely, let c = K(c̄), and suppose β < α is such that c ∈ dom(σ)Jβ(Vλ+1).
Suppose (B′, ψ′) λ-tags β. By Lemma 2.1.7 there is a K ′ ∈ Ee≥ω·α such that

K ′(C̄) = K(C̄), K ′(c̄) = K(c̄), K ′(B̄′) = B′

for some B̄′ ∈ Vλ̄+1, and by induction

K̂ ′ : Jβ̄(Vλ̄+1)→ Jβ(Vλ+1)

is elementary for some β̄. So by elementarity since c ∈ (dom(σ))Jβ(Vλ+1) we have c̄ ∈
(dom(σ̄))Jβ̄(Vλ̄+1).

Hence, combining what we have shown, we have that σ̄ is total function with domain ā
which is a surjection onto Jᾱ(Vλ̄+1).

We let ᾱ be as in the claim.

Claim 2.3.11. For all K ′ ∈ Eeω·α+1 such that

K ′(C̄) = K(C̄)

we have that for all β̄,
β̄ < ᾱ ⇐⇒ πK′(β̄) < α.

Proof. Both directions of this claim are proved in a similar manner to the previous claim.
Suppose K ′ ∈ Eeω·α+1 is such that

K ′(C̄) = K(C̄).

We prove the left to right direction first. Suppose β̄ < ᾱ. Let (B̄, ϕ) λ̄-tag β̄. Then
there exists c̄ ∈ ā such that σ̄(c̄) = β̄. Let β = σ(K ′(c̄)), and suppose γ < α is such that
β ∈ Jγ(Vλ+1) and (σ)Jγ(Vλ+1)(K ′(c̄)) = β. Then for K ′′ ∈ Eeω·α such that

K̂ ′′(C̄, c̄, B̄) = K̂ ′(C̄, c̄, B̄), and K̂ ′′(γ̄) = γ

for some γ̄, where by induction

K̂ ′′ : Jγ̄(Vλ̄+1)→ Jγ(Vλ+1)
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is elementary. And we have

β = (σ(K ′(c̄)))Jγ(Vλ+1) = K̂ ′′((σ̄(c̄))Jγ̄(Vλ̄+1)) = K̂ ′′(β̄).

Here we use the fact that K ′(C̄) = K(C̄). So πK′′(β̄) < α. It is enough to show that
πK′(β̄) = πK′′(β̄). But by elementarity we must have that (K ′′(B̄), ϕ) λ-tags β. And hence
by induction, since K ′′(B̄) = K ′(B̄), we have πK′(β̄) = πK′′(β̄) = β.

Now we prove the right to left direction. Suppose that β := πK′(β̄) < α. Then by
induction K̂ ′ : Jβ̄(Vλ̄+1) → Jβ(Vλ+1) is elementary. Let (B̄, φ) λ̄-tag β̄, let c ∈ a and γ < α
be such that (σ)Jγ(Vλ+1)(c) = β. Then there is a K ′′ ∈ Eeω·α such that

K ′′(C̄, B̄) = K ′(C̄, B̄), K ′′(c̄) = c, and K̂ ′′(γ̄) = γ,

for some c̄ and γ̄. Then by elementarity we have that

(σ̄)Jγ̄(Vλ̄+1)(c̄) = β̄,

which shows that β̄ < ᾱ.

So we have that for any K ′ ∈ Eeω·α+1 such that K ′(C̄) = K(C̄), if X̄ ⊂ Vλ̄+1 and X ⊂ Vλ+1

are canonical codings of Jᾱ(Vλ̄+1) and Jα(Vλ+1), respectively, then

K ′ : (Vλ̄+1, X̄)→ (Vλ+1, X)

is a Σ0-elementary embedding. But then by Lemma 2.3.2 if K ′ ∈ Eeω·α+n+1 then

K ′ : (Vλ̄+1, X̄)→ (Vλ+1, X)

is Σn-elementary. And so since K ∈ Eeω·α+ω,

K : (Vλ̄+1, X̄)→ (Vλ+1, X)

is elementary. Hence K extends to a Σ0 embedding

K̂ : Jᾱ+1(Vλ̄+1)→ Jα+1(Vλ+1).

Recall that p ∈ Jα+1(Vλ+1) was a witness to φ with parameter A. If p̄ is defined the same as
p but with parameter s̄, then we must have K̂(p̄) = p. And hence by Σ0 elementarity, since
p witnesses φ over Jα+1(Vλ+1) with parameter A, we have that p̄ witnesses φ over Jᾱ+1(Vλ̄+1)
with parameter Ā. Hence by definition (Ā, φ) λ̄-tags ᾱ. So ᾱ does not depend of the choice
of K above.

Now we want to show that J satisfies that for all β̄,

β̄ < ᾱ ⇐⇒ πJ(β̄) < α.
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But for any β̄ < ᾱ, if (B̄4, ψ4) λ̄-tags β̄, then we could have required above that K(B̄4) =
J(B̄4). But the above claim showed that πK(β̄) < α, and hence by elementarity, that
(K(B̄4), ψ4) = (J(B̄4), ψ4) λ-tags πK(β̄). But then by induction we have that πJ(β̄) =
πK(β̄) < α. So we have proved the left to right direction. The right to left direction follows
immediately by induction.

The argument we just gave actually proves the following claim:

Claim 2.3.12. For all K ′ ∈ Eeω·α+2 such that K ′(Ā) = A we have that for all β̄,

β̄ < ᾱ ⇐⇒ πK′(β̄) < α.

Hence as above by Lemma 2.3.2 if K ′ ∈ Eeω·α+n+2 and K ′(Ā) = A then

K ′ : (Vλ̄+1, X̄)→ (Vλ+1, X)

is Σn-elementary. And so since J ∈ Eeω·α+ω,

J : (Vλ̄+1, X̄)→ (Vλ+1, X)

is elementary.
Hence we have proved Φ(α+ 1) for the case that α is a limit. For the case that α = β+ 1

is a successor, we set πJ(β̄ + 1) = πJ(β̄) + 1 where πJ(β̄) = β. It is straightforward to prove
Φ(α + 1) using Lemma 2.3.2.

So by induction we have Φ(α) holds for all α < κ. So since for all A ∈ Vλ+1 there exists
(J, 〈ji| i < ω〉) ∈ Eeκ such that A ∈ rng J (by varying the λ̄ we fixed, if needed), the theorem
follows.

As a corollary of the previous proof we have the following:

Corollary 2.3.13. Let κ be the least admissible. Then for all α < κ, if J ∈ Ee≥ω·α+ω+1 and
J(Ā) = A where A ∈ Vλ+1, Ā ∈ Vλ̄+1, and φ are such that (A, φ) λ-tags α, then J extends to

Ĵ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1)

where ᾱ is λ̄-tagged by (Ā, φ).

2.4 Reflecting below the first Σ1-gap

We now extend our reflection results up to the first Σ1-gap. The proof again uses simply
definable surjections to guide the extensions, but the verification that our extensions are
correct is more difficult. Here we use saturated sets to accomplish this step. While our
definition above of saturated sets are subsets of E , we use the obvious extension of this
definition to Eeκ for some κ good.
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Theorem 2.4.1. Let κ be least such that Jκ(Vλ+1) ≺Σ1(Vλ+1∪{Vλ+1}) Jκ+1(Vλ+1). Suppose
there exists an elementary embedding j : Jκ+ω+1(Vλ+1)→ Jκ+ω+1(Vλ+1). Then there is λ̄ < λ
such that for all α < κ, there exists ᾱ and an elementary embedding

Ĵ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1).

Proof. We prove this by induction on α. Specifically, for Fκ ⊆ Eeκ a fixed saturated set, we
will inductively define for every J ∈ Fκ a function πJ on ordinals. Our induction hypothesis
for α will be that for all α′ < α if (A, φ) λ-tags α′ and J ∈ Fκ is such that J(Ā) = A, then
there exists ᾱ such that πJ(ᾱ) = α′, and (Ā, φ) λ̄-tags ᾱ. Furthermore,

1. πJ � ᾱ extends to an elementary embedding

Ĵ : Jᾱ(Vλ̄+1)→ Jα′(Vλ+1).

2. For all i,
πJ � ᾱ + 1 = j0 ◦ · · · ◦ ji ◦ πJi+1

� ᾱ + 1.

Let τ be Σ1 definable and such that for all α < κ, (τ)Jα(Vλ+1) is a partial function
Vλ+1 → Jα(Vλ+1) which is a surjection (see Steel [Ste83]). Let τ̄ be defined similarly for λ̄.
By τ and τ̄ we mean (τ)L(Vλ+1) and τ̄L(Vλ̄+1).

Now assuming the induction hypothesis at α, we prove it for α + 1. Hence, we need
to find for every J ∈ Fκ such that J(Ā) = A for some Ā and (A, φ) which λ-tags α, an
appropriate ᾱ. We can again reduce to the case that for all i, ji(α) = α just as in the proof
of Theorem 2.3.9. Let ᾱ be least such that either:

1. There exists ā ∈ Vλ̄+1 such that τ̄(ā) = ᾱ, but either

J(ā) /∈ dom(τ) or τ(J(ā)) /∈ Jα(Vλ+1),

or

2. ᾱ /∈ rng τ̄ .

Such an ᾱ clearly exists. Set πJ(ᾱ) = α. We need to see that this is an appropriate definition
in the sense that:

1. πJ(ᾱ) is not already defined.

2. For ᾱ′ < ᾱ, πJ(ᾱ′) is defined and is less than α.

To see 2, suppose that ᾱ′ < ᾱ, and suppose (Ā′, φ′) λ̄-tags ᾱ′. Then by our definition of ᾱ, it
must be the case that there exists ā′ ∈ Vλ̄+1 such that τ̄(ā′) = ᾱ′, and τ(J(ā′)) ∈ Jα(Vλ+1).
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Suppose that β < α is such that τ(J(ā′)) ∈ Jβ(Vλ+1). Let (B,ψ) λ-tag β, and consider
K ∈ Fκ such that for some i0 < ω,〈

Ki0(Ā), Ki0(Ā′), Ki0(ā), Ki0(ā′)
〉

=
〈
Ji0(Ā), Ji0(Ā′), Ji0(ā), Ji0(ā′)

〉
and Ki0(B̄) = B

for some B̄ ∈ Vλ̄+1. By induction there exists β̄ such that

K̂i0 : Jβ̄(Vλ̄+1)→ Jβ(Vλ+1)

is elementary. And since Ji0(ā′) = Ki0(ā′) and (τ)Jβ(Vλ+1)(Ki0(ā′)) = τ(Ji0(ā′)), we have that
τ(Ji0(ā′)) ∈ rng K̂i0 . And then by elementarity we must have that

K̂−1
i0

(τ(Ji0(ā′))) = K̂−1
i0

((τ)Jβ(Vλ+1)(Ki0(ā′))) = (τ̄)Jβ̄(Vλ̄+1)(ā′) = ᾱ′.

Hence α′ := K̂i0(ᾱ′) is an ordinal by elementarity and it is less than α. Furthermore by
elementarity, we have that since (Ā′, φ′) λ̄-tags ᾱ′, that (Ki0(Ā′), φ′) = (Ji0(Ā′), φ′) λ-tags
α′. But by induction this implies that πJi0 (ᾱ′) = α′ < α. Furthermore we have that
πJ(ᾱ′) = (j0 ◦ · · · ji0−1 ◦ πJi0 )(ᾱ′) < α, since ji(α) = α for all i.

To see 1, if πJ(ᾱ) is already defined then πJ(ᾱ) < α. Let πJ(ᾱ) = α′ < α. Then
Ĵ : Jᾱ+1(Vλ̄+1) → Jα′+1(Vλ+1) is elementary by induction. Since (τ)Jα′ (Vλ+1) is a partial

function Vλ+1 → Jα′(Vλ+1) which is a surjection, by elementarity of Ĵ , (τ̄)Jᾱ′ (Vλ̄+1) is a partial
function Vλ̄+1 → Jᾱ′(Vλ̄+1) which is a surjection. But this contradicts the definition of ᾱ.

Now let ᾱ0 be least such that there exists K ∈ Fκ such that K(Ā) = A and πK(ᾱ0) = α.
We will show that (Ā, φ) λ̄-tags ᾱ0. Suppose that we are in case 1 of the definition of πJ(ᾱ),
and suppose τ̄(ā) = ᾱ0. The key point is that for any K ′ ∈ Fκ such that K ′(Ā) = K(Ā)
and K ′(ā) = K(ā), we must have that πK′(ᾱ0) = α. This follows by minimality of ᾱ0, and
the fact that either τ(K ′(ā)) = τ(K(ā)) /∈ Jα(Vλ+1) or K ′(ā) /∈ dom(τ). And hence for any
such K ′, if X̄ ⊂ Vλ̄+1 codes Jᾱ0(Vλ̄+1) and X ⊂ Vλ+1 codes Jα(Vλ+1), then

K ′ : (Vλ̄+1, X̄)→ (Vλ+1, X)

is Σ0-elementary. But then by Lemma 2.3.6, (Ā, φ) λ̄-tags ᾱ0, which is what we wanted.
If we are in case 2 of the definition of πJ(ᾱ), then we immediately have that πK′(ᾱ0) =

πK(ᾱ0) for any K ′ ∈ Fκ such that K ′(Ā) = K(Ā), by minimality of ᾱ0. Then to show that
(Ā, φ) λ̄-tags ᾱ0 is exactly the same is in case 1.

Now since (Ā, φ) λ̄-tags ᾱ0, and J(Ā) = A, if πJ(ᾱ) = α where ᾱ > ᾱ0, then πJ(ᾱ0) is
already defined and is less than α. But then for α0 := πJ(ᾱ0), Ĵ : Jᾱ0+1(Vλ̄+1)→ Jα0+1(Vλ+1)
is elementary, and hence (A, φ) λ-tags α0 by elementarity. But this is a contradiction since
(A, φ) λ-tags α > α0. Hence πJ(ᾱ0) = α, and the proof above shows that πJ extends to
Ĵ : Jᾱ0(Vλ̄+1)→ Jα(Vλ+1).

Hence we have shown that the induction hypothesis holds for α + 1 for the case of α a
limit. For α a successor, the induction hypothesis follows immediately from Lemma 2.3.6.
Hence by induction the theorem is proved.
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We can use a similar technique to push the reflection a bit past κ:

Theorem 2.4.2. Let κ be least such that Jκ(Vλ+1) ≺Σ1(Vλ+1∪{Vλ+1}) Jκ+1(Vλ+1). Suppose
there exists an elementary embedding j : Jκ+ω+1(Vλ+1)→ Jκ+ω+1(Vλ+1). Then there is λ̄ < λ
such that there is an elementary embedding

Ĵ : Jκ̄(Vλ̄+1)→ Jκ(Vλ+1),

where κ̄ is defined similarly to κ for λ̄ instead of λ.

Proof. Define π as in the previous proof. Let Fκ+2 ⊆ Eeκ+2 be saturated. We prove that
for every J ∈ Fκ+2, if ᾱJ = sup{β̄| πJ(β̄) is defined }, then ᾱJ = κ̄. Suppose not, and let
ᾱ0 < κ̄ be least such that there exists J ∈ Fκ+2 with ᾱJ = ᾱ0. Since ᾱ0 < κ̄, there exists
Ā ∈ Vλ̄+1 and φ such that (Ā, φ) λ̄-tags ᾱ0. Fix J such that ᾱJ = ᾱ0.

Claim 2.4.3. For all K ∈ Fκ+2 such that K(Ā) = J(Ā), we have ᾱK = ᾱ0.

Proof. We must have that there is no α < κ such that (J(Ā), φ) λ-tags α, since otherwise
by the arguments of the previous proof, we would have πJ(ᾱ0) = α. And hence if K ∈ Fκ+2

is such that K(Ā) = J(Ā) and ᾱK > ᾱ0, then α0 := πK(ᾱ0) is defined and less than
κ. Furthermore, K̂ : Jᾱ0(Vλ̄+1) → Jα0(Vλ+1) is elementary, and hence we must have that
(K(Ā), φ) λ-tags α0 < κ. But K(Ā) = J(Ā), which is a contradiction.

So for X̄ ⊆ Vλ̄+1 and X ⊆ Vλ+1 such that X̄ codes Jᾱ0(Vλ̄+1) and X codes Jκ(Vλ+1),
we have that K : (Vλ̄+1, X̄) → (Vλ+1, X) is Σ0 for any K ∈ Fκ+2 such that K(Ā) = J(Ā).
But then by Lemma 2.3.6, we have that any such embedding is actually elementary. Hence
we have that K̂ : Jᾱ0(Vλ̄+1) → Jκ(Vλ+1) is elementary, for any such K, and hence K̂ :
Jᾱ0+1(Vλ̄+1)→ Jκ+1(Vλ+1) is elementary. But then it must be that Jᾱ0(Vλ̄+1) ≺Σ1(Vλ+1∪{Vλ+1})
Jᾱ0+1(Vλ̄+1), which is a contradiction to the fact that ᾱ0 < κ̄. Hence we must have that
ᾱJ = κ̄ for all J ∈ Fκ+2. And arguing as we just did, we have that

Ĵ : Jκ̄(Vλ̄+1)→ Jκ(Vλ+1)

is elementary.

Corollary 2.4.4. Let κ be least such that

Jκ(Vλ+1) ≺Σ1(Vλ+1∪{Vλ+1}) Jκ+1(Vλ+1).

Suppose there exists an elementary embedding

j : Jκ+ω+1(Vλ+1)→ Jκ+ω+1(Vλ+1).

Then there is λ̄ < λ such that there is an elementary embedding

j̄ : Jκ̄(Vλ̄+1)→ Jκ̄(Vλ̄+1).
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Theorem 2.4.5. Let κ0 be least such that

Jκ0(Vλ+1) ≺Σ1(Vλ+1∪{Vλ+1}) Jκ0+1(Vλ+1).

Let κ1 be least such that

Jκ1(Vλ+1) ≺Σ1(Vλ+1∪{Vλ+1,κ0}) Jκ1+1(Vλ+1).

Suppose there exists an elementary embedding

j : Jκ1+ω+1(Vλ+1)→ Jκ1+ω+1(Vλ+1).

Then there is λ̄ < λ and κ̄1 such that there is an elementary embedding

Ĵ : Jκ̄1(Vλ̄+1)→ Jκ1(Vλ+1).

Proof. The proof is almost exactly the same as the proof of Theorem 2.4.1.

There are similar reflection results provable by the same method for κn defined anal-
ogously for n < ω. The method here appears to break down as the Σ1-gaps get larger,
however. To get past these larger gaps we need a new method, which we present in the next
section.

2.5 Reflecting I0

In this section we prove our main reflection result. First we introduce some terminology
which identifies the general form of reflection as obtained by inverse limits. In Section 3
we will find that this form of reflection is even more useful than simply having reflection
embeddings.

Definition 2.5.1. We define inverse limit reflection at α to mean the following: There
exists λ̄, ᾱ < λ and a saturated set E ⊆ E such that for all (J,~j) ∈ E, J extends to
Ĵ : Lᾱ(Vλ̄+1)→ Lα(Vλ+1) which is elementary.

We define strong inverse limit reflection at α to mean the following: There exists λ̄, ᾱ < λ
and a saturated set E ⊆ E such that for all (J,~j) ∈ CL(E), J extends to Ĵ : Lᾱ(Vλ̄+1) →
Lα(Vλ+1) which is elementary.

We will also need the notion of inverse limit X-reflection where X ⊆ Vλ+1. As before we
let

E(X) = {(J, 〈ji| i < ω〉)| ∀i (ji : (Vλ+1, X)→ (Vλ+1, X)) and

J = j0 ◦ j1 ◦ · · · : (Vλ̄+1, X̄)→ (Vλ+1, X) is Σ0}.

Here we let X̄ = J−1[X]. We modify the definition of saturated to X-saturated, requiring
in addition that J−1[X] = K−1[X].
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Definition 2.5.2. Suppose X ⊆ Vλ+1. We define inverse limit X-reflection at α to mean
the following: There exists λ̄, ᾱ < λ, X̄ ⊆ Vλ̄+1 and an X-saturated set E ⊆ E(X) such that

for all (J,~j) ∈ E, J extends to Ĵ : Lᾱ(X̄, Vλ̄+1)→ Lα(X, Vλ+1) which is elementary.
We define strong inverse limit X-reflection at α to mean the following: There exists

λ̄, ᾱ < λ, X̄ ⊆ Vλ̄+1 and an X-saturated set E ⊆ E(X) such that for all (J,~j) ∈ CL(E), J

extends to Ĵ : Lᾱ(X̄, Vλ̄+1)→ Lα(X, Vλ+1) which is elementary.

Note that we cannot immediately conclude elementarity of J : (Vλ̄+1, X̄)→ (Vλ+1, X) as
X̄ depends on J in general. And in fact we will show that inverse limit X-reflection does
not hold in general.

Theorem 2.5.3. Suppose there exists an elementary embedding j : L(Vλ+1) → L(Vλ+1).
Then there exists λ̄ < λ such that for all α < Θλ, there exists ᾱ such that

Lᾱ(Vλ̄+1) ≡ Lα(Vλ+1).

Proof. Suppose that α < Θλ is good, ρ : Vλ+1 → Lα(Vλ+1) is a surjection definable over
Lα+1(Vλ+1), with X ⊆ Vλ+1 the preimage. Let G ⊆ Coll(ω, λ) be V -generic.

Let E ⊆ Eα+1 be saturated and (J,~j) ∈ E. Let ~λ be cofinal in λ̄J = λ̄. In V [G], let
〈ai| i < ω〉 be an enumeration of Vλ̄+1, and let 〈φi| i < ω〉 be an enumeration of all formulas
in the language (∈). We define sequences 〈J i| i < ω〉, 〈ni| i < ω〉 in V [G] with the following
properties:

1. J0 = J . For all i < ω, J i ∈ E and J i+1 is a limit root of J i, supported by ~λ.

2. 〈ni| i < ω〉 is increasing, and for all i < ω, for all n ≤ ni, J
i+1(an) = J i(an).

3. For all i0 < ω, suppose that Lα(Vλ+1) |= ∃xφ(x, ~B) where

~B =
〈
ρ(J i0(as1)), . . . , ρ(J i0(asm))

〉
and for all i < m, si ≤ i0 and ∃xφ(x, ~X) is the formula φi for some i < i0. Then for

some b which is a witness to φ with parameter ~B, we have

ρ(J i0+1(at̄)) = b

and ni0+1 ≥ t̄.

Note that we can arrange (3) as follows. Suppose that i0 < ω and

Lα(Vλ+1) |= ∃xφ(x, ~B),

where
~B =

〈
ρ(J i0(as1)), . . . , ρ(J i0(asm))

〉
.
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Let i be such that for all A ∈ Vλ̄+1 and B ∈ Vλ+1, there exists (K,~k) ∈ E, with K an i-close
limit root of J i0 , Ki(A) = J i0i (A) and B ∈ rngKi. Pulling back by ji00 ◦ · · · ◦ ji0i−1, we have

Lα(Vλ+1) |= ∃xφ(x, ~Bi),

where
~Bi =

〈
ρ(J i0i (as1)), . . . , ρ(J i0i (asm))

〉
.

Let b be a witness to φ with parameter ~Bi. Then if (K,~k) ∈ E is an i-close limit root of J i0 ,
satisfies (2), and for some t̄, ρ(Ki(at̄)) = b then

Lα(Vλ+1) |= φ(ρ((ji00 ◦ · · · ◦ ji0i−1)(b)), ~B).

To arrange (3), we simply work with the finitely many ~B and φ required by (3) simultane-
ously.

Let J∗ be the common part of 〈J i| i < ω〉. Then by (2) and Lemma 2.1.16 we have that
J∗ : Vλ̄+1 → Vλ+1 since for all a ∈ Vλ̄+1, there is an n such that an = a. And hence for i
large enough, we have that J∗(an) = J i(an) ∈ Vλ+1.

Let M = ρ[J∗[Vλ̄+1]]. We claim that M ≺ Lα(Vλ+1). But this follows immediately from
condition (3). Furthermore, M is wellfounded. Let M̄ be the transitive collapse of M and
let π be the inverse of the transitive collapse. We have that Vλ̄+1 = π−1[Vλ+1], and hence by
condensation, we have that M̄ = Lᾱ(Vλ̄+1) for some ᾱ. So Lᾱ(Vλ̄+1) ≡ Lα(Vλ+1). But, by
absoluteness, in V we have that Lᾱ(Vλ̄+1) ≡ Lα(Vλ+1), which is what we wanted.

Based on the proof of Theorem 2.5.3, we fix some terminology which will be useful in the
following theorems.

Definition 2.5.4. Fix E ⊆ E saturated, α good, and J ∈ E. Set λ̄ = λ̄J and let ~λ be
cofinal in λ̄. Fix 〈φi| i < ω〉, an enumeration of all formulas in the language (∈). We define
a forcing P(E,α, J). Conditions are elements (〈J i, ni| i < m〉 , 〈ai| i < nm−1〉) where m ≥ 1
and the following hold.

1. J0 = J . For all i < m− 1, J i+1 is a limit root of J i supported by ~λ, and J i+1 ∈ E.

2. 〈ni| i < m〉 ∈ ωm is an increasing sequence.

3. For all i < nm−1, ai ∈ Vλ̄J+1.

4. For all 1 ≤ m′ < m, and i < nm′−1, Jm
′−1(ai) = Jm

′
(ai).

5. For all m′ < m− 1, suppose that Lα(Vλ+1) |= ∃xφ(x, ~B) where

~B =
〈
ρ(Jm

′
(as1)), . . . , ρ(Jm

′
(asn))

〉
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and for all i < n, si ≤ m′ and ∃xφ(x, ~X) is the formula φi for some i < m′. Then for

some b which is a witness to φ with parameter ~B, we have

ρ(Jm
′+1(at̄)) = b

for some t̄ < nm′+1.

For (〈J i, ni| i < m〉 , 〈ai| i < nm−1〉), (〈Ki, n′i| i < m′〉 ,
〈
a′i| i < n′m′−1

〉
) ∈ P(E,α, J) we put

(
〈
J i, ni| i < m

〉
, 〈ai| i < nm−1〉) ≥P(E,α,J) (

〈
Ki, n′i| i < m′

〉
,
〈
a′i| i < n′m′−1

〉
)

iff

1. m ≤ m′,

2. for all i < m, J i = Ki, ni ≤ n′i, and for all s < nm−1, as = a′s.

Suppose that g ⊆ P(E,α, J) is L(Vλ+1)-generic. Then clearly in L(Vλ+1)[g] we obtain a
unique sequence 〈J i| i < ω〉 from g such that for all i, J i+1 is a limit root of J i. We set Jg

to be the common part of 〈J i| i < ω〉.

Lemma 2.5.5. Assume we are in the situation of Definition 2.5.4. Suppose that

g ⊆ P(E,α, J)

is L(Vλ+1)-generic. Then Jg maps Vλ̄+1 → Vλ+1, and there exists an ᾱ such that Jg extends
to an elementary embedding

Ĵg : Jᾱ(Vλ̄+1)→ Jα(Vλ+1).

Proof. This follows exactly as in the proof of Theorem 2.5.3.

Lemma 2.5.6. Assume we are in the situation of Definition 2.5.4. Suppose that

(
〈
J i, ni| i < m

〉
, 〈ai| i < nm−1〉) ∈ P(E,α, J)

and there exists ᾱ such that

(
〈
J i, ni| i < m

〉
, 〈ai| i < nm−1〉) 
 J ġ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1) is elementary.

Then Jm−1 extends to an elementary embedding Jᾱ(Vλ̄+1)→ Jα(Vλ+1).

Proof. We assume for simplicity of notation that m = 1. So we have

p := (〈J, n0〉 , 〈ai| i < n0〉) ∈ P(E,α, J)
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and there exists ᾱ such that

(〈J, n0〉 , 〈ai| i < n0〉) 
 J ġ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1) is elementary.

We extend J to a map Ĵ as follows. Suppose that B̄ ∈ Vλ̄+1, B ∈ Vλ+1, b̄ ∈ Jᾱ(Vλ̄+1), b ∈
Jα(Vλ+1), and φ are such that J(B̄) = B, and b is the unique element of Jα(Vλ+1) such that
Jα(Vλ+1) |= φ(b, B) and b̄ is the unique element of Jᾱ(Vλ̄+1) such that Jᾱ(Vλ̄+1) |= φ(b̄, B̄).

Then set Ĵ(b̄) = b.
We need to check that Ĵ : Jᾱ(Vλ̄+1) → Jα(Vλ+1) is well-defined, total, and elementary.

The proofs of each of these facts are very similar. First we check that Ĵ is well-defined.
Suppose that B̄1, B1, φ1 witness that Ĵ(b̄) = b1 and B̄2, B2, φ2 witness that Ĵ(b̄) = b2. Let
p′ ≤P(E,α,J) p be the condition

p′ = (〈J, n0 + 2〉 , 〈ai| i < n0〉a
〈
B̄1, B̄2

〉
).

Then
p′ 
 J ġ(B̄1) = B1 ∧ J ġ(B̄2) = B2,

and hence
p′ 
 b1 = Ĵ ġ(b̄) = b2.

So b1 = b2 by absoluteness, which is what we wanted.
Now we check that Ĵ is total. We first show that ᾱ is (λ̄-)good. Let b̄ ∈ Jᾱ(Vλ̄+1).

Suppose p ∈ g ⊆ P(E,α, J) is L(Vλ+1)-generic and Ĵg(b̄) = b ∈ Jα(Vλ+1). Then since α is
good there exists a B ∈ Vλ+1 such that Jα(Vλ+1) |= b is the unique element such that φ(b, B).
Hence

Jα(Vλ+1) |= ∃B′ ∈ Vλ+1(b is the unique element such that φ(b, B′)).

But then by elementarity of Jg,

Jᾱ(Vλ̄+1) |= ∃B̄′ ∈ Vλ̄+1(b̄ is the unique element such that φ(b̄, B̄′)).

So this shows that ᾱ is good.
To see that Ĵ is total, let b̄ ∈ Jᾱ(Vλ̄+1) and let B̄ and φ be such that Jᾱ(Vλ̄+1) |= b̄ is the

unique element such that φ(b̄, B̄). Set B = J(B̄). Let p′ ≤P(E,α,J) p be the condition

p′ = (〈J, n0 + 1〉 , 〈ai| i < n0〉a
〈
B̄
〉
).

Then
p′ 
 J ġ(B̄) = B,

and hence

p′ 
 Jα(Vλ+1) |= J ġ(b̄) is the unique element such that φ(J ġ(b̄), B).
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Let p′′ ≤P(E,α,J) p
′ be such that for some b ∈ Jα(Vλ+1), p′′ 
 J ġ(b̄) = b. But then by

absoluteness we have that

Jα(Vλ+1) |= b is the unique element such that φ(b, B).

So we must have that Ĵ(b̄) = b.
To see that Ĵ is elementary, suppose that b̄ ∈ Jᾱ(Vλ̄+1) and ψ is a formula. Let B̄ and

φ be such that Jᾱ(Vλ̄+1) |= b̄ is the unique element such that φ(b̄, B̄). Set b = Ĵ(b̄) and
B = J(B̄). Let p′ ≤P(E,α,J) p be the condition

p′ = (〈J, n0 + 1〉 , 〈ai| i < n0〉a
〈
B̄
〉
).

Then
p′ 
 J ġ(B̄) = B ∧ Ĵ ġ(b̄) = b,

and hence
p′ 
 Jᾱ(Vλ̄+1) |= ψ(b̄) ⇐⇒ Jα(Vλ+1) |= ψ(b).

But by absoluteness Jᾱ(Vλ̄+1) |= ψ(b̄) ⇐⇒ Jα(Vλ+1) |= ψ(b), which is what we wanted.

So Ĵ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1) is an elementary embedding, as desired.

Theorem 2.5.7. Suppose that there exists an elementary embedding j : L(Vλ+1)→ L(Vλ+1).
Then inverse limit reflection holds at α for all α < Θ.

Proof. It is enough to show that for all α < Θ good, inverse limit reflection holds at α, since
if inverse limit reflection holds at α good then it holds at all β ≤ α. So assume that α < Θ is
good. Since there exists an elementary embedding j : L(Vλ+1)→ L(Vλ+1), there must exist
a saturated set E ⊆ Eα. Fix J ∈ E.

Let
p = (

〈
J i, ni| i < m

〉
, 〈ai| i < nm−1〉) ∈ P(E,α, J)

be a condition such that for some ᾱ

p 
 J ġ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1) is elementary.

Then we have that Jm−1 extends to an elementary embedding Jᾱ(Vλ̄+1)→ Jα(Vλ+1). Let Ep
be the set of inverse limits K ∈ E such that for some q ≤P(E,α,J) p if

q = (
〈
Ki, n′i| i < m′

〉
, 〈a′i| i < nm′−1〉)

then K = Km′−1.
Clearly by definition of P(E,α, J) we have that Ep is saturated as well. Furthermore by

Lemma 2.5.6 we have that for all K ∈ Ep that K extends to an elementary embedding

K̂ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1).

Hence inverse limit reflection holds at α.
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In Section 2.6 we will show, using a more detailed analysis, that strong inverse limit
reflection holds all the way up to Θ. The following theorem, which shows that it holds up
to the least stable of L(Vλ+1), follows from the same type of argument as above, however.

Theorem 2.5.8. Suppose that there exists an elementary embedding j : L(Vλ+1)→ L(Vλ+1).
Let δ be least such that

Jδ(Vλ+1) ≺Σ1(Vλ+1∪{Vλ+1}) L(Vλ+1).

Then strong inverse limit reflection holds at α for all α < δ.

Proof. Suppose α < δ, A ∈ Vλ+1 and (A, φ) is a tag for α (such α are cofinal in δ). Let
E ⊆ Eα+1 be a saturated set of inverse limits such that for some Ā ∈ Vλ̄+1, for all (J,~j) ∈ E,
J(Ā) = A.

Let J ∈ E. We claim that for some ᾱ,

∅ 
P(E,α+1,J) J
ġ : Jᾱ+1(Vλ̄+1)→ Jα+1(Vλ+1) is elementary.

But this is clear since

∅ 
P(E,α+1,J) ∃ᾱ′ (J ġ : Jᾱ′+1(Vλ̄+1)→ Jα+1(Vλ+1) is elementary ∧J ġ(Ā) = A∧(Ā, φ) tags ᾱ′).

And hence by absoluteness there is an ᾱ which is tagged by (Ā, φ), and this ᾱ is as desired.
Hence we have by Lemma 2.5.6 that for all K ∈ E, that K extends to an elementary

embedding K̂ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1).
We also have that for any K ∈ Eα+ω such that K(Ā) = A that there exists a saturated

set EK ⊆ Eα+1 such that K ∈ EK and for all K ′ ∈ EK , K ′(Ā) = A. Hence this shows that
for any K ∈ Eα+ω such that K(Ā) = A that K extends to an elementary embedding

K̂ : Jᾱ+1(Vλ̄+1)→ Jα(Vλ+1).

To complete the proof we consider a saturated set E ⊆ Eα+ω such that for all J ∈ E,
J(Ā) = A for some (A, φ) a tag for α. Such an E must exist since there exists an elementary
embedding j : L(Vλ+1) → L(Vλ+1). Let ᾱ be as above. Then for all K ∈ CL(E) we have
that K(Ā) = A and K ∈ Eα+ω. Hence by what we proved above we have that K extends to
an elementary embedding K̂ : Jᾱ(Vλ̄+1) → Jα(Vλ+1). Hence this E witnesses strong inverse
limit reflection at α.

Theorem 2.5.9. Suppose that there exists an elementary embedding

j : Lω·2+1(V #
λ+1, Vλ+1)→ Lω·2+1(V #

λ+1, Vλ+1).

Then there exists λ̄ < λ and a V #
λ+1-saturated set E ⊆ E(V #

λ+1) of inverse limits such that

for all (J,~j) ∈ E, J is an elementary embedding

J : (V #

λ̄+1
, Vλ̄+1)→ (V #

λ+1, Vλ+1).

And hence there exists an elementary embedding j̄ : L(Vλ̄+1)→ L(Vλ̄+1). Furthermore strong

inverse limit V #
λ+1-reflection holds at 0.
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Proof. We describe how to modify the proof of Theorem 2.5.3. Let E ⊆ E(V #
λ+1) be saturated

(but not necessarily V #
λ+1-saturated). Then proceeding exactly as in the proof of Theorem

2.5.3, replacing Lα(Vλ+1) with (V #
λ+1, Vλ+1), the argument is exactly the same until the point

that we defined M .
Let M = J [Vλ̄+1]. Then M ≺ Vλ+1 and for M̄ the transitive collapse of M we have

M̄ = Vλ̄+1. Let π be the inverse of the transitive collapse. Let X̄ = π−1[V #
λ+1]. Then we

have that π : (X̄, Vλ̄+1) → (V #
λ+1, Vλ+1) is elementary. But by definability of the sharp, we

must have X̄ = V #

λ̄+1
. So we have that (V #

λ̄+1
, Vλ̄+1) ≡ (V #

λ+1, Vλ+1). But by absoluteness this
is true in V .

The rest of the proof proceeds exactly as in the proof of Theorem 2.5.8.
To see that there is an elementary embedding

L(Vλ̄+1)→ L(Vλ̄+1),

we have that (Vλ+1, V
#
λ+1) satisfies that there is a Σ1-elementary embedding

(Vλ+1, V
#
λ+1)→ (Vλ+1, V

#
λ+1).

And hence (Vλ̄+1, V
#

λ̄+1
) satisfies that there is a Σ1-elementary embedding

j̄ : (Vλ̄+1, V
#

λ̄+1
)→ (Vλ̄+1, V

#

λ̄+1
).

So j̄ � Vλ̄+1 extends to an elementary embedding

j̄∗ : LΘ̄(Vλ̄+1)→ LΘ̄(Vλ̄+1).

Here we are using that every subset of Vλ̄+1 in L(Vλ̄+1) is Σ1-definable over (Vλ̄+1, V
#

λ̄+1
) with

parameters in Vλ̄+1. But as in [Woo11] we can define the following ultrafilter Uj̄ from j̄,

X ∈ Uj̄ ⇐⇒ j̄ � Vλ̄ ∈ j̄∗(X).

Taking the ultrapower by Uj̄ yields an elementary embedding L(Vλ̄+1) → L(Vλ̄+1) which
extends j̄ � Vλ̄+1 (see [Woo11]).

Theorem 2.5.9 gives an example of an X ⊆ Vλ+1 such that inverse limit X-reflection holds.
The set of such X is very restricted however, as inverse limit X-reflection gives structural
properties of L(X, Vλ+1). Specifically, we will prove the following theorem in Section 3.1.

Theorem 2.5.10. Suppose X ⊆ Vλ+1 and strong inverse limit X-reflection holds at α. Then
there are no disjoint stationary subsets S1 and S2 of {β < λ+| cof(β) = ω} such that

S1, S2 ∈ Lα(X, Vλ+1).
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Corollary 2.5.11. Assume there exists an elementary embedding

j : L(Vλ+1)→ L(Vλ+1).

Suppose that G ⊆ Coll(ω, ω1) is V -generic. Then in V [G], (strong) inverse limit Vλ+1-
reflection at 1 does not hold.

Proof. We work with (H(λ+), Vλ+1) for ease of notation. We have that for

S1 = {α < λ+| (cof(α) = ω)L(Vλ+1)} and S2 = {α < λ+| (cof(α) = ω1)L(Vλ+1)},

that S1 and S2 are definable over (H(λ+)V [G], Vλ+1). Furthermore, S1 and S2 are stationary
in V [G]. And since

S1, S2 ∈ L1(H(λ+)V [G], Vλ+1),

we have that inverse limit Vλ+1-reflection at 1 does not hold by Theorem 2.5.10.

2.6 Strong inverse limit reflection

In this section we show that strong inverse limit reflection holds all the way up to Θ. If
the reader is tired of reflection at this point, this section can be skipped, as it is only used to
weaken the large cardinal assumptions of Corollary 3.1.9. We do however develop the theory
of inverse limits significantly further to show, for instance, that inverse limit roots display
the pointwise non-decreasing property of their embeddings.

We first show that if an inverse limit has a limit root which extends to an elementary
embedding, then it extends as well and in fact factors through its limit root, in some sense.

Lemma 2.6.1. Suppose α < Θ is good and that K ∈ Eα, J ∈ Eα+1 and K is a limit root of
J . Suppose that K extends to an elementary embedding

K̂ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1)

and that for 〈ᾱn|n < ω〉 defined by ᾱn = (k0 ◦ · · · ◦ kn−1)(ᾱ) we have for some n < ω that

crit (K
(n−1)
n ) > λ̄ and ᾱn ∈ rng (j0 ◦ · · · ◦ jn−1). Then for some β̄ ≥ ᾱ, J extends to an

elementary embedding
Ĵ : Jβ̄(Vλ̄+1)→ Jα(Vλ+1).

Proof. Define Mα
J ⊆ Jα(Vλ+1) as

Mα
J = {a ∈ Jα(Vλ+1)| ∃A ∈ Vλ+1(a is definable from A

over Jα(Vλ+1) and A ∈ rng J)}.

Then Mα
J is wellfounded, satisfies ZF− − Replacement since Jα(Vλ+1) has these properties

and Mα
J is closed under definability over Jα(Vλ+1).
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Similarly define Mα
K . Note that Mα

K = K̂[Jᾱ(Vλ̄+1)], and hence K̂ is just the inverse of
the transitive collapse of Mα

K . Also define Mα

K
(n−1)
n

in the same way and let ᾱn, λ̄n, and

K̂
(n−1)
n be such that for all n < ω, Jᾱn(Vλ̄n+1) is the transitive collapse of Mα

K
(n−1)
n

and K̂
(n−1)
n

is the inverse of the collapse.
Let n < ω be such that crit (K

(n−1)
n ) > λ̄ and ᾱn ∈ rng (j0 ◦ · · · ◦ jn−1). Set β̄ =

(j0 ◦ · · · ◦ jn−1)−1(ᾱn). Then we have that for all Ā ∈ Vλ̄+1,

K(n−1)
n ((j0 ◦ · · · ◦ jn−1)(Ā)) = J (n−1)

n ((j0 ◦ · · · ◦ jn−1)(Ā)).

Hence we must have Mα
J ⊆Mα

K
(n−1)
n

.

Furthermore we claim that

Mα
J = (K̂(n−1)

n ◦ j0 ◦ j1 ◦ · · · ◦ jn−1)[Jβ̄(Vλ̄+1)].

To see this, suppose that a ∈ Mα
J and that A ∈ Vλ+1 ∩ rng J is such that a is definable

over Jα(Vλ+1) from A by some formula φ. Let Ā ∈ Vλ̄+1 be such that J(Ā) = A, and set
Ān = (j0 ◦ · · · ◦ jn−1)(Ā). Then we have that

K(n−1)
n (Ān) = J (n−1)

n (Ān) = A.

Hence by elementarity of K̂
(n−1)
n we have that there is ān ∈ Jᾱn(Vλ̄n+1) such that ān is defined

by φ over Jᾱn(Vλ̄n+1) with parameter Ān. But then by elementarity of j0 ◦ · · · ◦ jn−1 we have
that there is ā ∈ Jᾱ(Vλ̄+1) such that ā is defined by φ over Jᾱ(Vλ̄+1) with parameter Ā. And
hence we have that

(K̂(n−1)
n ◦ j0 ◦ j1 ◦ · · · ◦ jn−1)(ā) = a.

And since a was arbitrary we have the claim.
Hence, putting everything together, we have that

K̂(n−1)
n ◦ j0 ◦ j1 ◦ · · · ◦ jn−1 : Jβ̄(Vλ̄+1)→ Jα(Vλ+1)

is the desired extension of J .

The previous lemma required that some ᾱn be in the range of the fragments of J . The
next lemma shows that we can always find such a K where this occurs.

Lemma 2.6.2. Suppose α < Θ is good and J ∈ Eα+1. Suppose further that there is a
K ∈ Eα, a limit root of J such that for some ᾱ, K extends to an elementary embedding

K̂ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1).

Then there is a K ∈ Eα a limit root of J such that for some n < ω we have crit (K
(n−1)
n ) > λ̄J ,

K
(n−1)
n extends to an elementary embedding

K̂(n−1)
n : Jᾱ(Vλ̄n+1)→ Jα(Vλ+1)

for some ᾱ and ᾱ ∈ rng (j0 ◦ · · · ◦ jn−1).
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Proof. Fix δ < λ such that δ > λ̄J and δ ∈ rng J and fix n such that crit (J
(n−1)
n ) > δ. Let

ᾱ be least such that there is Kn ∈ Eα a 0-close limit root of J
(n−1)
n such that crit (Kn) > δ

and Kn extends to an elementary embedding

K̂n : Jᾱ(Vλ̄n+1)→ Jα(Vλ+1).

Then since J ∈ Eα+1 and

J (n−1)
n , δ, λ̄n ∈ rng (j0 ◦ · · · ◦ jn−1)

we have that ᾱ ∈ rng (j0 ◦ · · · ◦ jn−1). Now let k0, . . . , kn−1 be square roots of j0, . . . , jn−1

such that for some K̄n,
(k0 ◦ · · · ◦ kn−1)(K̄n) = Kn

and for K = k0 ◦ · · · kn−1 ◦ K̄n ∈ Eα, K is a limit root of J , and

(k0 ◦ · · · ◦ kn−1)−1(ᾱ) = (j0 ◦ · · · ◦ jn−1)−1(ᾱ).

Then clearly we have K̄
(n−1)
n = Kn and hence K is a witness to the lemma.

Putting the previous two lemmas together, we obtain that a very large collection of
inverse limits extend to elementary embeddings.

Lemma 2.6.3. Suppose α < Θ is good and J ∈ Eα+1. Also assume that there is a saturated
set E ⊆ Eα+1 such that J ∈ E. Then for some ᾱ, J extends to an elementary embedding

Ĵ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1).

Proof. Let J be as in the hypothesis. Then by the proof of Theorem 2.5.7 there is a sequence
〈Kn|n < ω〉 such that the following hold:

1. K0 = J and for all n < ω, Kn ∈ Eα+1,

2. for all n < ω, Kn+1 is a limit root of Kn,

3. there is a β̄ and an n0 such that for all n ≥ n0 K
n extends to an elementary embedding

K̂n : Jβ̄(Vλ̄+1)→ Jα(Vλ+1).

By applying the previous two lemmas we have that there must be some ᾱn−1 such that
Kn−1 extends to an elementary embedding

K̂n−1 : Jᾱn−1(Vλ̄+1)→ Jα(Vλ+1).

And similarly by induction we have that there are ᾱn−1, . . . , ᾱ0 such that for all i < n, Ki

extends to an elementary embedding

K̂i : Jᾱ0(Vλ̄+1)→ Jα(Vλ+1).

So considering i = 0 the lemma follows.
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We now show that if J extends to α + 1 for α good, then the extension is in some sense
unique.

Lemma 2.6.4. Suppose α < Θ is good, that J ∈ Eα+1 and J extends to an elementary
embedding

Ĵ : Jᾱ+1(Vλ̄J+1)→ Jα+1(Vλ+1)

for some ᾱ. Then for all β ≥ α + 1, if J extends to an elementary embedding

Ĵ∗ : Jβ̄(Vλ̄J+1)→ Jβ(Vλ+1)

with α ∈ rng Ĵ∗, then (Ĵ∗)−1(α) = ᾱ and in fact

Ĵ∗ � Jᾱ+1(Vλ̄J+1) = Ĵ .

Proof. The main point is that ᾱ is λ̄J -good. And hence we claim that

rng Ĵ = MJ
α = rng (Ĵ∗) ∩ Jα(Vλ+1),

where MJ
α is defined as in the proof of Lemma 2.6.1.

To see the first equality, suppose that a ∈ rng Ĵ . Let ā ∈ Jᾱ(Vλ̄+1) be such that Ĵ(ā) = a
and let Ā and φ be such that ā is defined by φ with parameter Ā over Jᾱ(Vλ̄+1). Let
A = J(Ā). By elementarity we have that a is defined by φ with parameter A over Jα(Vλ+1).
Hence a ∈MJ

α .
Now suppose that a ∈ MJ

α and let A = J(Ā) and φ be such that a is defined by φ with
parameter A over Jα(Vλ+1). Then by elementarity, there is ā ∈ Jᾱ(Vλ̄+1) such that ā is

defined by φ with parameter Ā over Jᾱ(Vλ̄+1). And hence by elementarity Ĵ(ā) = a.

So we have that rng Ĵ = MJ
α . Now it is enough to see that MJ

α = rng (Ĵ∗) ∩ Jα(Vλ+1).
But we have that (Ĵ∗)−1(α) is λ̄J -good, and hence the same argument will work with ᾱ
replaced by (Ĵ∗)−1(α). So the lemma follows.

We define now an ordering on certain equivalence classes of elements of Vλ. This is a
natural ordering generated by an inverse limit J , and it turns out to be a well-ordering if
J ∈ E1.

Definition 2.6.5. Let J ∈ E , and define the ordering ≤J on tuples (α, n) for α < λ and
n < ω as follows:

1. (α, n) ≤J (β, n) if α ≤ β.

2. (α, n) ≤J (β,m) if n ≤ m and (j
(n−1)
n ◦ · · · ◦ j(n−1)

m−1 )(α) ≤ β.

3. (α, n) ≤J (β,m) if m ≤ n and (j
(m−1)
m ◦ · · · ◦ j(m−1)

n−1 )(β) ≤ α.
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We put (α, n) ∼J (β,m) if (β,m) ≤J (α, n) and (α, n) ≤J (β, n). Let [α, n]J be the
equivalence class of (α, n) under the equivalence relation ∼J . Let IJ be the set of equivalence
classes [α, n]J for α < λ. Let IJ≤(γ,m) be the set of equivalence classes [α, n]J such that

(α, n) ≤J (γ,m).

Lemma 2.6.6. Suppose J ∈ E1. Then (IJ ,≤J) is a well-ordering.

We give two separate proofs of this lemma.

Proof 1. Suppose the lemma fails for J . For all n < ω let αn be least such that ≤
J

(n−1)
n

restricted to those elements ≤
J

(n−1)
n

-less than or equal to [αn, n]
J

(n−1)
n

is not well-founded.

Then, since J ∈ E1, for all n < ω, αn ∈ rng (j0 ◦ · · · ◦ jn−1). But by definition of the

αn we clearly must have j
(n−1)
n (αn) = αn+1. Hence (αn, n) ∈ [α0, 0]J for all n. Now, let

〈[βn, in]J |n < ω〉 be a ≤J -decreasing sequence below [α0, 0]J . Then we have β0 < αi0 . But
by definition of αi0 , ≤J is wellfounded below [β0, i0]J , a contradiction.

Proof 2. Suppose that 〈[αi, ni]J | i < ω〉 are such that (αi, ni) >J (αi+1, ni+1) for all i < ω.
Let K ∈ E0 have the following properties:

1. For all i, n,m < ω, and (α, n′) ∈ [αi, ni]J ,

(j(n−1)
n ◦ · · · j(n−1)

m−1 )(α) = (k(n−1)
n ◦ · · · k(n−1)

m−1 )(α).

2. For all i < ω and (α, n) ∈ [αi, ni]J we have that

α ∈ rng (k0 ◦ · · · ◦ kn−1).

It is then easy to see that (1) implies that for all i < ω,

[αi, ni]J ⊆ [αi, ni]K ,

and (2) implies that for all i < ω, there exists an α′i such that

(α′i, 0) ∈ [αi, ni]K .

But then for all i < ω, (αi, ni) >K (αi+1, ni+1), and hence α′i > α′i+1, a contradiction.

We need the iterated version of being a limit root for inverse limits.

Definition 2.6.7. For α < ω1 we define an α-limit root sequence 〈Kn|n < α〉 by induction
as follows. A 1-limit root sequence is just 〈K0〉 such that K0 ∈ E . For α = β+1 a successor,
〈Kn|n < α〉 is an α-limit root sequence if 〈Kn|n < β〉 is a β-limit root sequence and the
following hold:

1. If β is a limit, then Kβ is the common part of the sequence 〈Kn|n < β〉.
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2. If β is a successor, then Kβ is a limit root of Kβ−1.

If α is a limit, then 〈Kn|n < α〉 is an α-limit root if for all β < α, 〈Kn|n < β〉 is a β-limit
root.

We say that K is an α-limit root of J if there is an α+ 1-limit root sequence 〈Kn|n ≤ α〉
such that K0 = J and Kα = K. So K is a limit root of J iff K is a 1-limit root of J .

Suppose γ < Θ is good and suppose that c : α → ω is a function. Then we say that
〈Kn|n < α〉 is an α-limit root sequence following c at γ if the following hold:

1. For all n < α, Kn ∈ Eγ.

2. Suppose that α = β + 1 is a successor. Then Kα is a c(α)-close limit root of Kβ.

Lemma 2.6.8. Suppose that γ < Θ is good, α < ω1, and c : α→ ω is an injection. Suppose
that K0 ∈ Eγ+ω. Then there is 〈Kn|n < α〉 an α-limit root sequence following c at γ.

Proof. First let K1 be a 0-close limit root of K0 such that for all i < ω, k1
i extends to an

embedding
Jγ+i+1(Vλ+1)→ Jγ+i+1(Vλ+1).

For α′ < α such that α′ = β + 1, having defined the sequence below α′, we choose Kα′ to be
a c(α′)-close limit root of Kβ such that for all i ∈ [c(α′), ω), if kβi extends to an embedding

Jγ+si+1(Vλ+1)→ Jγ+si+1(Vλ+1)

then kα
′

i extends to an embedding

Jγ+si(Vλ+1)→ Jγ+si(Vλ+1).

For α′ < α a limit, we simply take Kα′ to be the common part of 〈Kn|n < α′〉.
Clearly this construction succeeds, as for all i < ω, the set {α′ < α| c(α′) ≤ i} has

cardinality less than or equal to i, as c is injective.

We note the following fact about square roots of elementary embeddings, which we will
extend to inverse limits.

Lemma 2.6.9. Let α be good. Suppose that j, k : Lα(Vλ+1)→ Lα(Vλ+1) and k(k) = j. Then
for all β < α, we have that k(β) ≥ j(β).

Proof. We prove this by induction on β. If β is a successor or a continuity point of j then
there is nothing to prove. So assume that β is a discontinuity point of j. Let γ = sup j”β.
We have by induction that γ ≤ sup k”β. Suppose for a contradiction that k(β) < j(β).
Then j(β) is definable in Lα(Vλ+1) from j � Vλ+1 and k(β), as the least image point of the
unique extension of j � Vλ+1 above k(β). But then j(β) ∈ rng k, and since j ∈ rng k, we
have that β ∈ rng k. But then k(β) = j(β), since it is a square root, a contradiction.
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Lemma 2.6.10. Suppose α < Θ is good, δ + 1 < ω1, and 〈Jγ| γ < δ + 1〉 is a δ + 1-limit
root sequence from E1. Then for all [β, n]J0, there is an n0 < ω such that for all γ < δ + 1
and m,m′ ≥ n0, if (β1,m), (β2,m

′) ∈ [β, n]J0 then

(β1,m) ∼Jγ (β2,m
′)

and hence if Jγ extends to an embedding

Ĵγ : Jᾱγ+1(Vλ̄Jγ+1)→ Jα+1(Vλ+1)

then we have
Ĵγ,(m−1)
m (β1) = Ĵ

γ,(m′−1)
m′ (β2).

Proof. Fixing [β, n]J0 , we prove first that for each γ < δ there is such an n0, the least which
we call nγ. The full lemma follows by noticing that for γ a limit, nγ ≥ supγ′<γ nγ′ . The
proofs of these two facts are basically the same.

Let ji = j0
i and ki = jγi for i < ω. So K = Jγ. Then we have for all ξ < λ and

i < ω that ki(ξ) ≥ ji(ξ). Hence for all n < ω, if (αn, n), (αn+1, n + 1) ∈ [β, n]J and
(αn, n) �K (αn+1, n+ 1) then

k(n−1)
n (αn) > αn+1 = j(n−1)

n (αn).

Hence, if there are infinitely many n < ω such that

(αn, n) �K (αn+1, n+ 1),

then 〈[αn, n]K |n < ω〉 contains an infinite decreasing subsequence in the ≤K ordering, which
is a contradiction to the well-foundedness of ≤K .

For the limit step, basically the same proof works, since if γ is such that

jγ,(n−1)
n (αn) > j0,(n−1)

n (αn),

then for all γ′ ∈ [γ, δ],
jγ
′,(n−1)
n (αn) > j0,(n−1)

n (αn).

And hence the lemma follows.

We need the following notation. Let ∼ be the equivalence relation defined as follows.
Suppose (K,~k), (K ′, ~k′) are such that for some n and m,

(k0 ◦ · · · ◦ kn−1)(〈kn, kn+1, . . .〉) = (k′0 ◦ · · · ◦ k′m−1)(
〈
k′m, k

′
m+1, . . .

〉
).

Then ~k ∼ ~k′. We let [~k]∼ denote the equivalence class which ~k belongs to.
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Lemma 2.6.11. Suppose α < Θ is good, δ < ω1, J ∈ Eα+3, and J extends to an elementary
embedding

Ĵ : Jᾱ+1(Vλ̄J+1)→ Jα+1(Vλ+1)

for some ᾱ. Then if K ∈ Eα+2 is a δ-limit root of J , and K extends to an elementary
embedding

K̂ : Jβ̄+1(Vλ̄J+1)→ Jα+1(Vλ+1)

for some β̄ then β̄ ≤ ᾱ and for all γ̄ ≤ β̄, K̂(γ̄) ≥ Ĵ(γ̄).

Proof. First we prove the lemma for δ = 1. This will, in essence, prove the lemma for all δ
successor (assuming the limit case is true as well).

Suppose the lemma fails, and let [ᾱ, n]J be ≤J -least such that there exists K ∈ Eα+2 a

limit root of J with K̂
(n−1)
n (ᾱ) < Ĵ

(n−1)
n (ᾱ). Assume for ease of notation that n = 0 and that

K ∈ Eα+2 is a 0-close limit root of J . Then we have that ᾱ is definable over Jα+2(Vλ+1) from
J and K̂(ᾱ) as the least ordinal sent by Ĵ above K̂(ᾱ). Hence for all n we have

(k0 ◦ · · · ◦ kn)(ᾱ) = (j0 ◦ · · · ◦ jn)(ᾱ).

So for all n we have
K̂(n−1)
n (ᾱn) < Ĵ (n−1)

n (ᾱn)

where ᾱn = (j0 ◦ · · · ◦ jn−1)(ᾱ).
Let β be least such that for some K ∈ Eα+2 a limit root of J , K̂(ᾱ) = β. Then we have

that β < Ĵ(ᾱ) and β ≥ supβ̄<ᾱ Ĵ(β̄).

We claim that β ∈ rng Ĵ , which is a contradiction. To see this, we claim that β is
definable from [J ]∼ and Ĵ(ᾱ) over Jα+3(Vλ+1). And this follows since for any S ∈ [J ]∼, for
all large enough n, if

ᾱ′ = (Ŝ(n−1)
n )−1(Ĵ(ᾱ))

then β is least such that for some K ∈ Eα+2 a limit root of S
(n−1)
n , K̂(ᾱ′) = β. Hence since

[J ]∼ ∈ rng Ĵ , we have β ∈ rng Ĵ .
Now we prove the lemma for δ a limit, assuming the lemma is true for all δ′ < δ.
Suppose the lemma fails for δ and

〈
Kδ′| δ′ < δ

〉
is a limit root sequence with K the

common part witnessing this failure. Let δ′ < δ be least such that for some (β̄,m),

(K̂δ′)(m−1)
m (β̄) > K̂(m−1)

m (β̄).

Without loss of generality, by renaming, we can assume that δ′ = 0. Let [β̄,m]K0 be ≤K0-
least such that for some (β̄0,m0) ∈ [β̄,m]K0 ,

(K̂0)(m0−1)
m0

(β̄0) > K̂(m0−1)
m0

(β̄0).

Then in fact by the previous lemma, there is an n0 such that for all m′ ≥ n0 and

(β̄′,m′), (β̄n0 , n0) ∈ [β̄,m]K0 ,
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we have

(K̂0)
(m′−1)
m′ (β̄′) = (K̂0)(m0−1)

m0
(β̄0) > K̂(m0−1)

m0
(β̄0) ≥ K̂

(m′−1)
m′ (β̄′) = K̂(n0−1)

n0
(β̄n0).

The last inequality follows from the fact that K is a δ-limit root of K0.
Again by renaming, we can assume without loss of generality that n0 = 0. Let (β̄0, 0) ∈

[β̄,m]K0 . Then for all n we have

(k0 ◦ · · · ◦ kn)(β̄0) = (k0
0 ◦ · · · ◦ k0

n)(β̄0).

So for all n we have
K̂(n−1)
n (β̄n) < K̂0,(n−1)

n (β̄n)

where β̄n = (k0
0 ◦ · · · ◦ k0

n−1)(β̄0).

Let β be least such that for some K ∈ Eα+2 a δ-limit root of J , K̂(ᾱ) = β. Then we have
that β < Ĵ(ᾱ) and β ≥ supβ̄<ᾱ Ĵ(β̄).

We claim that β ∈ rng Ĵ , which is a contradiction. To see this, we claim that β is
definable from [J ]∼ and Ĵ(ᾱ) over Jα+3(Vλ+1). And this follows since for any S ∈ [J ]∼, for
all large enough n, if

ᾱ′ = (Ŝ(n−1)
n )−1(Ĵ(ᾱ))

then β is least such that for some K ∈ Eα+2 a δ-limit root of S
(n−1)
n , K̂(ᾱ′) = β. Hence since

[J ]∼ ∈ rng Ĵ , we have β ∈ rng Ĵ .

Lemma 2.6.12. Let α < Θ be good and J ∈ Eα+ω. Then for some γ < ω ·ω there is K ∈ Eα
which is a γ-limit root of J such that there is a saturated set E and ᾱ such that K ∈ E and
for all K ′ ∈ CL(E), K ′ extends to an embedding

K̂ ′ : Jᾱ(Vλ̄K+1)→ Jα(Vλ+1).

Proof. Let c : ω ·ω → ω be an injection. We attempt to construct an ω ·ω-limit root sequence
〈Kn|n < ω · ω〉 following c at α + 2 such that for all n < ω · ω we have Kn extends to

K̂n : Jᾱn(Vλ̄K+1)→ Jα(Vλ+1),

and for all i < ω, ᾱω·i > ᾱω·(i+1). Clearly we can’t actually construct such a sequence. Hence
our attempt must fail at some point, at which point the lemma will hold.

We construct the sequence as follows by induction for i < ω. Let K0 = J . Having
constructed 〈Kn|n ≤ ω · i〉, if there exists an extension 〈Kn|n ≤ ω · (i+ 1)〉 a limit root
sequence following c � ω · (i+ 1) at α + 2 such that

ᾱω·(i+1) < lim
n→ω·(i+1)

ᾱn,
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then use any such extension. Otherwise there is some m < ω and an extension

〈Kn|n ≤ ω · i+m〉

such that for all further extensions following c at α + 2, 〈Kn|n ≤ ω · (i+ 1)〉 we have

ᾱω·(i+1) = ᾱω·i+m,

in which case such extensions form a saturated set as desired by the lemma.

Corollary 2.6.13. Suppose j : L(Vλ+1)→ L(Vλ+1) is elementary. Then for all α < Θ good,
strong inverse limit reflection at α holds.
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Chapter 3

Structural Properties of L(Vλ+1)

3.1 Club filter on λ+

3.1.1 Comparison with L(R)

We first give a brief summary of ultrafilters on ω1 and larger regular cardinals in L(Vλ+1).
The starting point is the following theorem of Solovay.

Theorem 3.1.1 (Solovay (see [KW10])). Assume ADL(R). Then in L(R) the club filter on
ω1 is a countably complete ultrafilter.

The proof proceeds by considering for A ⊆ ω1 the following sup game on ω1.

I α0 α1 · · ·
II β0 β1 · · ·

Where the rules are that
α0 < β0 < α1 < β1 < · · · < ω1,

and I wins if supi<ω αi ∈ A. In fact, as we are assuming only ADL(R), an integer version of
this game must be played, and a boundedness property used to show that if I has a winning
strategy then A contains a club.

For larger regular cardinals we have the following.

Theorem 3.1.2 (Steel (see [Ste95])). Assume ADL(R). Then in L(R) for all κ < Θ, κ is
measurable, and this is witnessed by the ω-club filter.

3.1.2 Partition measures on λ+

We prove in this section results due to Woodin which are similar to the above results for
L(R). In particular we consider the club filter partitioned into stationary sets.
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Lemma 3.1.3 (Woodin). Assume there is j : L(Vλ+1)→ L(Vλ+1). Suppose that γ < Θ and
cof(γ) > λ. Let S = {α < γ| cof(α) = ω} and let F be the ω-club filter on γ. Then there is
a partition 〈Sα|α < η〉 ∈ L(Vλ+1) of S such that η < λ and for all α < η, in L(Vλ+1) F � Sα
is an ultrafilter.

Proof. Assume towards a contradiction that there is a partition 〈Sα|α < λ〉 ∈ L(Vλ+1) of S
into stationary subsets in L(Vλ+1). We can assume that γ is least such that

1. λ+ ≤ γ and cof(γ) > λ,

2. and there exists such a partition of {α < γ| cof(α) = ω}.

So we have that j(γ) = γ. Let 〈Tα|α < λ〉 = j(〈Sα|α < λ〉). By elementarity 〈Tα|α < λ〉 is
a partition of S into stationary subsets in L(Vλ+1).

Let C = {α < γ| j(α) = α}. Let ξ ∈ C ∩ Tcrit (j). Let α be such that ξ ∈ Sα. Then
j(ξ) = ξ ∈ T(j(α). But this is a contradiction.

Finally, since F is λ+-complete we are done.

In fact we have the following stronger theorem of Woodin.

Theorem 3.1.4 (Woodin [Woo11]). Suppose there is an elementary embedding

j : L(Vλ+1)→ L(Vλ+1).

Then in L(Vλ+1), Θ is a limit of measurable cardinals, and this is witnessed by the club filter
on a stationary set.

3.1.3 Weak-club filter

In this section we use inverse limit reflection to obtain results related to the club filter
on λ+ in L(Vλ+1). We cannot quite show that the ω-club filter restricted to the cofinality ω
ordinals is an ultrafilter in L(Vλ+1), but we obtain a couple approximations to this result.
Namely, we show that the weak ω-club filter is an ultrafilter in L(Vλ+1), and that any two
disjoint stationary (in V ) subsets of the cofinality ω ordinals must not be in L(Vλ+1).

These results extend to higher ordinals of cofinality greater than λ, though for simplicity
of notation we prove them for λ+. We will simply state these extensions below, as the proofs
are nearly identical.

Fix λ, λ̄ < λ and a surjection ρ̄ : Vλ̄+1 → Lλ̄+(Vλ̄+1) definable over Lλ̄+(Vλ̄+1). Also let

E be a saturated set of inverse limits such that for all (J,~j) ∈ E, J extends to

Ĵ : Lλ̄++1(Vλ̄+1)→ Lλ++1(Vλ+1).

Assume ρ is a surjection ρ : Vλ+1 → Lλ+(Vλ̄+1) and for all (J,~j) ∈ E, Ĵ(ρ̄) = ρ (see the
remark before Theorem 2.5.7). We will say that A tags b (over Vλ+1) if ρ(A) = b, and
similarly for ρ̄.
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Figure 3.1: The game G(〈αi| i < ω〉 , E), where Kω is the common part of 〈Ki| i < ω〉.
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Consider the following game G(〈αi| i < ω〉 , E) (see Figure 3.1.3), where 〈αi| i < ω〉 is an
increasing sequence of ordinals < λ̄+.

I β0 β1 · · ·
II (K0, ~k0), A0 (K1, ~k1), A1 · · ·

With the following rules:

1. β0 < β1 < · · · < λ+ are limit ordinals.

2. For all i, (Ki, ~ki) ∈ E, and Ki+1 is a limit root of Ki.

3. Let K̂i be the extension of Ki to Lλ̄+(Vλ̄+1). Then we have

β0 < K̂0(α0) < β1 < K̂1(α1) < β2 < · · · < λ+.

4. For all i, ρ̄(Ai) = αi.

5. For all i and n ≤ i, Ki+1(An) = Ki(An).

II wins if the game goes on ω-many steps. This is a closed game for I, and hence determined.
We first show that II can win the analogous one step game.

Lemma 3.1.5. Let E be saturated such that for all (J,~j) ∈ E, J extends to

Ĵ : Lλ̄++1(Vλ̄+1)→ Lλ++1(Vλ+1).

Then for all (J,~j) ∈ E, there exists an α < λ̄+ such that for all β < λ+ there is a (K,~k) ∈ E,
a limit root of J , such that K̂(α) ≥ β.

Proof. Let (J,~j) ∈ E. Then for i = i(E, J) (see Definition 2.1.9), we have that for all γ < λ+

there exists a (K,~k) ∈ E such that K̂i(γ̄) = γ and hence K̂(γ̄) ≥ γ for some γ̄ < λ̄+. So by

regularity of λ+ there is an α < λ̄+ such that for cofinally many β < λ+ there is (K,~k) ∈ E,
a limit root of J , such that K̂(α) ≥ β, which is what we wanted.

Lemma 3.1.6. Let E be saturated such that for all (J,~j) ∈ E, J extends to

Ĵ : Lλ̄++1(Vλ̄+1)→ Lλ++1(Vλ+1).

Then there exists an increasing sequence 〈αi| i < ω〉 such that II has a quasi-winning strategy
in G(〈αi| i < ω〉 , E).
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Proof. Suppose towards a contradiction that for all ~α ∈ [λ̄+]ω that I has a winning strategy
σ~α in G(~α,E). We use the regularity of λ+ to play against all of these winning strategies
simultaneously.

Choose a sequence ~α∗ as follows. Let

β∗0 = sup
~α∈[λ̄+]ω

σ~α(∅) < λ+.

Let K0 ∈ E,A0 and α∗0 be such that K̂0(α∗0) > β∗0 and A0 tags α∗0. After having chosen
K0, . . . , Kn ∈ E and α∗0, . . . , α

∗
n, let

β∗n+1 = sup{σ~α(
〈
K0, A0, . . . , K

n, An
〉
)| ~α ∈ [λ̄+]ω,∀i ≤ n (αi = α∗i )}.

Let Kn+1 ∈ E,An+1 and α∗n+1 be such that Kn+1 is a limit root of Kn, for all i ≤ n,

Kn+1(Ai) = Kn(Ai), K̂
n+1(α∗n+1) > β∗n+1 and An+1 tags α∗n+1.

We then play 〈K0, A0, K1, A1, . . . , 〉 in the game G(~α∗, E), against the winning strategy
σ~α
∗
. But by the way we chose Ki, Ai and α∗i , this must be a winning play by II. Hence σ~α

∗

is not a winning strategy for I, a contradiction.

Lemma 3.1.7. Let E be saturated such that for all (J,~j) ∈ Ē, J extends to

Ĵ : Lλ̄++1(Vλ̄+1)→ Lλ++1(Vλ+1).

Suppose that 〈αi| i < ω〉 is an increasing sequence of ordinals < λ̄+ and

(β0, K
0, A0, β1, K

1, A1, . . .)

is a winning play for II in G(〈αi| i < ω〉 , E). Let K be the common part of 〈Ki| i < ω〉.
Then

K̂(sup
i<ω

αi) = sup
i<ω

βi.

Proof. Note that we have for all i and n ≤ i that Cn := Ki+1(An) = Ki(An). Hence we have
that K(An) = Cn and therefore K̂(αn) = γn, where γn is tagged by Cn. And by the rules of
the game, we have

β0 < γ0 < β1 < γ1 < · · · .

Hence K̂(supi<ω αi) = supi<ω βi follows by continuity.

Theorem 3.1.8. Assume strong inverse limit reflection at α for α > λ+ good. Let

Sω = {β < λ+| cof(β) = ω}.

Then if S ∈ Lα(Vλ+1) and S ⊆ Sω is stationary (in V ), then Sω \ S is not stationary.
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Proof. Suppose E, ᾱ, γ and S̄ are such that E ∈ Lγ(Vλ+1) and for all (K,~k) ∈ CL(E), K
extends to

K̂ : Lᾱ(Vλ̄+1)→ Lα(Vλ+1)

and K̂(S̄) = S. We show that for any 〈αi| i < ω〉 such that II has a quasi-winning strategy
in G(〈αi| i < ω〉 , E), that if α = supαi ∈ S̄ then S contains a ω-club.

Suppose this is not the case, so Sω \ S is stationary. We have since α is good that in
Lγ(Vλ+1) II has a quasi-winning strategy in G(〈αi| i < ω〉 , E). Let M ≺ Lγ(Vλ+1) be such
that |M | = λ, S, J, E ∈M , Vλ ⊆M , and M ∩λ+ ∈ Sω \S. Let 〈βi| i < ω〉 be increasing and
cofinal in M∩λ+ such that for all i, βi ∈M . Then if I plays a legal subsequence of 〈βi| i < ω〉,
at each stage there is a winning response by player II in M . Suppose without loss of generality
(by passing to a subsequence) that the game is played as (β0, K

0, A0, β1, K
1, A1 . . .) with

(Ki, ~ki) ∈ M for all i. Let K be the common part of 〈Ki| i < ω〉 as computed in L(Vλ+1).
Then by the previous lemma we have that K̂(supαi) = supM ∩ λ+ ∈ S by elementarity.
But this is a contradiction. So Sω \ S is not stationary.

Applying Corollary 2.6.13 we have the following.

Corollary 3.1.9. Assume there exists an elementary embedding

j : L(Vλ+1)→ L(Vλ+1).

Then there are no disjoint stationary subsets S1 and S2 of {β < λ+| cof(β) = ω} such that
S1, S2 ∈ L(Vλ+1).

It is unclear whether or not the conclusion follows from just an elementary embedding
j : L(Vλ+1)→ L(Vλ+1), as it requires strong inverse limit reflection.

Definition 3.1.10. Suppose that C ⊆ γ for γ a limit with uncountable cofinality. Then we
say that C is weakly club if there exists a structure (M, . . .) in a countable language such
that

C = {α < γ| ∃(X, . . .) ≺ (M, . . .), sup(X ∩ γ) = α}.
We say that S ⊆ γ is weakly stationary if for all C ⊆ γ weakly club, S ∩ C 6= ∅. The weak
club filter on γ is the filter generated by the set of weakly club subsets of γ. We define
weakly ω-club and the weak ω-club filter analogously, restricting to countable elementary
substructures.

Corollary 3.1.11. Suppose there exists an elementary embedding j : L(Vλ+1) → L(Vλ+1).
Let Sω = {β < λ+| cof(β) = ω}. Then in L(Vλ+1) the weak club filter restricted to Sω is an
ultrafilter.

Proof. Assume that there exists an α such that α is good and there exists S ∈ Lα(Vλ+1),
S ⊆ λ+ such that both S and Sω \ S are weakly stationary in L(Vλ+1). But by Theorem
2.5.9 inverse limit reflection holds at α. So by the proof of Theorem 3.1.8, there is a weakly
club C ∈ L(Vλ+1) such that either C ⊆ S or C ⊆ Sω \ S, a contradiction.
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We can prove similar results in exactly the same way for limit ordinals γ > λ+ such that
cof(γ) > λ. For instance we have the following.

Theorem 3.1.12. Suppose there exists an elementary embedding

j : L(Vλ+1)→ L(Vλ+1)

and that γ < Θ is such that cof(γ) > λ. Let

Sω = {β < γ| cof(β) = ω}.

Then if S ∈ Lα(Vλ+1) and S ⊆ Sω is stationary (in V ), then Sω \ S is not stationary.

3.2 Perfect set property

In this section we prove an approximation to the Perfect Set Property in L(Vλ+1). We
regard Vλ+1 as a topological space with basic open sets O(a,α), where α < λ, a ⊆ Vα and

O(a,α) = {b ∈ Vλ+1| b ∩ Vα = a}.

Since cof(λ) = ω, this is a metric topology, and it is complete. Xianghui Shi and Woodin
showed a similar result using Theorem 4.5.2.

Lemma 3.2.1. Assume X ⊆ Vλ+1, X ∈ L(Vλ+1), and |X| > λ. Let α < Θ be good such
that X ∈ Lα(Vλ+1). Suppose that E ⊆ E is saturated and ᾱ are such that for all (J,~j) ∈ E,
J extends to

Ĵ : Lᾱ+1(Vλ̄+1)→ Lα+1(Vλ+1)

and X ∈ rng Ĵ . Then for any (J,~j) ∈ E there is an Ā ∈ Vλ̄+1 and E ′ ⊆ E such that for

Y = {A ∈ Vλ+1| ∃(K,~k) ∈ E ′ a limit root of J such that K(Ā) = A}

we have Y ⊆ X and |Y | > λ.

Proof. This follows immediately by letting X̄ be such that Ĵ(X̄) = X, and setting E ′ =

{(K,~k) ∈ E| K̂(X̄) = X}. Then using the fact that |X| > λ, the lemma follows.

Lemma 3.2.2. Suppose E is a saturated set of inverse limits and (J,~j) ∈ E. Let Z be the
set of A ∈ Vλ̄+1 such that

|{K(A)| (K,~k) ∈ E is a limit root of J}| < λ.

Then |Z| ≤ λ̄.
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Proof. Let κ < λ and let Zκ be the set of A ∈ Vλ̄+1 such that

|{K(A)| (K,~k) ∈ E is a limit root of J}| < κ.

Suppose |Zκ| > λ̄. Then if T̄ is the tree of initial segments of elements of Zκ. We have
|[T̄ ]| > λ̄. Let J(T̄ ) = T . Then by elementarity, |[T ]| > λ. But by definition of Zκ we have
that

|
⋃
{K ′′T̄ | (K,~k) ∈ E is a limit root of J}| ≤ λ̄ · κ < λ.

We claim this is a contradiction. To see this, let i be such that for all b ∈ Vλ+1 there exists
(K,~k) ∈ E a limit root of J such that b ∈ rngKi and K(T̄ ) = T . Let Ti = (j0◦· · · ji−1)−1(T ).

Then |Ti| = λ and for all b ∈ Ti, there exists (K,~k) ∈ E a limit root of J such that b ∈ rngKi.
But then (j0 ◦ · · · ◦ ji−1)(b) ∈ T . And hence, since j0 ◦ · · · ◦ ji−1 is injective,

|
⋃
{K ′′T̄ | (K,~k) ∈ E is a limit root of J}| = λ,

a contradiction.
The lemma follows by noting that cof(λ) = ω, so |Z| ≤ λ̄.

Theorem 3.2.3. Suppose there exists an elementary embedding

j : L(Vλ+1)→ L(Vλ+1).

Assume X ⊆ Vλ+1, X ∈ L(Vλ+1), and |X| > λ. Then there is a perfect set Y ⊆ X such that
|Y | > λ and Y ∈ L(Vλ+1). In fact, for all a, α ∈ Vλ such that a ⊆ Vα and there exists b ∈ Y
such that a = b ∩ Vα, we have

|Y ∩O(a,α)| > λ.

Proof. By Σ1-reflection, if there a counterexample to the Theorem, then there is one below
the least stable δ of L(Vλ+1). So we prove the Theorem for subsets of Vλ+1 in Lδ(Vλ+1).

Let α < δ be good and let X ∈ Lα(Vλ+1) be such that X ⊆ Vλ+1. By strong inverse limit
reflection, there is E ⊆ E saturated, ᾱ, and X̄ such that for all (J,~j) ∈ CL(E), J extends to

Ĵ : Lᾱ+1(Vλ̄+1)→ Lα+1(Vλ+1)

and Ĵ(X̄) = X. Let 〈λi| i < ω〉 be increasing and cofinal in λ, and let 〈κi| i < ω〉 be increasing
and cofinal in λ̄.

Let T ⊆ Vλ̄ be a tree defined as follows. For i < ω let

Ti = {B ∈ Vκi+1 : |{A ∈ Vλ̄+1|A ∈ X̄, B = A ∩ Vκi}| > λ̄}

and
T = {(Ai0 , . . . , Ain)| ∀m ≤ n(Aim ∈ Tim and ∀s < m(Ais = Aim ∩ Vκis ))}.
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Let I be the set
I = {~s ∈ [λ]<ω| ∀i < len(~s)(si < λi)}.

Now let
F : {( ~A, s)| ∃n,~i( ~A = (Ai0 , . . . , Ain) ∈ T, s ∈ I, |s| = n)} → E

have the following properties:

1. For all ~A = (Ai0 , . . . , Ain) ∈ T , s ∈ I, |s| = n− 1, if

F ( ~A, sa 〈α〉) = (K,~k) and F (( ~A, sa 〈β〉)) = (K ′, ~k′)

for α < β < λn, then K(Ain) 6= K ′(Ain).

2. For all ~A = (Ai0 , . . . , Ain) ∈ T , s ∈ I, |s| = n, and m < n if

F ( ~A, s) = (K,~k) and F ( ~A � m+ 1, s � m) = (K ′, ~k′),

then K(Aim) = K ′(Aim).

3. For all ~A = (Ai0 , . . . , Ain) ∈ T , s ∈ I, |s| = n − 1 then F ( ~A, sa 〈α〉) is a limit root of

F ( ~A � n, s) for α < λn−1.

Also assume that F is maximal with these properties, in the sense that F cannot be extended
to some F ′ also satisfying these properties.

Let Z be the set of A ∈ X̄ such that there exists a sequence 〈in|n < ω〉 such that for
Ain = A ∩ Vκin , for all n < ω, and s ∈ I, if |s| = n then ((Ai0 , . . . , Ain), s) ∈ dom(F ). We

claim that |X̄ \ Z| ≤ λ̄. To see this, suppose that A ∈ X̄ \ Z. Then there exists ~A and s

such that F ( ~A, s) = (K,~k), and

|{K ′(A)| (K ′, ~k′) ∈ E is a limit root of K and K ′( ~A) = K( ~A)}| < λ.

But for every K, there are ≤ λ̄ many such A with this property. Hence |X̄ \ Z| ≤ λ̄.
So finally, let A ∈ Z, and let 〈in|n < ω〉 be such that for all n < ω, Ain = A ∩ Vκin , and

for s ∈ I, if |s| = n then ((Ai0 , . . . , Ain), s) ∈ dom(F ). Set

Ks,n = F ((Ai0 , . . . , Ain), s).

Also for x ∈ λω, let Kx be the common part of
〈
Kx�n,n|n < ω

〉
, and set

P = {Kx(A)|x ∈ λω,∀i < ω(xi < λi)}.
Clearly P is a perfect subset of X by definition of E and the fact that A ∈ Z ⊆ X̄.
Furthermore by definition of F we have |P | > λ. Note that for any s ∈ I, if we set

P s = {Kx(A)|x ∈ λω,∀i < ω(xi < λi),∀i < |s|(si = xi)}
then P s is a perfect subset of P , |P s| > λ and

P s = P ∩O(Ain ,κin )

where n = |s|. And hence we have the final part of the conclusion.
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Chapter 4

U(j)-representations

In this chapter we introduce the notion of a U(j)-representation, which was first defined
by Woodin. For a more thorough introduction see [Woo11]. In the first section we prove a
number of closure properties, which will form the basis of proving that sets in L(Vλ+1) have
such representations. In Sections 4.2 and 4.3 we will prove certain properties of fixed point
measures which we will then use in Section 4.4 to show that these representations extend
considerably far in L(Vλ+1).

4.1 Definition and Closure Properties

For this chapter we fix j : L(Vλ+1) → L(Vλ+1) elementary. We will use the notation j(i)

to denote the i-th iterate of j to distinguish it from our inverse limit notation.

Definition 4.1.1 (Woodin). Let U(j) be the set of U ∈ L(Vλ+1) such that in L(Vλ+1) the
following hold:

1. U is a λ+-complete ultrafilter.

2. For some γ < Θ, U is generated by U ∩ Lγ(Vλ+1).

3. For all sufficiently large n < ω, j(n)(U) = U and for some A ∈ U ,

{a ∈ A| j(n)(a) = a} ∈ U.

For each ordinal κ, let ΘLκ(Vλ+1) denote the supremum of the ordinals α such that there is a
surjection ρ : Vλ+1 → α such that {(a, b)| ρ(a) < ρ(b)} ∈ Lκ(Vλ+1). Suppose that κ < Θ and
κ ≤ ΘLκ(Vλ+1). Then E(j, κ) is the set of all elementary embeddings k : Lκ(Vλ+1)→ Lκ(Vλ+1)
such that there exists n,m < ω such that k(n) = j(m) � Lκ(Vλ+1).
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Suppose that κ < Θ and that κ ≤ ΘLκ(Vλ+1). For each δ ≤ λ let F δ(E(j, κ)) be the filter
on P (κ) ∩ L(Vλ+1) generated by the sets

{Dσ|σ ∈ [E(j, κ)]δ},

where for each σ ∈ [E(j, κ)]δ,

Dσ = {b ∈ Lκ(Vλ+1)| k(b) = b for all k ∈ σ}.

Lemma 4.1.2 (Woodin). Suppose κ < Θ, κ ≤ ΘLκ(Vλ+1) and that j(κ) = κ. Then there is
δ < crit (j) and a partition {Sα|α < δ} ∈ L(Vλ+1) of Lκ(Vλ+1) into Fλ(E(j, κ))-positive sets
such that for each α < δ,

Fλ(E(j, κ)) � Sα ∈ U(j).

Proof. First, we have that since j(κ) = κ that

j(E(j, κ)) = E(j, κ) and j(Fλ(E(j, κ))) = Fλ(E(j, κ)).

Now we show that there is no sequence 〈Sα|α < crit (j)〉 ∈ L(Vλ+1) of pairwise disjoint
Fλ(E(j, κ))-positive sets. This follows since

{a ∈ Lκ(Vλ+1)| j(a) = a} ∈ Fλ(E(j, κ)),

and hence if
j(〈Sα|α < crit (j)〉) = 〈Tα|α < j(crit (j))〉 ,

then there exists a β such that β ∈ Tcrit (j) and j(β) = β. But then by elementarity, there
exists an α < crit (j) such that β ∈ Sα. But then j(β) = β ∈ Tα, a contradiction.

Now, since Fλ(E(j, κ)) is λ+-complete, there must exists a δ < crit (j) and a partition
{Sα|α < δ} ∈ L(Vλ+1) of Lκ(Vλ+1) into Fλ(E(j, κ))-positive sets such that for each α < δ,
Fλ(E(j, κ)) � Sα is an ultrafilter.

For α < δ, let Uα be the ultrafilter given by Fλ(E(j, κ)) � Sα. We have that Uα is
λ+-complete since Fλ(E(j, κ)) is λ+-complete. Furthermore we have that

Bα := {a ∈ Sα| j(a) = a)} ∈ Uα.

And hence we have that j(Uα) = Uα, since for all β ∈ Bα, β ∈ Sα ⇐⇒ β ∈ j(Sα). So we
have that for all α < δ, Uα ∈ U(j).

Suppose that κ < Θ and κ ≤ ΘLκ(Vλ+1). Suppose that 〈ai| i < ω〉 is a sequence of
elements of Lκ(Vλ+1) such that for all i < ω, there exists an n < ω such that j(n)(ai) = ai.
Let U(j, κ, 〈ai| i < ω〉) denote the set of U ∈ U(j) such that there exists n < ω such that for
all k ∈ E(j, κ), if k(ai) = ai for all i ≤ n, then

{a ∈ Lκ(Vλ+1)| k(a) = a} ∈ U.
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Definition 4.1.3 (Woodin). Suppose κ < Θ, κ is weakly inaccessible in L(Vλ+1), and
〈ai| i < ω〉 is an ω-sequence of elements of Lκ(Vλ+1) such that for all i < ω there is an n < ω
such that j(n)(ai) = ai.

Suppose that Z ∈ L(Vλ+1) ∩ Vλ+2. Then Z is U(j, κ, 〈ai| i < ω〉)-representable if there
exists an increasing sequence 〈λi| i < ω〉, cofinal in λ and a function

π :
⋃
{Vλi+1 × Vλi+1 × {i}| i < ω} → U(j, κ, 〈ai| i < ω〉)

such that the following hold:

1. For all i < ω and (a, b, i) ∈ dom(π) there exists A ⊆ (L(Vλ+1))i such that A ∈ π(a, b, i).

2. For all i < ω and (a, b, i) ∈ dom(π), if m < i then

(a ∩ Vλm , b ∩ Vλm ,m) ∈ dom(π)

and π(a, b, i) projects to π(a ∩ Vλm , b ∩ Vλm ,m).

3. For all x ⊆ Vλ, x ∈ Z if and only if there exists y ⊆ Vλ such that

(a) for all m < ω, (x ∩ Vλm , y ∩ Vλm ,m) ∈ dom(π),

(b) the tower
〈π(x ∩ Vλm , y ∩ Vλm ,m)|m < ω〉

is well founded.

For Z ∈ L(Vλ+1)∩Vλ+2 we say that Z is U(j)-representable if there exists (κ, 〈ai| i < ω〉)
such that Z is U(j, κ, 〈ai| i < ω〉).

We first show some basic facts about this definition.

Lemma 4.1.4 (Woodin). Suppose that Z is U(j, κ, 〈ai| i < ω〉)-representable and 〈bi| i < ω〉
is such that for all i there exists an n such that

j(n)(bi) = bi.

Then Z is U(j, κ, 〈(ai, bi)| i < ω〉)-representable.

Proof. It is enough to show that

U(j, κ, 〈ai| i < ω〉) ⊆ U(j, κ, 〈(ai, bi)| i < ω〉).

To see this, suppose that U ∈ U(j, κ, 〈ai| i < ω〉). So there exists an n such that for all
k ∈ E(j, κ), if k(ai) = ai for all i ≤ n, then

{a ∈ Lκ(Vλ+1))| k(a) = a} ∈ U.

But requiring that k((ai, bi)) = (ai, bi) for all i ≤ n is an even stronger condition. So
U ∈ U(j, κ, 〈(ai, bi)| i < ω〉.
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Lemma 4.1.5 (Woodin). Suppose that Z is U(j, κ0, 〈ai| i < ω〉)-representable, κ0 < κ1 < Θ
and κ1 ≤ ΘLκ1 (Vλ+1). Then Z is U(j, κ1, 〈bi| i < ω〉)-representable where b0 = (a0, κ0) and
bi = ai for i > 0.

We now want to show certain closure properties for U(j)-representations. While closure
under λ-unions and existential quantification is pretty much immediate, we will see that
closure under complementation is much more involved and requires a property called the
Tower Condition.

Lemma 4.1.6 (Woodin). Suppose that λ < κ < Θ, κ ≤ ΘLκ(Vλ+1) and cof(κ) > λ. Let
N be the collection of sets which are U(j, κ, 〈ai| i < ω〉) in L(Vλ+1) for some 〈ai| i < ω〉. If
N0 ⊆ N , |N0| ≤ λ, then

⋃
N0 ∈ N .

Proof. For each Z ∈ N0 there is
〈
(λZi , a

Z
i )| i < ω

〉
and

πZ :
⋃
{VλZi +1 × VλZi +1 × {i}| i < ω} → U(j, κ,

〈
aZi | i < ω

〉
)

witnessing that in L(Vλ+1), Z is U(j)-representable. We can assume without loss of generality
that there is a 〈λi| i < ω〉 such that for all Z ∈ N0,

〈
λZi | i < ω

〉
= 〈λi| i < ω〉.

Let 〈κi| i < ω〉 be the critical sequence of j, and let 〈Zα|α < λ〉 be an enumeration of N0.
For each n < ω, let

an = {aZαi |α < κn and j(n)(a
Zα
i ) = aZαi }.

Since cof(κ) > λ we have that

1. For all n < ω, an ∈ Lκ(Vλ+1) and |an| < λ.

2. For all Z ∈ N0, for all i < ω, aZi ∈
⋃
{an|n < ω}.

3. For all n < ω, there exists m < ω such that j(m)(an) = an.

Hence by the above lemma we are done.

Lemma 4.1.7 (Woodin). Suppose that Z ⊆ {x×y|x, y ∈ Vλ+1} and Z is U(j, κ, 〈ai| i < ω〉)
-representable. Let

Y = {x ∈ Vλ+1| ∃y ∈ Vλ+1 (x× y ∈ Z)}.

Then Y is U(j, κ, 〈ai|, i < ω〉)-representable.

Proof. Let

π :
⋃
{Vλi+1 × Vλi+1 × {i}| i < ω} → U(j, κ,~a)

witness that Z is U(j, κ,~a)-representable where 〈λi| i < ω〉 is the critical sequence of j. We
construct a function

πY :
⋃
{Vλi+1 × Vλi+1 × {i}| i < ω} → U(j, κ,~a)
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which witnesses that Y is U(j, κ,~a)-representable.
The main point is the following continuity property. We have that if x, y ∈ Vλ+1 then

x× y = {(a, b) ∈ xi × yi| i < ω, xi = x ∩ Vλi , yi = y ∩ Vλi},

and on the other hand if 〈xi| i < ω〉 and 〈yi| i < ω〉 are sequences such that for all i, xi =
xi+1 ∩ Vλi and yi = yi+1 ∩ Vλi then for x =

⋃
i xi and y =

⋃
i yi we have

x× y =
⋃
i

xi × yi.

We define πY such that the following hold:

1. Suppose (a, b) ∈ Vλ+1 × Vλ+1 and a = x× y for some x, y ∈ Vλ+1. Then for all i < ω,

π(a ∩ Vλi , b ∩ Vλi , i) = πY (x ∩ Vλi , c ∩ Vλi , i)

where c = y × b.

2. If x0, c0 ⊆ Vλi are such that there is no (a, b), (x, y) ∈ Vλ+1 × Vλ+1 with a = x × y,
x0 = x ∩ Vλi and c0 = c ∩ Vλi then

(x0, c0, i) /∈ dom(πY ).

Then clearly πY witnesses that Y is U(j, κ, 〈ai| i < ω〉-representable.

We now introduce the Tower Condition, a continuous ill-foundedness condition, which is
the key property needed to show closure of U(j)-representations under complementation.

Definition 4.1.8 (Woodin). Suppose A ⊆ U(j), A ∈ L(Vλ+1), and |A| ≤ λ. The Tower
Condition for A is the following statement: There is a function F : A→ L(Vλ+1) such that
the following hold:

1. For all U ∈ A, F (U) ∈ U .

2. Suppose 〈Ui| i < ω〉 ∈ L(Vλ+1) and for all i < ω, there exists Z ∈ Ui such that

Z ⊆ L(Vλ+1)i, Ui ∈ A, and Ui+1 projects to Ui.

Then the tower 〈Ui| i < ω〉 is wellfounded in L(Vλ+1) if and only if there exists a function
f : ω → L(Vλ+1) such that for all i < ω,

f � i ∈ F (Ui).

The Tower Condition for U(j) is the statement that for all A ⊆ U(j) if A ∈ L(Vλ+1) and
|A| ≤ λ then the Tower Condition holds for A.
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Lemma 4.1.9 (Woodin). Assume that the tower condition holds for U(j). Suppose that
γ0 < γ1 < γ2 are weakly inaccessible cardinals in L(Vλ+1) such that j(γ0, γ1, γ2) = (γ0, γ1, γ2)
and such that

Lγ0(Vλ+1) ≺ Lγ1(Vλ+1) ≺ Lγ2(Vλ+1) ≺ LΘ(Vλ+1).

Suppose that Z is U(j, γ0, 〈ai| i < ω〉)-representable. Then there exists a sequence 〈bi| i < ω〉
such that Vλ+1 \ Z is U(j, γ2, 〈bi| i < ω〉)-representable.

Proof. Fix π witnessing that Z is U(j, γ0, 〈ai| i < ω〉)-representable in L(Vλ+1). Let

〈κi| i < ω〉

be the critical sequence of j and assume that for all i < ω, λi = κi, |ai| ≤ κi and

∀n > i
(
j(n)(ai) = ai and j(n)(π � Vκi+ω) = π � Vκi+ω

)
.

For each n < ω let En be the set of all elementary embeddings

k : Lγ1(Vλ+1)→ Lγ1(Vλ+1)

such that k(γ0) = γ0, k ∈ E(j, γ1) and for all i ≤ n,

k(ai) = ai and k(π � Vκi+ω) = π � Vκi+ω.

Note that 〈En|n < ω〉 ∈ Lγ2(Vλ+1).
For each σ ∈ [En]λ, let

Dσ = {a ∈ Lγ1(Vλ+1)| k(a) = a for all k ∈ σ},

and let Fn be the filter generated by {Dσ|σ ∈ [En]λ}.
We have that for all n < ω and m > n that j(m)(En) = En. So we have that for all n < ω

there is partition 〈Sn,α|α < δn〉 ∈ Lγ2(Vλ+1) of (Lγ1(Vλ+1))n into Fn-positive sets such that
δn < κn+1 and for each α < δn, Fn � Sn,α is an ultrafilter (see Lemma 4.1.2). For each n < ω
and α < δn let Un,α be the ultrafilter on Sn,α given by Fn.

Let A = {Un,α|n < ω, α < δn}. We have that A ∈ L(Vλ+1), |A| ≤ λ, A ⊆ U(j) and
rng (π) ⊆ A.

Let F : A→ L(Vλ+1) be a function witnessing the tower condition such that F ∈ L(Vλ+1).
We have that

〈F (Un,α)|n < ω, α < δn〉 ∈ Lγ2(Vλ+1).

There exists a set T 0
A ⊆ (Lγ1(Vλ+1))<ω such that the following hold:

1. T 0
A ∈ Lγ2(Vλ+1).

2. For all U ∈ A, there exists B ⊆ T 0
A such that B ∈ U .
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3. For all U1 ∈ A and U2 ∈ A, if U1 6= U2 then F (U1) ∩ F (U2) ∩ T 0
A = ∅.

4. For all s ∈ T 0
A there exists U ∈ A such that s ∈ F (U).

Such a T 0
A exists as |A| ≤ λ and each U ∈ A is λ+-complete. We also have that for each

s ∈ T 0
A, there is exactly one U ∈ A such that s ∈ F (U), which we denote Us. Furthermore,

for each n < ω,
|{Us| s ∈ T 0

A ∩ (Lγ1(Vλ+1))n}| ≤ δn < κn+1.

Let TA be the set of all s ∈ T 0
A such that

(L(Vλ+1), s) ≡Σ2 (L(Vλ+1), t)

with parameters from Vλ ∪{T 0
A, F, A, π, Z, γ0, γ1, γ2}, for Us-almost all t. We have that TA is

closed under initial segments and it satisfies 1-4 above. TA also satisfies that if s ∈ TA and t
is an initial segment of s, then Us projects to Ut. Hence we have that for each f ∈ [TA], the
tower 〈Uf�i| i < ω〉 is wellfounded by definition of the tower function.

For each U ∈ A, let Ult(Lγ2(Vλ+1), U) be the ultrapower computed using only functions
f : Lγ1(Vλ+1) → L(Vλ+1) such that f ∈ Lγ2(Vλ+1). We let [f ]U denote the element of

Ult(Lγ2(Vλ+1), U) given by f . If rng (f) ⊆ γ2, we let ξfU be the ordinal in the transitive

collapse of Ult(Lγ2(Vλ+1), U) given by [f ]U . We have that ξfU < γ2 since U ∈ U(j, γ1) and
Lγ2(Vλ+1) ≺ LΘ(Vλ+1).

Let σ ∈ [E(j, γ1)]λ be such that for all n < ω,

Dσn ∩ (Lγ1(Vλ+1))n ⊆ TA

where σn = En ∩ σ. And let C = {ξ < γ1| ∀k ∈ σ(k(ξ) = ξ)}. Note that C<ω ⊆ TA.
We have the following: Suppose (a, b) ∈ Vλ+1 × Vλ+1 and that the tower

〈Ui| i < ω〉 = 〈π(a ∩ Vκi , b ∩ Vκi , i)| i < ω〉

is not wellfounded. There is a sequence of functions 〈fi| i < ω〉 such that for all i,

fi : (Lγ0(Vλ+1))i → C

and such that for all i1 < i2 < ω, ji1,i2(ξ
fi1
Ui1

) > ξ
fi2
Ui2
. Here

ji1,i2 : Ult(Lγ2(Vλ+1), Ui1)→ Ult(Lγ2(Vλ+1), Ui2)

is given by the fact that Ui2 projects to Ui1 . This follows from the fact that γ0 < γ1 are both
weakly inaccessible and Lγ0(Vλ+1) ≺ Lγ1(Vλ+1) ≺ LΘ(Vλ+1).

Now suppose that a ∈ Vλ+1 \ Z. Then for each b ∈ Vλ+1, the tower

〈π(a ∩ Vκi , b ∩ Vκi , i)| i < ω〉
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is not wellfounded. Since F witnesses that the tower condition holds for A ⊇ rng (π), for
each b ∈ Vλ+1, there is no function h : ω → L(Vλ+1) such that for all i < ω,

h � i ∈ F (π(a ∩ Vκi , b ∩ Vκi , i)).

Thus there exists

e : {(a ∩ Vκi , x, i)| i < ω, x ⊆ Vκi} × (Lγ0(Vλ+1))<ω → C

such that for all b ∈ Vλ+1 and i1 < i2 < ω, ji1,i2(ξ
fi1
Ui1

) > ξ
fi2
Ui2

, where for each i < ω,

Ui = π(a ∩ Vκi , b ∩ Vκi , i), and for all s ∈ Lγ0(Vλ+1),

fi(s) = e((a ∩ Vκi , b ∩ Vκi , i), s).

To define such an e, let T be the tree given by F restricted to π(a ∩ Vκi , bi, i) such that
i < ω, bi ⊆ Vκi and (a ∩ Vκi , bi, i) ∈ dom(π). Then for each s ∈ F (π(a ∩ Vκi , bi, i)) let
e((a ∩ Vκi , bi, i), s) be the rank of s in T .

Define a function
ea : {(a ∩ Vκi , x, i)| i < ω, x ⊆ Vκi} → γ1

as follows. For each i < ω and x ∈ Vκi+1,

ea(a ∩ Vκi , x, i) = ξfU

where U = π(a ∩ Vκi , x ∩ Vκi , i) and for all s ∈ Lγ0(Vλ+1),

f(s) = e((a ∩ Vκi , x, i), s).

Finally for each n < ω, let sn = 〈ea � Vκi+ω| i ≤ n〉 . We have that for all n < ω, sn ∈ TA,
since for all k ∈ σn, k(sn) = sn. So the tower 〈Usn|n < ω〉 is wellfounded.

Let T ∗ be the set of all (a ∩ Vκn , s) ∈ Vλ × TA such that a ∈ Vλ+1 × Z and there is a
function e as above such that s = 〈ea|Vκi+ω| i ≤ n〉.

Suppose (a, e) ∈ [T ∗]. Then by definition of TA,

e : {(a ∩ Vκi , x, i)| i < ω, x ⊆ Vκi} → Ord

and for all b ⊆ Vλ, if
〈Ui| i < ω〉 = 〈π(a ∩ Vκi , b ∩ Vκi , i)| i < ω〉

and
〈ξi| i < ω〉 = 〈e(a ∩ Vκi , b ∩ Vκi , i)| i < ω〉

then for all i1 < i2, ji1,i2(ξi1) > ξi2 . So for all b ∈ Vλ+1, the tower 〈π(a ∩ Vκi , b ∩ Vκi , i)| i < ω〉
is not wellfounded, and so a /∈ Z.

Thus
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1. {a ∈ Vλ+1| (a, e) ∈ [T ∗] for some e} = Vλ+1 \ Z.

2. For each (a, e) ∈ [T ∗], the tower 〈Ui| i < ω〉 is wellfounded where for all i < ω, Ui = Ue�i.

3. For each (a0, e0) ∈ [T ∗] and i < ω,

|{Ue1�i| (a1, e1) ∈ [T ] and a1 ∩ Vκi = a0 ∩ Vκi}| < κi+1.

Let 〈bi| i < ω〉 = 〈π � Vκi+ω| i < ω〉. Then Vλ+1 \Z is U(j, γ2, 〈bi| i < ω〉)-representable.

4.2 The Tower Condition

For the proof of the Tower Condition we do not actually use inverse limit reflection.
Instead, we use the structure of the inverse limits together with their ‘naive extensions’
above λ. Because of this difference we define for α < Θ,

Eeα = {(J,~j)| (J,~j � Vλ+1) ∈ E ,∀i(ji : Lα(Vλ+1)→ Lα(Vλ+1))}.

Suppose that (J,~j) ∈ Eeα. Then we say that a ∈ Lα(Vλ+1) is in the extended range of J if for
all i < ω, a ∈ rng (j0 ◦ · · · ◦ ji). We set Jext(b) = a if for some n < ω, for all i ≥ n,

(j0 ◦ · · · ◦ ji)−1(a) = b.

Again, we omit the sequence of embeddings from our notation.

Lemma 4.2.1. Suppose α is good and (J, 〈ji〉) ∈ Eeα is an inverse limit such that for all i,
ji(ji) = j � Lα(Vλ+1). Let U ∈ Lα(Vλ+1) be in the extended range of J and such that for
some i, j(i)(U) = U . Let

j0(U0) = U, j1(U1) = U0, . . . .

Then there exists an n such that for all m ≥ n, Un = Um. Furthermore, for this n we have
that for all m ≥ n, j

(m−1)
m (U) = U (see Section 2.1).

Proof. Note that j(n) denotes the nth iterate of j, and jn denotes the nth element of the
inverse limit sequence. Let m be such that j(m−1)(U) = U . We prove by induction that for
n ≥ m we have jn(Un) = Un. First suppose that m = 1. Then j(U) = U . We have that

j(U) = U ⇒ j0(j0)(U) = U ⇒ j0(U0) = U0.

And hence U0 = U . The fact that jn(Un) = Un follows by induction.
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Now suppose that m > 1. Assume by induction that we have proved the result for all
m′ < m. Then we have for n = m− 1

j(n)(U) = U ⇒ (j0(j0))(n)(U) = U ⇒ (j0)(n)(U
0) = U0 ⇒ j(n−1)(U

0) = U0.

And then using the induction hypothesis on U0 and 〈ji| i ≥ 1〉 we have the first result.
To see the second result, simply note that Um−1 = jm(Um) = Um, and hence

jm(Um) = Um ⇒ jm(Um−1) = Um−1 ⇒
j(m−1)
m ((j0 ◦ · · · ◦ jm−1)(Um−1)) = (j0 ◦ · · · ◦ jm−1)(Um−1)⇒ j(m−1)

m (U) = U,

for any m ≥ n, for n satisfying the first part of the conclusion (where U−1 = U).

Lemma 4.2.2. Suppose that A ∈ LΘ(Vλ+1), |A| ≤ λ and for all a ∈ A, there exists an i
such that j(i)(a) = a. Then there exists a sequence 〈Bi| i < ω〉 and (K, 〈ki| i < ω〉) ∈ Eeη for
some η < Θ good such that,

1. for all i < ω, Bi = (k0 ◦ · · · ◦ ki−1)(B0),

2. A ⊆ limi→ω Bi := {a| ∃n∀i ≥ n(a ∈ Bi)},

3. for all i < ω, ki(ki) = j � Lα(Vλ+1),

4. for all a ∈ limi→ω Bi, there is an i < ω such that k
(i−1)
i (a) = a,

5. for all a ∈ limi→ω Bi, there is an i < ω such that a ∈ rng (K
(i−1)
i )ext.

Proof. Let C = 〈Uα|α < λ〉 be an enumeration of A, and let η < Θ be good and large
enough so that C,A ∈ Lη(Vλ+1). Let (K, 〈ki| i < ω〉) ∈ Eeη be such that for all i < ω,
ki(ki) = j � Lα(Vλ+1),

k0(C0) = C, k0(A0) = A

and for i > 0,
ki(Ci) = Ci−1, ki(Ai) = Ai−1.

Let λ̄ = λ̄K . Set
B0 = lim

i→ω
Ci � λ̄.

Let Bi = (k0 ◦ · · · ◦ ki−1)(B0).
We want to show that for α < crit (k0), that Uα ∈ limi→ω Bi. But this follows by Lemma

4.2.1. To see this, by induction define U i
α for i < ω as follows: k0(U0

α) = Uα and for i ≥ 0,
ki+1(U i+1

α ) = U i
α. Then by the lemma we have that for some n, U i

α = Un
α for all i ≥ n. Hence

Un
α ∈ B0. We want that for all i ≥ n, Uα ∈ Bi+1. But this follows since

Un
α = U i

α ∈ B0 ⇒ (k0 ◦ · · · ◦ ki)(U i
α) = Uα ∈ Bi+1.
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Similarly, we have that for α < (k0 ◦ · · · ◦ ki−1)(crit ki), Uα ∈ limi→ω Bi. For ease of
notation we prove this for i = 1. The proof for i > 1 is very similar. So we want for
α < k0(crit k1), that Uα ∈ limi→ω Bi. To see this, by induction define U i

α for i < ω as follows:

k
(0)
1 (U1

α) = Uα and for i ≥ 1, k
(0)
i+1(U i+1

α ) = U i
α. Then by Lemma 4.2.1 we have that for some

n, U i
α = Un

α for all i ≥ n. We want to see that Un
α ∈ B1. We have

B1 = k0(lim
i→ω

Ci � λ̄) = lim
i→ω

k0(Ci) � k0(λ̄),

and furthermore
k0(k1 ◦ · · · ◦ ki)(k0(Ci)) = C.

Hence using that k0(crit k1) = crit (k0(k1◦· · ·◦ki)) and α < k0(crit k1) we have that Un
α ∈ B1.

We show that for all i ≥ n, Uα ∈ Bi+1. But this follows since

Un
α = U i

α ∈ B1 ⇒ k0(k1 ◦ · · · ◦ ki)(U i
α) = Uα ∈ Bi+1.

Note that
Bi = k0(k1 ◦ · · · ◦ ki−1)(k0(B0)) = k0(k1 ◦ · · · ◦ ki−1)(B1).

But
sup
i<ω

(k0 ◦ · · · ◦ ki−1)(crit ki) = λ.

So A ⊆ limiBi.
Note that we have for all U ∈ limi→ω Bi, that there is an i such that j

(i−1)
i (U) = U , using

the proof of Lemma 4.2.1 together with above argument.

Theorem 4.2.3. Suppose A ⊆ U(j), A ∈ L(Vλ+1), |A| ≤ λ. Then the tower condition for
A holds.

Proof. Let A ⊂ U(j), |A| = λ, and A ∈ L(Vλ+1). Let 〈Bi| i < ω〉, η < Θ be good,
Lη(Vλ+1) ≺Σ1 LΘ(Vλ+1), and (J, 〈ji| i < ω〉) ∈ Eeη+2 be such that, A ⊆ limi→ω Bi, for all
i < ω, ji(ji) = j � Lη(Vλ+1), and for i < ω,

Bi = (j0 ◦ · · · ◦ ji−1)(B0).

Since |B0| < λ, λ-DC holds in L(Vλ+1), and each measure in A is λ+-complete, there is
a tower function F0 ∈ Lη(Vλ+1) for B0. Define for i > 0,

(j0 ◦ · · · ◦ ji−1)(F0) = Fi.

Let B := limi→ω Bi, and for U ∈ B define

F (U) =
⋂
{Fi(U) ∩ {a ∈ L(Vλ+1)| j(i)(a) = a}| i < ω, U ∈ Bi and j(i)(U) = U}.
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We want to show that F is a tower function for B := limi→ω Bi. To see this suppose
〈Ui| i < ω〉 is an illfounded tower with Ui ∈ B for all i < ω, and f ∈ Lη(Vλ+1) is such that

∀i(f � i ∈ F (Ui)).

Let 〈αi| i < ω〉 ∈ Lη(Vλ+1) be such that

jUi,Ui+1
(αi) > αi+1.

For i < ω, let mi be least such that Ui ∈ Bn for all n ≥ mi. Let (K, 〈ki|i < ω〉) ∈ Eeη+1 be a
0-close limit root of J such that the following hold:

1. For all i, (k0 ◦ · · · ◦ ki)(F0) = Fi and (k0 ◦ · · · ◦ ki)(B0) = Bi.

2. For all i < ω, αi, f(i) ∈ rng (Kext). Let αni and fn(i) be such that

k0(α0
i ) = αi, k1(α1

i ) = α0
i , k2(α2

i ) = α1
i , . . .

and
k0(f 0(i)) = f(i), k1(f 1(i)) = f 0(i), k2(f 2(i)) = f 1(i), . . .

3. For all i < n, ki(jn � Lη(Vλ+1)) = ji(jn � Lη(Vλ+1)).

4. For all n, let in be least such that Un ∈ rng ((j0 ◦ · · · jin−1)(Jext
in )). Let Un,i be defined

as follows:

(j0 ◦ · · · jin−1)(jin)(Un,0) = Un, (j0 ◦ · · · jin−1)(jin+1)(Un,1) = Un,0, . . . ,

(j0 ◦ · · · jin−1)(jin+i+1)(Un,i+1) = Un,i, . . .

Then for i, n < ω and m < in, there are Um
n,i such that

k0(U0
n,i) = Un,i, k1(U1

n,i) = U0
n,i, . . . , kin−1(U in−1

n,i ) = U in−2
n,i .

Furthermore, for i ≥ in
ki(U

in−1
n,i−in) = ji(U

in−1
n,i−in).

It is easy to find such a (K,~k) using the proof of Lemma 2.1.7.
We have for all i that

αi ≥ α0
i ≥ α1

i ≥ · · · .

Let αωi be the stable value. For n < ω, by Lemma 4.2.1 〈Un,i| i < ω〉 and 〈f i| i < ω〉 must
stabilize for some i. Let Un,ω and fω be the stable values, defining Um

n,ω in the obvious way



CHAPTER 4. U(J)-REPRESENTATIONS 74

as above. Note that we have for all n, i < ω,

(k0 ◦ · · · ◦ kin−1)(kin+i)(Un,i) = (k0 ◦ · · · ◦ kin−1)(kin+i)((k0 ◦ · · · ◦ kin−1)(U in−1
n,i ))

= (k0 ◦ · · · ◦ kin−1)(kin+i(U
in−1
n,i ))

= (k0 ◦ · · · ◦ kin−1)(jin+i(U
in−1
n,i ))

= (k0 ◦ · · · ◦ kin−1)(jin+i)((k0 ◦ · · · ◦ kin−1)(U in−1
n,i ))

= (j0 ◦ · · · ◦ jin−1)(jin+i)(Un,i) = Un,i−1

where Un,−1 = Un.
We want to show that

〈
U in−1
n,ω |n < ω

〉
= 〈U ′n|n < ω〉 is an illfounded tower as witnessed

by 〈αωi 〉, and for all n < ω, U ′n ∈ B0. But also that for all n, fω � n ∈ F0(U ′n), contradicting
the fact that F0 is a tower function for B0.

The fact that for all n, U ′n ∈ B0 follows since for all large enough i, Un ∈ Bi and
(k0 ◦ · · · ◦ ki−1)(U ′n) = Un.

To see that 〈U ′n|n < ω〉 is illfounded, fix n and let n0 be such that

f � n ∈ Fn0(Un)

and for all i ≥ n0,

(k0 ◦ · · · ◦ ki)(αωn , αωn+1, U
′
n, U

′
n+1, f

ω � n) = (αn, αn+1, Un, Un+1, f � n).

Then we have that
jUn,Un+1(αn) > αn+1 ⇒ jU ′n,U ′n+1

(αωn) > αωn+1.

And since f � n ∈ Fn0(Un) we have that fω � n ∈ F0(U ′n).
Hence we have a contradiction to the fact that F0 is a tower function for B0. So F is a

tower function for B, and the theorem follows as A ⊆ B.

In fact, since we did not actually use inverse limit reflection, exactly the same proof gives
the tower condition for L(X, Vλ+1). In this situation we start with assuming an elementary
embedding j : L(X, Vλ+1) → L(X, Vλ+1), and we make the same definition for a U(j)-
representation and the Tower Condition, replacing each L(Vλ+1) with L(X, Vλ+1). We then
have the following:

Theorem 4.2.4. Suppose there exists an elementary embedding

j : L(X, Vλ+1)→ L(X, Vλ+1).

Then the Tower Condition for U(j) holds in L(X, Vλ+1).

Finally by a Theorem of Woodin (see [Woo11]) we have the following:
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Corollary 4.2.5. Suppose there exists an elementary embedding

j : L(X, Vλ+1)→ L(X, Vλ+1).

Let Y be U(j)-representable in L(X, Vλ+1). Let κ = λ+ and set

η = sup{(κ+)L[A]|A ⊆ λ}.

Then every set
Z ∈ Lη(Y, Vλ+1) ∩ Vλ+2

is U(j)-representable in L(X, Vλ+1).

4.3 Complexity of fixed point measures

In order to extend the U(j)-representations past the point given by Corollary 4.2.5 we
need to analyze the fixed point measures which compose these representations. We consider
a certain game on fixed points which was first considered in [Woo11].

Definition 4.3.1. Suppose γ < ΘL(Vλ+1) and

〈ai| i < ω〉 ∈ (Lγ(Vλ+1))ω

and we have:

1. γ ≤ ΘLγ(Vλ+1),

2. for all i < ω, ai ⊆ ai+1 ⊆ γ and |ai| < λ,

3. for all i < ω, there exists an n < ω such that j(n)(ai) = ai.

Then let G(j, γ, 〈ai| i < ω〉) denote the following game. Player I plays a sequence〈
(γi,

〈
bim : m < ω

〉
) : i < ω

〉
and player II plays a sequence 〈Ei : i < ω〉 such that the following hold:

1. Ei ⊆ Emb(j, γi), |Ei| ≤ λ, and for each k ∈ Ei there exists m < ω such that k(bim) = bim.

2. γ0 = γ, γi+1 < γi and there exists m < ω such that

k(bim) = bim ⇒ k(γi+1) = γi+1

for all k ∈ Ei.

3. for all i < ω, γi ≤ ΘLγi (Vλ+1),
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4. 〈b0
m : m < ω〉 = 〈am : m < ω〉.

5. for all m < ω, bim ⊆ bim+1 ⊆ γi and |bim| < λ

6. for all m < ω there exists m∗ < ω such that

k(bim∗) = bim∗ ⇒ k(bi+1
m ) = bi+1

m

for all k ∈ Ei.

Definition 4.3.2. Suppose γ < ΘL(Vλ+1), S ⊆ Lγ(Vλ+1), and 〈ai| i < ω〉 ∈ (Lγ(Vλ+1))ω and
we have:

1. γ ≤ ΘLγ(Vλ+1),

2. for all i < ω, ai ⊆ ai+1 ⊆ γ and |ai| < λ,

3. for all i < ω, there exists an n < ω such that j(n)(ai) = ai.

4. S =
⋃
i<ω ai.

Then we say that 〈ai| i < ω〉 is a j-partition of S.

Suppose that j : L(Vλ+1) → L(Vλ+1). Note that for all S ⊆ LΘ(Vλ+1) ∩ Ord such that
|S| ≤ λ, there is a γ < Θ and a 〈ai| i < ω〉 ∈ (Lγ(Vλ+1))ω such that 〈ai| i < ω〉 is a j-partition
of S.

Suppose that ~E and S are such that for all α ∈ S there exists an i such that for all k ∈ E i,
k(α) = α. Let ~a be defined by

ai = {α ∈ S| ∀k ∈ Ei (k(α) = α)}.

We say that ~a is the partition of S with respect to ~E .
Suppose ~a is such that a0 ⊆ a1 ⊆ · · · ,

ai ⊆ {α ∈ S| ∀k ∈ Ei (k(α) = α)}

and for all i, |ai| < crit j(i). Then we say that ~a is a division of S with respect to ~E .

Lemma 4.3.3. Suppose that 〈ai| i < ω〉 is a j-partition of S with S ⊆ γ for some γ. Suppose
that (J,~j) ∈ Eeη+1 is such that η ≥ γ is good and for all i < ω,

J
ext,(i−1)
i (ai) = ai.

Then there exists a (K,~k) ∈ Eeη a limit root of J such that for all i < ω,

K
ext,(i−1)
i (ai) = ai.
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Proof. This follows easily in the usual way by noticing that for α an ordinal, if ji(α) = α,
ki is a square root of ji and α ∈ rng ki then ki(α) = α. Hence if 〈ai| i < ω〉 ∈ rng kn for all
n < ω, then we have that for all n < ω that

(j0 ◦ · · · ◦ jn−1)−1(an) ∈ rng jn

and so an ∈ rng j
(n)
n .

Definition 4.3.4. Fix κ < Θ good with cof(κ) > λ. Let S ⊆ κ such that |S| ≤ λ. Then we
say that S is λ-threaded if the following hold:

1. Suppose α < supS is such that there exists ~β ∈ S<ω and a ∈ Vλ such that α is definable
over Lκ(Vλ+1) from ~β and a. Then α ∈ S.

2. Suppose α ∈ S is a limit and cof(α) < λ. Then S ∩ α is cofinal in α.

We say that S is definably closed if S satisfies (1).

Since λ-DC holds in L(Vλ+1), we have that for every S ⊆ κ with |S| ≤ λ, there is S ′ ⊆ κ
with S ′ ⊇ S and |S ′| ≤ λ such that S ′ is λ-threaded.

We put for E a set such that for all k ∈ E, k : Lα(Vλ+1)→ Lα(Vλ+1) for some α < Θ,

F(E) = {β| ∀k ∈ E (k(β) = β)}.

Lemma 4.3.5. Suppose α is a limit ordinal. Then there exists a γ < α such that for all
β ∈ [γ, α) if β0 is such that β = γ + β0, then for all δ < α, δ + β0 < α.

Proof. We prove this by induction. Suppose that α is such that there exists a β < α such
that for some δ < α, β + δ ≥ α. Let α∗ ≤ α be the sup of ordinals γ < α such that for all
β, δ < γ, δ + β < γ. Call the set of such ordinals A. Then clearly α∗ ∈ A. So α∗ < α. Let
α0 be such that α∗ + α0 = α.

We claim that α0 < α. If not, then α∗ + α = α. But then α∗ · ω ≤ α, and α∗ · ω ∈ A, a
contradiction.

But then by applying the lemma to α0, we have that there exists a γ < α0 such that
for all β ∈ [γ, α0) if β0 is such that β = γ + β0, then for all δ < α0, δ + β0 < α0. But if
β ∈ [γ, α0) then α∗ + β < α and for some β0,

α∗ + β = α∗ + γ + β0.

Hence γ0 = α∗ + γ witnesses the lemma for α. To see this let β ∈ [γ0, α) and let β0 be
such that α∗ + γ + β0 = β. Suppose δ ∈ [α∗, α). Let δ∗ be such that α∗ + δ∗ = δ. Then we
have that δ∗ < α0, and hence δ∗ + β0 < α0. But then

α∗ + δ∗ + β0 = δ + β0 < α∗ + α0 = α,

which proves the lemma.
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From the previous lemma, given a limit ordinal α there is a unique decomposition,

α = α0 + α1 + · · ·+ αn

for some n with α0 > α1 > · · · > αn, and such that for all for all i < n, for all

β ∈ [α0 + · · ·+ αi, α0 + · · ·+ αi+1)

if β0 is such that
β = α0 + · · ·+ αi + β0

then for all δ < α0 + · · ·+ αi+1, δ + β0 < α0 + · · ·+ αi+1. We call 〈α0, . . . , αn〉 the addition
decomposition of α.

We define the function c(α, β) for β < α as follows. Let 〈α0, . . . , αn〉 be the addition
decomposition of α. Let i be largest such that α0 + · · ·+ αi ≤ β, and let β0 be such that

α0 + · · ·+ αi + β0 = β.

Set c(α, β) = β0.
Also define the following functions:

ld(α) = α0 + · · ·+ αn−1

if n > 0 and ld(α) = 0 otherwise, where 〈α0, . . . , αn〉 is the addition decomposition of α, and

rd(α) = αn.

Lemma 4.3.6. Suppose that β + γ = α. Let 〈α0, . . . , αn〉 be the addition decomposition of
α. Then for some i, γ = αi + · · ·+ αn.

Proof. Note that we have for some i that β = α0 + · · ·+αi−1 +β′ and γ = γ′+αi+1 + · · ·+αn
for some β′ and γ′ such that β′ + γ′ = αi. Furthermore, if β and γ were a contradiction to
the lemma, we would have that β′, γ′ < αi and β′, γ′ 6= 0. But then β′+γ′ < αi by definition
of the addition decomposition, a contradiction.

Lemma 4.3.7. Suppose that β + γ = α and γ 6= ∅. Then rd(γ) = rd(α).

Proof. By the previous lemma, if 〈α0, . . . , αn〉 is the addition decomposition of α, we have
that γ = αi + · · · + αn for some i. So it is enough to see that 〈αi, . . . , αn〉 is the addition
decomposition of γ. But this is basically immediate.

We fix a good limit ordinal κ < Θ for the rest of the section such that κ is regular
in L(Vλ+1). Furthermore whenever we refer to Ĵ for some inverse limit J , we mean the
extension of J to an embedding Ĵ : Lκ̄(Vλ̄+1)→ Lκ(Vλ+1) for some κ̄ and λ̄.

We first consider a more restrictive version of the above game. This game, in some sense,
captures a version of G(j, γ 〈ai| i < ω〉) where only the ‘local largeness’ of the γi matter.
Later on when we play G(j, γ 〈ai| i < ω〉), we will do so by playing many versions of this
more restrictive game.
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Lemma 4.3.8. Suppose that α0 < κ is an ordinal with cof(α0) > λ and (J0,~j0) ∈ Eκ+α0+2

and α0 ∈ rng Ĵ0. Then II has a quasi-winning strategy in the following game G(α0, J
0)

I β0, γ0 β1, γ1 · · ·
II α1, (J

1,~j1) α2, (J
2,~j2) · · ·

which has the following rules.

1. For all i, αi, βi, γi < κ.

2. β0 > β1 > β2 > · · · and α0 > α1 > α2 > · · · .

3. α0 > β0.

4. For all i, if cof(βi) > λ then cof(αi+1) > λ.

5. For all i, (J i,~ji) ∈ Eκ+αi+2 and αi ∈ rng Ĵ i.

6. For all i, γi ∈ (ld(αi), αi), (J i)ext(γi) = γi and αi+1 ≥ γi.

7. For all i, αi+1 is definable over Lκ+αi+2(Vλ+1) from parameters in

{α0, . . . , αi} ∪ {γi} ∪ λ,

and (J i+1)ext(αi+1) = αi+1.

8. For all i, βi+1 > ld(βi) and βi > ld(α0).

The first player to violate one of the rules loses.

Proof. We describe a quasi-winning strategy for II. First suppose that I plays β0. Let

K0 ∈ Eκ+α0+1

be a 0-close limit root of J0 such that β0 ∈ rng K̂0, (K0)ext(γ0) = γ0, and

Ĵ0(ᾱ0) = α0 = K̂0(ᾱ0)

for some ᾱ0. Let β̄0 be such that K̂0(β̄0) = β0. Now we have by elementarity that ld(ᾱ0) < β̄0.
So let β̄∗0 be such that

ld(ᾱ0) + β̄∗0 = β̄0.

Let β−0 be the least β such that there exists (K,~k) ∈ Eκ+α0+1 with

λ̄K < β̄∗0 , K̂(β̄∗0) = β, Kext(β) = β, and Kext(γ0) = γ0.
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· · ·

Figure 4.1: Typical play of G(α0, J
0).
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Let α1 = γ0 + β−0 . Clearly we have that α1 is definable over Lκ+α0+2(Vλ+1) from γ0 and β̄∗0 .
Furthermore we have that α1 < α0 since β−0 ≤ K̂0(β̄∗0), and for all δ < α0,

δ + K̂0(β̄∗0) < α0.

To see that β−0 ≤ K̂0(β̄∗0), note that

β−0 ≤ (Kext)−1(K̂0(β̄∗0))

since for large enough i, K0
i is a witness to this.

Let (J1,~j1) ∈ Eκ+α0+1 be such that λ̄J1 < β̄∗0 , Ĵ1(β̄∗0) = β−0 , (J1)ext(β−0 ) = β−0 and
(J1)ext(γ0) = γ0. Then clearly (J1)ext(α1) = α1. Also, if cof(β0) > λ, then cof(β̄∗0) > λ̄J1 and
hence cof(α1) > λ.

Now suppose that I has played β0, . . . , βi and γ0, . . . , γi satisfying the rules and II has
responded with α1, . . . , αi and (J1,~j1), . . . , (J i,~ji) satisfying the rules. Also assume that II
has chosen β̄0, . . . , β̄i−1 and K0, . . . , Ki−1 satisfying that for all n < i, K̂n(β̄n) = βn and
Ĵn+1(β̄∗n) = β−n where β−n is such that γn + β−n = αn+1.

Let (Ki, ~ki) ∈ Eκ+αi+1 be such that for some β̄i

K̂i(β̄i) = βi, K̂i(β̄i−1) = βi−1, and K̂i(β̄∗i−1) = β−i−1,

and
(Ki)ext(γi, γi−1, β

−
i−1) = (γi, γi−1, β

−
i−1).

Now we have ld(β̄i−1) < β̄i. So let β̄∗i be such that ld(β̄i−1) + β̄∗i = β̄i.

Let β−i be the least β such that there exists (K,~k) ∈ Eκ+αi+1 with

λ̄K < β̄∗i , K̂(β̄∗i ) = β, Kext(β) = β, and Kext(γi) = γi.

Let αi+1 = γi + β−i . Clearly we have that αi+1 is definable over Lκ+αi+2(Vλ+1) from γi and
β̄∗i . Furthermore we have that αi+1 < αi since

β−i ≤ K̂i(β̄∗i ),

and β̄i−1 = γ + β̄∗i−1 for some γ implies by Lemmas 4.3.6 and 4.3.7 that

rd(β̄∗i−1) = rd(β̄i−1) > β̄∗i

by definition of β̄∗i and the fact that β̄i > β̄i−1. But applying K̂i we get that

rd(β−i−1) > K̂i(β̄∗i ) ≥ β−i

which is enough to show that

αi+1 = γi + β−i < αi = γi−1 + β−i−1.
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Figure 4.2: Strategy for G(j, κ+ α0,~a).

To see that β−i ≤ K̂i(β̄∗i ), note that

β−i ≤ ((Ki)ext)−1(K̂i(β̄∗i ))

since for large enough m, Ki
m is a witness to this.

Let (J i+1,~ji+1) ∈ Eκ+αi+1 be such that λ̄Ji+1 < β̄∗i , Ĵ
i+1(β̄∗i ) = β−i , (J i+1)ext(β−i ) = β−i

and (J i+1)ext(γi) = γi. Then clearly (J i+1)ext(αi+1) = αi+1. Also, if cof(βi) > λ, then
cof(β̄∗i ) > λ̄Ji+1 and hence cof(αi+1) > λ.

We have described a quasi-winning for II, which proves the lemma.

Theorem 4.3.9. Let j : L(Vλ+1) → L(Vλ+1) be elementary. Fix κ < Θ good and regular
in L(Vλ+1). Suppose that S has a largest element α0, S is λ-threaded, and 〈ai| i < ω〉 is a
j-partition of S. Then rank(j, κ+ α0,~a) ≥ α0.
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Proof. We prove this by induction on α0. Clearly, if α0 = α′0 + 1 then S ∩ α0 is λ-threaded
and has largest element α′0, hence the induction is immediate.

Now assume that α0 is a limit. There are two cases. Either cof(α) < λ or cof(α) > λ.
First assume that cof(α0) < λ. Then there must be a sequence 〈βi| i < cof(α0)〉 cofinal

in α0 such that for all i < cof(α0), βi ∈ S. Hence we have that S ∩ βi + 1 is λ-threaded and
has largest element βi. So by induction we have that

rank(j, κ+ βi, 〈ai ∩ βi + 1| i < ω〉) ≥ βi.

But then clearly we have that rank(j, κ + α0,~a) ≥ supi βi = α0 since for all i < ω we have
that for some n, βi ∈ an.

Now assume that cof(α0) > λ. Based on an arbitrary sequence β0 > β1 > · · · with
β0 < α0 we will choose responses αi and ~ai which are legal plays against a play by II in
G(j, κ+ α0,~a).

Let β0 < α0. Let ~E0 be a first play by II in G(j, κ+ α0,~a) and set S0 = S.
Let (J0,~j0) ∈ Eeκ+α0+ω be such that α0 ∈ rng Ĵ0 and (J0)ext(α0) = α0. Let T0 ⊆ β0 + 1

be λ-threaded with β0 ∈ T0.
For each β ∈ T0 \ supS0, we play a version of G(α0, J

0) and define f(β) by induction on
the order of T0 \ supS0. We call this game G(α0, J

0)[β] and let α[β] be a winning response
by II to the play β, f(β) by I. Let i be least such that

α0 ∈
⋂
n≥i

F(E0
n).

Assume we have defined f(β′) and α[β′] for all β′ ∈ β ∩ (T0 \ supS0). Let γ be least such
that for all β′ ∈ β ∩ (T0 \ supS0),

γ > α[β′], ∀n ≥ i (γ ∈ F(E0
n)), and (J0)ext(γ) = γ.

Set f(β) = γ.
Let

S1 = {α[β]| β ∈ T0 \ supS0} ∪ (S0 ∩ α0)

and let ~a1 be a division of S1 with respect to E0. Note that for all α ∈ S1 \ sup(S0 ∩ α0),
there exists an i such that for some γ ∈

⋂
n≥iF(E0

n), as α is definable from parameters in
{α0, γ} ∪ λ over Lκ+α0+2(Vλ+1). Hence there exists an i′ such that for all n ≥ i′, α ∈ F(E0

n).
I then plays (~a1, α[β0]).

Now assume that I has played

(~a, α0), (~a1, α[β0]), . . . , (~an, α[β0, . . . , βn−1])

against ~E0, ~E1, . . . , ~En−1 and β0 > β1 > · · · > βn−1. Assume we have defined the following as
well.
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1. T0, . . . , Tn−1 such that for i < n, Ti ⊆ βi + 1 is λ-threaded and βi ∈ Ti. Let

T ∗i = Ti \ (sup(Ti−1 ∩ βi)),

where T−1 = S0.

2. Suppose that δ0 > · · · > δm−1 is such that m ≤ n and the following hold: δ0 ∈ T ∗0 , and
for all i < m− 1, there is an i′ such that βi′ = δi, and δi+1 ∈ T ∗i′ . Then

G(α0, J
0)[δ0, . . . , δm−1]

is an instance of G(α0, J
0) with

f(δ0), f(δ0, δ1), . . . , f(δ0, . . . , δm−1)

defined and with α[δ0] > · · · > α[δ0, . . . , δm−1] a winning response by II against the
play

(δ0, f(δ0)), (δ1, f(δ0, δ1)), . . . , (δm−1, f(δ0, . . . , δm−1)).

3. For Wn the set of such tuples (δ0, . . . , δm−1) the function f is defined on W such that
it is order preserving from lexicographically ordered tuples to ordinals. Furthermore
for all (δ0, . . . , δm−1) ∈ Wn, if s is such that δm−1 ∈ T ∗s , then there is an i such that for
all n′ ≥ i

f(δ0, . . . , δm−1) ∈ F(Esn′).

Now let βn < βn−1 and let ~En be a play by II. We can assume without loss of generality
that if

Tn−1 ∩ [βn, βn−1) 6= ∅

then βn ∈ Tn−1.
Suppose first that βn /∈ Tn−1. Let Tn ⊆ βn + 1 be λ-threaded such that βn ∈ Tn and

Tn−1 ∩ βn−1 ⊆ Tn. For each δ ∈ Tn \ (supTn−1 ∩ βn) we define f(βs(0), . . . , βs(m−1), δ) by
induction, where s is longest such that for all i < m − 1, there exists an i′ such that
βs(i) ∈ Ti′ but βs(i+1) /∈ Ti′ and s(m− 1) = n− 1:

First we know that βn−1 ∈ Tn−1 and it is the least element of Tn−1 greater than βn.
Hence cof(βn−1) > λ since Tn−1 is λ-threaded. Hence by definition of the game G(α0, J

0),
α∗ = α[βs(0), . . . , βs(m−1)] is such that cof(α∗) > λ. Let i be least such that for all i′ ≥ i,
α∗ ∈ F(Eni′ ). Let γ be least in

⋂
i′≥iF(Eni ) ∩ α∗ such that for all

δ′ ∈ δ ∩ (Tn \ (sup(Tn−1 ∩ βn)))

we have
α[βs(0), . . . , βs(m−1), δ

′] > γ.
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Set f(s(0), . . . , s(m− 1), δ) = γ.
Now let

Sn = ({α[δ0, . . . , δm′−1]| (δ0, . . . , δm′−1) ∈ dom(f)} ∩ αn−1) ∪ (Sn−1 ∩ αn−1).

Set
αn = α[βs(0), . . . , βs(m−1), βn],

and let ~an be a division of Sn with respect to ~En. I then plays (~an, αn).
Now suppose that βn ∈ Tn−1. Then we simply let Tn = Tn−1 ∩ βn + 1 and we set

αn = α[δ0, . . . , δm−1]

where (δ0, . . . , δm−1) ∈ Wn is the unique sequence satisfying that δm−1 = βn. We set Sn =

Sn−1 ∩ αn + 1 and let ~an be a division of Sn with respect to ~En. I then plays (~an, αn).
Clearly we have shown legal plays by I based on any finite sequence β0 > β1 > · · · . Hence

the induction is complete.

Corollary 4.3.10. Suppose there exists an elementary embedding j : L(Vλ+1) → L(Vλ+1).
Then the supremum of rank(j, κ,~a) for all possible κ and ~a is Θ.

4.4 Representations in L(Vλ+1)

Using the results of the previous few sections, we can show by a result of Woodin that
U(j)-representations extend considerably far in L(Vλ+1). Uncovering the full extent of these
representations in L(Vλ+1) has many interesting consequences which we will explore in the
next section.

Theorem 4.4.1 (Cramer, Woodin). Suppose there is an elementary embedding

j : L(Vλ+1)→ L(Vλ+1).

Let κ be least such that

Jκ(Vλ+1) ≺Σ1(Vλ+1∪{Vλ+1}) Jκ+1(Vλ+1).

Then every set Z ∈ Lκ(Vλ+1) ∩ Vλ+2 is U(j)-representable in L(Vλ+1).

The following proof, which gives the representations from the Tower Condition and the
results of Section 4.3, is due to Woodin.

Proof sketch. Let G∗(j, γ,~a) be the game defined the same as G(j, γ,~a) where in addition
one requires that
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1. γ is weakly inaccessible in L(Vλ+1) and Lγ(Vλ+1) ≺ LΘ(Vλ+1).

2. For each i < ω, γi is weakly inaccessible in L(Vλ+1) and Lγi(Vλ+1) ≺ LΘ(Vλ+1).

Since the set of γ < Θ which are weakly inaccessible in L(Vλ+1) is cofinal in Θ, the theorems
of the previous section carry over to G∗(j, γ,~a).

Let S be the set of all (γ,~a) such that G∗(j, γ,~a) is defined. For each (γ,~a) ∈ S, let
N(γ,~a) be the set of all Z ∈ L(Vλ+1) ∩ Vλ+2 such that Z is U(j, γ,~a)-representable. Let
ρ(γ,~a) be the least ordinal α such that

Lα+1(Vλ+1) ∩ Vλ+2 * N(γ,~a).

We show that if (γ,~a) ∈ S then it is not the case that

ρ(γ,~a) < rank(G∗(γ,~a)).

To see this, suppose towards a contradiction that this were the case. Then by replacing
(γ,~a) by a move at some finite stage of G∗(j, γ,~a) by Player I, we can assume that for all

initial moves E0 ⊆ E(j, γ) there exists a response (γ1,~b
1) ∈ S such that ρ(γ1,~b

1) ≥ ρ(γ,~a).
Let κ = ρ(γ,~a). Suppose that a ∈ Lγ(Vλ+1), i < ω and j(i)(a, γ) = (a, γ). Let Ea be the

set of all k ∈ E(j, γ) such that k(a) = a. For each σ ∈ [Ea]
λ let

Cσ = {b ∈ Lγ(Vλ+1)| k(b) = b for all k ∈ σ},

and let Fa be the filter generated by the sets Cσ for σ ∈ [Ea]
λ.

As before (see Lemma 4.1.2) we have that there exists a partition 〈Sα|α < ηa〉 of Lγ(Vλ+1)
into Fa-positive sets such that ηa < crit (j(i)) and for each α < ηa, Fa � Sα is an ultrafilter
in L(Vλ+1).

We claim that there exists a set E0 ∈ [E(j, γ)]λ and a function

e : Lγ(Vλ+1)→ U(j, γ,~a)

such that the following hold:

1. For each k ∈ E0 there exists i < ω such that k(ai) = ai.

2. For all ~c ∈ Lγ(Vλ+1), if for all i < ω, k(ci) = ci for all k ∈ E0 such that k(ai) = ai, then
〈e(ci)| i < ω〉 is a wellfounded tower and for all i < ω, for e(ci)-almost all c ∈ Lγ(Vλ+1),

(Lγ(Vλ+1), 〈cn|n < i〉) ≡ (Lγ(Vλ+1), c)

with parameters in Vλ ∪ {Vλ+1}.
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This follows immediately by restricting to a measure one set of equivalent elements in the
above sense, and then finding E0 which generates that set.

Let 〈κi| i < ω〉 be the critical sequence of j. We can assume without loss of generality
that κi ∈ ai for all i < ω. Let N(E0) be the set of all Z0 ⊆ Vλ+1 such that there exists a
function

π0 :
⋃
{Vκi+1 × Vκi+1 × {i}| i < ω} → U(j, γ0, 〈ai| i < ω〉)

such that

1. γ0 < γ and Lγ0(Vλ+1) ≺Σ2 Lγ(Vλ+1).

2. γ0 is weakly inaccessible in L(Vλ+1).

3. There exists i < ω such that for all k ∈ E0, if k(ai) = ai then k(γ0) = γ0.

4. π0 witnesses that Z0 is U(j, γ0,~a)-representable.

5. For all i < ω and k ∈ E0, if k(ai, γ0) = (ai, γ0) then k(π0 � Vκi+ω) = π0 � Vκi+ω.

Fix c0 ∈ Vλ+1 and for each formula φ(x0, x1) let Zφ be the set of all a ∈ Vλ+1 such that
there exists Z ∈ N(E0) such that

(Vλ+1, Z) |= φ[c0, a].

It can be shown that for all φ, Zφ is U(j, γ,~a)-representable. We can then show however
that every subset of Vλ+1 in Jκ+1(Vλ+1) is U(j, γ,~a)-representable, which is a contradiction
to the definition of κ (see [Woo11] for details).

4.5 Consequences of U(j)-representations

In view of the results of the previous sections, we make the following conjecture, which
we call the U(j)-conjecture.

Conjecture 4.5.1 (U(j)-conjecture). Suppose that there exists j : L(Vλ+1) → L(Vλ+1)
elementary. Then in L(Vλ+1) every subset of Vλ+1 is U(j)-representable.

There are many consequences of the existence of U(j)-representations. These include
structural consequences very similar to the consequences of inverse limit reflection. For
instance a perfect set property and the fact that the weak ω-club filter is an ultrafilter both
follow from U(j)-representations (see reference). There are stronger consequences of U(j)-
representations, however. An important example is the following theorem of Woodin which
gives a version of generic absoluteness.
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Theorem 4.5.2 (Woodin). Suppose that j : L(Vλ+1) → L(Vλ+1) is a proper elementary
embedding (see [Woo11]), and that β is such that all elements of Lβ(Vλ+1) ∩ Vλ+2 are U(j)-
representable. Let Mω be the ω-th iterate of L(Vλ+1) by j, and let j0,ω : L(Vλ+1) → Mω.
Suppose that g ∈ V , g is Mω-generic for a partial order P ∈ j0,ω(Vλ) and that cof(λ) = ω in
Mω[g]. Then for all α < β there exists an elementary embedding

π : Lα(Mω[g] ∩ Vλ+1)→ Lα(Vλ+1)

such that π � λ is the identity.

An application of this theorem, using the existence of U(j)-representations for L(Vλ+1)
shown above, is the following.

Theorem 4.5.3 (Woodin). Assume the U(j)-conjecture holds. Then

Con(I0)→ Con(I0 at λ and 2λ = λ++).

The existence of U(j)-representations also has the important consequence of connecting
L(Vλ+1) with models of determinacy. In particular we have the following.

Theorem 4.5.4 (Woodin). Suppose that there exists an elementary embedding

j : L(Vλ+1)→ L(Vλ+1)

where λ is a limit of supercompact cardinals and there is a proper class of Woodin cardinals.
Assume the U(j)-conjecture holds. Then there is an inner model which satisfies AD+ and
∃α (Θα is the largest Suslin cardinal)).

Interestingly, if the U(j)-conjecture holds, then there can be no direct connection between
uniformization and these representations, as uniformization does not hold for every set in
L(Vλ+1). To see this, recall the following fact, whose proof is the same as in the case of L(R).

Fact 4.5.5 (Kechris and Solovay). There is a subset of Vλ+1, R ∈ L(Vλ+1), Π1(Vλ+1)-
definable over L(Vλ+1) such that R does not have a uniformization in L(Vλ+1).

Proof. Let R be the set

R = {(x, y) ∈ Vλ+1 × Vλ+1| y is not OD from x in L(Vλ+1)}.

Suppose that U is a uniformization of R such that U ∈ L(Vλ+1). Then U is OD from some
x ∈ Vλ+1 in L(Vλ+1). But then if y is such that (x, y) ∈ U , then y is OD from x in L(Vλ+1),
a contradiction to the definition of R.



89

Chapter 5

Conclusion

5.1 Future directions

5.1.1 The E0
α hierarchy

One important direction for future research is to what extent the above results can be
extended beyond L(Vλ+1) to stronger large cardinals. A related question is, what are the
extensions beyond L(Vλ+1)? A variety of possible extensions have been proposed, and in some
sense the extension of inverse limit reflection and U(j)-representations to these structures
would give them something of a justification, especially in light of the failure of a general
inverse limit X-reflection.

In this section we introduce an extension above L(Vλ+1) introduced by Woodin, which
was motivated by construction of the minimal model of ADR.

Definition 5.1.1. Let
〈
E0
α(Vλ+1)|α < ΥVλ+1

〉
be the maximum sequence such that the fol-

lowing hold.

1. E0
0(Vλ+1) = L(Vλ+1) ∩ Vλ+2 and E0

1(Vλ+1) = L((Vλ+1)#) ∩ Vλ+2.

2. Suppose α < ΥVλ+1
is a limit ordinal. Then

E0
α(Vλ+1) = L(

⋃
{E0

β(Vλ+1)| β < α}) ∩ Vλ+2.

3. Suppose α + 1 < ΥVλ+1
. Then for some X ∈ E0

α+1(Vλ+1), there exists a surjection
f : Vλ+1 → E0

α(Vλ+1) such that f ∈ L(X, Vλ+1) and

E0
α+1(Vλ+1) = L(X, Vλ+1) ∩ Vλ+2,

and if α + 2 < ΥVλ+1
then

E0
α+2(Vλ+1) = L((X, Vλ+1)#) ∩ Vλ+2.
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4. Suppose α < ΥVλ+1
. Then there exists X ⊆ Vλ+1 such that E0

αVλ+1 ⊆ L(X, Vλ+1) and
such that there is a proper elementary embedding

j : L(X, Vλ+1)→ L(X, Vλ+1).

5. Suppose that α < ΥVλ+1
is a limit ordinal and N = E0

α(Vλ+1). Then either

(a) (cof(ΘN))L(N) < λ, or

(b) (cof(ΘN))L(N) > λ and for some Z ∈ N , L(N) = (HODVλ+1∪{Z})
L(N).

6. Suppose that α + 1 < ΥVλ+1
is a limit ordinal and N = E0

α(Vλ+1). Then either

(a) (cof(ΘN))L(N) < λ and E0
α+1(Vλ+1) = L(Nλ, N) ∩ Vλ+2, or

(b) (cof(ΘN))L(N) > λ and E0
α+1(Vλ+1) = L(E(N), N) ∩ Vλ+2, where

E(N) = {j| j : N → N is elementary}.

Question 5.1.2. Does inverse limit reflection hold in the E0
α hierarchy? Which sets in the

E0
α-hierarchy are U(j)-representable?

5.1.2 Reinhardt cardinals

A fundamental question in the theory of large cardinals is whether or not it is consistent
for there to be an elementary embedding V → V without assuming the axiom of choice. We
consider here a weaker question which could be more readily answered.

Question 5.1.3. Is it consistent for there to be an elementary embedding j : V → V such that
for λ the limit of the critical sequence of j, λ-DC holds and λ is a limit of supercompacts?

We outline some motivation that the such cardinals are indeed inconsistent. To do this
we introduce the following notion of Woodin.

Definition 5.1.4 (Woodin). We call the following statement the Weak Uniqueness of Square
Roots at λ. Suppose λ is a limit of supercompact cardinals. For all X ⊆ Vλ+1, if

j : L(X, Vλ+1)→ L(X, Vλ+1)

is a proper elementary embedding such that j(X) ∈ Lω(X, Vλ+1), and if k1 and k2 are each
square roots of j such that

1. k1 � Vλ = k2 � Vλ,

2. k1(Lω(X, Vλ+1)) = k2(Lω(X, Vλ+1)) = Lω(X, Vλ+1),

then k1 � ΘL(X,Vλ+1) = k2 � ΘL(X,Vλ+1).
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Theorem 5.1.5 (Woodin). Suppose that ZFC implies that the weak uniqueness of square
roots holds. Then under ZF, assuming there is a proper class of supercompact cardinals,
there is no elementary embedding j : V → V such that crit (j) is a limit of supercompact
cardinals.

Lemma 5.1.6 (Woodin). Suppose X ⊆ Vλ+1, j : L(X, Vλ+1) → L(X, Vλ+1) is a proper
elementary embedding such that j(X) ∈ Lω(X, Vλ+1). Let Θ = ΘL(X,Vλ+1) and suppose that
for each η < Θ, there exists a surjection ρ : Vλ+1 → η such that ρ is Σ1-definable in
(LΘ(X, Vλ+1), j � LΘ(X, Vλ+1)) with parameters from Vλ+1 ∪ Θ ∪ {Lω(X, Vλ+1))}. Then the
weak uniqueness of square roots holds for (X, j) at λ.

The connection here is the following question about L(Vλ+1).

Question 5.1.7. Suppose j : L(Vλ+1)→ L(Vλ+1) is elementary. Then is

V #
λ+1 ∈ L(j � LΘ(Vλ+1), Vλ+1)?

In fact do we have

L(j � LΘ(Vλ+1), Vλ+1) ∩ Vλ+2 6= L(Vλ+1) ∩ Vλ+2?

If we could answer this question in the affirmative, then a similar analysis throughout
the E0

α hierarchy could be a way of showing that certain V → V embeddings do not exist
without using the Axiom of Choice.
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