
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Non-convex Optimization in Machine Learning: Provable Guarantees Using Tensor Methods

Permalink
https://escholarship.org/uc/item/7p90p57n

Author
Janzamin, Majid

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7p90p57n
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Non-convex Optimization in Machine Learning: Provable Guarantees Using Tensor Methods

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Majid Janzamin

Dissertation Committee:
Professor Animashree Anandkumar, Chair

Professor Athina Markopoulou
Professor Padhraic Smyth

2016

c© 2016 Majid Janzamin

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE x

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Organization of the Dissertation . 2
1.2 Learning Overcomplete Latent Representations Using Tensor Methods 3
1.3 Guaranteed Training of Neural Networks . 6
1.4 Identifiability of Overcomplete Topic Models . 8
1.5 Tensor Overview . 9

1.5.1 Tensor Background and Notations . 9
1.5.2 Going Beyond Matrices . 12

2 Overcomplete CP Tensor Decomposition 15
2.1 Summary of results . 19

2.1.1 Guarantees under incoherent components . 19
2.1.2 Guarantees under random components . 22

2.2 Related Works . 24
2.3 Tensor Decomposition Algorithm . 26

2.3.1 Tensor power iteration in Algorithm 1 . 26
2.3.2 Coordinate descent iteration in Algorithm 4 29
2.3.3 Discussions . 29

2.4 Guarantees for Tensor Decomposition Under Incoherent Components 32
2.4.1 Local convergence guarantee . 33
2.4.2 Global convergence guarantee when k = O(d) 37

2.5 Proof Outline Under Incoherent Components . 39
2.6 Proof Outline Under Random Components . 40

2.6.1 Proof outline of Lemma 2.3 (noiseless case of Theorem 2.3) 42
2.6.2 Effect of noise in Theorem 2.3 . 49

2.7 Experiments . 51

ii

3 Learning Overcomplete Representations Using Tensor Methods 55
3.1 Summary of Results . 57

3.1.1 Learning Multiview Mixture Model . 58
3.1.2 Learning ICA and Sparse ICA (Dictionary Learning) Models 59

3.2 Related Works . 59
3.3 Tensor Decomposition for Learning Latent Variable Models 61

3.3.1 Multiview linear mixtures model . 62
3.3.2 Spherical Gaussian mixtures . 63
3.3.3 Independent component analysis (ICA) . 64

3.4 Tensor Concentration Bounds . 66
3.4.1 Multiview linear mixtures model . 66
3.4.2 ICA and sparse ICA . 70

3.5 Learning Algorithm . 71
3.6 Learning Multiview Linear Mixtures Model . 73

3.6.1 Semi-supervised Learning . 73
3.6.2 Unsupervised Learning . 77

3.7 Learning Multiview Mixture Model Under Random Means 79
3.7.1 Learning guarantees . 79

3.8 Learning Independent Component Analysis (ICA) and Sparse ICA 83
3.9 Experiments . 87

4 Training Neural Networks Using Tensor Methods 90
4.1 Summary of Results . 92
4.2 Related works . 98
4.3 Preliminaries and Problem Formulation . 101

4.3.1 Problem formulation . 102
4.4 NN-LIFT Algorithm . 104

4.4.1 Score function . 105
4.4.2 Tensor decomposition . 107
4.4.3 Fourier method . 109
4.4.4 Ridge regression method . 110

4.5 Risk Bound in the Realizable Setting . 110
4.6 Risk Bound in the Non-realizable Setting . 116
4.7 Discussions and Extensions . 121

4.7.1 Contrasting the loss surface of backpropagation with tensor decomposition . 121
4.7.2 Extensions to cases beyond binary classification 122
4.7.3 An alternative for estimating low-dimensional parameters 124

4.8 Proof Sketch . 124
4.8.1 Estimation bound . 124
4.8.2 Approximation bound . 126

5 Identifiability of Overcomplete Topic Models and Tensor Tucker Decomp. 129
5.1 Summary of Results . 131

5.1.1 Persistent Topic Model . 132
5.1.2 Deterministic Conditions for Identifiability 132
5.1.3 Identifiability of Random Structured Topic Models 133
5.1.4 Implications on Uniqueness of Overcomplete Tucker and CP Decompositions 134

5.2 Overview of Techniques . 134

iii

5.3 Related Works . 137
5.4 Model . 141

5.4.1 Notation . 141
5.4.2 Persistent Topic Model . 142

5.5 Sufficient Conditions for Generic Identifiability . 144
5.5.1 Deterministic Conditions for Generic Identifiability 146
5.5.2 Analysis Under Random Topic-word Graph Structures 152

5.6 Identifiability via Uniqueness of Tensor Decompositions 156
5.6.1 Moment Characterization of the Persistent Topic Model 156
5.6.2 Tensor Algebra of the Moments . 160

5.7 Proof Techniques and Auxiliary Results . 164
5.7.1 Proof Sketch . 165
5.7.2 Analysis of Random Structures . 166

Bibliography 169

A Proofs for Overcomplete CP Tensor Decomposition: Incoherent Components 179
A.1 More Related Works . 179
A.2 Deterministic Assumptions . 182

A.2.1 Random matrices satisfy the deterministic assumptions 185
A.3 Proof of Convergence Results in Theorems 2.4 and 2.5 192

A.3.1 Convergence of tensor power iteration: Algorithm 1 192
A.3.2 Convergence of removing residual error: Algorithm 4 200

A.4 SVD Initialization Result . 207
A.4.1 Auxiliary lemmata for initialization . 209

A.5 Clustering Process . 218

B Proofs for Overcomplete CP Tensor Decomposition: Random Components 223
B.1 Analysis of Induction Argument . 225

B.1.1 Basis of induction . 225
B.1.2 Inductive step . 225
B.1.3 Growth rate of δt, δ

′
t, ∆′

t, δ
∗
t , ∆∗

t . 236
B.2 Auxiliary Lemmas for Induction Argument . 238

B.2.1 Properties of random Gaussian vectors . 239
B.2.2 Properties of projections . 241
B.2.3 Bounding correlation between v and w . 242

B.3 Additional Arguments for Noise Analysis . 245

C Proofs for Learning Overcomplete Latent Variable Models 251
C.1 Proof of Learning Theorems . 251
C.2 Proof of Tensor Concentration Bounds . 253

C.2.1 Multiview linear mixtures model . 253
C.2.2 ICA . 265
C.2.3 Sparse ICA . 271

iv

D Proofs for Guaranteed Training of Neural Networks 279
D.1 Details of Tensor Decomposition Algorithm . 279
D.2 Proof of Theorem 4.3 . 282

D.2.1 Tensor decomposition guarantees . 283
D.2.2 Fourier analysis guarantees . 292
D.2.3 Ridge regression analysis and guarantees . 298

D.3 Proof of Theorem 4.5 . 302
D.3.1 Discussion on Corollary 4.1 . 307

E Proofs for Identifiability of Overcomplete Topic Models 309
E.1 Proof of Deterministic Identifiability Result (Theorem 5.1) 309

E.1.1 Deterministic Analysis Based on A⊙n . 309
E.1.2 Proof of Moment Characterization Lemmata 315
E.1.3 Sufficient Matching Properties for Rank and Graph Expansion Conditions . . 320
E.1.4 Auxiliary Lemma . 322

E.2 Proof of Random Identifiability Result (Theorem 5.2) 323
E.2.1 Proof of Existence of Perfect n-gram Matching and Kruskal Results 323
E.2.2 Auxiliary Lemmata . 330

E.3 Relationship to CP Decomposition Uniqueness Results 334

v

LIST OF FIGURES

Page

1.1 Multi-view mixtures model . 4
1.2 Graphical representation of a neural network with single hidden layer 7
1.3 Tensor as a multilinear transformation and representation of Tucker decomposition . 10
1.4 CP decomposition of a symmetric 3rd order tensor 11

2.1 Overview of tensor decomposition algorithm. 25
2.2 Flow of the power update algorithm stating intermediate steps 48
2.3 Rate of recovered rank-1 components versus the number of initializations 53

3.1 Multi-view mixtures model . 63
3.2 Graphical representation of ICA (Independent Component Analysis) model 65
3.3 Rate of recovered rank-1 components versus the number of initializations 88

4.1 Graphical representation of a neural network with single hidden layer 104
4.2 Contrasting the loss surface of backpropagation with tensor decomposition 122

5.1 Hierarchical structure of the n-persistent topic model 132
5.2 A bipartite graph with perfect 2-gram matching . 147
5.3 Hierarchical structure of the single topic model and bag-of-words admixture model . 157
5.4 An example of an overcomplete topic-word matrix, and its second order expansions . 159
5.5 Proof outline: flow of conidtions and results . 165

vi

LIST OF TABLES

Page

2.1 Parameters and more outputs related to results of Figure 3.3 54

3.1 Results for learning a multi-view mixture model . 89

5.1 Table of parameters. 153

vii

LIST OF ALGORITHMS

Page
1 Tensor decomposition via alternating asymmetric power updates 27
2 SVD-based initialization when k ≤ βd for arbitrary constant β 28
3 Clustering process . 29
4 Coordinate descent algorithm for removing the residual error 30
5 Projection procedure . 31
6 NN-LIFT (Neural Network LearnIng using Feature Tensors) 105
7 Fourier method for estimating b1 . 109
8 Ridge regression method for estimating a2 and b2 . 110
9 Tensor Decomposition Algorithm Setup . 280
10 Whitening . 281
11 Un-whitening . 281
12 Robust tensor power method . 282
13 SVD-based initialization . 282

viii

ACKNOWLEDGMENTS

I am truly thankful to my advisor, professor Anima Anandkumar, for her support and guidance
over these years. She has set an excellent example as a researcher, mentor and teacher for me, and
she has always inspired me over the years of my Ph.D. research.

I would like to thank my Ph.D. committee members, professor Athina Markopoulou and professor
Padhraic Smyth who valued my research and gave me invaluable advice for my future career. I
would also like to thank professor Max Welling who was on my Ph.D. candidacy committee and
admired my research.

I also thank my collaborators, Rong Ge, Daniel Hsu, Sham Kakade and Hanie Sedghi. It has been
a fun and productive experience working with them.

I would like to thank University of California, Irvine and Department of Electrical Engineering and
Computer Science for providing the infrastructure and research environment to help me complete
my dissertation and supporting me by EECS department fellowship.

This dissertation has been supported by NSF awards FG16455 and CCF-1219234, ARO award
W911NF-12-1-0404 and ARO YIP Award W911NF-13-1-0084.

Chapter 5 and portions of Chapters 2 and 3 were first published in Journal of Machine Learning
Research. I would like to acknowledge Journal of Machine Learning Research for giving me the
permission to incorporate my publications in this dissertation.

A special feeling of gratitude to the friends who supported me in every respect through this jour-
ney, especially Afshin Abadi, Mohammad Abbasi, Hamed Abrishami, Mohammad Reza Aghajani,
Amin Amouhadi, Sanaz Barghi, Hadi Goudarzi, Alireza Imani, Sina Jafarpour, Fatemeh Kashfi,
Salman Khaleghi, Sina Khaleghi, Sanam Mirzazad, Ali Moayedi, Mohammad Naghshvar, Parastoo
Qarabaqi, Tooraj Rajabioun and Roozbeh Tabrizian.

I wish to acknowledge help and advice from my dear friends and colleagues, Taha Bahadori, Behnam
Bahrak, Ahmad Beirami, Adel Javanmard, Mohsen Karimzadeh, Hamed Maleki, Rina Panigrahy,
Rodolfo Victoria, and Li Zhang.

Most importantly, I would like to thank my family. My wife, Hanie Sedghi, who has been the
source of love, support, encouragement and motivation over these years, spurred me on with her
patience and this work would not have been possible without her; and my parents Mehri Ashouri
and Asadallah Janzamin, for giving me life, love, support and constantly encouraging me to pursue
my education; and my siblings Katayoun and Mohammad, for their encouragement and support.
I am also grateful to my grandmother, Shokat for her love; my parents-in-law, Mitra Soraya and
Kambiz Sedghi, and my siblings-in-law Hosna, Hoda, Mehdi and Vahid for their support.

ix

CURRICULUM VITAE

Majid Janzamin

EDUCATION

Doctor of Philosophy in Electrical and Computer Engineering June 2016
University of California, Irvine Irvine, CA

Master of Science in Electrical Engineering January 2010
Sharif University of Technology Tehran, Iran

Bachelor of Science in Electrical Engineering August 2007
Sharif University of Technology Tehran, Iran

Work & Academic Experience

Graduate Research Assistant Sept. 2010–June 2016
University of California, Irvine Irvine, CA

Research Intern July-Sept. 2014
Microsoft Research Silicon Valley Mountain View, CA

Visiting Graduate Student Sept.-Oct. 2012, April-June 2014
Microsoft Research New England Cambridge, MA

Visiting Graduate Student Sept.-Nov. 2012
ICERM, Brown University Providence, RI

Member of Technical Staff Nov. 2007–Sept. 2010
Parman Co. Tehran, Iran

TEACHING EXPERIENCE

Co-instructor of Detection and Estimation Theory Winter 2014
University of California, Irvine Irvine, CA

AREAS OF INTEREST

• Machine Learning, Data Science and Statistics

• Convex and Non-convex Optimization: Analysis and Applications

• Inference and Learning in Graphical Models and Latent Variable Models

• Spectral Methods: Tensor Decomposition Analysis and Applications

x

PUBLICATIONS

Note: authorship order of specified publications by asterisk symbol ∗ follows the convention in
theoretical computer science of alphabetical author order.

REFEREED JOURNAL PUBLICATIONS

“When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions
with Structured Sparsity”, by A. Anandkumar, D. Hsu, M. Janzamin∗ and S. Kakade, Journal of
Machine Learning Research, 16:26432694, Dec. 2015.

“High-Dimensional Covariance Decomposition into Sparse Markov and Independence Models”, by
M. Janzamin and A. Anandkumar, Journal of Machine Learning Research, 15:15491591, April
2014.

REFEREED CONFERENCE PUBLICATIONS

“Provable Tensor Methods for Learning Mixtures of Generalized Linear Models”, by H. Sedghi,
M. Janzamin, and A. Anandkumar, In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS), Cadiz, Spain, May 2016.

“FEAST at Play: Feature ExtrAction using Score function Tensors”, by M. Janzamin, H. Sedghi,
U.N. Niranjan, and A. Anandkumar In NIPS Feature Extraction: Modern Questions and Challenges
workshop, Montreal, Canada, Dec 2015.

“Learning Overcomplete Latent Variable Models through Tensor Methods”, by A. Anandkumar,
R. Ge, and M. Janzamin∗, In Proceedings of the Conference on Learning Theory (COLT), Paris,
France, July 2015.

“When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions
with Structured Sparsity”, by A. Anandkumar, D. Hsu, M. Janzamin∗, and S. Kakade, In Proceed-
ings of the Neural Information Processing Systems (NIPS) Conference, Lake Tahoe, Nevada, USA,
Dec 2013.

“High-Dimensional Covariance Decomposition into Sparse Markov and Independence Domains”, by
M. Janzamin and A. Anandkumar, In Proceedings of the 29th International Conference on Machine
Learning (ICML), Edinburgh, Scotland, June 2012.

“A Game-Theoretic Approach for Power Allocation in Bidirectional Cooperative Communication”,
by M. Janzamin, M. R. Pakravan, and H. Sedghi, In Proceedings of IEEE Wireless Communications
and Networking Conference (WCNC), Sydney, Australia, April 2010.

xi

Preprints

“Beating the Perils of Non-Convexity: Guaranteed Training of Neural Networks using Tensor
Methods”, by M. Janzamin, H. Sedghi, and A. Anandkumar. Submitted: Preprint available on
arXiv:1506.08473, June 2015.

“Score Function Features for Discriminative Learning: Matrix and Tensor Frameworks”, by M.
Janzamin, H. Sedghi, and A. Anandkumar, Preprint available on arXiv:1412.2863, Dec. 2014.

“Analyzing Tensor Power Method Dynamics in Overcomplete Regime”, by A. Anandkumar, R. Ge,
and M. Janzamin∗ Accepted for publication in Journal of Machine Learning Research. available on
arXiv:1411.1488.

“Sample Complexity Analysis for Learning Overcomplete Latent Variable Models through Tensor
Methods”, by A. Anandkumar, R. Ge, and M. Janzamin∗, Preprint available on arXiv:1408.0553,
Aug. 2014.

“Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-1 Updates”, by A.
Anandkumar, R. Ge, and M. Janzamin∗, Preprint available on arXiv:1402.5180, Feb. 2014.

xii

ABSTRACT OF THE DISSERTATION

Non-convex Optimization in Machine Learning: Provable Guarantees Using Tensor Methods

By

Majid Janzamin

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2016

Professor Animashree Anandkumar, Chair

In the last decade, machine learning algorithms have been substantially developed and they have

gained tremendous empirical success. But, there is limited theoretical understanding about this

success. Most real learning problems can be formulated as non-convex optimization problems

which are difficult to analyze due to the existence of several local optimal solutions. In this dis-

sertation, we provide simple and efficient algorithms for learning some probabilistic models with

provable guarantees on the performance of the algorithm. We particularly focus on analyzing ten-

sor methods which entail non-convex optimization. Furthermore, our main focus is on challenging

overcomplete models. Although many existing approaches for learning probabilistic models fail in

the challenging overcomplete regime, we provide scalable algorithms for learning such models with

low computational and statistical complexity.

In probabilistic modeling, the underlying structure which describes the observed variables can be

represented by latent variables. In the overcomplete models, these hidden underlying structures are

in a higher dimension compared to the dimension of observed variables. A wide range of applications

such as speech and image are well-described by overcomplete models. In this dissertation, we

propose and analyze overcomplete tensor decomposition methods and exploit them for learning

several latent representations and latent variable models in the unsupervised setting. This include

models such as mulitiview mixture model, Gaussian mixtures, Independent Component Analysis,

and Sparse Coding (Dictionary Learning). Since latent variables are not observed, we also have

the identifiability issue in latent variable modeling and characterizing latent representations. We

xiii

also propose sufficient conditions for identifiability of overcomplete topic models. In addition to

unsupervised setting, we adapt the tensor techniques to supervised setting for learning neural

networks and mixtures of generalized linear models.

xiv

Chapter 1

Introduction

Machine learning for handling large data sets is considered as one of the foremost grand challenges

of the current time. It provides a principled approach for extracting useful information from data

that can be exploited to carry out tasks such as prediction. In the past, machine learning algorithms

have been mostly developed and inspired by practical motivations. Although, there also exist a

significant number of studies on the theory of machine learning, for the most part of the literature

there is a gap between the practical success of machine learning algorithms and understanding their

fundamental theory. In this dissertation, we focus on the fundamental theory of machine learning.

We work on statistical learning and probabilistic modeling techniques, wherein we fit a statistical

model to the data. It is assumed that the data is generated from the proposed probabilistic model.

This systematic approach of analyzing the machine learning models and algorithms is theoretically

interesting, and furthermore, this provides us with useful intuitions and insights for designing new

practical machine learning algorithms.

The focus of this dissertation is on developing learning algorithms which work well both in practice

and theory. We provide simple and efficient algorithms for learning probabilistic models with

provable guarantees on the performance of the algorithm. In particular, the main focus is on

the challenging overcomplete regime. In probabilistic modeling, the underlying structure which

describes the observed variables can be represented by latent variables. In overcomplete models,

1

these hidden underlying structures are in a higher dimension compared to the dimension of observed

variables. A wide range of applications such as speech and image are well-described by overcomplete

models. Designing and analyzing learning algorithms in the overcomplete regime is very challenging

in both computational and statistical senses.

In addition, most real learning problems can be formulated as non-convex optimization problems

which are difficult to analyze due to the existence of several local optimal solutions. In this dis-

sertation, we specifically work on tensor methods which entail analyzing a class of non-convex

optimization techniques. For these methods, we prove the convergence guarantees to global optima

and useful local optimal solutions in the challenging overcomplete regime. We exploit and ana-

lyze these methods for learning several probabilistic models. We provide unsupervised techniques

for learning latent variable models, and supervised methods for learning models such as neural

networks.

Although many existing approaches for learning probabilistic models fail in the challenging over-

complete regime, we provide scalable algorithms for learning such models with low computational

and statistical complexity. In addition, we also propose provable guarantees on the performance of

the algorithm.

The rest of this chapter is organized as follows. We first summarize the organization of the disser-

tation. We then give a summary of main body of the dissertation including the problems analyzed

in different chapters and our main contributions. Since tensors are significantly used and analyzed

throughout the dissertation, we finally provide a section on tensor background.

1.1 Organization of the Dissertation

We provide the following results in this dissertation.

We propose provable guarantees for learning different latent representations and latent variable

models in the overcomplete regime. This includes models such as the mulitiview mixture model,

Gaussian mixtures, Independent Component Analysis, and Sparse Coding (Dictionary Learning).

2

The learning algorithm is based on tensor decomposition techniques. The observed moment is

formed as a low order tensor (usually third or fourth order), and by decomposing the tensor to

its rank-1 components we are able to learn the parameters of the model; see Section 3.3 which

describes this connection. The analysis of tensor decomposition and the application to learning

latent variable models are respectively provided in Chapters 2 and 3. The results in these two

chapters are based on our publication in COLT’15; see Curriculum Vitae.

The above results on learning latent representations are primarily in the unsupervised setting. In

Chapter 4, we adapt these techniques to supervised setting, where we exploit the cross-moment

between output and a specific non-linear transformations of the input, and by decomposing that to

rank-1 components, we learn the parameters of the model. In particular, we propose provable risk

bounds for training neural networks with one hidden layer. The results in this chapter has some

overlaps with our publication in AISTATS’16; see Curriculum Vitae.

In Chapter 5, we turn our attention to the identifiability question. Identifiability is concerned with

the uniqueness of learning the parameters of the model, i.e., under what conditions the model can

be uniquely learned? We propose identifiability results for overcomplete topic models. The results

in this chapter are based on our publications in JMLR’15 and NIPS’13; see Curriculum Vitae.

The main body of the dissertation is self-contained such that all the results, discussions, proof

outlines, and numerical experiments are included. For the sake of smoother reading experience, all

the detailed proofs are postponed to the appendix.

1.2 Learning Overcomplete Latent Representations Using Tensor

Methods

It is imperative to incorporate latent or hidden variables in any probabilistic modeling framework.

In particular, incorporating latent variables is crucial for characterizing unobserved or hidden ef-

fects in statistical models. A wide range of applications such as document, speech and image

modeling are well-characterized by incorporating latent variables. Latent variables have shown to

3

h

x1 x2 xp· · ·

Figure 1.1: Multi-view mixtures model

be useful to provide a good explanation of the observed data, where they can capture the effect of

hidden causes which are not directly observed. Learning these hidden factors is central to many

applications, e.g., identifying latent diseases through observed symptoms, and identifying latent

communities through observed social ties. Furthermore, latent representations are very useful in

feature learning. Raw data is in general very complex and redundant and feature learning is about

extracting efficient features from raw data. Learning efficient and useful features is very crucial

for the good performance of learning task, e.g., the classification task that we do using the learned

features. Analyzing latent variable models (LVMs) and latent representations involves two main

problems: identifiability and learning. We focus on the learning part here, and later discuss the

identifiability.

An interesting regime of latent representations is overcomplete setting, where the dimension of

hidden space is more than the dimension of observed variables. Overcomplete representations are

known to be more robust to noise, and can provide greater flexibility in modeling [119]. Over-

complete representations have been extensively employed, and are arguably critical in a number

of applications such as speech and computer vision [40]. Many recent papers employ unsupervised

estimation of overcomplete features for higher level tasks such as classification, e.g., [40, 57, 118, 71],

and record significant gains in predictive accuracy over other approaches in a number of applica-

tions such as speech recognition and computer vision. However, since identifiability and learning

are more challenging in a overcomplete regime, the theoretical understanding regarding learnability

or identifiability of overcomplete representations is far more limited.

In the first part of this dissertation (Chapters 2 and 3), we provide tensor decomposition algorithms

for learning several latent variable models and latent representations in the overcomplete regime.

As one of the basic examples of latent variable models, consider the multiview linear mixtures

model, where the observed variables (views) xl ∈ R
d, l ∈ [p], are conditionally independent given

4

the k-categorical latent variable h ∈ [k], and the conditional means are

E[x1|h] = ah, E[x2|h] = bh, E[x3|h] = ch,

where A := [a1 a2 · · · ak] ∈ R
d×k denotes the factor matrix and B,C are similarly defined; see

Figure 1.1 for a graphical representation of this model. The goal of the learning problem is to

recover the parameters of the model (factor matrices) A, B, and C given observations.

For this model, the third order observed moment is shown to have the form (see Anandkumar et al.

[15])

E[x1 ⊗ x2 ⊗ x3] =
∑

j∈[k]
wjaj ⊗ bj ⊗ cj ,

where ⊗ denotes the outer product; see (1.4) for the precise definition. Hence, given the third order

observed moment E[x1 ⊗ x2 ⊗ x3], the unsupervised learning problem (recovering factor matrices

A, B, and C) reduces to computing a tensor decomposition as stated above.

Regarding feature learning that we discussed its importance, dictionary learning is a popular model

which represents the observations as a linear combination of latent dictionary elements. More

precisely, for observation x, we have the representation

x = Ah,

where A denotes the dictionary matrix with dictionary elements as its columns and h denotes the

coefficients. In the dictionary learning problem, both dictionary A and coefficients h are hidden or

unknown and need to be estimated. Similar to the multiview mixture model, a variant of fourth

order observed moment E[x⊗ x ⊗ x ⊗ x] is shown to have the columns of dictionary matrix A as

its rank-1 components; see Section 3.3 for the details. Thus, the problem of learning dictionary

elements reduces again to tensor decomposition. It is also very common to impose sparsity on the

coefficient vector h, and then the problem is also called sparse coding.

5

In Chapter 2, we analyze the convergence properties of tensor decomposition in the overcomplete

regime. The analysis of tensor decomposition is a non-convex problem for which there have been

a good understanding of convergence guarantees, but these are mostly under strong assumptions.

For instance, one of the main advantages of tensors compared to matrices is that tensors can have

non-orthogonal decomposition which is not the case for matrices. This dramatically expands the

class of probabilistic models that can be learned by the tensor decomposition methods including

overcomplete models. But, on the other hand, the existing theoretical guarantees are mostly

provided only for the orthogonal tensor decomposition. We provide new results on the local and

global convergence guarantees of tensor decomposition methods in the non-orthogonal setting, and

in particular in the overcomplete regime where the tensor rank is larger than the tensor dimension.

In Chapter 3, we provide the application of the tensor methods to learning many latent variable

models and latent representations including multiview mixtures model, Gaussian mixtures, Inde-

pendent Component Analysis, and Sparse Coding (Dictionary Learning). The main contribution

of this chapter is analyzing new concentration bounds to argue the sample complexity results.

1.3 Guaranteed Training of Neural Networks

Neural networks have significantly improved predictive performance across multiple domains such

as computer vision and speech recognition. Although there has been tremendous success of neural

networks in practice, the theoretical understanding of this achievement is mostly limited. This is

mainly because training a neural network is a highly non-convex problem, for which the analysis is

difficult, and existing training methods can get stuck in local optima.

In Chapter 4, we propose a novel algorithm with provable guarantees for training neural networks

with one hidden layer; see Figure 1.2 for a graphical representation of such neural network. This

is the first analysis to effectively address both approximation and estimation problems in neural

networks at the same time, and to propose computationally and statistically efficient methods. The

approximation analysis deals with the problem of how good a neural network can approximate any

arbitrary function, and the estimation analysis deals with the problem of how well the proposed

6

σ(·) σ(·) σ(·)σ(·)

x1 x2 x3 xdx

E[ỹ|x]

A2

A1

· · ·

· · ·

· · ·

· · ·

Figure 1.2: Graphical representation of a neural network, E[ỹ|x] = A⊤
2 σ(A⊤

1 x+ b1) + b2.

algorithm can train the neural network given samples of that arbitrary function. We provide an

algorithm which trains a neural network with bounded approximation and estimation errors (i.e.,

bounded risk), which is both computationally and statistically efficient. We incorporate tensor

decomposition methods as the training algorithm. Tensor methods as multi-linear operators are

highly parallelizable, and work very well in practice.

In Section 1.2, we discussed the the application of tensor methods for learning latent variable

models and latent representations. Here, one of the main differences is that the problem of training

neural network is in supervised setting, while learning latent variable models is performed in an

unsupervised manner. Thus, one of the main questions that we answer is how to adapt these

tensor methods to supervised learning, and in particular, training neural networks. To answer

this, we first introduce a new transformation of the input which is basically new features extracted

from the input. We refer to this new transformation as score function of the input. These new

extracted features enable us to formulate the problem of training neural networks as the tensor

decomposition problem. More concretely, we show that the cross-moment between output and the

score function of the input has information about the weight parameters of the neural network in

its rank-1 components. Then we combine this novel formulation with the convergence properties

of tensor decomposition to provably train the neural network.

7

1.4 Identifiability of Overcomplete Topic Models

In Section 1.2, we discussed the importance of latent variables in probabilistic modeling, and we

provided learning results for several latent variable models in the overcomplete regime. Since latent

variables are not observed, there exists an additional ambiguity in the model, where the same

observations can be generated with different latent factors. Therefore, in addition to providing

learning guarantees, we also need some sufficient conditions under which the model is identifiable,

i.e., when the model parameters and latent variables can be uniquely identified given some observed

statistics. In the overcomplete case, where the latent dimensionality is greater than the observed

dimensionality, it is even more challenging to provide model identifiability result. Intuitively, we

are observing variables in a lower dimension comparing to the dimension of hidden factors which

makes the model non-identifiable in general.

Latent variable modeling has been very popular in topic modeling application, where the words in

the documents are observed, while the topics of documents are hidden. More concretely, let x denote

an observed variable (word), and h denote the hidden topic proportion vector. In probabilistic topic

modeling, the following linear mapping from latent variables (topics) to observed variables (words)

holds such that

E[x|h] = Ah,

where A incorporates the influence of hidden factors on observed variables, called the topic-word

matrix.

In Chapter 5, we provide the identifiability results for learning the parameters of overcomplete

topic models under moment-based observations. Note that these overcomplete topic models are

more interesting and useful in speech and image applications, and less attractive for text applica-

tions. Given higher order moments of observed variables, we provide the identifiability result under

both deterministic and random assumptions on the topic-word matrix A. This involves leveraging

combinatorial conditions on the graph which represents the topic-word relations in the topic mod-

eling, where the main identifiability condition imposes sparsity on matrix A. Incorporating this

8

sparsity structure on A, the model parameter A and latent variables are estimated using convex

optimization techniques for sparse recovery.

Furthermore, the identifiability result implies uniqueness of a class of tensor decompositions with

structured sparsity. These class of tensor decompositions are a special case of Tucker, but more

general than CP decomposition.

1.5 Tensor Overview

In this section, we first introduce the tensor background and tensor notations. Then, we elaborate

and motivate the necessity of tensors over matrices.

1.5.1 Tensor Background and Notations

A real-valued p-th order tensor T ∈⊗p
i=1 R

di is a member of the outer product of Euclidean spaces

R
di , i ∈ [p]. For convenience, we restrict to the case where d1 = d2 = · · · = dp = d, and simply

write T ∈ ⊗p
R
d. As is the case for vectors (where p = 1) and matrices (where p = 2), we may

identify a p-th order tensor with the p-way array of real numbers [Ti1,i2,...,ip : i1, i2, . . . , ip ∈ [d]],

where Ti1,i2,...,ip is the (i1, i2, . . . , ip)-th coordinate of T with respect to a canonical basis.

Tensor modes, fibers and slices: The different dimensions of the tensor are referred to as modes.

For instance, for a matrix, the first mode refers to columns and the second mode refers to rows.

In addition, fibers are higher order analogues of matrix rows and columns. A fiber is obtained by

fixing all but one of the indices of the tensor (and is arranged as a column vector). For instance,

for a matrix, its mode-1 fiber is any matrix column while a mode-2 fiber is any row. For a third

order tensor T ∈ R
d×d×d, the mode-1 fiber is given by T (:, j, l), mode-2 by T (i, :, l) and mode-3

by T (i, j, :). Similarly, slices are obtained by fixing all but two of the indices of the tensor. For

example, for the third order tensor T , the slices along 3rd mode are given by T (:, :, l).

9

Figure 1.3: Tensor as a multilinear transformation and representation of Tucker decomposition of
a symmetric 3rd order tensor T =

∑
i1,i2,i3∈[k] Si1,i2,i3 · ai1 ⊗ bi2 ⊗ ci3 = S(A⊤, B⊤, C⊤)

Tensor matricization: For r ∈ {1, 2, 3}, the mode-r matricization of a third order tensor T ∈

R
d×d×d, denoted by mat(T, r) ∈ R

d×d2 , consists of all mode-r fibers arranged as column vectors.

For instance, the matricized version along first mode denoted by M ∈ R
d×d2 is defined such that

T (i, j, l) = M(i, l + (j − 1)d), i, j, l ∈ [d]. (1.1)

Multilinear transformation: We view a tensor T ∈ R
d×d×d as a multilinear form. Consider

matrices A,B,C ∈ R
d×k. Then tensor T (A,B,C) ∈ R

k×k×k is defined as

T (A,B,C)j1,j2,j3 :=
∑

i1,i2,i3∈[d]
Ti1,i2,i3 · A(i1, j1) ·B(i2, j2) · C(i3, j3). (1.2)

See Figure 1.3 for a graphical representation of multilinear form. In particular, for vectors u, v, w ∈

R
d, we have 1

T (I, v, w) =
∑

j,l∈[d]
vjwlT (:, j, l) ∈ R

d, (1.3)

which is a multilinear combination of the tensor mode-1 fibers. Similarly T (u, v, w) ∈ R is a

multilinear combination of the tensor entries, and T (I, I, w) ∈ R
d×d is a linear combination of the

tensor slices.

1Compare with the matrix case where for M ∈ R
d×d, we have M(I, u) = Mu :=

∑
j∈[d] ujM(:, j) ∈ R

d.

10

= + + · · ·

Figure 1.4: CP decomposition of a symmetric 3rd order tensor T =
∑

i ai ⊗ ai ⊗ ai

Rank-1 tensor: A 3rd order tensor T ∈ R
d×d×d is said to be rank-1 if it can be written in the

form

T = w · a⊗ b⊗ c⇔ T (i, j, l) = w · a(i) · b(j) · c(l), (1.4)

where notation ⊗ represents the outer product and a ∈ R
d, b ∈ R

d, c ∈ R
d are unit vectors (without

loss of generality).

Tensor CP decomposition and rank: A tensor T ∈ R
d×d×d is said to have a CP (CANDE-

COMP/PARAFAC) rank k ≥ 1 if it can be written as the sum of k rank-1 tensors

T =
∑

i∈[k]
wiai ⊗ bi ⊗ ci, wi ∈ R, ai, bi, ci ∈ R

d. (1.5)

See Figure 1.4 for a graphical representation of CP decomposition for a symmetric 3rd order tensor.

This decomposition is also closely related to the multilinear form. In particular, given T in (1.5)

for vectors â, b̂, ĉ ∈ R
d, we have

T (â, b̂, ĉ) =
∑

i∈[k]
wi〈ai, â〉〈bi, b̂〉〈ci, ĉ〉.

Consider the decomposition in equation (1.5), denote matrix A := [a1 a2 · · · ak] ∈ R
d×k, and

similarly B and C. Without loss of generality, we assume that the matrices have normalized

columns (in 2-norm), since we can always rescale them, and adjust the weights wi appropriately.

Tensor Tucker decomposition: A tensor T ∈ R
d×d×d is said to have a Tucker decomposition or

Tucker representation when given core tensor S ∈ R
k×k×k and factor matrices A,B,C ∈ R

d×k, it

11

can be written as

T =
∑

i1∈[k]

∑

i2∈[k]

∑

i3∈[k]
Si1,i2,i3 · ai1 ⊗ bi2 ⊗ ci3 . (1.6)

See Figure 1.3 for a graphical representation. Note that this is directly related to the multilinear

from defined in (1.2) such that the R.H.S. of above equation is S(A⊤, B⊤, C⊤). Note that the CP

decomposition is a special case of the Tucker decomposition when the core tensor S is square and

diagonal.

Norms: Throughout, ‖v‖ := (
∑

i v
2
i)1/2 denotes the Euclidean (ℓ2) norm of a vector v, and ‖M‖

denotes the spectral (operator) norm of a matrix M . Furthermore, ‖T‖ and ‖T‖F denote the

spectral (operator) norm and the Frobenius norm of a tensor, respectively. In particular, for a 3rd

order tensor, we have

‖T‖ := sup
‖u‖=‖v‖=‖w‖=1

|T (u, v, w)|, ‖T‖F :=

√ ∑

i,j,l∈[d]
T 2
i,j,l.

We finish this section by introducing the asymptotic notations.

Asymptotic notations: Let [n] denote the set {1, 2, . . . , n}. While the standard asymptotic

notation is to write f(d) = O(g(d)) and g(d) = Ω(f(d)), we sometimes use f(d) ≤ O(g(d)) and

g(d) ≥ Ω(f(d)) for additional clarity. We also use the asymptotic notation f(d) = Õ(g(d)) if and

only if f(d) ≤ αg(d) for all d ≥ d0, for some d0 > 0 and α = polylog(d), i.e., Õ hides polylog

factors.

1.5.2 Going Beyond Matrices

Tensor decomposition is by itself a theoretically interesting problem and is in particular very chal-

lenging in the overcomplete regime. In this dissertation, we analyze the convergence guarantees

of a specific tensor decomposition algorithm to recover the true rank-1 components of the ten-

sor. Tensor decomposition has also applications in many different areas such as chemometrics [26],

12

neuroscience [126], telecommunications [144], data mining [1], image compression and classifica-

tion [142], and so on; see survey paper by Kolda and Bader [108] for more references. In the

earlier parts of this chapter, we stated that tensor decomposition is also useful in machine learning

applications, and in particular, for learning latent variable models and latent representations. A

few examples such as learning multiview mixture model and dictionary learning problems were

discussed in Section 1.2; more examples are provided in Section 3.3. Tensors are basically gener-

alization of matrices to higher order objects, and beyond that tensors are multilinear operators as

defined in (1.2). Going back to the example of learning multiview mixture model in Section 1.2,

we can form the second order observed moment which has the form

E[x1 ⊗ x2] =
∑

j∈[k]
wjaj ⊗ bj .

So, one fundamental question is why do we need to go to tensors and matrices are not enough for

our learning task? We answer this question to motivate and justify the application of tensors.

We require at least a third order tensor to learn the parameters of the latent representation or latent

variable models for the following reasons: while a matrix decomposition is only identifiable up to

orthogonal components, tensors can have identifiable non-orthogonal components. In general, it is

not realistic to assume that the parameters are orthogonal, and hence, we require tensors to learn

the parameters. Moreover, through tensors, we can learn overcomplete models, where the hidden

dimension can exceed the input dimension. Note that matrix factorization methods are unable to

learn overcomplete models, since the rank of the matrix cannot exceed its dimensions. Thus, it is

critical to incorporate tensors for such models.

Regarding the identifiability, the sufficient conditions for uniqueness of tensor decomposition is

formulated by Kruskal [111, 112]. Let the Kruskal rank or krank of a matrix A denoted by krank(A)

be the maximum number r such that every subset of r columns of A is linearly independent. Kruskal

[111, 112] showed that the decomposition in (1.5) is unique if

krank(A) + krank(B) + krank(C) ≥ 2k + 2,

13

which is a milder condition compared to matrix decomposition. For instance, for a rank-2 decom-

position, this reduces to having all factor matrices A, B and C being full column rank, while in the

matrix case we need the stronger condition of orthogonality.

14

Chapter 2

Overcomplete CP Tensor

Decomposition

CANDECOMP/PARAFAC (CP) decomposition of a symmetric tensor T ∈ R
d×d×d is the process

of decomposing it into a succinct sum of rank-one tensors, given by

T =
∑

j∈[k]
λjaj ⊗ aj ⊗ aj , λj ∈ R, aj ∈ R

d, (2.1)

where ⊗ denotes the outer product; see (1.4) for the precise definition. The minimum k for which

the tensor can be decomposed in the above form is called the (symmetric) tensor rank.

In this chapter, we provide local and global convergence guarantees for recovering CP (Cande-

comp/Parafac) tensor decomposition in the overcomplete regime where the tensor CP rank is larger

than the input dimension. Finding the CP decomposition of an overcomplete tensor is NP-hard in

general. We analyze the simple tensor power iteration, and provide the convergence guarantees un-

der two settings of incoherent and random tensor components. We also propose tight perturbation

analysis given noisy tensor for both settings.

Given incoherent tensor components, local convergence guarantees are established for third order

tensors of rank k in d dimensions, when k = o
(
d1.5
)
. Thus, we can recover overcomplete tensor

15

decomposition where the tensor rank k is larger than the dimension d. We also strengthen the results

to global convergence guarantees under stricter rank condition k ≤ βd (for arbitrary constant β > 1)

through a simple initialization procedure where the algorithm is initialized by top singular vectors

of random tensor slices. Furthermore, the approximate local convergence guarantees for p-th order

tensors are also provided under rank condition k = o
(
dp/2

)
.

Next, we strengthen the local convergence analysis given random tensor components for third

order tensors. We show that the simple power iteration recovers the components with bounded

error under mild initialization conditions. These initialization conditions are much more relaxed

compared to the conditions under incoherent tensor components.

CP (Candecomp/Parafac) tensor decomposition became popular in the psychometrics community

by the works of Carroll and Chang [49], Harshman [86]. Later, researchers also applied these tech-

niques to several different research areas including chemometrics [26], neuroscience [126], telecom-

munications [144], data mining [1], image compression and classification [142], and many other

applications; see survey paper by Kolda and Bader [108] for more references. They have also been

recently popular for unsupervised learning of a wide range of latent variable models such as in-

dependent component analysis (ICA) [69, 70], topic models, Gaussian mixtures, hidden Markov

models [15], network community models [12], and so on.

Tensor power iteration is a simple, popular and efficient method for recovering the tensor rank-one

components aj’s in (2.1). The tensor power iteration is given by

x← T (I, x, x)

‖T (I, x, x)‖ , (2.2)

where

T (I, x, x) :=
∑

j,l∈[d]
xjxlT (:, j, l) ∈ R

d

is a multilinear combination of tensor fibers, and ‖ · ‖ is the ℓ2 norm operator. See Section 1.5.1 for

an overview of tensor notations and preliminaries.

16

The tensor power iteration is a generalization of matrix power iteration: for matrix M ∈ R
d×d, the

power iteration is given by x←Mx/‖Mx‖. Dynamics and convergence properties of matrix power

iterations are well understood [91]. On the other hand, a theoretical understanding of tensor power

iterations is much more limited. Tensor power iteration can be viewed as a gradient descent step

(with infinite step size), corresponding to the optimization problem

max
x∈Sd−1

|T (x, x, x)|,

where T (x, x, x) =
∑

i,j,l∈[d] xixjxlTijl ∈ R is a combination of entries of tensor T . This optimization

problem is non-convex, and has multiple local optima. Unlike the matrix case, where the number

of isolated stationary points of power iteration is at most the dimension (given by eigenvectors

corresponding to unique eigenvalues), in the tensor case, the number of stationary points is, in fact,

exponential in the input dimension [50]. This makes the analysis of tensor power iteration far more

challenging.

Despite the above challenges, many advances have been made in understanding the tensor power

iterations in specific regimes. When the components aj ’s are orthogonal to one another, it is known

that there are no spurious local optima for tensor power iterations, and the only stable fixed points

correspond to the true aj ’s [160, 18]. Any tensor with linearly independent components aj ’s can

be orthogonalized, via an invertible transformation (whitening) and thus, its components can be

recovered efficiently. A careful perturbation analysis in this setting was carried out in Anandkumar

et al. [18].

While having efficient guarantees, the above procedure for tensor decomposition suffers from a

number of theoretical and practical limitations. For instance, in practice, the learning performance

is especially sensitive to whitening [117]. Moreover, whitening is computationally the most expen-

sive step in deployments [97], and it can suffer from numerical instability in high-dimensions due

to ill-conditioning. Lastly, the above approach is unable to learn overcomplete representations (this

is the case when the tensor rank is larger than the dimension) due to the orthogonality constraint,

which is especially limiting, given the recent popularity of overcomplete feature learning in many

domains [40, 119]. Such overcomplete tensors cannot be orthogonalized and finding guaranteed

17

decomposition is a challenging open problem. It is known that finding CP tensor decomposition

is NP-hard [88]. In this thesis, we make significant headway in showing that the simple power

iterations can recover the components in the overcomplete regime under a set of mild conditions

on the components aj ’s.

In this chapter, we provide two main results for overcomplete tensor decomposition. In the first and

main part, the presence of incoherent tensor components is assumed, which can be viewed as a soft-

orthogonality constraint. Incoherent representations have been extensively considered in literature

in a number of contexts, e.g., compressed sensing [74] and sparse coding [27, 3]. Incoherent repre-

sentations provide flexible modeling, can handle overcomplete signals, and are robust to noise [119].

Moreover, in the application to learning latent variable models, when the parameters of the model

are generic or when we have randomly constructed (multiview) features [123], the moment tensors

have incoherent components, as assumed here. In this work, we establish that incoherence leads

to efficient guarantees for tensor decomposition. The guarantees also include a tight perturbation

analysis. In the second part, we provide stronger tensor decomposition guarantees under random

rank-1 components. Note that random components are also incoherent, but the reverse is not true.

Note that overcomplete tensors arise in many machine learning applications such as moments of

many latent variable models, e.g., multiview mixtures, independent component Analysis (ICA),

and sparse coding models, where the number of hidden variables exceeds the input dimensions [16].

Overcomplete models often have impressive empirical performance [58], and can provide greater

flexibility in modeling, and are more robust to noise [119]. By studying algorithms for overcomplete

tensor decomposition, we expand the class of models that can be learnt efficiently using simple

spectral methods such as tensor power iterations. Note there are other algorithms for decomposing

overcomplete tensors [69, 80, 41], but they all require tensors of at least 4-th order and require large

computational complexity. Ge and Ma [77] works for 3rd order tensor but requires quasi-polynomial

time. The main contribution of this thesis is an analysis for the practical power method in the

overcomplete regime.

In next chapter, we apply the tensor decomposition guarantees of this chapter to various learning

settings, and derive sample complexity bounds through novel covering arguments.

18

2.1 Summary of results

Consider an asymmetric tensor T ∈ R
d×d×d decomposed to rank-1 components as

T =
∑

i∈[k]
wi · ai ⊗ bi ⊗ ci, wi ∈ R, ai, bi, ci ∈ R

d. (2.3)

The goal is to recover its rank-1 components {(ai, bi, ci), i ∈ [k]}. Here, ⊗ denotes the tensor outer

product; see Section 1.5.1 for the details of tensor notations and tensor rank.

In this chapter, we propose and analyze an algorithm for non-orthogonal CP (Candecomp/Parafac)

tensor decomposition; see Figure 2.1 for the details of the algorithm. The main step of the algorithm

is a simple alternating rank-1 update which is the alternating version of the tensor power iteration

adapted for asymmetric tensors. In each iteration, one of the tensor modes is updated by projecting

the other modes along their estimated directions, and the process is alternated between all the

modes of the tensor; see (2.6) for this update and compare it with (2.2) which is the symmetric

tensor power iteration where there is no need for alternating between different modes.

We provide the convergence results under two different settings. First, given incoherent rank-1

components, and then given random rank-1 components. In the second part, by imposing stronger

assumption of randomness, we are able to provide stronger convergence guarantees. We propose

these results in the following two subsections.

2.1.1 Guarantees under incoherent components

An overview of our tensor decomposition algorithm is provided in Figure 2.1. The main step of

our tensor decomposition algorithm is alternating asymmetric tensor power update; see(2.6) for

this update. We provide robust analysis of the algorithm leading to local and global convergence

guarantees when the input tensor is noisy.1 Our analysis emphasizes on the challenging overcomplete

regime where the tensor rank is larger than the dimension, i.e., k > d.

1Note that in the learning applications, we form the empirical moments as the input tensor which is noisy.

19

We require natural deterministic conditions on the tensor components to argue the convergence

guarantees; see Appendix A.2 for the details. All of these conditions are satisfied if the true rank-

1 components of the tensor are uniformly i.i.d. drawn from the unit d-dimensional sphere Sd−1.

Among the deterministic assumptions, the most important one is the incoherence condition which

imposes a soft-orthogonality constraint between different rank-1 components of the tensor.

In the local convergence guarantee, we analyze the convergence properties of the algorithm assuming

we have good initialization vectors for the non-convex tensor decomposition algorithm.

Theorem 2.1 (Local convergence guarantee of the tensor decomposition algorithm). Consider

noisy rank-k tensor T̂ = T + Ψ as the input to the tensor decomposition algorithm, where T =

∑
i∈[k]wi · ai ⊗ bi ⊗ ci, and ψ := ‖Ψ‖ ≤ wmin/6. Let the rank condition k ≤ o

(
d1.5
)
is satisfied.

Assuming we have good initialization vectors (which have constant correlation with the true com-

ponents), then the algorithm outputs estimates Â := [â1 · · · âk] ∈ R
d×k and ŵ := [ŵ1 · · · ŵk]⊤ ∈ R

k,

satisfying w.h.p.

∥∥∥Â−A
∥∥∥
F
≤ Õ

(√
k · ψ
wmin

)
, ‖ŵ − w‖ ≤ Õ

(√
k · ψ

)
.

Same error bounds hold for other factor matrices B := [b1 · · · bk] and C := [c1 · · · ck]. The number

of iterations is N = Θ (log(1/ǫ̂R)) where ǫ̂R := min{ψ/wmin, Õ
(√
k/d
)
}.

Thus, we can decompose the tensor in the highly overcomplete regime k ≤ o
(
d1.5
)
. The

√
k factor

in the bound is from the fact that the final recovery guarantee is on the Frobenius norm of the

whole factor matrix A. In the following, we provide stronger column-wise guarantees (where there

is no
√
k factor) with the expense of having an additional residual error term. Our algorithm

includes two main update steps including tensor power iteration in (2.6) and residual error removal

in (2.10). The guarantee for the first step — tensor power iteration — is

20

Lemma 2.1 (Local convergence guarantee of the tensor power updates). Consider the same settings

as in Theorem 2.1. Then, the outputs of tensor power iteration steps in our algorithm satisfy w.h.p.2

min
z∈{−1,1}

‖zâj − aj‖ ≤ Õ
(

ψ

wmin

)
+ Õ

(√
k

d

)
, |ŵj − wj| ≤ Õ (ψ) + Õ

(
wmax

√
k

d

)
, j ∈ [k].

Same error bounds hold for other factor matrices B and C.

The above result provides guarantees with the additional residual error Õ
(√

k
d

)
, but we believe this

result also has independent importance for the following reasons. The above result provides column-

wise guarantees which is stronger than the guarantees on the whole factor matrix in Theorem 2.1.

Furthermore, we can only have recovery guarantees for a subset of rank-1 components of the tensor

(the ones for which we have good initializations) without worrying about the rest of components.

Finally, in the high-dimensional regime (large d), the residual error term goes to zero.

For the global convergence guarantee, we obtain good initialization vectors by performing a rank-1

SVD on the random slices of the moment tensor.

Theorem 2.2 (Global convergence guarantee of the tensor decomposition algorithm). Consider the

same input tensor to the algorithm as in Theorem 2.1 with noise bound ψ := ‖Ψ‖ ≤ Õ
(
wmin/

√
d
)
.

Let k ≤ βd (for arbitrary constant β > 1), and the initialization is performed by SVD-based method

in Procedure 2 (in the Appendix) using a polynomial number of initializations scaled as kβ
2
. Then,

the same guarantees as in Theorem 2.1 hold.

Note that the argument in Lemma 2.2 can be similarly adapted leading to global convergence

guarantee of the tensor power iteration step.

For 4th and higher order tensors, same techniques can be exploited to argue similar results.

Overview of techniques: Greedy or rank-1 updates are perhaps the most natural procedure for

CP tensor decomposition. For orthogonal tensors, they lead to guaranteed recovery [160]. However,

when the tensor is non-orthogonal, greedy procedure is not optimal in general [107]. Finding tensor

2Note that recovery of components is up to sign. This is because a third order tensor is unchanged if the sign
along one of the modes is fixed and the signs along the other two modes are flipped.

21

decomposition in general is NP-hard [88]. We circumvent this obstacle by limiting ourselves to

tensors with incoherent components. We exploit incoherence to prove error contraction under each

step of the alternating update procedure with an approximation error, which is decaying, when

k = o(d1.5). To this end, we require tools from random matrix theory, bounds on 2 → p norm for

random matrices [81, 2] for some p < 3, and matrix perturbation results to provide tight bounds

on error contraction.

2.1.2 Guarantees under random components

In this section, we provide the summary of results under stronger random assumption on the rank-1

components. This result is for third order tensors. We assume that the tensor components aj ’s

are randomly drawn from the unit sphere. Since general tensor decomposition is challenging in the

overcomplete regime, we argue that this is a natural first step to consider for tractable recovery.

We characterize the basin of attraction for the local optima near the rank-one components aj ’s.

We show that under mild initialization condition, there is fast convergence to these local optima

in O(log log d) iterations (i.e., quadratic convergence as opposed to linear convergence in case of

matrices). This result is the core technical analysis of this part stated in the following theorem.

Theorem 2.3 (Dynamics of tensor power iteration). Consider tensor T̂ = T + E such that exact

tensor T has rank-k decomposition in (2.1) with rank-one components aj ∈ R
d, j ∈ [k] being uni-

formly i.i.d. drawn from the unit d-dimensional sphere, and the ratio of maximum and minimum

(in absolute value) weights λj’s being constant. In addition, suppose the perturbation tensor E has

bounded norm as

‖E‖ ≤ ǫ
√
k

d
, where ǫ < o

(√
k

d

)
. (2.4)

Let tensor rank k = o(d1.5), and the unit-norm initial vector x(1) satisfy the correlation bound

|〈x(1), aj〉| ≥ dβ
√
k

d
, (2.5)

22

w.r.t. some true component aj, j ∈ [k], for some constant β > 0. After N = Θ (log log d) iterations,

the tensor power iteration in (2.2) outputs a vector having w.h.p. a constant correlation with the

true component aj as |〈x(N+1), aj〉| ≥ 1− γ, for any fixed constant γ > 0.

As a corollary, this result can be used for learning latent variable models such as multiview mixtures.

We show that the above initialization condition is satisfied using a sample with mild signal-to-noise

ratio; see Section 3.7 for more details on this.

The above result is a significant improvement over the analysis in Theorem 2.1 for overcomplete

tensor decomposition. In Theorem 2.1, it is required for the initialization vectors to have a constant

amount of correlation with the true aj ’s. However, obtaining such strong initializations is usually

not realistic in practice. On the other hand, the initialization condition in (2.5) is mild, and decaying

even when the rank k is significantly larger than dimension d; up to k = o(d1.5). In learning the

mixture model, such initialization vectors can be obtained as samples from the mixture model,

even when there is a large amount of noise. Given this improvement, we combine our analyses in

Theorems 2.3 and 2.1, proving that the model parameters can be recovered consistently.

Overview of proof techniques: A detailed proof outline for Theorem 2.3 is provided in Sec-

tion 2.6. Under the random assumption, it is not hard to show that the first iteration of tensor

power update makes progress. However, after the first iteration, the input vector and the tensor

components are no longer independent of each other. Therefore, we cannot directly repeat the same

argument for the second step.

How do we analyze the second step even though the vector and tensor components are correlated?

The main intuition is to characterize the dependency between the vector and the tensor components,

and show that there is still enough randomness left for us to repeat the argument. This idea

was inspired by the analysis of Approximate Message Passing (AMP) algorithms [39]. However,

our analysis here is very different in several key aspects: 1) In approximate message passing,

typically the analysis works in the large system limit, where the number of iterations is fixed and

the dimension goes to infinity. Here we can handle a superconstant number of iterations O(log log d),

23

even for finite d; 2) Usually k is assumed to be a constant factor times d in the AMP-like analysis,

while here we allow them to be polynomially related.

2.2 Related Works

CANDECOMP tensor decomposition [49], also known as PARAFAC decomposition [86, 87] is a

classical definition for tensor decomposition with many applications. The most commonly used

algorithm for CP decomposition is Alternating Least Squares (ALS) [62], which has no convergence

guarantees in general. Kolda [107] and Zhang and Golub [160] analyze the greedy or the rank-1

updates in the orthogonal setting. In the noisy setting, Anandkumar et al. [15] analyze deflation

procedure for orthogonal decomposition, and Song et al. [147] extend the analysis to the nonpara-

metric setting. For the non-orthogonal tensors, a common strategy is to first apply a procedure

called whitening to convert it to the orthogonal case. But as discussed earlier, the whitening pro-

cedure can lead to poor performance and bad sample complexity. Moreover, it requires the tensor

factors to have full column rank, which rules out overcomplete tensors.

Learning overcomplete tensors is challenging, and they may not even be identifiable in general.

Kruskal [111, 112] provided an identifiability result based on the Kruskal rank of the factor matrices

of the tensor. Domanov and De Lathauwer [72, 73] also provide uniqueness conditions based on

Khatri-Rao products of compound matrices of factor matrices. However, these results is limiting

since it requires k = O(d), where k is the tensor rank and d is the dimension. The FOOBI procedure

by De Lathauwer et al. [69] overcomes this limitation by assuming generic factors, and shows that

a polynomial-time procedure can recover the tensor components when k = O(d2) for fourth order

tensors. However, the procedure does not work for third-order overcomplete tensors, and has

no polynomial sample complexity bounds. Simple procedures can recover overcomplete tensors for

higher order tensors (five or higher). For instance, for the fifth order tensor, when k = O(d2), we can

utilize random slices along a mode of the tensor, and perform simultaneous diagonalization on the

matricized versions. Note that this procedure cannot handle the same level of overcompleteness as

FOOBI, since an additional dimension is required for obtaining two (or more) fourth order tensor

24

Input: Tensor T =
∑

i∈[k] wi · ai ⊗ bi ⊗ ci

Algorithm Initialization:
1) Random initialization
2) SVD-base method: Procedure 2

Tensor Power Iterations

Clustering the output of tensor
power method into k clusters

Coordinate descent updates
for removing the residual error

Output: estimates {(ŵi, âi, b̂i, ĉi)}i∈[k]

Algorithm 1

Procedure 3

Algorithm 4
& Procedure 5

Figure 2.1: Overview of tensor decomposition algorithm.

slices. The simultaneous diagonalization procedure entails careful perturbation analysis, carried

out by [80, 41]. In addition, Goyal et al. [80] provide stronger results for independent components

analysis (ICA), where the tensor slices can be obtained in the Fourier domain.

There are other recent works which can learn overcomplete models, but under different settings

than the ones considered in this work. For instance, Arora et al. [27], Agarwal et al. [3] provide

guarantees for the sparse coding problem.

The algorithm employed here falls under the general framework of alternating minimization. There

are many recent works which provide guarantees on local/global convergence for alternating mini-

mization, e.g., for matrix completion [101, 84], phase retrieval [130] and sparse coding [3]. However,

the techniques in this work are significantly different, since they involve tensors, while the previous

works only required matrix analysis.

25

2.3 Tensor Decomposition Algorithm

In this section, we introduce the alternating tensor decomposition algorithm, and the guarantees

are provided in Section 2.4. A summary of results are also provided in Section 2.1. The goal of

tensor decomposition algorithm is to recover the rank-1 components of tensor; see (1.5) for the

notion of tensor rank. Figure 2.1 depicts an overview of our tensor decomposition method where

the corresponding algorithms and procedures are also specified. Our algorithm includes two main

steps as 1) alternating tensor power iteration, and 2) coordinate descent iteration for removing the

residual error. The former one is performed in Algorithm 1 (see equation (2.6)), and the latter one

is done in Algorithm 4 (see equation (2.10)). We now describe these steps of the algorithm in more

details as well as providing the auxiliary procedures required to complete the algorithm.

2.3.1 Tensor power iteration in Algorithm 1

The main step of the algorithm is tensor power iteration which basically performs alternating

asymmetric power updates 3 on different modes of the tensor as

â(t+1) =
T
(
I, b̂(t), ĉ(t)

)

∥∥∥T
(
I, b̂(t), ĉ(t)

)∥∥∥
, b̂(t+1) =

T
(
â(t), I, ĉ(t)

)
∥∥T
(
â(t), I, ĉ(t)

)∥∥ , ĉ(t+1) =
T
(
â(t), b̂(t), I

)

∥∥∥T
(
â(t), b̂(t), I

)∥∥∥
, (2.6)

where {â(t), b̂(t), ĉ(t)} denotes estimate in the t-th iteration. Recall that for vectors v,w ∈ R
d,

the multilinear form T (I, v, w) ∈ R
d used in the above update formula is defined in (1.3), where

T (I, v, w) is a multilinear combination of the tensor mode-1 fibers. Notice that the updates alter-

nate among different modes of the tensor which can be viewed as a rank-1 form of the standard

Alternating Least Squares (ALS) method. We later discuss this relation in more details.

Optimization viewpoint: Consider the problem of best rank-1 approximation of tensor T as

min
a,b,c∈Sd−1

w∈R

‖T − w · a⊗ b⊗ c‖F , (2.7)

3This is exactly the generalization of asymmetric matrix power update to 3rd order tensors.

26

Algorithm 1 Tensor decomposition via alternating asymmetric power updates

Input: Tensor T ∈ R
d×d×d, number of initializations L, number of iterations N .

1: for τ = 1 to L do
2: Initialize unit vectors â

(0)
τ ∈ R

d, b̂
(0)
τ ∈ R

d, and ĉ
(0)
τ ∈ R

d as

• Option 1: SVD-based method in Procedure 2 when k ≤ βd for arbitrary constant β.

• Option 2: random initialization.

3: for t = 0 to N − 1 do
4: Asymmetric power updates (see (1.3) for the definition of the multilinear form):

â(t+1)
τ =

T
(
I, b̂

(t)
τ , ĉ

(t)
τ

)

∥∥∥T
(
I, b̂

(t)
τ , ĉ

(t)
τ

)∥∥∥
, b̂(t+1)

τ =
T
(
â
(t)
τ , I, ĉ

(t)
τ

)

∥∥∥T
(
â
(t)
τ , I, ĉ

(t)
τ

)∥∥∥
, ĉ(t+1)

τ =
T
(
â
(t)
τ , b̂

(t)
τ , I

)

∥∥∥T
(
â
(t)
τ , b̂

(t)
τ , I

)∥∥∥
.

5: weight estimation:

ŵτ = T
(
â(N)
τ , b̂(N)

τ , ĉ(N)
τ

)
. (2.8)

6: Cluster set
{(
ŵτ , â

(N)
τ , b̂

(N)
τ , ĉ

(N)
τ

)
, τ ∈ [L]

}
into k clusters as in Procedure 3.

7: return the center member of these k clusters as estimates (ŵj , âj , b̂j , ĉj), j ∈ [k].

where Sd−1 denotes the unit d-dimensional sphere. This optimization program is non-convex, and

has multiple local optima. It can be shown that the updates in (2.6) are the alternating optimization

for this program where in each update, optimization over one vector is performed while the other

two vectors are assumed fixed. This alternating minimization approach does not converge to the

true components of tensor T in general, and in this work we provide sufficient conditions for the

convergence guarantees.

Intuition: We now provide an intuitive argument on the functionality of power updates in (2.6).

Consider a rank-k tensor T as in (1.5), and suppose we start at the correct vectors â = aj and

b̂ = bj , for some j ∈ [k]. Then for the numerator of update formula (2.6), we have

T
(
â, b̂, I

)
= T (aj , bj , I) = wjcj +

∑

i 6=j
wi〈aj , ai〉〈bj , bi〉ci, (2.9)

where the first term is along cj and the second term is an error term due to non-orthogonality. For

orthogonal decomposition, the second term is zero, and the true vectors aj , bj and cj are stationary

points for the power update procedure. However, since we consider non-orthogonal tensors, this

27

Procedure 2 SVD-based initialization when k ≤ βd for arbitrary constant β

Input: Tensor T ∈ R
d×d×d.

1: Draw a random standard Gaussian vector θ ∼ N (0, Id).
2: Compute u1 and v1 as the top left and right singular vectors of T (I, I, θ) ∈ R

d×d.
3: â(0) ← u1, b̂(0) ← v1.
4: Initialize ĉ(0) by update formula in (2.6).
5: return

(
â(0), b̂(0), ĉ(0)

)
.

procedure cannot recover the decomposition exactly leading to a residual error after running this

step. Under incoherence conditions which encourages soft-orthogonality constraints 4 (and some

other conditions), we show that the residual error is small (see Lemma 2.2 where the guarantees

for the tensor power iteration step is provided), and thus, with the additional step we propose in

Section 2.3.2, we can also remove this residual error.

Initialization and clustering procedures: We discussed that the tensor power updates in (2.6)

are the alternating iterations for the problem of rank-1 approximation of the tensor; see (2.7). This

is a non-convex problem and has many local optima. Thus, the power update requires careful

initialization to ensure convergence to the true rank-1 tensor components.

For generating initialization vectors
(
â(0), b̂(0), ĉ(0)

)
, we introduce two possibilities. One is the simple

random initializations, where â(0) and b̂(0) are uniformly drawn from unit sphere Sd−1. The other

option is SVD-based technique in Procedure 2 where top left and right singular vectors of T (I, I, θ)

(for some random θ ∈ R
d) are respectively introduced as â(0) and b̂(0). Under both initialization

procedures, vector ĉ(0) is generated through update formula in (2.6). We establish in Section 2.4.2

that when k = O(d), the SVD procedure leads to global convergence guarantees under polynomial

number of trials. In practice random initialization also works well, however the analysis is still an

open problem.

Notice that the algorithm is run for L different initialization vectors for which we do not know the

good ones in prior. In order to identify which initializations are successful at the end, we also need

a clustering step proposed in Procedure 3 to obtain the final estimates of the vectors. The detailed

analysis of clustering procedure is provided in Appendix A.5.

4See Assumption (A2) in Appendix A.2 for precise description.

28

Procedure 3 Clustering process

Input: Tensor T ∈ R
d×d×d, set of 4-tuples

{
(ŵτ , âτ , b̂τ , ĉτ), τ ∈ [L]

}
, parameter ν.

1: for i = 1 to k do
2: Among the remaining 4-tuples, choose â, b̂, ĉ which correspond to the largest |T (â, b̂, ĉ)|.
3: Do N more iterations of alternating updates in (2.6) starting from â, b̂, ĉ.
4: Let the output of iterations denoted by (â, b̂, ĉ) be the center of cluster i.
5: Remove all the tuples with max{|〈âτ , â〉|, |〈̂bτ , b̂〉|, |〈ĉτ , ĉ〉|} > ν/2.
6: return the k cluster centers.

2.3.2 Coordinate descent iteration in Algorithm 4

We discussed in the previous section that the tensor power iteration recovers the tensor rank-1

components up to some residual error. We now propose Algorithm 4 to remove this additional

residual error. This algorithm mainly runs a coordinate descent iteration as

c̃
(t+1)
i = Norm

(
T
(
â
(t)
i , b̂

(t)
i , I

)
−
∑

j 6=i
ŵ

(t)
j 〈â

(t)
i , â

(t)
j 〉〈̂b

(t)
i , b̂

(t)
j 〉 · ĉ

(t)
j

)
, i ∈ [k], (2.10)

where for vector v, we have Norm(v) := v/‖v‖, i.e., it normalizes the vector. The above is similarly

applied for updating ã
(t+1)
i and b̃

(t+1)
i . Unlike the power iteration, it can be immediately seen that

ai, bi and ci are stationary points of the above update even if the components are not orthogonal

to each other. Inspired by this intuition, we prove that when the residual error is small enough (as

guaranteed in the analysis of tensor power iteration), this step removes it.

The analysis of this algorithm requires that the estimate matrices Â, B̂, Ĉ satisfy some bound on

the spectral norm and some column-wise error bounds; see Definition A.1 in Appendix A.3.2 for the

details. The optimization program in (2.11) (which is only run in the first iteration) and projection

Procedure 5 ensure that these conditions are satisfied.

2.3.3 Discussions

We now provide some further discussions and comparisons about the algorithm.

29

Algorithm 4 Coordinate descent algorithm for removing the residual error

Input: Tensor T ∈ R
d×d×d, initialization set

{
Â, B̂, Ĉ, ŵ(0)

}
, number of iterations N .

1: Initialize Â(0) as (similarly for B̂(0), Ĉ(0))

Â(0) := arg min
Ã

‖Ã‖ s. t. ‖ãi − âi‖ ≤ Õ
(√

k/d
)
, i ∈ [k]. (2.11)

2: for t = 0 to N − 1 do
3: for i = 1 to k do
4:

w̃
(t+1)
i =

∥∥∥∥T
(
â
(t)
i , b̂

(t)
i , I

)
−
∑

j 6=i
ŵ

(t)
j 〈â

(t)
i , â

(t)
j 〉〈̂b

(t)
i , b̂

(t)
j 〉 · ĉ

(t)
j

∥∥∥∥,

c̃
(t+1)
i =

1

w̃
(t+1)
i

(
T
(
â
(t)
i , b̂

(t)
i , I

)
−
∑

j 6=i
ŵ

(t)
j 〈â

(t)
i , â

(t)
j 〉〈̂b

(t)
i , b̂

(t)
j 〉 · ĉ

(t)
j

)
.

5: Update Ĉ(t+1) by applying Procedure 5 with inputs C̃(t+1) and Ĉ(t).
6: Repeat the above steps (with appropriate changes) to update Â(t+1) and B̂(t+1).
7: Update ŵ(t+1):

for any i ∈ [k], ŵ
(t+1)
i =





w̃
(t+1)
i ,

∣∣∣w̃(t+1)
i − ŵ(t)

i

∣∣∣ ≤ η0
√
k
d ,

ŵ
(t)
i + sgn

(
w̃

(t+1)
i − ŵ(t)

i

)
· η0

√
k
d , o.w.

8: return
{
Â(N), B̂(N), Ĉ(N), ŵ(N)

}
.

Implicit tensor operations: In many applications, the input tensor T is not available in advance,

and it is computed from samples. It is discussed in [21] that the tensor is not needed to be computed

and stored explicitly, where the multilinear tensor updates (2.6) and (2.10) in the algorithm can be

efficiently computed through multilinear operations on the samples directly.

Comparison with symmetric orthogonal tensor power method: Algorithm 1 is similar to

the symmetric tensor power method analyzed by Anandkumar et al. [15] with the following main

differences, viz.,

• Symmetric and non-symmetric tensors: Our algorithm can be applied to both symmetric

and non-symmetric tensors, while tensor power method in Anandkumar et al. [15] is only for

symmetric tensors.

• Linearity: The updates in Algorithm 1 are linear in each variable, while the symmetric tensor

power update is a quadratic operator given a third order tensor.

30

Procedure 5 Projection procedure

input Matrices C̃(t+1), Ĉ(t).
1: Compute the SVD of C̃(t+1) = UDV ⊤.

2: Let D̂ be the truncated version of D as D̂i,i := min

{
Di,i, η1

√
k
d

}
.

3: Let Q := UD̂V ⊤.

4: Update Ĉ(t+1): for any i ∈ [k], ĉ
(t+1)
i =





Qi,
∥∥∥Qi − ĉ(t)i

∥∥∥ ≤ η0
√
k
d ,

ĉ
(t)
i + η0

√
k
d

(
Qi−ĉ(t)i

)

∥∥∥Qi−ĉ(t)i

∥∥∥
, o.w.

5: return Ĉ(t+1).

• Guarantees: In Anandkumar et al. [15], guarantees for the symmetric tensor power update

under orthogonality are obtained, while here we consider non-orthogonal tensors under the

alternating updates.

Comparison with Alternating Least Square(ALS): The updates in Algorithm 1 can be viewed

as a rank-1 form of the standard alternating least squares (ALS) procedure. This is because the

unnormalized update for c in (2.6) can be rewritten as

c̃(t+1)
τ := T

(
â(t)τ , b̂

(t)
τ , I

)
= mat(T, 3) ·

(
b̂(t)τ ⊙ â(t)τ

)
, (2.12)

where ⊙ denotes the Khatri-Rao product, and mat(T, 3) ∈ R
d×d2 is the mode-3 matricization of

tensor T . On the other hand, the ALS update has the form

C̃(t+1) = mat(T, 3) ·
((

B̂(t) ⊙ Â(t)
)⊤)†

,

where k vectors (all columns of C̃(t+1) ∈ R
d×k) are simultaneously updated given the current

estimates for the other two modes Â(t) and B̂(t). In contrast, our procedure updates only one

vector (with the target of recovering one column of C) in each iteration. In our update, we do not

require finding matrix inverses. This leads to efficient computational complexity, and we also show

that our update procedure is more robust to perturbations.

31

2.4 Guarantees for Tensor Decomposition Under Incoherent Com-

ponents

In this section, we provide the local and global convergence guarantees for the tensor decompo-

sition algorithm proposed in Section 2.3. A summary of these results is proposed in Section 2.1.

Throughout the work, we assume tensor T̂ ∈ R
d×d×d is of the form T̂ = T + Ψ, where Ψ is the

error or perturbation tensor, and5

T =
∑

i∈[k]
wi · ai ⊗ bi ⊗ ci,

is a rank-k tensor such that ai, bi, ci ∈ R
d, i ∈ [k], are unit vectors. Let A := [a1 a2 · · · ak] ∈ R

d×k,

and B and C are similarly defined. The goal of robust tensor decomposition algorithm is to recover

the rank-1 components {(ai, bi, ci), i ∈ [k]} given noisy tensor T̂ . Our analysis emphasizes on the

challenging overcomplete regime where the tensor rank is larger than the dimension, i.e., k > d.

Without loss of generality we also assume wmax = w1 ≥ w2 ≥ · · · ≥ wk = wmin > 0.

We require natural deterministic conditions on the tensor components to argue the convergence

guarantees; see Appendix A.2 for the details. We show that all of these conditions are satisfied if

the true rank-1 components of the tensor are uniformly i.i.d. drawn from the unit d-dimensional

sphere Sd−1. Thus, for simplicity we assume this random assumption in the main part, and state

the deterministic assumptions in Appendix A.2. Notice that it is also reasonable to assume these

deterministic assumptions hold for some non-random matrices. Among the deterministic assump-

tions, the most important one is the incoherence condition which imposes a soft-orthogonality

constraint between different rank-1 components of the tensor.

Some of the convergence guarantees are provided in terms of distance between the estimated and

the true vectors, defined below.

5For 4th and higher order tensors, same techniques we introduce in this work, can be exploited to argue similar
results.

32

Definition 2.1. For any two vectors u, v ∈ R
d, the distance between them is defined as

dist(u, v) := sup
z⊥u

〈z, v〉
‖z‖ · ‖v‖ = sup

z⊥v

〈z, u〉
‖z‖ · ‖u‖ . (2.13)

Note that distance function dist(u, v) is invariant w.r.t. norm of input vectors u and v. Distance

also provides an upper bound on the error between unit vectors u and v as (see Lemma A.1 of

Agarwal et al. [3])

min
z∈{−1,1}

‖zu− v‖ ≤
√

2 dist(u, v).

Incorporating distance notion resolves the sign ambiguity issue in recovering the components: note

that a third order tensor is unchanged if the sign of a vector along one of the modes is fixed and

the signs of the corresponding vectors in the other two modes are flipped.

2.4.1 Local convergence guarantee

In the local convergence guarantee, we analyze the convergence properties of the algorithm assuming

we have good initialization vectors for the non-convex tensor decomposition algorithm.

Settings of Algorithm in Theorem 2.4:

• Number of iterations: N = Θ
(

log
(

1
γǫR

))
, where γ := wmax

wmin
and ǫR := min

{
ψ

wmin
, Õ
(
γ
√
k
d

)}
.

Conditions for Theorem 2.4:

• Rank-k true tensor with random components: Let

T =
∑

i∈[k]
wi · ai ⊗ bi ⊗ ci, wi > 0, ai, bi, ci ∈ Sd−1,

33

where ai, bi, ci, i ∈ [k], are uniformly i.i.d. drawn from the unit d-dimensional sphere Sd−1.

We state the deterministic assumptions in Appendix A.2, and show that random matrices

satisfy these assumptions.

• Rank condition: k = o
(
d1.5
)
.

• Perturbation tensor Ψ satisfies the bound

ψ := ‖Ψ‖ ≤ wmin

6
.

• Weight ratio: The maximum ratio of weights γ := wmax
wmin

satisfies the bound

γ = O

(
min

{√
d,
d1.5

k

})
.

• Initialization: Assume we have good initialization vectors â
(0)
j , b̂

(0)
j , j ∈ [k] satisfying

ǫ0 := max
{

dist
(
â
(0)
j , aj

)
,dist

(
b̂
(0)
j , bj

)}
= O(1/γ), ∀j ∈ [k], (2.14)

where γ := wmax
wmin

. In addition, given â
(0)
j and b̂

(0)
j , suppose ĉ

(0)
j is also calculated by the update

formula in (2.6).

Theorem 2.4 (Local convergence guarantee of the tensor decomposition algorithm). Consider

noisy rank-k tensor T̂ = T + Ψ as the input to the tensor decomposition algorithm, and assume

the conditions and settings mentioned above hold. Then the algorithm outputs estimates Â :=

[â1 · · · âk] ∈ R
d×k and ŵ := [ŵ1 · · · ŵk]⊤ ∈ R

k, satisfying w.h.p.

∥∥∥Â−A
∥∥∥
F
≤ Õ

(√
k · ψ
wmin

)
, ‖ŵ − w‖ ≤ Õ

(√
k · ψ

)
.

Same error bounds hold for other factor matrices B := [b1 · · · bk] and C := [c1 · · · ck].

See the proof in Appendix A.3.

Thus, we can efficiently decompose the tensor in the highly overcomplete regime k ≤ o
(
d1.5
)

under

incoherent factors and some other assumptions mentioned above. The deterministic version of

34

assumptions are stated in Appendix A.2. We show that these assumptions are true for random

components which is assumed here for simplicity. If k is significantly smaller than d1.5 (k ≪ d1.25),

then many of the assumptions can be derived from incoherence. See Appendix A.2 for the details.

The above local convergence result can be also interpreted as a local identifiability result for tensor

decomposition under incoherent factors.

The
√
k factor in the above theorem error bound is from the fact that the final recovery guarantee

is on the Frobenius norm of the whole factor matrix A. In the following, we provide stronger

column-wise guarantees (where there is no
√
k factor) with the expense of having an additional

residual error term. Recall that our algorithm includes two main update steps including tensor

power iteration in (2.6) and residual error removal in (2.10). The guarantee for the first step —

tensor power iteration — is provided in the following lemma.

Lemma 2.2 (Local convergence guarantee of the tensor power updates, Algorithm 1). Consider

the same settings as in Theorem 2.4. Then, the outputs of tensor power iteration steps (output of

Algorithm 1) satisfy w.h.p.

dist(âj , aj) ≤ Õ
(

ψ

wmin

)
+ Õ

(
γ

√
k

d

)
, |ŵj − wj| ≤ Õ (ψ) + Õ

(
wmax

√
k

d

)
, j ∈ [k].

Same error bounds hold for other factor matrices B and C.

The above result provides guarantees with the additional residual error Õ
(
γ
√
k
d

)
, but we believe this

result also has independent importance for the following reasons. The above result provides column-

wise guarantees which is stronger than the guarantees on the whole factor matrix in Theorem 2.4.

Furthermore, we can only have recovery guarantees for a subset of rank-1 components of the tensor

(the ones for which we have good initializations) without worrying about the rest of components.

Finally, in the high-dimensional regime (large d), the residual error term goes to zero.

The result in the above lemma is actually stated in the non-asymptotic form, where the details of

constants are explicitly provided in Appendix A.2.

35

Symmetric tensor decomposition: The above local convergence result also holds for recovering

the components of a rank-k symmetric tensor. Consider symmetric tensor T with CP decomposition

T =
∑

i∈[k]wiai ⊗ ai ⊗ ai. The proposed algorithm can be also applied to recover the components

ai, i ∈ [k], where the main updates are changed to adapt to the symmetric tensor. The tensor

power iteration is changed to

â(t+1) =
T
(
â(t), â(t), I

)
∥∥T
(
â(t), â(t), I

)∥∥ , (2.15)

and the coordinate descent update is changed to the form stated in (A.10). Then, the same local

convergence result as in Theorem 2.4 holds for this algorithm. The proof is very similar to the

proof of Theorem 2.4 with some slight modifications considering the symmetric structure.

Extension to higher order tensors: We also provide the generalization of the tensor decomposi-

tion guarantees to higher order tensors. We state and prove the result for the tensor power iteration

part in details, while the generalization of coordinate descent part (for removing the residual error)

to higher order tensors, can be argued by the same techniques we introduce in this work

For brevity, Algorithm 1 and local convergence guarantee in Lemma 2.2 are provided for a 3rd order

tensor. The algorithm can be simply extended to higher order tensors to compute the corresponding

CP decomposition. Consider p-th order tensor T ∈⊗p
R
d with CP decomposition

T =
∑

i∈[k]
wi · a(1),i ⊗ a(2),i ⊗ · · · ⊗ a(p),i, (2.16)

where a(r),i ∈ R
d is the i-th column of r-th component A(r) :=

[
a(r),1 a(r),2 · · · a(r),k

]
∈ R

d×k, for

r ∈ [p]. Algorithm 1 can be extended to recover the components of above decomposition where

update formula for the p-th mode is modified as

â
(t+1)
(p) =

T
(
â
(t)
(1), â

(t)
(2), . . . , â

(t)
(p−1), I

)

∥∥∥T
(
â
(t)
(1)
, â

(t)
(2)
, . . . , â

(t)
(p−1)

, I
)∥∥∥
, (2.17)

and similarly the other updates are changed. Then, we have the following generalization of

Lemma 2.2 to higher order tensors.

36

Corollary 2.1 (Local convergence guarantee of the tensor power updates in Algorithm 1 for p-th

order tensor). Consider the same conditions and settings as in Lemma 2.2, unless tensor T is p-th

order with CP decomposition in (2.16) where p ≥ 3 is a constant. In addition, the bounds on

γ := wmax
wmin

and k are modified as

γ = O

(
min

{
d

p−2
2 ,

dp/2

k

})
, k = o

(
d

p
2

)
.

Then, the outputs of tensor power iteration steps (output of Algorithm 1) satisfy w.h.p.

dist
(
â(r),j , a(r),j

)
≤ Õ

(
ψ

wmin

)
+ Õ

(
γ

√
k

dp−1

)
, |ŵj − wj | ≤ Õ (ψ) + Õ

(
wmax

√
k

dp−1

)
,

for j ∈ [k] and r ∈ [p]. The number of iterations is N = Θ
(

log
(

1
γǫ̃R

))
, where γ := wmax

wmin
and

ǫ̃R := min
{

ψ
wmin

, Õ
(
γ
√
k/dp−1

)}
.

2.4.2 Global convergence guarantee when k = O(d)

Theorem 2.4 provides local convergence guarantee given good initialization vectors. In this section,

we exploit SVD-based initialization method in Procedure 2 to provide good initialization vectors

when k = O(d). This method proposes the top singular vectors of random slices of the moment

tensor as the initialization. Combining the theoretical guarantees of this initialization method

(provided in Appendix A.4) with the local convergence guarantee in Theorem 2.4, we provide the

following global convergence result.

Settings of Algorithm in Theorem 2.5:

• Number of iterations: N = Θ
(

log
(

1
γǫR

))
, where γ := wmax

wmin
and ǫR := min

{
ψ

wmin
, Õ
(
γ
√
k
d

)}
.

• The initialization in each run of Algorithm 1 is performed by SVD-based technique proposed

in Procedure 2, with the number of initializations as

L ≥ kΩ(γ4(k/d)2).

37

Conditions for Theorem 2.5:

• Rank-k decomposition and perturbation conditions as 6

T =
∑

i∈[k]
wi · ai ⊗ bi ⊗ ci, ψ := ‖Ψ‖ ≤ wmin

√
log k

α0

√
d

,

where ai, bi, ci, i ∈ [k], are uniformly i.i.d. drawn from the unit d-dimensional sphere Sd−1,

and α0 > 1 is a constant.

• Rank condition: k = O(d), i.e., k ≤ βd for arbitrary constant β > 1.

Theorem 2.5 (Global convergence guarantee of tensor decomposition algorithm when k = O(d)).

Consider noisy rank-k tensor T̂ = T + Ψ as the input to the tensor decomposition algorithm,

and assume the conditions and settings mentioned above hold. Then, the same guarantees as in

Theorem 2.4 hold.

See the proof in Appendix A.3.

Thus, we can efficiently recover the tensor decomposition, when the tensor is undercomplete or

mildly overcomplete (i.e., k ≤ βd for arbitrary constant β > 1), by initializing the algorithm with

a simple SVD-based technique. The number of initialization trials L is polynomial when γ is a

constant, and k = O(d).

Note that the argument in Lemma 2.2 can be similarly adapted leading to global convergence

guarantee of the tensor power iteration step.

Two undercomplete, and one overcomplete component

Here, we apply the global convergence result to the regime of two undercomplete and one overcom-

plete components. This arises in supervised learning problems under a multiview mixtures model

and employing moment tensor E[x1 ⊗ x2 ⊗ y], where xi ∈ R
du are multi-view high-dimensional

features and y ∈ R
do is a low-dimensional label.

6Note that the perturbation condition is stricter than the corresponding condition in the local convergence guar-
antee (Theorem 2.4).

38

Since in the SVD initialization Procedure 2, two components â(0) and b̂(0) are initialized through

SVD, and the third component ĉ(0) is initialized through update formula (2.6), we can generalize

the global convergence result in Theorem 2.5 to the setting where A, B are undercomplete, and C

is overcomplete.

Corollary 2.2. Consider the same setting as in Theorem 2.5. In addition, suppose the regime of

undercomplete components A ∈ R
du×k, B ∈ R

du×k, and overcomplete component C ∈ R
do×k such

that du ≥ k ≥ do. In addition, in this case the bound on γ := wmax
wmin

is

γ = O

(
min

{√
do,

du
√
do

k

})
.

Then, if k = O(du) and do ≥ polylog(k), the same convergence guarantee as in Theorem 2.5 holds.

See the proof in Appendix A.3.

We observe that given undercomplete modes A and B, mode C can be arbitrarily overcomplete,

and we can still provide global recovery of A,B and C by employing SVD initialization procedure

along modes A and B.

2.5 Proof Outline Under Incoherent Components

The global convergence guarantee in Theorem 2.5 is established by combining the local convergence

result in Theorem 2.4 and the SVD initialization result in Appendix A.4.

The local convergence result in Theorem 2.4 is derived by establishing error contraction in each

iteration of the tensor power iteration and the coordinate descent for removing the residual error.

Note that these convergence properties are broken down in Lemmata 2.2 and A.11, respectively.

Since we assume generic factor matrices A,B and C, we utilize many useful properties such as

incoherence, bounded spectral norm of the matrices A,B and C, bounded tensor spectral norm and

so on. We list the precise set of deterministic conditions required to establish the local convergence

result in Appendix A.2. Under these conditions, with a good initialization (i.e., small enough

39

max{dist(â, aj),dist(̂b, bj)} ≤ ǫ0), we show that the iterative update in (2.6) provides an estimate

ĉ with

dist(ĉ, cj) < Õ

(
ψ

wmin

)
+ Õ

(
γ

√
k

d

)
+ qǫ0,

for some contraction factor q < 1/2. The incoherence condition is crucial for establishing this

result. See Appendix A.3 for the complete proof.

The initialization argument for SVD-based technique in Procedure 2 has two parts. The first part

claims that by performing enough number of initializations (large enough L), a gap condition is

satisfied, meaning that we obtain a vector θ which is relatively close to cj compared to any ci, i 6= j.

This is a standard result for Gaussian vectors, e.g., see Lemma B.1 of Anandkumar et al. [15]. In

the second part of the argument, we analyze the dominant singular vectors of T (I, I, θ), for a vector

θ with a good relative gap, to obtain an error bound on the initialization vectors. This is obtained

through standard matrix perturbation results (Weyl and Wedin’s theorems). See Appendix A.4 for

the complete proof.

2.6 Proof Outline Under Random Components

Our main technical result is the analysis of third order tensor power iteration provided in Theo-

rem 2.3 which also allows to tolerate some amount of noise in the input tensor. We analyze the

noiseless and noisy settings in different ways. We basically first prove the result for the noiseless

setting where the input tensor has an exact rank-k decomposition in (2.1). When the noise is also

considered, we show that the contribution of noise in the analysis is dominated by the main signal,

and thus, the same result still holds. For the rest of this section we focus on the noiseless setting,

while we discuss the proof ideas for the noisy case in Section 2.6.2.

We first discuss the proof of Theorem 3.10 which involves two phases. In the first phase, we show

that under certain small amount of correlation (see (2.19)) between the initial vector and the true

component, the power iteration in (2.2) converges to some vector which has constant correlation

40

with the true component. This result is the core technical analysis of this work which is provided

in Lemma 2.3. In the second phase, we incorporate the result of Anandkumar et al. [19] which

guarantees the approximate convergence of power iteration given initial vector having constant

correlation with the true component. This is stated in Lemma 2.4.

To simplify the notation, we consider the tensor 7

T =
∑

j∈[k]
aj ⊗ aj ⊗ aj, aj ∼ N (0,

1

d
Id). (2.18)

Notice that this is exactly proportional to the 3rd order moment tensor of the multiview mixture

model in (3.2).

The following lemma is restatement of Theorem 2.3 in the noiseless setting.

Lemma 2.3 (Dynamics of tensor power iteration, phase 1). Consider the rank-k tensor T of the

form in (2.18). Let tensor rank k = o(d1.5), and the unit-norm initial vector x(1) satisfies the

correlation bound

|〈x(1), aj〉| ≥ dβ
√
k

d
, (2.19)

w.r.t. some true component aj , j ∈ [k], for some β > (log d)−c for some universal constant c > 0.

After N = Θ (log log d) iterations, the tensor power iteration in (2.2) outputs a vector having w.h.p.

a constant correlation with the true component aj as

|〈x(N+1), aj〉| ≥ 1− γ,

for any fixed constant γ > 0.

The proof outline of above lemma is provided in Section 2.6.1.

Lemma 2.4 (Dynamics of tensor power iteration, phase 2 [19]). Consider the rank-k tensor T of

the form in (2.18) with rank condition k ≤ o(d1.5). Let the initial vectors x
(1)
j satisfy the constant

7In the analysis, we assume that all the weights are equal to one which can be generalized to the case when the
ratio of maximum and minimum weights (in absolute value) are constant.

41

correlation bound

|〈x(1)j , aj〉| ≥ 1− γj,

w.r.t. true components aj , j ∈ [k], for some constants γj > 0. Let the output of the tensor power

update 8 in (2.2) applied to all these different initialization vectors after N = Θ
(
log 1

ǫ

)
iterations

be stacked in matrix Â. Then, we have w.h.p. 9

∥∥∥Â−A
∥∥∥
F
≤ ǫ.

Given the above two lemmas, the learning result in Theorem 3.10 is directly proved.

Proof of Theorem 3.10: The result is proved by combining Lemma 2.3 and Lemma 2.4. Note

that the initialization condition in (2.5) is w.h.p. satisfied given the SNR bound assumed. �

2.6.1 Proof outline of Lemma 2.3 (noiseless case of Theorem 2.3)

First step: We first intuitively show the first step of the algorithm makes progress. Suppose the

tensor is T =
∑

j∈[k] aj ⊗ aj ⊗ aj, and the initial vector x has correlation |〈x, a1〉| ≥ dβ
√
k
d with the

first component. The result of the first iteration is the normalized version of the following vector:

x̃ =
∑

j∈[k]
〈aj, x〉2aj.

Intuitively, this vector should have roughly 〈a1, x̃〉 = d2β k
d2 correlation with a1 (as the other terms

are random they don’t contribute much). On the other hand, the norm of this vector is roughly

O(
√
k/d): this is because 〈aj , x〉2 for j 6= 1 is roughly 10 1/d, and the sum of k random vectors with

8This result also needs an additional step of coordinate descent iterations since the true components are not the
fixed points of power iteration; see Anandkumar et al. [19] for the details.

9Anandkumar et al. [19] recover the vector up to sign since they work in the asymmetric case. In symmetric case
it is easy to resolve sign ambiguity issue.

10The correlation between two unit Gaussian vectors in d dimensions is roughly 1/
√
d.

42

length 1/d will have length roughly O(
√
k/d). These arguments can be made precise showing the

normalized version x̃/‖x̃‖ has correlation d2β
√
k
d with a1 ensuring progress in the first step.

Going forward: As we explained, the basic idea behind proving Lemma 2.3 is to characterize the

conditional distribution of random Gaussian tensor components aj ’s given previous iterations. In

particular, we show that the residual independent randomness left in these conditional distributions

is large enough and we can exploit it to obtain tighter concentration bounds throughout the analysis

of the iterations. The Gaussian assumption on the components, and small enough number of

iterations are crucial in this argument.

Notations: For two vectors u, v ∈ R
k, the Hadamard product denoted by ∗ is defined as the

entry-wise multiplication of vectors, i.e., (u∗v)j := ujvj for j ∈ [k]. For a matrix A, let P⊥A
denote

the projection operator to the subspace orthogonal to column span of A. For a subspace R, let

R⊥ denote the space orthogonal to it. Therefore, for a subspace R, the projection operator on the

subspace orthogonal to R is equivalently denoted by PR⊥ or P⊥R
. For a random matrix D, let

D|{u = Dv} denote the conditional distribution of D given linear constraints u = Dv.

Lemma 2.3 involves analyzing the dynamics of power iteration in (2.2) for 3rd order rank-k tensors.

For the rank-k tensor in (2.18), the power iterative form x← T (I,x,x)
‖T (I,x,x)‖ can be written as

x(t+1) =
A
(
A⊤x(t)

)∗2
∥∥∥A
(
A⊤x(t)

)∗2∥∥∥
, (2.20)

where the multilinear form in (1.3) is used. Here, A = [a1 · · · ak] ∈ R
d×k denotes the factor matrix,

and for vector y ∈ R
k, y∗2 := y ∗ y ∈ R

k represents the element-wise square of entries of y.

We consider the case where ai ∼ N (0, 1dI) are i.i.d. drawn and we analyze the evolution of the

dynamics of the power update. As explained earlier, for a given initialization x(1), the update in

the first step can be analyzed easily since A is independent of x(1). However, in subsequent steps,

the updates x(t) are dependent on A, and it is no longer clear how to provide a tight bound on

the evolution of x(t). In this work, we provide a careful analysis by controlling the amount of

“correlation build-up” by exploiting the structure of Gaussian matrices under linear constraints.

43

This enables us to provide better guarantees for matrix A with Gaussian entries compared to

general matrices A.

Intermediate update steps and variables:Before we proceed, we need to break down power

update in (2.2) and introduce some intermediate update steps and variables as follows. Recall that

x(1) ∈ R
d denotes the initialization vector. Without loss of generality, let us analyze the convergence

of power update to first component of rank-k tensor T denoted by a1. Hence, let the first entry of

x(1) denoted by x
(1)
1 be the maximum entry (in absolute value) of x(1), i.e., x

(1)
1 = ‖x(1)‖∞. Let

B := [a2 a3 · · · ak] ∈ R
d×(k−1), and therefore A = [a1|B]. We break the power update formula

in (2.2) into a few steps by introducing intermediate variables y(t) ∈ R
k and x̃(t+1) ∈ R

d as

y(t) := A⊤x(t), x̃(t+1) := A(y(t))∗2.

Note that x̃(t+1) is the unnormalized version of x(t+1) := x̃(t+1)/‖x̃(t+1)‖, i.e., x̃(t+1) := T (I, x(t), x(t)).

Thus, we need to jointly analyze the dynamics of all variables x(t), y(t) and (y(t))∗2. Define

X [t] :=
[
x(1)| . . . |x(t)

]
, Y [t] :=

[
y(1)| . . . |y(t)

]
.

Matrix B is randomly drawn with i.i.d. Gaussian entries Bij ∼ N (0, 1d). As the iterations proceed,

we consider the following conditional distributions

B(t,1) := B|{X [t], Y [t]}, B(t,2) := B|{X [t+1], Y [t]}. (2.21)

Thus, B(t,1) is the conditional distribution of B at the middle of tth iteration (before update step

x̃(t+1) = A(y(t))∗2) and B(t,2) is the conditional distribution at the end of tth iteration (after update

step x̃(t+1) = A(y(t))∗2). By analyzing the above conditional distributions, we can characterize the

left independent randomness in B.

44

2.6.1.1 Conditional Distributions

In order to characterize the conditional distribution of B under evolution of x(t) and y(t) in (2.21),

we exploit the following basic fact (see [39] for proof).

Lemma 2.5 (Conditional distribution of Gaussian matrices under a linear constraint). Consider

random matrix D with i.i.d. Gaussian entries Dij ∼ N (0, σ2). Conditioned on u = Dv with known

vectors u and v, the matrix D is distributed as

D|{u = Dv} (d)=
1

‖v‖2
uv⊤ + D̃P⊥v ,

where random matrix D̃ is an independent copy of D with i.i.d. Gaussian entries D̃ij ∼ N (0, σ2),

and P⊥v is the projection operator on to the subspace orthogonal to v.

We refer to D̃P⊥v as the residual random matrix since it represents the remaining randomness left

after conditioning. It is a random matrix whose rows are independent random vectors that are

orthogonal to v, and the variance in each direction orthogonal to v is equal to σ2.

The above Lemma can be exploited to characterize the conditional distribution of B introduced in

(2.21). However, a naive direct application using the constraint Y [t] = A⊤X [t] is not transparent

for analysis. The reason is the evolution of x(t) and y(t) are themselves governed by the conditional

distribution of B given previous iterations. Therefore, we need the following recursive version of

Lemma 2.5.

Corollary 2.3 (Iterative conditioning). Consider random matrix D with i.i.d. Gaussian entries

Dij ∼ N (0, σ2), and let F
(d)
= P⊥C

DP⊥R
be the random Gaussian matrix whose columns are orthog-

onal to space C and rows are orthogonal to space R. Conditioned on the linear constraint u = Dv,

where 11 u ∈ C⊥, the matrix F is distributed as

F |{u = Dv} (d)=
1

‖(P⊥R
v)‖2

u(P⊥R
v)⊤ + P⊥C

D̃P⊥{R,v} ,

where random matrix D̃ is an independent copy of D with i.i.d. Gaussian entries D̃ij ∼ N (0, σ2).

11We need that u ∈ C⊥, otherwise the event u = Dv is impossible.

45

Thus, the residual random matrix P⊥C
D̃P⊥{R,v} is a random Gaussian matrix whose columns are

orthogonal to C and rows are orthogonal to span{R, v}. The variance in any remaining dimension

is equal to σ2.

2.6.1.2 Form of Iterative Updates

Now we exploit the conditional distribution arguments proposed in the previous section to char-

acterize the conditional distribution of B given the update variables x and y up to the current

iteration; recall (2.21) where B(t,1) is the conditional distribution of B at the middle of tth iteration

and B(t,2) at the end of tth iteration. Before that, we need to introduce some more intermediate

variables.

Intermediate variables: We separate the first entry of y and (y)∗2 from the rest, i.e., we have

y
(t)
1 = a⊤1 x

(t), y
(t)
−1 = B⊤x(t) ∼ (B(t−1,2))⊤x(t),

where y
(t)
−1 ∈ R

k−1 denotes y(t) ∈ R
k with the first entry removed. The update formula for x̃(t+1)

can be also decomposed as

x̃(t+1) = (y
(t)
1)2a1 +Bw(t) ∼ (y

(t)
1)2a1 +B(t,1)w(t),

where

w(t) := (y
(t)
−1)

∗2 ∈ R
k−1,

is the new intermediate variable in the power iterations. Let B
(t,1)
res. and B

(t,2)
res. denote the residual

random matrices corresponding to B(t,1) and B(t,2) respectively, and

u(t+1) := B(t,1)
res. w

(t), v(t) := (B(t−1,2)
res.)⊤x(t),

46

where u(t) ∈ R
d and v(t) ∈ R

k−1 are respectively the part of x(t) and y
(t)
−1 representing the residual

randomness after conditioning on the previous iterations. We also summarize all variables and

notations in Table B.1 in the Appendix which can be used as a reference throughout the chapter.

Finally we make the following observations.

Lemma 2.6 (Form of iterative updates). The conditional distribution of B at the middle of tth

iteration denoted by B(t,1) satisfies

B(t,1) (d)=
∑

i∈[t−1]

u(i+1)(P⊥
W [i−1]

w(i))⊤

‖P⊥
W [i−1]

w(i)‖2 +
∑

i∈[t]

P⊥
X[i−1]

x(i)(v(i))⊤

‖P⊥
X[i−1]

x(i)‖2 +B(t,1)
res. , (2.22)

B(t,1)
res.

(d)
= P⊥

X[t]
B̃P⊥

W [t−1]
, (2.23)

where random matrix B̃ is an independent copy of B with i.i.d. Gaussian entries B̃ij ∼ N (0, 1d).

Similarly, the conditional distribution of B at the end of tth iteration denoted by B(t,2) satisfies

B(t,2) (d)=
∑

i∈[t]

(
u(i+1)(P⊥

W [i−1]
w(i))⊤

‖P⊥
W [i−1]

w(i)‖2 +
P⊥

X[i−1]
x(i)(v(i))⊤

‖P⊥
X[i−1]

x(i)‖2

)
+B(t,2)

res. , (2.24)

B(t,2)
res.

(d)
= P⊥

X[t]
B′P⊥

W [t]
, (2.25)

where random matrix B′ is an independent copy of B with i.i.d. Gaussian entries B′
ij ∼ N (0, 1d).

The lemma can be directly proved by applying the iterative conditioning argument in Corollary 2.3.

See the detailed proof in the appendix.

2.6.1.3 Analysis of Iterative Updates

Lemma 2.6 characterizes the conditional distribution of B given the update variables x and y up to

the current iteration; see (2.21) for the definition of conditional forms of B denoted by B(t,1) and

B(t,2). Intuitively, when the number of iterations t≪ d, then the residual independent randomness

left in B(t,1) and B(t,2) (respectively denoted by B
(t,1)
res. and B

(t,2)
res.) characterized in Lemma 2.6 is

47

· · · → x(t) −→ y(t) −→ w(t) −→ x(t+1) −→ y(t+1) → · · ·

update steps at iteration t

Figure 2.2: Flow of the power update algorithm stating intermediate steps. Iteration t for which
the inductive step should be argued is also indicated.

large enough and we can exploit it to obtain tighter concentration bounds throughout the analysis

of the iterations.

Note that the goal is to show that under t≪ d, the iterations x(t) converge to the true component

with constant error, i.e., |〈x(t), a1〉| ≥ 1 − γ for some constant γ > 0. If this already holds before

iteration t we are done, and if it does not hold, next iteration is analyzed to finally achieve the goal.

This analysis is done via induction argument. During the iterations, we maintain several invariants

to analyze the dynamics of power update. The goal is to ensure progress in each iteration as in

(2.26).

Induction hypothesis: The following are assumed at the beginning of the iteration t as induction

hypothesis; see Figure 2.2 for the scope of inductive step.

1. Length of Projection on x:

δt ≤ ‖P⊥
X[t−1]

x(t)‖ ≤ 1,

where δt is of order 1/polylog d, and the value of δt only depends on t and log d.

2. Length of Projection on w:

δ′t−1

√
k

d
≤ ‖P⊥

W [t−2]
w(t−1)‖ ≤ ∆′

t−1

√
k

d
,

‖P⊥
W [t−2]

w(t−1)‖∞ ≤ ∆′
t−1

1

d
,

where δ′t is of order 1/polylog d and ∆′
t is of order polylog d. Both δ′t and ∆′

t only depend on

t and log d.

48

3. Progress: 12

|〈a1, x(t)〉| ∈ [δ∗t ,∆
∗
t]d

β2t−1

√
k

d
, (2.26)

〈a1, P⊥
X[t−1]

x(t)〉 ≤ ∆∗
t d
β2t−1

√
k

d
.

4. Norm of u,v:

δt−1

2

√
k

d
≤ ‖v(t−1)‖ ≤ 2

√
k

d
,

δ′t−1

2

√
k

d
≤ ‖u(t)‖ ≤ 2∆′

t−1

√
k

d
.

The analysis for basis of induction and inductive step are provided in Appendix B.1.

2.6.2 Effect of noise in Theorem 2.3

Given rank-k random tensor T in (2.18), and a starting point x(1), our analysis in the noiseless

setting shows that the tensor power iteration in (2.2) outputs a vector which will be close to aj if

x(1) has a large enough correlation with aj .

Now suppose we are given noisy tensor T̂ = T + E where E has some small norm. In this case

where the noise is also present, we get a sequence x̂(t) = x(t) + ξ(t) where x(t) is the component not

incorporating any noise (as in previous section13), while ξ(t) represents the contribution of noise

tensor E in the power iteration; see (2.27) below. We prove that ξ(t) is a very small noise that does

not change our calculations stated in the following lemma.

Lemma 2.7 (Bounding norm of error). Suppose the spectral norm of the error tensor E is bounded

as

δt ≤ ‖P⊥
X[t−1]

x(t)‖ ≤ 1,

12Note that although the bounds on y
(t)
−1 are argued at iteration t, the bound on the first entry of y(t) denoted by

y
(t)
1 = 〈a1, x(t)〉 is assumed here in the induction hypothesis at the end of iteration t− 1.
13Note that there is a subtle difference between notation x(t) in the noiseless and noisy settings. In the noiseless

setting, this vector is normalized, while in the noisy setting the whole vector x̂(t) = x(t) + ξ(t) is normalized.

49

Then the noise vector ξ(t) at iteration t satisfies the ℓ2 norm bound

‖ξ(t)‖ ≤ Õ(dβ2
t−1
ǫ).

Note that when t is the first number such that dβ2
t−1 ≥ d/

√
k, we have ‖ξ(t)‖ = o(1).

Notice that since when dβ2
t−1 ≥ d/

√
k, the main induction is already over and we know x(t) is

constant close to the true component, and thus, the noise is always small.

Proof idea: We now provide an overview of ideas for proving the above lemma; see Appendix B.3

for the complete proof which is based on an induction argument. We first write the following

recursion expanding the contribution of main signal and noise terms in the tensor power iteration

as

x(t+1) + ξ(t+1) = Norm
(
T̂ (x(t) + ξ(t), x(t) + ξ(t), I)

)

= Norm
(
T (x(t), x(t), I) + 2T (x(t), ξ(t), I) + T (ξ(t), ξ(t), I) + E(x̂(t), x̂(t), I)

)
,

(2.27)

where for vector v, we have Norm(v) := v/‖v‖, i.e., it normalizes the vector. The first term is

the desired main signal and should have the largest norm, and the rest of the terms are the noise

terms. The third term is of order ‖ξ(t)‖2, and hence, it should be fine whenever we choose ‖E‖ to

be small enough. The last term is O(‖E‖) and is the same for all iterations so that is also fine.

The problematic term is the second term, whose norm if we bound naively is 2‖ξ(t)‖. However

the normalization factor also contributes a factor of roughly d/
√
k, and thus, this term grows

exponentially; it is still fine if we just do a constant number of iterations, but the exponent will

depend on the number of iterations.

In order to solve this problem, and make sure that the amount of noise we can tolerate is independent

of the number of iterations, we need a better way to bound the noise term ξ(t). The main problem

here is we bound the norm of ‖T (x(t), ξ(t), I)‖ by ‖T‖‖ξ(t)‖ ≤ O(ξ(t)), by doing this we ignored

the fact that x(t) is uncorrelated with the components in T . In order to get a tighter bound, we

introduce another norm ‖ · ‖∗. Intuitively, the norm ‖ · ‖∗ captures the fact that x does not have

50

a high correlation with the components (except for the first component that x will converge to),

and gives a better bound. In particular we have ‖T (x(t), ξ(t), I)‖ ≈
√
k
d ‖ξ(t)‖2. Therefore, the

normalization factor is compensated by the additional term
√
k
d . More concretely, this norm is

defined as follows.

Definition 2.2 (Norm ‖ · ‖∗). Given a matrix A = [a1 a2 · · · ak] ∈ R
d×k, for any vector u ∈ R

d,

the norm ‖u‖A∗ is defined as

‖u‖A∗ = max
i∈[k]
|〈ai, u〉|.

This norm satisfies a property shown in Lemma B.6 which enables us to argue that ξ(t) is small

enough as stated in Lemma 2.7.

2.7 Experiments

In this section, we provide some synthetic experiments to evaluate the performance of Algorithm 1.

Note that tensor power update in Algorithm 1 is the main step of our algorithm which is considered

in this experiment. A random true tensor T is generated as follows. First, three components

A ∈ R
d×k, B ∈ R

d×k, and C ∈ R
d×k are randomly generated with i.i.d standard Gaussian entries.

Then, the columns of these matrices are normalized where the normalization factors are aggregated

as coefficients wj, j ∈ [k]. From decomposition form in (1.5), tensor T is built through these random

components. For each new initialization, â(0) and b̂(0) are randomly generated with i.i.d. standard

Gaussian entries, and then normalized 14. Initialization vector ĉ(0) is generated through update

formula in (2.6).

For each initialization τ ∈ [L], an alternative option of running the algorithm with a fixed number

of iterations N is to stop the iterations based on some stopping criteria. In this experiment, we

14Drawing i.i.d. standard Gaussian entries and normalizing them is equivalent to drawing vectors uniformly from
the d-dimensional unit sphere.

51

stop the iterations when the improvement in subsequent steps is small as

max

(∥∥∥â(t)τ − â(t−1)
τ

∥∥∥
2
,
∥∥∥b̂(t)τ − b̂(t−1)

τ

∥∥∥
2
,
∥∥∥ĉ(t)τ − ĉ(t−1)

τ

∥∥∥
2
)
≤ tS,

where tS is the stopping threshold. According to the bound in Theorem 2.4, we set

tS := t1(log d)2
√
k

d
, (2.28)

for some constant t1 > 0.

Effect of size d and k

Algorithm 1 is applied to random tensors with d = 1000 and k = {10, 50, 100, 200, 500, 1000, 2000}.

The number of initializations is L = 2000. The parameter t1 in (3.20) is fixed as t1 = 1e − 08.

Figure 3.3 and Table 3.1 illustrate the outputs of running experiments which is the average of 10

random runs.

Figure 3.3 depicts the ratio of recovered columns versus the number of initializations. Both hori-

zontal and vertical axes are plotted in log-scale. We observe that it is much easier to recover the

columns in the undercomplete settings (k ≤ d), while it becomes harder when k increases. Lin-

ear start in Figure 3.3 suggests that recovering the first bunch of columns only needs polynomial

number of initializations. For highly undercomplete settings like d = 1000 and k = 10, almost all

columns are recovered in this linear phase. After this start, the concave part means that it needs

many more initializations for recovering the next bunch of columns. As we go ahead, it becomes

harder to recover true columns, which is intuitive.

Table 3.1 has the results from the experiments. Parameters k, stopping threshold tS, and the

average square error of the output, the average weight error and the average number of iterations

are stated. The output averages are over several initializations and random runs. The square error

52

10
0

10
1

10
2

10
3

10
410

−4

10
−2

10
0

d=1000, k=10

d=1000, k=50

d=1000, k=100

d=1000, k =200

d=1000, k=500

d=1000, k=1000

d=1000, k=2000

recovery rate of algorithm

number of initializations

ra
ti
o
o
f
re
co
v
er
ed

co
lu
m
n
s

Figure 2.3: Ratio of recovered columns versus the number of initializations for d = 1000, and
k = {10, 50, 100, 200, 500, 1000, 2000}. The number of initializations is L = 2000. The stopping
parameter is set to t1 = 1e− 08. The figure is an average over 10 random runs.

is given by

1

3

[
‖aj − â‖2 +

∥∥∥bj − b̂
∥∥∥
2

+ ‖cj − ĉ‖2
]
,

for the corresponding recovered j. The error in estimating the weights is defined as |ŵ − wj |2/w2
j

which is the square relative error of weight estimate. The number of iterations performed before

stopping the algorithm is mentioned in the last column. We observe that by increasing k, all of

these outputs are increased which means we get less accurate estimates with higher computation.

This shows that recovering the overcomplete components is much harder. Note that by running

the coordinate descent Algorithm 4, we can also remove this additional residual error left after the

tensor power iteration step. Similar results and observations as above are seen when k is fixed and

d is changed.

Running experiments with SVD initialization instead of random initialization yields nearly the same

recovery rates, but with slightly smaller number of iterations. But, since the SVD computation is

more expensive, in practice, it is desirable to initialize with random vectors. Our theoretical results

for random initialization appear to be highly pessimistic compared to the efficient recovery results

in our experiments. This suggests additional room for improving our theoretical guarantees under

random initialization.

53

Table 2.1: Parameters and more outputs related to results of Figure 3.3. Note that d = 1000.

Parameters Outputs

k tS
avg. square

error
avg. weight

error
avg. # of
iterations

10 1.51e-08 1.03e-05 9.75e-09 7.71
50 3.37e-08 5.54e-05 6.69e-08 8.53
100 4.77e-08 1.08e-04 1.51e-07 8.81
200 6.75e-08 2.07e-04 3.41e-07 9.09
500 1.07e-07 5.09e-04 1.14e-06 9.52
1000 1.51e-07 1.01e-03 3.40e-06 10.01
2000 2.13e-07 2.00e-03 1.12e-05 10.69

54

Chapter 3

Learning Overcomplete

Representations Using Tensor

Methods

In this chapter, we provide guarantees for learning latent variable models and latent representations

emphasizing on the overcomplete regime, where the dimensionality of the latent space exceeds the

observed dimensionality. In particular, we consider multiview mixtures, ICA, and sparse coding

models. Our main tool is a new algorithm for tensor decomposition that works in the overcomplete

regime. We analyzed the performance of this algorithm in the previous chapter. In this chapter,

we recap how learning different latent variable models can be formulated as a tensor decomposition

algorithm. By proving new tensor concentration bounds, we are able to provide sample complexity

results for learning these models by tensor methods.

In the semi-supervised setting, we exploit label information to get a rough estimate of the model

parameters, and then refine it using the tensor method on unlabeled samples. We establish learning

guarantees when the number of components scales as k = o(dp/2), where d is the observed dimension,

and p is the order of the observed moment employed in the tensor method (usually p = 3, 4). In the

unsupervised setting, a simple initialization algorithm based on SVD of the tensor slices is proposed,

55

and the guarantees are provided under the stricter condition that k ≤ βd (where constant β can be

larger than 1). We also provide tight sample complexity bounds through novel covering arguments.

It is often useful to incorporate latent variables in any modeling framework. Latent variables can

capture the effect of hidden causes which are not directly observed. Learning these hidden factors

is central to many applications, e.g., identifying the latent diseases through observed symptoms,

identifying the latent communities through observed social ties, and so on. Moreover, latent variable

models (LVMs) can provide an efficient representation of the observed data, and learning these

representations can lead to improved performance on various tasks such as classification. The

recent performance gains in domains such as speech and computer vision can be largely attributed

to efficient representation learning [40]. Moreover, it has been shown that learning overcomplete

representations is crucial to achieving these impressive gains [58].

In an overcomplete representation, the dimensionality of the latent space exceeds the observed

dimensionality. Overcomplete representations are known to be more robust to noise, and can

provide greater flexibility in modeling [119]. Although overcomplete representations have led to

huge performance gains in practice, theoretical guarantees for learning are mostly lacking. In

many domains, we face the challenging task of unsupervised or semi-supervised learning, since it

is expensive to obtain labeled samples and we typically have access to a large number of unlabeled

samples, e.g. [58, 117]. Therefore, it is imperative to develop novel guaranteed methods for efficient

unsupervised/semi-supervised learning of overcomplete models.

In this chapter, we bridge the gap between theory and practice, and establish that a wide range

of overcomplete LVMs can be learned efficiently through simple spectral learning techniques. We

perform spectral decomposition of the higher order moment tensors (estimated using unlabeled

samples) to obtain the model parameters. A recent line of work has shown that tensor decom-

positions can be employed for unsupervised learning of a wide range of LVMs, e.g., independent

components analysis [69], topic models, Gaussian mixtures, hidden Markov models [15], network

community models [12], and so on. It involves decomposition of a multivariate moment tensor, and

is guaranteed to provide a consistent estimate of the model parameters. The sample and compu-

tational requirements are only a low order polynomial in the latent dimensionality for the tensor

56

method [15, 147]. However, a major drawback behind these works is that they mostly consider the

undercomplete setting, where the latent dimensionality cannot exceed the observed dimensionality.

In practice, the tensor decomposition techniques have been shown to be effective in a number of

applications such as blind source separation [60], computer vision [155], contrastive topic mod-

eling [162], and community detection [97], where the tensor approach is shown to be orders of

magnitude faster than existing techniques such as the stochastic variational approach.

In this work, we establish guarantees for tensor decomposition in learning overcomplete LVMs,

such as multiview mixtures, independent component analysis, Gaussian mixtures and sparse coding

models. Note that learning general overcomplete models is ill-posed since the latent dimensionality

exceeds the observed dimensionality. We impose a natural incoherence condition on the compo-

nents, which can be viewed as a soft orthogonality constraint, which limits the redundancy among

the components. We establish that this constraint not only makes learning well-posed but also

enables efficient learning through tensor methods. Incoherence constraints are natural in the over-

complete regime, and have been considered before, e.g., in compressed sensing [74], independent

component analysis [117], and sparse coding [27, 3].

3.1 Summary of Results

In this chapter, we provide semi-supervised and unsupervised learning guarantees for LVMs such

as multiview mixtures, ICA and sparse coding models. Our algorithm is based on method of

moments, and employs a tensor decomposition algorithm for learning. Under the semi-supervised

setting, we establish that highly overcomplete models can be learned efficiently through the tensor

decomposition method. The moment tensors are constructed using unlabeled samples, and the

labeled samples are used to provide a rough initialization to the tensor decomposition algorithm.

In the unsupervised setting, we propose a simple initialization strategy for the tensor method,

and can handle mildly overcomplete models. In both settings we provide tight sample complexity

bounds through novel covering arguments.

57

3.1.1 Learning Multiview Mixture Model

In the multiview mixtures model, given the hidden mixture component, each observation (view)

is independently drawn with some unknown mean parameter and noise distribution around that

mean; see Section 3.3 for details. The goal is to estimate the conditional mean parameters. In

this setting, we assume reasonable property on noise, and for brevity, we consider the “low” noise

regime (where the norm of noise is of the same order as that of the component means).

In the semi-supervised setting, we use labeled samples to initialize the tensor decomposition algo-

rithm, and provide the following recovery guarantee.

Theorem 3.1 (Semi-supervised learning of multiview mixtures model: informal). Let k be the

number of mixture components, and d be the observed dimensionality, and suppose k ≤ o(d1.5). We

show that having polylog(d, k) number of labeled samples for each label, and n ≥ Ω̃(k) number of

unlabeled samples are sufficient to consistently estimate the model parameters.

See Theorem 3.7 for the formal statement of this result. Thus, for recovering each rank-1 component,

we need far less number of labeled samples compared to the number of unlabeled samples required.

Note that in most applications, labeled samples are expensive/hard to obtain, while many more

unlabeled samples are easily available, e.g., see [117, 57]. Furthermore, note that the unlabeled

sample complexity is the minimax bound up to polylog factors.

We also provide unsupervised learning guarantees when no label is available. Here, the initialization

is performing by the SVD-based method stated in the previous section. This imposes additional

conditions on rank and sample complexity as follows.

Theorem 3.2 (Unsupervised learning of multiview mixtures model: informal). Suppose the number

of unlabeled samples n satisfies n ≥ Ω̃ (kd) . If k ≤ βd (for arbitrary constant β > 1), then the model

parameters can be learned using a polynomial number of initializations scaled as kβ
2
.

See Theorem 3.8 for the formal statement of this result. This result is an improvement over existing

results since we do not have dependence on the condition number of the component means and in

addition, we can handle overcomplete models.

58

3.1.2 Learning ICA and Sparse ICA (Dictionary Learning) Models

We also provide semi-supervised and unsupervised learning guarantees for Independent Component

Analysis (ICA). By semi-supervised setting in ICA, we mean some prior information is available

which provides good initializations for the tensor decomposition algorithm. In the semi-supervised

setting, we show that when the number of components k = Θ(d2)/polylog(d), the ICA model can

be efficiently learned from fourth order moments with n ≥ Ω̃(k2.5) number of unlabeled samples.

In the unsupervised setting, we show that when k ≤ βd (for arbitrary constant β > 1), the ICA

model can be learned with number of samples scaling as n ≥ Ω̃(k3) in kβ
2

number of initializations.

We also provide learning results for the sparse coding model, when the mixing coefficients are

independently drawn from a Bernoulli-Gaussian distribution and the dictionary satisfies some de-

terministic conditions (see Appendix A.2 and (RIP) in Section 3.3.1). Notice this corresponds to a

sparse ICA model since the hidden coefficients are independent.

Theorem 3.3 (Learning (sparse) ICA: informal). We can efficiently estimate the dictionary in

the (sparse) ICA model under the following conditions. Let s be the expected sparsity of the hidden

coefficients. In the semi-supervised setting (where prior information provides us good initialization),

we need the number of components to be bounded by k = o(d2), and unlabeled sample complexity

satisfies n ≥ Ω̃(max{sk, s2k2/d3}). In the unsupervised setting, we need k = Θ(d), and n ≥ Ω̃(k2s).

In the special case when s is a constant, the sample complexity is akin to learning multiview models,

and when s = Θ(k), it is akin to learning the “dense” ICA model. Thus, the sparse coding model

bridges the range of models between multiview mixtures model and ICA. See Theorem 3.12 for the

formal statement of above result on learning sparse ICA.

3.2 Related Works

Several latent variable models can be learned through tensor decomposition including independent

component analysis [69], topic models, Gaussian mixtures, hidden Markov models [15] and net-

work community models [12]. In the undercomplete setting, Anandkumar et al. [15] analyze robust

59

tensor power iteration for learning LVMs, and Song et al. [147] extend analysis to the nonpara-

metric setting. These works require the tensor factors to have full column rank, which rules out

overcomplete models. Moreover, they require whitening the input data, and the sample complexity

depends on the condition number of the factor matrices. For instance, when k = d, for random

factor matrices, the previous tensor approaches in [147, 11] have a sample complexity of Ω̃(k6.5).

Our result can be also extended to learning mixtures of spherical Gaussians, where we have better

sample complexity than the work by Hsu and Kakade [94] (we have Ω̃(d2) instead of their Ω̃(d3)

when k = d). Note that this comparison is in the low noise regime (where the norm of noise is of

the same order as that of the component means). Thus, we provide the best known sample bounds

for semi-supervised and unsupervised learning of multiview mixtures model in the overcomplete

setting, assuming incoherent components.

In general, learning overcomplete models is challenging, and they may not even be identifiable in

general. The FOOBI procedure by De Lathauwer et al. [69] shows that a polynomial-time procedure

can recover the components of ICA model (with generic factors) when k = O(d2), where the moment

is fourth order. However, the procedure does not work for third-order overcomplete tensors. For

the fifth order tensor, Goyal et al. [80], Bhaskara et al. [41] perform simultaneous diagonalization

on the matricized versions of random slices of the tensor and provide careful perturbation analysis.

But, this procedure cannot handle the same level of overcompleteness as FOOBI. In addition, Goyal

et al. [80] provide stronger results for ICA, where the tensor slices can be obtained in the Fourier

domain. Given 4th order tensor, they need poly(k4) number of unlabeled samples for learning

ICA (where the poly factor is not explicitly characterized), while we only need Ω̃(k2.5) (when

k = Θ(d2)/polylog(d)).

Learning mixture of Gaussians: Here, we provide a subset of related works studying learning

mixture of Gaussians which are more comparable with our result. For a more detailed list of

these works, see Anandkumar et al. [18], Hsu and Kakade [95]. The problem of learning mixture

of Gaussians dates back to the work by Pearson [133]. They propose a moment-based technique

that involves solving systems of multivariate polynomials which is in general challenging in both

computational and statistical sense. Recently, lots of studies on learning Gaussian mixture models

60

have been done improving both aspects which can be divided to two main classes: distance-based

and spectral methods.

Distance-based methods impose separation condition on the mean vectors showing that under

enough separation the parameters can be estimated. Among such approaches, we can mention

Dasgupta [65], Vempala and Wang [156], Arora and Kannan [29]. As discussed in the summary of

results, these results work even if k > d1.5 as long as the separation condition between means is

satisfied, but our work can tolerate higher level of noise in the regime of k = o(d1.5) with polynomial

computational complexity. The guarantees in [156] also work in the high noise regime but need

higher computational complexity as polynomial in kO(k) and d.

In the spectral approaches, the observed moments are constructed and the spectral decomposi-

tion of the observed moments are performed to recover the parameters [104, 10, 21]. Kalai et al.

[104] analyze the problem of learning mixture of two general Gaussians and provide algorithm with

high order polynomial sample and computational complexity. Note that in general, the complexity

of such methods grow exponentially with the number of components without further assump-

tions [127]. Hsu and Kakade [95] provide a spectral algorithm under non-degeneracy conditions on

the mean vectors and providing guarantees with polynomial sample complexity depending on the

condition number of the moment matrices. Anandkumar et al. [21] perform tensor power iteration

on the third order moment tensor to recover the mean vectors in the overcomplete regime as long

as k = o(d1.5), but need very good initialization vector having constant correlation with the true

mean vector. Here, we improve the correlation level required for convergence.

More discussions on related works is provided in Appendix A.1.

3.3 Tensor Decomposition for Learning Latent Variable Models

In this section, we discuss that the problem of learning several latent variable models reduces to

the tensor decomposition problem. We show that the observed moment of the latent variable

models can be written in a CP tensor decomposition form when appropriate modifications are

61

performed. This is done for multiview linear mixtures model, spherical Gaussian mixtures and ICA

(Independent Component Analysis). For a more detailed discussion on the connection between

observed moments of LVMs and tensor decomposition, see Section 3 in Anandkumar et al. [15].

Therefore, an efficient tensor decomposition method leads to efficient learning procedure for a wide

range of latent variable models. We exploit the algorithm and analysis in Chapter 2 for learning

latent variable models providing sample complexity results in the subsequent sections. Note that

the sample complexity guarantees are argued through tensor concentration bounds proposed in

Section 3.4.

3.3.1 Multiview linear mixtures model

Consider a multiview linear mixtures model as in Figure 3.1 with k components and p ≥ 3 views.

Throughout the chapter, we assume p = 3 for simplicity, while the results can be also extended to

higher-order. Suppose that hidden variable h ∈ [k] is a discrete categorical random variable with

Pr[h = j] = wj , j ∈ [k]. The variables (views) xl ∈ R
d are conditionally independent given the

k-categorical latent variable h ∈ [k], and the conditional means are

E[x1|h] = ah, E[x2|h] = bh, E[x3|h] = ch, (3.1)

where A := [a1 a2 · · · ak] ∈ R
d×k denotes the factor matrix and B,C are similarly defined. The

goal of the learning problem is to recover the parameters of the model (factor matrices) A, B, and

C given observations.

For this model, the third order observed moment has the form (See Anandkumar et al. 15)

E[x1 ⊗ x2 ⊗ x3] =
∑

j∈[k]
wjaj ⊗ bj ⊗ cj . (3.2)

The decomposition in (3.2) is referred to as the CP decomposition [49], and k denotes the CP tensor

rank. Hence, given third order observed moment, the unsupervised learning problem (recovering

factor matrices A, B, and C) reduces to computing a tensor decomposition as in (3.2).

62

h

x1 x2 xp· · ·

Figure 3.1: Multi-view mixtures model

In addition, suppose that given hidden state h, the observed variables xl ∈ R
d have conditional

distributions as

x1|h ∼ ah + ζ
√
d · εA, x2|h ∼ bh + ζ

√
d · εB , x3|h ∼ ch + ζ

√
d · εC ,

where εA, εB , εC ∈ R
d are independent random vectors with zero mean and covariance 1

dId, and ζ2

is a scalar denoting the variance of each entry. We also assume that noise vectors εA, εB , εC are

independent of hidden vector h. In addition, let all the vectors ah, bh, ch, h ∈ [k], have unit ℓ2 norm.

Furthermore, since wj ’s are the mixture probabilities, for simplicity we consider wj = Θ(1/k), j ∈

[k]. We call this model S.

When ζ2 = Θ(1/d), the norm of the noise is roughly the same as the norm of the components. We

call this the low noise regime. When ζ2 = Θ(1), the norm of noise in every dimension is roughly

the same as the norm of the components. We call this the high noise regime.

3.3.2 Spherical Gaussian mixtures

Consider a mixture of k different Gaussian distributions with spherical covariances. Let wj, j ∈ [k]

denote the proportion for choosing each mixture. For each Gaussian component j ∈ [k], aj ∈ R
d

is the mean, and ζ2i I is the spherical covariance. For simplicity, we restrict to the case where all

the components have the same spherical variance, i.e., ζ21 = ζ22 = · · · = ζ2k = ζ2. The generalization

is discussed in Hsu and Kakade [94]. In addition, in order to generalize the learning result to

the overcomplete setting, we assume that variance parameter ζ2 is known (see Remark 1 for more

discussions). The following lemma shows that the problem of estimating parameters of this mixture

model can be formulated as a tensor decomposition problem. This is a special case of Theorem 1

in Hsu and Kakade [94] where we assume the variance parameter is known.

63

Lemma 3.1 (Hsu and Kakade 94). If

M3 := E[x⊗ x⊗ x]− ζ2
∑

i∈[d]
(E[x]⊗ ei ⊗ ei + ei ⊗ E[x]⊗ ei + ei ⊗ ei ⊗ E[x]) , (3.3)

then

M3 =
∑

j∈[k]
wjaj ⊗ aj ⊗ aj .

In order to provide the learning guarantee, we define the following empirical estimates. Let M̂3,

M̂2, and M̂1 respectively denote the empirical estimates of the raw moments E[x⊗x⊗x], E[x⊗x],

and E[x]. Then, the empirical estimate of the third order modified moment in (3.3) is

M̂3 := M̂3 − ζ2
∑

i∈[d]

(
M̂1 ⊗ ei ⊗ ei + ei ⊗ M̂1 ⊗ ei + ei ⊗ ei ⊗ M̂1

)
. (3.4)

Remark 1 (Variance parameter estimation). Notice that we assume variance ζ2 is known in order

to generalize the learning result to the overcomplete setting. Since ζ is a scalar parameter, it is

reasonable to try different values of ζ till we get a good reconstruction. On the other hand, in the

undercomplete setting, variance ζ2 can be also estimated as proposed in [94], where estimate ζ̂2 is

the k-th largest eigenvalue of the empirical covariance matrix M̂2 − M̂1M̂⊤
1 .

3.3.3 Independent component analysis (ICA)

In the standard ICA model [59, 48, 98, 61], random independent latent signals are linearly mixed

and perturbed with noise to generate the observations. Let h ∈ R
k be a random latent signal, where

its coordinates are independent, A ∈ R
d×k be the mixing matrix, and z ∈ R

d be the Gaussian noise.

In addition, h and z are also independent. Then, the observed random vector is

x = Ah+ z.

64

h1 h2 hkh

x1 x2 xdx

A

· · ·

· · ·

Figure 3.2: Graphical representation of ICA (Independent Component Analysis) model x = Ah,
where the coordinates of h are independent.

Figure 3.2 depicts a graphical representation of the ICA model where the coordinates of h are

independent.

The following lemma shows that the problem of estimating parameters of the ICA model can be

formulated as a tensor decomposition problem.

Lemma 3.2 (Comon and Jutten 61). Define

M4 := E[x⊗ x⊗ x⊗ x]− T, (3.5)

where T ∈ R
d×d×d×d is the fourth order tensor with

Ti1,i2,i3,i4 := E[xi1xi2]E[xi3xi4] + E[xi1xi3]E[xi2xi4] + E[xi1xi4]E[xi2xi3], i1, i2, i3, i4 ∈ [d].

(3.6)

Let κj := E[h4j]− 3E2[h2j], j ∈ [k]. Then, we have

M4 =
∑

j∈[k]
κjaj ⊗ aj ⊗ aj ⊗ aj . (3.7)

See [94] for a proof of this theorem in this form. Let M̂4 be the empirical estimate of M4 given n

samples.

65

Sparse ICA

We also consider the sparse ICA model, which is the ICA with the additional constraint that the

hidden vector h is sparse.

This is related to the dictionary learning or sparse coding model x = Ah where the observations

x ∈ R
d are sparse combination of dictionary atoms aj ∈ R

d, j ∈ [k] through sparse vector h ∈ R
k.

If in addition, the coordinates of h are random and independent, the dictionary learning model is

the same as the sparse ICA model. Others have studied the general sparse coding problem which

are briefly mentioned in the related works section.

3.4 Tensor Concentration Bounds

In this section, we provide tensor concentration results for the proposed latent variable models.

For each LVM, consider the higher-order observed moment (tensor) described in Section 3.3. The

tensor concentration result bounds the spectral norm of error between the true moment tensor and

its empirical estimate given n samples.

3.4.1 Multiview linear mixtures model

For the multiview linear mixtures model, we provide the tensor concentration result for the 3rd

order observed moment in (3.2).

Consider the multiview linear mixtures model described in Section 3.3.1 denoted as model S. Let

xi1, x
i
2, x

i
3, i ∈ [n], denote n samples of views x1, x2, x3, respectively. Since the main focus is on

recovering the components, we bound the spectral norm of difference between the empirical tensor

estimate

T̂ :=
1

n

n∑

i=1

xi1 ⊗ xi2 ⊗ xi3,

66

and

T̃ := E
[
x1 ⊗ x2 ⊗ x3|hi, i ∈ [n]

]
=

1

n

n∑

i=1

(ahi)⊗ (bhi)⊗ (chi),

where the expectation is conditioned on the choice of hidden states for n samples, and taken over

the randomness of noise. Here, hi ∈ [k] denotes the hidden state for sample i ∈ [n]. Notice that

tensor T̃ has the same form as true tensor T in (3.2) where

T̃ =
∑

j∈[k]
w̃jaj ⊗ bj ⊗ cj .

Here w̃j , j ∈ [k] are the empirical frequencies of different hidden states h ∈ [k]. It is easy to see that

if n ≥ Ω
(

log k
wmin

)
, then all the empirical frequencies w̃j are within [wj/2, 2wj]. Therefore, tensor

decomposition of T̃ has the same eigenvectors and similar eigenvalues as the true expectation (over

both the noise and the hidden variables), and hence, it suffices to bound ‖T̂ − T̃‖ provided as

follows.

Theorem 3.4 (Tensor concentration bound for multiview linear mixtures model). Consider n

samples {(xi1, xi2, xi3), i ∈ [n]} from the multiview linear mixtures model S with corresponding hidden

states {hi, i ∈ [n]}. Assume matrices A⊤, B⊤ and C⊤ have 2 → 3 norm bounded by O(1), and

noise matrices EA, EB and EC defined in (3.9) satisfy the RIP condition in (RIP) (see Remark 3

for details on RIP condition). For T̂ and T̃ as above, if n = poly(d), we have with high probability

(over the choice of hidden state h and the noise)

‖T̂ − T̃‖ ≤ Õ
(
ζ

(√
d

n
+

√
wmax

d

n

)
+ ζ2

(
d

n
+

√
wmax

d1.5

n

)
+ ζ3

(
d1.5

n
+

√
d

n

))
.

See the proof in Appendix C.2.1. The main ideas are described later in this section.

The above bound holds for any level of noise, but in each specific regime of noise, one of the

terms is dominant and the bound is simplified. We now provide the bound for the high noise

ζ2 = Θ(1) and low noise ζ2 = Θ (1/d) regimes which were introduced in Section 3.3.1. In the high

noise regime ζ2 = Θ(1), the term ζ3
√

d
n in Theorem 3.4 is dominant, and in the low noise regime

67

ζ2 = Θ (1/d), the term ζ
√
wmax

d
n in Theorem 3.4 is dominant. This concentration bound is later

used in Section 3.6 to provide sample complexity guarantees for learning multiview linear mixtures

model.

Remark 2 (Application of Theorem 3.4 to whitening-based approaches). In the undercomplete set-

ting, a guaranteed approach for tensor decomposition is to first orthogonalize the tensor through

the whitening step, and then perform the orthogonal tensor eigen-decomposition through the power

method [15]. The whitening step leads to dependency to the condition number in the sample com-

plexity result. Applying the proposed tensor concentration bound in Theorem 3.4 to this approach,

we get similar dependency to the condition number, but better dependency in the dimension d.

This improvement comes at the cost of additional bounded 2 → 3 norm condition on the factor

matrices.

Concretely, following the analysis in [15, 147], we have the error in recovery (up to permutation) as

‖âi − ai‖ ≤
32
√

2ǫtriples
σ3minw

1.5
min

+
512ǫ3pairs
σ3minw

1.5
min

, (3.8)

where ǫtriples := ‖T̂ − T̃‖ is the error in estimating the third order moment, ǫpairs is the error in

estimating the second order moments and σmin is the kth singular value of the factor matrices.

While the ǫpairs can be obtained by matrix Bernstein’s bounds as before (e.g. see [10]), we have

an improved bound for ǫtriples from Theorem 3.4, compared to previous results. Note that the first

term corresponding to ǫtriples is the dominant one and we improve its scaling.

Remark 3 (RIP property). Given n samples for the model S proposed in Section 3.3.1, define noise

matrix

EA := [ε1A, ε
2
A, . . . , ε

n
A] ∈ R

d×n, (3.9)

where εiA ∈ R
d is the i-th sample of noise vector εA. EB and EC are similarly defined. These

matrices need to satisfy the RIP property as follows which is adapted from Candes and Tao [47].

68

(RIP) Matrix E ∈ R
d×n satisfies a weak RIP condition such that for any subset of O

(
d

log2 d

)
number

of columns, the spectral norm of E restricted to those columns is bounded by 2.

It is known that when n = poly(d), the above condition is satisfied with high probability for

many random models such as when the entries are i.i.d. zero mean Gaussian or Bernoulli random

variables.

Proof ideas: The basic idea for proving the concentration result in Theorem 3.4 is an ε-net

argument. We construct an ε-net and then show that with high probability the norm of error

tensor is bounded for every vector in the ε-net.

In some cases even a usual ε-net of size eO(d) is good enough. But, in many other cases the usual

ε-net construction does not provide a useful result since the failure probability is not small enough,

and the union bound argument over all vectors in the ε-net fails (or incurs additional polynomial

factors in the sample complexity result). In particular, for a vector with high correlation with the

data, we get a worse concentration bound. But, the key observation is that there can not be too

many vectors that have high correlation with the data. Therefore, for each fixed vector in the ε-net,

we partition the terms in the error into two sets; one set corresponds to the small terms (where

the vector is not highly correlated with the data) and the other set corresponds to the large terms.

For the small terms, the usual ε-net argument still works. For the large terms, we show that the

number of such terms is limited. This is done either by RIP property of the noise matrices or by the

bounded 2→ 3 norm of factor matrices A⊤, B⊤ and C⊤. See the proofs of Claims 12-14 for more

details. This partitioning argument is inspired by the entropy-concentration trade-off proposed

in [138]; however, here we have a finer partitioning into several sets, while in [138] the partitioning

is done into only two sets.

Spherical Gaussian mixtures: Similar tensor concentration bound as above holds for the spher-

ical Gaussian mixtures model with exploiting symmetrization trick as follows. In the spherical

Gaussian mixtures model, the modified higher order moment (tensor) in (3.3) is symmetric, and

hence noise matrices EA, EB and EC are all the same. This can cause a problem because some

square terms in the error tensor are not zero mean and we need to show their concentration around

69

the mean. The well-known symmetrization technique can be exploited here where we draw two

independent set of samples, and show the difference between the two is with high probability small.

This technique is widely applied to show concentration around the median, and in all our cases the

median is very close to the mean.

3.4.2 ICA and sparse ICA

For the ICA model, we provide the tensor concentration result for the modified 4th order observed

moment (tensor) in (3.5) in both dense and sparse cases.

Theorem 3.5 (Tensor concentration bound for ICA). Consider n samples xi = Ahi, i ∈ [n] from

the ICA model with mixing matrix A ∈ R
d×k. Suppose ‖A‖ ≤ O(1 +

√
k/d) and the entries

of h ∈ R
k are independent subgaussian variables with E[h2j] = 1 and constant nonzero 4th order

cumulant. For the 4th order cumulant M4 in (3.5) and its empirical estimate M̂4, if n ≥ d, we

have with high probability

‖M̂4 −M4‖ ≤ Õ
(
m2

n
+

√
m4

d3n

)
, m := max(d, k).

See the proof in Appendix C.2.2. We have an improved bound for the sparse ICA setting as follows.

Theorem 3.6 (Tensor concentration bound for sparse overcomplete ICA). In the ICA model

x = Ah, suppose hj = sjgj where sj’s are i.i.d. Bernoulli random variables with Pr[sj = 1] = s/k,

and gj ’s are independent 1-subgaussian random variables. Consider n independent samples xi =

Ahi, i ∈ [n], where each hi is distributed as h. Suppose A satisfies (RIP) property (see Remark 3

for details on RIP condition). For the 4th order cumulant M4 in (3.5) and its empirical estimate

M̂4, if n, k ≥ d, we have with high probability

‖M̂4 −M4‖ ≤ Õ
(
s2

n
+

√
s4

d3n

)
.

See the proof in Appendix C.2.3.

70

Dependence on k: It may seem counter-intuitive that the bound in Theorem 3.6 does not depend

on k. The dependency on k is actually in the expectation where the expected tensor E
[
x⊗4

]
in M4

is close to s
k

∑
j∈[k] a

⊗4
j . We typically require the deviation to be less than the expected value.

Proof ideas: The proof ideas are similar to the multiview mixtures model where we provide ε-

net arguments and partition the terms to small and large ones. In addition, for the ICA model,

we exploit the subgaussian property of hj ’s to provide concentration bound for the summation of

subgaussian random variables raised to the 4th power (see Claim 15). This implies the concentration

bound for the 4th order term E[x⊗4] in M4 (see Claim 16). For the 2nd order term T in M4, the

bound is argued using Matrix Bernstein’s inequality (see Claim 17). For the sparse ICA model, the

RIP property of A is exploited to bound the size of intersection between the support of (partitioned)

vectors in the ε-net and the support of sparse vectors hi (see Claim 18).

3.5 Learning Algorithm

We exploit the tensor decomposition algorithm proposed in Section 2.3 to learn the latent variable

models. The only difference here is we use the label information for initialization in the semi-

supervised setting. More concretely, the initialization in Algorithm 1 is performed as follows:

• Semi-supervised setting: label information is exploited. See equation (3.12).

• Unsupervised setting: SVD-based technique in Procedure 2 when k ≤ βd (for arbitrary

constant β).

Efficient implementation given samples: In Algorithm 1, a given tensor T is input, and we

then perform the updates. However, in many settings (especially machine learning applications),

the tensor is not available before hand, and needs to be computed from samples. Computing and

storing the tensor can be enormously expensive for high-dimensional problems. Here, we provide

a simple observation on how we can manipulate the samples directly to carry out the update

procedure in Algorithm 1 as multi-linear operations, leading to efficient computational complexity.

71

Consider the mutiview mixtures model desribed in Section 3.3.1 where the goal is to decompose

the empirical moment tensor T̂ of the form

T̂ :=
1

n

∑

l∈[n]
x
(l)
1 ⊗ x

(l)
2 ⊗ x

(l)
3 , (3.10)

where x
(l)
r is the lth sample from view r ∈ [3]. Applying the power update (2.6) in Algorithm 1 to

T̂ , we have

c̃ := T̂ (â, b̂, I) =
1

n
X3

(
X⊤

1 â ∗X⊤
2 b̂
)
, (3.11)

where ∗ corresponds to the Hadamard product. Here, Xr :=
[
x
(1)
r x

(2)
r · · · x(n)r

]
∈ R

d×n. Thus,

the update can be computed efficiently using simple matrix and vector operations. It is easy to see

that the above update in (3.11) is easily parallelizable, and especially, the different initializations

can be parallelized, making the algorithm scalable for large problems.

We now provide some basic assumptions incorporated throughout the learning results, and state

the organization of learning guarantees which are proposed in subsequent sections.

Basic assumptions

Here, we review some of the assumptions and settings assumed throughout the learning results

provided in next sections. Consider tensor decomposition form in (1.5). Let A := [a1 a2 · · · ak] ∈

R
d×k denote the factor matrix. Similar factor matrices are defined as B and C in the asymmetric

cases, e.g., multiview linear mixtures model. For simplicity and without loss of generality, we

assume that the columns of factor matrices have unit ℓ2 norm, since we can always rescale them,

and adjust the weights appropriately. Also, for simplicity we assume ai, bi, ci ∈ R
d, i ∈ [k], are

uniformly i.i.d. drawn from the unit d-dimensional sphere Sd−1 (see Remark 4 for more details).

In this chapter, we focus on learning in the challenging overcomplete regime where the number of

components/mixtures is larger than observed dimension. Precisely, we assume k ≥ Ω(d). Note that

the results can be easily adapted to the highly undercomplete regime when k ≤ o(d).

72

Learning results organization

In Section 3.3, we described how learning different latent variable models can be formulated as a

tensor decomposition problem by performing appropriate modifications on the observed moments.

For those LVMs, the tensor concentration bounds are provided in Section 3.4. We also proposed

the tensor decomposition algorithm in Section 2.3 which is robust to noise. Employing all these

techniques and results, we finally provide learning results for different latent variable models in-

cluding multiview linear mixtures, ICA and sparse ICA in the subsequent sections. We consider

two settings, viz., semi-supervised setting, where a small amount of label information is available,

and unsupervised setting where such information is not available. In the former setting, we can

handle overcomplete mixtures with number of components k = o(dp/2), where d is the observed

dimension and p is the order of observed moment. In the latter case, our analysis only works when

k ≤ βd for any constant β. See the following two sections for learning guarantees.

3.6 Learning Multiview Linear Mixtures Model

In this section, we provide the semi-supervised and unsupervised learning results for the multiview

linear mixtures model described in Section 3.3.1.

3.6.1 Semi-supervised Learning

In the semi-supervised setting, label information is exploited to build good initialization vectors

for the tensor decomposition algorithm as follows. Let x
(l)
1,j, x

(l)
2,j , x

(l)
3,j ∈ R

d, j ∈ [k], l ∈ [mj], denote

m =
∑

j∈[k]mj labeled samples, where the samples with subscript j have label j, i.e., they are

generated from hidden state h = j. Then, given conditional mean model in (3.1), we can compute

the empirical estimate of mixture components as

âj :=
1

mj

∑

l∈[mj]

x
(l)
1,j, b̂j :=

1

mj

∑

l∈[mj]

x
(l)
2,j , ĉj :=

1

mj

∑

l∈[mj]

x
(l)
3,j, for any j ∈ [k]. (3.12)

73

Given n unlabeled samples, let

ǫR :=





Õ
(
k
√
d/
√
n
)

+ Õ
(√

k/d
)
, ζ2 = Θ(1),

Õ
(√

k/n
)

+ Õ
(√

k/d
)
, ζ2 = Θ

(
1
d

)
,

(3.13)

denote the recovery error. We first provide the settings of Algorithm 1 which include input tensor

T , number of iterations N and the initialization setting.

Settings of Algorithm 1 in Theorem 3.7:

• Given n unlabeled samples x
(i)
1 , x

(i)
2 , x

(i)
3 ∈ R

d, i ∈ [n], consider the empirical estimate of 3rd

order moment in (3.2) as the input to Algorithm 1.

• Number of iterations: N = Θ (log (1/ǫR)).

• Initialization: Exploit the empirical estimates in (3.12) as initialization vectors.

Conditions for Theorem 3.7:

• Rank condition: Ω(d) ≤ k ≤ o(d3/2).

• The columns of factor matrices are uniformly i.i.d. drawn from unit d-dimensional sphere

Sd−1 (see Remark 4 for more discussion).

• Suppose the distribution of observed variables given hidden state is sub-Gaussian, and the

number of labeled samples with label j, denoted by mj, satisfies 1

mj ≥ Ω̃
(
ζ2d
)
, j ∈ [k]. (3.14)

• Given n unlabeled samples, noise matrices EA, EB and EC satisfy the RIP condition in (RIP)

which is satisfied with high probability for many random models (see Remark 3 for details on

1In model S , the columns of factor matrices are unit vectors, and therefore, the most reasonable regime of error

is when the expected norm of error vector is constant, i.e., E
[
‖ζ

√
dε‖2

]
= ζ2d ≤ O(1). But, note that the label

complexity holds even if ζ2d ≥ ω(1).

74

RIP condition). The number of samples n satisfies

n ≥





Ω̃
(
k2d
)
, ζ2 = Θ(1),

Ω̃ (k) , ζ2 = Θ
(
1
d

)
,

(3.15)

where ζ2 is the variance of each entry of observation vectors.

Theorem 3.7 (Semi-supervised learning of multiview mixtures model). Assume the conditions

and settings mentioned above hold. Then, the algorithm outputs estimates Â := [â1 · · · âk] ∈ R
d×k

and ŵ := [ŵ1 · · · ŵk]⊤ ∈ R
k, satisfying w.h.p.

∥∥∥Â−A
∥∥∥
F
≤ Õ

(
k√
n

)
, ‖ŵ − w‖ ≤ Õ

(
1√
n

)
. (3.16)

Similar error bounds hold for other factor matrices B and C.

Thus, we provide efficient learning guarantees for overcomplete multiview mixtures in the semi-

supervised setting given small number of labeled samples. It is also worth mentioning that there is

no dependence on the condition numbers of moment matrices in the sample complexity result.

See Appendix C.1 for the proof.

Column-wise error bounds: In Section 2.1.1, we explain that the algorithm analysis also pro-

vides column-wise error bounds with the expense of introducing an additional approximation error.

More precisely, we provide stronger guarantees on the column-wise errors as

‖âj − aj‖ ≤ Õ
(√

k/n
)

+ Õ
(√

k/d
)
, j ∈ [k], (3.17)

where a
√
k factor is removed in the first term of bound comparing with the bound in (3.16), but

an additional approximation error Õ
(√
k/d
)

is introduced. See Lemma 2.2 and the corresponding

discussions for exact description.

Remark 4 (Random assumption). In the above learning result, we assume that the mixture compo-

nents are uniformly i.i.d. drawn from unit d-dimensional sphere Sd−1. This assumption is provided

for simplicity, while the original conditions for the recovery guarantees are deterministic (provided

75

in Appendix A.2). We show that random matrices satisfy these deterministic assumptions with

high probability. Notice the random assumption is reasonable for continuous models including the

multiview mixtures model described here. But, it is not appropriate for discrete models where the

non-negativity assumptions on the entries of factor matrices are required.

Remark 5 (Minimax sample complexity). Note that the number of labeled samples required is

much smaller than the number of unlabeled samples, i.e.,
∑

j∈[k]mj ≪ n. Thus, we provide

efficient learning guarantees for overcomplete multiview Gaussian mixtures in the semi-supervised

setting under a small number of labeled samples. Furthermore, in the low noise regime ζ2 = Θ
(
1
d

)
,

the sample complexity bounds for unlabeled samples is Ω̃(k), which is the minimax bound up to

polylog factors.

Remark 6 (Different noise regime). For brevity, both semi-supervised and unsupervised learning

results for multiview linear mixtures model in this section are provided in low noise ζ2 = Θ(1/d)

and high noise ζ2 = Θ(1) regimes. But, notice that the result for general regime of noise (all

different magnitudes of ζ) can be provided according to the general tensor concentration bound

proposed in Theorem 3.4.

Remark 7 (Bounded 2 → 3 norm assumption). Notice that the bounded 2 → 3 norm assumption

in tensor concentration bound in Theorem 3.4 is a weaker condition than assuming incoherence

property for learning result in Theorem 3.7 which is needed for the algorithm guarantees. Further-

more, it is discussed in Anandkumar et al. [19] that under the assumptions k ≤ o(d3/2) and uniform

draws of columns of A, B and C from unit sphere, the bound on 2→ 3 norm is satisfied.

Remark 8 (Spherical Gaussian mixtures). Similar learning results as in Theorem 3.7 hold for the

spherical Gaussian mixtures. It is discussed in Section 3.3.2 how learning this model can be re-

duced to the tensor decomposition problem. Here, the 3rd order empirical (modified) moment M̂3

in (3.4) is considered as the input of Algorithm 1 with symmetric updates. Thus, we show mini-

max unlabeled sample complexity for semi-supervised learning of overcomplete spherical Gaussian

mixtures.

76

3.6.2 Unsupervised Learning

In the unsupervised setting, there is no label information available to build the initialization vectors.

Here, the initialization is performed by doing rank-1 SVD on random slices of the moment tensor

proposed in Procedure 2. The conditions and settings for unsupervised learning are stated as

follows where comparing to the semi-supervised learning, the initialization setting, rank and sample

complexity conditions are changed.

Settings of Algorithm 1 in Theorem 3.8:

• Given n unlabeled samples x
(i)
1 , x

(i)
2 , x

(i)
3 ∈ R

d, i ∈ [n], consider the empirical estimate of 3rd

order moment in (3.2) as the input to Algorithm 1.

• Number of iterations: N = Θ (log (1/ǫR)).

• The initialization in each run of Algorithm 1 is performed by SVD-based technique proposed

in Procedure 2, with the number of initializations as

L ≥ kΩ(k2/d2).

Conditions for Theorem 3.8:

• Rank condition: k = Θ(d).

• The columns of factor matrices are uniformly i.i.d. drawn from unit d-dimensional sphere

Sd−1.

• The number of samples n satisfies

n ≥





Ω̃
(
k4
)
, ζ2 = Θ(1),

Ω̃
(
k2
)
, ζ2 = Θ

(
1
d

)
.

Theorem 3.8 (Unsupervised learning of multiview mixtures model). Assume the conditions and

settings mentioned above hold. Suppose the number of unlabeled samples n satisfies n ≥ Ω̃ (kd) . If

rank condition k = Θ(d) holds, then the same guarantees as in Theorem 3.7 are satisfied.

77

See Appendix C.1 for the proof.

Remark 9 (Comparison with “whitening + moment-based” techniques in the undercomplete setting

when k ≈ d). Here, we discuss how our approach makes a huge improvement on sample complexity

for learning multiview linear mixtures model and spherical Gaussian mixtures with the additional

incoherence property we assume.

Multiview linear mixtures model: We compare with the previous result by Song et al. [147], which

employs whitening procedure followed by tensor power updates in the undercomplete setting. When

k ≈ d, the sample complexity in [147] is scaled as n ≥ Ω̃(k6.5). In comparison, the sample complexity

for our method scales as Ω̃(k2), which is far better. This is especially relevant in the high dimensional

regime, where k and d are large, and our analysis shows lower sample complexity under incoherent

factors.

Spherical Gaussian mixtures: As mentioned in Remark 8, the above unsupervised learning result

can be also adapted for learning mixture of spherical Gaussians. An algorithm for learning mixture

of spherical Gaussians in the undercomplete setting is also provided in [94], which is a moment-

based technique combined with a whitening step. When k = d, the sample complexity in [94] scales

as n ≥ Ω̃(k3). But, our tight tensor concentration analysis leads to the better sample complexity

of n ≥ Ω̃(k2). Note that this comparison is in the low noise regime ζ2 = Θ
(
1
d

)
.

Remark 10 (Extension to k ≤ o(d1.5)). We also argue that the SVD initialization can be slightly

modified, and under some regime of noise we can extend the above unsupervised learning result to the

highly overcomplete regime k ≤ o(d1.5). Suppose the expected norm of noise is constant (low noise

regime), and the noise vectors are incoherent with the true mean components (which is satisfied for

random mean components). Then if the SVD initialization is performed using samples2x
(i)
3 , then

the same guarantees as in Theorem 3.8 hold under highly overcomplete regime k ≤ o(d1.5).

2The SVD of T
(
I, I, x

(i)
3

)
is computed.

78

3.7 Learning Multiview Mixture Model Under Random Means

Assuming random rank-1 components, we provided stronger convergence guarantees for the tensor

power iteration in Chapter 2; see Theorem 2.3. Along this result we provide the application to

learning multiview mixtures model in Theorem 3.9.

Consider the same multiview mixture model as proposed in Section 3.3.1 with the difference that

the noise is not necessarily Gaussian. The variables (views) xl ∈ R
d are related to the hidden state

through factor matrix A ∈ R
d×k such that

xl = Ah+ ηl, l ∈ [p],

where hidden state h is represented as j-th basis vector ej if the hidden variable takes j-th state.

ηl ∈ R
d denote zero-mean noise vectors which are independent of each other and the hidden state

h.

For the learning algorithm, consider the same tensor decomposition algorithm proposed in Sec-

tion 2.3 with the modification that the algorithm is initialized with random samples of observed

variables. The algorithm is initialized by all n samples, and the final output is computed by the

clustering algorithm. More details are provided in the next section.

3.7.1 Learning guarantees

We assume a Gaussian prior on the mean vectors, i.e., the vectors aj ∼ N (0, Id/d), j ∈ [k] are

i.i.d. drawn from a standard multivariate Gaussian distribution with unit expected square norm.

Note that in the high dimension (growing d), this assumption is the same as uniformly drawing

from unit sphere since the norm of vector concentrates in the high dimension and there is no need

for normalization. Even though we impose a prior distribution, we do not use a MAP estimator,

since the corresponding optimization is NP-hard. Instead, we learn the model parameters through

decomposition of the third order moments through tensor power iterations. The assumption of a

Gaussian prior is standard in machine learning applications. We impose it here for tractable analysis

79

of power iteration dynamics. Such Gaussian assumptions have been used before for analysis of other

iterative methods such as approximate message passing algorithms, and there are evidences that

similar results hold for more general distributions; see [39] and references there.

As explained in the previous sections, we use tensor power method to learn the components aj ’s,

and the method is initialized with observed samples xi. Intuitively, this initialization is useful since

xi = Ah + ηi is a perturbed version of desired parameter aj (when h = ej). Thus, we present

the result in terms of the signal-to-noise (SNR) ratio which is the expected norm of signal aj

(which is one here) divided by the expected norm of noise ηi, i.e., the SNR in the i-th sample

xi = aj + ηi (assumed h = ej) is defined as SNR := E[‖aj‖]/E[‖ηi‖]. This specifies how much noise

the initialization vector xi can tolerate in order to ensure the convergence of tensor power iteration

to a desired local optimum. We now propose the conditions required for recovery guarantees, and

state a brief explanation of them.

Conditions for Theorems 3.9 and 3.10:

• Rank condition: k ≤ o(d1.5).

• The columns of A are uniformly i.i.d. drawn from unit d-dimensional sphere.

• The noise vectors ηl, l ∈ [3], are independent of matrix A and each other. In addition, the

signal-to-noise ratio (SNR) is w.h.p. bounded as

SNR ≥ Ω

(√
max{k, d}
d1−β

)
,

for some β ≥ (log d)−c for universal constant c > 0.

The rank condition bounds the level of overcompleteness for which the recovery guarantees are

satisfied. The random assumption on the columns of A are crucial for analyzing the dynamics of

tensor power iteration. We use it to argue there exists enough randomness left in the components

after conditioning on the previous iterations; see Section 2.6.1 for the details. The bound on

the SNR is required to make sure the given sample used for initialization is close enough to the

corresponding mean vector. This ensures that the initial vector is inside the basin-of-attraction of

80

the corresponding component, and hence, the convergence to the mean vector can be guaranteed.

Under these assumptions we have.

Theorem 3.9 (Learning multiview mixture model given exact tensor: closeness to single colu-

muns). Consider a multiview mixture model (or a spherical Gaussian mixture) in the above setting

with k components in d dimensions. If the above conditions hold, then the tensor power iteration

converges to a vector close to one of the true mean vectors aj’s (having constant correlation).

In particular, for mildly overcomplete models, where k = αd for some constant α > 1, the signal-to-

noise ratio (SNR) is as low as Ω(d−1/2+ǫ), for any ǫ > 0. Thus, we can learn mixture models with

a high level of noise. In general, we establish how the required noise level scales with the number

of hidden components k, as long as k = o(d1.5).

The above theorem states convergence to desired local optima which are close to true components

aj ’s. In Theorem 3.10, we show that we can sharpen the above result, by jointly iterating over the

recovered vectors, and consistently recover the components aj’s. This result also uses the analysis

in the previous section.

Theorem 3.10 (Learning multiview mixture model given exact tensor: recovering the whole factor

matrix). Assume the above conditions hold. The initialization of power iteration is performed by

samples of x1 in multiview mixture model. Suppose the tensor power iterations is at least initialized

once for each aj , j ∈ [k] such that x1 = aj + η1.
3 Then by using the exact 3rd order moment tensor

in (3.2) as input, the tensor decomposition algorithm outputs an estimate Â satisfying w.h.p. (over

the randomness of the components aj ’s)

∥∥∥Â−A
∥∥∥
F
≤ ǫ,

where the number of iterations of the algorithm is N = Θ
(
log
(
1
ǫ

)
+ log log d

)
.

The above theorems assume the exact third order tensor is given to the algorithm. We provide the

results given empirical tensor in Section 3.7.1.1.

3Note that this happens for component j with high probability when the number of initializations is proportional
to inverse prior probability corresponding to that mixture.

81

3.7.1.1 Sample complexity analysis

In the previous section, we assumed the exact third order tensor in (3.2) is given to the tensor

decomposition Algorithm 1. We now estimate the tensor given n samples x
(i)
1 , x

(i)
2 , x

(i)
3 , i ∈ [n], as

T̂ =
1

n

∑

i∈[n]
x
(i)
1 ⊗ x

(i)
2 ⊗ x

(i)
3 . (3.18)

For the multiview mixture model introduced in Section 3.3.1, let the noise vector ηl be spherical,

and ζ2 denote the variance of each entry of noise vector. We now provide the following recovery

guarantees.

Additional conditions for Theorem 3.11:

• Let E1 := [η
(1)
1 , η

(2)
1 , . . . , η

(n)
1] ∈ R

d×n, where η
(i)
1 ∈ R

d is the i-th sample of noise vector

η1. These noise matrices satisfy the following RIP property which is adapted from Candes

and Tao [47]. Matrix E1 ∈ R
d×n satisfies a weak RIP condition such that for any subset of

O
(

d
log2 d

)
number of columns, the spectral norm of E1 restricted to those columns is bounded

by 2. The same condition is satisfied for similarly defined noise matrices E2 and E3.

• The number of samples n satisfies lower bound such that

ζ

(√
d

n
+

√
λmax

d

n

)
+ ζ2

(
d

n
+

√
λmax

d1.5

n

)
+ ζ3

(
d1.5

n
+

√
d

n

)
≤ min

{
ǫ

√
k

d
, Õ(λmin)

}
,

(3.19)

where ǫ < o
(√

k/d
)

.

Theorem 3.11 (Learning multiview mixture model given empirical tensor). Consider the empirical

tensor in (3.18) as the input to tensor decomposition Algorithm 1. Suppose the above additional

conditions are also satisfied. Then, the same guarantees as in Theorem 3.9 hold. In addition, the

same guarantees as in Theorem 3.10 also hold with the recovery bound changed as

∥∥∥Â−A
∥∥∥
F
≤ Õ

(√
k · ‖E‖
λmin

)
,

82

where E denotes the perturbation tensor originated from empirical estimation in (3.18), and its

spectral norm ‖E‖ is bounded by the LHS of (3.19).

Proof: The above sample complexity result is proved by using the tensor concentration bound

in Theorem 1 of Anandkumar et al. [21] applied to our noisy analysis of tensor power dynamics in

Theorem 2.3; see Equation (2.4). The additional bound on sample complexity and final recovery

error on
∥∥∥Â−A

∥∥∥
F

is also from Theorem 1 of Anandkumar et al. [16]. �

3.8 Learning Independent Component Analysis (ICA) and Sparse

ICA

In this section, we propose the semi-supervised and unsupervised learning results for the ICA and

sparse ICA models. By semi-supervised setting in ICA, we mean some prior information is available

which provides good initializations for the components. Recall the standard ICA model [59], where

independent source signals are linearly mixed to generate the observations. Let h ∈ R
k be a random

latent signal where its coordinates are independent, and A ∈ R
d×k be the mixing matrix. Then,

the observed vector is

x = Ah ∈ R
d.

For simplicity, we limit to noiseless setting. This is the standard setting, and is already challenging

because samples in ICA are mixtures of many components, unlike the mixture models. It is dis-

cussed in Section 3.3.3 how estimating the parameters of ICA model can be formulated as a tensor

decomposition problem where a modified version of 4th order observed moment (denoted by M4)

is characterized in a tensor decomposition form; see Lemma 3.2.

We now provide the learning results for the sparse ICA problem which is more general. This is

the ICA setting with the assumption that hidden vector h ∈ R
k can be sparse with i.i.d. Bernoulli-

subgaussian random entries. Assume the probability of each Bernoulli variable being 1 is s/k. Note

83

that (dense) ICA is special case when s = k. For the sparse ICA model, we also assume that mixing

matrix A satisfies the RIP property (see condition (RIP) in Section 3.3.1).

Settings of Algorithm in Theorem 3.12: Given n samples xi = Ahi, i ∈ [n], consider the

empirical estimate of 4th order (modified) moment M4 (see (3.5) in the Appendix) as the in-

put to the algorithm with symmetric 4th order updates; see Appendix 2.4.1 for higher order

extension of the algorithm. Let the number of iterations N = Θ̃ (log (1/ǫ̃R)), where ǫ̃R :=

min
{
k2/min

{
n,
√
d3n
}
,
√
k/d1.5

}
. The initialization is performed differently in different learn-

ing settings. In the semi-supervised setting, it is assumed that for any j ∈ [k], an approximation of

aj denoted by â
(0)
j is given satisfying ‖â(0)j − aj‖ ≤ α for some constant α < 1. In the unsupervised

setting, the initialization is performed by 4-th order generalization 4 of SVD-based technique in

Procedure 2, with the number of initializations as L ≥ kΩ(k2/d2).

Theorem 3.12 (Semi-supervised and unsupervised learning of (sparse) ICA). Assume the Algo-

rithm settings mentioned above hold. In the semi-supervised setting, suppose

n ≥





Ω̃(sk), sk ≤ O(d3)/polylog(d),

Ω̃
(
s2k2/d3

)
, o.w.,

and rank condition Ω(d) ≤ k ≤ o(d2) hold. In the unsupervised setting, suppose n ≥ Ω̃
(
k2s
)
, and

rank condition Ω(d) = Θ(d) hold. Then the algorithm outputs estimates Â and ŵ, satisfying w.h.p.

max
{∥∥Â−A

∥∥
F
, ‖ŵ − w‖

}
≤ Õ

(
s · k1.5

min
{
n,
√
d3n
}
)
.

In one extreme when s = Θ(k), it is akin to learning the “dense” ICA model.5 On the other

extreme when s is a constant, it is akin to learning multiview models. Thus, the sparse coding

model bridges the range of models between multiview mixtures model and ICA.

4In the 4th order case, the SVD is performed on T (I, I, θ, θ) ∈ R
d×d for some random vector θ.

5The result for learning ICA is a special case when s = k. Note that since we provide a different proof for the
ICA model, it does not need the RIP condition on dictionary matrix.

84

Similar to the multiview mixture model, we can also provide column-wise recovery guarantees

with introducing additional approximation error Õ
(√
k/d1.5

)
. Note that this error is different from

multiview mixture since we exploit different tensor orders in the two models.

Comparison with previous approaches: The dictionary learning problem is also studied

in Arora et al. [27], Agarwal et al. [3], Barak et al. [34]. Arora et al. [27], Agarwal et al. [3]

provide clustering based approaches for approximately learning incoherent dictionaries and then

refining them through alternating minimization to obtain exact recovery of both the dictionary

and the coefficients. They can handle sparsity level up to O(
√
d) (per sample) and the size of the

dictionary k can be arbitrary. Barak et al. [34] use the sum of squares framework and can handle

the sparsity level up to (small enough) constant times k, but with the expense of computational

complexity which scales as kO(log k), and the size of the dictionary k = O(d). In addition, when

the sparsity level is smaller as k1−δ for some 0 < δ < 1, their algorithm runs in polynomial time

kO(1/δ). They can also go to higher level of overcompleteness with the expense of reducing sparsity

level. They do not need the assumptions that the dictionary is incoherent or that the coefficients

are independent. They only have approximate recovery and note that exact recovery is impossible

(from an identifiability standpoint) unless further assumptions are imposed. In contrast, we have

a polynomial time method for incoherent dictionaries and independent coefficients which can han-

dle arbitrary sparsity level, and provides approximate recovery. Moreover, we can handle larger

dictionary sizes k at the expense of more computation.

Below, we show how we can extend our analysis to dependent sparsity setting, but with worse

performance guarantees.

Extension to dependent sparsity

In this section, we consider the noiseless sparse coding model x = Ah, but with no independence

assumption on the latent entries hi’s. The analysis can be extended to noisy case.

85

We assume the following moment conditions on h in the dependent sparsity model. Note that these

assumptions are comparable with the moment assumptions in Barak et al. [34].

E
[
h4i
]

= E
[
h2i
]

= βs/k,

E
[
h2i h

2
j

]
≤ τ, i 6= j,

E
[
h3i hj

]
= 0, i 6= j,

with parameters s and τ , where s is the expected number of nonzero entries in h, and β is a

universal constant. The first condition represents the normalization factor which depends on the

sparsity level. The second condition limits the sparsity level and the amount of correlation between

different entries of vector h. To provide more intuition about these parameters, assume that the

entries of h are distributed as Bernoulli-Gaussian random variables with each entry being nonzero

with probability s/k. Then, we have τ = ρp + (1 − ρ)p2, where ρ is the correlation coefficient

between h2i and h2j for i 6= j.

Theorem 3.13 (Noiseless sparse coding with dependent sparsity). Consider the described dictio-

nary learning model x = Ah where the moments of random vector h satisfy the conditions stated

before the theorem. Let the noiseless 4th order observed moment E
[
x⊗4

]
be the input to Algo-

rithm 1 with symmetric 4th order updates. Let the initialization in each run of Algorithm 1 is

performed by 4th order generalization of the SVD-based technique proposed in Procedure 2. Let

ǫ̃R := Õ(τk/s) + Õ
(√
k/d3/2

)
, and suppose

k = Θ(d), N = Θ (log (1/ǫ̃R)) , L ≥ kΩ(k2/d2).

In addition, assume that the columns of dictionary A are uniformly i.i.d. drawn from unit d-

dimensional sphere Sd−1. If

τ ≤ Õ
(
s/k

d

)
,

86

then whp

dist (âj, aj) ≤ ǫ̃R, j ∈ [k].

See Appendix C.1 for the proof.

Comparing with the dictionary learning result by Barak et al. [34], their algorithm is based on sum-

of-squares techniques, and do not require any incoherence assumptions on the dictionary atoms.

They can also handle higher levels of sparsity and correlation. On the other hand, they have a

quasi-polynomial algorithm in the regime of high sparsity (small enough constant times k), while

our algorithm is very simple and efficient.

The above analysis is in the noiseless regime, and the generalization to noisy case can be investigated

as a future work which involves the sample complexity analysis in the dependent sparsity case.

3.9 Experiments

In this Section, we run the algorithm for learning multiview Gaussian mixtures model. We consider

model S described in Section 3.3.1. The mixture components are uniformly i.i.d. drawn from d-

dimensional sphere Sd−1. We assume low-noise regime such that ζ
√
d = 0.1. In addition, let 6

wj = Pr[h = j] = 1
k , j ∈ [k]. We consider d = 100 and k = {10, 20, 50, 100, 200, 500}. In order to

see the effect of number of components k, we fix the number of samples n = 1000.

Notice that the empirical tensor T̂ in (3.10) is not explicitly computed, and the tensor power

updates in the algorithm are computed through the multilinear form stated in (3.11). This leads

to efficient computational complexity. See Section 2.3 for detailed discussion.

For each initialization τ ∈ [L], an alternative option of running the algorithm with a fixed number

of iterations N is to stop the iterations based on some stopping criteria. In this experiment, we

6In order to see the algorithm performance more easily, we generate n samples such that each mixture component is
exactly appeared in n

k
observations. Note that this is basically imposing equal number of different mixture components

in the observations.

87

10
0

10
1

10
2

10
310

−3

10
−2

10
−1

10
0

d=100, k=10
d=100, k=20
d=100, k=50
d=100, k =100
d=100, k=200
d=100, k=500

recovery rate of algorithm

number of initializations
ra
ti
o
o
f
re
co
v
er
ed

co
m
p
o
n
en

ts

Figure 3.3: Ratio of recovered components vs. the number of initializations. The figure is an
average over 10 random runs.

stop the iterations when the improvement in subsequent steps is small as

max

(∥∥∥â(t)τ − â(t−1)
τ

∥∥∥
2
,
∥∥∥b̂(t)τ − b̂(t−1)

τ

∥∥∥
2
,
∥∥∥ĉ(t)τ − ĉ(t−1)

τ

∥∥∥
2
)
≤ tS,

where tS is the stopping threshold. According to the error bound provided in Theorem 3.7, we let

tS := t1(log d)2
√
k

n
+ t2(log d)2

√
k

d
, (3.20)

for some constants t1, t2 > 0. Here, we set t1 = 1e− 08, and t2 = 1e− 07.

A random initialization approach is used where â(0) and b̂(0) are uniformly i.i.d. drawn from sphere

Sd−1. Initialization vector ĉ(0) is generated through update formula in (2.6). Figure 3.3 depicts the

ratio of recovered components vs. the number of initializations. We observe that the algorithm is

capable of recovering mixture components even in the overcomplete regime k ≥ d. As suggested

in the experimental results of Anandkumar et al. [19], we also observe that random initialization

works efficiently in the experiments, while the theoretical results for random initialization appear

to be highly pessimistic. This suggests additional room for improving the theoretical guarantees

under random initialization.

Table 3.1 provides the average square error of the estimates, the average weight error and the

average number of iterations for different values of k. The averages are over different initializations

88

Table 3.1: Results for learning a multi-view mixture model. d = 100, n = 1000, ζ
√
d = 0.1.

k
avg. square

error
avg. weight

error
avg. # of
iterations

avg. square
error /k

avg. weight
error /k

10 1.24e-03 1.73e-05 9.81 1.24e-04 1.73e-06
20 2.94e-03 5.28e-05 10.98 1.41e-04 2.64e-06
50 7.21e-03 1.84e-04 12.74 1.44e-04 3.69e-06
100 1.47e-02 5.36e-04 14.86 1.47e-04 5.36e-06
200 3.03e-02 1.85e-03 18.34 1.51e-04 9.23e-06
500 8.26e-02 1.23e-02 30.02 1.65e-04 2.45e-05

and random runs. The square error is computed as

1

3

[
‖aj − â‖2 +

∥∥∥bj − b̂
∥∥∥
2

+ ‖cj − ĉ‖2
]
,

for the corresponding recovered column j. The weight error is computed as square relative error

|ŵ − wj |2/w2
j . The number of iterations performed before stopping the algorithm is mentioned

in the fourth column. We observe that we can still get good error bounds even for overcomplete

models with d = 100 and k = 500.

In the last two columns, the normalized values of errors are provided. The normalization is done

by the number of mixtures k. Here, we observe that the normalized values (specially for the square

error) are very close for different k. This complies with the theoretical error bound in (3.17) which

claims that the square recovery error is bounded as Õ(k) when d and n are fixed as here.

89

Chapter 4

Training Neural Networks Using

Tensor Methods

Training neural networks is a challenging non-convex optimization problem, and backpropagation

or gradient descent can get stuck in spurious local optima. In this chapter, we propose a novel

algorithm based on tensor decomposition for guaranteed training of two-layer neural networks.

We provide risk bounds for our proposed method, with a polynomial sample complexity in the

relevant parameters, such as input dimension and number of neurons. While learning arbitrary

target functions is NP-hard, we provide transparent conditions on the function and the input for

learnability. Our training method is based on tensor decomposition, which provably converges

to the global optimum, under a set of mild non-degeneracy conditions; the details are provided

in Chapter 2. It consists of simple embarrassingly parallel linear and multi-linear operations,

and is competitive with standard stochastic gradient descent (SGD), in terms of computational

complexity. Thus, we propose a computationally efficient method with guaranteed risk bounds for

training neural networks with one hidden layer.

Note that the analysis in this chapter has a fundamental difference with the learning results provided

in Chapter 3 such that here the problem of training neural networks is in supervised setting, while

learning latent variable models in Chapter 3 are unsupervised or semi-supervised.

90

Neural networks have revolutionized performance across multiple domains such as computer vision

and speech recognition. They are flexible models trained to approximate any arbitrary target

function, e.g., the label function for classification tasks. They are composed of multiple layers

of neurons or activating functions, which are applied recursively on the input data, in order to

predict the output. While neural networks have been extensively employed in practice, a complete

theoretical understanding is currently lacking.

Training a neural network can be framed as an optimization problem, where the network parameters

are chosen to minimize a given loss function, e.g., the quadratic loss function over the error in

predicting the output. The performance of training algorithms is typically measured through the

notion of risk, which is the expected loss function over unseen test data. A natural question to

ask is the hardness of training a neural network with a bounded risk. The findings are mostly

negative [137, 145, 44, 37, 113]. Training even a simple network is NP-hard, e.g., a network with a

single neuron [145].

The computational hardness of training is due to the non-convexity of the loss function. In general,

the loss function has many critical points, which include spurious local optima and saddle points.

In addition, we face curse of dimensionality, and the number of critical points grows exponentially

with the input dimension for general non-convex problems [67]. Popular local search methods

such as gradient descent or backpropagation can get stuck in bad local optima and experience

arbitrarily slow convergence. Explicit examples of its failure and the presence of bad local optima

in even simple separable settings have been documented before [46, 79, 75]; see Section 4.7.1 for a

discussion.

Alternative methods for training neural networks have been mostly limited to specific activation

functions (e.g., linear or quadratic), specific target functions (e.g., polynomials) [24], or assume

strong assumptions on the input (e.g., Gaussian or product distribution) [24], see related work for

details. Thus, up until now, there is no unified framework for training networks with general input,

output and activation functions, for which we can provide guaranteed risk bound.

91

In this chapter, for the first time, we present a guaranteed framework for learning general tar-

get functions using neural networks, and simultaneously overcome computational, statistical, and

approximation challenges. In other words, our method has a low computational and sample com-

plexity, even as the dimension of the optimization grows, and in addition, can also handle approxi-

mation errors, when the target function may not be generated by a given neural network. We prove

a guaranteed risk bound for our proposed method. NP-hardness refers to the computational com-

plexity of training worst-case instances. Instead, we provide transparent conditions on the target

functions and the inputs for tractable learning.

Our training method is based on the method of moments, which involves decomposing the empirical

cross moment between output and some function of input. While pairwise moments are represented

using a matrix, higher order moments require tensors, and the learning problem can be formulated

as tensor decomposition. A CP (CanDecomp/Parafac) decomposition of a tensor involves finding

a succinct sum of rank-one components that best fit the input tensor. Even though it is a non-

convex problem, the global optimum of tensor decomposition can be achieved using computationally

efficient techniques, under a set of mild non-degeneracy conditions [20, 18, 22, 17, 41]. These

methods have been recently employed for learning a wide range of latent variable models [18, 13].

Incorporating tensor methods for training neural networks requires addressing a number of non-

trivial questions: What form of moments are informative about network parameters? Earlier works

using tensor methods for learning assume a linear relationship between the hidden and observed

variables. However, neural networks possess non-linear activation functions. How do we adapt

tensor methods for this setting? How do these methods behave in the presence of approximation

and sample perturbations? How can we establish risk bounds? We address these questions shortly.

4.1 Summary of Results

The main contributions are: (a) we propose an efficient algorithm for training neural networks,

termed as Neural Network-LearnIng using Feature Tensors (NN-LIFT), (b) we demonstrate that the

method is embarrassingly parallel and is competitive with standard SGD in terms of computational

92

complexity, and as a main result, (c) we establish that it has bounded risk, when the number of

training samples scales polynomially in relevant parameters such as input dimension and number

of neurons.

We analyze training of a two-layer feedforward neural network, where the second layer has a linear

activation function. This is the classical neural network considered in a number of works [64, 93, 36],

and a natural starting point for the analysis of any learning algorithm. Note that training even this

two-layer network is non-convex, and finding a computationally efficient method with guaranteed

risk bound has been an open problem up until now.

At a high level, NN-LIFT estimates the weights of the first layer using tensor CP decomposition. It

then uses these estimates to learn the bias parameter of first layer using a simple Fourier technique,

and finally estimates the parameters of last layer using linear regresion. NN-LIFT consists of simple

linear and multi-linear operations [18, 22, 17], Fourier analysis and ridge regression analysis, which

are parallelizable to large-scale data sets. The computational complexity is comparable to that of

the standard SGD; in fact, the parallel time complexity for both the methods is in the same order,

and our method requires more processors than SGD by a multiplicative factor that scales linearly

in the input dimension.

Generative vs. discriminative models: Generative models incorporate a joint distribution

p(x, y) over both the input x and label y. On the other hand, discriminative models such as neural

networks only incorporate the conditional distribution p(y|x). While training neural networks

for general input x is NP-hard, does knowledge about the input distribution p(x) make

learning tractable?

In this work, we assume knowledge of the input density p(x), which can be any continuous differen-

tiable function. Unlike many theoretical works, e.g., [24], we do not limit ourselves to distributions

such as product or Gaussian distributions for the input. While unsupervised learning, i.e., estima-

tion of density p(x), is itself a hard problem for general models, in this work, we investigate how

p(x) can be exploited to make training of neural networks tractable. The knowledge of p(x) is nat-

urally available in the experimental design framework, where the person designing the experiments

93

has the ability to choose the input distribution. Examples include conducting polling, carrying out

drug trials, collecting survey information, and so on.

Utilizing generative models on the input via score functions: We utilize the knowledge

about the input density p(x) (up to normalization)1 to obtain certain (non-linear) transformations

of the input, given by the class of score functions. Score functions are normalized derivatives of the

input pdf; see (4.5). If the input is a vector (the typical case), the first order score function (i.e.,

the first derivative) is a vector, the second order score is a matrix, and the higher order scores are

tensors. In our NN-LIFT method, we first estimate the cross-moments between the output and the

input score functions, and then decompose it to rank-1 components.

Risk bounds: Risk bound includes both approximation and estimation errors. The approximation

error is the error in fitting the target function to a neural network of given architecture, and the

estimation error is the error in estimating the weights of that neural network using the given

samples.

We first consider the realizable setting where the target function is generated by a two-layer neural

network (with hidden layer of neurons consisting of any general sigmoidal activations), and a linear

output layer. Note that the approximation error is zero in this setting. Let A1 ∈ R
d×k be the weight

matrix of first layer (connecting the input to the neurons) with k denoting the number of neurons

and d denoting the input dimension. Suppose these weight vectors are non-degenerate, i.e., the

weight matrix A1 (or its tensorization) is full column rank. We assume continuous input distribution

with access to score functions, which are bounded on any set of non-zero measure. We allow for any

general sigmoidal activation functions with non-zero third derivatives in expectation, and satisfying

Lipschitz property. Let smin(·) be the minimum singular value operator, and M3(x) ∈ R
d×d2

denote the matricization of input score function tensor S3(x) ∈ R
d×d×d; see (1.1) and (4.5) for the

definitions. For the Gaussian input x ∼ N (0, Id), we have E
[∥∥M3(x)M⊤

3 (x)
∥∥] = Õ

(
d3
)
. We have

the following learning result in the realizable setting where the target function is generated by a

two layer neural network (with one hidden layer).

1We do not require the knowledge of the normalizing constant or the partition function, which is #P hard to
compute [157].

94

Theorem 4.1 (Informal result for realizable setting). Our method NN-LIFT learns a realizable

target function up to error ǫ when the number of samples is lower bounded as2,

n ≥ Õ
(
k

ǫ2
· E
[∥∥∥M3(x)M⊤

3 (x)
∥∥∥
]
· s

2
max(A1)

s6min(A1)

)
.

Thus, we can efficiently learn the neural network parameters with polynomial sample complexity

using NN-LIFT algorithm. In addition, the method has polynomial computational complexity, and

in fact, its parallel time complexity is the same as stochastic gradient descent (SGD) or backprop-

agation. See Theorem 4.3 for the formal result.

We then extend our results to the non-realizable setting where the target function need not be

generated by a neural network. For our method NN-LIFT to succeed, we require the approximation

error to be sufficiently small under the given network architecture. Note that it is not of practical

interest to consider functions with large approximation errors, since classification performance in

that case is poor [38]. We state the informal version of the result as follows.

We assume the following: the target function f(x) has a continuous Fourier spectrum and is suffi-

ciently smooth, i.e., the parameter Cf (see (4.10) for the definition) is sufficiently small as specified

in (4.15). This implies that the approximation error of the target function can be controlled, i.e.,

there exists a neural network of given size that can fit the target function with bounded approx-

imation error. Let the input x be bounded as ‖x‖ ≤ r. Our informal result is as follows. See

Theorem 4.5 for the formal result.

Theorem 4.2 (Informal result for non-realizable setting). The arbitrary target function f(x) is

approximated by the neural network f̂(x) which is learnt using NN-LIFT algorithm such that the

risk bound satisfies w.h.p.

Ex[|f(x)− f̂(x)|2] ≤ O(r2C2
f) ·

(
1√
k

+ δ1

)2

+O(ǫ2),

where k is the number of neurons in the neural network, and δτ is defined in (4.13).

2Here, only the dominant terms in the sample complexity are noted; see (4.9) for the full details.

95

In the above bound, we require for the target function f(x) to have bounded first order moment in

the Fourier spectrum; see (4.15). As an example, we show that this bound is satisfied for the class

of scale and location mixtures of the Gaussian kernel function.

Corollary 4.1 (Learning mixtures of Gaussian kernels). Let f(x) :=
∫
K(α(x + β))G(dα, dβ),

α > 0, β ∈ R
d, be a location and scale mixture of the Gaussian kernel function K(x) = exp

(
−‖x‖2

2

)
,

the input be Gaussian as x ∼ N (0, σ2xId), and the activations be step functions, then, our algorithm

trains a neural network with risk bounds as in Theorem 4.2, when

∫
|α| · |G|(dα, dβ) ≤ poly

(
1

d
,

1

k
, ǫ,

1

σx
, exp

(
−1/σ2x

))
.

We observe that when the kernel mixtures correspond to smoother functions (smaller α), the above

bound is more likely to be satisfied. This is intuitive since smoother functions have lower amount

of high frequency content. Also, notice that the above bound has a dependence on the variance of

the Gaussian input σx. We obtain the most relaxed bound (r.h.s. of above bound) for middle values

of σx, i.e., when σx is neither too large nor too small. See Appendix D.3.1 for more discussion and

the proof of the corollary.

Intuitions behind the conditions for the risk bound: Since there exist worst-case instances

where learning is hard, it is natural to expect that NN-LIFT has guarantees only when certain

conditions are met. We assume that the input has a regular continuous probability density function

(pdf); see (4.8) for the details. This is a reasonable assumption, since under Boolean inputs (a

special case of discrete input), it reduces to learning parity with noise which is a hard problem [105].

We assume that the activating functions are sufficiently non-linear, since if they are linear, then the

network can be collapsed into a single layer [33], which is non-identifiable. We precisely characterize

how the estimation error depends on the non-linearity of the activating function through its third

order derivative.

Another condition for providing the risk bound is non-redundancy of the neurons. If the neurons

are redundant, it is an over-specified network. In the realizable setting, where the target function is

generated by a neural network with the given number of neurons k, we require (tensorizations of)

96

the weights of first layer to be linearly independent. In the non-realizable setting, we require this to

be satisfied by k vectors randomly drawn from the Fourier magnitude distribution (weighted by the

norm of frequency vector) of the target function f(x). More precisely, the random frequencies are

drawn from probability distribution Λ(ω) := ‖ω‖·|F (ω)|/Cf where F (ω) is the Fourier transform of

arbitrary function f(x), and Cf is the normalization factor; see (4.23) and corresponding discussions

for more details. This is a mild condition which holds when the distribution is continuous in some

domain. Thus, our conditions for achieving bounded risk are mild and encompass a large class of

target functions and input distributions.

Why tensors are required? We employ the cross-moment tensor which encodes the correlation

between the third order score function and the output. We then decompose the moment tensor

as a sum of rank-1 components to yield the weight vectors of the first layer. We require at least

a third order tensor to learn the neural network weights for the following reasons: while a ma-

trix decomposition is only identifiable up to orthogonal components, tensors can have identifiable

non-orthogonal components. In general, it is not realistic to assume that the weight vectors are or-

thogonal, and hence, we require tensors to learn the weight vectors. Moreover, through tensors, we

can learn overcomplete networks, where the number of hidden neurons can exceed the input/output

dimensions. Note that matrix factorization methods are unable to learn overcomplete models, since

the rank of the matrix cannot exceed its dimensions. Thus, it is critical to incorporate tensors for

training neural networks. A recent set of papers have analyzed the tensor methods in detail, and

established convergence and perturbation guarantees [20, 18, 22, 17, 41], despite non-convexity of

the decomposition problem. Such strong theoretical guarantees are essential for deriving provable

risk bounds for NN-LIFT.

Extensions: Our algorithm NN-LIFT can be extended to more layers, by recursively estimating the

weights layer by layer. In principle, our analysis can be extended by controlling the perturbation

introduced due to layer-by-layer estimation. Establishing precise guarantees is an exciting open

problem.

In this work, we assume knowledge of the generative model for the input. As argued before, in

many settings such as experimental design or polling, the design of the input pdf p(x) is under

97

the control of the learner. Even if p(x) is not known, a recent flurry of research activity has

shown that a wide class of probabilistic models can be trained consistently using a suite of different

efficient algorithms: convex relaxation methods [51], spectral and tensor methods [18], alternating

minimization [4], and they require only polynomial sample and computational complexity, with

respect to the input and hidden dimensions. These methods can learn a rich class of models which

also includes latent or hidden variable models.

Another aspect not addressed in this work is the issue of regularization for our NN-LIFT algorithm.

In this work, we assume that the number of neurons is chosen appropriately to balance bias and

variance through cross validation. Designing implicit regularization methods such as dropout [90]

or early stopping [128] for tensor factorization and analyzing them rigorously is another exciting

open research problem.

4.2 Related works

We first review some works regarding the analysis of backpropagation, and then provide some

theoretical results on training neural networks.

Analysis of backpropagation and loss surface of optimization: Baldi and Hornik [33] show

that if the activations are linear, then backpropagation has a unique local optimum, and it corre-

sponds to the principal components of the covariance matrix of the training examples. However,

it is known that there exist networks with non-linear activations where backpropagation fails; for

instance, Brady et al. [46] construct simple cases of linearly separable classes that backpropagation

fails. Note that the simple perceptron algorithm will succeed here due to linear separability. Gori

and Tesi [79] argue that such examples are artificial and that backpropagation succeeds in reaching

the global optimum for linearly separable classes in practical settings. However, they show that

under non-linear separability, backpropagation can get stuck in local optima. For a detailed survey,

see [75].

98

Recently, Choromanska et al. [55] analyze the loss surface of a multi-layer ReLU network by relating

it to a spin glass system. They make several assumptions such as variable independence for the

input, equally likely paths from input to output, redundancy in network parameterization and

uniform distribution for unique weights, which are far from realistic. Under these assumptions, the

network reduces to a random spin glass model, where it is known that the lowest critical values

of the random loss function form a layered structure, and the number of local minima outside

that band diminishes exponentially with the network size [32]. However, this does not imply

computational efficiency: there is no guarantee that we can find such a good local optimal point

using computationally cheap algorithms, since there are still exponential number of such points.

Haeffele and Vidal [82] provide a general framework for characterizing when local optima become

global in deep learning and other scenarios. The idea is that if the network is sufficiently overspeci-

fied (i.e., has enough hidden neurons) such that there exist local optima where some of the neurons

have zero contribution, then such local optima are in fact, global. This provides a simple and a

unified characterization of local optima which are global. However, in general, it is not clear how

to design algorithms that can reach these efficient optimal points.

Previous theoretical works for training neural networks: Analysis of risk for neural networks

is a classical problem. Approximation error of two layer neural network has been analyzed in a

number of works [64, 93, 36]. Barron [36] provides a bound on the approximation error and

combines it with the estimation error to obtain a risk bound, but for a computationally inefficient

method. The sample complexity for neural networks have been extensively analyzed in [36, 38],

assuming convergence to the globally optimal solution, which in general is intractable. See Anthony

and Bartlett [25], Shalev-Shwartz and Ben-David [141] for an exposition of classical results on neural

networks.

Andoni et al. [24] learn polynomial target functions using a two-layer neural network under Gaus-

sian/uniform input distribution. They argue that the weights for the first layer can be selected

randomly, and only the second layer weights, which are linear, need to be fitted optimally. However,

in practice, Gaussian/uniform distributions are never encountered in classification problems. For

general distributions, random weights in the first layer is not sufficient. Under our framework, we

99

impose only mild non-degeneracy conditions on the weights. Livni et al. [120] make the observation

that networks with quadratic activation functions can be trained in a computationally efficient

manner in an incremental manner. This is because with quadratic activations, greedily adding one

neuron at a time can be solved efficiently through eigen decomposition. However, the standard

sigmoidal networks require a large depth polynomial network, which is not practical. After we

posted the initial version of this chapter, Zhang et al. [161] extended this framework to improper

learning scenario, where the output predictor need not be a neural network. They show that if

the ℓ1 norm of the incoming weights in each layer is bounded, then learning is efficient. However,

for the usual neural networks with sigmoidal activations, the ℓ1 norm of the weights scales with

dimension and in this case, the algorithm is no longer polynomial time. Arora et al. [31] provide

bounds for leaning a class of deep representations. They use layer-wise learning where the neural

network is learned layer-by-layer in an unsupervised manner. They assume sparse edges with ran-

dom bounded weights, and 0/1 threshold functions in hidden nodes. The difference is here, we are

considering the supervised setting where there is both input and output, and we allow for general

sigmoidal functions at the hidden neurons.

Recently, after posting the initial version of this chapter, Hardt et al. [85] provided an analysis of

stochastic gradient descent and its generalization error in convex and non-convex problems such

as training neural networks. They show that the generalization error can be controlled under mild

conditions. However, their work does not address about reaching a solution with small risk bound

using SGD, and the SGD in general can get stuck in a spurious local optima. On the other hand,

we show that in addition to having a small generalization error, our method yields a neural network

with a small risk bound. Note that our method is moment-based estimation, and these methods

come with stability bounds that guarantee good generalization error.

Closely related to this work, Sedghi and Anandkumar [140] consider learning neural networks with

sparse connectivity. They employ the cross-moment between the (multi-class) label and (first order)

score function of the input. They show that they can provably learn the weights of the first layer,

as long as the weights are sparse enough, and there are enough number of input dimensions and

output classes (at least linear up to log factor in the number of neurons in any layer). In this

100

chapter, we remove these restrictions and allow for the output to be just binary class (and indeed,

our framework applies for multi-class setting as well, since the amount of information increases

with more label classes from the algorithmic perspective), and for the number of neurons to exceed

the input/output dimensions (overcomplete setting). Moreover, we extend beyond the realizable

setting, and do not require the target functions to be generated from the class of neural networks

under consideration.

4.3 Preliminaries and Problem Formulation

We first introduce some notations and then propose the problem formulation.

Let [n] := {1, 2, . . . , n}, and ‖u‖ denote the ℓ2 or Euclidean norm of vector u, and 〈u, v〉 denote the

inner product of vectors u and v. For matrix C ∈ R
d×k, the j-th column is referred by Cj or cj ,

j ∈ [k]. Throughout this chapter, ∇(m)
x denotes the m-th order derivative operator w.r.t. variable

x. For matrices A,B ∈ R
d×k, the Khatri-Rao product C := A ⊙ B ∈ R

d2×k is defined such that

C(l + (i− 1)d, j) = A(i, j) ·B(l, j), for i, l ∈ [d], j ∈ [k].

Derivative: For function g(x) : Rd → R with vector input x ∈ R
d, the m-th order derivative w.r.t.

variable x is denoted by ∇(m)
x g(x) ∈⊗m

R
d (which is a m-th order tensor) such that

[
∇(m)
x g(x)

]
i1,...,im

:=
∂g(x)

∂xi1∂xi2 · · · ∂xim
, i1, . . . , im ∈ [d]. (4.1)

When it is clear from the context, we drop the subscript x and write the derivative as ∇(m)g(x).

Fourier transform:For a function f(x) : Rd → R, the multivariate Fourier transform F (ω) : Rd →

R is defined as

F (ω) :=

∫

Rd

f(x)e−j〈ω,x〉dx, (4.2)

where variable ω ∈ R
d is called the frequency variable, and j denotes the imaginary unit. We also

denote the Fourier pair (f(x), F (ω)) as f(x)
Fourier←−−−→ F (ω).

101

Function notations: Throughout the chapter, we use the following convention to distinguish

different types of functions. We use f(x) (or y) to denote an arbitrary function and exploit f̃(x)

(or ỹ) to denote the output of a realizable neural network. This helps us to differentiate between

them. We also use notation f̂(x) (or ŷ) to denote the estimated (trained) neural networks using

finite number of samples.

4.3.1 Problem formulation

We now introduce the problem of training a neural network in realizable and non-realizable settings,

and elaborate on the notion of risk bound on how the trained neural network approximates an

arbitrary function. It is known that continuous functions with compact domain can be arbitrarily

well approximated by feedforward neural networks with one hidden layer and sigmoidal nonlinear

functions [63, 92, 35].

The input (feature) is denoted by variable x, and output (label) is denoted by variable y. We

assume the input and output are generated according to some joint density function p(x, y) such

that (xi, yi)
i.i.d.∼ p(x, y), where (xi, yi) denotes the i-th sample. We assume knowledge of the input

density p(x), and demonstrate how it can be used to train a neural network to approximate the

conditional density p(y|x) in a computationally efficient manner. We discuss in Section 4.4.1 how

the input density p(x) can be estimated through numerous methods such as score matching or

spectral methods. In settings such as experimental design, the input density p(x) is known to the

learner since she designs the density function, and our framework is directly applicable there. In

addition, we do not need to know the normalization factor or the partition function of the input

distribution p(x), and the estimation up to normalization factor suffices.

Risk bound: In this chapter, we propose a new algorithm for training neural networks and provide

risk bounds with respect to an arbitrary target function. Risk is the expected loss over the joint

probability density function of input x and output y. Here, we consider the squared ℓ2 loss and

bound the risk error

Ex[|f(x)− f̂(x)|2], (4.3)

102

where f(x) is an arbitrary function which we want to approximate by f̂(x) denoting the estimated

(trained) neural network. This notion of risk is also called mean integrated squared error. The

proposed risk error for a neural network consists of two parts: approximation error and estimation

error. Approximation error is the error in fitting the target function f(x) to a neural network with

the given architecture f̃(x), and estimation error is the error in training that network with finite

number of samples denoted by f̂(x). Thus, the risk error measures the ability of the trained neural

network to generalize to new data generated by function f(x). We now introduce the realizable

and non-realizable settings, which elaborates more these sources of error.

4.3.1.1 Realizable setting

In the realizable setting, the output is generated by a neural network. We consider a neural network

with one hidden layer of dimension k. Let the output ỹ ∈ {0, 1} be the binary label, and x ∈ R
d

be the feature vector; see Section 4.7.2 for generalization to higher dimensional output (multi-label

and multi-class), and also the continuous output case. We consider the label generating model

f̃(x) := E[ỹ|x] = 〈a2, σ(A⊤
1 x+ b1)〉+ b2, (4.4)

where σ(·) is (linear/nonlinear) elementwise function. See Figure 4.1 for a schematic representation

of label-function in (4.4) in the general case of vector output ỹ.

In the realizable setting, the goal is to train the neural network in (4.4), i.e., to learn the weight

matrices (vectors) A1 ∈ R
d×k, a2 ∈ R

k and bias vectors b1 ∈ R
k, b2 ∈ R. This only involves

the estimation analysis where we have a label-function f̃(x) specified in (4.4) with fixed unknown

parameters A1, b1, a2, b2, and the goal is to learn these parameters and finally bound the overall

function estimation error Ex[|f̃(x) − f̂(x)|2], where f̂(x) is the estimation of fixed neural network

f̃(x) given finite samples. For this task, we propose a computationally efficient algorithm which

requires only polynomial number of samples for bounded estimation error. This is the first time

that such a result has been established for any neural network.

103

σ(·) σ(·) σ(·)σ(·)
1 k

x1 x2 x3 xdx

E[ỹ|x]

A2

A1

· · ·

· · ·

· · ·

· · ·

Figure 4.1: Graphical representation of a neural network, E[ỹ|x] = A⊤
2 σ(A⊤

1 x + b1) + b2. Note
that this representation is for general vector output ỹ which can be also written as E[ỹ|x] =
〈a2, σ(A⊤

1 x+ b1)〉+ b2 in the case of scalar output ỹ.

4.3.1.2 Non-realizable setting

In the non-realizable setting, the output is an arbitrary function f(x) which is not necessarily a

neural network. We want to approximate f(x) by f̂(x) denoting the estimated (trained) neural

network. In this setting, the additional approximation analysis is also required. In this chapter, we

combine the estimation result in realizable setting with the approximation bounds in Barron [35]

leading to risk bounds with respect to the target function f(x); see (4.3) for the definition of risk.

The detailed results are provided in Section 4.6.

4.4 NN-LIFT Algorithm

In this section, we introduce our proposed method for learning neural networks using tensor, Fourier

and regression techniques. Our method is shown in Algorithm 6 named NN-LIFT (Neural Network

LearnIng using Feature Tensors). The algorithm has three main components. The first component

involves estimating the weight matrix of the first layer denoted by A1 ∈ R
d×k by a tensor decompo-

sition method. The second component involves estimating the bias vector of the first layer b1 ∈ R
k

by a Fourier method. We finally estimate the parameters of last layer a2 ∈ R
k and b2 ∈ R by linear

regression.

104

Procedure 6 NN-LIFT (Neural Network LearnIng using Feature Tensors)

input Labeled samples {(xi, yi) : i ∈ [n]}, parameter ǫ̃1, parameter λ.
input Third order score function P3(x) of the input x; see Equation (4.5) for the definition.
1: Compute T̂ := 1

n

∑
i∈[n] yi · P3(xi).

2: {(Â1)j}j∈[k] = tensor decomposition(T̂); see Section 4.4.2 and Appendix D.1 for details.

3: b̂1 = Fourier method({(xi, yi) : i ∈ [n]}, Â1, ǫ̃1); see Procedure 7.
4: (â2, b̂2) = Ridge regression({(xi, yi) : i ∈ [n]}, Â1, b̂1, λ); see Procedure 8.
5: return Â1, â2, b̂1, b̂2.

Note that most of the unknown parameters (compare the dimensions of matrix A1, vectors a2, b1,

and scalar b2) are estimated in the first part, and thus, this is the main part of the algorithm. Given

this fact, we also provide an alternative method for the estimation of other parameters of the model,

given the estimate of A1 from the tensor method. This is based on incrementally adding neurons,

one by one, whose first layer weights are given by A1 and the remaining parameters are updated

using brute force search on a grid. Since each update involves just updating the corresponding

bias term b1, and its contribution to the final output, this is low dimensional, and can be done

efficiently; details are in Section 4.7.3.

We now explain the steps of Algorithm 6 in more details.

4.4.1 Score function

The m-th order score function Pm(x) ∈⊗m
R
d is defined as [102]

Pm(x) := (−1)m
∇(m)
x p(x)

p(x)
, (4.5)

where p(x) is the probability density function of random vector x ∈ R
d. In addition, ∇(m)

x denotes

the m-th order derivative operator; see (4.1) for the precise definition. The main property of score

functions as yielding differential operators that enables us to estimate the weight matrix A1 via

tensor decomposition is discussed in the next subsection; see Equation (4.6).

In this work, we assume access to a sufficiently good approximation of the input pdf p(x) and

the corresponding score functions S2(x), S3(x). Indeed, estimating these quantities in general is a

105

hard problem, but there exist numerous instances where this becomes tractable. Examples include

spectral methods for learning latent variable models such as Gaussian mixtures, topic or admix-

ture models, independent component analysis (ICA) and so on [18]. Moreover, there have been

recent advances in non-parametric score matching methods [150] for density estimation in infinite

dimensional exponential families with guaranteed convergence rates. These methods can be used to

estimate the input pdf in an unsupervised manner. Below, we discuss in detail about score function

estimation methods. In this work, we focus on how we can use the input generative information to

make training of neural networks tractable. For simplicity, in the subsequent analysis, we assume

that these quantities are perfectly known; it is possible to extend the perturbation analysis to take

into account the errors in estimating the input pdf; see Remark 14.

Estimation of score function: There are various efficient methods for estimating the score

function. The framework of score matching is popular for parameter estimation in probabilistic

models [99, 152], where the criterion is to fit parameters based on matching the data score function.

Swersky et al. [152] analyze the score matching for latent energy-based models. In deep learning,

the framework of auto-encoders attempts to find encoding and decoding functions which minimize

the reconstruction error under added noise; the so-called Denoising Auto-Encoders (DAE). This

is an unsupervised framework involving only unlabeled samples. Alain and Bengio [5] argue that

the DAE approximately learns the first order score function of the input, as the noise variance

goes to zero. Sriperumbudur et al. [150] propose non-parametric score matching methods for

density estimation in infinite dimensional exponential families with guaranteed convergence rates.

Therefore, we can use any of these methods for estimating P1(x) and use the recursive form [102]

Pm(x) = −Pm−1(x)⊗∇x log p(x)−∇xPm−1(x)

to estimate higher order score functions.

106

4.4.2 Tensor decomposition

The score functions are new representations (extracted features) of input data x that can be used for

training neural networks. We use score functions and labels of training data to form the empirical

cross-moment T̂ = 1
n

∑
i∈[n] yi ·P3(xi). We decompose tensor T̂ to estimate the columns of A1. The

following discussion reveals why tensor decomposition is relevant for this task.

The score functions have the property of yielding differential operators with respect to the input

distribution. More precisely, for label-function f(x) := E[y|x], Janzamin et al. [102] show that

E[y · S3(x)] = E[∇(3)
x f(x)].

Now for the neural network output in (4.4), note that the function f̃(x) is a non-linear function of

both input x and weight matrix A1. The expectation operator E[·] averages out the dependency on

x, and the derivative acts as a linearization operator as follows. In the neural network output (4.4),

we observe that the columns of weight vector A1 are the linear coefficients involved with input

variable x. When taking the derivative of this function, by the chain rule, these linear coefficients

shows up in the final form. In particular, we show in Lemma 4.1 (see Section 4.8) that for neural

network in (4.4), we have

E [ỹ · P3(x)] =
∑

j∈[k]
λj · (A1)j ⊗ (A1)j ⊗ (A1)j ∈ R

d×d×d, (4.6)

where (A1)j ∈ R
d denotes the j-th column of A1, and λj ∈ R denotes the coefficient; refer to

Equation (1.5) for the notion of tensor rank and its rank-1 components. This clarifies how the score

function acts as a linearization operator while the final output is nonlinear in terms of A1. The

above form also clarifies the reason behind using tensor decomposition in the learning framework.

Tensor decomposition algorithm: The goal of tensor decomposition algorithm is to recover the

rank-1 components of tensor. For this step, we use the tensor decomposition algorithm proposed in

Section 2.3; see Appendix D.1 for more details. Here, we first orthogonalize the tensor via whitening

107

procedure and then apply the tensor power iteration. Thus, the original tensor decomposition need

not to be orthogonal.

Computational Complexity: It is popular to perform the tensor decomposition in a stochastic

manner which reduces the computational complexity. This is done by splitting the data into mini-

batches. Starting with the first mini-batch, we perform a small number of tensor power iterations,

and then use the result as initialization for the next mini-batch, and so on. As mentioned earlier, we

assume that a sufficiently good approximation of score function tensor is given to us. For specific

cases where we have this tensor in factor form, we can reduce the computational complexity of

NN-LIFT by not computing the whole tensor explicitly. By having factor form, we mean when we

can write the score function tensor in terms of summation of rank-1 components which could be

the summation over samples, or from other existing structures in the model. We now state a few

examples when we have the factor form, and provide the computational complexity. For example,

if input follows Gaussian distribution, the score function has a simple polynomial form, and the

computational complexity of tensor decomposition is O(nkdR), where n is the number of samples

and R is the number of initializations for the tensor decomposition. Similar argument follows when

the input distribution is mixture of Gaussian distributions.

We can also analyze complexity for more complex inputs. If we fit the input data into a Restricted

Boltzmann Machines (RBM) model, the computational complexity of our method is O(nkddhR).

Here dh is the number of neurons of the first layer of the RBM used for approximating the input

distribution. Tensor methods are also embarrassingly parallelizable. When performed in parallel,

the computational complexity would be O(log(min{d, dh})) with O(nkddhR/ log(min(d, dh))) pro-

cessors. Alternatively, we can also exploit recent tensor sketching approaches [158] for computing

tensor decompositions efficiently. Wang et al. [158] build on the idea of count sketches and show that

the running time is linear in the input dimension and the number of samples, and is independent

in the order of the tensor. Thus, tensor decompositions can be computed efficiently.

108

Procedure 7 Fourier method for estimating b1

input Labeled samples {(xi, yi) : i ∈ [n]}, estimate Â1, parameter ǫ̃1.
input Probability density function p(x) of the input x.
1: for l = 1 to k do
2: Let Ωl :=

{
ω ∈ R

d : ‖ω‖ = 1
2 ,
∣∣〈ω, (Â1)l〉

∣∣ ≥ 1−ǫ̃21/2
2

}
, and |Ωl| denotes the surface area of d−1

dimensional manifold Ωl.
3: Draw n i.i.d. random frequencies ωi, i ∈ [n], uniformly from set Ωl.
4: Let v := 1

n

∑
i∈[n]

yi
p(xi)

e−j〈ωi,xi〉 which is a complex number as v = |v|ej∠v . The operators | · |
and ∠· respectively denote the magnitude and phase operators.

5: Let b̂1(l) := 1
π (∠v − ∠Σ(1/2)), where σ(x)

Fourier←−−−→ Σ(ω).

6: return b̂1.

4.4.3 Fourier method

The second part of the algorithm estimates the first layer bias vector b1 ∈ R
k. This step is

very different from the previous step for estimating A1 which was based on tensor decomposition

methods. This is a Fourier-based method where complex variables are formed using labeled data

and random frequencies in the Fourier domain; see Procedure 7. We prove in Lemma 4.6 that

the entries of b1 can be estimated from the phase of these complex numbers. We also observe

in Lemma 4.6 that the magnitude of these complex numbers can be used to estimate a2; this is

discussed in Appendix D.2.2.

Polynomial-time random draw from set Ωl: Note that the random frequencies are drawn

from a d− 1 dimensional manifold denoted by Ωl which is the intersection of sphere ‖ω‖ = 1
2 and

cone
∣∣〈ω, (Â1)l〉

∣∣ ≥ 1−ǫ̃21/2
2 in R

d. This manifold is actually the surface of a spherical cap. In order

to draw these frequencies in polynomial time, we consider the d-dimensional spherical coordinate

system such that one of the angles is defined based on the cone axis. We can then directly impose

the cone constraint by limiting the corresponding angle in the random draw. In addition, Kothari

and Meka [109] propose a method for generating pseudo-random variables from the spherical cap

in logarithmic time.

Remark 11 (Knowledge of input distribution only up to normalization factor). The computation of

score function and the Fourier method both involve knowledge about input pdf p(x). However, we

do not need to know the normalization factor, also known as partition function, of the input pdf.

For the score function, it is immediately seen from the definition in (4.5) since the normalization

109

Procedure 8 Ridge regression method for estimating a2 and b2

input Labeled samples {(xi, yi) : i ∈ [n]}, estimates Â1 and b̂1, regularization parameter λ.
1: Let ĥi := σ(Â⊤

1 xi + b̂1), i ∈ [n], denote the estimation of the neurons.

2: Append each neuron ĥi by the dummy variable 1 to represent the bias, and thus, ĥi ∈ R
k+1.

3: Let Σ̂
ĥ

:= 1
n

∑
i∈[n] ĥiĥ

⊤
i ∈ R

(k+1)×(k+1) denote the empirical covariance of ĥ.

4: Let β̂λ ∈ R
k+1 denote the estimated parameters by λ-regularized ridge regression as

β̂λ =
(

Σ̂
ĥ

+ λIk+1

)−1
· 1

n


∑

i∈[n]
yiĥi


 , (4.7)

where Ik+1 denotes the (k + 1)-dimensional identity matrix.
5: return â2 := β̂λ(1 : k), b̂2 := β̂λ(k + 1).

factor is canceled out by the division by p(x), and thus, the estimation of score function is at most

as hard as estimation of input pdf up to normalization factor. In the Fourier method, we can

use the non-normalized estimation of input pdf which leads to a normalization mismatch in the

estimation of corresponding complex number. This is not a problem since we only use the phase

information of these complex numbers.

4.4.4 Ridge regression method

For the neural network model in (4.4), given a good estimation of neurons, we can estimate the

parameters of last layer by linear regression. We provide Procedure 8 in which we use ridge

regression algorithm to estimate the parameters of last layer a2 and b2. See Appendix D.2.3 for the

details of ridge regression and the corresponding analysis and guarantees.

4.5 Risk Bound in the Realizable Setting

In this section, we provide guarantees in the realizable setting, where the function f̃(x) := E[ỹ|x]

is generated by a neural network as in (4.4). We provide the estimation error bound on the overall

function recovery Ex[|f̃(x)− f̂(x)|2] when the estimation is done by Algorithm 6.

110

We provide guarantees in the following settings. 1) In the basic case, we consider the undercomplete

regime k ≤ d, and provide the results assuming A1 is full column rank. 2) In the second case, we

form higher order cross-moments and tensorize it into a lower order tensor. This enables us to learn

the network in the overcomplete regime k > d, when the Khatri-Rao product A1 ⊙ A1 ∈ R
d2×k

is full column rank. We call this the overcomplete setting and this can handle up to k = O(d2).

Similarly, we can extend to larger k by tensorizing higher order moments in the expense of additional

computational complexity.

We define the following quantity for label function f̃(·) as

ζ̃f̃ :=

∫

Rd

f̃(x)dx.

Note that in the binary classification setting (ỹ ∈ {0, 1}), we have E[ỹ|x] := f̃(x) ∈ [0, 1] which is

always positive, and there is no square of f̃(x) considered in the above quantity.

Let η denote the noise in the neural network model in (4.4) such that the output is

ỹ = f̃(x) + η.

Note that the noise η is not necessarily independent of x; for instance, in the classification setting

or binary output ỹ ∈ {0, 1}, the noise in dependent on x.

Conditions for Theorem 4.3:

• Non-degeneracy of weight vectors: In the undercomplete setting (k ≤ d), the weight

matrix A1 ∈ R
d×k is full column rank and smin(A1) > ǫ, where smin(·) denotes the minimum

singular value, and ǫ > 0 is related to the target error in recovering the columns of A1. In

the overcomplete setting (k ≤ d2), the Khatri-Rao product A1 ⊙ A1 ∈ R
d2×k is full column

rank3, and smin(A1 ⊙A1) > ǫ; see Remark 13 for generalization.

3It is shown in Bhaskara et al. [41] that this condition is satisfied under smoothed analysis.

111

• Conditions on nonlinear activating function σ(·): the coefficients

λj := E
[
σ′′′(zj)

]
· a2(j), λ̃j := E

[
σ′′(zj)

]
· a2(j), j ∈ [k],

in (4.17) and (D.11) are nonzero. Here, z := A⊤
1 x+ b1 is the input to the nonlinear operator

σ(·). In addition, σ(·) satisfies the Lipschitz property4 with constant L such that |σ(u) −

σ(u′)| ≤ L · |u − u′|, for u, u′ ∈ R. Suppose that the nonlinear activating function σ(z)

satisfies the property such that σ(z) = 1−σ(−z). Many popular activating functions such as

step function, sigmoid function and tanh function satisfy this last property.

• Subgaussian noise: There exists a finite σnoise ≥ 0 such that, almost surely,

Eη[exp(αη)|x] ≤ exp(α2σ2noise/2), ∀α ∈ R,

where η denotes the noise in the output ỹ.

• Bounded statistical leverage: There exists a finite ρλ ≥ 1 such that, almost surely,

√
k√

(inf{λj}+ λ)k1,λ
≤ ρλ,

where k1,λ denotes the effective dimensions of the hidden layer h := σ(A⊤
1 x + b1) as k1,λ :=

∑
j∈[k]

λj
λj+λ

. Here, λj ’s denote the (positive) eigenvalues of the hidden layer covariance matrix

Σh, and λ is the regularization parameter of ridge regression.

We now elaborate on these conditions. The non-degeneracy of weight vectors are required for

the tensor decomposition analysis in the estimation of A1. In the undercomplete setting, the

algorithm first orthogonalizes (through whitening procedure) the tensor given in (4.6), and then

decomposes it through tensor power iteration. Note that the convergence of power iteration for

orthogonal tensor decomposition is guaranteed [160, 18]. For the orthogonalization procedure to

work, we need the tensor components (the columns of matrix A1) to be linearly independent. In

4 If the step function σ(u) = 1{u>0}(u) is used as the activating function, the Lipschitz property does not hold
because of the non-continuity at u = 0. But, we can assume the Lipschitz property holds in the linear continuous
part, i.e., when u, u′ > 0 or u, u′ < 0. We then argue that the input to the step function 1{u>0}(u) is w.h.p. in the
linear interval (where the Lipschitz property holds).

112

the overcomplete setting, the algorithm performs the same steps with the additional tensorizing

procedure; see Appendix D.1 for details. In this case, a higher order tensor is given to the algorithm

and it is first tensorized before performing the same steps as in the undercomplete setting. Thus,

the same conditions are now imposed on A1 ⊙A1.

In addition to the non-degeneracy condition on weight matrix A1, the coefficients condition on λj ’s

is also required to ensure the corresponding rank-1 components in (4.6) do not vanish, and thus,

the tensor decomposition algorithm recovers them. Similarly, the coefficients λ̃j should be also

nonzero to enable us using the second order moment M̃2 in (D.10) in the whitening step of tensor

decomposition algorithm. If one of the coefficients vanishes, we use the other option to perform the

whitening; see Remark 15 and Procedure 10 for details. Note that the amount of non-linearity of

σ(·) affects the magnitude of the coefficients. It is also worth mentioning that although we use the

third derivative notation σ′′′(·) in characterizing the coefficients λj (and similarly σ′′(·) in λ̃j), we

do not need the differentiability of non-linear function σ(·) in all points. In particular, when input x

is a continuous variable, we use Dirac delta function δ(·) as the derivative in non-continuous points;

for instance, for the derivative of step function 1{x>0}(x), we have d
dx1{x>0}(x) = δ(x). Thus, in

general, we only need the expectations E [σ′′′(zj)] and E [σ′′(zj)] to exist for these type of functions

and the corresponding higher order derivatives.

We impose the Lipschitz condition on the non-linear activating function to limit the error prop-

agated in the hidden layer, when the first layer parameters are estimated by the neural network

and Fourier methods. The condition σ(z) = 1 − σ(−z) is also assumed to tackle the sign issue

in recovering the columns of A1; see Remark 29 for the details. The subgaussian noise and the

bounded statistical leverage conditions are standard conditions, required for ridge regression, which

is used for estimating the parameters of the second layer of the neural network. Both parameters

σnoise, and ρλ affect the sample complexity in the final guarantees.

Imposing additional bounds on the parameters of the neural network are useful in learning these

parameters with computationally efficient algorithms since it limits the searching space for training

these parameters. In particular, for the Fourier analysis, we assume the following conditions.

Suppose the columns of weight matrix A1 are normalized, i.e., ‖(A1)j‖ = 1, j ∈ [k], and the entries

113

of first layer bias vector b1 are bounded as |b1(l)| ≤ 1, l ∈ [k]. Note that the normalization condition

on the columns of A1 is also needed for identifiability of the parameters. For instance, if the non-

linear operator is the step function σ(z) = 1{z>0}(z), then matrix A1 is only identifiable up to

its norm, and thus, such normalization condition is required for identifiability. The estimation

of entries of the bias vector b1 is obtained from the phase of a complex number through Fourier

analysis; see Procedure 7 for details. Since there is ambiguity in the phase of a complex number5,

we impose the bounded assumption on the entries of b1 to avoid this ambiguity.

Let p(x) satisfy some mild regularity conditions on the boundaries of the support of p(x). In

particular, all the entries of (matrix-output) functions

f̃(x) · ∇(2)p(x), ∇f̃(x) · ∇p(x)⊤, ∇(2)f̃(x) · p(x) (4.8)

should go to zero on the boundaries of support of p(x). These regularity conditions are required

for the properties of the score function to hold; see Janzamin et al. [102] for more details.

In addition to the above main conditions, we also need some mild conditions which are not crucial for

the recovery guarantees and are mostly assumed to simplify the presentation of the main results.

These conditions can be relaxed more. Suppose the input x is bounded, i.e., x ∈ Br, where

Br := {x : ‖x‖ ≤ r}. Assume the input probability density function p(x) ≥ ψ for some ψ > 0, and

for any x ∈ Br. The regularity conditions in (4.8) might seem contradictory with the lower bound

condition p(x) ≥ ψ, but there is an easy fix for that. The lower bound on p(x) is required for the

analysis of the Fourier part of the algorithm. We can have a continuous p(x), while in the Fourier

part, we only use x’s such that p(x) ≥ ψ, and ignore the rest. This only introduces a probability

factor Pr[x : p(x) ≥ ψ] in the analysis.

Settings of algorithm in Theorem 4.3:

• No. of iterations in Algorithm 12: N = Θ
(
log 1

ǫ

)
.

• No. of initializations in Procedure 2: R ≥ poly(k).

• Parameter ǫ̃1 = Õ
(

1√
n

)
in Procedure 7, where n is the number of samples.

5A complex number does not change if an integer multiple of 2π is added to its phase.

114

• We exploit the empirical second order moment M̂2 := 1
n

∑
i∈[n] yi · P2(xi), in the whitening

Procedure 10, which is the first option stated in the procedure. See Remark 15 for further

discussion about the other option.

Theorem 4.3 (NN-LIFT guarantees: estimation bound in the realizable setting). Assume the

above settings and conditions hold. For ǫ > 0, suppose the number of samples n satisfies (up to log

factors)

n ≥ Õ
(
k

ǫ2
· E
[∥∥∥M3(x)M⊤

3 (x)
∥∥∥
]

(4.9)

·poly

(
ỹmax,

E
[∥∥S2(x)S⊤2 (x)

∥∥]

E
[∥∥M3(x)M⊤

3 (x)
∥∥] ,

ζ̃f̃
ψ
,
λ̃max

λ̃min

,
1

λmin
,
smax(A1)

smin(A1)
, |Ωl|, L,

‖a2‖
(a2)min

, |b2|, σnoise, ρλ
))

.

See (D.3), (D.26), (D.28) and (D.30) for the complete form of sample complexity. Here, M3(x) ∈

R
d×d2 denotes the matricization of score function tensor S3(x) ∈ R

d×d×d; see (1.1) for the definition

of matricization. Furthermore, λmin := minj∈[k] |λj |, λ̃min := minj∈[k] |λ̃j |, λ̃max := maxj∈[k] |λ̃j |,

(a2)min := minj∈[k] |a2(j)|, and ỹmax is such that |f̃(x)| ≤ ỹmax, for x ∈ Br. Then the function

estimate f̂(x) := 〈â2, σ(Â⊤
1 x + b̂1)〉 + b̂2 using the estimated parameters Â1, b̂1, â2, b̂2 (output of

NN-LIFT Algorithm 6) satisfies the estimation error

Ex[|f̂(x)− f̃(x)|2] ≤ Õ(ǫ2).

See Section 4.8 and Appendix D.2 for the proof of theorem. Thus, we estimate the neural network

in polynomial time and sample complexity. This is one of the first results to provide a guaranteed

method for training neural networks with efficient computational and statistical complexity. Note

that although the sample complexity in [35] is smaller as n ≥ Õ
(
kd
ǫ2

)
, the proposed algorithm in [35]

is not computationally efficient.

Remark 12 (Sample complexity for Gaussian input). If the input x is Gaussian as x ∼ N (0, Id),

then we know that E
[∥∥M3(x)M⊤

3 (x)
∥∥] = Õ

(
d3
)

and E
[∥∥S2(x)S⊤2 (x)

∥∥] = Õ
(
d2
)
, and the above

sample complexity is simplified.

Remark 13 (Higher order tensorization). We stated that by tensorizing higher order tensors to lower

order ones, we can estimate overcomplete models where the hidden layer dimension k is larger than

115

the input dimension d. We can generalize this idea to higher order tensorizing such that m modes

of the higher order tensor are tensorized into a single mode in the resulting lower order tensor. This

enables us to estimate the models up to k = O(dm) assuming the matrix A1⊙· · ·⊙A1 (m Khatri-Rao

products) is full column rank. This is possible with the higher computational complexity.

Remark 14 (Effect of erroneous estimation of p(x)). The input probability density function p(x) is

directly used in the Fourier part of the algorithm, and also indirectly used in the tensor decompo-

sition part to compute the score function S3(x); see (4.5). In the above analysis, to simplify the

presentation, we assume we exactly know these functions, and thus, there is no additional error

introduced by estimating them. It is straightforward to incorporate the corresponding errors in

estimating input density into the final bound.

Remark 15 (Alternative whitening prodecure). In whitening Procedure 10, two options are provided

for constructing the second order moment M2. In the above analysis, we used the first option which

exploits the second order score function. If any coefficient λ̃j , j ∈ [k], in (D.10) vanishes, we cannot

use the second order score function in the whitening procedure, and we use the other option for

whitening; see Procedure 10 for the details.

4.6 Risk Bound in the Non-realizable Setting

In this section, we provide the risk bound for training the neural network with respect to an

arbitrary target function; see Section 4.3.1 for the definition of the risk.

In order to provide the risk bound with respect to an arbitrary target function, we also need to

argue the approximation error in addition to the estimation error. For an arbitrary function f(x),

we need to find a neural network whose error in approximating the function can be bounded. We

then combine it with the estimation error in training that neural network. This yields the final risk

bound.

The approximation problem is about finding a neural network that approximates an arbitrary

function f(x) with bounded error. Thus, this is different from the realizable setting where there is

a fixed neural network and we only analyze its estimation. Barron [35] provides an approximation

116

bound for the two-layer neural network and we exploit that here. His result is based on the Fourier

properties of function f(x). Recall from (4.2) the definition of Fourier transform of f(x), denoted

by F (ω), where ω is called the frequency variable. Define the first absolute moment of the Fourier

magnitude distribution as

Cf :=

∫

Rd

‖ω‖2 · |F (ω)|dω. (4.10)

Barron [35] analyzes the approximation properties of

f̃(x) =
∑

j∈[k]
a2(j)σ

(
〈(A1)j , x〉+ b1(j)

)
, ‖(A1)j‖ = 1, |b1(j)| ≤ 1, |a2(j)| ≤ 2Cf , j ∈ [k], (4.11)

where the columns of weight matrix A1 are the normalized version of random frequencies drawn

from the Fourier magnitude distribution |F (ω)| weighted by the norm of the frequency vector. More

precisely,

ωj
i.i.d.∼ ‖ω‖

Cf
|F (ω)|, (A1)j =

ωj
‖ωj‖

, j ∈ [k]. (4.12)

See Section 4.8.2.1 for a detailed discussion on this connection between the columns of weight

matrix A1 and the random frequency draws from the Fourier magnitude distribution, and see how

this is argued in the proof of the approximation bound. The other parameters a2, b1 need to be

also found. He then shows the following approximation bound for (4.11).

Theorem 4.4 (Approximation bound, Theorem 3 of Barron [35]). For a function f(x) with bounded

Cf , there exists an approximation f̃(x) in the form of (4.11) that satisfies the approximation bound

Ex[|f(x)− f̃(x)|2] ≤ O(r2C2
f) ·

(
1√
k

+ δ1

)2

,

where f(x) = f(x)− f(0). Here, for τ > 0,

δτ := inf
0<ξ≤1/2

{
2ξ + sup

|z|≥ξ

∣∣σ(τz)− 1{z>0}(z)
∣∣
}

(4.13)

is a distance between the unit step function 1{z>0}(z) and the scaled sigmoidal function σ(τz).

117

See Barron [35] for the complete proof of the above theorem. For completeness, we have also

reviewed the main ideas of this proof in Section 4.8.2. We now provide the formal statement of our

risk bound.

Conditions for Theorem 4.5:

• The nonlinear activating function σ(·) is an arbitrary sigmoidal function satisfying the afore-

mentioned Lipschitz condition. Note that a sigmoidal function is a bounded measurable

function on the real line for which σ(z)→ 1 as z →∞ and σ(z)→ 0 as z → −∞.

• For ǫ > 0, suppose the number of samples n satisfies (up to log factors)

n ≥ Õ
(
k

ǫ2
· E
[∥∥∥M3(x)M⊤

3 (x)
∥∥∥
]

(4.14)

· poly

(
ymax,

E
[∥∥S2(x)S⊤2 (x)

∥∥]

E
[∥∥M3(x)M⊤

3 (x)
∥∥] ,

ζf
ψ
,
λ̃max

λ̃min

,
1

λmin
,
smax(A1)

smin(A1)
,

|Ωl|, L,
‖a2‖

(a2)min
, |b2|, σnoise, ρλ

))
,

where ζf :=
∫
Rd f(x)2dx; notice the difference with ζ̃f̃ . Note that this is the same sample

complexity as in Theorem 4.3 with ỹmax substituted with ymax and ζ̃f̃ substituted with ζf .

• The target function f(x) is bounded, and for ǫ > 0, it has bounded Cf as

Cf ≤ Õ
((

1√
k

+ δ1

)−1

·
(

1√
k

+ ǫ

)
· 1√

E

[
‖S3(x)‖2

] (4.15)

· poly


1

r
,
E

[
‖S3(x)‖2

]

E

[
‖S2(x)‖2

] , ψ, λ̃min

λ̃max

, λmin,
smin(A1)

smax(A1)
,

1

|Ωl|
,

1

L
,

(a2)min

‖a2‖
,

1

|b2|
,

1

σnoise
,

1

ρλ

))
.

See (D.31) and (D.33) for the complete form of bound on Cf . For Gaussian input x ∼ N (0, Id),

we have
√

E [‖S3(x)‖2] = Õ
(
d1.5
)
, and r = Õ(

√
d).

See Corollary 4.1 for examples of functions that satisfy this bound, and thus, we can learn

them by the proposed method.

118

• The coefficients λj := E [σ′′′(zj)] · a2(j), and λ̃j := E [σ′′(zj)] · a2(j), j ∈ [k], in (4.17) and

(D.11) are non-zero.

• k random i.i.d. draws of frequencies in Equation (4.12) are linearly independent. Note that

the draws are from Fourier magnitude distribution6 ‖ω‖· |F (ω)|. For more discussions on this

condition, see Section 4.8.2.1 and earlier explanations in this section. In the overcomplete

regime, (k > d), the linear independence property needs to hold for appropriate tensorizations

of the frequency draws.

The above requirements on the number of samples n and parameter Cf depend on the parameters

of the neural network A1, a2, b1 and b2. Note that there is also a dependence on these parame-

ters through coefficients λj and λ̃j . Since this is the non-realizable setting, these neural network

parameters correspond to the neural networks that satisfy the approximation bound proposed in

Theorem 4.4 and are generated via random draws from the frequency spectrum of the function

f(x).

The proposed bound on Cf in (4.15) is stricter when the number of hidden units k increases.

This might seem counter-intuitive, since the approximation result in Theorem 4.4 suggests that

increasing k leads to smaller approximation error. But, note that the approximation result in

Theorem 4.4 does not consider efficient training of the neural network. The result in Theorem 4.5

also deals with the efficient estimation of the neural network. This imposes additional constraint

on the parameter Cf such that when the number of neurons increases, the problem of learning the

network weights is more challenging for the tensor method to resolve.

Theorem 4.5 (NN-LIFT guarantees: risk bound). Suppose the above conditions hold. Then the

target function f is approximated by the neural network f̂ which is learnt using NN-LIFT in Algo-

rithm 6 satisfying w.h.p.

Ex[|f(x)− f̂(x)|2] ≤ O(r2C2
f) ·

(
1√
k

+ δ1

)2

+O(ǫ2),

where δτ is defined in (4.13). Recall x ∈ Br, where Br := {x : ‖x‖ ≤ r}.
6Note that it should be normalized to be a probability distribution as in (4.12).

119

The theorem is mainly proved by combining the estimation bound guarantees in Theorem 4.3, and

the approximation bound results for neural networks provided in Theorem 4.4. But note that the

approximation bound provided in Theorem 4.4 holds for a specific class of neural networks which

are not generally recovered by the NN-LIFT algorithm. In addition, the estimation guarantees

in Theorem 4.3 is for the realizable setting where the observations are the outputs of a fixed

neural network, while in Theorem 4.5 we observe samples of arbitrary function f(x). Thus, the

approximation analysis in Theorem 4.4 can not be directly applied to Theorem 4.3. For this, we need

additional assumptions to ensure the NN-LIFT algorithm recovers a neural network which is close

to one of the neural networks that satisfy the approximation bound in Theorem 4.4. Therefore, we

impose the bound on quantity Cf , and the full column rank assumption proposed in Theorem 4.4.

See Appendix D.3 for the complete proof of Theorem 4.5.

The above risk bound includes two terms. The first term O(r2C2
f) ·

(
1√
k

+ δ1

)2
represents the

approximation error on how the arbitrary function f(x) with quantity Cf can be approximated

by the neural network, whose weights are drawn from the Fourier magnitude distribution; see

Theorem 4.4 for the formal statement. From the definition of Cf in (4.10), this bound is weaker

when the Fourier spectrum of target f(x) has more energy in higher frequencies. This makes

intuitive sense since it should be easier to approximate a function which is more smooth and has

less fluctuations. The second term O(ǫ2) is from estimation error for NN-LIFT algorithm, which

is analyzed in Theorem 4.3. The polynomial factors for sample complexity in our estimation error

are slightly worse than the bound provided in Barron [36], but note that we provide an estimation

method which is both computationally and statistically efficient, while the method in Barron [36] is

not computationally efficient. Thus, for the first time, we have a computationally efficient method

with guaranteed risk bounds for training neural networks.

Discussion on δτ in the approximation bound: The approximation bound involves a term

δτ which is a constant and does not shrink with increasing the neuron size k. Recall that δτ

measures the distance between the unit step function 1{z>0}(z) and the scaled sigmoidal function

σ(τz) (which is used in the neural network specified in (4.4)). We now provide the following two

observations

120

The above risk bound is only provided for the case τ = 1. We can generalize this result by

imposing different constraint on the norm of columns of A1 in (4.11). In general, if we impose

‖(A1)j‖ = τ, j ∈ [k], for some τ > 0, then we have the approximation bound7 O(r2C2
f) ·
(

1√
k

+ δτ

)2
.

Note that δτ → 0 when τ → ∞ (the scaled sigmoidal function σ(τz) converges to the unit step

function), and thus, this constant approximation error vanishes.

If the sigmoidal function is the unit step function as σ(z) = 1{z>0}(z), then δτ = 0 for all τ > 0,

and hence, there is no such constant approximation error.

4.7 Discussions and Extensions

In this section, we provide additional discussions. We first propose a toy example contrasting the

hardness of optimization problems backpropagation and tensor decomposition. We then discuss the

generalization of learning guarantees to higher dimensional output, and also the continuous output

case. We then discuss an alternative approach for estimating the low-dimensional parameters of

the model.

4.7.1 Contrasting the loss surface of backpropagation with tensor decomposi-

tion

We discussed that the computational hardness of training a neural network is due to the non-

convexity of the loss function, and thus, popular local search methods such as backpropagation

can get stuck in spurious local optima. We now provide a toy example highlighting this issue, and

contrast it with the tensor decomposition approach.

We consider a simple binary classification task shown in Figure 4.2.a, where blue and magneta data

points correspond to two different classes. It is clear that these two classes can be classified by a

mixture of two linear classifiers which are drawn as green solid lines in the figure. For this task, we

consider a two-layer neural network with two hidden neurons. The loss surfaces for backpropagation

7Note that this change also needs some straightforward appropriate modifications in the algorithm.

121

x1

x
2

y=1y=−1

Local optimum Global optimum

(a) Classification setup

−4

−3

−2

−1

0

1

2

3

4 −4
−3

−2
−1

0
1

2
3

4

200

250

300

350

400

450

500

550

600

650

A1(1, 1) A1(2, 1)

(b) Loss surface for backprop.

−4

−3

−2

−1

0

1

2

3

4 −4
−3

−2
−1

0
1

2
3

4

0

20

40

60

80

100

120

140

160

180

200

A1(1, 1) A1(2, 1)

(c) Loss surface for tensor method

Figure 4.2: (a) Classification task: two colors correspond to binary labels. A two-layer neural
network with two hidden neurons is used. Loss surface in terms of the first layer weights of one
neuron (i.e., weights connecting the inputs to the neuron) is plotted while other parameters are
fixed. (b) Loss surface for usual square loss objective has spurious local optima. In part (a), one of
the spurious local optima is drawn as red dashed lines and the global optimum is drawn as green
solid lines. (c) Loss surface for tensor factorization objective is free of spurious local optima.

and tensor decomposition are shown in Figures 4.2.b and 4.2.c, respectively. They are shown in

terms of the weight parameters of inputs to the first neuron, i.e., the first column of matrix A1,

while the weight parameters to the second neuron are randomly drawn, and then fixed.

The stark contrast between the optimization landscape of tensor objective function, and the usual

square loss objective used for backpropagation are observed, where even for a very simple classifi-

cation task, backpropagation suffers from spurious local optima (one set of them is drawn as red

dashed lines), which is not the case with tensor methods that is at least locally convex. This com-

parison highlights the algorithmic advantage of tensor decomposition compared to backpropagation

in terms of the optimization they are performing.

4.7.2 Extensions to cases beyond binary classification

We earlier limited ourselves to the case where the output of neural network ỹ ∈ {0, 1} is binary.

These results can be easily extended to more complicated cases such as higher dimensional output

(multi-label and multi-class), and also the continuous outputs (i.e., regression setting). In the rest

of this section, we discuss about the necessary changes in the algorithm to adapt it for these cases.

122

In the multi-dimensional case, the output label ỹ is a vector generated as

E[ỹ|x] = A⊤
2 σ(A⊤

1 x+ b1) + b2,

where the output is either discrete (multi-label and multi-class) or continuous. Recall that the al-

gorithm includes three main parts: tensor decomposition, Fourier and ridge regression components.

Tensor decomposition: For the tensor decomposition part, we first form the empirical version

of T̃ = E [ỹ ⊗ S3(x)]; note that ⊗ is used here (instead of scalar product used earlier) since ỹ is not

a scalar anymore. By the properties of score function, this tensor has decomposition form

T̃ = E [ỹ ⊗ P3(x)] =
∑

j∈[k]
E
[
σ′′′(zj)

]
· (A2)j ⊗ (A1)j ⊗ (A1)j ⊗ (A1)j,

where (A2)j denotes the jth row of matrix A2. This is proved similar to Lemma 4.1. The tensor T̃

is a fourth order tensor, and we contract the first mode by multiplying it with a random vector θ

as T̃ (θ, I, I, I) leading to the same form in (4.16) as

T̃ (θ, I, I, I) =
∑

j∈[k]
λj · (A1)j ⊗ (A1)j ⊗ (A1)j ,

with λj changed to λj = E [σ′′′(zj)]·〈(A2)j , θ〉. Therefore, the same tensor decomposition guarantees

in the binary case also hold here when the empirical version of T̃ (θ, I, I, I) is the input to the

algorithm.

Fourier method: Similar to the scalar case, we can use one of the entries of output to estimate

the entries of b1. There is an additional difference in the continuous case. Suppose that the output

is generated as ỹ = f̃(x) + η where η is noise vector which is independent of input x. In this case,

the parameter ζ̃f̃ corresponding to lth entry of output ỹl is changed to ζ̃f̃ :=
∫
Rd f̃(x)2l dx+

∫
R
η2l dt.

Ridge regression: The ridge regression method and analysis can be immediately generalized to

non-scalar output by applying the method independently to different entries of output vector to

recover different columns of matrix A2 and different entries of vector b2.

123

4.7.3 An alternative for estimating low-dimensional parameters

Once we have an estimate of the first layer weights A1, we can greedily (i.e., incrementally) add

neurons with the weight vectors (A1)j for j ∈ [k], and choose the bias b1(j) through grid search,

and learn its contribution a2(j) for its final output. This is on the lines of the method proposed

in Barron [35], with one crucial difference that in our case, the first layer weights A1 are already

estimated by the tensor method. Barron [35] proposes optimizing for each weight vector (A1)j in

d-dimensional space, whose computational complexity can scale exponentially in d in the worst

case. But, in our setup here, since we have already estimated the high-dimensional parameters

(i.e., the columns of A1), we only need to estimate a few low dimensional parameters. For the

new hidden unit indexed by j, these parameters include the bias from input layer to the neuron

(i.e., b1(j)), and the weight from the neuron to the output (i.e., a2(j)). This makes the approach

computationally tractable, and we can even use brute-force or exhaustive search to find the best

parameters on a finite set and get guarantees akin to [35].

4.8 Proof Sketch

In this section, we provide key ideas for proving the main results in Theorems 4.3 and 4.4.

4.8.1 Estimation bound

The estimation bound is proposed in Theorem 4.3, and the complete proof is provided in Ap-

pendix D.2. Recall that NN-LIFT algorithm includes a tensor decomposition part for estimating

A1, a Fourier technique for estimating b1, and a linear regression for estimating a2, b2. The applica-

tion of linear regression in the last layer is immediately clear. In this section, we propose two main

lemmas which clarify why the other methods are useful for estimating the unknown parameters

A1, b1 in the realizable setting, where the label ỹ is generated by the neural network with the given

architecture.

124

In the following lemma, we show how the cross-moment between label and score function as E[ỹ ·

S3(x)] leads to a tensor decomposition form for estimating weight matrix A1.

Lemma 4.1. For the two-layer neural network specified in (4.4), we have

E [ỹ · P3(x)] =
∑

j∈[k]
λj · (A1)j ⊗ (A1)j ⊗ (A1)j , (4.16)

where (A1)j ∈ R
d denotes the j-th column of A1, and

λj = E
[
σ′′′(zj)

]
· a2(j), (4.17)

for vector z := A⊤
1 x + b1 as the input to the nonlinear operator σ(·).

This is proved by the main property of score functions as yielding differential operators, where

for label-function f(x) := E[y|x], we have E[y · S3(x)] = E[∇(3)
x f(x)] [102]; see Section D.2.1 for a

complete proof of the lemma. This lemma shows that by decomposing the cross-moment tensor

E[ỹ · S3(x)], we can recover the columns of A1.

We also exploit the phase of complex number v to estimate the bias vector b1; see Procedure 7.

The following lemma clarifies this. The perturbation analysis is provided in the appendix.

Lemma 4.6. Let

ṽ :=
1

n

∑

i∈[n]

ỹi
p(xi)

e−j〈ωi,xi〉. (4.18)

Notice this is a realizable of v in Procedure 7 where the output corresponds to a neural network ỹ.

If ωi’s are uniformly i.i.d. drawn from set Ωl, then ṽ has mean (which is computed over x, ỹ and

ω)

E[ṽ] =
1

|Ωl|
Σ

(
1

2

)
a2(l)ejπb1(l), (4.19)

where |Ωl| denotes the surface area of d− 1 dimensional manifold Ωl, and Σ(·) denotes the Fourier

transform of σ(·).

125

This lemma is proved in Appendix D.2.2.

4.8.2 Approximation bound

We exploit the approximation bound argued in Barron [35] provided in Theorem 4.4. We first dis-

cuss his main result arguing an approximation bound O(r2C2
f/k) for a function f(x) with bounded

parameter Cf ; see (4.10) for the definition of Cf . Note that this corresponds to the first term in

the approximation error proposed in Theorem 4.4. For this result, Barron [35] does not consider

any bound on the parameters of first layer A1 and b1. He then provides a refinement of this result

where he also bounds the parameters of neural network as we also do in (4.11). This leads to

the additional term involving δτ in the approximation error as seen in Theorem 4.4. Note that

bounding the parameters of neural network is also useful in learning these parameters with com-

putationally efficient algorithms since it limits the searching space for training these parameters.

We now provide the main ideas of proving these bounds as follows.

4.8.2.1 No bounds on the parameters of the neural network

We first provide the proof outline when there is no additional constraints on the parameters of

neural network; see set G defined in (4.21), and compare it with the form we use in (4.11) where

there are additional bounds. In this case, Barron [35] argues approximation bound O(r2C2
f/k)

which is proved based on two main results. The first result says that if a function f is in the closure

of the convex hull of a set G in a Hilbert space, then for every k ≥ 1, there is an fk as the convex

combination of k points in G such that

E[|f − fk|2] ≤ c′

k
, (4.20)

for any constant c′ satisfying some lower bound related to the properties of set G and function f ;

see Lemma 1 in Barron [35] for the precise statement and the proof of this result.

126

The second part of the proof is to argue that arbitrary function f ∈ Γ (where Γ denotes the set of

functions with bounded Cf) is in the closure of the convex hull of sigmoidal functions

G :=
{
γσ
(
〈α, x〉 + β

)
: α ∈ R

d, β ∈ R, |γ| ≤ 2C
}
. (4.21)

Barron [35] proves this result by arguing the following chain of inclusions as

Γ ⊂ clGcos ⊂ clGstep ⊂ clG,

where clG denotes the closure of set G, and sets Gcos and Gstep respectively denote set of some

sinusoidal and step functions. See Theorem 2 in Barron [35] for the precise statement and the proof

of this result.

Random frequency draws from Fourier magnitude distribution: Recall from Section 4.6

that the columns of weight matrix A1 are the normalized version of random frequencies drawn from

Fourier magnitude distribution ‖ω‖·|F (ω)|; see Equation (4.12). This connection is along the proof

of relation Γ ⊂ clGcos that we recap here; see proof of Lemma 2 in Barron [35] for more details.

By expanding the Fourier transform as magnitude and phase parts F (ω) = ejθ(ω)|F (ω)|, we have

f(x) := f(x)− f(0) =

∫
g(x, ω)Λ(dω), (4.22)

where

Λ(ω) := ‖ω‖ · |F (ω)|/Cf (4.23)

is the normalized Fourier magnitude distribution (as a probability distribution) weighted by the

norm of frequency vector, and

g(x, ω) :=
Cf
‖ω‖ (cos(〈ω, x〉 + θ(ω))− cos(θ(ω))) .

127

The integral in (4.22) is an infinite convex combination of functions in the class

Gcos :=

{
γ

‖ω‖ (cos(〈ω, x〉+ β)− cos(β)) : ω 6= 0, |γ| ≤ C, β ∈ R

}
.

Now if ω1, ω2, . . . , ωk is a random sample of k points independently drawn from Fourier magnitude

distribution Λ, then by Fubini’s Theorem, we have

E

∫

Br


f(x)− 1

k

∑

j∈[k]
g(x, ωj)




2

µ(dx) ≤ C2

k
,

where µ(·) is the probability measure for x. This shows function f is in the convex hull of Gcos.

Note that the bound C2

k complies the bound in (4.20).

4.8.2.2 Bounding the parameters of the neural network

Barron [35] then imposes additional bounds on the weights of first layer, considering the following

class of sigmoidal functions as

Gτ :=
{
γσ
(
τ(〈α, x〉 + β)

)
: ‖α‖ ≤ 1, |β| ≤ 1, |γ| ≤ 2C

}
. (4.24)

Note that the approximation proposed in (4.11) is a convex combination of k points in (4.24) with

τ = 1. Barron [35] concludes Theorem 4.4 by the following lemma.

Lemma 4.2 (Lemma 5 in Barron [35]). If g is a function on [−1, 1] with derivative bounded8 by a

constant C, then for every τ > 0, we have

inf
gτ∈clGτ

sup
|z|≤τ

|g(z) − gτ (z)| ≤ 2Cδτ .

Finally Theorem 4.4 is proved by applying triangle inequality to bounds argued in the above two

cases.

8Note that the condition on having bounded derivative does not rule out cases such as step function as the
sigmoidal function. This is because similar to the analysis for the main case (no bounds on the weights), we first
argue that function f is in the closure of functions in Gcos which are univariate functions with bounded derivative.

128

Chapter 5

Identifiability of Overcomplete Topic

Models: Uniqueness of Tensor Tucker

Decomposition

Overcomplete latent representations have been very popular for unsupervised feature learning in

recent years. In this chapter, we specify which overcomplete models can be identified given ob-

servable moments of a certain order. We consider probabilistic admixture or topic models in the

overcomplete regime, where the number of latent topics can greatly exceed the size of the observed

word vocabulary. While general overcomplete topic models are not identifiable, we establish generic

identifiability under a constraint, referred to as topic persistence. Our sufficient conditions for iden-

tifiability involve a novel set of “higher order” expansion conditions on the topic-word matrix or the

population structure of the model. This set of higher-order expansion conditions allows for over-

complete models, and require the existence of a perfect matching from latent topics to higher order

observed words. We establish that random structured topic models are identifiable w.h.p. in the

overcomplete regime. Our identifiability results allows for general (non-degenerate) distributions

for modeling the topic proportions, and thus, we can handle arbitrarily correlated topics in our

framework. Our identifiability results imply uniqueness of a class of tensor decompositions with

129

structured sparsity which is contained in the class of Tucker decompositions, but is more general

than the Candecomp/Parafac (CP) decomposition.

The performance of many machine learning methods is hugely dependent on the choice of data

representations or features. Overcomplete representations, where the number of features can be

greater than the dimensionality of the input data, have been extensively employed, and are ar-

guably critical in a number of applications such as speech and computer vision [40]. Overcomplete

representations are known to be more robust to noise, and can provide greater flexibility in mod-

eling [119]. Unsupervised estimation of overcomplete representations has been hugely popular due

to the availability of large-scale unlabeled samples in many applications.

A probabilistic framework for incorporating features posits latent or hidden variables that can pro-

vide a good explanation to the observed data. Overcomplete probabilistic models can incorporate

a much larger number of latent variables compared to the observed dimensionality. In this chapter,

we characterize the conditions under which overcomplete latent variable models can be identified

from their observed moments.

For any parametric statistical model, identifiability is a fundamental question of whether the model

parameters can be uniquely recovered given the observed statistics. Identifiability is crucial in a

number of applications where the latent variables are the quantities of interest, e.g. inferring dis-

eases (latent variables) through symptoms (observations), inferring communities (latent variables)

via the interactions among the actors in a social network (observations), and so on. Moreover,

identifiability can be relevant even in predictive settings, where feature learning is employed for

some higher level task such as classification. For instance, non-identifiability can lead to the pres-

ence of non-isolated local optima for optimization-based learning methods, and this can affect their

convergence properties, e.g., see Uschmajew [154].

In this chapter, we characterize identifiability for a popular class of latent variable models, known as

the admixture or topic models [43, 134]. These are hierarchical mixture models, which incorporate

the presence of multiple latent states (i.e. topics) in each document consisting of a tuple of observed

variables (i.e. words). Previous works have established that the model parameters can be estimated

130

efficiently using low order observed moments (second and third order) under some non-degeneracy

assumptions, e.g. Anandkumar et al. [15], Anandkumar et al. [9], Arora et al. [30]. However, these

non-degeneracy conditions imply that the model is undercomplete, i.e., the latent dimensionality

(number of topics) cannot exceed the observed dimensionality (word vocabulary size). In this work,

we remove this restriction and consider overcomplete topic models, where the number of topics can

far exceed the word vocabulary size.

It is perhaps not surprising that general topic models are not identifiable in the overcomplete

regime. To this end, we introduce an additional constraint on the model, referred to as topic

persistence, which roughly means that topics (i.e. latent states) persist locally in a sequence of

observed words (but not necessarily globally). This “locality” effect among the observed words

is not present in the usual “bag-of-words” or exchangeable topic model. Such local dependencies

among observations abound in applications such as text, images and speech, and can lead to a more

faithful representation. In addition, we establish that the presence of topic persistence is central

towards obtaining model identifiability in the overcomplete regime, and we provide an in-depth

analysis of this phenomenon in this work.

5.1 Summary of Results

In this work, we provide conditions for generic 1 model identifiability of overcomplete topic models

given observable moments of a certain order (i.e., having a certain number of words in each doc-

ument). We introduce the notion of topic persistence, and analyze its effect on identifiability. We

establish identifiability in the presence of a novel combinatorial object, referred to as perfect n-gram

matching, in the bipartite graph from topics to words. Finally, we prove that random structured

topic models satisfy these criteria, and are thus identifiable in the overcomplete regime.

1A model is generically identifiable, if all the parameters in the parameter space are identifiable, almost surely.
Refer to Definition 5.1 for more discussion.

131

h

y1 y2 y2r

x1 xn xn+1 x2n x(2r−1)n+1 x2rn

AAAAAA

Figure 5.1: Hierarchical structure of the n-persistent topic model is illustrated for 2rn number of
words (views) where r ≥ 1 is an integer. A single topic yj, j ∈ [2r], is chosen for each sequence of
n views {x(j−1)n+1, . . . , x(j−1)n+n}. Matrix A is the population structure or topic-word matrix.

5.1.1 Persistent Topic Model

We first introduce the n-persistent topic model, where the parameter n determines the persistence

level of a common topic in a sequence of n successive words. For instance, in Figure 5.1, the sequence

of successive words x1, . . . , xn share a common topic y1, and similarly, the words xn+1, . . . , x2n share

topic y2, and so on. The n-persistent model reduces to the popular “bag-of-words” model, when

n = 1, and to the single topic model (i.e. only one topic in each document) when n → ∞.

Intuitively, topic persistence aids identifiability since we have multiple views of the common hidden

topic generating a sequence of successive words. We establish that the bag-of-words model (with

n = 1) is too non-informative about the topics in the overcomplete regime, and is therefore, not

identifiable. On the other hand, n-persistent overcomplete topic models with n ≥ 2 can become

identifiable, and we establish a set of transparent conditions for identifiability.

5.1.2 Deterministic Conditions for Identifiability

Our sufficient conditions for identifiability are in the form of expansion conditions from the latent

topic space to the observed word space. In the overcomplete regime, there are more topics than

words in the vocabulary, and thus it is impossible to have expansion on the bipartite graph from

topics to words, i.e., the graph encoding the sparsity pattern of the topic-word matrix. Instead,

we impose an expansion constraint from topics to “higher order” words, which allows us to incor-

porate overcomplete models. We establish that this condition translates to the presence of a novel

combinatorial object, referred to as the perfect n-gram matching, on the topic-word bipartite graph.

Intuitively, the perfect n-gram matching condition implies “diversity” among the higher-order word

132

supports for different topics which leads to identifiability. In addition, we present trade-offs among

the following quantities: number of topics, size of the word vocabulary, the topic persistence level,

the order of the observed moments at hand, the minimum and maximum degrees of any topic in

the topic-word bipartite graph, and the Kruskal rank [111] of the topic-word matrix, under which

identifiability holds. To the best of our knowledge, this is the first work to provide conditions for

characterizing identifiability of overcomplete topic models with structured sparsity.

As a corollary of our result, we also show that the expansion condition can be removed if the

topic-word matrix is full column rank (and therefore undercomplete) and the model is persistent

with persistence level at least two.

5.1.3 Identifiability of Random Structured Topic Models

We explicitly characterize the regime of identifiability for the random setting, where each topic i

is supported on a random set of di words. Therefore, the bipartite graph from topics to words

is a random graph with prescribed degrees for topics. For this random model with q topics, p-

dimensional word vocabulary, and topic persistence level n, when q = O(pn) and Θ(log p) ≤ di ≤

Θ(p1/n), for all topics i, the topic-word matrix is identifiable from 2nth order observed moments

with high probability. Intuitively, the upper bound on the degrees di is needed to limit the overlap

of word supports among different topics in the overcomplete regime: as the number of topics q

increases (i.e., n increases in the above degree bound), the degree needs to be correspondingly

smaller to ensure identifiability, and we make this dependence explicit. Intuitively, as the extent of

overcompleteness increases, we need sparser connections from topics to words to ensure sufficient

diversity in the word supports among different topics. The lower bound on the degrees is required

so that there are enough edges in the topic-word bipartite graph so that various topics can be

distinguished from one another. Furthermore, we establish that the size condition q = O(pn) for

identifiability is tight.

As in the deterministic case, we also argue the result in the undercomplete setting and show that

if q ≤ O(p) and di ≥ Ω(log p), then the topic-word matrix is identifiable from 2nth order observed

133

moment with high probability under the persistent model with persistence level n at least equal to

two. Here, the upper bound on the degree is relaxed and hence there is no sparsity constraints on

the topic-word matrix.

5.1.4 Implications on Uniqueness of Overcomplete Tucker and CP Decomposi-

tions

We establish that identifiability of an overcomplete topic model is equivalent to uniqueness of

decomposition of the observed moment tensor (of a certain order). Our identifiability results for

persistent topic models imply uniqueness of a structured class of tensor decompositions, which is

contained in the class of Tucker decompositions, but is more general than the candecomp/parafac

(CP) decomposition [108]. This sub-class of Tucker decompositions involves structured sparsity

and symmetry constraints on the core tensor, and sparsity constraints on the inverse factors of the

Tucker decomposition. The structural constraints on the Tucker tensor decomposition are related

to the topic model as follows: the sparsity and symmetry constraints on the core tensor are related

to the persistence property of the topic model, and the sparsity constraints on the inverse factors are

equivalent to the sparsity constraints on the topic-word matrix. For n-persistent topic model with

n = 1 (bag-of-words model), the tensor decomposition is a general Tucker decomposition, where the

core tensor is fully dense, while for n→∞ (single-topic model), the tensor decomposition reduces

to a CP decomposition, i.e. the core tensor is a diagonal tensor. For a finite persistence level n,

in between these two extremes, the core tensor satisfies certain sparsity and symmetry constraints,

which becomes crucial towards establishing identifiability in the overcomplete regime.

5.2 Overview of Techniques

We now provide a short overview of the techniques employed in this work.

Recap of Identifiability Conditions in Under-complete Setting (Expansion Conditions on Topic-

Word Matrix): Our approach is based on the recent results of Anandkumar et al. [9], where condi-

134

tions for identifiability of topic models are derived, given pairwise observed moments (specifically,

co-occurrence of word-pairs in documents). Consider a topic model with q topics and observed

word vocabulary of size p. Let A ∈ R
p×q denote the topic-word matrix. Expansion conditions are

imposed in Anandkumar et al. [9] on the topic-word bipartite graph which imply that (generically)

the sparsest vectors in the column span of A, denoted by Col(A), are the columns of A themselves.

Thus the topic-word matrix A is identifiable from pairwise moments under expansion constraints.

However, these expansion conditions constrain the model to be under-complete, i.e., the number of

topics q ≤ p, the size of the word vocabulary. Therefore, the techniques derived in Anandkumar

et al. [9] are not directly applicable here since we consider overcomplete models.

Identifiability in Overcomplete Setting and Why Topic-Persistence Helps: Pairwise moments are

thus not sufficient for identifiability of overcomplete models, and the question is whether higher

order moments can yield identifiability. We can view the higher order moments as pairwise moments

of another equivalent topic model, which enables us to apply the techniques of Anandkumar et al.

[9]. The key question is whether we have expansion in the equivalent topic model, which implies

identifiability. For a general topic model (without any topic persistence constraints), it can be

shown that for identifiability, we require expansion of the nth-order Kronecker product of the original

topic-word matrix A, denoted by A⊗n ∈ R
pn×qn , when given access to (2n)th-order moments, for

any integer n ≥ 1. In the overcomplete regime where q > p, A⊗n cannot expand, and therefore,

overcomplete models are not identifiable in general. On the other hand, we show that imposing

the constraint of topic persistence can lead to identifiability. For a n-persistent topic model, given

(2n)th-order moments, we establish that identifiability occurs when the nth-order Khatri-Rao product

of A, denoted by A⊙n ∈ R
pn×q, expands. Note that the Khatri-Rao product A⊙n is a sub-matrix of

the Kronecker product A⊗n, and the Khatri-Rao product A⊙n can expand as long as q ≤ pn. Thus,

the property of topic persistence is central towards achieving identifiability in the overcomplete

regime.

First-Order Approach for Identifiability of Overcomplete Models (Expansion of n-gram Topic-Word

Matrix): We refer to A⊙n ∈ R
pn×q as the n-gram topic-word matrix, and intuitively, it relates

topics to n-tuple words. Imposing the expansion conditions derived in Anandkumar et al. [9] on

135

A⊙n implies that (generically) the sparsest vectors in Col(A⊙n), are the columns of A⊙n themselves.

Thus, the topic-word matrix A is identifiable from (2n)th-order moments for a n-persistent topic

model. We refer to this as the “first-order” approach since we directly impose the expansion

conditions of Anandkumar et al. [9] on A⊙n, without exploiting the additional structure present in

A⊙n.

Why the First-Order Approach is not Enough: Note that A⊙n ∈ R
pn×q matrix relates topics to

n-tuples of words. Thus, the entries of A⊙n are highly correlated, even if the original topic-word

matrix A is assumed to be randomly generated. It is non-trivial to derive conditions on A, so that

A⊙n expands. Moreover, we establish that A⊙n fails to expand on “small” sets, as required in [9],

when the degrees are sufficiently different 2. Thus, the first-order approach is highly restrictive in

the overcomplete setting.

Incorporating Rank Criterion: Note that A⊙n is highly structured: the columns of A⊙n matrix

possess a tensor 3 rank of 1, when n > 1. This can be incorporated in our identifiability criteria as

follows: we provide conditions under which the sparsest vectors in Col(A⊙n), which also possess a

tensor rank of 1, are the columns of A⊙n themselves. This implies identifiability of a n-persistent

topic model, when given access to (2n)th-order moments. Note that when a small number of columns

of A⊙n are combined, the resulting vector cannot possess a tensor rank of 1, and thus, we can rule

out that such sparse combinations of columns using the rank criterion. The maximum such number

is at least the Kruskal rank 4 of A. Thus, sparse combinations of columns of A (up to the Kruskal

rank) can be ruled out using the rank criterion, and we require expansion on A⊙n only on large

sets of topics (of size larger than the Kruskal rank). This agrees with the intuition that when the

topic-word matrix A has a larger Kruskal rank, it should be easier to identify A, since the Kruskal

rank is related to the mutual incoherence 5 among the columns of A, see [76].

2For A⊙n to expand on a set of size s ≥ 2, it is necessary that s ·
(
dmin+n−1

n

)
≥ s +

(
dmax+n−1

n

)
, where dmin and

dmax are the minimum and maximum degrees, and n is the extent of overcompleteness: q = Θ(pn). When the model
is highly overcomplete (large n) and we require small set expansion (small s), the degrees need to be nearly the same.
Thus, it is desirable to impose expansion only on large sets, since it allows for more degree diversity.

3When any column of A⊙n ∈ R
pn×q (of length pn) is reshaped as a nth-order tensor T ∈ R

p×p×···×p, the tensor T
is rank 1.

4The Kruskal rank is the maximum number k such that every k-subset of columns of A are linearly independent.
Note that the Kruskal rank is equal to the rank of A, when A has full column rank. But this cannot happen in the
overcomplete setting.

5It is easy to show that krank(A) ≥ (maxi6=j |a⊤i aj |)−1, where ai, aj are any pair of columns of A. Thus, higher
incoherence leads to a larger kruskal rank.

136

Notion of Perfect n-gram Matching and Final Identifiability Conditions: Thus, we establish iden-

tifiability of overcomplete topic models subject to expansion conditions A⊙n on sets of size larger

than the Kruskal rank of the topic-word matrix A. However, it is desirable to impose transparent

and interpretable conditions directly on A for identifiability. We introduce the notion of perfect

n-gram matching on the topic-word bipartite graph, which ensures that each topic can be uniquely

matched to a n-tuple word. This combined with a lower bound on the Kruskal rank provides the

final set of deterministic conditions for identifiability of the overcomplete topic model. Intuitively,

we require that the columns of A be sparse, while still maintaining a large enough Kruskal rank;

in other words, the topics have to be sparse and have sufficiently diverse word supports. Thus, we

establish identifiability under a set of transparent conditions on the topic-word matrix A, consisting

of perfect n-gram matching condition and a lower bound on the Kruskal rank of A.

Analysis under Random-Structured Topic-Word Matrices: Finally, we establish that the derived

deterministic conditions are satisfied when the topic-word bipartite graph is randomly generated,

as long as the degrees satisfy certain lower and upper bounds. Intuitively, a lower bound on the

degrees of the topics is required to have degree concentration on various subsets so that expansion

can occur, while the upper bound is required so that the Kruskal rank of the topic-word matrix

is large enough compared to the sparsity level. Here, the main technical result is establishing the

presence of a perfect n-gram matching in a random bipartite graph with a wide range of degrees.

We present a greedy and a recursive mechanism for constructing such a n-gram matching for

overcomplete models, which can be relevant even in other settings. For instance, our results imply

the presence of a perfect matching when the edges of a bipartite graph are correlated in a structured

manner, as given by the Khatri-Rao product.

5.3 Related Works

We now summarize some recent related works in the area of identifiability and learning of latent

variable models.

137

5.3.0.1 Identifiability, Learning and Applications of Overcomplete Latent Represen-

tations

Many recent works employ unsupervised estimation of overcomplete features for higher level tasks

such classification, e.g. [57, 118, 71, 40], and record huge gains over other approaches in a number of

applications such as speech recognition and computer vision. However, theoretical understanding

regarding learnability or identifiability of overcomplete representations is far more limited.

Overcomplete latent representations have been analyzed in the context of the independent com-

ponents analysis (ICA), where the sources are assumed to be independent, and the mixing ma-

trix is unknown. In the overcomplete or under-determined regime of the ICA, there are more

sources than sensors. Identifiability and learning of the overcomplete ICA reduces to the problem

of finding an overcomplete candecomp/parafac (CP) tensor decomposition. The classical result

by Kruskal provides conditions for uniqueness of a CP decomposition [111, 112], with recent ex-

tensions to the notion of robust identifiability [42]. These results provide conditions for strict

identifiability of the model, and here, the dimensionality of the latent space is required to be of the

same order as the observed space dimensionality. In contrast, a number of recent works analyze

generic identifiability of overcomplete CP decomposition, which is weaker than strict identifiability,

e.g. [103, 116, 151, 68, 53, 45, 54]. These works assume that the factors (i.e. the components) of

the CP decomposition are generically drawn and provide conditions for uniqueness. They allow for

the latent dimensionality to be much larger (polynomially larger) than the observed dimensionality.

These results on the uniqueness of CP decompositions also lead to identifiability of other latent

variable models, such as latent tree models, e.g. [7, 6], and the single-topic model, or more generally

latent Dirichlet allocation (LDA).

In contrast to the above works dealing with the CP tensor decomposition, we require uniqueness for

a more general class of tensor decompositions, in order to establish identifiability of topic models

with arbitrarily correlated topics. We establish that our class of tensor decomposition is contained

in the class of Tucker decompositions which is more general than CP decomposition. Moreover, we

explicitly characterize the effect of the sparsity pattern of the factors (i.e., the topic-word matrix)

on model identifiability, while all the previous works based on generic identifiability assume fully

138

dense factors (since sparse factors are not generic). For a general overview of tensor decompositions,

see [108, 114].

5.3.0.2 Identifiability and Learning of Undercomplete/Over-determined latent Rep-

resentations

Much of the theoretical results on identifiability and learning of the latent variable models are

limited to non-singular models, which implies that the latent space dimensionality is at most the

observed dimensionality. We outline some of the recent works below.

The works of [10, 8, 15] provide an efficient moment-based approach for learning topic models,

under constraints on the distribution of the topic proportions, e.g. the single topic model, and

more generally latent Dirichlet allocation (LDA). In addition, the approach can handle a variety of

latent variable models such as Gaussian mixtures, hidden Markov models (HMM) and community

models [13]. The high-level idea is to reduce the problem of learning of the latent variable model to

finding a CP decomposition of the (suitably adjusted) observed moment tensor. Various approaches

can then be employed to find the CP decomposition. In [15], a tensor power method approach is

analyzed and is shown to be an efficient guaranteed recovery method in the non-degenerate (i.e.

undercomplete) setting. Previously, simultaneous diagonalization techniques have been employed

for solving the CP decomposition, e.g. [10, 129, 52]. However, these techniques fail when the

model is overcomplete, as considered here. We note that some recent techniques, e.g. [68], can be

employed instead, albeit at a cost of higher computational complexity for overcomplete CP tensor

decomposition. However, it is not clear how the sparsity constraints affect the guarantees of such

methods. Moreover, these approaches cannot handle general topic models, where the distribution of

the topic proportions is not limited to these classes (i.e. either single topic or Dirichlet distribution),

and we require tensor decompositions which are more general than the CP decomposition.

There are many other works which consider learning mixture models when multiple views are

available. See [10] for a detailed description of these works. Recently, [135] consider learning

discrete mixtures given a large number of “views”, and they refer to the number of views as the

139

sampling aperture. They establish improved recovery results (in terms of ℓ1 bounds) when sufficient

number of views are available (2k − 1 views for a k-component mixture). However, their results

are limited to discrete mixtures or single-topic models, while our setting can handle more general

topic models. Moreover, our approach is different since we incorporate sparsity constraints in the

topic-word distribution. Another series of recent works by [28, 30] employ approaches based on

non-negative matrix factorization (NMF) to recover the topic-word matrix. These works allow

models with arbitrarily correlated topics, as considered here. They establish guaranteed learning

when every topic has an anchor word, i.e. the word is uniquely generated from that topic, and does

not occur under any other topic. Note that the anchor-word assumption cannot be satisfied in the

overcomplete setting.

Our work is closely related to the work of [9] which considers identifiability and learning of topic

models under expansion conditions on the topic-word matrix. The work of [149] considers the

problem of dictionary learning, which is closely related to the setting of [9], but in addition assumes

that the coefficient matrix is random. However, these works in [9, 149] can handle only the under-

complete setting, where the number of topics is less than the dimensionality of the word vocabulary

(or the number of dictionary atoms is less than the number of observations in [149]). We extend

these results to the overcomplete setting by proposing novel higher order expansion conditions on

the topic-word matrix, and also incorporate additional rank constraints present in higher order

moments.

5.3.0.3 Dictionary Learning/Sparse Coding

Overcomplete representations have been very popular in the context of dictionary learning or sparse

coding. Here, the task is to jointly learn a dictionary as well as a sparse selection of the dictionary

atoms to fit the observed data. There have been Bayesian as well as frequentist approaches for

dictionary learning [119, 110, 136]. However, the heuristics employed in these works [119, 110, 136]

have no performance guarantees. The work of [149] considers learning (undercomplete) dictionar-

ies and provide guaranteed learning under the assumption that the coefficient matrix is random

(distributed as Bernoulli-Gaussian variables). Recent works in [124, 122] provide generalization

140

bounds for predictive sparse coding, where the goal of the learned representation is to obtain good

performance on some predictive task. This differs from our framework since we do not consider

predictive tasks here, but the task of recovering the underlying latent representation. [89] consider

the problem of identifiability of sparse coding and establish that when the dictionary succeeds in

reconstructing a certain set of sparse vectors, then there exists a unique sparse coding, up to per-

mutation and scaling. However, our setting here is different, since we do not assume that a sparse

set of topics occur in each document.

5.4 Model

We first introduce some notations, and then we provide the persistent topic model.

5.4.1 Notation

The set {1, 2, . . . , n} is denoted by [n] := {1, 2, . . . , n}. Given a set X = {1, . . . , p}, set X(n) denotes

all ordered n-tuples generated from X. The cardinality of a set S is denoted by |S|. For any vector

u (or matrix U), the support is denoted by Supp(u), and the ℓ0 norm is denoted by ‖u‖0, which

corresponds to the number of non-zero entries of u, i.e., ‖u‖0 := |Supp(u)|. For a vector u ∈ R
q,

Diag(u) ∈ R
q×q is the diagonal matrix with vector u on its diagonal. The column space of a matrix

A is denoted by Col(A). Vector ei ∈ R
q is the i-th basis vector, with the i-th entry equal to 1 and

all the others equal to zero. For A ∈ R
p×q and B ∈ R

m×n, the Kronecker product6 A⊗B ∈ R
pm×qn

is defined as [78]

A⊗B =




a11B a12B · · · a1qB

a21B a22B · · · a2qB

...
...

. . .
...

ap1B ap2B · · · apqB



,

6Note that in this chapter we use the notation ⊗ to denote the Kronecker product, and use notation ◦ to denote
the outer or tensor product; see (5.15) for the definition. This is different from previous chapters that we use ⊗ to
denote the outer product.

141

and for A = [a1|a2| · · · |ar] ∈ R
p×r and B = [b1|b2| · · · |br] ∈ R

m×r, the Khatri-Rao product A⊙B ∈

R
pm×r is defined as

A⊙B = [a1 ⊗ b1|a2 ⊗ b2| · · · |ar ⊗ br] .

5.4.2 Persistent Topic Model

In this section, the n-persistent topic model is introduced and this imposes an additional constraint,

known as topic persistence on the popular admixture model[43, 134, 132]. The n-persistent topic

model reduces to the bag-of-words admixture model when n = 1.

An admixture model specifies a q-dimensional vector of topic proportions h ∈ ∆q−1 := {u ∈ R
q :

ui ≥ 0,
∑q

i=1 ui = 1} which generates the observed variables xl ∈ R
p through vectors a1, . . . , aq ∈

R
p. This collection of vectors ai, i ∈ [q], is referred to as the population structure or the topic-word

matrix [132]. For instance, ai is the conditional distribution of words given topic i. The latent

variable h is a q dimensional random vector h := [h1, . . . , hq]
⊤ known as proportion vector. A prior

distribution P (h) over the probability simplex ∆q−1 characterizes the prior joint distribution over

the latent variables hi, i ∈ [q]. In the topic modeling, this is the prior distribution over the q topics.

The n-persistent topic model has a three-level multi-view hierarchy in Figure 5.1. 2rn number of

words (views) are shown in the model for some integer r ≥ 1. In this model, a common hidden topic

is persistent for a sequence of n words {x(j−1)n+1, . . . , x(j−1)n+n}, j ∈ [2r]. Note that the random

observed variables (words) are exchangeable within groups of size n, where n is the persistence

level, but are not globally exchangeable.

We now describe a linear representation of the n-persistent topic model, on lines of [15], but with

extensions to incorporate persistence. Each random variable yj, j ∈ [2r], is a discrete valued random

variable taking one of the q possibilities {1, . . . , q}, i.e., yj ∈ [q] for j ∈ [2r]. In the n-persistent

model, a single common topic is chosen for a sequence of n words {x(j−1)n+1, . . . , x(j−1)n+n}, j ∈

[2r], i.e., the topic is persistent for n successive views. For notational purposes, we equivalently

assume that variables yj, j ∈ [2r], are encoded by the basis vectors ei, i ∈ [q]. Thus, the variable

142

yj, j ∈ [2r], is

yj = ei ∈ R
q ⇐⇒ the topic of the j-th group of words is i.

Given proportion vector h, topics yj, j ∈ [2r], are independently drawn according to the conditional

expectation

E
[
yj|h

]
= h, j ∈ [2r],

or equivalently Pr
[
yj = ei|h

]
= hi, j ∈ [2r], i ∈ [q].

Finally, at the bottom layer, each observed variable xl for l ∈ [2rn], is a discrete-valued p-

dimensional random variable, where p is the size of word vocabulary. Again, we assume that

variables xl, are encoded by the basis vectors ek, k ∈ [p], such as

xl = ek ∈ R
p ⇐⇒ the l-th word in the document is k.

Given the corresponding topic yj, j ∈ [2r], words xl, l ∈ [2rn], are independently drawn according

to the conditional expectation

E
[
x(j−1)n+k|yj = ei

]
= ai, i ∈ [q], j ∈ [2r], k ∈ [n], (5.1)

where vectors ai ∈ R
p, i ∈ [q], are the conditional probability distribution vectors. The matrix

A = [a1|a2| · · · |aq] ∈ R
p×q collecting these vectors is the population structure or topic-word matrix.

The (2rn)-th order moment of observed variables xl ∈ R
p, l ∈ [2rn], for some integer r ≥ 1, is

defined as (in the matrix form) 7

M2rn(x) := E

[
(x1 ⊗ x2 ⊗ · · · ⊗ xrn)(xrn+1 ⊗ xrn+2 ⊗ · · · ⊗ x2rn)⊤

]
∈ R

prn×prn . (5.2)

We now briefly remind why this matrix corresponds to the (2rn)-th order moment. Let vectors

i := (i1, . . . , irn) and j := (j1, . . . , jrn) index the rows and columns of moment matrix M2rn(x).

7Vector x is the vector generated by concatenating all vectors xl, l ∈ [2rn].

143

Then, from the above definition, the (i, j)-th entry of M2rn(x) is equal to

E [(x1)i1 · · · (xrn)irn(xrn+1)j1 · · · (x2rn)jrn] ,

which specifies the corresponding (2rn)-th observed moment.

For the n-persistent topic model with 2rn number of observations (words) xl, l ∈ [2rn], the corre-

sponding moment is denoted by M
(n)
2rn(x). Note that to estimate the (2rn)th moment, we require

a minimum of 2rn words in each document. We can select the first 2rn words in each document,

and average over the different documents to obtain a consistent estimate of the moment. In this

work, we consider the problem of identifiability when exact moments are available.

The moment characterization of the n-persistent topic model is provided in Lemma 2 in Section

5.6.1. Given M
(n)
2rn(x), what are the sufficient conditions under which the population structure A is

identifiable? This is answered in Section 5.5.

Remark 16. Note that our results are valid for the more general linear model xl = Ayj (more

precisely, x(j−1)n+k = Ayj, j ∈ [2r], k ∈ [n]), i.e., each column of matrix A does not need to be a

valid probability distribution. Furthermore, the observed random variables xl, can be continuous

while the hidden ones yj are assumed to be discrete.

5.5 Sufficient Conditions for Generic Identifiability

In this section, the identifiability result for the n-persistent topic model with access to (2n)-th order

observed moment is provided. First, sufficient deterministic conditions on the population structure

A are provided for identifiability in Theorem 5.1. Next, the deterministic analysis is specialized to

a random structured model in Theorem 5.2.

We now make the notion of identifiability precise. As defined in literature, (strict) identifiability

means that the population structure A can be uniquely recovered up to permutation and scaling

for all A ∈ R
p×q. Instead, we consider a more relaxed notion of identifiability, known as generic

identifiability.

144

Definition 5.1 (Generic identifiability). We refer to a matrix A ∈ R
p×q as generic, with a fixed

sparsity pattern when the nonzero entries of A are drawn from a distribution which is absolutely

continuous with respect to Lebesgue measure 8. For a given sparsity pattern, the class of population

structure matrices is said to be generically identifiable [6], if all the non-identifiable matrices form

a set of Lebesgue measure zero.

The (2r)-th order moment of hidden variables h ∈ R
q, denoted by M2r(h) ∈ R

qr×qr , is defined as

M2r(h) := E

[(r terms︷ ︸︸ ︷
h⊗ · · · ⊗ h

)(r terms︷ ︸︸ ︷
h⊗ · · · ⊗ h

)⊤]
∈ R

qr×qr . (5.3)

We now provide a set of sufficient conditions for generic identifiability of structured topic models

given (2rn)-th order observed moment. We first start with a natural assumption on the hidden

variables.

Condition 1 (Non-degeneracy). The (2r)-th order moment of hidden variables h ∈ R
q, defined in

equation (5.3), is full rank (non-degeneracy of hidden nodes).

Note that there is no hope of distinguishing distinct hidden nodes without this non-degeneracy

assumption. We do not impose any other assumption on hidden variables and can incorporate

arbitrarily correlated topics.

Furthermore, we can only hope to identify the population structureA up to scaling and permutation.

Therefore, we can identify A up to a canonical form defined as:

Definition 5.2 (Canonical form). Population structure A is said to be in canonical form if all of

its columns have unit norm.

8As an equivalent definition, if the non-zero entries of an arbitrary sparse matrix are independently perturbed
with noise drawn from a continuous distribution to generate A, then A is called generic.

145

5.5.1 Deterministic Conditions for Generic Identifiability

In this section, we consider a fixed sparsity pattern on the population structure A and establish

generic identifiability when non-zero entries of A are drawn from some continuous distribution.

Before providing the main result, a generalized notion of (perfect) matching for bipartite graphs

is defined. We subsequently impose these conditions on the bipartite graph from topics to words

which encodes the sparsity pattern of population structure A.

5.5.1.1 Generalized Matching for Bipartite Graphs

A bipartite graph with two disjoint vertex sets Y and X and an edge set E between them is

denoted by G(Y,X;E). Given the bi-adjacency matrix A, the notation G(Y,X;A) is also used

to denote a bipartite graph. Here, the rows and columns of matrix A ∈ R
|X|×|Y | are respectively

indexed by X and Y vertex sets. For any subset S ⊆ Y , the set of neighbors of vertices in S

with respect to A is defined as NA(S) := {i ∈ X : Aij 6= 0 for some j ∈ S}, or equivalently,

NE(S) := {i ∈ X : (j, i) ∈ E for some j ∈ S} with respect to edge set E.

Here, we define a generalized notion of matching for a bipartite graph and refer to it as n-gram

matching.

Definition 5.3 ((Perfect) n-gram matching). A n-gram matching M for a bipartite graph G(Y,X;E)

is a subset of edges M ⊆ E which satisfies the following conditions. First, for any j ∈ Y , we

have |NM (j)| ≤ n. Second, for any j1, j2 ∈ Y, j1 6= j2, we have min{|NM (j1)|, |NM (j2)|} >

|NM (j1) ∩NM (j2)|.

A perfect n-gram matching or Y -saturating n-gram matching for the bipartite graph G(Y,X;E) is

a n-gram matching M in which each vertex in Y is exactly connected to n edges in M .

In words, in a n-gram matching M , each vertex j ∈ Y is at most connected to n edges in M and

for any pair of vertices in Y (j1, j2 ∈ Y, j1 6= j2), there exists at least one non-common neighbor in

set X for each of them (j1 and j2).

146

Y

X

Figure 5.2: A bipartite graph G(Y,X;E) with |X| = 4 and |Y | = 6 where the edge set E itself is a
perfect 2-gram matching.

As an example, a bipartite graph G(Y,X;E) with |X| = 4 and |Y | = 6 is shown in Figure 5.2 for

which the edge set E itself is a perfect 2-gram matching.

We also define the following definition of a n-gram matrix.

Definition 5.4 (n-gram Matrix). Given a matrix A ∈ R
p×q, its n-gram matrix A⊙n ∈ R

pn×q is

defined as the matrix whose (i, j)-th entry is given by, for i := (i1, i2, . . . , in) ∈ [p]n and j ∈ [q],

A⊙n(i, j) := Ai1,jAi2,j · · ·Ain,j , or A⊙n :=

n times︷ ︸︸ ︷
A⊙ · · · ⊙A .

That is, A⊙n is the column-wise nth order Kronecker product of n copies of A, and is known as the

Khatri-Rao product [78]. Given bipartite graph G(Y,X;A), the notation G(Y,X(n);A⊙n) is also

used to denote the bipartite graph corresponding to bi-adjacency matrix A⊙n. Here X(n) denotes

all ordered n-tuples generated from elements of set X which indexes the rows of A⊙n.

The above two definitions might seem unrelated at the first glance, but the following lemma con-

nects them where an interesting property is stated relating the existence of perfect matching in

G(Y,X(n);A⊙n) to the existence of perfect n-gram matching in G(Y,X;A). This property is also

the original motivation behind defining such notion of generalized matching.

Lemma 1. If G(Y,X;A) has a perfect n-gram matching, then G(Y,X(n);A⊙n) has a perfect match-

ing. In the other direction, if G(Y,X(n);A⊙n) has a perfect matching M⊙n, then G(Y,X;A)

has a perfect n-gram matching under the following condition on M⊙n. All the matching edges

(j, (i1, . . . , in)) ∈M⊙n should satisfy i1 6= i2 6= · · · 6= in for all j ∈ Y . In words, the matching edges

should be connected to nodes in X(n), which are indexed by tuples of distinct indices.

See Appendix E.1.4 for the proof.

147

We also provide more discussions and remarks on the n-gram matching as follows.

Remark 17 (Relationship to other matchings). The relationship of n-gram matching to other types

of matchings is discussed below.

• Regular matching: For special case n = 1, the (perfect) n-gram matching reduces to the usual

(perfect) matching for bipartite graphs.

• b-matching: For a bipartite graph G(Y,X;E), a b-matching for vertices in Y is a subset of

edges Mb ⊆ E, where each vertex in Y is connected to b edges. Comparing with the proposed

perfect (Y -saturating) b-gram matching, b-matching does not enforce that the set of neighbors

be different.

Remark 18 (Necessary size bound). Consider a bipartite graph G(Y,X;E) with |Y | = q and |X| = p

which has a perfect n-gram matching. Note that there are
(p
n

)
n-combinations on X side and each

combination can at most have one neighbor (a node in Y which is connected to all nodes in the

combination) through the matching, and therefore we necessarily have q ≤
(p
n

)
.

Finally, note that the existence of perfect n-gram matching results in the existence of perfect (n+1)-

gram matching 9, but the reverse is not true. For example, the bipartite graph G(Y,X;E) with

|X| = 4 and |Y | =
(4
2

)
= 6 in Figure 5.2, has a perfect 2-gram matching, but not a perfect (1-gram)

matching (since 6 > 4).

5.5.1.2 Identifiability Conditions Based on Existence of Perfect n-gram Matching in

Topic-word Graph

Now, we are ready to propose the identifiability conditions and result.

Condition 2 (Perfect n-gram matching on A). The bipartite graph G(Vh, Vo;A) between hidden

and observed variables, has a perfect n-gram matching 10.

9Note that the degree of each node (on matching side Y) in the original bipartite graph should be at least n+ 1.
10Parameter n in all of the conditions refer to the same parameter n as the persistence level of the model. Note

that we are considering the n-persistent topic model proposed in Section 5.4.

148

The above condition implies that the sparsity pattern of matrix A is appropriately scattered in

the mapping from hidden to observed variables to be identifiable. Intuitively, it means that every

hidden node can be distinguished from another hidden node by its unique set of neighbors under

the corresponding n-gram matching.

Furthermore, condition 2 is the key to be able to propose identifiability in the overcomplete regime.

As stated in the size bound in Remark 18, for n ≥ 2, the number of hidden variables can be more

than the number of observed variables and we can still have perfect n-gram matching.

Definition 5.5 (Kruskal rank, [112]). The Kruskal rank or the krank of matrix A is defined as

the maximum number k such that every subset of k columns of A is linearly independent.

Note that krank is different from the general notion of matrix rank and it is a lower bound for the

matrix rank, i.e., Rank(A) ≥ krank(A).

Condition 3 (Krank condition on A). The Kruskal rank of matrix A satisfies the bound krank(A) ≥

dmax(A)n, where dmax(A) is the maximum node degree of any column of A, i.e., dmax(A) :=

maxi∈[q] ‖Aei‖0. Here n is the same as parameter n in Condition 2.

In the overcomplete regime, it is not possible for A to be full column rank and krank(A) < |Vh| = q.

However, note that a large enough krank ensures that appropriate sized subsets of columns of A

are linearly independent. For instance, when krank(A) > 1, any two columns cannot be collinear

and the above condition rules out the collinear case for identifiability. In the above condition, we

see that a larger krank can incorporate denser connections between topics and words.

On the other hand, the bound in Condition 3 imposes sparsity on the columns of topic-word matrix

as dmax(A) ≤ krank(A)1/n. Under such sparsity constraint, each topic (indexing the columns of A)

is supported on a specific set of words which enables us to distinguish between different topics and

identify the model. But, it seems that this bound is not tight11.

11The looseness originates from bound (E.13) as
∣∣∣NA⊙n

Rest.

(S)
∣∣∣ ≥ |NA(S)| + |S| in the proof. See Defini-

tions 5.4 and E.1 for the definition of A⊙n
Rest.. Note that many terms in this lower bound on

∣∣∣NA⊙n

Rest.

(S)
∣∣∣ are ignored

which leads to a loose bound that might be improved.

149

The main identifiability result under a fixed graph structure is stated in the following theorem for

n ≥ 2, where n is the topic persistence level. The identifiability result relies on having access to

the (2rn)-th order moment of observed variables xl, l ∈ [2rn], defined in equation (5.2) as

M2rn(x) := E

[
(x1 ⊗ x2 ⊗ · · · ⊗ xrn)(xrn+1 ⊗ xrn+2 ⊗ · · · ⊗ x2rn)⊤

]
∈ R

prn×prn ,

for some integer r ≥ 1.

Theorem 5.1 (Generic identifiability under deterministic topic-word graph structure). LetM
(n)
2rn(x)

in equation (5.2) be the (2rn)-th order observed moment of the n-persistent topic model for some

integer r ≥ 1. If the model satisfies conditions 1, 2 and 3, then, for any n ≥ 2, all the columns of

population structure A are generically identifiable from M
(n)
2rn(x). Furthermore, the (2r)-th order

moment of the hidden variables, denoted by M2r(h), is also generically identifiable.

The theorem is proved in Appendix E.1. It is seen that the population structure A is identifiable,

given any observed moment of order at least 2n. Increasing the order of observed moment results

in identifying higher order moments of the hidden variables.

The above theorem does not cover the case when the persistence level n = 1. This is the usual

bag-of-words admixture model. Identifiability of this model has been studied earlier in [9] and we

recall it below.

Remark 19 (Bag-of-words admixture model, [9]). Given (2r)-th order observed moments with r ≥ 1,

the structure of the popular bag-of-words admixture model and the (2r)-th order moment of hidden

variables are identifiable, when A is full column rank and the following expansion condition holds

[9]

|NA(S)| ≥ |S|+ dmax(A), ∀S ⊆ Vh, |S| ≥ 2. (5.4)

Our result for n ≥ 2 in Theorem 5.1, provides identifiability in the overcomplete regime with weaker

matching condition 2 and krank condition 3. The matching condition 2 is weaker than the above

expansion condition which is based on the perfect matching and hence, does not allow overcomplete

150

models. Furthermore, the above result for the bag-of-words admixture model requires full column

rank of A which is more stringent than our krank condition 3.

Remark 20 (Kruskal rank and degree diversity). Condition 3 requires that the Kruskal rank of the

topic-word matrix be large enough compared to the maximum degree of the topics. Intuitively, a

larger Kruskal rank ensures enough diversity in the word supports among different topics under a

higher level of sparsity. This Kruskal rank condition also allows for more degree diversity among

the topics, when the topic persistence level n > 1. On the other hand, for the bag-of-words model

(n = 1), using (5.4) implies that 2dmin > dmax, where dmin, dmax are the minimum and maximum

degrees of the topics. Thus, we provide identifiability results with more degree diversity when

higher order moments are employed.

Remark 21 (Recovery using ℓ1 optimization). It turns out that our conditions for identifiability

imply that the columns of the n-gram matrix A⊙n, defined in Definition 5.4, are the sparsest

vectors in Col
(
M

(n)
2n (x)

)
, having a tensor rank of one. See Appendix E.1. This implies recovery

of the columns of A through exhaustive search, which is not efficient. On the other hand, efficient

ℓ1-based recovery algorithms have been analyzed in [148, 9] for the undercomplete case (n = 1).

They can be employed here for recovery from higher order moments as well. Exploiting additional

structure present in A⊙n, for n > 1, such as rank-1 test devices proposed in [68] are interesting

avenues for future investigation.

In Theorem 5.1, we provide our identifiability result for the overcomplete topic-word matrix A

under topic persistent model. The result for the bag-of-words admixture model is also reviewed

in Remark 19 under the assumption that A is full column rank. In the following corollary, we

provide the strong identifiability result for the full column rank topic-word matrix under the topic

persistent model.

Corollary 5.1 (Identifiability for undercomplete topic-word matrix). LetM
(n)
2rn(x) in equation (5.2)

be the (2rn)-th order observed moment of the n-persistent topic model for some integer r ≥ 1. If

the model satisfies condition 1, and in addition A is full column rank, then for any n ≥ 2, all

the columns of population structure A are generically identifiable from M
(n)
2rn(x). Furthermore, the

(2r)-th order moment of the hidden variables, denoted by M2r(h), is also generically identifiable.

151

Comparing to Theorem 5.1 and Remark 19, the expansion (and krank) conditions are not required

in the above result which is a huge relaxation. The reason is both undercomplete regime and topic

persistence are assumed here which relaxes the other conditions. Note that the assumptions that

topic persists with persistence n ≥ 2, and the topic-word matrix is full column rank (and therefore

undercomplete) is reasonable in many applications.

5.5.2 Analysis Under Random Topic-word Graph Structures

In this section, we specialize the identifiability result to the random case. This result is based on

more transparent conditions on the size and the degree of the random bipartite graph G(Vh, Vo;A).

We consider the random model where in the bipartite graph G(Vh, Vo;A), each node i ∈ Vh is

randomly connected to di different nodes in set Vo. Note that this is a heterogeneous degree model.

Furthermore, the random identifiability result is provided with high probability which is defined as

follows.

Definition 5.6 (whp). A sequence of events Ep (depending on size parameter p) occurs with high

probability (whp) if Pr(Ep) = 1−O(p−ǫ) for some ǫ > 0.

Condition 4 (Size condition). The random bipartite graph G(Vh, Vo;A) with |Vh| = q, |Vo| = p,

and A ∈ R
p×q, satisfies the size condition q ≤

(
c pn
)n

for some constant 0 < c < 1.

This size condition is required to establish that the random bipartite graph has a perfect n-gram

matching (and hence satisfies deterministic condition 2). It is shown in Section 5.7.2.1 that the

necessary size constraint q = O(pn) stated in Remark 18, is achieved in the random case. Thus,

the above constraint allows for the overcomplete regime, where q ≫ p for n ≥ 2, and is tight.

Condition 5 (Degree condition). In the random bipartite graph G(Vh, Vo;A) with |Vh| = q, |Vo| =

p, and A ∈ R
p×q, the degree di of nodes i ∈ Vh satisfies the following lower and upper bounds

(di ∈ [dmin, dmax]):

• Lower bound: dmin ≥ max{1+β log p, α log p} for some constants β > n−1
log 1/c , α > max

{
2n2
(
β log 1

c+

1
)
, 2βn

}
.

152

Parameter Representing

p dimension of observed variables
q dimension of hidden variables
n persistence level

c size ratio such that q ≤
(
c pn
)n

α, β
Constants for lower bound on degree
such that dmin ≥ max{1 + β log p, α log p}

Table 5.1: Table of parameters.

• Upper bound: dmax ≤ (cp)
1
n .

Intuitively, the lower bound on the degree is required to show that the corresponding bipartite

graph G(Vh, Vo;A) has sufficient number of random edges to ensure that it has perfect n-gram

matching with high probability. The upper bound on the degree is mainly required to satisfy the

krank condition 3, where dmax(A)n ≤ krank(A). As discussed after Condition 3, this upper bound

is not tight.

It is important to see that, for n ≥ 2, the above condition on degree covers a range of models from

sparse to intermediate regimes and it is reasonable in a number of applications that each topic does

not generate a very large number of words.

The proposed parameters in Conditions 4 and 5 are summarized in Table 5.1.

The main random identifiability result is stated in the following theorem for n ≥ 2, while n = 1

case is addressed in Remark 23. The identifiability result relies on having access to the (2rn)-th

order moment of observed variables xl, l ∈ [2rn], defined in equation (5.2) as

M2rn(x) := E

[
(x1 ⊗ x2 ⊗ · · · ⊗ xrn)(xrn+1 ⊗ xrn+2 ⊗ · · · ⊗ x2rn)⊤

]
∈ R

prn×prn ,

for some integer r ≥ 1.

153

Probability rate constants: The probability rate of success in the following random identifiability

result is specified by constants β′ > 0 and γ = γ1 + γ2 > 0 as

β′ = −β log c− n+ 1, (5.5)

γ1 = en−1
(c

nn−1
+

e2

1− δ1
nβ

′+1
)
, (5.6)

γ2 =
cn−1e2

nn(1− δ2)
, (5.7)

where δ1 and δ2 are some constants satisfying e2
(
p
n

)−β log 1/c
< δ1 < 1 and cn−1e2

nn p−β
′
< δ2 < 1.

Theorem 5.2 (Random identifiability). Let M
(n)
2rn(x) in equation (5.2) be the (2rn)-th order ob-

served moment of the n-persistent topic model for some integer r ≥ 1. If the model with random

population structure A satisfies conditions 1, 4 and 5, then whp (with probability at least 1− γp−β′

for constants β′ > 0 and γ > 0, specified in (5.5)-(5.7)), for any n ≥ 2, all the columns of popula-

tion structure A are identifiable from M
(n)
2rn(x). Furthermore, the (2r)-th order moment of hidden

variables, denoted by M2r(h), is also identifiable, whp.

The theorem is proved in Appendix E.2. Similar to the deterministic analysis, it is seen that the

population structure A is identifiable given any observed moment with order at least 2n. Increasing

the order of observed moment results in identifying higher order moments of the hidden variables.

Remark 22 (Trade-off between topic-word size ratio and degree). When the number of hidden

variables increases, i.e. c increases, but the order n is kept fixed, the bounds on degree in condition 5

also needs to grow. Intuitively, a larger degree is needed to provide more flexibility in choosing

the subsets of neighbors for hidden nodes to ensure the existence of a perfect n-gram matching in

the bipartite graph, which in turn ensures identifiability. Note that as c grows, the parameter β,

which is the lower bound on d also grows, and the probability rate (i.e., the term −β log c) remains

constant. Hence, the probability rate does not change as c increases, since the increase in the degree

d compensates the additional “difficulty” arising due to a larger number of hidden variables.

The above identifiability theorem only covers for n ≥ 2 and the n = 1 case is addressed in the

following remark.

154

Remark 23 (Bag-of-words admixture model). The identifiability result for the random bag-of-words

admixture model is comparable to the result in [148], which considers exact recovery of sparsely-used

dictionaries. They assume that Y = DX is given for some unknown arbitrary dictionary D ∈ R
q×q

and unknown random sparse coefficient matrix X ∈ R
q×p. They establish that if D ∈ R

q×q is full

rank and the random sparse coefficient matrix X ∈ R
q×p follows the Bernoulli-subgaussian model

with size constraint p > Cq log q and degree constraint O(log q) < E[d] < O(q log q), then the model

is identifiable, whp. Comparing the size and degree constraints, our identifiability result for n ≥ 2

requires more stringent upper bound on the degree (d = O(p1/n)), while more relaxed condition on

the size (q = O(pn)) which allows to identifiability in the overcomplete regime.

Remark 24 (The size condition is tight). The size bound q = O(pn) in the above theorem achieves

the necessary condition that q ≤
(p
n

)
= O(pn) (see Remark 18), and is therefore tight. The

sufficiency is argued in Theorem 5.3, where we show that the matching condition 2 holds under the

above size and degree conditions 4 and 5.

As in the deterministic case, we finish this section by providing random identifiability result for the

full column rank topic-word matrix under the topic persistent model.

Corollary 5.2 (Random identifiability for undercomplete topic-word matrix). Let M
(n)
2rn(x) in

equation (5.2) be the (2rn)-th order observed moment of the n-persistent topic model for some

integer r ≥ 1. If the model with random population structure A ∈ R
p×q satisfies condition 1, size

condition q ≤ cp for some constant 0 < c < 1 and the degree condition dmin ≥ 1 + β log p for some

constant β > 0, then whp (with probability at least 1 − O(z−β log 1/c) where β log 1
c > 0), for any

n ≥ 2, all the columns of population structure A are identifiable from M
(n)
2rn(x). Furthermore, the

(2r)-th order moment of hidden variables, denoted by M2r(h), is also identifiable, whp.

Comparing to Theorem 5.2, the upper bound on the degree (sparsity constraint) is not required in

the above result which is a huge relaxation.

155

5.6 Identifiability via Uniqueness of Tensor Decompositions

In this section, we characterize the moments of the n-persistent topic model in terms of the model

parameters, i.e. the topic-word matrix A and the moment of hidden variables. We relate identifia-

bility of the topic model to uniqueness of a certain class of tensor decompositions, which in turn,

enables us to prove Theorems 5.1 and 5.2. We then discuss the special cases of the persistent topic

model, viz., the single topic model (infinite-persistent topic model) and the bag-of-words admixture

model (1-persistent topic model).

5.6.1 Moment Characterization of the Persistent Topic Model

In the following lemma, which is proved in Appendix E.1.2, we characterize the observed moments

of a persistent topic model. Throughout this section, the order of the observed moment is fixed to

2m.

Lemma 2 (n-persistent topic model moment characterization). The (2m)-th order moment of

observed variables, defined in equation (5.2), for the n-persistent topic model is characterized as 12:

• if m = rn, for some integer r ≥ 1, then

M
(n)
2m (x) =

(r times︷ ︸︸ ︷
A⊙n ⊗ · · · ⊗A⊙n

)
M2r(h)

(r times︷ ︸︸ ︷
A⊙n ⊗ · · · ⊗A⊙n

)⊤
, (5.8)

where M2r(h) ∈ R
qr×qr is the (2r)-th order moment of hidden variables h ∈ R

q, defined in

equation (5.3), and the n-gram matrix A⊙n is defined in Definition 5.4.

• If n ≥ 2m, then

M
(n)
2m (x) =

(
A⊙m)M1(h)

(
A⊙m)⊤ , (5.9)

where M1(h) := Diag(E[h]) ∈ R
q×q is the first order moment of hidden variables h ∈ R

q,

stacked in a diagonal matrix.

12The other cases not covered in Lemma 2 are deferred to Appendix E.1.2. See Remark 32.

156

h

y

x1 xm xm+1 x2m

(a) Single topic model
(infinite-persistent topic model)

h

y1 ym ym+1 y2m

x1 xm xm+1 x2m

(b) Bag-of-words admixture model
(1-persistent topic model)

Figure 5.3: Hierarchical structure of the single topic model and bag-of-words admixture model
shown for 2m number of words (views).

Thus, we see that the observed moments can be expressed in terms of the hidden moments M(h)

and the Kronecker products of the n-gram matrices. In the special case, when the persistence level

is large enough compared to the order of the moment (n ≥ 2m), the moment form reduces to a

Khatri-Rao product form in (5.9). Moreover, in (5.9), we have a diagonal matrix M1(h) instead

of a general (dense) matrix M2r(h) in (5.8), when n < 2m = 2rn. Thus, we have a more succinct

representation of the moments in (5.9) when the persistence level of the topics is large enough.

In the following, we contrast the special cases when the persistence level n is n→∞ (single topic

model) and n = 1 (bag of words admixture model), as shown in Fig.5.3a and Fig.5.3b. In order to

have a fair comparison, the number of observed variables is fixed to 2m and the persistence level is

varied.

Single topic model (n→∞): The condition in (5.9) (n ≥ 2m) is always satisfied for the single-topic

model, since n→∞ in this case, and we have

M
(∞)
2m (x) =

(
A⊙m)M1(h)

(
A⊙m)⊤ . (5.10)

Note that M1(h) is a diagonal matrix.

Bag-of-words admixture model (n = 1): From Lemma 2, the (2m)-th order moment of observed

variables xl, l ∈ [2m], for the bag-of-words admixture model (1-persistent topic model), shown in

157

Figure 5.3b, is given by

M
(1)
2m(x) =

(m times︷ ︸︸ ︷
A⊗ · · · ⊗A

)
M2m(h)

(m times︷ ︸︸ ︷
A⊗ · · · ⊗A

)⊤
, (5.11)

where M2m(h) ∈ R
qm×qm is the (2m)-th order moment of hidden variables h ∈ R

q, defined in (5.3).

Note that M2m(h) is a full matrix in general.

Contrasting single topic (n → ∞) and bag of words models (n = 1): Comparing equations (5.10)

and (5.11), it is seen that the moments under the single topic model in (5.10) are more “structured”

compared to the bag of words model in (5.11). In (5.11), we have Kronecker products of the topic-

word matrix A, while (5.10) involves Khatri-Rao products of A. This forms a crucial criterion in

determining of whether overcomplete models are identifiable, as discussed below.

Why does persistence help in identifiability of overcomplete models? For simplicity, let the order of

the moment 2m = 4. The equations (5.10) and (5.11) reduce to

M
(∞)
4 (x) = (A⊙A) Diag

(
E
[
h]
)

(A⊙A)⊤, (5.12)

M
(1)
4 (x) = (A⊗A)E

[
(h⊗ h)(h ⊗ h)⊤

]
(A⊗A)⊤. (5.13)

Note that for the single topic model in (5.12), the Khatri-Rao product matrix A⊙ A ∈ R
p2×q has

the same as the number of columns (i.e. the latent dimensionality) of the original matrix A, while

the number of rows (i.e. the observed dimensionality) is increased. Thus, the Khatri-Rao product

“expands” the effect of hidden variables to higher order observed variables, which is the key towards

identifying overcomplete models. In other words, the original overcomplete representation becomes

determined due to the ‘expansion effect’ of the Khatri-Rao product structure of the higher order

observed moments.

On the other hand, in the bag-of-words admixture model in (5.13), this interesting ‘expansion

property’ does not occur, and we have the Kronecker product A ⊗ A ∈ R
p2×q2 , in place of the

Khatri-Rao products. The Kronecker product operation increases both the number of the columns

158

X

Y

1

1

2

2

3

3

4

4 5

(a) Structure of an overcomplete matrix A ∈ R
4×5 having a perfect 2-gram matching.

X(2)

Y
1 2 3 4 5

(1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (2, 4) (3, 1) (3, 2) (3, 3) (3, 4) (4, 1) (4, 2) (4, 3) (4, 4)

(b) Structure of A ⊙ A ∈ R
16×5 having a perfect (Y -saturating) matching, highlighted by dashed

red edges.

X(2)

Y (2)

(1, 1)

(1, 1)

(1, 2)

(1, 2)

(1, 3)

(1, 3)

(1, 4)

(1, 4) (1, 5)

(2, 1)

(2, 1)

(2, 2)

(2, 2)

(2, 3)

(2, 3)

(4, 2) (4, 3) (4, 4)

(4, 5) (5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

(c) Structure of A ⊗ A ∈ R
16×25. For simplicity, only a few edges and nodes are shown and the

dashed edges denote the bunch of edges connected to each node, not specifically shown.

Figure 5.4: An example of an overcomplete matrix A and the matrices A ⊙ A and A ⊗ A. The
corresponding bipartite graphs encode the sparsity pattern of each of the matrices. A⊙A expands
the effect of hidden variables to second order observed variables which is crucial for overcomplete
identifiability, while in the A⊗A, the order of both the hidden and observed variables are increased.

(i.e. latent dimensionality) and the number of rows (i.e. observed dimensionality), which implies

that higher order moments do not help in identifying overcomplete models.

An example is provided in Figure 5.4 which helps to see how the matrices A⊙A and A⊗A behave

differently in terms of mapping topics to word tuples.

Note that for the n-persistent model, for n = 2, the 4th order moment reduces to

M
(2)
4 (x) = (A⊙A)E

[
hh⊤](A⊙A)⊤. (5.14)

Contrasting the above equation with (5.12) and (5.13), we find that the 2-persistent model retains

the desirable property of possessing Khatri-Rao products, while being more general than the form

159

for single topic model in (5.12). This key property enables us to establish identifiability of topic

models with finite persistence levels.

5.6.2 Tensor Algebra of the Moments

In Section 5.6.1, we provided a representation of the moment forms in the matrix form. We now

provide the equivalent tensor representation of the moments. The tensor representation is more

compact and transparent, and allows us to compare the topic models under different levels of per-

sistence. We compare the derived tensor form with the well-known Tucker and CP decompositions.

We first introduce some tensor notations and definitions.

5.6.2.1 Tensor Notations and Definitions

A real-valued order-n tensor A ∈⊗n
i=1R

pi := R
p1×···×pn is a n dimensional array A(1 : p1, . . . , 1 :

pn), where the i-th mode is indexed from 1 to pi. In this work, we restrict ourselves to the case

that p1 = · · · = pn = p, and simply write A ∈⊗n
R
p. A fiber of a tensor A is a vector obtained by

fixing all indices of A except one, e.g., for A ∈⊗4
R
3, the vector f = A(2, 1 : 3, 3, 1) is a fiber.

For a vector u ∈ R
p, Diagn (u) ∈ ⊗n

R
p is the n-th order diagonal tensor with vector u on its

diagonal. The tensor A ∈⊗n
R
p, is stacked as a vector a ∈ R

pn by the vec(·) operator, defined as

a = vec(A)⇔ a
(
(i1 − 1)pn−1 + (i2 − 1)pn−2 + · · ·+ (in−1 − 1)p + in)

)
= A(i1, i2, . . . , in).

The inverse of a = vec(A) operation is denoted by A = ten(a).

For vectors ai ∈ R
pi , i ∈ [n], the tensor outer product operator “◦” is defined as [78]

A = a1 ◦ a2 ◦ · · · ◦ an ∈
n⊗

i=1

R
pi ⇔ A(i1, i2, . . . , in) := a1(i1)a2(i2) · · · an(in). (5.15)

The above generated tensor is a rank-1 tensor. The tensor rank is the minimal number of rank-1 ten-

sors into which a tensor can be decomposed. This type of rank is called CP (Candecomp/Parafac)

tensor rank in the literature [78].

160

According to above definitions, for any set of vectors ai ∈ R
pi, i ∈ [n], we have the following pair

of equalities:

vec(a1 ◦ a2 ◦ · · · ◦ an) = a1 ⊗ a2 ⊗ · · · ⊗ an,

ten(a1 ⊗ a2 ⊗ · · · ⊗ an) = a1 ◦ a2 ◦ · · · ◦ an.

For any vector a ∈ R
p, the power notations are also defined as

a⊗n :=

n times︷ ︸︸ ︷
a⊗ a⊗ · · · ⊗ a ∈ R

pn ,

a◦n :=

n times︷ ︸︸ ︷
a ◦ a ◦ · · · ◦ a ∈

n⊗
R
p.

The second power is usually called the n-th order tensor power of vector a.

Finally, the Tucker and CP (Candecomp/Parafac) representations are defined as follows [78, 108].

Definition 5.7 (Tucker representation). Given a core tensor S ∈ ⊗n
i=1 R

ri and inverse factors

Ui ∈ R
pi×ri , i ∈ [n], the Tucker representation of the n-th order tensor A ∈⊗n

i=1 R
pi is

A =

r1∑

i1=1

r2∑

i2=1

· · ·
rn∑

in=1

S(i1, i2, . . . , in)U1(:, i1) ◦ U2(:, i2) ◦ · · · ◦ Un(:, in) =: [[S;U1, U2, . . . , Un]],

(5.16)

where Uj(:, ij) denotes the ij-th column of matrix Uj . The tensor S is referred to as the core tensor.

Definition 5.8 (CP representation). Given λ ∈ R
r, Ui ∈ R

pi×r, i ∈ [n], the CP representation of

the n-th order tensor A ∈⊗n
i=1R

pi is

A =

r∑

i=1

λiU1(:, i) ◦ U2(:, i) ◦ · · · ◦ Un(:, i) =: [[Diagn (λ);U1, U2, . . . , Un]], (5.17)

where Uj(:, i) denotes the i-th column of matrix Uj.

Note that the CP representation is a special case of the Tucker representation when the core tensor

S is square and diagonal.

161

5.6.2.2 Tensor Representation of Moments Under Topic Model

We now provide a tensor representation of the moments.

For the n-persistent topic model, the 2m-th observed moment is denoted by T
(n)
2m (x), which is the

tensor form of the moment matrix M
(n)
2m (x), characterized in Lemma 2. It is given by

T2m(x)(i1,i2,...,i2m) := E[x1(i1)x2(i2) · · · x2m(i2m)], i1, i2, . . . , i2m ∈ [p], (5.18)

where T2m(x) ∈⊗2m
R
p.

This tensor is characterized in the following lemma, and is proved in Appendix E.1.2.

Lemma 3 (n-persistent topic model moment characterization in tensor form). The (2m)-th order

moment of words, defined in equation (5.18), for the n-persistent topic model is characterized as 13:

• if m = rn for some integer r ≥ 1, then

T
(n)
2m (x) =

q∑

i1=1

q∑

i2=1

· · ·
q∑

i2r=1

E[hi1hi2 · · · hi2r]a◦ni1 ◦ a◦ni2 ◦ · · · ◦ a◦ni2r (5.19)

=
[[
Sr;

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
,

where Sr ∈
⊗2rn

R
q is the core tensor in the above Tucker representation with the sparsity

pattern as

Sr
(
i
)

=





M2r(h)(
(in,i2n,...,irn),(i(r+1)n,i(r+2)n,...,i2rn)

) , i1 = i2 = · · ·= in, in+1 = in+2= · · ·= i2n, . . .

0 , o.w.,

where i := (i1, i2, . . . , i2rn).

13The other cases not covered in Lemma 3 are deferred to Appendix E.1.2. See Remark 32.

162

• If n ≥ 2m, then

T
(n)
2m (x) =

∑

i∈[q]
E[hi]a

◦2m
i =

[[
Diag2m(E[h]);

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
. (5.20)

The tensor representation in (5.19) is a specific type of tensor decomposition which is a special

case of the Tucker representation (since Sr is not fully dense), but more general than the CP

representation. The tensor representation in (5.20) has a CP form.

5.6.2.3 Comparison with Single Topic Model and Bag-of-words Admixture Model

We now provide the tensor form for the special cases single topic model and bag-of-words admixture

model. In order to have a fair comparison, the number of observed variables is fixed to 2m and the

persistence level is varied.

CP representation of the single topic model: The (2m)-th order moment of the words for the single

topic model (infinite-persistent topic model) is provided in equation (5.20) as

T
(∞)
2m (x) =

∑

i∈[q]
E[hi]a

◦2m
i =

[[
Diag2m(E[h]);

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
. (5.21)

This representation is the symmetric CP representation of T
(∞)
2m (x). In Appendix E.3, we provide

a more detailed comparison between our approach and some of the previous identifiability results

for the (overcomplete) CP decomposition. In particular, we show that our uniqueness result for

CP decomposition is the sparse analogue of uniqueness result in Lathauwer [116] where the factors

of CP tensor decomposition (the columns of matrix A) satisfy specific sparsity constraints. See

Appendix E.3 for the details.

Tucker representation of the bag-of-words admixture model: From Lemma 3, the tensor form of the

(2m)-th order moment of observed variables xl, l ∈ [2m], for the bag-of-words admixture model

163

(1-persistent topic model) is given by

T
(1)
2m(x) =

q∑

i1=1

q∑

i2=1

· · ·
q∑

i2m=1

E[hi1hi2 · · · hi2m]ai1 ◦ ai2 ◦ · · · ◦ ai2m

=
[[
E
[
h◦(2m)

]
;

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
. (5.22)

This representation is the Tucker representation (decomposition) of T
(1)
2m(x) where the core tensor

S = E
[
h◦(2m)

]
is the tensor form of the (2m)-th order hidden moment M2m(h), defined in equation

(5.3), and the inverse factors correspond to the population structure A.

Comparing the tensor forms for the n-persistent topic model (5.19), single topic model (5.21), and

bag of words admixture model (5.22), we find that all of them involve Tucker decompositions, where

the inverse factors correspond to the topic-word matrix A, and the only difference is in the sparsity

level of the core tensor S. For the bag of words model, with n = 1, the core tensor is fully dense in

general, while for the single topic model, with n → ∞, the core tensor is diagonal which reduces

to the CP decomposition. For a general topic model with persistence level n, the core tensor is in

between these two extremes and has structured sparsity. This sparsity property of the core tensor

is crucial towards establishing identifiability in the overcomplete regime. The bag-of-words model

is not identifiable in the overcomplete regime since the core tensor is fully dense in this case, while

an overcomplete n-persistent topic model can be identified under certain constraints provided in

Section 5.5, since the core tensor has structured sparsity and symmetry.

5.7 Proof Techniques and Auxiliary Results

The main identifiability results are given in Theorems 5.1 and 5.2 for deterministic and random

cases of topic-word graph structures. In this section, we provide a proof sketch of these results,

and then, we propose auxiliary results on the existence of perfect n-gram matching for random

bipartite graphs and a lower bound on the Kruskal rank of random matrices.

164

Size & degree

conditions 4,5

for random case
Theorems 5.3,5.4

Matching & krank

conditions 2,3

on A
Lemma 5

Rank & expansion

conditions 6,7

on A⊙n
Theorem E.1

Non-degeneracy

condition 1 on h

Identifiability

Figure 5.5: Proof outline: flow of conidtions and results

5.7.1 Proof Sketch

Summary of relationships among different conditions: To summarize, there exists a hierarchy among

the proposed conditions as follows. See Figure 5.5. First, in the random analysis, the size and the

degree conditions 4 and 5 are sufficient for satisfying the perfect n-gram matching and the krank

conditions 2 and 3, shown by Theorems 5.3 and 5.4. Then, these conditions 2 and 3 ensure that the

rank and the expansion conditions 6 and 7 hold, shown by Lemma 5. And finally, these conditions

6 and 7 together with non-degeneracy condition 1 conclude the primary identifiability result in

Theorem E.1. Note that the genericity of A is also required for these results to hold.

Primary deterministic analysis in Theorem E.1: The deterministic analysis is primarily based on

conditions on the n-gram matrix A⊙n; but since these conditions are opaque (mainly expansion

condition on A⊙n, provided in condition 7), this analysis is related to conditions on the matrix A

itself (see Lemma 5). See Theorem E.1 in Appendix E.1.1 for the identifiability result based on

A⊙n. We briefly discuss it below for the case when 2n words are available under the n-persistent

topic model. From equation (5.8), the (2n)-th order moment of the observed variables under the

n-persistent topic model can be written as

M
(n)
2n (x) =

(
A⊙n

)
E
[
hh⊤

](
A⊙n

)⊤
. (5.23)

The question is whether we can recover A, given the M
(n)
2n (x). Obviously, the matrix A is not

identifiable without any further conditions. First, non-degeneracy and rank conditions (conditions

1 and 6) are required. Assuming these two conditions, we have from (5.23) that

Col
(
M

(n)
2n (x)

)
= Col

(
A⊙n

)
.

165

Therefore, the problem of recovering A from M
(n)
2n (x) reduces to finding A⊙n in Col

(
A⊙n).

Then, we show that under the following expansion condition on A⊙n and the genericity property,

matrix A is identifiable from Col
(
A⊙n). The expansion condition (refer to condition 7 for a more

detailed statement), imposes the following property on the bipartite graph 14 G
(
Vh, V

(n)
o ;A⊙n),

∣∣∣NA⊙n
Rest.

(S)
∣∣∣ ≥ |S|+ dmax

(
A⊙n

)
, ∀S ⊆ Vh, |S| > krank(A), (5.24)

where dmax

(
A⊙n) is the maximum node degree in set Vh, and the restricted version of n-gram

matrix, denoted by A⊙n
Rest., is obtained by removing its redundant (identical) rows (see Definition

E.1). The identifiability claim is proved by showing that the columns of A⊙n are the sparsest

and rank-1 vectors (in the tensor form) in Col
(
A⊙n) under the expansion condition in (5.24)

and genericity conditions. Note that since we only require expansion on sets larger than Kruskal

rank, the expansion condition (5.24) is a more relaxed condition compared to expansion condition

proposed in [9, 148] for identifiability in the undercomplete regime. For a more detailed comparison,

refer to Remark 31 in Appendix E.1.1.

Deterministic analysis in Theorem 5.1: Expansion and rank conditions in Theorem E.1 are imposed

on the n-gram matrix A⊙n. According to the generalized matching notions, defined in Section 5.5.1,

sufficient combinatorial conditions on matrix A (conditions 2 and 3) are introduced which ensure

that the expansion and rank conditions on A⊙n are satisfied.

Recall Lemma 1 which says that existence of perfect n-gram matching in G(Y,X;A) (condition

2) implies that G(Y,X(n);A⊙n) has a perfect matching. Then, it is straightforward to argue that

the expansion and rank conditions on A⊙n are satisfied, which is shown in Lemma 5 in Appendix

E.1.3. This leads to the generic identifiability result stated in Theorem 5.1.

5.7.2 Analysis of Random Structures

The identifiability result for a random structured matrix A is provided in Theorem 5.2. Sufficient

size and degree conditions 4 and 5 on the random matrix A are proposed such that the deterministic

14V
(n)
o denotes all ordered n-tuples generated from set Vo := {1, . . . , p} which indexes the rows of A⊙n.

166

combinatorial conditions 2 and 3 on A are satisfied. The details of these auxiliary results are

provided in the following two subsequent sections.15 In Section 5.7.2.1, it is shown in Theorem

5.3 that a random bipartite graph satisfying reasonable size and degree constraints, has a perfect

n-gram matching (condition 2), whp. Then, a lower bound on the Kruskal rank of a random

matrix A under size and degree constraints is provided in Theorem 5.4 in Section 5.7.2.2, which

implies the krank condition 3. Intuitions on why such size and degree conditions are required, are

mentioned in Section 5.5.2 where these conditions are proposed.

5.7.2.1 Existence of Perfect n-gram Matching for Random Bipartite Graphs

We show in the following theorem that a random bipartite graph satisfying reasonable size and

degree constraints, proposed earlier in conditions 4 and 5, has a perfect n-gram matching whp.

Theorem 5.3 (Existence of perfect n-gram matching for random bipartite graphs). Consider

a random bipartite graph G(Y,X;E) with |Y | = q nodes on the left side and |X| = p nodes

on the right side, and each node i ∈ Y is randomly connected to di different nodes in X. Let

dmin := mini∈Y di. Assume that it satisfies the size condition q ≤
(
c pn
)n

(condition 4) for some

constant 0 < c < 1 and the degree condition dmin ≥ max{1 + β log p, α log p} for some constants

β > n−1
log 1/c , α > max

{
2n2
(
β log 1

c + 1
)
, 2βn

}
(lower bound in condition 5). Then, there exists a

perfect (Y -saturating) n-gram matching in the random bipartite graph G(Y,X;E), with probability

at least 1− γ1p−β
′
for constants β′ > 0 and γ1 > 0, specified in (5.5) and (5.6).

See Appendix E.2.1 for the proof.

Note that the sufficient size bound q = O(pn) in the above theorem is also necessary (see Remark

18), and is therefore tight.

Remark 25 (Insufficiency of the union bound argument). It is easier to exploit the union bound

arguments to propose random bipartite graphs which have a perfect n-gram matching whp. It is

proved in Appendix E.2.1 that if d ≥ n and the size constraint |Y | = O(|X|n2−δ) for some δ > 0

15Since these auxiliary results can also have independent interests as combinatorial results, we put them as theorems
in the main part of the chapter.

167

is satisfied, then whp, the random bipartite graph has a perfect n-gram matching. Comparing

this result with ours in Theorem 5.3, our approach has a better size scaling while the union bound

approach has a better degree scaling. The size scaling limitation in the union bound argument

makes it unattractive. In order to identify the population structure A in the overcomplete regime

where |Y | = O(|X|n), we need access to at least (4n)-th order moment under the union bound

argument, while only the (2n)-th order moment is required under our argument.

5.7.2.2 Lower Bound on the Kruskal Rank of Random Matrices

In the following theorem, a lower bound on the Kruskal rank of a random matrix A under dimension

and degree constraints is provided.

Theorem 5.4 (Lower bound on the Kruskal rank of random matrices). Consider a random matrix

A ∈ R
p×q, where for any i ∈ [q], there are di number of random non-zero entries in column i. Let

dmin := mini∈[q] di. Assume that it satisfies the size condition q ≤
(
c pn
)n

(condition 4) for some

constant 0 < c < 1 and the degree condition dmin ≥ 1 + β log p for some constant β > n−1
log 1/c (lower

bound in condition 5) and in addition A is generic. Then, krank(A) ≥ cp, with probability at least

1− γ2p−β
′
for constants β′ > 0 and γ2 > 0, specified in (5.5) and (5.7).

See Appendix E.2.1 for the proof.

168

Bibliography

[1] Evrim Acar, Seyit A Çamtepe, Mukkai S Krishnamoorthy, and Bülent Yener. Modeling
and multiway analysis of chatroom tensors. In Intelligence and Security Informatics, pages
256–268. Springer, 2005.

[2] Rados law Adamczak, Rafa l Lata la, Alexander E Litvak, Alain Pajor, and Nicole Tomczak-
Jaegermann. Chevet type inequality and norms of submatrices. arXiv preprint
arXiv:1107.4066, 2011.

[3] A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and R. Tandon. Learning Sparsely Used
Overcomplete Dictionaries via Alternating Minimization. Available on arXiv:1310.7991, Oct.
2013.

[4] A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, and R. Tandon. Learning Sparsely Used
Overcomplete Dictionaries. In COLT, June 2014.

[5] Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the data
generating distribution. arXiv preprint arXiv:1211.4246, 2012.

[6] Elizabeth S. Allman, John A. Rhodes, and Amelia Taylor. A semialgebraic description of the
general markov model on phylogenetic trees. Arxiv preprint arXiv:1212.1200, Dec. 2012.

[7] E.S. Allman, C. Matias, and J.A. Rhodes. Identifiability of parameters in latent structure
models with many observed variables. The Annals of Statistics, 37(6A):3099–3132, 2009.

[8] A. Anandkumar, D. P. Foster, D. Hsu, S. M. Kakade, and Y. K. Liu. A Spectral Algorithm
for Latent Dirichlet Allocation. In Proc. of Neural Information Processing (NIPS), Dec. 2012.

[9] A. Anandkumar, D. Hsu, A. Javanmard, and S. M. Kakade. Learning Linear Bayesian
Networks with Latent Variables. ArXiv e-prints, September 2012.

[10] A. Anandkumar, D. Hsu, and S. M. Kakade. A Method of Moments for Mixture Models and
Hidden Markov Models. In Proc. of Conf. on Learning Theory, June 2012.

[11] A. Anandkumar, D. P. Foster, D. Hsu, S. M. Kakade, and Y. K. Liu. Two SVDs Suffice:
Spectral Decompositions for Probabilistic Topic Modeling and Latent Dirichlet Allocation.
to appear in the special issue of Algorithmica on New Theoretical Challenges in Machine
Learning, July 2013.

[12] A. Anandkumar, R. Ge, D. Hsu, and S. M. Kakade. A Tensor Spectral Approach to Learning
Mixed Membership Community Models. In Conference on Learning Theory (COLT), June
2013.

169

[13] A. Anandkumar, R. Ge, D. Hsu, and S. M. Kakade. A Tensor Spectral Approach to Learning
Mixed Membership Community Models. In Conference on Learning Theory (COLT), June
2013.

[14] A. Anandkumar, D. Hsu, M. Janzamin, and S. M. Kakade. When are Overcomplete Topic
Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity.
In Neural Information Processing (NIPS), Dec. 2013.

[15] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor Methods for
Learning Latent Variable Models. J. of Machine Learning Research, 15:2773–2832, 2014.

[16] A. Anandkumar, R. Ge, and M. Janzamin. Learning Overcomplete Latent Variable Models
through Tensor Methods. In Proceedings of the Conference on Learning Theory (COLT),
Paris, France, July 2015.

[17] A. Anandkumar, R. Ge, and M. Janzamin. Learning Overcomplete Latent Variable Models
through Tensor Methods. In COLT, Paris, France, July 2015.

[18] Anima Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. Tensor
decompositions for learning latent variable models. Journal of Machine Learning Research,
15:2773–2832, 2014.

[19] Anima Anandkumar, Rong Ge, and Majid Janzamin. Guaranteed Non-Orthogonal Tensor
Decomposition via Alternating Rank-1 Updates. arXiv preprint arXiv:1402.5180, Feb. 2014.

[20] Anima Anandkumar, Rong Ge, and Majid Janzamin. Sample Complexity Analysis for
Learning Overcomplete Latent Variable Models through Tensor Methods. arXiv preprint
arXiv:1408.0553, Aug. 2014.

[21] Anima Anandkumar, Rong Ge, and Majid Janzamin. Sample Complexity Analysis for
Learning Overcomplete Latent Variable Models through Tensor Methods. arXiv preprint
arXiv:1408.0553, Aug. 2014.

[22] Anima Anandkumar, Rong Ge, and Majid Janzamin. Guaranteed Non-Orthogonal Tensor
Decomposition via Alternating Rank-1 Updates. arXiv preprint arXiv:1402.5180, Feb. 2014.

[23] J. Anderson, M. Belkin, N. Goyal, L. Rademacher, and J. Voss. The More, the Mer-
rier: the Blessing of Dimensionality for Learning Large Gaussian Mixtures. arXiv preprint
arXiv:1311.2891, Nov. 2013.

[24] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning polynomials with
neural networks. In Proceedings of the 31st International Conference on Machine Learning
(ICML-14), pages 1908–1916, 2014.

[25] Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations.
cambridge university press, 2009.

[26] Carl J Appellof and ER Davidson. Strategies for analyzing data from video fluorometric
monitoring of liquid chromatographic effluents. Analytical Chemistry, 53(13):2053–2056, 1981.

[27] S. Arora, R. Ge, and A. Moitra. New Algorithms for Learning Incoherent and Overcomplete
Dictionaries. ArXiv e-prints, August 2013.

170

[28] Saneev Arora, Rong Ge, and Ankur Moitra. Learning topic models—going beyond svd. In
Symposium on Theory of Computing, 2012.

[29] Sanjeev Arora and Ravi Kannan. Learning mixtures of separated nonspherical gaussians.
The Annals of Applied Probability, 15(1A):69–92, 2005.

[30] Sanjeev Arora, Rong Ge, Yoni Halpern, David M. Mimno, Ankur Moitra, David Sontag,
Yichen Wu, and Michael Zhu. A practical algorithm for topic modeling with provable guar-
antees. ArXiv 1212.4777, 2012.

[31] Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds for learning
some deep representations. arXiv preprint arXiv:1310.6343, 2013.

[32] Antonio Auffinger, Gerard Ben Arous, et al. Complexity of random smooth functions on the
high-dimensional sphere. The Annals of Probability, 41(6):4214–4247, 2013.

[33] Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning
from examples without local minima. Neural networks, 2(1):53–58, 1989.

[34] Boaz Barak, Jonathan Kelner, and David Steurer. Dictionary learning and tensor decompo-
sition via the sum-of-squares method. arXiv preprint arXiv:1407.1543, 2014.

[35] Andrew R. Barron. Universal approximation bounds for superpositions of a sigmoidal func-
tion. IEEE Transactions on Information Theory, 39(3):930–945, May 1993.

[36] Andrew R Barron. Approximation and estimation bounds for artificial neural networks.
Machine Learning, 14:115–133, 1994.

[37] Peter Bartlett and Shai Ben-David. Hardness results for neural network approximation prob-
lems. In Computational Learning Theory, pages 50–62. Springer, 1999.

[38] Peter L Bartlett. The sample complexity of pattern classification with neural networks: the
size of the weights is more important than the size of the network. Information Theory, IEEE
Transactions on, 44(2):525–536, 1998.

[39] Mohsen Bayati and Andrea Montanari. The dynamics of message passing on dense graphs,
with applications to compressed sensing. arXiv preprint arXiv:1001.3448, Jan. 2010.

[40] Y. Bengio, A. Courville, and P. Vincent. Unsupervised feature learning and deep learning:
A review and new perspectives. arXiv preprint arXiv:1206.5538, 2012.

[41] A. Bhaskara, M. Charikar, A. Moitra, and A. Vijayaraghavan. Smoothed analysis of tensor
decompositions. arXiv preprint arXiv:1311.3651, 2013.

[42] A. Bhaskara, M. Charikar, and A. Vijayaraghavan. Uniqueness of Tensor Decompositions
with Applications to Polynomial Identifiability. ArXiv 1304.8087, April 2013.

[43] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation. Journal
of Machine Learning Research, 3:993–1022, 2003.

[44] Avrim L Blum and Ronald L Rivest. Training a 3-node neural network is np-complete. In
Machine learning: From theory to applications, pages 9–28. Springer, 1993.

171

[45] Cristiano Bocci, Luca Chiantini, and Giorgio Ottaviani. Refined methods for the identifia-
bility of tensors. arXiv preprint arXiv:1303.6915, 2013.

[46] Martin L Brady, Raghu Raghavan, and Joseph Slawny. Back propagation fails to separate
where perceptrons succeed. Circuits and Systems, IEEE Transactions on, 36(5):665–674,
1989.

[47] Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? Information Theory, IEEE Transactions on, 52(12):5406–
5425, 2006.

[48] J. F. Cardoso and Pierre Comon. Independent component analysis, a survey of some algebraic
methods. In IEEE International Symposium on Circuits and Systems, pages 93–96, 1996.

[49] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional
scaling via an n-way generalization of eckart-young decomposition. Psychometrika, 35(3):
283–319, 1970.

[50] Dustin Cartwright and Bernd Sturmfels. The number of eigenvalues of a tensor. Linear
Algebra and its Applications, 438(2):942–952, January 2013.

[51] V. Chandrasekaran, P. Parrilo, A. Willsky, et al. Latent variable graphical model selection
via convex optimization. In 2010 48th Annual Allerton Conference, pages 1610–1613. IEEE,
2010.

[52] J.T. Chang. Full reconstruction of markov models on evolutionary trees: identifiability and
consistency. Mathematical Biosciences, 137(1):51–73, 1996.

[53] Luca Chiantini and Giorgio Ottaviani. On generic identifiability of 3-tensors of small rank.
SIAM Journal on Matrix Analysis and Applications, 33(3):1018–1037, 2012.

[54] Luca Chiantini, Massimiliano Mella, and Giorgio Ottaviani. One example of general uniden-
tifiable tensors. arXiv preprint arXiv:1303.6914, 2013.

[55] A. Choromanska, M. Henaff, M. Mathieu, G. Arous, and Y. LeCun. The loss surface of
multilayer networks. In AISTATS, 2015.

[56] V. Chvátal. The tail of the hypergeometric distribution. Discrete Mathematics, 25(3):285–
287, 1979.

[57] A. Coates, H. Lee, and A. Y. Ng. An analysis of single-layer networks in unsupervised feature
learning. Journal of Machine Learning Research - Proceedings Track, 15:215–223, 2011.

[58] Adam Coates, Andrew Y Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. In International Conference on Artificial Intelligence and
Statistics, pages 215–223, 2011.

[59] P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):
287–314, 1994.

[60] P. Comon. Tensor decompositions. Mathematics in Signal Processing V, pages 1–24, 2002.

[61] P. Comon and C. Jutten. Handbook of Blind Source Separation: Independent Component
Analysis and Applications. Academic Press. Elsevier, 2010.

172

[62] P. Comon, X. Luciani, and A. De Almeida. Tensor decompositions, alternating least squares
and other tales. Journal of Chemometrics, 23(7-8):393–405, 2009.

[63] G. Cybenko. approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals, and Systems, 2:303–314, 1989.

[64] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

[65] Sanjoy Dasgupta. Learning mixutres of gaussians. In FOCS, 1999.

[66] Sanjoy Dasgupta, Daniel Hsu, and Nakul Verma. A concentration theorem for projections.
In Twenty-Second Conference on Uncertainty in Artificial Intelligence, 2006.

[67] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and
attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS,
pages 2933–2941, 2014.

[68] L. De Lathauwer, J. Castaing, and J.-F Cardoso. Fourth-order cumulant-based blind identi-
fication of underdetermined mixtures. IEEE Tran. on Signal Processing, 55:2965–2973, June
2007.

[69] L. De Lathauwer, J. Castaing, and J.-F. Cardoso. Fourth-order cumulant-based blind iden-
tification of underdetermined mixtures. Signal Processing, IEEE Transactions on, 55(6):
2965–2973, 2007.

[70] Lieven De Lathauwer and Joséphine Castaing. Blind identification of underdetermined mix-
tures by simultaneous matrix diagonalization. Signal Processing, IEEE Transactions on, 56
(3):1096–1105, 2008.

[71] Li Deng and Dong Yu. Deep Learning for Signal and Information Processing. NOW Pub-
lishers, 2013.

[72] Ignat Domanov and Lieven De Lathauwer. On the uniqueness of the canonical polyadic
decomposition of third-order tensors—part i: Basic results and uniqueness of one factor
matrix. SIAM Journal on Matrix Analysis and Applications, 34(3):855–875, 2013.

[73] Ignat Domanov and Lieven De Lathauwer. On the uniqueness of the canonical polyadic
decomposition of third-order tensors—part ii: Uniqueness of the overall decomposition. SIAM
Journal on Matrix Analysis and Applications, 34(3):876–903, 2013.

[74] D. Donoho. Compressed sensing. Information Theory, IEEE Transactions on, 52(4):1289–
1306, 2006.

[75] P Frasconi, M Gori, and A Tesi. Successes and failures of backpropagation: A theoretical
investigation. Progress in Neural Networks: Architecture, 5:205, 1997.

[76] Silvia Gandy, Benjamin Recht, and Isao Yamada. Tensor completion and low-n-rank tensor
recovery via convex optimization. Inverse Problems, 27(2):025010, 2011.

[77] Rong Ge and Tengyu Ma. Decomposing overcomplete 3rd order tensors using sum-of-squares
algorithms. arXiv preprint arXiv:1504.05287, April 2015.

173

[78] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
Baltimore, Maryland, 1990.

[79] Marco Gori and Alberto Tesi. On the problem of local minima in backpropagation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(1):76–86, 1992.

[80] N. Goyal, S. Vempala, and Y. Xiao. Fourier pca. arXiv preprint arXiv:1306.5825, 2013.

[81] Olivier Guédon and Mark Rudelson. Lp-moments of random vectors via majorizing measures.
Advances in Mathematics, 208(2):798–823, 2007.

[82] Benjamin D. Haeffele and René Vidal. Global optimality in tensor factorization, deep learning,
and beyond. CoRR, abs/1506.07540, 2015.

[83] Philip Hall. On representatives of subsets. J. London Math. Soc., 10(1):26–30, 1935.

[84] Moritz Hardt. On the provable convergence of alternating minimization for matrix completion.
arXiv preprint arXiv:1312.0925, 2013.

[85] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability
of stochastic gradient descent. arXiv preprint arXiv:1509.01240, 2015.

[86] Richard A Harshman. Foundations of the parafac procedure: models and conditions for an”
explanatory” multimodal factor analysis. 1970.

[87] Richard A Harshman and Margaret E Lundy. Parafac: Parallel factor analysis. Computational
Statistics & Data Analysis, 18(1):39–72, 1994.

[88] Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are NP hard. arXiv preprint
arXiv:0911.1393, 2009.

[89] Christopher J Hillar and Friedrich T Sommer. Ramsey theory reveals the conditions when
sparse coding on subsampled data is unique. arXiv preprint arXiv:1106.3616, 2011.

[90] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors.
arXiv preprint arXiv:1207.0580, 2012.

[91] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

[92] K. Hornik, M. Stinchcombe, and H. White. multilayer feedforward networks are universal
approximators. Neural Networks, 2:359–366, 1989.

[93] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural net-
works, 4(2):251–257, 1991.

[94] D. Hsu and S. M. Kakade. Learning Mixtures of Spherical Gaussians: Moment Methods and
Spectral Decompositions. arXiv preprint arXiv:1206.5766, 2012.

[95] Daniel Hsu and Sham M Kakade. Learning mixtures of spherical gaussians: moment meth-
ods and spectral decompositions. In Proceedings of the 4th conference on Innovations in
Theoretical Computer Science, pages 11–20. ACM, 2013.

[96] Daniel Hsu, Sham M Kakade, and Tong Zhang. Random design analysis of ridge regression.
Foundations of Computational Mathematics, 14(3):569–600, 2014.

174

[97] F. Huang, U. N. Niranjan, M. Hakeem, and A. Anandkumar. Fast Detection of Overlapping
Communities via Online Tensor Methods. ArXiv 1309.0787, Sept. 2013.

[98] A. Hyvarinen and E. Oja. Independent component analysis: algorithms and applications.
Neural Networks, 13(4-5):411–430, 2000.

[99] Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. In
Journal of Machine Learning Research, pages 695–709, 2005.

[100] Piotr Indyk and Ilya Razenshteyn. On model-based RIP-1 matrices. CoRR, abs/1304.3604,
2013. URL http://arxiv.org/abs/1304.3604.

[101] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank matrix completion using
alternating minimization. In Proceedings of the 45th annual ACM symposium on Symposium
on theory of computing, pages 665–674. ACM, 2013.

[102] Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Score Function Features for Dis-
criminative Learning: Matrix and Tensor Frameworks. arXiv preprint arXiv:1412.2863, Dec.
2014.

[103] Tao Jiang and Nicholas D Sidiropoulos. Kruskal’s permutation lemma and the identifica-
tion of candecomp/parafac and bilinear models with constant modulus constraints. Signal
Processing, IEEE Transactions on, 52(9):2625–2636, 2004.

[104] A. T. Kalai, A. Moitra, and G. Valiant. Efficiently learning mixtures of two gaussians. In
STOC, 2010.

[105] Michael J Kearns and Umesh Virkumar Vazirani. An introduction to computational learning
theory. MIT press, 1994.

[106] M. Amin Khajehnejad, Alexandros G. Dimakis, Weiyu Xu, and Babak Hassibi. Sparse recov-
ery of nonnegative signals with minimal expansion. IEEE Transactions on Signal Processing,
59(1):196–208, 2011.

[107] T. Kolda. Orthogonal tensor decompositions. SIAM Journal on Matrix Analysis and Appli-
cations, 23(1):243–255, 2001.

[108] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,
51(3):455–500, 2009.

[109] Pravesh Kothari and Raghu Meka. Almost optimal pseudorandom generators for spherical
caps. arXiv preprint arXiv:1411.6299, 2014.

[110] Kenneth Kreutz-Delgado, Joseph F. Murray, Bhaskar D. Rao, Kjersti Engan, Te-Won Lee,
and Terrence J. Sejnowski. Dictionary learning algorithms for sparse representation. Neural
Computation, 15:349–396, February 2003.

[111] J.B. Kruskal. More factors than subjects, tests and treatments: an indeterminacy theorem
for canonical decomposition and individual differences scaling. Psychometrika, 41(3):281–293,
1976.

[112] J.B. Kruskal. Three-way arrays: Rank and uniqueness of trilinear decompositions, with
application to arithmetic complexity and statistics. Linear algebra and its applications, 18
(2):95–138, 1977.

175

http://arxiv.org/abs/1304.3604

[113] Christian Kuhlmann. Hardness results for general two-layer neural networks. In COLT, pages
275–285, 2000.

[114] Joseph M Landsberg. Tensors: Geometry and applications, volume 128. American Mathe-
matical Soc., 2012.

[115] R. Latala. Estimates of moments and tails of Gaussian chaoses. Ann. Prob., 34(6):2315–2331,
2006.

[116] Lieven De Lathauwer. A Link between the Canonical Decomposition in Multilinear Algebra
and Simultaneous Matrix Diagonalization. SIAM J. Matrix Analysis and Applications, 28(3):
642–666, 2006.

[117] Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng. ICA with Reconstruction Cost for Efficient
Overcomplete Feature Learning. In NIPS, pages 1017–1025, 2011.

[118] Quoc V. Le, Alexandre Karpenko, Jiquan Ngiam, and Andrew Y. Ng. ICA with Reconstruc-
tion Cost for Efficient Overcomplete Feature Learning. In NIPS, pages 1017–1025, 2011.

[119] M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural computa-
tion, 12(2):337–365, 2000.

[120] R. Livni, S. Shalev-Shwartz, and O. Shamir. On the computational efficiency of training
neural networks. In NIPS, pages 855–863, 2014.

[121] Robert J Marks II and Payman Arabshahi. Fourier analysis and filtering of a single hidden
layer perceptron. In International Conference on Artificial Neural Networks (IEEE/ENNS),
Sorrento, Italy, 1994.

[122] Andreas Maurer, Massimiliano Pontil, and Bernardino Romera-Paredes. Sparse coding for
multitask and transfer learning. ArxXiv preprint, abs/1209.0738, 2012.

[123] B. McWilliams, D. Balduzzi, and J. Buhmann. Correlated random features for fast semi-
supervised learning. In Advances in Neural Information Processing Systems, pages 440–448,
2013.

[124] Nishant A. Mehta and Alexander G. Gray. Sparsity-based generalization bounds for predictive
sparse coding. In Proc. of the Intl. Conf. on Machine Learning (ICML), Atlanta, USA, June
2013.

[125] Jorma K. Merikoski and Ravinder Kumar. Inequalities for spreads of matrix sums and prod-
ucts. Applied Mathematics E-Notes, 4:150–159, 2004.

[126] J Mocks. Topographic components model for event-related potentials and some biophysical
considerations. IEEE transactions on biomedical engineering, 6(35):482–484, 1988.

[127] A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of gaussians. In
FOCS, 2010.

[128] Nelson Morgan and Hervé Bourlard. Generalization and parameter estimation in feedforward
nets: Some experiments. In NIPS, pages 630–637, 1989.

[129] E. Mossel and S. Roch. Learning nonsingular phylogenies and hidden markov models. The
Annals of Applied Probability, 16(2):583–614, 2006.

176

[130] Praneeth Netrapalli, Prateek Jain, and Sujay Sanghavi. Phase retrieval using alternating
minimization. arXiv preprint arXiv:1306.0160, 2013.

[131] N. H. Nguyen, P. Drineas, and T. D. Tran. Tensor sparsification via a bound on the spectral
norm of random tensors. arXiv preprint arXiv:1005.4732, May 2010.

[132] XuanLong Nguyen. Posterior contraction of the population polytope in finite admixture
models. arXiv preprint arXiv:1206.0068, 2012.

[133] Karl Pearson. Contributions to the mathematical theory of evolution. Philosophical Trans-
actions of the Royal Society of London. A, 186:343–414, 1895.

[134] J. K. Pritchard, M. Stephens, and P. Donnelly. Inference of population structure using
multilocus genotype data. Genetics, 155:945–959, 2000.

[135] Yuval Rabani, Leonard Schulman, and Chaitanya Swamy. Learning mixtures of arbitrary
distributions over large discrete domains. arXiv preprint arXiv:1212.1527, 2012.

[136] B. Rao and K. Kreutz-Delgado. An affine scaling methodology for best basis selection. IEEE
Tran. Signal Processing, 47:187–200, January 1999.

[137] Raúl Rojas. Neural networks: a systematic introduction. Springer Science & Business Media,
1996.

[138] M. Rudelson and R. Vershynin. The smallest singular value of a random rectangular matrix.
Communications on Pure and Applied Mathematics, 62(12):1707–1739, 2009.

[139] Mark Rudelson and Roman Vershynin. Smallest singular value of a random rectangular
matrix. Communications on Pure and Applied Mathematics, 62(12):1707–1739, 2009.

[140] Hanie Sedghi and Anima Anandkumar. Provable methods for training neural networks with
sparse connectivity. NIPS workshop on Deep Learning and Representation Learning, Dec.
2014.

[141] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, 2014.

[142] Amnon Shashua and Anat Levin. Linear image coding for regression and classification using
the tensor-rank principle. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages I–42. IEEE,
2001.

[143] Nicholas D. Sidiropoulos and Rasmus Bro. On the uniqueness of multilinear decomposition
of N-way arrays. Journal of Chemometrics, 14(3):229–239, 2000.

[144] Nicholas D Sidiropoulos, Rasmus Bro, and Georgios B Giannakis. Parallel factor analysis in
sensor array processing. Signal Processing, IEEE Transactions on, 48(8):2377–2388, 2000.

[145] Jǐŕı Š́ıma. Training a single sigmoidal neuron is hard. Neural Computation, 14(11):2709–2728,
2002.

[146] Matthew Skala. Hypergeometric tail inequalities: ending the insanity.
http://ansuz.sooke.bc.ca/professional/hypergeometric.pdf.

177

http://ansuz.sooke.bc.ca/professional/hypergeometric.pdf

[147] L. Song, A. Anandkumar, B. Dai, and B. Xie. Nonparametric estimation of multi-view latent
variable models. Available on arXiv:1311.3287, Nov. 2013.

[148] Daniel A. Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictio-
naries. ArxXiv preprint, abs/1206.5882, 2012.

[149] Daniel A Spielman, Huan Wang, and John Wright. Exact recovery of sparsely-used dictio-
naries. In Proc. of Conf. on Learning Theory, 2012.

[150] Bharath Sriperumbudur, Kenji Fukumizu, Revant Kumar, Arthur Gretton, and Aapo
Hyvärinen. Density estimation in infinite dimensional exponential families. arXiv preprint
arXiv:1312.3516, 2013.

[151] Alwin Stegeman, Jos M.F. Ten Berge, and Lieven De Lathauwer. Sufficient conditions for
uniqueness in candecomp/parafac and indscal with random component matrices. Psychome-
trika, 71(2):219–229, June 2006.

[152] Kevin Swersky, David Buchman, Nando D Freitas, Benjamin M Marlin, et al. On autoen-
coders and score matching for energy based models. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 1201–1208, 2011.

[153] Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
Computational Mathematics, 12(4):389–434, 2012.

[154] André Uschmajew. Local convergence of the alternating least squares algorithm for canonical
tensor approximation. SIAM Journal on Matrix Analysis and Applications, 33(2):639–652,
2012.

[155] M. A. O. Vasilescu and D. Terzopoulos. Multilinear subspace analysis of image ensembles. In
Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society
Conference on, volume 2, pages II–93. IEEE, 2003.

[156] S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. In
FOCS, 2002.

[157] M. Wainwright and M. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends R© in Machine Learning, 1(1-2):1–305, 2008.

[158] Yining Wang, Hsiao-Yu Tung, Alexander Smola, and Anima Anandkumar. Fast and guaran-
teed tensor decomposition via sketching. In Proc. of NIPS, 2015.

[159] Eugene P Wigner. Characteristic vectors of bordered matrices with infinite dimensions. The
Annals of Mathematics, 62(3):548–564, 1955.

[160] T. Zhang and G. Golub. Rank-one approximation to high order tensors. SIAM Journal on
Matrix Analysis and Applications, 23:534–550, 2001.

[161] Yuchen Zhang, Jason D. Lee, and Michael I. Jordan. ℓ1-regularized neural networks are
improperly learnable in polynomial time. CoRR, abs/1510.03528, 2015.

[162] J. Y. Zou, D. Hsu, D. C. Parkes, and R. P. Adams. Contrastive learning using spectral
methods. In Advances in Neural Information Processing Systems, pages 2238–2246, 2013.

178

Appendix A

Proofs for Overcomplete CP Tensor

Decomposition: Incoherent

Components

A.1 More Related Works

Tensor decomposition for learning undercomplete models: Several latent variable models

can be learned through tensor decomposition including independent component analysis [69], topic

models, Gaussian mixtures, hidden Markov models [15] and network community models [12]. In the

undercomplete setting, Anandkumar et al. [15] analyze robust tensor power iteration for learning

LVMs, and Song et al. [147] extend analysis to the nonparametric setting. These works require

the tensor factors to have full column rank, which rules out overcomplete models. Moreover,

they require whitening the input data, and hence the sample complexity depends on the condition

number of the factor matrices. For instance, when k = d, for random factor matrices, the previous

tensor approaches in Song et al. [147], Anandkumar et al. [11] have a sample complexity of Ω̃(k6.5),

while our result provides improved sample complexity Ω̃(k2) assuming incoherent components.

179

Learning overcomplete models: In general, learning overcomplete models is challenging, and

they may not even be identifiable. The FOOBI procedure by De Lathauwer et al. [69] shows that a

polynomial-time procedure can recover the components of ICA model (with generic factors) when

k = O(d2), where the moment is fourth order. However, the procedure does not work for third-

order overcomplete tensors. For the fifth order tensor, Goyal et al. [80], Bhaskara et al. [41] perform

simultaneous diagonalization on the matricized versions of random slices of the tensor and provide

careful perturbation analysis. But, this procedure cannot handle the same level of overcompleteness

as FOOBI, since an additional dimension is required for obtaining two (or more) fourth order tensor

slices. In addition, Goyal et al. [80] provide stronger results for ICA, where the tensor slices can be

obtained in the Fourier domain. Given 4th order tensor, they need poly(k4) number of unlabeled

samples for learning ICA (where the poly factor is not explicitly characterized), while we only

need Ω̃(k2.5) (when k = Θ(d2)/polylog(d)). Anderson et al. [23] convert the problem of learning

Gaussian mixtures to an ICA problem and exploit the Fourier PCA method in Goyal et al. [80].

More precisely, for a Gaussian mixtures model with known identical covariance matrices, when the

number of components k = poly(d), the model can be learned in polynomial time (as long as a

certain non-degeneracy condition is satisfied).

Arora et al. [27], Agarwal et al. [3], Barak et al. [34] provide guarantees for the sparse coding

model (also known as dictionary learning problem). Arora et al. [27], Agarwal et al. [3] provide

clustering based approaches for approximately learning incoherent dictionaries and then refining

them through alternating minimization to obtain exact recovery of both the dictionary and the

coefficients. They can handle sparsity level up to O(
√
d) (per sample) and the size of the dictionary

k can be arbitrary. Barak et al. [34] consider tensor decomposition and dictionary learning using

sum-of-squares (SOS) method. In contrast to simple iterative updates considered here, SOS involves

solving semi-definite programs. They provide guaranteed recovery by a polynomial time complexity

kO(1/δ) for some 0 < δ < 1, when the size of the dictionary k = Θ(d), and the sparsity level is k1−δ.

They also provide guarantees for higher sparsity levels up to (a small enough) constant fraction of

k, but the computational complexity of the algorithm becomes quasi-polynomial: kO(log k). They

can also handle higher level of overcompleteness at the expense of reduced sparsity level. They do

not require any incoherence conditions on the factor matrices and they can handle the signal to

180

noise ratio being a constant. Thus, their work has strong guarantees, but at the expense of running

a complicated algorithm. In contrast, we consider a simple alternating rank-1 updates algorithm,

but require more stringent conditions on the model.

There are other recent works which can learn overcomplete models, but under different settings than

the one considered in this work. Anandkumar et al. [14] learn overcomplete sparse topic models,

and provide guarantees for Tucker tensor decomposition under sparsity constraints. Specifically,

the model is identifiable using (2n)th order moments when the latent dimension k = O(dn) and

the sparsity level of the factor matrix is O(d1/n), where d is the observed dimension. The Tucker

decomposition is more general than the CP decomposition considered here, and the techniques

in [14] differ significantly from the ones considered here, since they incorporate sparsity, while we

incorporate incoherence here.

Concentration Bounds: We obtain tight concentration bounds for empirical tensors in this work.

In contrast, applying matrix concentration bounds, e.g. [153], leads to strictly worse bounds since

they require matricizations of the tensor. Latala [115] provides an upper bound on the moments

of the Gaussian chaos, but they are limited to independent Gaussian distributions (and can be

extended to other cases such as Rademacher distribution). The principle of entropy-concentration

trade-off [138], employed in this work, have been used in other contexts. For instance, Nguyen

et al. [131] provide a spectral norm bound for random tensors. They first apply a symmetrization

argument which reduces the problem to bounding the spectral norm of a random Gaussian tensor

and then employ entropy-concentration trade-off to bound its spectral norm. They also exploit the

bounds on the Lipschitz functions of Gaussian random variables. While Nguyen et al. [131] employ

a rough classification of vectors (to be covered) into dense and sparse vectors, we require a finer

classification of vectors into different “buckets” (based on their inner products with given vectors)

to obtain the tight concentration bounds in this work. Moreover, we do not impose Gaussian

assumption in this work, and instead require more general conditions such as RIP or bounded

2-to-3 norms.

181

A.2 Deterministic Assumptions

In the main text, we assume matrices A, B, and C are randomly generated. However, we are not

using all the properties of randomness. In particular, we only need the following assumptions.

(A1) Rank-k decomposition: The third order tensor T has a CP rank of k ≥ 1 with decompo-

sition

T =
∑

i∈[k]
wi(ai ⊗ bi ⊗ ci), wi > 0, ai, bi, ci ∈ Sd−1,∀ i ∈ [k], (A.1)

where Sd−1 denotes the unit d-dimensional sphere, i.e. all the vectors have unit 1 2-norm

as ‖ai‖ = ‖bi‖ = ‖ci‖ = 1, i ∈ [k]. Furthermore, define wmin := mini∈[k]wi and wmax :=

maxi∈[k]wi.

(A2) Incoherence: The components are incoherent, and let

ρ := max
i 6=j
{|〈ai, aj〉|, |〈bi, bj〉|, |〈ci, cj〉|} ≤

α√
d
, (A.2)

for some α = polylog(d). In other words, A⊤A = I + JA, B⊤B = I + JB , and C⊤C =

I + JC , where JA, JB , and JC , are incoherence matrices with zero diagonal entries. We have

max {‖JA‖∞, ‖JB‖∞, ‖JC‖∞} ≤ ρ as in (A.2).

(A3) Spectral norm conditions: The components satisfy spectral norm bound

max {‖A‖, ‖B‖, ‖C‖} ≤ 1 + α0

√
k

d
,

for some constant α0 > 0.

1This normalization is for convenience and the results hold for general case.

182

(A4) Bounds on tensor norms: Tensor T satisfies the bound

‖T‖ ≤ wmaxα0,

∥∥T\j(aj , bj , I)
∥∥ :=

∥∥∥∥
∑

i 6=j
wi〈ai, aj〉〈bi, bj〉cj

∥∥∥∥ ≤ αwmax

√
k

d
,

for some constant α0 and α = polylog(d).

(A5) Rank constraint: The rank of the tensor is bounded by k = o
(
d1.5/polylog d

)
.

(A6) Bounded perturbation: Let ψ denote the spectral norm of perturbation tensor as

ψ := ‖Ψ‖. (A.3)

Suppose ψ is bounded as 2

ψ ≤ min

{
1

6
,

√
log k

α0

√
d

}
· wmin,

where α0 is a constant.

(A7) Weights ratio: The maximum ratio of weights γ := wmax
wmin

satisfies the bound

γ = O

(
min

{√
d,
d1.5

k

})
.

(A8) Contraction factor: The contraction factor q in Theorem 2.4 is defined as

q :=
2wmax

wmin


 2α√

d

(
1 + α0

√
k

d

)2

+ β′


 , (A.4)

for some constants α0, β
′ > 0, and α = polylog(d). In particular, we need αα0

√
k/d + β′ <

wmax/10wmin which ensures q < 1/2. This is satisfied when
√
k/d < wmax/wmin poly log d

and β′ < wmax/20wmin. The parameter β′ is determined by the following assumption (initial-

ization).

2Note that for the local convergence guarantee, only the first condition ψ ≤ wmin

6
is required.

183

(A9) Initialization: Let

ǫ0 := max
{

dist
(
â(0), aj

)
,dist

(
b̂(0), bj

)}
,

denote the initialization error w.r.t. to some j ∈ [k]. Suppose it is bounded as

ǫ0 ≤ min

{
β′

α0
,

√
wmin

6wmax
,
wminq

4wmax
,
2wmax

wminq

(
wmin

6wmax
− α
√
k

d

)}
,

for some constants α0, β
′ > 0, α = polylog(d), and 0 < q < 1/2 which is defined in (A.4).

(A10) 2→ p norm: For some fixed constant p < 3, max{‖A⊤‖2→p, ‖B⊤‖2→p, ‖C⊤‖2→p} ≤ 1+o(1).

Remark 26. Many of the assumptions are actually parameter choices. The only properties of

random matrices required are (A2), (A3), (A4) and (A10),. See Appendix A.2.1 for detailed

discussion.

Let us provide a brief discussion about the above assumptions. Condition (A1) requires the presence

of a rank-k decomposition for tensor T . We normalize the component vectors for convenience,

and this removes the scaling indeterminacy issues which can lead to problems in convergence.

Additionally, we impose incoherence constraint in (A2), which allows us to provide convergence

guarantee in the overcomplete setting. Assumptions (A3) and (A4) impose bounds on the spectral

norm of tensor T and its decomposition components. Note that assumptions (A2)-(A4) and (A10)

are satisfied w.h.p. when the columns of A, B, and C are generically drawn from unit sphere Sd−1

(see Lemma A.1 and Guédon and Rudelson [81]), all others are parameter choices. Assumption

(A5) limits the overcompleteness of problem which is required for providing convergence guarantees.

The first bound on perturbation in (A6) as ψ ≤ wmin
6 is required for local convergence guarantee

and the second bound ψ ≤ wmin
√
log k

α0

√
d

is needed for arguing initialization provided by Procedure 2.

Assumption (A7) is required to ensure contraction happens in each iteration. Assumption (A8)

defines contraction ratio q in each iteration, and Assumption (A9) is the initialization condition

required for local convergence guarantee.

The tensor-spectral norm and 2 → p norm assumptions (A4) and (A10) may seem strong as we

cannot even verify them given the matrix. However, when k < d1.25−ǫ for arbitrary constant ǫ > 0,

184

both conditions are implied by incoherence. See Lemma A.3. We only need these assumptions to

go to the very overcomplete setting.

A.2.1 Random matrices satisfy the deterministic assumptions

Here, we provide arguments that random matrices satisfy conditions (A2), (A3), (A4), and (A10).

It is well known that random matrices are incoherent, and have small spectral norm (bound on

spectral norm dates back to Wigner [159]). See the following lemma.

Lemma A.1. Consider random matrix X ∈ R
d×k where its columns are uniformly drawn at

random from unit d-dimensional sphere Sd−1. Then, it satisfies the following incoherence and

spectral bounds with high probability as

max
i,j∈[k],i 6=j

|〈Xi,Xj〉| ≤
α√
d
,

‖X‖ ≤ 1 + α0

√
k

d
,

for some α = O(
√

log k) and α0 = O(1).

The spectral norm of the tensor is less well-understood. However, it can be bounded by the 2→ 3

norm of matrices. Using tools from Guédon and Rudelson [81], Adamczak et al. [2], we have the

following result.

Lemma A.2. Consider a random matrix A ∈ R
d×k whose columns are drawn uniformly at random

from unit sphere. If k < dp/2/polylog(d), then

∥∥A⊤∥∥
2→p
≤ 1 + o(1).

This directly implies Assumption (A10). In particular, since we only apply Assumption (A10) to

unsupervised setting (k ≤ O(d)) in Appendix A.5, for randomly generated tensor, Assumption

(A10) holds for all p > 2 (notice that we only need it to hold for some p < 3).

185

We also give an alternative proof of 2→ p norm which does not assume randomness and only relies

on incoherence.

Lemma A.3. Suppose columns of matrix A ∈ R
d×k have unit norm and satisfy the incoherence

condition (A2) and spectral norm condition (A3). If k ≤ d1.25−ǫ for arbitrary constant ǫ > 0, then

for any p > 3− 2ǫ, we have
∥∥A⊤∥∥

2→p
≤ 1 + o(1).

Proof: Let L =
√
d/poly log d. By incoherence assumption we know every subset of L columns

in A has singular values within 1± o(1) (by Gershgorin Disk Theorem).

For any unit vector u, let S be the set of L indices that are largest in A⊤u. By the argument above

we know ‖(AS)⊤u‖ ≤ ‖AS‖‖u‖ ≤ 1 + o(1). In particular, the smallest entry in A⊤
S u is at most

2/
√
L. By construction of S this implies for all i not in S, |A⊤

i u| is at most 2/
√
L. Now we can

write the ℓp (p > 2) norm of A⊤u as

‖A⊤u‖pp =
∑

i∈S
|A⊤

i u|p +
∑

i 6∈S
|A⊤

i u|p

≤
∑

i∈S
|A⊤

i u|2 + (2/
√
L)p−2

∑

i 6∈S
|A⊤

i u|2

≤ 1 + o(1).

Here the first inequality uses that every entry outside S is small, and last inequality uses the bound

argued on ‖(AS)⊤u‖, the spectral norm bound assumed on ASc and the fact that p > 3− 2ǫ. �

The 2→ 3 norm implies a bound on the tensor spectral norm by Hölder’s inequality.

Fact 1 (Hölder’s Inequality). When 1/p+1/q = 1, for two sequence of numbers {ai}, {bi}, we have

∑

i

aibi ≤
(∑

i

|ai|p
)1/p(∑

i

|bi|q
)1/q

.

186

Consequently, we have the following corollary.

Corollary A.1. For vectors f, g, h, and weights wi ≥ 0, we have

∑

i

wifigihi ≤ wmax‖f‖3‖g‖3‖h‖3.

Proof: The proof applies Hölder’s inequality twice as

∑

i

wifigihi ≤ wmax

∑

i

|figihi| ≤ wmax(
∑
|fi|3)1/3(

∑
|gihi|3/2)2/3 ≤ wmax‖f‖3‖g‖3‖h‖3,

where in the first application, p = 3 and q = 3/2, and in the second application, p = q = 2 (which

is the special case known as Cauchy-Schwartz). �

In the following lemma, it is shown that the first bound in Assumption (A4) holds for random

matrices w.h.p.

Lemma A.4. Let A, B, and C be random matrices in R
d×k whose columns are drawn uniformly

at random from unit sphere. If k < d3/2/polylog(d), and

T =
∑

i∈[k]
wiai ⊗ bi ⊗ ci,

then

‖T‖ ≤ O(wmax).

Proof: For any unit vectors â, b̂, ĉ, we have

T (â, b̂, ĉ) =
∑

i∈[k]
wi(A

⊤â)i(B
⊤b̂)i(C

⊤ĉ)i

≤ wmax‖A⊤â‖3‖B⊤b̂‖3‖C⊤ĉ‖3

≤ wmax‖A⊤‖2→3‖â‖ · ‖B⊤‖2→3‖b̂‖ · ‖C⊤‖2→3‖ĉ‖

= O(wmax),

187

where Corollary A.1 is exploited in the first inequality, and Lemma A.2 is used in the last inequality.

�

For the case with two undercomplete and one overcomplete dimensions (see Corollary 2.2), we can

prove the tensor spectral norm using basic properties of the matrices A,B,C.

Lemma A.5. Let A,B ∈ R
du×k be matrices with spectral norm bounded by O(1), and C ∈ R

do×k

be a matrix whose columns have unit norm. Let

T =

k∑

i=1

wiai ⊗ bi ⊗ ci,

then we have

‖T‖ ≤ O(wmax).

Proof: For any unit vectors u, v ∈ R
du and w ∈ R

do , by assumptions we know ‖A⊤u‖ ≤

O(1), ‖B⊤v‖ ≤ O(1) and ‖C⊤w‖∞ ≤ 1. Now we have

T (u, v, w) =

k∑

i=1

wi〈ai, u〉〈bi, v〉〈ci, w〉

≤ wmax

k∑

i=1

|〈ai, u〉〈bi, v〉|

≤ wmax‖A⊤u‖‖B⊤v‖

= O(wmax).

The first inequality uses triangle inequality and the fact that |〈ci, w〉| ≤ 1. The Cauchy-Schwartz

inequality is exploited in the second inequality. Therefore, the spectral norm of the tensor is

bounded by O(wmax). �

Finally, we show in the following lemma that the second bound in Assumption (A4) is satisfied for

random matrices.

188

Lemma A.6. Let A,B,C ∈ R
d×k be independent, normalized (column) Gaussian matrices. Then

for all i ∈ [k], we have with high probability

∥∥∥C\i diag(w\i)(JA ∗ JB)
\i
i

∥∥∥ = Õ

(
wmax

√
k

d

)
.

Proof: We have

C\i diag(w\i)(JA ∗ JB)
\i
i =

∑

j 6=i
Cjwj〈Ai, Aj〉〈Bi, Bj〉 =

∑

j 6=i
Cjδj ,

where δj := wj〈Ai, Aj〉〈Bi, Bj〉 is independent of Cj. From Lemma A.1, columns of A and B are

incoherent, and therefore, for j 6= i, we have

|δj | = Õ(wmax/d).

Now since Cj’s are independent, zero mean vectors, the sum
∑

j 6=i δjCj is zero mean and its variance

is bounded by Õ(w2
maxk/d

2). Then, from vector Bernstein’s bound we have with high probability

∥∥∥C\i diag(w\i)(JA ∗ JB)
\i
i

∥∥∥ = Õ

(
wmax

√
k

d

)
.

The proof is completed by applying union bound. �

Spectral norm of Khatri-Rao product

For the convergence guarantees of the second step of algorithm on removing residual error, we need

the following additional bound on the spectral norm of Khatri-Rao product of random matrices.

(A11) Spectral Norm Condition on Khatri-Rao Products: The components satisfy the

following spectral norm bound on the Khatri-Rao products as

max {‖A⊙B‖, ‖B ⊙ C‖, ‖A⊙ C‖} ≤ 1 + α0

√
k

d
,

189

for α0 ≤ poly log d.

We now prove that Assumption (A11) is satisfied with high probability, if the columns of A, B and

C are uniformly i.i.d. drawn from unit d-dimensional sphere.

The key idea is to view (A ⊙ B)⊤(A ⊙ B) as the sum of random matrices, and use the following

Matrix Bernstein’s inequality to prove concentration results.

Lemma A.7. Let M =
∑n

i=1Mi be sum of independent symmetric d× d matrices with E[Mi] = 0,

assume all matrices Mi’s have spectral norm at most R almost surely, let σ2 = ‖E[M2
i]‖, then for

any τ

Pr[‖M‖ ≥ τ] ≤ 2d exp

(−τ2/2
σ2 +Rτ/3

)
.

A.2.1.0.1 Remark: Although the lemma requires all Mi’s to have spectral norm at most R

almost surely, it suffices to have spectral norm bounded by R with high probability and bounded by

R∞ = poly(d, k) almost surely. This is because we can always condition on the fact that ‖Mi‖ ≤ R

for all i. Such conditioning can only change the expectations by a negligible amount, and does not

affect independence between Mi’s.

Random unit vectors are not easy to work with, as entries in the same column are not independent.

Thus, we first prove the result for matrices A and B whose entries are independent Gaussian

variables.

Lemma A.8. Suppose A, B ∈ R
d×k(k > polylog d) are independent random matrices with inde-

pendent Gaussian entries, let M = (A⊙B)⊤(A⊙B) = (A⊤A) ∗ (B⊤B), then with high probability

‖M − diag(M)‖ ≤ O(d
√
k log d)

190

Proof: Let a1, a2, ..., ad ∈ R
k be the columns of A⊤ (the rows of A, but treated as column

vectors). We can rewrite M − diagM as

M − diagM = (
∑

i∈[d]
aia

⊤
i) ∗ (B⊤B − diag(B⊤B)) =

∑

i∈[d]
(aia

⊤
i) ∗ (B⊤B − diag(B⊤B)).

Now let Q = B⊤B − diag(B⊤B), and Mi = (aia
⊤
i) ∗Q, we would like to bound the spectral norm

of the sum M =
∑

i∈[d]Mi. Clearly these entries are independent, E[Mi] = E[aia
⊤
i]∗Q = I ∗Q = 0,

so we can apply Matrix Bernstein bound.

Note that when d < k, by standard random matrix theory we know ‖Q‖ ≤ O(k). Also, every row of

Q has norm smaller than the corresponding row of B⊤B, which is bounded by ‖B‖‖b(i)‖ ≤ O(
√
kd).

When d ≥ k, again by matrix concentration we know ‖Q‖ ≤ O(
√
dk log d). Every row of Q has

norm bounded by O(
√
kd) (because entries in a row are independently random, with variance equal

to d).

First let us bound the spectral norm for each of the Mi’s. Notice that for any vector v, v⊤[(aia
⊤
i) ∗

Q]v = (v∗ai)⊤Q(v∗ai) by definition of Hadamard product. On the other hand, ‖v∗ai‖ ≤ ‖v‖‖ai‖∞.

With high probability ‖ai‖∞ ≤ O(
√

log k), hence ‖Mi‖ ≤ ‖ai‖2∞‖Q‖. This is bounded by O(k log d)

when d < k and O(
√
kd log2 d) when k ≤ d.

Next we bound the variance ‖E[
∑

i∈[d]M
2
i]‖. Since all the Mi’s are i.i.d., it suffices to analyze

E[M2
1]. Let T = E[M2

1] = E[((a1a
⊤
1) ∗Q)2], by definition of Hadamard product, we know

Tp,q = E[
∑

r∈[k]
Qp,rQr,qa1(p)a1(q)a1(r)2].

This number is 0 when p 6= q by independence of entries of a1. When p = q, this is bounded

by 3
∑

r∈[k]Q
2
p,r because E[a1(p)

2a1(r)2] is 1 when p 6= r and 3 when p = r. Therefore Tp,p ≤

3
∑

r∈[k]Q
2
p,r = 3‖Q(p)‖2 ≤ O(dk). Since T is a diagonal matrix, we know ‖T‖ ≤ O(dk), and

σ2 = ‖dT‖ = O(d2k).

By Matrix Bernstein we know with high probability ‖M‖ ≤ O(d
√
k log d). �

191

Using this lemma, it is easy to get a bound when columns of A, B are unit vectors. In this case,

we just need to normalize the columns, the normalization factor is bounded between d2/2 and 2d2

with high probability, and therefore, ‖(A⊤A)(B⊤B)− I‖ ≤ O(
√
k log d/d).

A.3 Proof of Convergence Results in Theorems 2.4 and 2.5

The main part of the proof is to show that error contraction happens in each iteration of Algo-

rithms 1 and 4 as the two main parts of the algorithm. Then, the contraction result after t iterations

is directly argued.

In the following, we first provide a local contraction result for the tensor power iteration (2.6) in

Algorithm 1 given noisy tensor T̂ . This leads to Lemma 2.2 which is the local convergence guarantee

of the tensor power updates. Then, we provide a local contraction argument for the coordinate

descent step (2.10) in Algorithm 4.

Combining the above convergence arguments for both updates conclude the overall local conver-

gence guarantee in Theorem. 2.4. Then, combing this local convergence guarantee and the ini-

tialization result in Theorem A.1 leads to the global convergence guarantee in Theorem 2.5. In

addition, the result in Corollary 2.2 is similarly argued where the bound on the spectral norm of

the tensor is argued in Lemma A.5.

A.3.1 Convergence of tensor power iteration: Algorithm 1

In this section, we prove Lemma 2.2 which is the local convergence guarantee of the tensor power

updates in Algorithm 1.

Define function f(ǫ; k, d) as

f(ǫ; k, d) := α

√
k

d
+

2α√
d

(
1 + α0

√
k

d

)2

ǫ+ α0ǫ
2, (A.5)

192

where α = polylog(d) and α0 = O(1). Notice that this function is a small constant when k <

d1.5/poly log d.

Lemma A.9 (Contraction result of Algorithm 1 in one update). Consider T̂ = T + Ψ as the input

to Algorithm 1, where T is a rank-k tensor, and Ψ is a perturbation tensor. Suppose Assumptions

(A1)-(A5) hold, and estimates â and b̂ satisfy distance bounds

dist(â, aj) ≤ ǫa,

dist(̂b, bj) ≤ ǫb,

for some j ∈ [k], and ǫa, ǫb > 0. Let ǫ := max{ǫa, ǫb}, and suppose ψ defined in (A.3) be small

enough such that 3

wj − wjǫ2 − wmaxf(ǫ; k, d) − ψ > 0,

where f(ǫ; k, d) is defined in (A.5). Then, update ĉ in (2.6) satisfies the following distance bound

with high probability (w.h.p.)

dist(ĉ, cj) ≤
wmaxf(ǫ; k, d) + ψ

wj −wjǫ2 −wmaxf(ǫ; k, d)− ψ . (A.6)

Furthermore, if the bound in (A.6) is such that dist(ĉ, cj) ≤ ǫ, then the update ŵ := T̂ (â, b̂, ĉ) in

(2.8) also satisfies w.h.p.

|ŵ − wj| ≤ 2wjǫ
2 +wmaxf(ǫ; k, d) + ψ.

Remark 27. In the asymptotic regime, f(ǫ; k, d) is

f(ǫ; k, d) = Õ

(√
k

d

)
+ Õ

(
max

{
1√
d
,
k

d3/2

})
ǫ+O(1)ǫ2.

Note that the last term is the only effective contracting term. The other terms include a constant

term, and the term involving ǫ disappears in only one iteration as long as k, d→∞, and Õ
(

k
d3/2

)
→

0.

3This is the denominator of bound provided in (A.6).

193

Remark 28 (Rate of convergence). The local convergence result provided in Theorem 2.4 has a linear

convergence rate. But, Algorithm 1 actually provides an almost-quadratic convergence rate in the

beginning, and linear convergence rate later on. It can be seen by referring to one-step contraction

argument provided in Lemma A.9 where the quadratic term α0ǫ
2 exists. In the beginning, this

term is dominant over linear term involving ǫ, and we have almost-quadratic convergence. Writing

α0ǫ
2 = α0ǫ

ζǫ2−ζ , we observe that we get rate of convergence equal to 2 − ζ as long as we have

initialization error bounded as ǫζ0 = O(1). Therefore, we can get arbitrarily close to quadratic

convergence with appropriate initialization error. Note that when the model is more overcomplete,

the algorithm more rapidly reaches to the linear convergence phase. For the sake of clarity, in

proposing Theorem 2.4, we approximated the almost-quadratic convergence rate in the beginning

with linear convergence.

Lemma A.9 is proposed in the general form. In Lemma A.10, we provide explicit contraction

result by imposing additional perturbation, contraction and initialization Assumptions (A6), (A8)

and (A9). We observe that under reasonable rank, perturbation and initialization conditions, the

denominator in (A.6) can be lower bounded by a constant, and the numerator is explicitly bounded

by a term involving ǫ, and a constant non-contracting term.

Lemma A.10 (Contraction result of Algorithm 1 in one update). Consider T̂ = T+Ψ as the input

to Algorithm 1, where T is a rank-k tensor, and Ψ is a perturbation tensor. Let Assumptions 4 (A1)-

(A9) hold. Note that initialization bound in (A9) is satisfied for some j ∈ [k]. Then, update ĉ in

(2.6) satisfies the following distance bound with high probability (w.h.p.)

dist(ĉ, cj) ≤ Const.︸ ︷︷ ︸
non-contracting term

+ qǫ0︸︷︷︸
contracting term

,

where

Const. :=
2

wmin

(
ψ + wmaxα

√
k

d

)
, (A.7)

4As mentioned in the assumptions, from perturbation bound in (A6), only the bound ψ ≤ wmin

6
is required here.

194

and contraction ratio q < 1/2 is defined in (A.4). Note that α = polylog(d). In addition, if the

above bound be such that dist(ĉ, cj) ≤ ǫ0, then the update ŵ := T̂ (â, b̂, ĉ) in (2.8) also satisfies w.h.p.

|ŵ − wj| ≤
wmin

2
Const.+wminqǫ0.

Proof of Lemma 2.2: We incorporate condition (A7) to show that q < 1/2 in assumption (A8)

is satisfied. In addition, (A7) implies that the bound on ǫ0 in assumption (A9) holds where it can

be shown that the bound in (A9) is bounded as O(1/γ). Then, the result is directly proved by

iteratively applying the result of Lemma A.10. �

Proof of auxiliary lemmata: tensor power iteration in Algorithm 1

Before providing the proofs, we remind a few definitions and notations.

In Assumption (A2), matrices JA, JB , and JC , are defined as incoherence matrices with zero

diagonal entries such that A⊤A = I + JA, B⊤B = I + JB , and C⊤C = I + JC . We have

max {‖JA‖∞, ‖JB‖∞, ‖JC‖∞} ≤ ρ as in (A.2).

Given matrix A ∈ R
d×k, the following notations are defined to refer to its sub-matrices. Aj denotes

the j-th column and Aj denotes the j-th row of A. Hence, we have Aj = aj , j ∈ [k]. In addition,

A\j ∈ R
d×(k−1) is A with its j-th column removed, and A\j ∈ R

(d−1)×k is A with its j-th row

removed.

Proof of Lemma A.9: Let z∗a ⊥ aj and z∗b ⊥ bj denote the vectors that achieve supremum

value in (2.13) corresponding to dist(â, aj) and dist(̂b, bj), respectively. Furthermore, without loss

of generality, assume ‖z∗a‖ = ‖z∗b ‖ = 1. Then, â and b̂ are decomposed as

â = 〈aj, â〉aj + dist(â, aj)z
∗
a, (A.8a)

b̂ = 〈bj, b̂〉bj + dist(̂b, bj)z
∗
b . (A.8b)

195

Let C := C Diag(w) denote the unnormalized matrix C, and c̃ := T̂ (â, b̂, I) denote the unnormalized

update in (2.6). The goal is to bound dist
(
c̃, Cj

)
. Consider any zc ⊥ Cj such that ‖zc‖ = 1. Then,

we have

〈zc, c̃〉 = T̂ (â, b̂, zc) = T (â, b̂, zc) + Ψ(â, b̂, zc).

Substituting â and b̂ from (A.8a) and (A.8b), we have

T (â, b̂, zc) = 〈aj , â〉〈bj , b̂〉T (aj , bj , zc)︸ ︷︷ ︸
S1

+ 〈aj , â〉dist(̂b, bj)T (aj , z
∗
b , zc)︸ ︷︷ ︸

S2

+ dist(â, aj)〈bj , b̂〉T (z∗a, bj , zc)︸ ︷︷ ︸
S3

+ dist(â, aj) dist(̂b, bj)T (z∗a, z
∗
b , zc)︸ ︷︷ ︸

S4

.

In the following derivations, we repeatedly use the equality that for any u, v ∈ R
d, we have

T (u, v, I) = C(A⊤u ∗B⊤v). For S1, we have

S1 ≤ |T (aj , bj , zc)| = |z⊤c C(A⊤aj ∗B⊤bj)|

=
∣∣∣z⊤c C

[
ej + (JA ∗ JB)j

]∣∣∣

=
∣∣∣z⊤c C\j (JA ∗ JB)

\j
j

∣∣∣

≤ wmaxα

√
k

d
,

where equalities A⊤A = I + JA and B⊤B = I + JB are exploited in the second equality, and the

assumption that zc ⊥ Cj is used in the last equality. The last inequality is from Assumption (A4).

For S2, we have

S2 ≤ ǫb|T (aj , z
∗
b , zc)| = ǫb|z⊤c C(A⊤aj ∗B⊤z∗b)|

= ǫb

∣∣∣z⊤c C\j
[
(JA)

\j
j ∗

(
B\j
)⊤
z∗b
]∣∣∣

≤ ǫb
∥∥C\j

∥∥ ·
∥∥∥(JA)

\j
j

∥∥∥
∞
·
∥∥∥
(
B\j
)⊤
z∗b

∥∥∥

≤ wmax
α√
d

(
1 + α0

√
k

d

)2

ǫb,

196

for some α = polylog(d) and α0 = O(1). Second inequality is concluded from ‖u ∗ v‖ ≤ ‖u‖∞ · ‖v‖,

and Assumptions (A2) and (A3) are exploited in the last inequality. Similarly, for S3, we have

S3 ≤ ǫa
∣∣∣z⊤c C\j

[
(JB)

\j
j ∗

(
A\j
)⊤
z∗a
]∣∣∣

≤ wmax
α√
d

(
1 + α0

√
k

d

)2

ǫa.

Finally, for S4, we have

S4 ≤ ǫaǫb|T (z∗a, z
∗
b , zc)| ≤ ǫaǫb‖T‖ ≤ wmaxα0ǫaǫb,

for some α0 = O(1). The bound on ‖T‖ is from Assumption (A4). Note that for random com-

ponents, we showed in Lemma A.4 that this bound holds w.h.p. exploiting Assumption (A5) and

results of Guédon and Rudelson [81]. For the error term Ψ(â, b̂, zc), we have

Ψ(â, b̂, zc) ≤ ψ,

which is concluded from the definition of spectral norm of a tensor. Note that all vectors â, b̂, zc

have unit norm.

Let ǫ := max{ǫa, ǫb}. Then, combining all the above bounds, we have w.h.p.

〈zc, c̃〉 ≤ wmaxf(ǫ; k, d) + ψ,

where f(ǫ; k, d) is

f(ǫ; k, d) := α

√
k

d
+

2α√
d

(
1 + α0

√
k

d

)2

ǫ + α0ǫ
2.

197

For c̃, we have

c̃ = T (â, b̂, I) + Ψ(â, b̂, I)

=
∑

i

wi〈ai, â〉〈bi, b̂〉ci + Ψ(â, b̂, I)

= wj〈aj , â〉〈bj , b̂〉cj +
∑

i 6=j
wi〈ai, â〉〈bi, b̂〉ci + Ψ(â, b̂, I),

and therefore,

‖c̃‖ ≥
∥∥∥wj〈aj , â〉〈bj , b̂〉cj

∥∥∥−
∥∥∥∥
∑

i 6=j
wi〈ai, â〉〈bi, b̂〉ci

∥∥∥∥− ‖Ψ(â, b̂, I)‖

≥ wj −wjǫ2 −wmaxf(ǫ; k, d)− ψ,

where inequality 〈aj , â〉〈bj , b̂〉 ≥ 1 − ǫ2 is exploited in the last inequality. Hence, as long as this

lower bound on ‖c̃‖ is positive (small enough ǫ and ψ), we have

dist(c̃, Cj) ≤
wmaxf(ǫ; k, d) + ψ

wj − wjǫ2 − wmaxf(ǫ; k, d) − ψ . (A.9)

Since dist(·, ·) function is invariant with respect to norm, we have dist (ĉ, cj) = dist
(
c̃, Cj

)
which

finishes the proof for bounding dist (ĉ, cj). Note that c̃ = ‖c̃‖ĉ, and Cj = wjcj where wj > 0.

Now, we provide the bound on |wj − ŵ|. As assumed in the lemma, we have distance bounds

max
{

dist (â, aj) ,dist
(
b̂, bj

)
,dist (ĉ, cj)

}
≤ ǫ.

The estimate ŵ = T̂ (â, b̂, ĉ) proposed in (2.8) can be expanded as

ŵ = T (â, b̂, ĉ) + Ψ(â, b̂, ĉ)

=
∑

i

wi〈ai, â〉〈bi, b̂〉〈ci, ĉ〉+ Ψ(â, b̂, ĉ)

= wj〈aj , â〉〈bj , b̂〉〈cj , ĉ〉+
∑

i 6=j
wi〈ai, â〉〈bi, b̂〉〈ci, ĉ〉+ Ψ(â, b̂, ĉ),

198

and therefore,

|wj − ŵ| ≤
∣∣∣wj

(
1− 〈aj , â〉〈bj , b̂〉〈cj , ĉ〉

)∣∣∣+

∣∣∣∣
∑

i 6=j
wi〈ai, â〉〈bi, b̂〉〈ci, ĉ〉

∣∣∣∣+
∣∣∣Ψ(â, b̂, ĉ)

∣∣∣

≤ wj
(

1−
(
1− ǫ2

)1.5)
+ wmaxf(ǫ; k, d) + ψ

≤ 2wjǫ
2 + wmaxf(ǫ; k, d) + ψ,

where 〈aj , â〉〈bj , b̂〉〈cj , ĉ〉 ≥
(
1− ǫ2

)1.5
is exploited in the second inequality. Notice that this argu-

ment is similar to the argument provided earlier for lower bounding ‖c̃‖.

�

Proof of Lemma A.10: The result is proved by applying Lemma A.9, and incorporating

additional conditions (A6), (A8), and (A9). f(ǫ0; k, d) in (A.5) can be bounded as

f(ǫ0; k, d) = α

√
k

d
+

2α√
d

(
1 + α0

√
k

d

)2

ǫ0 + α0ǫ
2
0

≤ α
√
k

d
+


 2α√

d

(
1 + α0

√
k

d

)2

+ β′


 ǫ0

= α

√
k

d
+

wmin

2wmax
qǫ0,

where ǫ0 ≤ β′

α0
from Assumption (A9) is exploited in the inequality. The last equality is concluded

from definition of contracting factor q in (A.4). On the other hand, the denominator in (A.6) can

be lower bounded as

wmin

[
1− wmax

wmin
ǫ20 −

wmax

wmin
f(ǫ0; k, d) − ψ

wmin

]
≥ wmin

[
1− 1

6
− 1

6
− 1

6

]
=
wmin

2
,

where Assumptions (A9) and (A6) are used in the inequality. Applying Lemma A.9, the result on

dist(ĉ, cj) is proved.

199

From Lemma A.9, we also have

|ŵ − wj | ≤ 2wjǫ
2
0 + wmaxf(ǫ0; k, d) + ψ

≤ wmin

2
Const.+2wjǫ

2
0 +

wmin

2
qǫ0

≤ wmin

2
Const.+wminqǫ0.

where ǫ0 ≤ wminq
4wmax

from Assumption (A9) is used in the last inequality. �

A.3.2 Convergence of removing residual error: Algorithm 4

In this section, we provide convergence of the coordinate descent of Algorithm 4 for removing the

residual error. We first provide the following definition.

Definition A.1 ((η0, η1)-nice). Suppose

max{‖A‖, ‖B‖, ‖C‖} ≤ η1
√
k

d
.

Given an approximate solution {Â, B̂, Ĉ, ŵ}, we call it (η0, η1)-nice if matrix Â (similarly B̂ and

Ĉ) satisfies

‖∆Ai‖ := ‖âi − ai‖ ≤ η0
√
k

d
, ∀i ∈ [k],

‖Â‖ ≤ η1
√
k

d
,

and the weights satisfy

|ŵi − wi| ≤ η0wmax

√
k

d
.

Given above conditions are satisfied, we prove the following guarantees for removing residual error,

Algorithm 4.

Lemma A.11 (Local convergence guarantee of the iterations for removing residual error, Algo-

rithm 4). Consider T as the input to Algorithm 4, where T is a rank-k tensor. Suppose Assumptions

200

(A1)-(A5) and (A11) hold (which are satisfied whp when the components are uniformly i.i.d. drawn

from unit d-dimensional sphere). Given initial solution
{
Â(0), B̂(0), Ĉ(0), ŵ(0)

}
which is (η0, η1)-

nice, all the following iterations of Algorithm 4 are (2η0, 3η1)-nice. Furthermore, given the exact

tensor T , the Frobenius norm error max{‖∆A‖F , ‖∆B‖F , ‖∆C‖F , ‖∆w‖/wmin} shrinks by at least

a factor of 2 in every iteration. In addition, if we have a noisy tensor T̂ = T+Ψ such that ‖Ψ‖ ≤ ψ,

then

max{‖∆A(t)‖F , ‖∆B(t)‖F , ‖∆C(t)‖F , ‖∆w(t)‖/wmin} ≤ 2−tη0
k

d
+O

(
ψ
√
k

wmin

)
.

Proof: iteration for removing residual error in Algorithm 4

We now prove Lemma A.11 as the local convergence guarantee of the iterations for removing residual

error, Algorithm 4.

To prove this lemma, we first observe that the algorithm update formula in (2.10) is (before nor-

malization) wi〈ai, âi〉〈bi, b̂i〉ci + ǫi where

ǫi =
∑

j 6=i
(wi〈aj , âi〉〈bj , b̂i〉cj − ŵi〈âi, âj〉〈̂bi, b̂j〉ĉj).

In the following lemma, we show that the error terms ǫi’s are small.

Lemma A.12. Before normalization w̃ic̃i = wi〈ai, âi〉〈bi, b̂i〉ci + ǫi where

k∑

i=1

‖ǫi‖2 ≤ o(1)(wmax(‖∆(A)‖2F + ‖∆(B)‖2F + ‖∆(C)‖2F) + ‖∆w‖2).

Proof: By the update formula in (2.10), we know

ǫi =
∑

j 6=i
(wi〈aj , âi〉〈bj , b̂i〉cj − ŵi〈âi, âj〉〈̂bi, b̂j〉ĉj).

201

We expand it into several terms as follows.

ǫi =
∑

j 6=i
(wi〈aj , âi〉〈bj , b̂i〉cj − ŵi〈âi, âj〉〈̂bi, b̂j〉ĉj)

=
∑

j 6=i
〈ai, aj〉〈bi, bj〉(wjcj − ŵj ĉj) (type 1)

+
∑

j 6=i
wj〈aj ,∆Ai〉〈bj , bi〉cj +

∑

j 6=i
wj〈aj , ai〉〈bj ,∆Bi〉cj (type 2)

−
∑

j 6=i
ŵj〈aj , ai〉〈bj ,∆Bi〉ĉj −

∑

j 6=i
ŵj〈aj , ai〉〈∆Bj , b̂i〉ĉj

−
∑

j 6=i
ŵj〈aj ,∆Ai〉〈bj , bi〉ĉj −

∑

j 6=i
ŵj〈∆Aj , âi〉〈bj , bi〉ĉj

+
∑

j 6=i
〈aj ,∆Ai〉〈bj ,∆Bi〉cj (type 3)

−
∑

j 6=i
ŵj〈aj ,∆Ai〉〈bj ,∆Bi〉ĉj −

∑

j 6=i
ŵj〈∆Aj , âi〉〈bj ,∆Bi〉ĉj

−
∑

j 6=i
ŵj〈aj ,∆Ai〉〈∆Bj , b̂i〉ĉj −

∑

j 6=i
ŵj〈∆Aj , âi〉〈∆Bj , b̂i〉ĉj .

The norm of three different types of terms mentioned above are bounded in Section A.3.2, which

conclude the desired bound in the lemma. �

We are now ready to prove main Lemma A.11.

Proof of Lemma A.11: Since w̃i is the norm of wi〈ai, âi〉〈bi, b̂i〉ci + ǫi, we know

|w̃i − wi| ≤ ‖ǫi‖+ wi(Θ(‖∆Ai‖2 + ‖∆Bi‖2)),

and therefore

‖w̃ − w‖ ≤ o(1)(wmax(‖∆(A)‖F + ‖∆(B)‖F + ‖∆(C)‖F) + ‖∆w‖).

202

On the other hand, since the coefficient wi〈ai, âi〉〈bi, b̂i〉 is at least 1 − o(1), we know ‖c̃i − ci‖ ≤

4‖ǫi‖/wmin. This implies

‖C̃ − C‖F ≤ o(1)((‖∆(A)‖F + ‖∆(B)‖F + ‖∆(C)‖F) + ‖∆w‖/wmin).

By Lemma A.13, we know after the projection procedure, we get ‖Ĉ−C‖F ≤ 2‖C̃−C‖F . Therefore

combining the two steps we know

‖Ĉ − C‖F ≤ 2‖C̃ − C‖F ≤ o(1)(‖∆(A)‖F + ‖∆(B)‖F + ‖∆(C)‖F + ‖∆w‖/wmin).

When we have noise, all the ǫi’s have an additional term Ψ(âi, b̂i, I) which is bounded by ψ, and

thus, the second part of the lemma follows directly.

�

Handling Symmetric Tensors: For symmetric tensors we should change the algorithm as com-

puting the following:

T (âi, b̂i, I)− 1

d

d∑

i=1

T (ei, ei, I)−
∑

j 6=i
ŵj(〈âi, âj〉〈̂bi, b̂j〉 −

1

d
)ĉj . (A.10)

The result of this will be a change in the term of type 1. Now the Q matrix will be (A⊙A)T (A⊙

A)− (1− 1
d)I − 1

dJ which has desired spectral norm for random matrices.

Claims for proving Lemma A.12

The first term deals with the difference between C and Ĉ.

Claim 1. We have

√√√√
k∑

i=1

‖
∑

j 6=i
〈ai, aj〉〈bi, bj〉(wici − ŵiĉi)‖2 ≤ o(1)(wmax‖∆C‖F + ‖ŵ − w‖).

203

Proof: This sum is equal to the Frobenius norm of a matrix M = QZ. Here the matrix Q is a

matrix such that is equal to Q = (A⊙B)⊤(A⊙B)− I:

Qi,j =




〈ai, aj〉〈bi, bj〉, i 6= j,

0, i = j,

The matrix Z has columns Zi = wici − ŵiĉi. By assumption we know ‖Q‖ ≤ o(1), and ‖Z‖F ≤

wmax‖∆C‖F + ‖ŵ − w‖. Therefore we have

‖M‖F = ‖QZ‖F ≤ ‖Q‖‖Z‖F ≤ o(1)(wmax‖∆C‖F + ‖ŵ − w‖).

�

Of course, in the error ǫi, we don’t have
∑

j 6=i〈ai, aj〉〈bi, bj〉wici, instead we have terms like

∑
j 6=i〈âi, aj〉〈̂bi, bj〉wici. The next two lemmas show that these two terms are actually very close.

Claim 2. We have

√√√√
k∑

i=1

‖
∑

j 6=i
〈∆Ai, âj〉〈bi, bj〉ŵiĉi‖2 ≤ o(wmax)‖∆A‖F .

√√√√
k∑

i=1

‖
∑

j 6=i
〈∆Aj , âi〉〈bi, bj〉ŵiĉi‖2 ≤ o(wmax)‖∆A‖F .

Same is true if any ·̂ is replaced by the true value.

Proof: Similar as before, we treat the left hand side as the Frobenius norm of some matrix

M = QZ. Here Zi = ŵiĉi, and Q is the following matrix:

Qi,j =




〈∆Ai, âj〉〈bi, bj〉, i 6= j,

0, i = j,

We shall bound ‖M‖F by ‖Z‖‖Q‖F . By assumption we know ‖Z‖ ≤ wmax·2η1
√
k/d = O(wmax

√
k/d).

On the other hand, we know 〈bi, bj〉 ≤ Õ(1/
√
d) hence ‖Q‖F ≤ Õ(1/

√
d)‖ÂT∆A‖F ≤ Õ(1/

√
d)‖Â‖‖∆A‖F =

204

Õ(
√
k/d)‖∆A‖F . Therefore we have

‖M‖F ≤ ‖Z‖‖Q‖F ≤ O(wmax

√
k/d)·Õ(wmax

√
k/d)‖∆A‖F = Õ(k/d

√
d)‖∆A‖F = o(wmax)‖∆A‖F .

Notice that the proof works for both terms. �

Claim 3. We have

√√√√
k∑

i=1

‖
∑

j 6=i
〈∆Ai, âj〉〈∆Bi, b̂j〉ŵiĉi‖2 ≤ o(wmax)(‖∆A‖F + ‖∆B‖F).

The same is true if the inner-products are between 〈∆Aj , âi〉 or 〈∆Bj, b̂i〉, or if any ·̂ is replaced by

the true value.

Proof: Similar as before, we treat the left hand side as the Frobenius norm of some matrix

M = QZ. Here Zi = ŵiĉi, and Q is the following matrix

Qi,j =




〈∆Ai, âj〉〈∆Bi, bj〉, i 6= j,

0, i = j,

Now using definition of 2 → 4 norm and 2ab ≤ a2 + b2 we first bound the Frobenius norm of the

matrix Q:

∑

i 6=j
(〈∆Ai, âj〉〈∆Bi, b̂j〉)2 ≤

∑

i 6=j
(〈∆Ai, âj〉)4+(〈∆Bi, b̂j〉)4 ≤

k∑

i=1

‖Â⊤‖2→4‖∆Ai‖4+‖B̂⊤‖2→4‖∆Bi‖4

Now we first bound the 2 → 4 norm of the matrix Â⊤ = A⊤ + ∆A⊤. By assumption we already

know ‖A⊤‖2→4 ≤ O(1). On the other hand, for any unit vector u

k∑

i=1

〈∆Ai, u〉4 ≤
k

max
i=1
〈∆Ai, u〉2

k∑

i=1

〈∆Ai, u〉2 ≤ Õ(k2/d3) = o(1).

Here we used the assumption that ‖∆Ai‖ ≤ Õ(
√
k/d) and ‖∆A‖ ≤ O(

√
k/d). Therefore ‖Â⊤‖2→4 ≤

‖A⊤‖2→4 + ‖∆A⊤‖2→4 ≤ O(1) (and similarly for B̂⊤).

205

Therefore

‖Q‖F ≤

√√√√
k∑

i=1

‖Â⊤‖2→4‖∆Ai‖4 + ‖B̂⊤‖2→4‖∆Bi‖4

≤ O(1)

√√√√
k∑

i=1

‖∆Ai‖4 + ‖∆Bi‖4

≤ O(1) · k
max
i=1

(‖∆A‖i + ‖∆B‖i)

√√√√
k∑

i=1

‖∆Ai‖2 + ‖∆Bi‖2

≤ Õ(
√
k/d)(‖∆A‖F + ‖∆B‖F).

On the other hand we know ‖Z‖ ≤ O(wmax

√
k/d), hence ‖M‖F ≤ ‖Z‖‖Q‖F ≤ o(wmax)(‖∆A‖F +

‖∆B‖F).

�

Projection Procedure 5

In this section, we describe the functionality of projection Procedure 5. Suppose the initial solution

{Â0, B̂0, Ĉ0, ŵ0} is (η0, η1)-nice. Then, given an arbitrary solution {Ã, B̃, C̃, w̃}, we run projection

Procedure 5 to get a (2η0, 4η1)-nice solution without losing too much in Frobenius norm error. This

is shown in the following Lemma.

Lemma A.13. Suppose the initial solution {Â0, B̂0, Ĉ0, ŵ0} is (η0, η1)-nice. For any solution

{Ã, B̃, C̃, w̃}, let error E = max{‖Ã−A‖F , ‖B̃ −B‖F , ‖C̃ −C‖F , ‖w̃ − w‖/wmin}. Then after the

projection Procedure 5, the new solution is (2η0, 3η1)-nice and has error at most 2E.

Proof: Intuitively, by truncating D the matrix we get is closest to Ã among matrices with

spectral norm η1
√
k/d. We first prove this fact:

Claim 4.

‖Q− Ã‖F = min
‖M‖≤η1

√
k/d

‖M − Ã‖F .

206

Proof: By symmetric properties of Frobenius and spectral norm (both are invariant under

rotation), we can rotate the matrices Q,M, Ã simultaneously, so that Ã becomes a diagonal matrix

D. Since M has spectral norm bounded by η1
√
k/d, in particular all its entries must be bounded

by η1
√
k/d. Also, we know ‖D − D̂‖F = min∀(i,j)Mi,j≤η1

√
k/d
‖D −M‖F , therefore ‖D − D̂‖F =

min‖M‖≤η1
√
k/d
‖D −M‖F . By the rotation invariant property this implies the claim. �

Since the optimal solution A has spectral norm bounded by η1
√
k/d, in particular from above claim

we know ‖Q− Ã‖F ≤ ‖Ã−A‖F . By triangle inequality we get ‖Q− A‖F ≤ 2E. In the next step

we are essentially projecting the solution Q to a convex set that contains A (the set of matrices

that are column-wise η1
√
k/d close to Â0), so the distance can only decrease. Similar arguments

work for B̂, Ĉ, ŵ, therefore the error of the new solution is bounded by 2E.

By construction it is clear that the columns of the new solution is within η0
√
k/d to the columns

of the initial solution, so they must be within 2η0
√
k/d to the columns of the true solution. The

only thing left to prove is that ‖Â‖ ≤ 3η1
√
k/d.

First we observe that Â = Â0 + Z where Z is a matrix whose columns are multiples of Q − Â0,

and the multiplier is never larger than 1. Therefore ‖Â‖ ≤ ‖hA0‖ + ‖Z‖ ≤ ‖Â0‖ + ‖Q − Â0‖ ≤

2‖Â0‖+ ‖Q‖ ≤ 3η1
√
k/d. �

A.4 SVD Initialization Result

In this section, we analyze the SVD-based initialization technique proposed in Procedure 2. The

goal is to provide good initialization vectors close to the columns of true components A and B in

the regime of k = O(d).

Given a vector θ ∈ R
d, matrix T (I, I, θ) results a linear combination of slices of tensor T . For

tensor T in (A.1), we have

T (I, I, θ) =
∑

i∈[k]
wi〈θ, ci〉aib⊤i =

∑

i∈[k]
λiaib

⊤
i = ADiag(λ)B⊤, (A.11)

207

where λi := wi〈θ, ci〉, i ∈ [k], and λ := [λ1, λ2, . . . , λk]
⊤ ∈ R

k is expressed as

λ = Diag(w)C⊤θ.

Since A and B are not orthogonal matrices, the expansion in (A.11) is not the SVD 5 of T (I, I, θ).

But, we show in the following theorem that if we draw enough number of random vectors θ in the

regime of k = O(d), we can eventually provide good initialization vectors through SVD of T (I, I, θ).

Define

g(L) :=
√

2 ln(L)− ln(ln(L)) + c

2
√

2 ln(L)
−
√

2 ln(k).

Theorem A.1 (SVD initialization when k = O(d)). Consider tensor T̂ = T + Ψ where T is a

rank-k tensor, and Ψ is a perturbation tensor. Let Assumptions (A1)-(A3) hold and k = O(d).

Draw L i.i.d. random vectors θ(j) ∼ N (0, Id), j ∈ [L]. Let u
(j)
1 and v

(j)
1 be the top left and right

singular vectors of T̂ (I, I, θ(j)). This is L random runs of Procedure 2. Suppose L satisfies the

bound

g(L) ≥ wmax(1 + µ)

wmin − ρwmax(1 + µ)
4
√

log k,

with µ = 2µR+µ̃−1
1−µ̃ < wmin

wmaxρ
− 1, for µR and µmin defined in (A.14), and some 0 < µ̃ < 1. Note that

ρ ≤ α√
d
is also defined as the incoherence parameter in Assumption (A2). Then, w.h.p., at least

one of the pairs (u
(j)
1 , v

(j)
1), j ∈ [L], say j∗, satisfies

max
{

dist
(
u
(j∗)
1 , a1

)
,dist

(
v
(j∗)
1 , b1

)}
≤ 4wmaxµmin(1 + ρ)

√
log k + α0

√
dψ

wminµ̃g(L)− α0

√
dψ

,

where ψ := ‖Ψ‖ is the spectral norm of perturbation tensor Ψ, and α0 > 1 is a constant.

Proof: Let λ(j) := Diag(w)C⊤θ(j) ∈ R
k and λ̃(j) := C⊤θ(j) ∈ R

k. From Lemmata A.14 and

A.15, there exists a j∗ ∈ [L] such that w.h.p., we have

max
{

dist
(
u
(j∗)
1 , a1

)
,dist

(
v
(j∗)
1 , b1

)}
≤
µminλ(2) + ‖Ψ(I, I, θ)‖
µ̃λ1 − ‖Ψ(I, I, θ)‖ .

5Note that if A and B are orthogonal matrices, columns of A and B are directly recovered by computing SVD of
T (I, I, θ).

208

From (A.12), with probability at least 1− 2k−1, we have

λ
(j∗)
1 ≥ wming(L).

From (A.13), with probability at least 1− k−7, we have

λ
(j∗)
(2) ≤ wmax

(
ρλ̃

(j∗)
1 + 4

√
log k

)
≤ 4wmax(1 + ρ)

√
log k,

where in the last inequality, we also applied upper bound on λ̃
(j∗)
1 . Combining all above bounds

and Lemma A.19 finishes the proof. �

A.4.1 Auxiliary lemmata for initialization

In the following Lemma, we show that the gap condition between the maximum and the second

maximum of vector λ required in Lemma A.15 is satisfied under some number of random draws.

Lemma A.14 (Gap condition). Consider an arbitrary matrix C ∈ R
d×k with unit-norm columns

which also satisfies incoherence condition maxi 6=j |〈ci, cj〉| ≤ ρ for some ρ > 0. Let

λ := Diag(w)C⊤θ ∈ R
k,

denote the vector that captures correlation of θ ∈ R
d with columns of C. Without loss of generality,

assume that λ1 = maxi |λi|, and let λ(2) := maxi 6=1 |λi|. Draw L i.i.d. random vectors θ(j) ∼

N (0, Id), j ∈ [L], and λ(j) := Diag(w)C⊤θ(j). Suppose L satisfies the bound

√
ln(L)

8 ln(k)

(
1− ln(ln(L)) + c

4 ln(L)
−
√

ln(k)

ln(L)

)
≥ wmax(1 + µ)

wmin − ρwmax(1 + µ)
,

for some 0 < µ < wmin
wmaxρ

− 1. Then, with probability at least 1− 2k−1 − k−7, we have the following

gap condition for at least one draw, say j∗,

λ
(j∗)
1 ≥ (1 + µ)λ

(j∗)
(2) .

209

Proof: Define λ̃ := Diag(w)−1λ = C⊤θ. We have λj = wj λ̃j, j ∈ [k].

Each vector λ̃(j) is a random Gaussian vector λ̃(j) ∼ N (0, C⊤C). Let j∗ := arg maxj∈[L] λ̃
(j)
1 . Since

maxj∈[L] λ̃
(j)
1 , is a 1-Lipschitz function of L independent N (0, 1) random variables, similar to the

analysis in Lemma B.1 of Anandkumar et al. [15], we have

Pr

[
λ̃
(j∗)
1 ≥

√
2 ln(L)− ln(ln(L)) + c

2
√

2 ln(L)
−
√

2 ln(k)

]
≥ 1− 2

k
. (A.12)

Any vector ci, i 6= 1, can be decomposed to two components parallel and perpendicular to c1 as

ci = 〈ci, c1〉c1 + P⊥c1
(ci). Then, for any λ̃i, i 6= 1, we have

λ̃i := 〈θ, ci〉 = θ⊤〈ci, c1〉c1︸ ︷︷ ︸
=:λ̃i,‖

+ θ⊤P⊥c1
(ci)︸ ︷︷ ︸

=:λ̃i,⊥

.

Since P⊥c1
(ci) ⊥ c1, i 6= 1, we have λ̃i,⊥, i 6= 1, are independent of λ̃1 := θ⊤c1, and therefore, the

following bound can be argued independent of bound in (A.12). From Lemma A.17, we have

Pr

[
max
i 6=1

λ̃
(j∗)
i,⊥ ≥ 4

√
log k

]
≤ k−7.

For λ̃i,‖, we have

λ̃i,‖ = θ⊤〈ci, c1〉c1 ≤ ρθ⊤c1 = ρλ̃1,

where we also assumed that λ̃1 := θ⊤c1 > 0 which is true for large enough L, concluded from

(A.12). By combining above two bounds, with probability at least 1− k−7, we have

λ̃
(j∗)
(2) ≤ ρλ̃1 + 4

√
log k. (A.13)

From the given bound on L in the lemma and inequalities (A.12) and (A.13), with probability at

least 1− 2k−1 − k−7, we have

λ̃
(j∗)
1 ≥ wmax(1 + µ)

wmin − ρwmax(1 + µ)

(
λ̃
(j∗)
(2) − ρλ̃

(j∗)
1

)
.

210

Simple calculations imply that

wminλ̃
(j∗)
1 ≥ (1 + µ)wmaxλ̃

(j∗)
(2) .

Incorporating inequalities λ1 ≥ wminλ̃1 and λ(2) ≤ wmaxλ̃(2) finishes the proof saying that the result

of lemma is valid for the j∗-th draw. �

In the following lemma, we show that if a vector θ ∈ R
d is relatively more correlated with c1

(comparing to ci, i 6= 1), then dominant singular vectors of T̂ (I, I, θ) provide good initialization

vectors for a1 and b1.

Before proposing the lemma, we define

µE := α

√
k

d

(
2 + 2α0

√
k

d
+

α√
d

)
, µR :=

(
1 + α0

√
k

d

)2

, µmin := min{µE , µR}. (A.14)

where α = polylog(d), and α0 > 0 is a constant.

Lemma A.15. Consider T̂ = T + Ψ, where T is a rank-k tensor, and Ψ is a perturbation tensor.

Let assumptions (A1)-(A3) hold for T . Let u1 and v1 be the top left and right singular vectors of

T̂ (I, I, θ). Let

λ := Diag(w)C⊤θ ∈ R
k,

denote the vector that captures correlation of θ with different ci, i ∈ [k], weighted by wi, i ∈ [k].

Without loss of generality, assume that λ1 = maxi |λi|, and let λ(2) := maxi 6=1 |λi|. Suppose the

relative gap condition

λ1 ≥ (1 + µ)λ(2), (A.15)

is satisfied for some µ > λ1
λ1−‖Ψ(I,I,θ)‖2µR−1, where µR and µmin are defined in (A.14). Then, with

high probability (w.h.p.),

max{dist(u1, a1),dist(v1, b1)} ≤
µminλ(2) + ‖Ψ(I, I, θ)‖
µ̃λ1 − ‖Ψ(I, I, θ)‖ ,

211

for ‖Ψ(I, I, θ)‖/λ1 < µ̃ < 1 defined as

µ̃ :=
1 + µ− 2µR

1 + µ
.

Proof: From Assumption (A1), T (I, I, θ) can be written as equation (A.11), Expanded as

T (I, I, θ) = λ1a1b
⊤
1 +

∑

i 6=1

λiaib
⊤
i

︸ ︷︷ ︸
=:R

.

From here, we prove the result in two cases. First when µE < µR and therefore µmin = µE, and

second when µE ≥ µR and therefore µmin = µR.

Case 1 (µE < µR): According to the subspaces spanned by a1 and b1, we decompose matrix

R to two components as R = P⊥(R) + P‖(R). First term P⊥(R) is the component with column

space orthogonal to a1 and row space orthogonal to b1, and P‖(R) is the component with either

the column space equal to a1 or the row space equal to b1. We have

P⊥(R) = (I − Pa1)R(I − Pb1),

P‖(R) = Pa1R+RPb1 − Pa1RPb1 ,

where Pa1 = a1a
⊤
1 is the projection operator on the subspace in R

d spanned by a1, and similarly

Pb1 = b1b
⊤
1 is the projection operator on the subspace in R

d spanned by b1. Thus, for T̂ = T + Ψ,

we have

T̂ (I, I, θ) = λ1a1b
⊤
1 + P⊥(R)︸ ︷︷ ︸
=:M

+P‖(R)
︸ ︷︷ ︸
=:E

+Ψ(I, I, θ).

Looking at M , it becomes more clear why we proposed the above decomposition for R. Since the

column and row space of P⊥(R) are orthogonal to a1 and b1, respectively, the SVD of M has a1

and b1 as its left and right singular vectors, respectively. Hence, M has the SVD form

M = [a1 Ũ2]



λ1 0

0 Σ̃2


 [b1 Ṽ2]

⊤,

212

where P⊥(R) = Ũ2Σ̃2Ṽ
⊤
2 is the SVD of P⊥(R). Let σ̃2 := maxi(Σ̃2)ii. From gap condition (A.15)

assumed in the lemma and inequality (A.16), we have λ1 ≥ σ̃2, and therefore, a1 and b1 are the

top left and right singular vectors of M . On the other hand, T̂ (I, I, θ) has the corresponding SVD

form

T̂ (I, I, θ) = [u1 U2]



σ1 0

0 Σ2


 [v1 V2]

⊤,

where u1 and v1 are its top left and right singular vectors. We have

σ̃2 = ‖P⊥(R)‖ ≤ ‖R‖

=

∥∥∥∥∥
k∑

i=2

λiaib
⊤
i

∥∥∥∥∥

≤ λ(2)
∥∥A\1

∥∥
∥∥∥B⊤

\1

∥∥∥

≤ λ(2) ‖A‖
∥∥∥B⊤

∥∥∥

≤
(

1 + α0

√
k

d

)2

λ(2) =: µRλ(2), (A.16)

where the sub-multiplicative property of spectral norm is used in the second inequality, and the

last inequality is from Assumption (A3). From Weyl’s theorem, we have

|σ1 − λ1| ≤ ‖E‖+ ‖Ψ(I, I, θ)‖

≤ λ(2)α
√
k

d

(
2 + 2α0

√
k

d
+

α√
d

)
+ ‖Ψ(I, I, θ)‖

=: µEλ(2) + ‖Ψ(I, I, θ)‖, (A.17)

213

where (A.18) is used in the second inequality. Therefore, we have

σ1 − σ̃2 = σ1 − λ1 + λ1 − σ̃2

≥ −µEλ(2) − ‖Ψ(I, I, θ)‖ + λ1 − µRλ(2)

≥
(

1− µE + µR
1 + µ

)
λ1 − ‖Ψ(I, I, θ)‖,

=: µ̃1λ1 − ‖Ψ(I, I, θ)‖ =: ν,

where bounds (A.16) and (A.17) are used in the first inequality, and the second inequality is

concluded from the gap condition (A.15) assumed in the lemma. Therefore, since σ1 ≥ β + ν and

σ̃2 ≤ β for some β > 0, Wedin’s theorem is applied to the equality T̂ (I, I, θ) = M +E + Ψ(I, I, θ),

which implies that

max
{√

1− 〈u1, a1〉2,
√

1− 〈v1, b1〉2
}
≤ ‖E + Ψ(I, I, θ)‖

ν

≤
µEλ(2) + ‖Ψ(I, I, θ)‖
µ̃1λ1 − ‖Ψ(I, I, θ)‖

≤
µminλ(2) + ‖Ψ(I, I, θ)‖
µ̃λ1 − ‖Ψ(I, I, θ)‖ ,

where we used µmin = µE and µ̃1 > µ̃ in the last inequality when µE < µR. Since dist2(u1, a1) +

〈u1, a1〉2 = 1, the proof is complete for this case.

Bounding the spectral norm of E: For any i 6= j, let ρ
(a)
ij := |〈ai, aj〉| and ρ

(b)
ij := |〈bi, bj〉|. We

have

E := P‖(R) = Pa1R+RPb1 − Pa1RPb1 ,

= a1a
⊤
1 R+Rb1b

⊤
1 − a1a⊤1 Rb1b⊤1

=
∑

i 6=1

λia1a
⊤
1 aib

⊤
i +

∑

i 6=1

λiaib
⊤
i b1b

⊤
1 −

∑

i 6=1

λia1a
⊤
1 aib

⊤
i b1b

⊤
1

=
∑

i 6=1

λiρ
(a)
1i a1b

⊤
i +

∑

i 6=1

λiρ
(b)
1i aib

⊤
1 −

∑

i 6=1

λiρ
(a)
1i ρ

(b)
1i a1b

⊤
1

= A(1) Diag(λ(a))B
⊤
\1︸ ︷︷ ︸

E1

+A\1 Diag(λ(b))B
⊤
(1)︸ ︷︷ ︸

E2

−A(1) Diag(λ(a,b))B
⊤
(1)︸ ︷︷ ︸

E3

,

214

where A(1) :=
[k−1 times︷ ︸︸ ︷
a1|a1| · · · |a1

]
∈ R

d×(k−1), B\1 := [b2|b3| · · · |bk] ∈ R
d×(k−1), and λ(a) := [λiρ

(a)
1i]i 6=1 ∈

R
k−1. The other notations are similarly defined.

For E1, we have

‖E1‖ ≤ ‖A(1) Diag(λ(a))‖‖B⊤
\1‖

= ‖λ(a)‖‖a1‖‖B⊤
\1‖

≤
√
kλ(2)ρ‖B⊤‖

≤ λ(2)α
√
k

d

(
1 + α0

√
k

d

)
.

Where the first equality is concluded from Lemma A.18, and Assumptions (A2) and (A3) are

exploited in the last inequality. Similarly, for E2 and E3, we have

‖E2‖ ≤ λ(2)α
√
k

d

(
1 + α0

√
k

d

)
,

‖E3‖ ≤ λ(2)α2

√
k

d
.

Therefore, we have

‖E‖ ≤ λ(2)α
√
k

d

(
2 + 2α0

√
k

d
+

α√
d

)
. (A.18)

Case 2 (µR ≤ µE): The result can be similarly achieved when µR ≤ µE. Here we directly apply

Wedin’s theorem to T̂ (I, I, θ) = λ1a1b
⊤
1 +R+ Ψ(I, I, θ), treating R+ Ψ(I, I, θ) as the error term.

From Weyl’s theorem, we have

σ1 ≥ λ1 − ‖R‖ − ‖Ψ(I, I, θ)‖ ≥
(

1− µR
1 + µ

)

︸ ︷︷ ︸
=:µ̃2

λ1 − ‖Ψ(I, I, θ)‖,

215

where (A.16) and gap condition (A.15) are used in the second inequality. Since σ̃2 = 0, by Wedin’s

theorem, we have

max
{√

1− 〈u1, a1〉2,
√

1− 〈v1, b1〉2
}
≤ µRλ(2) + ‖Ψ(I, I, θ)‖

µ̃2λ1 − ‖Ψ(I, I, θ)‖

≤ µminλ(2) + ‖Ψ(I, I, θ)‖
µ̃λ1 − ‖Ψ(I, I, θ)‖ ,

where we used µmin = µR and µ̃2 ≥ µ̃ in the last inequality when µR ≤ µE . Since dist2(u1, a1) +

〈u1, a1〉2 = 1, the proof is complete for this case. �

The above lemma concludes the proof for initialization procedure, except for a few auxiliary lem-

mata that we prove next.

First we use Gaussian tail bounds to prove that the largest entry of a Gaussian vector can be quite

large with inverse polynomial probability:

Lemma A.16. Let x ∼ N (0, σ) be a Gaussian random variable with mean zero and variance σ2.

Then, for any t > 0, we have

(
σ

t
− σ3

t3

)
f(t/σ) ≤ Pr[x ≥ t] ≤ σ

t
f(t/σ),

where f(t) = 1√
2π
e−t

2/2.

Proof: Let z = x
σ , where z ∼ N (0, 1) is a standard Gaussian random variable. Then, we have

Pr[x ≥ t] = Pr[z ≥ t/σ], and therefore, the result is proved by using standard tail bounds for

Gaussian random variable. �

Lemma A.17. Consider r = [r1, r2, . . . , rk]
⊤ ∈ R

k as a k-dimensional random Gaussian vector

with zero mean and covariance Σ, i.e., r ∼ N (0,Σ). For any k ≥ 2, we have

Pr
[
r(1) ≥ 4σmax

√
log k

]
≤ k−7.

216

Proof: From Lemma A.16, for any i ∈ [k], we have

Pr
[
|ri| ≥ 4σmax

√
log k

]
≤ 1

2
√

2π log k
k−8 ≤ k−8,

where the last inequality is concluded from the fact that k ≥ 2. The result is then proved by taking

a union bound. �

Next we prove a basic fact about spectral norm that is used in the proof of Lemma A.15.

Lemma A.18. Given h ∈ R
m and v ∈ R

n, let H = [h|h| · · · |h] Diag(v) ∈ R
m×n. Then, ‖H‖ =

‖h‖‖v‖.

Proof: By definition

‖H‖ = sup
‖x‖=1

‖Hx‖.

We have Hx = 〈v, x〉h, and therefore, ‖Hx‖ = |〈v, x〉|‖h‖. This is maximized by x = v/‖v‖, and

this finishes the proof. �

Finally, we show that noise matrix Ψ(I, I, θ) has bounded norm with high probability which is

useful for initialization argument in Theorem A.1.

Lemma A.19. Let θ ∈ R
d be standard multivariate Gaussian as N (0, Id). Then, for any α0 > 1,

we have

Pr
[
‖Ψ(I, I, θ)‖ ≤ α0

√
dψ
]
≥ 1− e−(α0−1)2d/2,

where ψ := ‖Ψ‖ is the spectral norm of error tensor Ψ.

Proof: Let θn := 1
‖θ‖θ denote the normalized version of θ. Then, we have

‖Ψ(I, I, θ)‖ = ‖θ‖ · ‖Ψ(I, I, θn)‖ ≤ ‖θ‖ψ,

where the last inequality is from the definition of tensor spectral norm. Applying the bound on

‖θ‖ in Lemma A.20 finishes the proof. �

217

The following lemma provides concentration bound for the norm of standard Gaussian vector which

is basically a tail bound for the chi-squared random variable.

Lemma A.20 (Lemma 15 of Dasgupta et al. [66]). Let the random vector θ is distributed as

N (0, Id). Then, for any α0 > 1, we have

Pr
[
‖θ‖ ≥ α0

√
d
]
≤ e−(α0−1)2d/2.

A.5 Clustering Process

In the last step of main algorithm, we need to cluster the generated 4-tuples into k clusters. The-

oretically, we only have convergence guarantees when the initialization vectors are good enough,

while the other initializations can potentially generate arbitrary 4-tuples. In the worst case, these

arbitrary 4-tuples can make the clustering process hard, and therefore, we provide specific Proce-

dure 3 for which the output properties are provided in Lemma A.23.

Note that the key observation for the algorithm is if T (â, b̂, ĉ) is large for some (â, b̂, ĉ), then these

vectors are close to (ai, bi, ci) for some i ∈ [k].

For simplicity, we only prove this when the initialization procedure in Theorem 2.5 takes polynomial

time, namely k = O(d) and wmax/wmin = O(1). Without loss of generality, we also assume

wmax = w1 ≥ w2 ≥ · · · ≥ wk = wmin. In this case, we choose the threshold ǫ in the following

lemmata to be some small constant depending on k/d and wmax/wmin. Also, we work in the case

when noise Ψ = 0, however the proof still works when the noise ψ = ‖Ψ‖ = o(1).

Lemma A.21. Suppose

max{|〈ai, â〉|, |〈bi, b̂〉|, |〈ci, ĉ〉|} ≤ ǫ, ∀i ∈ [t− 1],

218

for some t ∈ [k]. Let δ := O
(
wmax
wmin

ǫ3−p
)
, and assume |T (â, b̂, ĉ)| ≥ (1 − δ)wt. Then, there exists

some j such that

max{dist(â, aj),dist(̂b, bj),dist(ĉ, cj)} <
wmin

10wmax
.

Proof: Partition tensor T =
∑

i∈[k]wiai ⊗ bi ⊗ ci to T1 + T2, where T1 contains all the terms

indexed from 1 to t− 1, and T2 contains the remaining terms. From Corollary A.1, we have

|T1(â, b̂, ĉ)| ≤ wmax

∥∥∥A⊤
[t−1]â

∥∥∥
3
·
∥∥∥B⊤

[t−1]b̂
∥∥∥
3
·
∥∥∥C⊤

[t−1]ĉ
∥∥∥
3
,

where A[t−1] ∈ R
d×(t−1) denotes the first t − 1 columns of A, and similarly for B[t−1] and C[t−1].

We also have

∥∥∥A⊤
[t−1]â

∥∥∥
3

3
≤
∥∥∥A⊤

[t−1]â
∥∥∥
p

p
· max
i∈[t−1]

|〈ai, â〉|3−p = O
(
ǫ3−p

)
,

where Assumption (A10) and the assumption in the lemma are exploited in the last step. Similar

arguments hold for b and c. Combining with the earliest inequality, we have

|T1(â, b̂, ĉ)| ≤ wmaxO
(
ǫ3−p

)
≤ wtδ,

where the definition of δ is exploited in the last inequality. Applying assumption |T (â, b̂, ĉ)| ≥

(1− δ)wt to the above bound, we have

|T2(â, b̂, ĉ)| ≥ (1− 2δ)wt. (A.19)

On the other hand, from Corollary A.1,

|T2(â, b̂, ĉ)| ≤ wt‖A⊤â‖3‖B⊤b̂‖3‖C⊤ĉ‖3.

219

Since all the 3-norms are bounded by 1 + o(1), each of them must be at least 1 − O(δ) to let

inequality (A.19) hold. Now we have

1−O(δ) ≤
k∑

j=1

|〈aj , â〉|3 ≤ max{|〈aj , â〉|}3−p
k∑

t=1

|〈aj , â〉|p ≤ (1 + o(1)) max{|〈aj , â〉|}3−p,

where the last inequality is from Assumption (A10). This implies max{|〈aj , â〉|} = 1−O(δ), which

in turn implies there exists a j such that

dist(â, aj) < wmin/10wmax

when ǫ and δ are small enough.

By symmetry we know there is also a j′ such that dist(̂b, bj′) < wmin/10wmax. If j 6= j′, then it is

easy to check T2(â, b̂, ĉ) cannot be large. Hence, j = j′ and the Lemma is correct. �

On the other hand, we know if there is a good initialization, the largest T (â, b̂, ĉ) must be large.

Lemma A.22. Suppose there exists a good initialization (see initialization condition (2.14) in the

local convergence theorem) for some column t ∈ [k], and

max{|〈ai, â(0)〉|, |〈bi, b̂(0)〉|, |〈ci, ĉ(0)〉|} ≤ ǫ, ∀i 6= t.

Let δ := O
(
wmax
wmin

ǫ3−p
)
. Then the corresponding output of iterations in Algorithm 1 denoted by

(â, b̂, ĉ) satisfy

|T (â, b̂, ĉ)| > (1− δ)wt.

Furthermore, for any i 6= t, max{|〈â, ai〉|, |〈̂b, bi〉|, |〈ĉ, ci〉|} ≤ o(ǫ).

Proof: Similar to the proof of Lemma A.21, partition tensor T =
∑

i∈[k]wiai ⊗ bi ⊗ ci to

T2 = wtat⊗ bt⊗ ct and T1 = T −T2. Since the initialization is good, by the local convergence result

220

in Theorem 2.4, we have

dist(â, at) ≤ Õ
(
wmax

wmin

√
k

d

)
≤ o(δ),

where the incoherence condition and p > 2 are exploited in the last step. Therefore, |T2(â, b̂, ĉ)| ≥

(1− δ/2)wt.

Similar to Lemma A.21, by using Corollary A.1, we have |T1(â, b̂, ĉ)| ≤ wtδ/2. Applying these

bounds, we have

|T (â, b̂, ĉ)| ≥ |T2(â, b̂, ĉ)| − |T1(â, b̂, ĉ)| ≥ (1− δ)wt.

The last part of the Lemma is trivial because dist(â, at) is small and 〈ai, at〉 is small by incoherence.

�

Finally we prove the clustering process succeeds.

Lemma A.23. Procedure 3 outputs k cluster centers that are Õ
(
wmax
wmin

√
k
d

)
close to the true com-

ponents of the tensor.

Proof: We prove by induction to show that every step of the algorithm correctly computes one

component.

Suppose all previously found 4-tuples are Õ(wmax

√
k/wmind) close to some (ai, bi, ci) (notice that

this is true at the beginning when no components are found). Let t be the smallest index that has

not been found. Then all the remaining 4-tuples satisfy

max{|〈ai, â〉|, |〈bi, b̂〉|, |〈ci, ĉ〉|} ≤ ǫ, ∀i < t.

By Lemma A.22 we know there must be a 4-tuple with |T (â, b̂, ĉ)| > wt(1−δ). On the other hand, by

Lemma A.21 we know the 4-tuple we found must satisfy max{dist(â, aj),dist(̂b, bj)} < wmin/10wmax

for some j (and this cannot be some j that has already been found). This tuple then satisfies the

221

conditions of the local convergence Theorem 2.4. Hence, after N iterations it must have converged

to (aj , bj , cj). At this step the algorithm successfully found a new component of the tensor.

�

222

Appendix B

Proofs for Overcomplete CP Tensor

Decomposition: Random Components

Proof of Lemma 2.6: Recall that we have updates of the form

x̃(t+1) = A(y(t))∗2, w(t) := (y
(t)
−1)

∗2, y(t) = A⊤x(t).

Let

X [t]\1 :=
[
x(2)| . . . |x(t)

]
,

and let the rows of Y [t] are partitioned as the first and the rest of rows as

Y [t] =

[
Y

[t]
1

⊤∣∣∣Y [t]
−1

⊤
]⊤

.

223

Table B.1: Table of parameters and variables. Superscript (t) denotes the variable at t-th iteration.

Variable Space Description Recursion formula

A R
d×k mapping matrix in update formula (2.20) n.a.

x(t) R
d update variable in (2.20) x(t+1) := A(y(t))∗2

‖A(y(t))∗2‖

y(t) R
k intermediate variable in update formula

(2.20)
y(t) := A⊤x(t)

x̃(t) R
d unnormalized version of x(t) x̃(t+1) := A(y(t))∗2

x̂(t) R
d noisy version of x(t) x̂(t) = x(t) + ξ(t); see (2.27)

ξ(t) R
d Contribution of noise in tensor power

update given noisy tensor T̂ = T + E
x̂(t) = x(t) + ξ(t); see (2.27)

B R
d×(k−1)

matrix A := [a1 a2 · · · ak] with first
column removed, i.e.,
B := [a2 a3 · · · ak]. Note that the first
column a1 is the desired one to recover.

n.a.

B(t,1)
R
d×(k−1)

conditional distribution of B given
previous iterations at the middle of tth

iteration (before update step
x̃(t+1) = A(y(t))∗2)

B(t,1) (d)= B|{X [t], Y [t]}

B(t,2)
R
d×(k−1)

conditional distribution of B given
previous iterations at the end of tth

iteration (after update step
x̃(t+1) = A(y(t))∗2)

B(t,2) (d)= B|{X [t+1], Y [t]}

B
(t,1)
res. R

d×(k−1) residual independent randomness left in
B(t,1); see Lemma 2.6.

see equation (2.23)

B
(t,2)
res. R

d×(k−1) residual independent randomness left in
B(t,2); see Lemma 2.6.

see equation (2.25)

w(t)
R
k−1 intermediate variable in update formula

(2.20)
w(t) := (y

(t)
−1)

∗2

u(t) R
d part of x(t) representing the left

independent randomness
u(t+1) := B

(t,1)
res. w(t)

v(t) R
k−1 part of y

(t)
−1 representing the left

independent randomness
v(t) := (B

(t−1,2)
res.)⊤x(t)

224

We now make the following simple observations

B(t,1) (d)= B|{Y [t] = A⊤X [t], X̃ [t]\1 = A(Y [t−1])∗2}
(d)
= B|{Y [t]

−1 = B⊤X [t], X̃ [t]\1 = a1(Y
[t−1]
1)∗2 +BW [t−1]}

(d)
= B|{v(1) = B⊤x(1), . . . , v(t) = (B(t−1,2)

res.)⊤x(t),

u(2) = B(1,1)
res. w

(1), . . . , u(t) = B(t−1,1)
res. w(t−1)},

where the second equivalence comes from the fact that B is matrix A with first column removed.

Now applying Corollary 2.3, we have the result. The distribution of B(t,2) follow similarly. �

B.1 Analysis of Induction Argument

In this section, we analyze the basis of induction and inductive step for the induction argument

proposed in Section 2.6.1.3 for the proof of Lemma 2.3.

B.1.1 Basis of induction

We first show that the hypothesis holds for initialization vector x(1) as the basis of induction.

Claim 5 (Basis of induction). The induction hypothesis is true for t = 1.

Proof: Notice that induction hypothesis for t = 1 only involves the bounds on ‖x(1)‖ and

〈a1, x(1)〉 as in Hypotheses 1 and 3, respectively. These bounds are directly argued by the correlation

assumption on the initial vector x(1) stated in (2.19) where δ1 = δ∗1 = ∆∗
1 = 1. �

B.1.2 Inductive step

Assuming the induction hypothesis holds for all the values till the end of iteration t− 1 (stated in

Section 2.6.1.3), we analyze the t-th iteration of the algorithm, and prove that induction hypothesis

also holds for the values at the end of iteration t. See Figure 2.2 where the scope of iteration t and

225

the flow of the algorithm is shown. In the rest of this section, we pursue the flow of the algorithm at

iteration t starting from computing y(t) and ending up with computing x(t+1) to prove the desired

induction hypothesis at iteration t.

Hypothesis 4

We start by showing that the induction Hypothesis 4 holds at iteration t using the induction

Hypotheses 1 and 2 in the previous iteration.

Claim 6. We have

δt
2

√
k

d
≤ ‖v(t)‖ ≤ 2

√
k

d
,

δ′t
2

√
k

d
≤ ‖u(t+1)‖ ≤ 2∆′

t

√
k

d
.

Proof: Recall that v(t) := (B
(t−1,2)
res.)⊤x(t), and by applying the form of B

(t−1,2)
res. in (2.25), we

have

v(t)
(d)
= P⊥

W [t−1]
B′⊤P⊥

X[t−1]
x(t). (B.1)

Since random matrix B′ ∈ R
d×(k−1) is an independent copy of B with i.i.d. Gaussian entries

B′
ij ∼ N (0, 1d), we know v(t) is a random Gaussian vector in the subspace orthogonal to W [t−1]. On

the other hand, for any vector z ∈ R
d, we have

E

[
‖B′⊤z‖2

]
= z⊤E

[
B′B′⊤

]
z =

k − 1

d
‖z‖2,

where E
[
B′B′⊤] = k−1

d I is exploited. Let z = P⊥
X[t−1]

x(t). Then, by applying the above equality

to the expansion of v(t) in (B.1), we have

E

[
‖v(t)‖2

]
=
k − t
k − 1

· k − 1

d
· ‖P⊥

X[t−1]
x(t)‖2 =

k − t
d
· ‖P⊥

X[t−1]
x(t)‖2 ∈

[
δ2t
k

d

(
1− t

k

)
,
k

d

]
,

226

where dim(W [t−1]) = t − 1 is also used in the first step, and the last step is concluded from

Hypothesis 1. Finally, by concentration property of random Gaussian vectors, when t≪ d we have

with high probability

‖v(t)‖ ∈
[
δt
2

√
k

d
, 2

√
k

d

]
.

Similarly, for u(t+1) := B
(t,1)
res. w(t), and by applying the form of B

(t,1)
res. in (2.23), we have

u(t+1) (d)= P⊥
X[t]

B̃P⊥
W [t−1]

w(t). (B.2)

Since random matrix B̃ ∈ R
d×(k−1) is an independent copy of B with i.i.d. Gaussian entries B̃ij ∼

N (0, 1d), we know u(t+1) is a random Gaussian vector in the subspace orthogonal to X [t]. On the

other hand, for any vector z ∈ R
k−1, we have

E

[
‖B̃z‖2

]
= z⊤E

[
B̃⊤B̃

]
z = ‖z‖2,

where E

[
B̃⊤B̃

]
= I is exploited. Let z = P⊥

W [t−1]
w(t). Then, by applying the above equality to

the expansion of u(t+1) in (B.2), we have

E

[
‖u(t+1)‖2

]
=
d− t
d
· ‖P⊥

W [t−1]
w(t)‖2 ∈

[
(δ′t)

2 k

d2

(
1− t

d

)
, (∆′

t)
2 k

d2

]
,

where dim(X [t]) = t is also used in the first step, and the last step is concluded from Hypothesis 2.

Finally, by concentration property of random Gaussian vectors, when t ≪ d we have with high

probability

‖u(t+1)‖ ∈
[
δ′t
2

√
k

d
, 2∆′

t

√
k

d

]
.

�

227

Hypothesis 2

Computing y(t): In the first step of iteration t, the algorithm computes y(t). By induction

Hypothesis 3, we know |y(t)1 | = Θ̃(dβ2
t−1√

k/d). The other coordinates of y(t) := A⊤x(t) are y
(t)
−1 =

B⊤x(t) which conditioning on the previous iterations are equivalent (in distribution) to

y
(t)
−1

(d)
=
(
B(t−1,2)

)⊤
x(t)

=


 ∑

i∈[t−1]

(
u(i+1)(P⊥

W [i−1]
w(i))⊤

‖P⊥
W [i−1]

w(i)‖2 +
P⊥

X[i−1]
x(i)(v(i))⊤

‖P⊥
X[i−1]

x(i)‖2

)
+B(t−1,2)

res.




⊤

x(t)

=
∑

i∈[t−1]

(
Θ̃

(
d2

k

)
P⊥

W [i−1]
w(i)〈u(i+1), x(t)〉+ Θ̃(1)v(i)〈P⊥

X[i−1]
x(i), x(t)〉

)
+ v(t), (B.3)

where form of B(t−1,2) in (2.24) is used in the second equality. The bounds on the norms come from

Hypotheses 1 and 2. The last term is by definition v(t) := (B
(t−1,2)
res.)⊤x(t). Note that differences in

polylog factors in the (upper and lower) bounds in Hypotheses 1 and 2 are represented by notation

Θ̃(·).

We will establish subsequently that if k > d, the terms involving v(i)’s in the above expansion

dominate, and the terms involving P⊥
W [i−1]

w(i)’s have norm of a smaller order; see Claim 7.

Computing w(t): In the next step of the algorithm at iteration t, w(t) is computed for which we

now argue if the induction hypothesis holds up to iteration t, both lower and upper bounds at

iteration t as ‖P⊥
W [t−1]

w(t)‖ ∈ [δ′t,∆
′
t]
√
k
d (see induction Hypothesis 2) also hold.

Lower bound: For the lower bound, intuitively the fresh random vector v(t) should bring enough

randomness into w(t). We formulate that in the following lemma.

Lemma B.1. Suppose R and R′ are two subspaces in R
k with dimension at most t ≤ k

16(log k)2
.

Let p ∈ R
k be an arbitrary vector, z ∈ R

k be a uniformly random Gaussian vector in the space

orthogonal to R, and finally w = (p+ z) ∗ (p+ z). Then with high probability, we have

‖P⊥R′w‖ ≥
E[‖z‖2]

40
√
k
.

228

Recall that w(t) := y
(t)
−1 ∗ y

(t)
−1, and y

(t)
−1 is expanded in (B.3) as sum of an arbitrary vector and a

random Gaussian vector. Applying above lemma with R = R′ = span(W [t−1]), we have with high

probability

‖P⊥
W [t−1]

w(t)‖ ≥ E[‖v(t)‖2]

40
√
k
≥ δ2t

160

√
k/d,

where Hypothesis 4 gives lower bound ‖v(t)‖ ≥ δt/2
√
k/d (used in the second inequality). By

choosing δ′t = δ2t /160 the lower bound in Hypothesis 2 is proved.

Upper bound: In order to prove the upper bounds in Hypothesis 2, we follow the sequence of

arguments below:

Claim 7: ‖y(t)−1‖∞
(·)2
==⇒ ‖w(t)‖∞ Lemma B.2

=======⇒ ‖P⊥
W [t−1]

w(t)‖∞ ⇒ ‖P⊥
W [t−1]

w(t)‖

First we prove a bound on the infinity norm of y
(t)
−1:

Claim 7 (Upper bound on ‖y(t)−1‖∞). We have

‖y(t)−1‖∞ ≤
t

δt

log d√
d

+ (t− 1)

(
∆′
t−1

δ′t−1

)2
1√
k

= Õ

(
1√
d

)
.

Proof: We exploit the induction hypothesis to bound the ℓ∞ norm of all the terms in the

expansion of y
(t)
−1 in (B.3).

For the terms involving v(i), since they are random Gaussian vectors with expected square norm

at most k/d, by Lemma B.4 we know ‖v(i)‖∞ ≤ log d√
d

with high probability. In addition, for v(i),

i < t, the coefficient is bounded as

〈P⊥
X[i−1]

x(i), x(t)〉
‖P⊥

X[i−1]
x(i)‖2 ≤ 1

‖P⊥
X[i−1]

x(i)‖ ≤
1

δi
, (B.4)

where the last step uses Hypothesis 1. Therefore, the total contribution from terms involving v(i)

in ‖y(t)−1‖∞ is bounded by t
δt

log d√
d

.

229

For the terms involving P⊥
W [i−1]

w(i), i ∈ [t − 1], we have from Hypothesis 2 that the ℓ∞ norm is

bounded as ‖P⊥
W [i−1]

w(i)‖∞ ≤ ∆′
i
1
d . In addition, the corresponding coefficient is bounded by

〈u(i+1), x(t)〉
‖P⊥

W [i−1]
w(i)‖2 ≤

‖u(i+1)‖ · ‖x(t)‖
‖P⊥

W [i−1]
w(i)‖2 ≤

2∆′
i

δ′i
2

d√
k
. (B.5)

Again bounds in Hypotheses 2 and 4 are exploited in the last inequality. Hence, the total contri-

bution from terms involving P⊥
W [i−1]

w(i), i ∈ [t− 1] in ‖y(t)−1‖∞ is bounded by (t− 1)
(
∆′

t−1

δ′t−1

)2
1√
k
.

Combining the above bounds finishes the proof. �

Since w(t) := y
(t)
−1 ∗ y

(t)
−1, the above claim immediately implies that

‖w(t)‖∞ ≤ Õ
(

1

d

)
. (B.6)

Now we have the ℓ∞ norm on w, however we need to bound the ℓ∞ norm of the projected vector

P⊥
W [t−1]

w(t). Intuitively this is clear as the vectors in the space W [t−1] all have small ℓ∞ as

guaranteed by induction hypothesis. We formalize this intuition using the following lemma.

Lemma B.2. Suppose R is a subspace in R
k of dimension t′, such that there is a basis {r1, . . . , rt′}

with ‖ri‖∞ ≤ ∆√
k
and ‖ri‖ = 1. Let p ∈ R

k be an arbitrary vector, then

‖P⊥R
p‖∞ ≤ ‖p‖∞ + ‖p‖∆

√
t′√
k
.

Let R = span(W [t−1]). Then the vectors P⊥
W [i−1]

w(i)/‖P⊥
W [i−1]

w(i)‖, i ∈ [t − 1] form a basis for

subspace R, and we know from Hypothesis 2 that the ℓ∞ norm of each of these basis vectors is

bounded by ∆√
k

for ∆ :=
∆′

t−1

δ′t−1
which is of order polylog d. Applying above lemma, we have

‖P⊥
W [t−1]

w(t)‖∞ ≤ ‖w(t)‖∞(1 + ∆
√
t− 1) ≤ ∆′

t

d
,

where the last inequality uses bound (B.6), and appropriate choosing for ∆′
t which is of order

polylog d and only depends on t and log d. This concludes the upper bound on the ℓ∞ norm in

230

Hypothesis 2. The upper bound on the ℓ2 norm is also immediately argued using this ℓ∞ norm

bound where an additional
√
k factor shows up.

Hypothesis 1

Computing x(t+1):

In the next step of iteration t, the algorithm computes x(t+1). Conditioning on the previous

iterations, the unnormalized version x̃(t+1) is equivalent (in distribution) to

x̃(t+1) (d)= B(t,1)w(t) + (y
(t)
1)2a1

=
∑

i∈[t−1]

u(i+1)(P⊥
W [i−1]

w(i))⊤

‖P⊥
W [i−1]

w(i)‖2 w(t) +
∑

i∈[t]

P⊥
X[i−1]

x(i)(v(i))⊤

‖P⊥
X[i−1]

x(i)‖2 w(t) +B(t,1)
res. w

(t) + (y
(t)
1)2a1

=
∑

i∈[t−1]

Θ̃

(
d2

k

)
u(i+1)〈P⊥

W [i−1]
w(i), w(t)〉+

∑

i∈[t]
Θ̃(1)P⊥

X[i−1]
x(i)〈v(i), w(t)〉+ u(t+1) + (y

(t)
1)2a1,

(B.7)

where form of B(t,1) in (2.22) is used in the second equality. The bounds on the norms come from

Hypotheses 1 and 2. The last term is the definition of u(t+1) := B
(t,1)
res. w(t). Note that differences in

polylog factors in the (upper and lower) bounds in Hypotheses 1 and 2 are represented by notation

Θ̃(·).

The goal is to prove Hypothesis 1 holds at t-th iteration (which is to show the desired lower and

upper bounds on ‖P⊥
X[t]

x(t+1)‖) assuming induction hypothesis holds for earlier iterations. Given

the normalization x(t+1) := x̃(t+1)/‖x̃(t+1)‖ in each iteration, we have

‖P⊥
X[t]

x(t+1)‖ =
1

‖x̃(t+1)‖‖P⊥
X[t]

x̃(t+1)‖. (B.8)

Therefore, we first bound the norm of x̃(t+1) which turns out to be ‖x̃(t+1)‖ = Θ̃
(√

k
d

)
as argued

in the following.

231

Lower bound: The lower bound on ‖x̃(t+1)‖ simply follows from the term u(t+1), which is an

independent random Gaussian.

Claim 8. If t ≤ d
10 , then we have whp

‖x̃(t+1)‖ ≥ δ′t
4

√
k

d
.

Proof: We have

‖x̃(t+1)‖ ≥ ‖Pspan(X[t],U [t],a1)⊥ x̃
(t+1)‖ = ‖Pspan(X[t],U [t],a1)⊥u

(t+1)‖.

Note that the equality is concluded from expansion of x̃(t+1) in (B.7) where all the components of

x̃(t+1) in the subspace span(X [t], U [t], a1)⊥ is represented by u(t+1). The vector Pspan(X[t],U [t],a1)⊥u
(t+1)

is the projection of a random Gaussian vector u(t+1) in to a subspace of dimention d− o(d). Hence

it is still a random Gaussian vector with expected square norm larger than
δ′t

2

2
k
d2

. By Lemma B.3,

with high probability the desired bound holds. �

Upper bound: The upper bound is argued in the following claim.

Claim 9. We have either

〈x(t+1), a1〉 ≥ 1− γ,

for some constant γ > 0 or

‖x̃(t+1)‖ ≤ Õ
(√

k

d

)
.

Proof: Let x̃(t+1) in (B.7) be written as x̃(t+1) = z+ (y
(t)
1)2a1 where vector z ∈ R

d represents all

the other terms in the expansion. The analysis is done under two cases 1) (y
(t)
1)2 ≥ 2

γ ‖z‖ and 2)

(y
(t)
1)2 < 2

γ ‖z‖ for some constant γ > 0. Note that the left hand side is the norm of (y
(t)
1)2a1 since

‖a1‖ = 1, and in addition (y
(t)
1)2 = 〈x(t), a1〉2.

232

Case 1
(

(y
(t)
1)2 ≥ 2

γ ‖z‖
)

: For the x(t+1) := x̃(t+1)/‖x̃(t+1)‖, we have

〈x(t+1), a1〉 =
1

‖z + (y
(t)
1)2a1‖

〈z + (y
(t)
1)2a1, a1〉

≥ 1

‖z‖+ (y
(t)
1)2

[
(y

(t)
1)2 − ‖z‖

]

≥ 1− γ
2

1 + γ
2

≥ 1− γ,

where triangle and Cauchy-Schwartz inequality are used in the first bound, and the second inequal-

ity is concluded from assumption (y
(t)
1)2 ≥ 2

γ ‖z‖.

Case 2
(

(y
(t)
1)2 < 2

γ ‖z‖
)

: We exploit the induction hypothesis to bound the norm of all the terms

in the expansion of x̃(t+1) in (B.7).

For the terms involving u(i+1), i ∈ [t], we have ‖u(i+1)‖ ≤ 2∆′
i

√
k
d from Hypothesis 4 and the

argument for ‖u(t+1)‖. In addition, for u(i+1), i ∈ [t− 1], the coefficient is bounded as

〈P⊥
W [i−1]

w(i), w(t)〉
‖P⊥

W [i−1]
w(i)‖2 ≤ ‖w(t)‖

‖P⊥
W [i−1]

w(i)‖ ≤
∆′
t

δ′i
, (B.9)

where Cauchy-Schwartz inequality is used in the first bound, and the bound in Hypothesis 2 and

(B.6) are exploited in the last inequality. Therefore, the total contribution from terms involving

u(i+1) in ‖x̃(t+1)‖ is bounded by
2(t−1)∆′

t
2

δ′t

√
k
d .

For the terms involving P⊥
X[i−1]

x(i), i ∈ [t], we have ‖P⊥
X[i−1]

x(i)‖ ≤ 1, but the coefficient 〈v(i), w(t)〉

needs further analysis to be bounded which is done in Lemma B.3 saying |〈v(i), w(t)〉| ≤ Õ
(√

k
d

)
.

This implies that the total contribution from terms involving P⊥
X[i−1]

x(i) in ‖x̃(t+1)‖ is bounded

by Õ
(√

k
d

)
.

Combining the above bounds and considering the assumption that the norm of (y
(t)
1)2a1 in the

expansion of x̃(t+1) is dominated by the norm of other terms argued above, the proof is complete

concluding that ‖x̃(t+1)‖ ≤ Õ
(√

k
d

)
. �

233

Lemma B.3. Under the induction hypothesis (up to update step x̃(t+1) := A(y(t))∗2 at iteration t),

we have for i ∈ [t],

|〈v(i), w(t)〉| ≤ O
(
t3

(∆′
t−1)4

(δ′t−1)4δ2t
(log d)

√
k

d

)
= Õ

(√
k

d

)
.

Using (B.8) and the fact that ‖x̃(t+1)‖ = Θ̃
(√

k
d

)
, we have

‖P⊥
X[t]

x(t+1)‖ ≥ Θ̃

(
d√
k

)
‖Pspan(X[t],U [t],a1)⊥u

(t+1)‖ ≥ δ′t
4
,

where the bound ‖Pspan(X[t],U [t],a1)⊥u
(t+1)‖ ≥ δ′t

4

√
k
d is also used. This finishes the proof that Hy-

pothesis 1 holds.

Hypothesis 3

Finally we prove Hypothesis 3 at iteration t given earlier induction hypothesis. The first part of

the hypothesis is proved in the following claim.

Claim 10. We have

|〈a1, x(t+1)〉| ∈ [δ∗t+1,∆
∗
t+1]dβ2

t

√
k

d
.

Proof: We first show the correlation bound on the unnormalized version as 〈a1, x̃(t+1)〉. Looking

at the expansion of x̃(t+1) in (B.7), the correlation 〈a1, x̃(t+1)〉 involves three types of terms emerging

from (y
(t)
1)2a1, u(i+1) and P⊥

X(i−1)
x(i). In the following, we argue the correlation from each of these

terms where we observe that the correlation is dominated by the term (y
(t)
1)2a1, and the rest of

terms contribute much smaller amount.

For the term (y
(t)
1)2a1, we have

〈a1, (y(t)1)2a1〉 = (y
(t)
1)2 ∈ [(δ∗t)2, (∆∗

t)
2]dβ2

t k

d2
,

where the last part exploits induction Hypothesis 3 in the previous iteration.

234

For the terms involving u(i+1), these vectors are random Gaussian vectors in a subspace (with

dimension Ω(d)), and therefore, we have with high probability

〈a1, u(i+1)〉 ≤ E[‖u(i+1)‖] · O
(

log d√
d

)
≤ Õ

(√
k

d
√
d

)
≤ Õ

(
k

d2

)
,

where the correlation bound between two independent random Gaussian vectors in Ω(d)-dimension

is used in the first inequality 1, Hypothesis 4 is exploited in the second inequality, and finally last

inequality is from assumption k > d. In addition, the coefficient associated with u(i+1) is bounded

by ∆′
t/δ

′
i argued in (B.9). Hence, the total contribution from terms involving u(i+1) in 〈x̃(t+1), a1〉

is bounded by Õ
(
k
d2

)
.

For the terms involving P⊥
X[i−1]

x(i), by Hypothesis 3 we have

〈a1, P⊥
X[i−1]

x(i)〉 ≤ ∆∗
i d
β2i−1

√
k

d
.

In addition, the associated coefficient is bounded by Õ
(√

k
d

)
from Lemma B.3. Hence, the total

contribution from terms involving P⊥
X[i−1]

x(i) in 〈x̃(t+1), a1〉 is bounded by Õ
(
dβ2

t−1 k
d2

)
.

Combining the above bounds implies

|〈a1, x̃(t+1)〉| ≤ Õ
(
dβ2

t k

d2

)
.

Finally, using the bound on the norm of x̃(t+1) argued as ‖x̃(t+1)‖ = Θ̃
(√

k
d

)
finishes the proof. �

To prove the last part of Hypothesis 3, we use the following lemma which is very similar to

Lemma B.2.

Lemma B.4. Suppose R is a subspace in R
d of dimension t′, such that there is a basis {r1, . . . , rt′}

with |〈ri, a1〉| ≤ ∆ and ‖ri‖ = 1. Let p ∈ R
d be an arbitrary vector, then

|〈P⊥R
p, a1〉| ≤ |〈p, a1〉|+ ‖p‖∆

√
t′.

1For two independent random Gaussian vectors p, q ∈ R
d, we have with high probability 〈p, q〉 ≤ E[‖p‖] · E[‖q‖] ·

O
(

log d√
d

)
.

235

We apply this lemma with R = span(X [t]), and the basis is P⊥X[i−1]X(i)/‖P⊥X[i−1]X(i)‖. By

induction hypothesis ∆ in the lemma is at most ∆t
∗d
β2t
√
k/d, let v = x(t+1) then this gives the

desired bound.

Let R = span(X [t]). Then the vectors P⊥
X[i−1]

x(i)/‖P⊥
X[i−1]

x(i)‖, i ∈ [t] form a basis for subspace

R, and we know from Hypotheses 1 and 3 that the correlation between these basis vectors and a1

is bounded by ∆ := ∆∗
td
β2t−1

√
k
d . Applying above lemma, we have

|〈P⊥
X[t]

x(t+1), a1〉| ≤ |〈x(t+1), a1〉|+ ∆
√
t ≤ ∆∗

t+1d
β2t
√
k

d
,

where the last inequality uses the first part of Hypothesis 3 proved earlier in this section. Note

that ∆∗
t+1 is a new polylog factor here.

B.1.3 Growth rate of δt, δ
′
t, ∆

′
t, δ

∗
t , ∆

∗
t

We know that if the number of iterations t is a constant, then the δ and ∆ parameters (i.e., δt,

δ′t, ∆′
t, δ

∗
t , ∆∗

t) in the induction hypothesis are bounded by polylog factors of d. Here, we show

that these parameters can be still bounded even when the number of steps is slightly larger than a

constant. Let

Rt := max{1/δt,∆′
t−1/δ

′
t−1,∆

∗
t/δ

∗
t }.

We know R1 = 1, and by the inductive step analysis we have the following polynomial recursion

property.

Claim 11. Rt+1 = poly(Rt, t, log d).

This claim follows from the proof of inductive step, where in every step the δ and ∆ parameters

are bounded by polynomial functions of previous δ’s (∆’s), t, and log d.

We now solve this recursion as follows.

236

Lemma B.1. Suppose Rt+1 ≤ c0R
c1
t t

c2(log d)c3 where c0, c1, c2, c3 are positive constants, and we

know R1 = 1. Then

Rt ≤ (log d)2
c4t
,

for some constant c4 > 0 depending on c0, c1, c2, c3.

Proof: Without loss of generality assume c0 ≥ 1, c2 ≥ 1, c3 ≥ 1, and R1 ≥ log d. Given

these assumptions, we have Rt ≥ max{c0, t, log d}, for t ≥ 1. Applying this to the assumption

Rt+1 ≤ c0Rc1t tc2(log d)c3 , we have

Rt+1 ≤ R1+c1+c2+c3
t . (B.10)

Pick some q > 0 such that R1 ≤ (log d)2
q
, and pick some

c4 ≥ max{q, log2(1 + c1 + c2 + c3)}.

Now we prove the result by the induction argument. Since c4 ≥ q, the basis of induction holds for

R1. As the inductive step, suppose Rt ≤ (log d)2
c4t . Applying this to (B.10), we have

Rt+1 ≤ (log d)(1+c1+c2+c3)2
c4t ≤ (log d)2

c4(t+1)
,

where 2c4 ≥ (1 + c1 + c2 + c3) is used in the last inequality. This finishes the inductive step and the

result is proved. �

Using the above bound, we show in the following corollary that the δ and ∆ parameters in the

induction hypothesis are bounded by polylog factors of d even if the number of steps t goes up

to c log log d for small enough constant c. In addition, we show that if β ≥ (log d)−c5 for some

constant c5 > 0, then the power method converges to a point x(t) which is constant close to the

true component.

237

Corollary B.1. There exists a universal constant c5 > 0 such that if

β ≥ (log d)−c5 ,

and the initial correlation is lower bounded by dβ
√
k
d (see (2.19)), then with high probability the

power method gets to a point that is constant close to the true component in Θ(log log d) number

of steps.

Proof: Pick the number of steps to be t = (log log d)/2c4, where c4 is the constant in Lemma B.1.

Then, from Lemma B.1 we have

Rt ≤ (log d)
√
log d ≤ o(d),

where the last inequality can be shown by taking the log of both sides. This says that the analysis

of inductive step still holds after such number of iterations.

Finally, by progress bound in (2.26), we can see that if β ≥ (log d)−c5 , then the power method

converges to a point x(t) which is constant close to the true component. �

B.2 Auxiliary Lemmas for Induction Argument

In this section we prove the lemmas used in arguing inductive step in Appendix B.1.2.

We first introduce the following lemma proposing a lower bound on the singular value of product

of matrices.

Lemma B.2 (Merikoski and Kumar 125). Let C and D be k × k matrices. If 1 ≤ i ≤ k and

1 ≤ l ≤ k − i+ 1, then

σi(CD) ≥ σi+l−1(C) · σk−l+1(D),

where σj(C) denotes the j-th singular value (in decreasing order) of matrix C.

238

B.2.1 Properties of random Gaussian vectors

We start with some basic properties of random Gaussian vectors. First as a simple fact, the norm

of a random Gaussian vector is concentrated as follows which is proved via simple concentration

inequalities.

Lemma B.3. Let z ∈ R
d be a random Gaussian vector with E[zz⊤] = 1

dI. Then we have with high

probability 1
2 ≤ ‖z‖ ≤ 2.

Next we show the ℓ∞ norm of a Gaussian vector is small, even if it is projected on some subspace.

Lemma B.4. Let R be any linear subspace in R
d and z ∈ R

d be a random Gaussian vector with

E[zzT] = 1
dI. Then we have with high probability ‖P⊥R

z‖∞ ≤ log d√
d
.

Proof: Since P⊥R
is a projection matrix, in particular the norm of its columns is bounded by

1. Hence, each entry of P⊥R
z is a Gaussian random variable with variance bounded by 1

d implying

that with high probability the absolute value of each coordinate is smaller than log d√
d

. Finally, the

desired ℓ∞ norm bound is argued by applying union bound. �

We can also show that most of the entries are of size at least 1√
d
.

Lemma B.5. Let R be any linear subspace in R
d with dimension t ≤ d

16(log d)2
and z ∈ R

d be a

random Gaussian vector with E[zzT] = 1
dI. Then we have with high probability at least 1/2 of the

entries i ∈ [d] satisfy |(P⊥R
z)i| ≥ 1

4
√
d
.

Proof: Since the entries of z are independent Gaussian random variables with standard deviation

1√
d
, we know with high probability at least 1/2 of the entries have absolute value larger than 1

2
√
d
.

On the other hand, PRz is also a random Gaussian vector with expected square norm bounded by

E[‖PRz‖2] ≤ E[‖z‖2]

16(log d)2
=

1

16(log d)2
,

where the assumption on the dimension of subspace R is used in the inequality. By Lemma B.4

we know with high probability entries of PRz are bounded by 1/4
√
d. Now P⊥R

z = z − PRz must

have at least 1/2 of the entries with absolute value larger than 1/4
√
d. �

239

Using the above lemmas, we can prove Lemma B.1.

Lemma B.1 (Restated). Suppose R and R′ are two subspaces in R
k with dimension at most

t ≤ k
16(log k)2

. Let p ∈ R
k be an arbitrary vector, z ∈ R

k be a uniformly random Gaussian vector in

the space orthogonal to R, and finally w = (p+ z) ∗ (p+ z). Then with high probability, we have

‖P⊥R′w‖ ≥
E[‖z‖2]

40
√
k
.

Proof: Let z, z′ be two independent samples of z, and w,w′ be the corresponding w vectors. We

have

w − w′ = (p+ z) ∗ (p+ z)− (p+ z′) ∗ (p+ z′) = (2p + z + z′) ∗ (z − z′). (B.11)

By properties of Gaussian vectors, z + z′, z − z′ are two independent random Gaussian vectors in

the subspace orthogonal to R each with expected square norm 2E[‖z‖2]. We use z1 := z + z′ and

z2 := z − z′ to denote these two random Gaussian vectors.

Next, we show that with high probability

‖P⊥R′ (w − w′)‖ ≥ E[‖z‖2]

20
√
k
.

Note that this implies the result of lemma as follows. Suppose ‖P⊥R′w‖ < 1
40E[‖z‖2]/

√
k with

probability δ. Since w′ is an independent sample, with probability δ2 this bound holds for both w

and w′. When this happens, we have ‖P⊥R′ (w−w′)‖ < 1
20E[‖z‖2]/

√
k by triangle inequality. Since

we showed δ2 is negligible, δ is also negligible.

First we sample z2. Let R′′ = span(R′, p ∗ z2). Then by expansion of w − w′ in (B.11), we have

‖P⊥R′ (w−w′)‖ = ‖P⊥R′

(
2(p∗z2)+(z1∗z2)

)
‖ ≥ ‖P⊥R′′ (z1∗z2)‖ = ‖P⊥R′′ Diag(z2)P⊥R

z1‖, (B.12)

240

where the inequality is concluded by ignoring the component along p∗z2 direction. The last equality

is from 2 u ∗ v = Diag(u) · v (for two vectors u and v), and the assumption that z1 = z+ z′ is in the

subspace orthogonal to R. For the matrix P⊥R′′ Diag(z2)P⊥R
, we have 3

σk/4
(
P⊥R′′ Diag(z2)P⊥R

)
≥ σk/2 (Diag(z2)) · σ7k/8 (P⊥R

) · σ7k/8
(
P⊥R′′

)
≥
√

E[‖z‖2]

4
√
k

,

where the first inequality is from Lemma B.2, and the last step is argued as follows. By Lemma B.3,

with high probability z2 has square norm at least E[‖z2‖2]/2 = E[‖z‖2], and therefore, by Lemma B.5

at least k/2 of its entries have absolute value larger than 1
4

√
E[‖z‖2]/

√
k. Therefore, we can restrict

attention to the space spanned by the k/4 top singular vectors. In addition, within this subspace

we have with high probability ‖z1‖2 ≥ E[‖z‖2]/8, and hence,

‖P⊥R′′ Diag(z2)P⊥R
z1‖ ≥

E[‖z‖2]

20
√
k
,

which finishes the proof by applying (B.12). �

B.2.2 Properties of projections

In this part we prove some basic properties of projections. Intuitively, if the whole subspace has

small inner-product with some vector, then the projection of an arbitrary vector to the orthogonal

subspace should not change the inner-product with that particular vector by too much. This is

what we require in Lemma B.4.

Lemma B.4 (Restated). Suppose R is a subspace in R
d of dimension t′, such that there is a basis

{r1, . . . , rt′} with |〈ri, a1〉| ≤ ∆ and ‖ri‖ = 1. Let p ∈ R
d be an arbitrary vector, then

|〈P⊥R
p, a1〉| ≤ |〈p, a1〉|+ ‖p‖∆

√
t′.

2For vector u, Diag(u) denotes the diagonal matrix with u as its main diagonal.
3Recall that σl(A) denotes the l-th singular value (in decreasing order) of matrix A.

241

Proof: We have P⊥R
p = p−∑t′

i=1〈p, ri〉ri, and therefore

|〈P⊥R
p, a1〉| ≤ |〈p, a1〉|+

t′∑

i=1

|〈p, ri〉〈a1, ri〉|

≤ |〈p, a1〉|+ ∆

t′∑

i=1

|〈p, ri〉|

≤ |〈p, a1〉|+ ∆

√√√√t′
t′∑

i=1

〈p, ri〉2

≤ |〈p, a1〉|+ ∆‖p‖
√
t′.

The first step is triangle inequality and the third is Cauchy-Schwartz. �

Lemma B.2 is very similar.

Lemma B.2 (Restated). Suppose R is a subspace in R
k of dimension t′, such that there is a basis

{r1, . . . , rt′} with ‖ri‖∞ ≤ ∆√
k
and ‖ri‖ = 1. Let p ∈ R

k be an arbitrary vector, then

‖P⊥R
p‖∞ ≤ ‖p‖∞ + ‖p‖∆

√
t′√
k
.

This lemma essentially follows from Lemma B.4, because ℓ∞ norm is just the maximum inner-

product to a basis vector. More specifically, the above lemma is applied for all a1 = ej , j ∈ [k],

where ej denotes the j-th basis vector in R
k.

B.2.3 Bounding correlation between v and w

We are only left with Lemma B.3. The main difficulty in proving this lemma is that the later steps

are dependent on the previous steps. In the proof we show the dependency is bounded and in fact

we can treat them as independent.

242

Lemma B.3 (Restated). Under the induction hypothesis (up to update step x̃(t+1) := A(y(t))∗2 at

iteration t), we have for i ∈ [t],

|〈v(i), w(t)〉| ≤ O
(
t3

(∆′
t−1)4

(δ′t−1)4δ2t
(log d)

√
k

d

)
= Õ

(√
k

d

)
.

Proof: Recall w(t) = y
(t)
−1 ∗ y

(t)
−1, and y

(t)
−1 is specified in (B.3). We now expand the Hadamard

product in w(t) and bound all the resulting O(t2) terms.

The first type of terms has the form 〈v(i), P⊥
W [i1−1]

w(i1) ∗P⊥
W [i2−1]

w(i2)〉, which can be bounded as

〈v(i), P⊥
W [i1−1]

w(i1) ∗ P⊥
W [i2−1]

w(i2)〉 ≤ k · ‖v(i)‖∞ · ‖P⊥
W [i1−1]

w(i1) ∗ P⊥
W [i2−1]

w(i2)‖∞

≤ 2k
log d√
d

(∆′
t−1)2

d2
,

where ‖v(i)‖∞ is bounded by Lemma B.4, and ℓ∞ norm of other vector is bounded by induction

Hypothesis 2. In addition, the corresponding coefficient is bounded by (see (B.5), and note that

both i1, i2 < t)

4(∆′
t−1)2

(δ′t−1)4
d2

k
.

Hence, the total contribution from such terms is bounded by

8t2
(∆′

t−1)4

(δ′t−1)4
log d√
d
. (B.13a)

The second type of terms has the form 〈v(i), P⊥
W [i1−1]

w(i1) ∗ v(i2)〉 = 〈v(i) ∗ v(i2), P⊥
W [i1−1]

w(i1)〉,

which can be bounded as

‖P⊥
W [i1−1]

w(i1)‖∞ · ‖v(i) ∗ v(i2)‖1 ≤ ‖P⊥
W [i1−1]

w(i1)‖∞ ·
‖v(i)‖2 + ‖v(i2)‖2

2
≤ 4∆′

t−1

k

d2
,

243

where the last inequality is concluded from Hypotheses 2 and 4. In addition, the corresponding

coefficient is bounded by (see (B.4) and (B.5), and note that both i1, i2 < t)

2∆′
t−1

(δ′t−1)2δt−1

d√
k
.

Hence, the total contribution from such terms is bounded by

8t2
(∆′

t−1)2

δt−1(δ′t−1)2

√
k

d
. (B.13b)

The third type of terms has the form 〈v(i), v(i1) ∗ v(i2)〉, with coefficient bounded by 1/δ2t−1 (see

(B.4)). For bounding these inner products, we need to use the fact that they are random Gaussian

vectors, however the main difficulty is that they are correlated (if i > j, then the subspace that

v(i) is in that depends on v(j)). To resolve this difficulty, we treat v(i) ∈ R
k−1 as projection of

n(i) ∈ R
k−1 into subspace orthogonal to W [t−1], where n(i)’s are independent Gaussian vectors

in the full k − 1 dimensional space. Independent of the ordering of i, i1, i2, we have with high

probability

〈n(i), n(i1) ∗ n(i2)〉 ≤ O
(√

k

d
√
d

)
,

since it is a sum of k − 1 independent mean-0 entries each with variance 1
d3

. On the other hand,

from Hypothesis 4, we have E[‖v(i)‖2] ≤ 4kd , and since vector n(i) − v(i) is in the subspace W [t−1]

with dimension t, we have

E[‖n(i) − v(i)‖2] ≤ O
(
t

k

)
· 4k

d
= O

(
t

d

)
,

and therefore, we have with high probability ‖n(i) − v(i)‖ ≤ O(
√
t/d) for all i ∈ [t− 1]. Using this,

the difference between 〈n(i), n(i1) ∗ n(i2)〉 and 〈v(i), v(i1) ∗ v(i2)〉 can be bounded as

|〈n(i), n(i1) ∗ n(i2)〉 − 〈v(i), v(i1) ∗ v(i2)〉| ≤ O
(

(log k)t

√
k

d
√
d

)
,

244

where the right hand side is the bound on the dominant term in the expansion of difference as

|〈n(i), (n(i1) − v(i1)) ∗ (n(i2) − v(i2))〉| ≤ ‖n(i)‖ · ‖(n(i1) − v(i1)) ∗ (n(i2) − v(i2))‖

≤ O
(

(log k)

√
k

d

)
· O
(
t

d

)

= O

(
(log k)t

√
k

d
√
d

)
.

Here, the first inequality is the Cauchy-Schwartz, and the second inequality is from bound on the

norm of random Gaussian vector n(i), and the bound on the norm of difference vectors n(i1) − v(i1)

stated earlier. Hence, the total contribution from such terms is bounded by

O

(
t3

log k

δ2t−1

√
k

d
√
d

)
. (B.13c)

Taking the sum of all the terms in (B.13a)-(B.13c) gives the desired bound.

�

B.3 Additional Arguments for Noise Analysis

Proof of Lemma 2.7: We prove this by an induction argument.

Basis of induction: For t = 1, x(1) is the initialization vector and thus, ξ(1) = 0. Hence, the

proposed bound holds for the basis of induction t = 1.

245

Inductive step: Assuming the inductive hypothesis holds for step t, we prove it also holds for

step t+ 1. We have

x(t+1) + ξ(t+1) = Norm
(
T̂ (x(t) + ξ(t), x(t) + ξ(t), I)

)

= Norm
(
T (x(t), x(t), I) + 2T (x(t), ξ(t), I) + T (ξ(t), ξ(t), I) + E(x̂(t), x̂(t), I)

)
.

(B.14)

The first term T (x(t), x(t), I) corresponds to the main signal; recall that x(t+1) = Norm(T (x(t), x(t), I))

in the noiseless setting, where the unnormalized version x̃(t+1) := T (x(t), x(t), I) has norm at least

Ω̃(
√
k/d) which is argued in the induction argument for Hypothesis 1. We now bound the desired

property of noise terms in the above expansion.

For the second term, we break it into two terms as

2T (x(t), ξ(t), I) = 2〈x(t), a1〉〈ξ(t), a1〉a1 + 2T ′(x(t), ξ(t), I) =: p+ q,

where T ′ :=
∑

j>1 aj ⊗ aj ⊗ aj. Here p := 2〈x(t), a1〉〈ξ(t), a1〉a1 corresponds to the multilinear form

from first component of T , and q := 2T ′(x(t), ξ(t), I) corresponds to the multilinear form from the

rest of components.

For q, we apply Lemma B.6. Note that since ‖x(t)‖B∗ ≤ Õ(1/
√
d), we get an extra 1/

√
d factor in

the bound provided by Lemma B.6, and therefore we have

‖q‖2 ≤ Õ(ǫdβ2
t−1√

k/d),

where we also used the induction hypothesis ‖ξ(t)‖ ≤ Õ(ǫdβ2
t−1

).

For p, we have

‖p‖ = 2|〈x(t), a1〉| · |〈ξ(t), a1〉| ≤ Õ
(
ǫdβ2

t√
k/d
)
,

where the inequality is from the signal and noise induction hypotheses; see Equation (2.26) for the

signal induction hypothesis.

246

The third term T (ξ(t), ξ(t), I) has ℓ2 norm bounded as

‖T (ξ(t), ξ(t), I)‖ ≤ ‖T‖‖ξ(t)‖2 ≤ Õ(dβ2
t
ǫ2) ≤ Õ(ǫdβ2

t√
k/d),

where the first inequality uses the sub-multiplicative property, and the second inequality exploits

the bounded norm of random tensor T as ‖T‖ ≤ O(1), and the induction hypothesis in t-th step.

The final inequality uses the assumption ǫ < o(
√
k/d) in the lemma.

The fourth term E(x̂(t), x̂(t), I) has ℓ2 norm bounded by

‖E(x̂(t), x̂(t), I)‖ ≤ ‖E‖‖x̂(t)‖2 ≤ ǫ
√
k/d,

where we use the sub-multiplicative property in the first inequality, and the assumption on the

norm of error tensor E in the lemma, and the fact that ‖x̂(t)‖ = 1 are exploited in the second

inequality.

Summarizing the above calculations on different terms of the update in (B.14), the signal plus noise

vector before normalization is

T (x(t), x(t), I) + 2T (x(t), ξ(t), I) + T (ξ(t), ξ(t), I) + E(x̂(t), x̂(t), I) =: αx(t+1) + z,

where α is a coefficient which is lower bounded as α ≥ Ω̃(
√
k/d). The vector z also satisfies

‖z‖ ≤ Õ(ǫdβ2
t√
k/d), (B.15)

which is derived by combining the bounds we argued on the second, third and fourth terms.

Note that until the very last step we always have dβ2
t ≤ o(d/

√
k) (otherwise we are constantly close

to the true component, and we are done). In this case the norm of z is negligible compared to α since

‖z‖ ≤ o(α), and thus, the normalization factor is equal to ‖αx(t+1) + z‖ = α(1± o(1)). Therefore,

after the normalization, we have the noise vector ξ(t+1) = α′x(t+1) + βz, where |α′| ≤ ‖z‖/α ≤ o(1)

and |β| ≤ 2/α ≤ Õ(d/
√
k), hence we know ‖ξ(t+1)‖ ≤ Õ(ǫdβ2

t
).

247

For the last step of the induction, the norm of T (x(t), x(t), I) is also larger (it has norm dβ2
t
k/d2,

which is larger than
√
k/d for the last step). Since ǫ < o(

√
k/d) we still know the noise is negligible.

�

Lemma on the property of ‖ · ‖∗ norm defined in Definition 2.2:

Lemma B.6. Consider a random tensor T =
∑

j∈[k] aj ⊗aj⊗aj where aj ’s are zero-mean random

Gaussian with expected unit norm. Let A ∈ R
d×k be the matrix [a1, . . . , ak], T ′ =

∑
j>1 aj ⊗aj ⊗aj

and B ∈ R
d×(k−1) be the matrix [a2, a3, . . . , ak]. Then for any vectors u, v such that ‖u‖B∗ ≤ 1 and

‖v‖2 ≤ 1, with high probability we have

‖T ′(u, v, I)‖2 ≤ Õ
(√

k/d
)
.

Proof: We prove this lemma along similar ideas provided in the proof of Anandkumar et al. [21,

Claim 1]. Let ηj ’s be independent random ±1 variables with Pr[ηj = 1] = 1/2. We rewrite tensor

T ′ as

T ′ =
∑

j>1

ηjaj ⊗ aj ⊗ aj . (B.16)

Since aj ’s are zero-mean random Gaussian vectors, we have ηjaj ∼ aj, and thus, the new T ′ has

the same distribution as the original one. We now first sample vectors aj’s, and this already makes

the norm ‖ · ‖B∗ well-defined. In addition, the value of ηj ’s does not change the singular values of

A or B. Also note that since aj ’s are zero-mean random Gaussian vectors with expected norm 1,

they also satisfy with high probability the incoherence condition such that |〈ai, aj〉| ≤ Õ(1/
√
d) for

all i 6= j. Thus, we condition on all these fixed events, and the only remaining random variables

are just the ηj ’s.

The proposed statement in the lemma is equivalent to bounding

sup
‖u‖B∗=1,‖v‖=‖w‖=1

∣∣T ′(u, v, w)
∣∣ .

248

In order to bound it, we provide an ǫ-net argument. We construct an ǫ-net such that for any vector

u ∈ R
d with unit ‖ · ‖B∗ norm, there is a vector u′ in the net such that ‖B⊤(u− u′)‖ ≤ 1/k2. We

also construct standard ε-net for vectors u,w ∈ R
d with unit ℓ2 norm. By standard construction,

this ε-net has size exp(O(d log d)). We now show that for all u in ǫ-net with unit ‖ · ‖B∗ norm,

and all v,w in ǫ-net with unit ℓ2 norm, the desired bound |T ′(u, v, w)| ≤ Õ
(√

k/d
)

holds with

high probability. Then for the other vectors (u, v, w) not in the ε-net, the result follows from their

closest points in the net.

Now for a fixed triple (u, v, w) in the ε-net, we have

T ′(u, v, w) =
∑

j>1

ηj〈u, aj〉〈v, aj〉〈w, aj〉,

which is a sum of independent random variables; recall that the randomness is from ηj ’s, and aj ’s

are already sampled and thus they are fixed here. We partition the above sum into large and small

terms as T ′(u, v, w) = SL + SLc such that the summation SL is the sum of large terms including

terms in set

L :=
{
j ∈ {2, 3, . . . , k} : |〈v, aj〉| ≥ log d/

√
d ∨ |〈w, aj〉| ≥ log d/

√
d
}
,

and the rest are the small terms forming SLc . Note that |〈u, aj〉| ≤ 1 since ‖u‖B∗ = 1.

Bounding |SLc |: Since the variables are bounded in this summation corresponding to small terms, we

use Bernstein’s inequality, and thus with probability at least 1−δ, we have |SLc | ≤
√
k log 1/δ·polylog d

d

for the fixed point in the ε-net. By choosing small enough δ = exp(−Cd log d) (where C is large

enough constant), we can apply the union bound on the ε-net, and conclude that for all the vectors

in the net, |SLc | is smaller than Õ(
√
k/d) with high probability.

Bounding |SL|: Since the columns of matrix B are random Gaussian vectors, it satisfies the RIP

property with high probability (see Remark 3 in Anandkumar et al. [21] for the precise definition of

RIP), and thus by the definition of RIP and Lemma 3 in Anandkumar et al. [21], we have ‖BL‖ ≤ 2

where BL is the sub-columns of matrix B specified by set L.

249

We now have

|SL| ≤
∑

j∈L
|〈u, aj〉| · |〈v, aj〉| · |〈w, aj〉| ≤

∑

j∈L
|〈v, aj〉| · |〈w, aj〉| ≤

∥∥∥B⊤
L v
∥∥∥ ·
∥∥∥B⊤

Lw
∥∥∥ ≤ 4,

where the second step uses the fact that |〈u, aj〉| ≤ 1, the third step exploits Cauchy-Schwartz

inequality, and the last step uses bound ‖BL‖ ≤ 2. Notice that matrix B is already sampled before

we do the ε-net argument, and therefore, we do not need to do union bound over all u, v, w for this

event.

Since we assume the overcomplete regime k ≥ d, the bound on |SLc | is dominant which finishes the

proof.

�

250

Appendix C

Proofs for Learning Overcomplete

Latent Variable Models

C.1 Proof of Learning Theorems

The semi-supervised and unsupervised learning results for each latent variable model are proved

by combining the corresponding tensor concentration bound proposed in Section 3.4 and the con-

vergence guarantees of the tensor decomposition algorithm provided in Chapter 2.

Proof of Theorem 3.7: The result is proved by applying the tensor concentration bound in

Theorem 3.4 to the local convergence result of Algorithm 1 recapped in Theorem 2.4. Note that in

the high noise regime ζ2 = Θ(1), the term ζ3
√

d
n in Theorem 3.4 is dominant, and in the low noise

regime ζ2 = Θ
(
1
d

)
, the term ζ

√
wmax

d
n in Theorem 3.4 is dominant.

Note that the sub-Gaussian property of conditional observed distributions is used to provide the

labeled sample complexity. Since the distribution of observed variables given hidden state is sub-

Gaussian with covariance matrix ζ2I as in model S described in Section 3.3.1, we have the following

251

concentration bound where with probability at least 1− δ, the empirical estimate â
(0)
j satisfies

∥∥∥â(0)j − aj
∥∥∥ ≤ C1

√
ζ2d log(1/δ)

mj
, j ∈ [k],

for some constant C1 > 0. �

Proof of Theorem 3.8: The result is proved by applying the tensor concentration bound

in Theorem 3.4 to the global convergence result of Algorithm 1 recapped in Theorem 2.5. The

dominant error bounds in Theorem 3.4 are the same as what stated in the proof of Theorem 3.7.

�

Proof of Theorem 3.12: The learning results for the sparse ICA are proved similar to the ICA

case, with the difference that the sparse ICA concentration bound in Theorem 3.6 is exploited here.

�

Proof of Theorem 3.13: Given linear model x = Ah, the 4th order observed moment is

expanded as

E
[
x⊗4

]
= E

[
h⊗4

] (
A⊤, A⊤, A⊤, A⊤

)
, (C.1)

where the multilinear notation defined in (1.2) is exploited.

Expanding E
[
h⊗4

]
, and treating

∑
i∈[k] E[h4i] e

⊗4
i as the main signal, the remaining term is

R :=
∑

i 6=j
E[h2i h

2
j] e

⊗2
i ⊗ e⊗2

j ,

where we also exploited the assumption that the expectation of terms involving odd powers of hi

are zero. Then, from (C.1), the spectral norm of perturbation tensor is bounded as

‖Ψ‖ :=
∥∥∥R
(
A⊤, A⊤, A⊤, A⊤

)∥∥∥ =

∥∥∥∥∥∥
∑

i 6=j
E[h2i h

2
j] a

⊗2
i ⊗ a⊗2

j

∥∥∥∥∥∥
≤ τ‖A‖4,

252

where we used E[h2i h
2
j] ≤ τ in the last inequality. Imposing condition ‖Ψ‖ ≤ Õ (wmin/d), and then

applying Theorem 2.5, the result is proved. Note that wmin := mini∈[k] E[h4i] = βs/k. �

C.2 Proof of Tensor Concentration Bounds

In this section, we provide the proof of tensor concentration bounds for different latent variable

models including multiview linear mixtures model, ICA and sparse ICA. In order to get polynomial

sample complexity bounds for unlabeled samples in semi-supervised and unsupervised learning

results, it is usually enough to treat the tensor as a vector/matrix and apply appropriate vec-

tor/matrix concentration bounds such as Bernstein bounds. However, these bounds can be signif-

icantly improved in many cases by considering the concentration property of the tensor spectral

norm directly.

C.2.1 Multiview linear mixtures model

In this section, we prove the tensor concentration result for the multiview linear mixtures model

provided in Theorem 3.4.

Proof of Theorem 3.4: Expanding the difference T̂ − T̃ , we have

T̂ − T̃ =
1

n
ζ3d1.5

∑

i∈[n]
εiA ⊗ εiB ⊗ εiC (C.2a)

+
1

n
ζ2d

∑

i∈[n]

(
ahi ⊗ εiB ⊗ εiC + εiA ⊗ bhi ⊗ εiC + εiA ⊗ εiB ⊗ chi

)
(C.2b)

+
1

n
ζ
√
d
∑

i∈[n]

(
ahi ⊗ bhi ⊗ εiC + ahi ⊗ εiB ⊗ chi + εiA ⊗ bhi ⊗ chi

)
. (C.2c)

There are three types of terms in the above difference which are bounded separately in Claims 12-14

in Section C.2.1.2. Combining the results of claims, the theorem follows directly.

�

253

C.2.1.1 Basic definitions and lemmata

In the proof of the claims in Section C.2.1.2, we extensively apply two different types of partitioning

as follows.

Definition C.1 (Small and large terms). Consider matrices EA := [ε1A, ε
2
A, . . . , ε

n
A] ∈ R

d×n, and

EB and EC which are similarly defined. For any set of vectors u, v and w, the set of columns

[n] are partitioned into 2 sets called sets of small and large terms according to the value of inner

products 〈u, εiA〉, 〈v, εiB〉 and 〈w, εiC 〉 as follows. The set of small values denoted by Lc ⊆ [n] is

defined as

Lc :=

{
i ∈ [n] : |〈u, εiA〉| <

10 log d√
d
∧ |〈v, εiB〉| <

10 log d√
d
∧ |〈w, εiC 〉| <

10 log d√
d

}
,

and the rest of columns belong to the set of large values denoted by L ⊆ [n].

Note that when necessary, the above partitioning is similarly applied to one or two matrices.

Lemma C.1. Suppose matrix E := [ε1, ε2, . . . , εn] ∈ R
d×n satisfies the RIP property (RIP). For a

vector u ∈ R
d, let set L ⊆ [n] denote the set of columns of E corresponding to large inner products

〈u, εi〉 as defined in Definition C.1, i.e.,

L :=

{
i ∈ [n] : |〈u, εi〉| ≥ 10 log d√

d

}
.

Then, the size of set L is bounded as

|L| ≤ d

25 log2 d
. (C.3)

Proof: It can be shown by a contradiction argument assuming |L| > d
25 log2 d

. Consider submatrix

E[L] (matrix E with columns restricted to set L). We have

‖E‖2 ≥
∥∥∥E[L]⊤u

∥∥∥
2

=
∑

i∈L
〈u, εi〉2 ≥ |L|100 log2 d

d
> 4,

254

where the first inequality is from the definition of large terms for which |〈u, εi〉| > 10 log d/
√
d,

and the second inequality is from contradiction assumption on |L|. This contradicts with the RIP

property that ‖E[L]‖ ≤ 2, and therefore the bound in (C.3) holds. �

The above partitioning into small and large sets is good when all we care about is the inner-products

between a fixed vector and the noise vectors. However, when we are also interested in the inner-

products between a fixed vector and columns of A,B,C, it is often not tight enough, and in order

to get a tight bound, we propose the following finer partitioning.

Definition C.2 (Buckets and constrained vectors). Consider matrix C := [c1, c2, . . . , ck] ∈ R
d×k,

and let t :=
⌈
log2

√
d
⌉
. For any unit vector w, the set of columns [k] are partitioned into t + 1

buckets according to the value of inner products 〈cj , w〉 as

K0 :=

{
j ∈ [k] : |〈cj , w〉| ≤

1√
d

}
,

Kl :=

{
j ∈ [k] : |〈cj , w〉| ∈

(
2l−1

√
d
,

2l√
d

]}
, l ∈ [t].

Furthermore, the constrained vector zl ∈ R
k, l ∈ {0, 1, 2, . . . , t}, corresponds to the inner products

in bucket l as

zlj :=




〈cj , w〉, j ∈ Kl,

0, j /∈ Kl.

One advantage of bucketing (which is not applicable to the small and large partitioning in the

previous definition) is that buckets with large value has a smaller ε-net. This exploits the additional

property of matrices with bounded 2→ 3 norm.

Lemma C.2. Consider matrix C := [c1, c2, . . . , ck] ∈ R
d×k where the columns have unit norm, and

‖C⊤‖2→3 = O(1). For a vector w with unit norm, consider the buckets on columns of matrix C

defined in Definition C.2. For constrained vector zl, l ∈ [t], let pl := 2l−1. Then, we have

• zl has at most O
(
d3/2

p3l

)
nonzero entries.

255

• There is an ε-net of size exp
(
O
(
d3/2

p3l

(
log k + log 1

ε

)))
for zl.

Proof: For the first part, we know the number of non-zero entries in zl is |Kl|. For any unit

vector w, we have

O(1) ≥
∥∥∥C⊤w

∥∥∥
3

3
≥
∑

j∈Kl

|〈w, cj〉|3 ≥ |Kl|
(
pl√
d

)3

,

which implies the desired bound on |Kl|.

Let ql := O
(
d3/2

p3l

)
be the maximum number of nonzero entries in zl. First enumerate the support

of zl. There are
(k
ql

)
possibilities for the location of ql nonzero entries in zl which is bounded as

(
k

ql

)
≤
(
e
k

ql

)ql
≤ eO(ql log k).

For a given support, take an ε-net for all vectors in that support which has size

eO(ql log(1
ε)).

The union of these ε-nets is a valid ε-net for zl of the desired size. This finishes the proof of second

claim.

�

A similar (but stronger) lemma can be proved for RIP matrices:

Lemma C.3. Consider matrix E := [ε1, ε2, . . . , εn] ∈ R
d×n where the columns have unit norm, and

it satisfies RIP property (RIP). For a vector w with unit norm, consider the buckets on columns of

matrix E defined in Definition C.2. For constrained vector zl, let pl := 2l−1. Then, for l > 4 log log d

we have

• zl has at most O
(
d
p2l

)
nonzero entries.

• There is an ε-net of size exp
(
O
(
d
p2l

(
log n+ log 1

ε

)))
for zl.

256

Proof: The first claim follows from the same argument as in Lemma C.1. The ε-net is constructed

in the same way as in the previous lemma. �

C.2.1.2 Proof of claims

In this section, we separately bound different error terms (C.2a)-(C.2c). Among all the terms, the

terms like (C.2c) is most difficult to bound (intuitively because terms like bhi are not “as random”

as terms like εiA). In fact, the proof for the term (C.2c) can be adapted to bound all the other

terms. Here for clarity we start from the simplest term (C.2a), and point out new ideas in the

proofs of (C.2b) and (C.2c).

Claim 12 (Bounding norm of (C.2a)). With high probability over εiA, ε
i
B , ε

i
C ’s and hi’s, we have

∥∥∥∥∥
1

n

n∑

i=1

εiA ⊗ εiB ⊗ εiC

∥∥∥∥∥ ≤ Õ
(

1

n
+

1

d
√
n

)
.

Proof: Let

T1 :=
1

n

n∑

i=1

εiA ⊗ εiB ⊗ εiC .

Rewrite the tensor as

T1 =
1

n

n∑

i=1

ηiε
i
A ⊗ εiB ⊗ εiC , (C.4)

where ηi’s are independent random ±1 variables with Pr[ηi = 1] = 1/2. Clearly, T1 has the same

distribution as the original term, because of the symmetry in error vectors implying e.g. ηiε
i
A ∼ εiA.

We first sample the vectors εiA, ε
i
B , ε

i
C , and therefore, the remaining random variables are just the

ηi’s.

The goal is to bound norm of T1 in (C.4) which is defined as

‖T1‖ := sup
‖u‖=‖v‖=‖w‖=1

|T1(u, v, w)| = sup
‖u‖=‖v‖=‖w‖=1

∣∣∣∣∣
1

n

n∑

i=1

ηi〈u, εiA〉〈v, εiB〉〈w, εiC 〉
∣∣∣∣∣ . (C.5)

257

In order to bound the above, we provide an ε-net argument. Construct an ε-net for vectors u, v and

w with ε = 1/n2. By standard construction, size of the ε-net is eO(d logn). First, for any fixed triple

(u, v, w), we bound |T1(u, v, w)| where T1(u, v, w) is a sum of independent variables. As introduced

in Definition C.1, we partition the sum into large and small terms as

T1(u, v, w) =
1

n

n∑

i=1

ηi〈u, εiA〉〈v, εiB〉〈w, εiC 〉 := SL + SLc,

where SLc is the sum of small terms consisting of terms satisfying

{
|〈u, εiA〉| <

10 log d√
d
∧ |〈v, εiB〉| <

10 log d√
d
∧ |〈w, εiC 〉| <

10 log d√
d

}
,

and SL is the sum of large terms including all the other terms.

Bounding |SLc |: The sum SLc is just a weighted sum of ηi’s, and the Bernstein’s Inequality is

exploited to bound it. Each term in the summation is bounded as

∣∣∣∣
1

n
〈u, εiA〉〈v, εiB〉〈w, εiC 〉

∣∣∣∣ ≤ O
(

log3 d

nd3/2

)
,

where the bound on the small terms is exploited. The variance term is also bounded as

O

(
log6 d

nd3

)
.

Applying Bernstein’s inequality, with probability at least 1− e−Cd logn (where C is a large enough

constant), the sum of small terms |SLc | is bounded by Õ
(

1
d
√
n

)
.

Bounding |SL|: From RIP property (RIP), we know that noise matrices EA := [ε1A, . . . , ε
n
A], EB :=

[ε1B , . . . , ε
n
B] and EC := [ε1C , . . . , ε

n
C] satisfy the weak RIP condition with high probability such that

for any subset of O
(

d
log2 d

)
number of columns, the spectral norm of matrices restricted to those

columns is bounded by 2. Let L denote the set of large terms in the proposed partitioning, and

EA[L], EB [L] and EC [L] be the matrices EA, EB and EC restricted to the columns indexed by L.

258

Applying Lemma C.1, we have

|L| ≤ 3d

25 log2 d
.

Note that an additional factor 3 shows up here since the set of small terms is defined as the

intersection of 3 sets comparing to what proved in Lemma C.1. Therefore, RIP property of EA,

EB and EC implies that EA[L], EB[L] and EC [L] have spectral norm bounded by 2. Now applying

triangle inequality, we have

|SL| ≤
1

n

∑

i∈L
|〈u, εiA〉|·|〈v, εiB 〉|·|〈w, εiC 〉| ≤

1

n

∑

i∈L
|〈u, εiA〉|·|〈v, εiB 〉| ≤

1

n

∥∥∥EA[L]⊤u
∥∥∥·
∥∥∥EB [L]⊤v

∥∥∥ ≤ 4

n
,

where the second step uses the fact that |〈w, εiC 〉| ≤ 1, the third step exploits Cauchy-Schwartz

inequality, and the last step uses bounds ‖EA[L]‖ ≤ 2 and ‖EB [L]‖ ≤ 2. Notice the three matrices

are already sampled before we do the ε-net argument, and therefore, we do not need to do union

bound over all u, v, w for this event.

At this point, we have bounds on |SL| and |SLc | for a fixed triple (u, v, w) in the ε-net. By applying

union bound on all vectors in the ε-net, the bound holds for every triple (u, v, w) in the ε-net. The

argument for other (u, v, w)’s which are not in the ε-net follows from their closest triples in the

ε-net. �

Claim 13 (Bounding norm of (C.2b)). With high probability over εiA, ε
i
B ’s and hi’s, we have

∥∥∥∥∥
1

n

n∑

i=1

εiA ⊗ εiB ⊗ chi

∥∥∥∥∥ ≤ Õ
(

1

n
+

√
wmax

n
√
d

)
.

Proof: The proof is similar to the previous claim. Let

T2 =
1

n

n∑

i=1

ηiε
i
A ⊗ εiB ⊗ chi ,

where ηi’s are independent random ±1 variables with Pr[ηi = 1] = 1/2. Similar to the previous

claim, we first sample the vectors εiA, ε
i
B and hi’s, and therefore, the remaining random variables

are just the ηi’s. Assume the matrices EA, EB satisfy the RIP property, and the number of times

259

hi = j for j ∈ [k] is bounded by [nwmin/2, 2nwmax]. All the events happen with high probability

when n ≥ Ω̃(1/wmin) and n ≤ poly(k).

The goal is to bound ‖T2‖. We construct an ε-net for vectors u and v with ε = 1/n2. First, for

any fixed pair (u, v), we bound ‖T2(u, v, I)‖ where T2(u, v, I) is a sum of independent zero mean

vectors. As introduced in Definition C.1, consider partitioning on columns of EA and EB as

T2(u, v, I) =
1

n

n∑

i=1

ηi〈u, εiA〉〈v, εiB〉chi = SL + SLc ,

where SLc is the sum of small terms consisting of terms satisfying

{
|〈u, εiA〉| <

10 log d√
d

∧ |〈v, εiB〉| <
10 log d√

d

}
,

and SL is the sum of large terms including all the other terms.

Bounding ‖SL‖: This is bounded in a similar way to the argument for bounding SL in the previous

claim. From RIP property (RIP), we know that noise matrices EA := [ε1A, . . . , ε
n
A] and EB :=

[ε1B , . . . , ε
n
B] satisfy the weak RIP condition with high probability. Let L be the set of large terms

in the proposed partitioning, and EA[L], EB [L] be the matrices EA, EB restricted to the columns

indexed by L. Applying Lemma C.1, we have

|L| ≤ 2d

25 log2 d
.

Therefore, RIP property of EA and EB implies that EA[L] and EB [L] have spectral norm bounded

by 2. Applying triangle inequality, we have

‖SL‖ ≤
1

n

∑

i∈L
|〈u, εiA〉| · |〈v, εiB〉| ≤

1

n

∥∥∥EA[L]⊤u
∥∥∥ ·
∥∥∥EB [L]⊤v

∥∥∥ ≤ 4

n
,

where Cauchy-Schwartz inequality is exploited in the second inequality, and the bounds ‖EA[L]‖ ≤ 2

and ‖EB [L]‖ ≤ 2 are used in the last inequality. Notice the two matrices are already sampled before

we do the ε-net argument, and therefore, we do not need to do union bound over all u, v for this

event.

260

Bounding ‖SLc‖: Similar to how we bounded |SLc | in the previous claim by applying Bernstein’s

inequality, it is tempting to apply vector Bernstein’s inequality here. However, vector Bernstein’s

inequality does not utilize the fact that the matrix C⊤ has small 2 → 3 norm, and results in a

suboptimal bound. Here, we try to exploit this additional property to to get a better bound.

Let Lc denote the set of small terms in the proposed partitioning on columns of EA and EB. Then,

we have

〈SLc , w〉 =
1

n

∑

i∈Lc

ηi〈u, εiA〉〈v, εiB〉〈w, chi〉.

Now, we try to bound the above inner product 〈SLc , w〉 by considering an ε-net on w as well (Note

that the ε-nets on u and v are already considered). To do that we partition the inner products

〈cj , w〉 into t+ 1 buckets (t := ⌈log2

√
d⌉) as defined in Definition C.2 where

K0 :=

{
j ∈ [k] : |〈cj , w〉| ≤

1√
d

}
,

Kl :=

{
j ∈ [k] : |〈cj , w〉| ∈

(
2l−1

√
d
,

2l√
d

]}
, l ∈ [t].

Let Ql denote the sum of all terms that fall into bucket Kl as

Ql :=
1

n

∑

i∈Lc,hi∈Kl

ηi〈u, εiA〉〈v, εiB〉〈w, chi〉. (C.6)

Note that by construction of buckets, we have

〈SLc , w〉 =

t∑

l=0

Ql.

There are only O(log d) terms in this summation, and therefore, it suffices to show each term Ql is

small.

For Q0, it is a weighted sum of ηi’s with weights bounded by Õ(1/d3/2), so the situation is exactly

the same as Claim 12.

261

For Ql, l ∈ [t], the argument is as follows. Let pl := 2l−1. Applying Lemma C.2, we have

|Kl| ≤ O
(
d3/2

p3l

)
.

As stated in the beginning of proof, each hidden state hi ∈ [k] appears in at most O(2nwmax)

samples w.h.p. Hence, the total number of terms in the summation form (C.6) for Ql is w.h.p.

bounded as

|{i ∈ [n] : hi ∈ Kl}| ≤ O
(
nwmax

d3/2

p3l

)
.

Now the sum Ql in (C.6) is a weighted sum of ηi’s and the Bernstein’s inequality is exploited to

bound it. Each term in the summation is bounded as

Õ
(pl
nd3/2

)
,

where the bound on the small terms and the bound on terms in bucket Kl are exploited. The

variance term is also bounded as

O

(
wmax

npld3/2

)
.

Applying Bernstein’s inequality, with probability at least 1 − e−Cd logn for large enough constant

C, we have (notice below that pl ≤ O(
√
d))

Ql ≤ Õ
(

pl√
dn

+

√
wmax

npl
√
d

)
≤ Õ

(
1

n
+

√
wmax

n
√
d

)
.

At this point, we have bounds on ‖SL‖ and ‖SLc‖ for a fixed pair of vectors (u, v) in the ε-net. By

applying union bound on all vectors in the ε-net, the bound holds for every pair (u, v) in the ε-net.

The argument for other (u, v)’s which are not in the ε-net follows from their closest pairs in the

ε-net. �

Now we are ready to bound the last term (C.2c).

262

Claim 14 (Bounding norm of (C.2c)). With high probability over εiA’s and hi’s, we have

∥∥∥∥∥
1

n

n∑

i=1

εiA ⊗ bhi ⊗ chi

∥∥∥∥∥ ≤ Õ
(

1

n
+

√
wmax

n

)
.

Proof: Again, rewrite the tensor as

T3 =
1

n

n∑

i=1

ηiε
i
A ⊗ bhi ⊗ chi , (C.7)

where ηi’s are independent random ±1 variables with Pr[ηi = 1] = 1/2. First sample εiA and

hi’s, and therefore, the remaining random variables are just the ηi’s. In addition, assume EA :=

[ε1A, ε
2
A, . . . , ε

n
A] satisfies the RIP property (RIP) and each hi ∈ [k] appears between nwmin/2 and

2nwmax times where both events happen with high probability.

The goal is to bound norm of T3 in (C.7) which is defined as

‖T3‖ := sup
‖u‖=‖v‖=‖w‖=1

|T3(u, v, w)| = sup
‖u‖=‖v‖=‖w‖=1

∣∣∣∣∣
1

n

n∑

i=1

〈u, εiA〉〈v, bhi〉〈w, chi〉
∣∣∣∣∣ . (C.8)

In order to bound the above, we provide an ε-net argument similar to what we did for bounding

SLc in the previous claim with the difference that here we apply bucketing to all three matrices EA,

B and C. First, for any fixed triple (u, v, w), we partition the inner products in (C.8) into buckets

as defined in Definition C.2. Let Ka
l , Kb

l and Kc
l denote the bucketing of matrices EA, B and C,

respectively.

In addition, we merge the buckets Ka
0 , Ka

1 , . . . ,K
a
4 log log d into Ka

0 . This means Ka
0 now contains

all i’s with inner product

|〈εiA, u〉| ≤
16 log d√

d
,

and Ka
l ’s for 1 ≤ l ≤ 4 log log d are empty. Let

Jl1,l2,l3 :=
{
i ∈ [n] : i ∈ Ka

l1 ∧ hi ∈ Kb
l2 ∧ hi ∈ Kc

l3

}
,

263

and Ql1,l2,l3 be the sum of terms in summation (C.8) on this set, i.e.,

Ql1,l2,l3 :=
1

n

∑

i∈Jl1,l2,l3

〈u, εiA〉〈v, bhi〉〈w, chi〉. (C.9)

Note that by construction of buckets, the summation in (C.8) is expanded as

1

n

n∑

i=1

〈u, εiA〉〈v, bhi〉〈w, chi〉 =

t∑

l1,l2,l3=0

Ql1,l2,l3 .

There are only O(t3) = O(log3 d) terms in this summation, and therefore, it suffices to show each

term Ql1,l2,l3 is small.

For Q0,0,0, it is a weighted sum of ηi’s with weights bounded by Õ(1/d3/2), and therefore, it follows

from the same arguments as Claim 12.

For Ql1,l2,l3 with max{l1, l2, l3} > 0, let pl := 2max{l1,l2,l3}−1. By Lemma C.2 and Lemma C.3, the

total number of terms in the summation form (C.9) for Ql1,l2,l3 is w.h.p. bounded as

|Jl1,l2,l3 | ≤ O
(
nwmax

d3/2

p3l

)
,

and there exists an ε-net of size

exp

(
O

(
d3/2

p3l
log n

))

with ε < 1/n2. For every u, v, w in the ε-net, this term n ·Ql1,l2,l3 is a weighted sum of ηi’s, and the

Bernstein’s inequality is exploited to bound it. Each term in the summation is bounded as
8p3l
d3/2

,

where the bound on the terms in buckets are exploited. The variance term is also bounded as

O

(
nwmax

p3l
d3/2

)
.

Applying Bernstein’s inequality, with probability at least 1− exp
(
−C d3/2

p3l
log n

)
for large enough

constant C, we have

nQl1,l2,l3 ≤ Õ (1 +
√
nwmax) .

264

Taking the union bound over all triples in ε-net, this bound holds for all such triples. For u, v, w

which are not in the ε-net, the bound follows from the closest point in the ε-net.

�

C.2.2 ICA

In this section, we prove the tensor concentration result for the ICA model provided in Theorem 3.5.

Recall the 4th order modified moment tensor in equation (3.5) as

M4 := E[x⊗ x⊗ x⊗ x]− T,

where T ∈ R
d×d×d×d is the fourth order tensor with

Ti1,i2,i3,i4 := E[xi1xi2]E[xi3xi4] + E[xi1xi3]E[xi2xi4] + E[xi1xi4]E[xi2xi3], i1, i2, i3, i4 ∈ [d].

Let M̂4 be the empirical estimate of M4 given n samples.

Proof of Theorem 3.5: Let W := 1
n

∑n
i=1 x

i(xi)⊤, and therefore, the empirical estimate of T is

given by

T̂i1,i2,i3,i4 = Wi1,i2Wi3,i4 +Wi1,i3Wi2,i4 +Wi1,i4Wi2,i3 . (C.10)

Then, the empirical estimate of M4 is given by

M̂4 =
1

n

n∑

i=1

(xi)⊗4 − T̂ .

The proof directly follows from Claims 16 and 17, which bound the perturbation of the two terms

separately. Claim 16 bounds the 4th order term perturbation E[x⊗4]− 1
n

∑n
i=1(xi)⊗4, and Claim 17

bounds the 2nd order term perturbation T − T̂ . �

265

C.2.2.1 Proof of claims

Before bounding the 4-th order term we first give the following claim which bounds a sum of

subgaussian variables raised to the 4-th power.

Claim 15. Suppose hi, i ∈ [n], are independent q-subgaussian random variables. Then, for any

d ≥ 1, with probability at least 1− e−ω(d logn) we have

∣∣∣∣∣
1

n

n∑

i=1

(
h4i − E

[
h4i
])
∣∣∣∣∣ ≤ Õ

(
q4d2

n
+

√
q8d

n

)
.

(Notice that here d is intended to be the dimension in later applications. However, for this claim

we can choose d to be an arbitrary real number that is at least 1.)

Proof: We prove

Pr

[
1

n

∣∣∣∣∣
n∑

i=1

h4i −med
(n∑

i=1

h4i

)∣∣∣∣∣ ≤ Õ
(
q4d2

n
+

√
q8d

n

)]
≥ 1− e−ω(d logn), (C.11)

where med(·) is the median of the distribution. By doing simple integration (for d from 1 to ∞),

this concentration bound implies

∣∣∣∣∣E
[

n∑

i=1

h4i

]
−med

(n∑

i=1

h4i

)∣∣∣∣∣ ≤ Õ
(
q4√
n

)
.

Therefore, when d ≥ 1 the difference between mean and median is negligible, and we get the desired

bound in the claim.

In order to prove the deviation bound from the median in (C.11), we use the standard sym-

metrization argument: it is enough to take two independent sample sets {h1, h2, . . . , hn} and

{h̃1, h̃2, . . . , h̃n} with the same distribution, and bound
∣∣ 1
n

∑
i∈[n]

(
h4i − h̃4i

)∣∣. In order to bound

the sum, we rewrite it in the form

Q =
1

n

∑

i∈[n]
ηi|h4i − h̃4i |,

266

where ηi’s are independent random ±1 variables with Pr[ηi = 1] = 1/2.

Now we partition the terms in the summation for Q into multiple buckets according to the magni-

tude of
∣∣h4i − h̃4i

∣∣. Let t := ⌈log2 d
2 + C ′ log2 log2 n⌉ (where C ′ is a large enough constant). Then

the buckets are defined as

K0 :=
{
i ∈ [n] : |h4i − h̃4i | ≤ q4

}
,

Kl :=
{
i ∈ [n] : |h4i − h̃4i | ∈

(
2l−1q4, 2lq4

]}
, l ∈ [t],

Kt+1 :=
{
i ∈ [n] : |h4i − h̃4i | > 2tq4

}
.

Let Ql denote the sum of all terms that fall into bucket Kl as

Ql :=
1

n

∑

i∈[n],i∈Kl

|h4i − h̃4i |ηi. (C.12)

Note that by construction of buckets, the original summation Q =
∑t+1

l=0 Ql. There are only O(log d)

terms in this summation, and therefore, it suffices to show each term Ql is small.

Note that since hi’s and h̃i’s are q-subgaussian random variables, we have

Pr
[
|h4i − h̃4i | ≥ λq4

]
≤ Pr

[
h4i ≥ λq4/2

]
+ Pr

[
h̃4i ≥ λq4/2

]

= 2 Pr
[
|hi| ≥ (λq4/2)1/4

]

≤ 4 exp

(
−
√
λ

2
√

2

)
, (C.13)

where the last inequality uses q-subgaussian property.

For Ql, 0 ≤ l ≤ 2 log log n, we apply Bernstein’s inequality directly. Each term in the summation

for Ql is bounded as Õ(q4/n), and the variance term is also bounded as Õ(q8/n). By applying

Bernstein’s inequality, with probability at least 1− e−ω(d logn), we have

Ql ≤ Õ
(
q4d

n
+

√
q8d

n

)
, 0 ≤ l ≤ 2 log log n.

267

For Ql, 2 log log n < l ≤ t, we first bound the number of terms in bucket Kl. From (C.13), we have

Pr
[
|Kl| ≥ Ω̃

(
d2−l/2

)]
≤ e−ω(d logn).

Each term in the summation Ql is bounded by 2lq4/n, and therefore, by applying triangle inequality

we have with probability at least 1− e−ω(d logn)

Ql ≤ Õ
(
d2−l/2

) 2lq4

n
≤ Õ

(
q4d2l/2

n

)
≤ Õ

(
q4d2

n

)
, 2 log log n < l ≤ t.

Here the last inequality uses the fact that l ≤ t, which implies 2l/2 = Õ(d).

For the last term Qt+1, again from (C.13), we have with probability at least 1 − e−ω(d logn), there

is only one term in the sum and that particular term is smaller than Õ(q4d2/n).

Now by union bound, with probability at least 1 − e−ω(d logn) all the terms are bounded by

Õ
(
q4d2/n+

√
q8d/n

)
, which implies the summation Q is also bounded by

Õ

(
q4d2

n
+

√
q8d

n

)
.

�

Now we are ready to bound the 4-th order term perturbation E[x⊗4]− 1
n

∑n
i=1(x

i)⊗4.

Claim 16. Suppose ‖A‖ ≤ O(
√
k/d) and the entries of h ∈ R

k are independent subgaussian

variables with E[h2j] = 1. Given n samples xi = Ahi, i ∈ [n], we have with high probability

∥∥∥∥∥∥
1

n

∑

i∈[n]
(xi)⊗4 − E[x⊗4]

∥∥∥∥∥∥
≤ Õ

(
k2

n
+

√
k4

d3n

)
.

Proof: The desired spectral norm in the lemma is defined as

sup
‖u‖=1

∣∣∣∣∣∣
1

n

∑

i∈[n]
〈u, xi〉4 − E[〈u, x〉4]

∣∣∣∣∣∣
.

268

In order to bound it, we provide an ε-net argument. Construct an ε-net for vectors u in the unit

ball Sd−1 with ε = 1/n2. By standard construction, size of the ε-net is eO(d logn). For any fixed u

in the ε-net, let v := A⊤u. Since xi = Ahi, i ∈ [n], we have 〈u, xi〉 = 〈v, hi〉. Therefore, for any

fixed u (and the corresponding v) in the ε-net, we would like to bound

Q :=
1

n

∑

i∈[n]

(
〈v, hi〉4 − E[〈v, hi〉4]

)
.

Since hi’s have independent subgaussian entries, we know that 〈v, hi〉 is ‖v‖-subgaussian. On the

other hand, we have

‖v‖ ≤ ‖A‖‖u‖ = O(
√
k/d),

and therefore, 〈v, hi〉 is a O(
√
k/d)-subgaussian random variable. By Claim 15, with probability

at least 1− e−Cd logn (for large enough constant C) we have

|Q| ≤ Õ
(
k2

n
+

√
k4

d3n

)
.

By applying union bound on all vectors in the ε-net, the bound holds for every vector u in the

ε-net. The argument for other u’s which are not in the ε-net follows from their closest vectors in

the ε-net.

�

The 2nd order term T in (3.6) is sum of three terms, each of which is an outer-product of two

matrices. Hence, it is good enough to apply a matrix concentration for bounding this term.

Claim 17. Suppose ‖A‖ ≤ O(
√
k/d) and the entries of h ∈ R

k are independent subgaussian

variables with E[h2j] = 1. Given n samples xi = Ahi, i ∈ [n], for T in (3.6) and the empirical

estimate T̂ in (C.10), if n ≥ d, we have with high probability

‖T̂ − T‖ ≤ Õ
(√

k4

d3n

)
.

269

Proof: Recall W := 1
n

∑n
i=1 x

i(xi)⊤. We prove the result for the first term

T̂1[i1, i2, i3, i4] = Wi1,i2Wi3,i4 ,

or equivalently T̂1 = W ⊗W . The analysis for the other two terms follow similarly from symmetry.

Let T1 = E[xx⊤]⊗ E[xx⊤] = E[W]⊗ E[W]. We have

T̂1 − T1 = (W − E[W])⊗ E[W] + E[W]⊗ (W − E[W]) + (W − E[W])⊗ (W − E[W]).

For any matrices A and B, we have ‖A⊗B‖ ≤ ‖A‖‖B‖. Thus,

‖T̂1 − T1‖ ≤ 2‖W − E[W]‖ · ‖E[W]‖+ ‖W − E[W]‖2. (C.14)

We bound ‖W−E[W]‖ by Matrix Bernstein’s inequality. For applying Matrix Bernstein’s inequality,

we need a bound on the norm of each term in the summation form of W , i.e., bound on ‖xi(xi)⊤‖

which holds almost surely. Therefore, we apply the Bernstein’s inequality on the bounded version

of W as

W ′ :=
1

n

n∑

i=1

xi(xi)⊤1‖xi‖≤O(
√
k logn),

where 1‖xi‖≤O(
√
k logn) is an indicator variable. Since x = Ah and entries of h are subgaussian, the

indicator variables are 1 with probability 1 − n− logn. Therefore, W and W ′ are equal with high

probability at it suffices to apply Matrix Bernstein’s bound on W ′.

For the summation W ′, the norm of each term is bounded by Õ(k/n), and for the variance term,

we have

E

[
W ′(W ′)⊤

]
=

1

n
E

[
‖xi‖2xi(xi)⊤1‖xi‖≤O(

√
k logn)

]
� 1

n
Õ(k)E

[
xi(xi)⊤

]
=

1

n
Õ(k)AA⊤.

270

Since ‖A‖ ≤ O(
√
k/d), it is concluded that the variance is bounded by Õ(k2/dn). Therefore,

Matrix Bernstein’s inequality implies that with probability at least 1− d/n,

‖W ′ − E[W ′]‖ ≤ Õ
(
k

n
+

k√
dn

)
.

Since W is equal to W ′ with high probability and ‖E[W] − E[W ′]‖ is negligible, we also have

‖W − E[W]‖ ≤ Õ(k/
√
dn) (when n ≥ d).

On the other hand, E[W] = AA⊤, and therefore, ‖E[W]‖ ≤ k/d. From (C.14), we have

‖T̂1 − T1‖ ≤ Õ
(√

k4

d3n

)
.

�

C.2.3 Sparse ICA

In this section, we prove the tensor concentration result for the sparse ICA model provided in The-

orem 3.6. This is the sparse coding problem in the sparse ICA setting (where hi’s are independent

and sparse). The proof can be generalized to the case when hi’s are negatively correlated or more

generally when concentration bounds hold for hi’s.

The proof of Theorem 3.6 is similar to the proof of Theorem 3.5, where the 4th order term pertur-

bation E[x⊗4]− 1
n

∑n
i=1(xi)⊗4, and the 2nd order term perturbation T − T̂ are separately bounded

in the following two claims. First, we bound the perturbation of the 4th order term in the following

claim. Note that this is the sparse version of Claim 16.

Claim 18. Consider the sparse ICA model described in Theorem 3.6. Given n independent samples

xi = Ahi, i ∈ [n], we have with high probability

∥∥∥∥∥
1

n

n∑

i=1

(xi)⊗4 − E[x⊗4]

∥∥∥∥∥ ≤ Õ
(
s2

n
+

√
s4

d3n

)
.

271

Proof: The proof uses ideas from both Claims 13 and 15 . Without loss of generality, we assume

s/k < 1/2. Otherwise, hj ’s are 2-subgaussian, and therefore the dense case argument in Claim 16

implies the desired bound.

Let ηi’s be independent random ±1 variables with Pr[ηi = 1] = 1/2. We equivalently bound

∥∥∥∥∥
1

n

n∑

i=1

ηi
(
(xi)⊗4 − E

[
(xi)⊗4

])
∥∥∥∥∥ := sup

‖u‖=1

∣∣∣∣∣∣
1

n

∑

i∈[n]
ηi
(
〈u, xi〉4 − E[〈u, xi〉4]

)
∣∣∣∣∣∣
.

In order to bound it, we provide an ε-net argument. Construct an ε-net for vectors u in the unit

ball Sd−1 with ε = 1/n2. By standard construction, size of the ε-net is eO(d logn). For any fixed u

in the ε-net, let v := A⊤u. Since xi = Ahi, i ∈ [n], we have 〈u, xi〉 = 〈v, hi〉. Therefore, for any

fixed u (and the corresponding v) in the ε-net, we would like to bound

∣∣∣∣∣∣
1

n

∑

i∈[n]
ηi
(
〈v, hi〉4 − E[〈v, hi〉4]

)
∣∣∣∣∣∣
. (C.15)

Now, we follow the ideas of Claim 15, and apply the standard symmetrization trick: it is enough to

take two independent sample sets {h1, h2, . . . , hn} and {h̃1, h̃2, . . . , h̃n} with the same distribution,

and bound
∣∣ 1
n

∑
i∈[n] ηi

(
〈v, hi〉4 − 〈v, h̃i〉4

)∣∣ instead of (C.15). Note that the difference between

mean and median here is negligible because our distributions have first and second moments poly-

nomial in parameters, and strong exponential concentration. Therefore, for any vector u (and the

corresponding v), we would like to bound the sum

1

n

∑

i∈[n]
ηi

∣∣∣〈v, hi〉4 − 〈v, h̃i〉4
∣∣∣ .

The techniques we use to prove bounds on sums of random variables
∑n

i=1 ηizi (either Bernstein’s

inequality, or bounding the number of terms and then using triangle inequality) all works if we just

know an upper bound of zi. Therefore, we can equivalently bound

Q =
1

n

∑

i∈[n]
ηi

(
〈v, hi〉4 + 〈v, h̃i〉4

)
,

272

where the subtraction is replaced with addition.

Now, we partition the entries of vector v = A⊤u ∈ R
k into different vectors vl according to the

magnitude of entries (this is very similar to Claim 13). In particular, we partition entries (inner

products) vj = 〈u, aj〉, j ∈ [k], into t+ 1 buckets (t := ⌈log2

√
d⌉) where (similar to Definition C.2)

K0 :=

{
j ∈ [k] : |〈u, aj〉| ≤

1√
d

}
,

Kl :=

{
j ∈ [k] : |〈u, aj〉| ∈

(
2l−1

√
d
,

2l√
d

]}
, l ∈ [t].

In addition, we merge the buckets K0, K1, . . . ,K 1
2
log log d into K0. This means K0 now contains all

j’s with inner product

|〈u, aj〉| ≤
√

log d√
d

,

and Kl’s for 1 ≤ l ≤ 1
2 log log d are empty. Now, let vl denote the restriction of vector v to entries

indexed by Kl, i.e.,

vl(j) :=





v(j), j ∈ Kl,

0, j /∈ Kl.

Let pl := 2l−1. By RIP property of matrix A, and exploiting Lemma C.3, the number of nonzero

entries in vl is bounded as

‖vl‖0 = |Kl| ≤ O
(
d

p2l

)
, l >

1

2
log log d.

Exploiting the above partitioning, the term 〈v, hi〉4 in summation Q can be upper bounded as

〈v, hi〉4 =
(t∑

l=0

〈vl, hi〉
)4
≤
(

(t+ 1)
t∑

l=0

〈vl, hi〉2
)2
≤ (t + 1)3

t∑

l=0

〈vl, hi〉4,

where the equality is concluded from the fact that nonzero values of vl’s are derived from partitioning

of values of v, and Cauchy-Schwartz inequality is exploited in the last two steps. Applying this

273

upper bound on Q, we would like to bound

Q′ :=
1

n

∑

i∈[n]
ηi(t+ 1)3

t∑

l=0

(
〈vl, hi〉4 + 〈vl, h̃i〉4

)
.

In order to bound Q′, we break it into sum of t+ 1 terms as Q′ =
∑t

l=0Q
′
l where

Q′
l :=

1

n
(t + 1)3

∑

i∈[n]
ηi

(
〈vl, hi〉4 + 〈vl, h̃i〉4

)
.

All terms Q′
l can be bounded in the same way as Claim 15. Especially, directly from Claim 15, we

have

Q′
0 ≤ Õ

(
s2

n
+

√
s4

d3n

)
.

For the other terms Q′
l, l >

1
2 log log d, we need to analyze the tail behavior of 〈vl, hi〉4. The tail

behavior of this variable is affected by two phenomena: 1) the size of intersection of the supports

of vl and hi, and 2) given the intersection, the tail behavior of

〈vl, hi〉 =
∑

j∈[k]:si[j]=1

vl[j]g
i[j], (C.16)

which is a sum of subgaussian random variables. Recall that hi[j] = si[j]gi[j] where si ∈ R
k with

i.i.d. Bernoulli random entries specifies the support of hi.

The first part (the intersection of supports) can be bounded by Chernoff bound as

Pr
[∑

j∈[k]
si[j] ≥ (1 + δ)s

]
≤
(

eδ

(1 + δ)(1+δ)

)s
.

The second part follows from subgaussian concentrations bounds. Let θl := 2l√
d
. For bucket Kl,

and subsequently Q′
l where vl has entries in the interval (θl/2, θl], we discuss the tail behavior in

two cases where 1/θ2l ≥ s and 1/θ2l ≤ s.

Case 1 (1/θ2l ≥ s): In this case, most of 〈vl, hi〉4 are of size s2/k2 which is very small. For any

q ∈
[√

s/(kθ2l) polylog(n), s
]
, since the summation in (C.16) is

√
sθl-subgaussian, with probability

274

at least 1− e−Ω̃(q), we have

〈vl, hi〉4 ∈
(
q4θ4l /2, q

4θ4l
]
.

Therefore in this range, with probability at least 1− e−Ω̃(1/θ2l), the summation Q′
l is bounded by

1

n
Õ

(
q4θ4l
θ2l q

)
= Õ

(
q3θ2l
n

)
≤ Õ

(
s2

n

)
,

where the last inequality uses the fact that θ2l ≤ 1/s.

For any q ∈
(
s,
√
s/θ2l log2 n

]
, since the summation in (C.16) is

√
sθl-subgaussian, with probability

at least 1− e−Ω̃(q2/s), we have

〈vl, hi〉4 ∈
(
q4θ4l /2, q

4θ4l
]
.

Therefore in this range, with probability at least 1− e−Ω̃(1/θ2l), the summation Q′
l is bounded by

1

n
Õ

(
q4θ4l

1

θ2l q
2/s

)
= Õ

(
q2θ2l s

n

)
≤ Õ

(
s2

n

)
,

where the last inequality uses the fact that q2 = Õ(s/θ2l).

When q >
√
s/θ2l log2 n, there are no term 〈vl, hi〉4 in this range with high probability. Therefore,

in the first case, by doing union bound Q′
l is always bounded by

Õ

(
s2

n

)
+ o

(
s4

d3n

)
.

Case 2 (1/θ2l ≤ s): In this case, again most of 〈vl, hi〉4 are of size s2/k2 which is very small.

The only difference with case 1 is the two ranges where instead of being separated at s, they are

separated at 1/θ2l because there are at most Õ(1/θ2l) nonzero entries in vl as shown earlier.

For any q ∈
[√

s/(kθ2l) polylog(n), 1/θ2l
]
, since the summation in (C.16) is

√
sθl-subgaussian, with

probability at least 1− e−Ω̃(q), we have

〈vl, hi〉4 ∈
(
q4θ4l /2, q

4θ4l
]
.

275

Therefore in this range, with probability at least 1− e−Ω̃(1/θ2l), the summation Q′
l is bounded by

1

n
Õ

(
q4θ4l
θ2l q

)
= Õ

(
q3θ2l
n

)
≤ Õ

(
s2

n

)
,

where the last inequality uses the fact that θ2l ≤ 1/s.

For any q ∈
(
1/θ2l ,

√
s/θ2l log2 n

]
, since the summation in (C.16) is

√
sθl-subgaussian, with proba-

bility at least 1− e−Ω̃(q2θ2l), we have

〈vl, hi〉4 ∈
(
q4θ4l /2, q

4θ4l
]
.

Therefore in this range, with probability at least 1− e−Ω̃(1/θ2l), the summation Q′
l is bounded by

1

n
Õ

(
q4θ4l

1

θ2l q
2θ2l

)
= Õ

(
q2

n

)
≤ Õ

(
s2

n

)
,

where the last inequality uses the fact that q2 = Õ(s/θ2l) ≤ Õ(s2).

When q >
√
s/θ2l log2 n, there are no term 〈vl, hi〉4 in this range with high probability. Therefore,

in the second case, by doing union bound Q′
l is always bounded by

Õ

(
s2

n

)
+ o

(
s4

d3n

)
.

Combining the bounds on all terms finishes the proof. �

In the next claim we bound the perturbation of the 2nd order term T . Note that this is the sparse

version of Claim 17.

Claim 19. Consider the same sparse setting as in Theorem 3.6. Given n samples xi = Ahi, i ∈ [n],

where ‖A‖ ≤ O(
√
k/d), for T in (3.6) and the empirical estimate T̂ in (C.10), if n ≥ d, we have

with high probability

‖T̂ − T‖ ≤ Õ
(√

s4

d3n

)
.

276

Proof: The proof is very similar to Claim 17. Recall W := 1
n

∑n
i=1 x

i(xi)⊤. We prove the result

for the first term

T̂1[i1, i2, i3, i4] = Wi1,i2Wi3,i4 ,

or equivalently T̂1 = W ⊗W . The analysis for the other two terms follow similarly from symmetry.

As in (C.14), we have

‖T̂1 − T1‖ ≤ 2‖W − E[W]‖ · ‖E[W]‖+ ‖W − E[W]‖2.

We bound ‖W − E[W]‖ by Matrix Bernstein’s inequality. As in Claim 17, we first construct

W ′ =
1

n

n∑

i=1

xi(xi)⊤1‖xi‖≤O(
√
s logn),

where 1‖xi‖≤O(
√
s logn) is an indicator variable. Since x = Ah and entries of h are subgaussian, the

indicator variables are 1 with probability 1 − n− logn. Therefore W and W ′ are equal with high

probability at it suffices to apply Matrix Bernstein’s bound on W ′.

For the summation W ′, the norm of each term is bounded by Õ(s/n), and for the variance term,

we have

E

[
W ′(W ′)⊤

]
=

1

n
E

[
‖xi‖2xi(xi)⊤1‖xi‖≤O(

√
s logn)

]
� 1

n
Õ(s)E

[
xi(xi)⊤

]
=

1

n
Õ(s2/k)AA⊤.

Since ‖A‖ ≤ O(
√
k/d), it is concluded that the variance is bounded by Õ(s2/dn). Therefore,

Matrix Bernstein’s inequality implies that with probability at least 1− d/n,

‖W ′ − E[W ′]‖ ≤ Õ
(
s

n
+

s√
dn

)
.

Since W is equal to W ′ with high probability and ‖E[W] − E[W ′]‖ is negligible, we also have

‖W − E[W]‖ ≤ Õ(s/
√
dn) (when n ≥ d).

277

On the other hand, E[W] = s
kAA

⊤, and therefore, ‖E[W]‖ ≤ s/d. From (C.14), we have

‖T̂1 − T1‖ ≤ Õ
(√

s4

d3n

)
.

�

278

Appendix D

Proofs for Guaranteed Training of

Neural Networks

D.1 Details of Tensor Decomposition Algorithm

The goal of tensor decomposition algorithm is to recover the rank-1 components of tensor; refer

to Equation (1.5) for the notion of tensor rank and its rank-1 components. We exploit the tensor

decomposition algorithm proposed in Section 2.3. In addition, the whitening procedure is also

proposed here. For the sake of completeness, the power iteration and SVD initializations are

again provided with the appropriate changes compared to Section 2.3. Figure D.1 depicts the

flowchart of this method where the corresponding algorithms and procedures are also specified.

Similarly, Algorithm 9 states the high-level steps of tensor decomposition algorithm. The whitening

preprocessing is applied to orthogonalize the components of input tensor. Note that the convergence

guarantees of tensor power iteration for orthogonal tensor decomposition have been developed in

the literature [160, 18].

The tensorization step works as follows.

279

Input: Tensor T =
∑

i∈[k] λiu
⊗3
i

Whitening procedure (Procedure 10)

SVD-based Initialization (Procedure 13)

Tensor Power Method (Algorithm 12)

Output: {ui}i∈[k]

Figure D.1: Overview of tensor decomposition algorithm for third order tensor (without tensoriza-
tion).

Algorithm 9 Tensor Decomposition Algorithm Setup

input symmetric tensor T .
1: if Whitening then
2: Calculate T =Whiten(T); see Procedure 10.
3: else if Tensorizing then
4: Tensorize the input tensor.
5: Calculate T =Whiten(T); see Procedure 10.
6: for j = 1 to k do
7: (vj , µj , T) = tensor power decomposition(T); see Algorithm 12.
8: (A1)j = Un-whiten(vj), j ∈ [k]; see Procedure 11.
9: return {(A1)j}j∈[k].

Tensorization:The tensorizing step is applied when we want to decompose overcomplete tensors

where the rank k is larger than the dimension d. For instance, for getting rank up to k = O(d2),

we first form the 6th order input tensor with decomposition as

T =
∑

j∈[k]
λja

⊗6
j ∈

6⊗
R
d.

Given T , we form the 3rd order tensor T̃ ∈⊗3
R
d2 which is the tensorization of T such that

T̃
(
i2 + d(i1 − 1), j2 + d(j1 − 1), l2 + d(l1 − 1)

)
:= T (i1, i2, j1, j2, l1, l2). (D.1)

This leads to T̃ having decomposition

T̃ =
∑

j∈[k]
λj(aj ⊙ aj)⊗3.

280

Procedure 10 Whitening

input Tensor T ∈ R
d×d×d.

1: Second order moment M2 ∈ R
d×d is constructed such that it has the same decompositon form

as target tensor T (see Section D.2.1.1 for more discussions):

• Option 1: constructed using second order score function; see Equation (D.10).

• Option 2: computed as M2 := T (I, I, θ) ∈ R
d×d, where θ ∼ N (0, Id) is a random standard

Gaussian vector.

2: Compute the rank-k SVD, M2 = U Diag(γ)U⊤, where U ∈ R
d×k and γ ∈ R

k.
3: Compute the whitening matrix W := U Diag(γ−1/2) ∈ R

d×k.
4: return T (W,W,W) ∈ R

k×k×k.

Procedure 11 Un-whitening

input Orthogonal rank-1 components vj ∈ R
k, j ∈ [k].

1: Consider matrix M2 which was exploited for whitening in Procedure 10, and let λ̃j, j ∈ [k]
denote the corresponding coefficients as M2 = A1 Diag(λ̃)A⊤

1 ; see (D.10).
2: Compute the rank-k SVD, M2 = U Diag(γ)U⊤, where U ∈ R

d×k and γ ∈ R
k.

3: Compute

(A1)j =
1√
λ̃j

U Diag(γ1/2)vj , j ∈ [k].

4: return {(A1)j}j∈[k].

We then apply the tensor decomposition algorithm to this new tensor T̃ . This now clarifies why the

full column rank condition is applied to the columns of A⊙A = [a1 ⊙ a1 · · · ak ⊙ ak]. Similarly, we

can perform higher order tensorizations leading to more overcomplete models by exploiting initial

higher order tensor T ; see also Remark 13.

Efficient implementation of tensor decomposition given samples:The main update steps in

the tensor decomposition algorithm is the tensor power iteration for which a multilinear operation is

performed on tensor T . However, the tensor is not available beforehand, and needs to be estimated

using the samples (as in Algorithm 6 in the main text). Computing and storing the tensor can

be enormously expensive for high-dimensional problems. But, it is essential to note that since we

can form a factor form of tensor T using the samples and other parameters in the model, we can

manipulate the samples directly to perform the power update as multi-linear operations without

explicitly forming the tensor. This leads to efficient computational complexity. See [20] for details

on these implicit update forms.

281

Algorithm 12 Robust tensor power method

input symmetric tensor T̃ ∈ R
d′×d′×d′ , number of iterations N , number of initializations R.

output the estimated eigenvector/eigenvalue pair; the deflated tensor.
1: for τ = 1 to R do
2: Initialize v̂

(τ)
0 with SVD-based method in Procedure 13.

3: for t = 1 to N do
4: Compute power iteration update

v̂
(τ)
t :=

T̃ (I, v̂
(τ)
t−1, v̂

(τ)
t−1)

‖T̃ (I, v̂
(τ)
t−1, v̂

(τ)
t−1)‖

(D.2)

5: Let τ∗ := arg maxτ∈[R]{T̃ (v̂
(τ)
N , v̂

(τ)
N , v̂

(τ)
N)}.

6: Do N power iteration updates (D.2) starting from v̂
(τ∗)
N to obtain v̂, and set µ̂ := T̃ (v̂, v̂, v̂).

7: return the estimated eigenvector/eigenvalue pair (v̂, µ̂); the deflated tensor T̃ − µ̂ · v̂⊗3.

Procedure 13 SVD-based initialization

input Tensor T ∈ R
d′×d′×d′ .

1: for τ = 1 to log(1/δ̂) do
2: Draw a random standard Gaussian vector θ(τ) ∼ N (0, Id′).

3: Compute u
(τ)
1 as the top left singular vector of T (I, I, θ(τ)) ∈ R

d′×d′ .

4: v̂0 ← maxτ∈[log(1/δ̂)]

(
u
(τ)
1

)
min

.

5: return v̂0.

D.2 Proof of Theorem 4.3

Proof of Theorem 4.3 includes three main pieces which is about arguing the recovery guarantees of

three different parts of the algorithm: tensor decomposition, Fourier method, and linear regression.

As the first piece, we show that the tensor decomposition algorithm for estimating weight matrix

A1 (see Algorithm 6 for the details) recovers it with the desired error. In the second part, we

analyze the performance of Fourier technique for estimating bias vector b1 (see Algorithm 6 and

Procedure 7 for the details) proving the error in the recovery is small. Finally as the last step, the

ridge regression is analyzed to ensure that the parameters of last layer of the neural network are

well estimated leading to the estimation of overall function f̃(x). We now provide the analysis of

these three parts.

282

D.2.1 Tensor decomposition guarantees

We first provide a short proof for Lemma 4.1 which shows how the rank-1 components of third

order tensor E [ỹ · P3(x)] are the columns of weight matrix A1.

Proof of Lemma 4.1: It is shown by Janzamin et al. [102] that the score function yields

differential operator such that for label-function f(x) := E[y|x], we have

E[y · S3(x)] = E[∇(3)
x f(x)].

Applying this property to the form of label function f(x) in (4.4) denoted by f̃(x), we have

E [ỹ · P3(x)] = E[σ′′′(·)(a2, A⊤
1 , A

⊤
1 , A

⊤
1)],

where σ′′′(·) denotes the third order derivative of element-wise function σ(z) : R
k → R

k. More

concretely, with slightly abuse of notation, σ′′′(z) ∈ R
k×k×k×k is a diagonal 4th order tensor with

its j-th diagonal entry equal to
∂3σ(zj)

∂z3j
: R → R. Here two properties are used to compute the

third order derivative ∇(3)
x f̃(x) on the R.H.S. of above equation as follows. 1) We apply chain rule

to take the derivatives which generates a new factor of A1 for each derivative. Since we take 3rd

order derivative, we have 3 factors of A1. 2) The linearity of next layers leads to the derivatives

from them being vanished, and thus, we only have the above term as the derivative. Expanding

the above multilinear form finishes the proof; see (1.2) for the definition of multilinear form. �

We now provide the recovery guarantees of weight matrix A1 through tensor decomposition as

follows.

Lemma D.1. Among the conditions for Theorem 4.3, consider the rank constraint on A1, and the

non-vanishing assumption on coefficients λj ’s. Let the whitening to be performed using empirical

version of second order score function as specified in (D.10), and assume the coefficients λ̃j ’s do

283

not vanish. Suppose the sample complexity

n ≥ max

{
Õ

(
ỹ2maxE

[∥∥∥M3(x)M⊤
3 (x)

∥∥∥
] λ̃4max

λ̃4min

s2max(A1)

λ2min · s6min(A1)
· 1

ǫ̃21

)
, (D.3)

Õ


ỹ2max · E

[∥∥∥M3(x)M⊤
3 (x)

∥∥∥
]
·
(
λ̃max

λ̃min

)3
1

λ2min · s6min(A1)
· k


 ,

Õ

(
ỹ2max ·

E
[∥∥S2(x)S⊤2 (x)

∥∥]3/2

E
[∥∥M3(x)M⊤

3 (x)
∥∥]1/2 ·

1

λ̃2min · s3min(A1)

)}
,

holds, where M3(x) ∈ R
d×d2 denotes the matricization of score function tensor S3(x) ∈ R

d×d×d;

see (1.1) for the definition of matricization. Then the estimate Â1 by NN-LIFT Algorithm 6 satisfies

w.h.p.

min
z∈{±1}

‖(A1)j − z · (Â1)j‖ ≤ Õ (ǫ̃1) , j ∈ [k],

where the recovery guarantee is up to the permutation of columns of A1.

Remark 29 (Sign ambiguity). We observe that in addition to the permutation ambiguity in the

recovery guarantees, there is also a sign ambiguity issue in recovering the columns of matrix A1

through the decomposition of third order tensor in (4.16). This is because the sign of (A1)j and

coefficient λj can both change while the overall tensor is still fixed. Note that the coefficient λj

can be positive or negative. According to the Fourier method for estimating b1, mis-calculating

the sign of (A1)j also leads to sign of b1(j) recovered in the opposite manner. In other words, the

recovered sign of the bias b1(j) is consistent with the recovered sign of (A1)j .

Recall we assume that the nonlinear activating function σ(z) satisfies the property such that σ(z) =

1 − σ(−z). Many popular activating functions such as step function, sigmoid function and tanh

function satisfy this property. Given this property, the sign ambiguity in parameters A1 and b1

which leads to opposite sign in input z to the activating function σ(·) can be now compensated by

the sign of a2 and value of b2, which is recovered through least squares.

Proof of Lemma D.1: From Lemma 4.1, we know that the exact cross-moment T̃ = E[ỹ · S3(x)]

has rank-one components as columns of matrix A1; see Equation (4.16) for the tensor decomposition

form. We apply a tensor decomposition method in NN-LIFT to estimate the columns of A1. We

284

employ noisy tensor decomposition guarantees in Anandkumar et al. [22]. They show that when the

perturbation tensor is small, the tensor power iteration initialized by the SVD-based Procedure 13

recovers the rank-1 components up to some small error. We also analyze the whitening step and

combine it with this result leading to Lemma D.2.

Let us now characterize the perturbation matrix and tensor. By Lemma 4.1, the CP decomposition

form is given by T̃ = E[ỹ · S3(x)], and thus, the perturbation tensor is written as

E := T̃ − T̂ = E[ỹ · S3(x)]− 1

n

∑

i∈[n]
ỹi · P3(xi), (D.4)

where T̂ = 1
n

∑
i∈[n] ỹi · P3(xi) is the empirical form used in NN-LIFT Algorithm 6. Notice that in

the realizable setting, the neural network output ỹ is observed and thus, it is used in forming the

empirical tensor. Similarly, the perturbation of second order moment M̃2 = E[ỹ · S2(x)] is given by

E2 := M̃2 − M̂2 = E[ỹ · S2(x)]− 1

n

∑

i∈[n]
ỹi · P2(xi). (D.5)

In order to bound ‖E‖, we matricize it to apply matrix Bernstein’s inequality. We have the

matricized version as

Ẽ := E[ỹ ·M3(x)]− 1

n

∑

i∈[n]
ỹi ·M3(xi) =

∑

i∈[n]

1

n

(
E[ỹ ·M3(x)]− ỹi ·M3(xi)

)
,

where M3(x) ∈ R
d ×d2 is the matricization of S3(x) ∈ R

d×d×d; see (1.1) for the definition of

matricization. Now the norm of Ẽ can be bounded by the matrix Bernstein’s inequality. The norm

of each (centered) random variable inside the summation is bounded as ỹmax

n E[‖M3(x)‖], where

ỹmax is the bound on |ỹ|. The variance term is also bounded as

1

n2

∥∥∥
∑

i∈[n]
E

[
ỹ2i ·M3(xi)M

⊤
3 (xi)

]∥∥∥ ≤ 1

n
ỹ2maxE

[∥∥∥M3(x)M⊤
3 (x)

∥∥∥
]
.

285

Applying matrix Bernstein’s inequality, we have w.h.p.

‖E‖ ≤ ‖Ẽ‖ ≤ Õ
(
ỹmax√
n

√
E
[∥∥M3(x)M⊤

3 (x)
∥∥]
)
. (D.6)

For the second order perturbation E2, it is already a matrix, and by applying matrix Bernstein’s

inequality, we similarly argue that w.h.p.

‖E2‖ ≤ Õ
(
ỹmax√
n

√
E
[∥∥S2(x)S⊤2 (x)

∥∥]
)
. (D.7)

There is one more remaining piece to complete the proof of tensor decomposition part. The analysis

in Anandkumar et al. [22] does not involve any whitening step, and thus, we need to adapt the

perturbation analysis of Anandkumar et al. [22] to our additional whitening procedure. This is

done in Lemma D.2. In the final recovery bound (D.17) in Lemma D.2, there are two terms; one

involving ‖E‖, and the other involving ‖E2‖. We first impose a bound on sample complexity such

that the bound involving ‖E‖ dominates the bound involving ‖E2‖ as follows. Considering the

bounds on ‖E‖ and ‖E2‖ in (D.6) and (D.7), and imposing the lower bound on the number of

samples (third bound stated in the lemma) as

n ≥ Õ
(
ỹ2max ·

E
[∥∥S2(x)S⊤2 (x)

∥∥]3/2

E
[∥∥M3(x)M⊤

3 (x)
∥∥]1/2 ·

1

λ̃2min · s3min(A1)

)
,

leads to this goal. By doing this, we do not need to impose the bound on ‖E2‖ anymore, and

applying the perturbation bound in (D.6) to the required bound on ‖E‖ in Lemma D.2 leads to

sample complexity bound (second bound stated in the lemma)

n ≥ Õ


ỹ2max · E

[∥∥∥M3(x)M⊤
3 (x)

∥∥∥
]
·
(
λ̃max

λ̃min

)3
1

λ2min · s6min(A1)
· k


 .

286

Finally, applying the result of Lemma D.2, we have the column-wise error guarantees (up to per-

mutation)

‖(A1)j − (Â1)j‖ ≤ Õ


smax(A1)

λmin

λ̃2max√
λ̃min

ỹmax

λ̃1.5min · s3min(A1)

√
E
[∥∥M3(x)M⊤

3 (x)
∥∥]

√
n


 ≤ Õ (ǫ̃1) ,

where in the first inequality we also substituted the bound on ‖E‖ in (D.6), and the first bound

on n stated in the lemma is used in the last inequality. �

D.2.1.1 Whitening analysis

The perturbation analysis of proposed tensor decomposition method in Algorithm 12 with the

corresponding SVD-based initialization in Procedure 13 is provided in Anandkumar et al. [22].

But, they do not consider the effect of whitening proposed in Procedures 10 and 11. Thus, we

need to adapt the perturbation analysis of Anandkumar et al. [22] when the whitening procedure

is incorporated. We perform it in this section.

We first elaborate on the whitening step, and analyze how the proposed Procedure 10 works. We

then analyze the inversion of whitening operator showing how the components in the whitened

space are translated back to the original space as stated in Procedure 11. We finally provide the

perturbation analysis of whitening step when estimations of moments are given.

Whitening procedure: Consider second order moment M̃2 which is used to whiten third order

tensor

T̃ =
∑

j∈[k]
λj · (A1)j ⊗ (A1)j ⊗ (A1)j (D.8)

in Procedure 10. It is constructed such that it has the same decomposition form as target tensor

T̃ , i.e., we have

M̃2 =
∑

j∈[k]
λ̃j · (A1)j ⊗ (A1)j. (D.9)

287

We propose two options for constructing M̃2 in Procedure 10. First option is to use second order

score function and construct M̃2 := E [ỹ · P2(x)] for which we have

M̃2 := E [ỹ · P2(x)] =
∑

j∈[k]
λ̃j · (A1)j ⊗ (A1)j , (D.10)

where

λ̃j = E
[
σ′′(zj)

]
· a2(j), (D.11)

for vector z := A⊤
1 x + b1 as the input to the nonlinear operator σ(·). This is proved similar to

Lemma 4.1. Second option leads to the same form for M̃2 as (D.9) with coefficient modified as

λ̃j = λj · 〈(A1)j , θ〉.

Let matrix W ∈ R
d×k denote the whitening matrix in the noiseless case, i.e., the whitening matrix

W in Procedure 10 is constructed such that W⊤M̃2W = Ik. Applying whitening matrix W to the

noiseless tensor T̃ =
∑

j∈[k] λj · (A1)j ⊗ (A1)j ⊗ (A1)j , we have

T̃ (W,W,W) =
∑

j∈[k]
λj

(
W⊤(A1)j

)⊗3
=
∑

j∈[k]

λj

λ̃
3/2
j

(
W⊤(A1)j

√
λ̃j

)⊗3

=
∑

j∈[k]
µjv

⊗3
j , (D.12)

where we define

µj :=
λj

λ̃
3/2
j

, vj := W⊤(A1)j

√
λ̃j, j ∈ [k], (D.13)

in the last equality. Let V := [v1 v2 · · · vk] ∈ R
k×k denote the factor matrix for T̃ (W,W,W). We

have

V := W⊤A1 Diag(λ̃1/2), (D.14)

and thus,

V V ⊤ = W⊤A1 Diag(λ̃)A⊤
1 W = W⊤M̃2W = Ik.

288

Since V is a square matrix, it is also concluded that V ⊤V = Ik, and therefore, tensor T̃ (W,W,W) is

whitened such that the rank-1 components vj ’s form an orthonormal basis. This discussion clarifies

how the whitening procedure works.

Inversion of the whitening procedure: Let us also analyze the inversion procedure on how to

transform vj’s to (A1)j ’s. The main step is stated in Procedure 11. According to whitening Pro-

cedure 10, let M̃2 = U Diag(γ)U⊤, U ∈ R
d×k, γ ∈ R

k, denote the rank-k SVD of M̃2. Substituting

whitening matrix W := U Diag(γ−1/2) in (D.14), and multiplying U Diag(γ1/2) from left, we have

U Diag(γ1/2)V = UU⊤A1 Diag(λ̃1/2).

Since the column spans of A1 ∈ R
d×k and U ∈ R

d×k are the same (given their relations to M̃2),

A1 is a fixed point for the projection operator on the subspace spanned by the columns of U .

This projector operator is UU⊤ (since columns of U form an orthonormal basis), and therefore,

UU⊤A1 = A1. Applying this to the above equation, we have

A1 = U Diag(γ1/2)V Diag(λ̃−1/2),

i.e.,

(A1)j =
1√
λ̃j

U Diag(γ1/2)vj , j ∈ [k]. (D.15)

The above discussions describe the details of whitening and unwhitening procedures. We now

provide the guarantees of tensor decomposition given noisy versions of moments M̃2 and T̃ .

Lemma D.2. Let M̂2 = M̃2 − E2 and T̂ = T̃ − E respectively denote the noisy versions of

M̃2 =
∑

j∈[k]
λ̃j · (A1)j ⊗ (A1)j, T̃ =

∑

j∈[k]
λj · (A1)j ⊗ (A1)j ⊗ (A1)j . (D.16)

289

Assume the second and third order perturbations satisfy the bounds

‖E2‖ ≤ Õ
(
λ
1/3
min

λ̃
7/6
min√
λ̃max

s2min(A1)
1

k1/6

)
,

‖E‖ ≤ Õ


λmin

(
λ̃min

λ̃max

)1.5

s3min(A1)
1√
k


 .

Then, the proposed tensor decomposition algorithm recovers estimations of rank-1 components

(A1)j ’s satisfying error

‖(A1)j−(Â1)j‖ ≤ Õ
(
smax(A1)

λmin
· λ̃

2
max√
λ̃min

·
[

‖E2‖3
λ̃3.5min · s6min(A1)

+
‖E‖

λ̃1.5min · s3min(A1)

])
, j ∈ [k]. (D.17)

Proof: We do not have access to the true matrix M̃2 and the true tensor T̃ , and the perturbed

versions M̂2 = M̃2 − E2 and T̂ = T̃ − E are used in the whitening procedure. Here, E2 ∈ R
d×d

denotes the perturbation matrix, and E ∈ R
d×d×d denotes the perturbation tensor. Similar to the

noiseless case, let Ŵ ∈ R
d×k denotes the whitening matrix constructed by Procedure 10 such that

Ŵ⊤M̂2Ŵ = Ik, and thus it orthogonalizes the noisy matrix M̂2. Applying the whitening matrix

Ŵ to the tensor T̂ , we have

T̂ (Ŵ , Ŵ , Ŵ) = T̃ (W,W,W) − T̃ (W − Ŵ ,W − Ŵ ,W − Ŵ)− E(Ŵ , Ŵ , Ŵ)

=
∑

j∈[k]
µjv

⊗3
j − EW , (D.18)

where we used Equation (D.12), and we defined

EW := T̃ (W − Ŵ ,W − Ŵ ,W − Ŵ) + E(Ŵ , Ŵ , Ŵ) (D.19)

as the perturbation tensor after whitening. Note that the perturbation is from two sources; one is

from the error in computing whitening matrix reflected in W − Ŵ , and the other is the error in

tensor T̂ reflected in E.

290

We know that the rank-1 components vj’s form an orthonormal basis, and thus, we have a noisy

orthogonal tensor decomposition problem in (D.18). We apply the result of Anandkumar et al. [22]

where they show that if

‖EW ‖ ≤
µmin
√

log k

α0

√
k

,

for some constant α0 > 1, then the tensor power iteration (applied to the whitened tensor) recovers

the tensor rank-1 components with bounded error (up to the permutation of columns)

‖vj − v̂j‖ ≤ Õ
(‖EW ‖
µmin

)
. (D.20)

We now relate the norm of EW to the norm of original perturbations E and E2. For the first term

in (D.19), from Lemmata 4 and 5 of Song et al. [147], we have

‖T̃ (W − Ŵ ,W − Ŵ ,W − Ŵ)‖ ≤ 64‖E2‖3
λ̃3.5min · s6min(A1)

.

For the second term, by the sub-multiplicative property we have

‖E(Ŵ , Ŵ , Ŵ)‖ ≤ ‖E‖ · ‖Ŵ‖3 ≤ 8‖E‖ · ‖W‖3 ≤ 8‖E‖
s3min(A1)λ̃

3/2
min

.

Here in the last inequality, we used

‖W‖ =
1√

sk(M̃2)
≤ 1

smin(A1)
√
λ̃min

,

where sk(M̃2) denotes the k-th largest singular value of M̃2. Here, the equality is from the definition

of W based on rank-k SVD of M̃2 in Procedure 10, and the inequality is from M̃2 = A1 Diag(λ̃)A⊤
1 .

Substituting these bounds, we finally need the condition

64‖E2‖3
λ̃3.5min · s6min(A1)

+
8‖E‖

λ̃1.5min · s3min(A1)
≤ λmin

√
log k

α0λ̃1.5max

√
k
,

291

where we also substituted bound µmin ≥ λmin/λ̃
1.5
max, given Equation (D.13). The bounds stated in

the lemma ensures that each of the terms on the left hand side of the inequality are bounded by the

right hand side. Thus, by the result of Anandkumar et al. [22], we have ‖vj− v̂j‖ ≤ Õ (‖EW ‖/µmin).

On the other hand, by the unwhitening relationship in (D.15), we have

‖(A1)j−(Â1)j‖ =
1√
λ̃j

‖Diag(γ1/2) · [vj− v̂j]‖ ≤
√
γmax

λ̃min

·‖vj− v̂j‖ ≤ smax(A1) ·
√
λ̃max

λ̃min

·‖vj− v̂j‖.

(D.21)

where in the equality, we use the fact that orthonormal matrix U preserves the ℓ2 norm, and the

sub-multiplicative property is exploited in the first inequality. The last inequality is also from

γmax = smax(M̃2) ≤ s2max(A1) · λ̃max, which is from M̃2 = A1 Diag(λ̃)A⊤
1 . Incorporating the error

bound on ‖vj − v̂j‖ in (D.20), we have

‖(A1)j − (Â1)j‖ ≤ Õ


smax(A1) ·

√
λ̃max

λ̃min

· ‖EW ‖
µmin


 ≤ Õ

(
smax(A1)

λmin
· λ̃

2
max√
λ̃min

· ‖EW ‖
)
,

where we used the bound µmin ≥ λmin/λ̃
1.5
max in the last step. �

D.2.2 Fourier analysis guarantees

The analysis of Fourier method for estimating parameter b1 includes the following two lemmas. In

the first lemma, we argue the mean of random variable v introduced in Algorithm 6 in the realizable

setting. This clarifies why the phase of v is related to unknown parameter b1. In the second lemma,

we argue the concentration of v around its mean leading to the sample complexity result. Note

that v is denoted by ṽ in the realizable setting.

The Fourier method can be also used to estimate the weight vector a2 since it appears in the

magnitude of complex number v. In this section, we also provide the analysis of estimating a2 with

Fourier method which can be used as an alternative, while we primarily estimate a2 by the ridge

regression analyzed in Appendix D.2.3.

292

Lemma 4.6 (Restated). Let

ṽ :=
1

n

∑

i∈[n]

ỹi
p(xi)

e−j〈ωi,xi〉. (D.22)

Notice this is a realizable of v in Procedure 7 where the output corresponds to a neural network ỹ.

If ωi’s are uniformly i.i.d. drawn from set Ωl, then ṽ has mean (which is computed over x, ỹ and

ω)

E[ṽ] =
1

|Ωl|
Σ

(
1

2

)
a2(l)ejπb1(l), (D.23)

where |Ωl| denotes the surface area of d− 1 dimensional manifold Ωl, and Σ(·) denotes the Fourier

transform of σ(·).

Proof: Let F̃ (ω) denote the Fourier transform of label function f̃(x) := E[ỹ|x] = 〈a2, σ(A⊤
1 x +

b1)〉 which is [121]

F̃ (ω) =
∑

j∈[k]

a2(j)

|A1(d, j)|Σ
(

ωd
A1(d, j)

)
e
j2πb1(j)

ωd
A1(d,j) δ

(
ω− −

ωd
A1(d, j)

A1(\d, j)
)
, (D.24)

where Σ(·) is the Fourier transform of σ(·), u⊤− = [u1, u2, . . . , ud−1] is vector u⊤ with the last entry

removed, A1(\d, j) ∈ R
d−1 is the j-th column of matrix A1 with the d-th (last) entry removed, and

finally δ(u) = δ(u1)δ(u2) · · · δ(ud).

Let p(ω) denote the probability density function of frequency ω. We have

E[ṽ] = Ex,ỹ,ω

[
ỹ

p(x)
e−j〈ω,x〉

]

= Ex,ω

[
Eỹ|{x,ω}

[
ỹ

p(x)
e−j〈ω,x〉

∣∣∣x, ω
]]

= Ex,ω

[
f̃(x)

p(x)
e−j〈ω,x〉

]

=

∫

Ωl

∫
f̃(x)e−j〈ω,x〉p(ω)dxdω

=

∫

Ωl

F̃ (ω)p(ω)dω,

293

where the second equality uses the law of total expectation, the third equality exploits the label-

generating function definition f̃(x) := E[ỹ|x], and the final equality is from the definition of Fourier

transform. The variable ω ∈ R
d is drawn from a d − 1 dimensional manifold Ωl ⊂ R

d. In order to

compute the above integral, we define d dimensional set

Ωl;ν :=

{
ω ∈ R

d :
1

2
− ν

2
≤ ‖ω‖ ≤ 1

2
+
ν

2
,
∣∣〈ω, (Â1)l〉

∣∣ ≥ 1− ǫ̃21/2
2

}
,

for which Ωl = limν→0+ Ωl;ν . Assuming ω’s are uniformly drawn from Ωl;ν, we have

E[ṽ] = lim
ν→0+

∫

Ωl;ν
F̃ (ω)p(ω)dω

= lim
ν→0+

1

|Ωl;ν|

∫ +∞

−∞
F̃ (ω)1Ωl;ν

(ω)dω.

The second equality is from uniform draws of ω from set Ωl;ν such that p(ω) = 1
|Ωl;ν |1Ωl;ν

(ω), where

1S(·) denotes the indicator function for set S. Here, |Ωl;ν | denotes the volume of d dimensional

subspace Ωl;ν, for which in the limit ν → 0+, we have |Ωl;ν| = ν · |Ωl|, where |Ωl| denotes the surface

area of d− 1 dimensional manifold Ωl.

For small enough ǫ̃1 in the definition of Ωl;ν, only the delta function for j = l in the expansion of

F̃ (ω) in (D.24) is survived from the above integral, and thus,

E[ṽ] = lim
ν→0+

1

|Ωl;ν |

∫ +∞

−∞

a2(l)

|A1(d, l)|Σ
(

ωd
A1(d, l)

)
e
j2πb1(l)

ωd
A1(d,l) δ

(
ω− −

ωd
A1(d, l)

A1(\d, l)
)

1Ωl;ν
(ω)dω.

In order to simplify the notations, in the rest of the proof we denote l-th column of matrix A1 by

vector α, i.e., α := (A1)l. Thus, the goal is to compute the integral

I :=

∫ +∞

−∞

1

|αd|
Σ

(
ωd
αd

)
e
j2πb1(l)

ωd
αd δ

(
ω− −

ωd
αd
α−

)
1Ωl;ν

(ω)dω,

and note that E[ṽ] = a2(l) · limν→0+
I

|Ωl;ν | . The rest of the proof is about computing the above

integral. The integral involves delta functions where the final value is expected to be computed

at a single point specified by the intersection of line ω− = ωd
αd
α−, and sphere ‖ω‖ = 1

2 (when we

consider the limit ν → 0+). This is based on the following integration property of delta functions

294

such that for function g(·) : R→ R,

∫ +∞

−∞
g(t)δ(t)dt = g(0). (D.25)

We first expand the delta function as follows.

I =

∫ +∞

−∞

1

|αd|
Σ

(
ωd
αd

)
e
j2πb1(l)

ωd
αd δ

(
ω1 −

α1

αd
ωd

)
· · · δ

(
ωd−1 −

αd−1

αd
ωd

)
1Ωl;ν

(ω)dω,

=

∫
· · ·
∫ +∞

−∞
Σ

(
ωd
αd

)
e
j2πb1(l)

ωd
αd δ

(
ω1 −

α1

αd
ωd

)
· · · δ

(
ωd−2 −

αd−2

αd
ωd

)

1Ωl;ν
(ω) · δ (αdωd−1 − αd−1ωd) dω1 · · ·ωd,

where we used the property 1
|β|δ(t) = δ(βt) in the second equality. Introducing new variable z, and

applying the change of variable ωd = 1
αd−1

(αdωd−1 − z), we have

I =

∫
· · ·
∫ +∞

−∞
Σ

(
ωd
αd

)
e
j2πb1(l)

ωd
αd δ

(
ω1 −

α1

αd
ωd

)
· · · δ

(
ωd−2 −

αd−2

αd
ωd

)

1Ωl;ν
(ω) · δ(z)dω1 · · · dωd−1

dz

αd−1
,

=

∫
· · ·
∫ +∞

−∞

1

αd−1
Σ

(
ωd−1

αd−1

)
e
j2πb1(l)

ωd−1
αd−1 δ

(
ω1 −

α1

αd−1
ωd−1

)
· · · δ

(
ωd−2 −

αd−2

αd−1
ωd−1

)

1Ωl;ν

([
ω1, ω2, . . . , ωd−1,

αd
αd−1

ωd−1

])
dω1 · · · dωd−1.

For the sake of simplifying the mathematical notations, we did not substitute all the ωd’s with z

in the first equality, but note that all ωd’s are implicitly a function of z which is finally considered

in the second equality where the delta integration property in (D.25) is applied to variable z (note

that z = 0 is the same as ωd
αd

=
ωd−1

αd−1
). Repeating the above process several times, we finally have

I =

∫ +∞

−∞

1

α1
Σ

(
ω1

α1

)
e
j2πb1(l)

ω1
α1 · 1Ωl;ν

([
ω1,

α2

α1
ω1, . . . ,

αd−1

α1
ω1,

αd
α1
ω1

])
dω1.

There is a line constraint as ω1
α1

= ω2
α2

= · · · = ωd
αd

in the argument of indicator function. This implies

that ‖ω‖ = ‖α‖
α1
ω1 = ω1

α1
, where we used ‖α‖ = ‖(A1)l‖ = 1. Incorporating this in the norm bound

295

imposed by the definition of Ωl;ν, we have α1
2 (1− ν) ≤ ω1 ≤ α1

2 (1 + ν), and hence,

I =

∫ α1
2
(1+ν)

α1
2
(1−ν)

1

α1
Σ

(
ω1

α1

)
e
j2πb1(l)

ω1
α1 dω1.

We know E[ṽ] = a2(l) · limν→0+
I

|Ωl;ν | , and thus,

E[ṽ] = a2(l) · 1

ν · |Ωl|
· α1ν

1

α1
Σ

(
1

2

)
ej2πb1(l)

1
2 =

1

|Ωl|
a2(l)Σ

(
1

2

)
ejπb1(l),

where in the first step we use |Ωl;ν | = ν · |Ωl|, and write the integral I in the limit ν → 0+. This

finishes the proof. �

In the following lemma, we argue the concentration of v around its mean which leads to the sample

complexity bound for estimating the parameter b1 (and also a2) within the desired error.

Lemma D.3. If the sample complexity

n ≥ O
(
ζ̃f̃
ψǫ̃22

log
k

δ

)
(D.26)

holds for small enough ǫ̃2 ≤ ζ̃f̃ , then the estimates â2(l) = |Ωl|
|Σ(1/2)| |ṽ|, and b̂1(l) = 1

π (∠ṽ−∠Σ(1/2))

for l ∈ [k], in NN-LIFT Algorithm 6 (see the definition of ṽ in (D.22)) satisfy with probability at

least 1− δ,

|a2(l)− â2(l)| ≤
|Ωl|

|Σ(1/2)|O(ǫ̃2), |b1(l)− b̂1(l)| ≤ |Ωl|
π|Σ(1/2)||a2(l)|O(ǫ̃2).

Proof: The result is proved by arguing the concentration of variable ṽ in (D.22) around its mean

characterized in (D.23). We use the Bernstein’s inequality to do this. Let ṽ :=
∑

i∈[n] ṽi where

ṽi = 1
n

ỹi
p(xi)

e−j〈ωi,xi〉. By the lower bound p(x) ≥ ψ assumed in Theorem 4.3 and labels ỹi’s being

bounded, the magnitude of centered ṽi’s (ṽi − E[ṽi]) are bounded by O(1
ψn). The variance term is

also bounded as

σ2 =
∣∣∣
∑

i∈[n]
E

[
(ṽi − E[ṽi])(ṽi − E[ṽi])

]∣∣∣,

296

where u denotes the complex conjugate of complex number u. This is bounded as

σ2 ≤
∑

i∈[n]
E
[
ṽiṽi

]
=

1

n2

∑

i∈[n]
E

[
ỹ2i

p(xi)2

]

Since output ỹ is a binary label (ỹ ∈ {0, 1}), we have E[ỹ2|x] = E[ỹ|x] = f̃(x), and thus,

E

[
ỹ2

p(x)2

]
= E

[
E

[
ỹ2

p(x)2
|x
]]

= E

[
f̃(x)

p(x)2

]
≤ 1

ψ

∫

Rd

f̃(x)dx =
ζ̃f̃
ψ
,

where the inequality uses the bound p(x) ≥ ψ and the last equality is from definition of ζ̃f̃ . This

provides us the bound on variance as

σ2 ≤
ζ̃f̃
ψn

.

Applying Bernstein’s inequality concludes the concentration bound such that with probability at

least 1− δ, we have

|ṽ − E[ṽ]| ≤ O


 1

ψn
log

1

δ
+

√
ζ̃f̃
ψn

log
1

δ


 ≤ O(ǫ̃2),

where the last inequality is from sample complexity bound. This implies that ||ṽ|− |E[ṽ]|| ≤ O(ǫ̃2).

Substituting |E[ṽ]| from (D.23) and considering estimate â2(l) = |Ωl|
|Σ(1/2)| |ṽ|, we have

|â2(l)− a2(l)| ≤ |Ωl|
|Σ(1/2)|O(ǫ̃2),

which finishes the first part of the proof. For the phase, we have φ := ∠ṽ−∠E[ṽ] = π(̂b1(l)− b1(l)).

On the other hand, for small enough error ǫ̃2 (and thus small φ), we have the approximation

φ ∼ tan(φ) ∼ |ṽ−E[ṽ]|
|E[ṽ]| (note that this is actually an upper bound such that φ ≤ tan(φ)). Thus,

|̂b1(l)− b1(l)| ≤
1

π|E[ṽ]|O(ǫ̃2) ≤ |Ωl|
π|Σ(1/2)||a2(l)|O(ǫ̃2).

This finishes the proof of second bound. �

297

D.2.3 Ridge regression analysis and guarantees

Let h := σ(A⊤
1 x+ b1) denote the neuron or hidden layer variable. With slightly abuse of notation,

in the rest of analysis in this section, we append variable h by the dummy variable 1 to represent

the bias, and thus, h ∈ R
k+1. We write the output as ỹ = h⊤β + η, where

β := [a2, b2] ∈ R
k+1.

Given the estimated parameters of first layer denoted by Â1 and b̂1, the neurons are estimated

as ĥ := σ(Â⊤
1 x + b̂1). In addition, the dummy variable 1 is also appended, and thus, ĥ ∈ R

k+1.

Because of this estimated encoding of neurons, we expand the output ỹ as

ỹ = ĥ⊤β + (h⊤ − ĥ⊤)β︸ ︷︷ ︸
bias (approximation): b(ĥ)

+ η︸︷︷︸
noise

= f̃(ĥ) + η, (D.27)

where f̃(ĥ) := E[ỹ|ĥ] = ĥ⊤β + b(ĥ). Here, we have a noisy linear model with additional bias

(approximation). Let β̂λ denote the ridge regression estimator for some regularization parameter

λ ≥ 0, which is defined as the minimizer of the regularized empirical mean squared error, i.e.,

β̂λ := arg min
β

1

n

∑

i∈[n]

(
〈β, ĥi〉 − ỹi

)2
+ λ‖β‖2.

We know this estimator is given by (when Σ̂
ĥ

+ λI ≻ 0)

β̂λ =
(

Σ̂
ĥ

+ λI
)−1
· Ê(ĥỹ),

where Σ̂
ĥ

:= 1
n

∑
i∈[n] ĥiĥ

⊤
i is the empirical covariance of ĥ, and Ê denotes the empirical mean

operator. The analysis of ridge regression leads to the following expected prediction error (risk)

bound on the estimation of the output.

Lemma D.4 (Expected prediction error of ridge regression). Suppose the parameter recovery results

in Lemmata D.1 and D.3 on A1 and b1 hold. In addition, assume the nonlinear activating function

σ(·) satisfies the Lipschitz property such that |σ(u) − σ(u′)| ≤ L · |u − u′|, for u, u′ ∈ R. The

298

following noise, approximation and statistical leverage conditions also hold. Then, by choosing the

optimal λ > 0 in the λ-regularized ridge regression (which estimates the parameters â2 and b̂2), the

estimated output as f̂(x) = â⊤2 σ(Â⊤
1 x+ b̂1) + b̂2 satisfies the risk bound

E[|f̂(x)− f̃(x)|2] ≤ O
(
k‖β‖2
n

)
+O

(√
2k‖β‖2
n

(
E[b(ĥ)2] + σ2

noise
/2
))

+ E[b(ĥ)2],

where

E[b(ĥ)2] ≤
[
r +

|Ωl|
π|Σ(1/2)||a2(l)|

]2
‖β‖2L2kO(ǫ̃2).

Proof: Since ĥ := σ(Â⊤
1 x + b̂1), we equivalently argue the bound on E[(ĥ⊤β̂λ − f̃(ĥ))2], where

f̂(x) = f̂(ĥ) = ĥ⊤β̂λ. From standard results in the study of inverse problems, we know (see

Proposition 5 in Hsu et al. [96])

E[(ĥ⊤β̂λ − f̃(ĥ))2] = E[(ĥ⊤β − f̃(ĥ))2] + ‖β̂λ − β‖2Σ
ĥ
.

Here, for positive definite matrix Σ ≻ 0, the vector norm ‖ · ‖Σ is defined as ‖v‖Σ :=
√
v⊤Σv. For

the first term, by the definition of f̃(ĥ) as f̃(ĥ) := E[ỹ|ĥ] = ĥ⊤β + b(ĥ), we have

E[(ĥ⊤β − f̃(ĥ))2] = E[b(ĥ)2].

Lemma D.5 bounds E[b(ĥ)2] and bounding ‖β̂λ − β‖2Σ
ĥ

is argued in Lemma D.6 and Remark 30.

Combining these bounds finishes the proof. �

In order to have final risk bounded as E[|f̂(x) − f̃(x)|2] ≤ Õ(ǫ2), for some ǫ > 0, the above

lemma imposes sample complexity as (some of other parameters considered in (D.3), (D.26) are

not repeated here)

n ≥ Õ
(
L
k‖β‖2
ǫ2

(1 + σ2noise)

)
. (D.28)

Lemma D.5 (Bounded approximation). Suppose the parameter recovery results in Lemmata D.1 and D.3

on A1 and b1 hold. In addition, assume the nonlinear activating function σ(·) satisfies the Lipschitz

299

property such that |σ(u) − σ(u′)| ≤ L · |u − u′|, for u, u′ ∈ R. Then, the approximation term is

bounded as

E[b(ĥ)2] ≤
[
r +

|Ωl|
π|Σ(1/2)||a2(l)|

]2
‖β‖2L2kO(ǫ̃2).

Proof: We have

E[b(ĥ)2] = E[〈h− ĥ, β〉2] ≤ ‖β‖2 · E[‖h− ĥ‖2]. (D.29)

Define ǫ̃ := max{ǫ̃1, ǫ̃2}, where ǫ̃1 and ǫ̃2 are the corresponding bounds in Lemmata D.1 and D.3,

respectively. Using the Lipschitz property of nonlinear function σ(·), we have

|hl − ĥl| = |σ(〈(A1)l, x〉+ b1(l))− σ(〈(Â1)l, x〉+ b̂1(l))|

≤ L ·
[
|〈(A1)l − (Â1)l, x〉|+ |b1(l)− b̂1(l)|

]

≤ L ·
[
rO(ǫ̃) +

|Ωl|
π|Σ(1/2)||a2(l)|O(ǫ̃)

]
,

where in the second inequality, we use the bounds in Lemmata D.1 and D.3, and bounded x such

that ‖x‖ ≤ r. Applying this to (D.29) concludes the proof. �

We now assume the following additional conditions to bound ‖β̂λ−β‖2Σ
ĥ
. The following discussions

are along the results of Hsu et al. [96].

We define the effective dimensions of the covariate ĥ as

kp,λ :=
∑

j∈[k]

(
λj

λj + λ

)p
, p ∈ {1, 2},

where λj ’s denote the (positive) eigenvalues of Σ
ĥ
, and λ is the regularization parameter of ridge

regression.

• Subgaussian noise: there exists a finite σnoise ≥ 0 such that, almost surely,

Eη[exp(αη)|ĥ] ≤ exp(α2σ2noise/2), ∀α ∈ R,

300

where η denotes the noise in the output ỹ.

• Bounded statistical leverage: there exists a finite ρλ ≥ 1 such that, almost surely,

√
k√

(inf{λj}+ λ)k1,λ
≤ ρλ.

• Bounded approximation error at λ: there exists a finite Bbias,λ ≥ 0 such that, almost surely,

ρλ

(
Bmax +

√
k‖β‖

)
≤ Bbias,λ,

where |b(ĥ)| ≤ Bmax. Note that the approximation term b(ĥ) is bounded in Lemma D.5. The

parameter Bbias,λ only contributes to the lower order terms in the analysis of ridge regression.

Lemma D.6 (Bounding excess mean squared error: Theorem 2 of Hsu et al. [96]). Fix some

λ ≥ 0, and suppose the above noise, approximation and statistical leverage conditions hold, and in

addition,

n ≥ Õ(ρ2λk1,λ). (D.30)

Then, we have

‖β̂λ − β‖2Σ
ĥ
≤ Õ

(
k

λn

(
E[b(ĥ)2] + σ2noise/2

)
+
λ‖β‖2

2

(
1 +

k/λ+ 1

n

))
+ o(1/n),

where E[b(ĥ)2] is bounded in Lemma D.5.

In the above lemma, we also used the discussions in Remarks 12 and 15 of Hsu et al. [96] which

include comments on the simplification of the general result.

Remark 30 (Optimal λ). In addition, along the discussion in Remark 15 of Hsu et al. [96], by

choosing the optimal λ > 0 that minimizes the bound in the above lemma, we have

‖β̂λ − β‖2Σ
ĥ
≤ O

(
k‖β‖2
n

)
+O

(√
2k‖β‖2
n

(
E[b(ĥ)2] + σ2noise/2

))
.

301

D.3 Proof of Theorem 4.5

Before we provide the proof, we first state the details of bound on Cf . We require

Cf ≤ min



Õ


1

r

(
1√
k

+ δ1

)−1 1√
E[‖S3(x)‖2]

· λ̃
2
min

λ̃2max

· λmin ·
s3min(A1)

smax(A1)
· ǫ̃1


 , (D.31)

Õ


1

r

(
1√
k

+ δ1

)−1 1√
E[‖S3(x)‖2]

· λmin

(
λ̃min

λ̃max

)1.5

s3min(A1) · 1√
k


 ,

O

(
1

r

(
1√
k

+ δ1

)−1
E[‖S3(x)‖2]1/4
E[‖S2(x)‖2]3/4

· λ̃min · s1.5min(A1)

)}
.

Proof of Theorem 4.5: We first argue that the perturbation involves both estimation and

approximation parts. Perturbation decomposition into approximation and estimation

parts: Similar to the estimation part analysis, we need to ensure the perturbation from exact

means is small enough to apply the analysis of Lemmas D.1 and D.3. Here, in addition to the

empirical estimation of quantities (estimation error), the approximation error also contributes to

the perturbation. This is because there is no realizable setting here, and the observations are from

an arbitrary function f(x). We address this for both the tensor decomposition and the Fourier

parts as follows.

Recall that we use notation f̃(x) (and ỹ) to denote the output of a neural network. For arbitrary

function f(x), we refer to the neural network satisfying the approximation error provided in Theo-

rem 4.4 by ỹf . The ultimate goal of our analysis is to show that NN-LIFT recovers the parameters

of this specific neural network with small error. More precisely, note that these are a class of neural

networks satisfying the approximation bound in Theorem 4.5, and it suffices to say that the output

of the algorithm is close enough to one of them.

Tensor decomposition: There are two perturbation sources in the tensor analysis. One is from

the approximation part and the other is from the estimation part. By Lemma 4.1, the CP decom-

302

position form is given by T̃f = E[ỹf · S3(x)], and thus, the perturbation tensor is written as

E := T̃f − T̂ = E[ỹf · S3(x)]− 1

n

∑

i∈[n]
yi · P3(xi),

where T̂ = 1
n

∑
i∈[n] yi · P3(xi) is the empirical form used in NN-LIFT Algorithm 6. Note that the

observations are from the arbitrary function y = f(x). The perturbation tensor can be expanded

as

E = E[ỹf · S3(x)]− E[y · S3(x)]︸ ︷︷ ︸
:=Eapx.

+E[y · S3(x)]− 1

n

∑

i∈[n]
yi · P3(xi)

︸ ︷︷ ︸
:=Eest.

,

where Eapx. and Eest. respectively denote the perturbations from approximation and estimation

parts.

We also desire to use the exact second order moment M̃2,f = E[ỹf · S2(x)] for the whitening

Procedure 10 in the tensor decomposition method. But, we have an empirical version for which

the perturbation matrix E2 := M̃2,f − M̂2 is expanded as

E2 = E[ỹf · S2(x)]− E[y · S2(x)]︸ ︷︷ ︸
:=E2,apx.

+E[y · S2(x)]− 1

n

∑

i∈[n]
yi · P2(xi)

︸ ︷︷ ︸
:=E2,est.

,

where E2,apx. and E2,est. respectively denote the perturbations from approximation and estimation

parts.

In Theorem 4.3 where there is no approximation error, we only need to analyze the estimation

perturbations characterized in (D.4) and (D.5) since the neural network output is directly observed

(and thus, we use ỹ to denote the output). Now, the goal is to argue that the norm of perturbations

E and E2 are small enough (see Lemma D.2), ensuring the tensor power iteration recovers the rank-

1 components of T̃f = E[ỹf · S3(x)] with bounded error. Again recall from Lemma 4.1 that the

rank-1 components of tensor T̃f = E[ỹf · S3(x)] are the desired components to recover.

303

The estimation perturbations Eest. and E2,est. are similarly bounded as in Lemma D.1 (see (D.6)

and (D.7)), and thus, we have w.h.p.

‖Eest.‖ ≤ Õ
(
ymax√
n

√
E
[∥∥M3(x)M⊤

3 (x)
∥∥]
)
,

‖E2,est.‖ ≤ Õ
(
ymax√
n

√
E
[∥∥S2(x)S⊤2 (x)

∥∥]
)
,

where M3(x) ∈ R
d×d2 denotes the matricization of score function tensor S3(x) ∈ R

d×d×d, and ymax

is the bound on |f(x)| = |y|.

The norm of approximation perturbation Eapx. := E[(ỹf − y) · S3(x)] is bounded as

‖Eapx.‖ = ‖E[(ỹf − y) · S3(x)]‖

≤ E[‖(ỹf − y) · S3(x)‖]

= E[|ỹf − y| · ‖S3(x)‖]

≤
(
E[|ỹf − y|2] · E[‖S3(x)‖2]

)1/2
,

where the first inequality is from the Jensen’s inequality applied to convex norm function, and we

used Cauchy-Schwartz in the last inequality. Applying the approximation bound in Theorem 4.4,

we have

‖Eapx.‖ ≤ O(rCf) ·
(

1√
k

+ δ1

)
·
√

E[‖S3(x)‖2], (D.32)

and similarly,

‖E2,apx.‖ ≤ O(rCf) ·
(

1√
k

+ δ1

)
·
√

E[‖S2(x)‖2],

We now need to ensure the overall perturbations E = Eest.+Eapx. and E2 = E2,est.+E2,apx. satisfies

the required bounds in Lemma D.2. Note that similar to what we do in Lemma D.1, we first impose

a bound such that the term involving ‖E‖ is dominant in (D.17). Bounding the estimation part

‖Eest.‖ provides similar sample complexity as in estimation Lemma D.1 with ỹmax substituted by

ymax.

304

For the approximation error, by imposing (third bound stated in the theorem)

Cf ≤ O
(

1

r

(
1√
k

+ δ1

)−1
E[‖S3(x)‖2]1/4
E[‖S2(x)‖2]3/4

· λ̃min · s1.5min(A1)

)
,

we ensure that the term involving ‖E‖ is dominant in the final recovery error in (D.17). By doing

this, we do not need to impose the bound on ‖E2,apx.‖ anymore, and applying the bound in (D.32)

to the required bound on ‖E‖ in Lemma D.2 leads to bound (second bound stated in the theorem)

Cf ≤ Õ


1

r

(
1√
k

+ δ1

)−1 1√
E[‖S3(x)‖2]

· λmin

(
λ̃min

λ̃max

)1.5

s3min(A1) · 1√
k


 .

Finally, applying the result of Lemma D.2, we have the column-wise error guarantees (up to per-

mutation)

‖(A1)j − (Â1)j‖ ≤ Õ
(
smax(A1)

λmin

λ̃2max√
λ̃min

‖Eest.‖+ ‖Eapx.‖
λ̃1.5min · s3min(A1)

)
,

≤ Õ
(
λ̃2max

λ̃2min

smax(A1)

λmin · s3min(A1)

[
ymax√
n

√
E
[∥∥M3(x)M⊤

3 (x)
∥∥]

+ rCf ·
(

1√
k

+ δ1

)
·
√

E[‖S3(x)‖2]

])

≤ Õ (ǫ̃1) ,

where in the second inequality we substituted the earlier bounds on ‖Eest.‖ and ‖Eapx.‖, and the

first bounds on n and Cf stated in the theorem are used in the last inequality.

Fourier part: Let

ṽf :=
1

n

∑

i∈[n]

(ỹf)i
p(xi)

e−j〈ωi,xi〉.

Note that this a realization of ṽ defined in (D.22) when the output is generated by a neural network

satisfying approximation error provided in Theorem 4.4 denoted by ỹf ; see the discussion in the

beginning of the proof.

305

The perturbation is now

e := E[ṽf]− 1

n

∑

i∈[n]

yi
p(xi)

e−j〈ωi,xi〉

︸ ︷︷ ︸
=:v

.

Similar to the tensor decomposition part, it can be expanded to estimation and approximation

parts as

e := E[ṽf]− E[v]︸ ︷︷ ︸
eapx.

+E[v]− v︸ ︷︷ ︸
eest.

.

Similar to Lemma D.3, the estimation error is w.h.p. bounded as

|eest.| ≤ O(ǫ̃2),

if the sample complexity satisfies n ≥ Õ
(
ζf
ψǫ̃22

)
, where ζf :=

∫
Rd f(x)2dx. Notice the difference

between ζf and ζ̃f̃ . The approximation part is also bounded as

|eapx.| ≤
1

ψ
E[|ỹf − y|] ≤

1

ψ

√
E[|ỹf − y|2] ≤ 1

ψ
O(rCf) ·

(
1√
k

+ δ1

)
,

where the last inequality is from the approximation bound in Theorem 4.4. Imposing the condition

Cf ≤
1

r

(
1√
k

+ δ1

)−1

·O(ψǫ̃2) (D.33)

satisfies the desired bound |eapx.| ≤ O(ǫ̃2). The rest of the analysis is the same as Lemma D.3.

Ridge regression: It introduces an additional approximation term in the linear regression formu-

lated in (D.27). Given the above bounds on Cf , the new approximation term only contributes to

lower order terms.

Combining the analyzes for tensor decomposition, Fourier and ridge regression parts finishes the

proof. �

306

D.3.1 Discussion on Corollary 4.1

Similar to the specific Gaussian kernel function, we can also provide the results for other kernel

functions and in general for positive definite functions as follows. f(x) is said to be positive definite

if
∑

j,l xixjf(xj − xl) ≥ 0, for all xj, xl ∈ R
d. Barron [35] shows that positive definite functions

have Cf bounded as

Cf ≤
√
−f(0) · ∇2f(0),

where ∇2f(x) :=
∑

i∈[d] ∂
2f(x)/∂x2i . Note that the operator ∇2 is different from the derivative

operator ∇(2) that we defined in (4.1). Applying this to the proposed bound in (4.15), we conclude

that our algorithm can train a neural network which approximates a class of positive definite and

kernel functions with similar bounds as in Theorem 4.5. Corollary 4.1 is for the special case of

Gaussian kernel function.

Proof of Corollary 4.1: For the location and scale mixture f(x) :=
∫
K(α(x+β))G(dα, dβ), we

have [35] Cf ≤ CK ·
∫
|α| · |G|(dα, dβ), where CK denotes the corresponding parameter for K(x).

For the standard Gaussian kernel function K(x) considered here, we have [35] CK ≤
√
d, which

concludes

Cf ≤
√
d ·
∫
|α| · |G|(dα, dβ).

We now apply the required bound in (4.15) to finish the proof. But, in this specific setting, we also

have the following simplifications for the bound in (4.15).

For the Gaussian input x ∼ N (0, σ2xId), the score function is

S3(x) =
1

σ6x
x⊗3 − 1

σ4x

∑

j∈[d]
(x⊗ ej ⊗ ej + ej ⊗ x⊗ ej + ej ⊗ ej ⊗ x) ,

which has expected square norm as E[‖S3(x)‖2] = Õ(d3/σ6x).

307

Given the input is Gaussian and the activating function is the step function, we can also write the

coefficients λj and λ̃j as

λj = a2(j) · 1√
2πσ3x

· exp

(
−b1(j)

2

2σ2x

)
·
(
b1(j)

2

σ2x
− 1

)
,

λ̃j = a2(j) · b1(j)√
2πσ3x

· exp

(
−b1(j)

2

2σ2x

)
.

Given the bounds on coefficients as |b1(j)| ≤ 1, |a2(j)| ≤ 2Cf , j ∈ [k], we have

λ̃min

λ̃max

≥ (a2)min · (b1)min

2Cf
exp(−1/(2σ2x)),

λmin ≥
(a2)min√

2πσ3x
exp(−1/(2σ2x)) · min

j∈[k]
|b1(j)2/σ2x − 1|.

Recall that the columns of A1 are randomly drawn from the Fourier spectrum of f(x) as described

in (4.12). Given f(x) is the Gaussian kernel, the Fourier spectrum ‖ω‖ · |F (ω)| corresponds to a

sub-gaussain distribution. Thus, the singular values of A1 are bounded as [139]

smin(A1)

smax(A1)
≥ 1−

√
k/d

1 +
√
k/d
≥ O(1),

where the last inequality is from k = Cd for some small enough C < 1.

Substituting these bounds in the required bound in (4.15) finishes the proof. �

308

Appendix E

Proofs for Identifiability of

Overcomplete Topic Models

E.1 Proof of Deterministic Identifiability Result (Theorem 5.1)

First, we show the identifiability result under an alternative set of conditions on the n-gram matrix,

A⊙n, and then, we show that the conditions of Theorem 5.1 are sufficient for these conditions to

hold.

E.1.1 Deterministic Analysis Based on A
⊙n

In this section, the deterministic identifiability result based on conditions on the n-gram matrix,

A⊙n, is provided.

In the n-gram matrix, A⊙n ∈ R
pn×q, redundant rows exist. If some row of A⊙n is indexed by

n-tuple (i1, . . . , in) ∈ [p]n, then another row indexed by any permutation of the tuple (i1, . . . , in)

has the same entries. Therefore, the number of distinct rows of A⊙n is at most
(
p+n−1
n

)
. In the

following definition, we define a non-redundant version of n-gram matrix which is restricted to the

(potentially) distinct rows.

309

Definition E.1 (Restricted n-gram matrix). For any matrix A ∈ R
p×q, restricted n-gram matrix

A⊙n
Rest. ∈ R

s×q, s =
(
p+n−1
n

)
, is defined as the restricted version of n-gram matrix A⊙n ∈ R

pn×q,

where the redundant rows of A⊙n are removed, as explained above.

Condition 6 (Rank condition). The n-gram matrix A⊙n is full column rank.

Condition 7 (Graph expansion). Let G(Vh, V
(n)
o ;A⊙n) denote the bipartite graph with vertex sets

Vh corresponding to the hidden variables (indexing the columns of A⊙n) and V (n)
o corresponding to

the n-th order observed variables (indexing the rows of A⊙n) and edge matrix A⊙n ∈ R
|V (n)

o |×|Vh|.

The bipartite graph G(Vh, V
(n)
o ;A⊙n) satisfies the following expansion property 1 on the restricted

version specified by A⊙n
Rest.,

∣∣∣NA⊙n
Rest.

(S)
∣∣∣ ≥ |S|+ dmax

(
A⊙n

)
, ∀S ⊆ Vh, |S| > krank(A), (E.1)

where dmax

(
A⊙n

)
is the maximum node degree in set Vh.

Remark 31. The expansion condition for the bag-of-words admixture model is provided in (5.4),

introduced in [9]. The proposed expansion condition in (E.1) is inherited from (5.4), with two

major modifications. First, the condition is appropriately generalized for our model which involves

a graph with edges specified by the n-gram matrix, A⊙n, as stated in (5.23). Second, the expansion

property (5.4), proposed in [9], needs to be satisfied for all subsets S with size |S| ≥ 2, which is a

stricter condition than the one proposed here in (E.1), since we can have krank(A)≫ 2.

The deterministic identifiability result based on the conditions on A⊙n, is stated in the following

theorem for n ≥ 2, while n = 1 case is addressed in Remarks 19 and 31. The identifiability result

relies on access to the (2n)-th order moment of observed variables xl, l ∈ [2n], defined in equation

(5.2) as

M2n(x) := E

[
(x1 ⊗ x2 ⊗ · · · ⊗ xn)(xn+1 ⊗ xn+2 ⊗ · · · ⊗ x2n)⊤

]
∈ R

pn×pn .

1Note that this notion of generalized expansion is different from unbalanced expander graphs proposed in the
compressed sensing literature [106, 100]. For a left regular bipartite graph G(Y,X;A) with regular degree d for the
vertices on Y side, we say that it is a (k, ǫ)-expander if for any set S ⊆ Y with |S| ≤ k, we have NA(S) ≥ |S|d(1− ǫ).
This is completely different with the expansion condition we define here in some aspects: first our expansion condition
is additive while this one is multiplicative, and second our expansion condition is imposed on large sets while this
one is imposed on small sets.

310

Theorem E.1 (Generic identifiability under deterministic conditions on A⊙n). Let M
(n)
2n (x) (de-

fined in equation (5.2)) be the (2n)-th order moment of the n-persistent topic model described in

Section 5.4. If the model satisfies conditions 1, 6 and 7, then, for any n ≥ 2, all the columns of

population structure A are generically identifiable from M
(n)
2n (x).

Proof: Define B := A⊙n ∈ R
pn×q. Then, the moment characterized in equation (5.23) can

be written as M
(n)
2n (x) = BE

[
hh⊤

]
B⊤. Since both matrices E

[
hh⊤

]
and B have full column

rank (from conditions 1 and 6), the rank of BE
[
hh⊤

]
B⊤ is q where q = O(pn), and furthermore

Col(BE
[
hh⊤

]
B⊤) = Col(B). Let U := {u1, . . . , uq} ∈ R

pn be any basis of Col(BE
[
hh⊤

]
B⊤)

satisfying the following two properties:

1) The maximum of ℓ0 norm of ui’s is minimized (among all basis sets).

2) The tensor rank of ui’s (in the n-th order tensor form) is equal to 1, i.e., Rank(ten(ui)) =

1, i ∈ [q].

Let the columns of matrix B be bi for i ∈ [q]. Since all the bi’s (which belong to Col(BE
[
hh⊤

]
B⊤))

are rank-1 in the n-th order tensor form (since ten(bi) = a◦ni) and the number of non-zero entries

in each of bi’s is at most dmax(B) = dmax(A)n, we conclude that

max
i

Rank(ten(ui)) = 1 and max
i
‖ui‖0 ≤ dmax(B). (E.2)

The above bounds are concluded from the fact that bi ∈ Col(BE
[
hh⊤

]
B⊤), i ∈ [q], and therefore

the ℓ0 norm and the rank properties of bi’s are upper bounds for the corresponding properties of

basis vectors ui’s (according to the proposed conditions for ui’s).

Now, exploiting these observations and also the genericity of A and the expansion condition 7, we

show that the basis vectors ui’s are scaled columns of B. Since ui for i ∈ [q], is a vector in the

column space of B, it can be represented as ui = Bvi for some vector vi ∈ R
q. Equivalently, for

any i ∈ [q], ui =
∑q

j=1 vi(j)bj where bj = a⊗nj is the j-th column of matrix B and vi(j) is a scalar

311

which is the j-th entry of vector vi. Then, the tensor form of ui can be written as

ten(ui) =

q∑

j=1

vi(j) ten(bj) =

q∑

j=1

vi(j) ten(a⊗nj) =

q∑

j=1

vi(j)a
◦n
j = [[Diagn (vi);

n times︷ ︸︸ ︷
A, . . . , A]], (E.3)

where the last equality is based on the notation defined in Definition 5.8, and Diagn (vi) is defined

as the n-th order diagonal tensor with vector vi on its diagonal. We define ṽi := [vi(j)]j:vi(j)6=0 as

the vector which contains only the non-zero entries of vi, i.e., ṽi is the restriction of vector vi to its

support. Therefore, ṽi ∈ R
r, where r := ‖vi‖0. Furthermore, the matrix Ãi := {aj : vi(j) 6= 0} ∈

R
p×r is defined as the restriction of A to its columns corresponding to the support of vi. Let (ãi)j

denote the j-th column of Ãi. According to these definitions, equation (E.3) reduces to

ten(ui) = [[Diagn (ṽi);

n times︷ ︸︸ ︷
Ãi, . . . , Ãi]] =

r∑

j=1

ṽi(j)[(ãi)j]
◦n, (E.4)

which is derived by removing columns of A corresponding to the zero entries in vi.

Next, we rule out that ‖vi‖0 ≥ 2 under two cases (2 ≤ ‖vi‖0 ≤ krank(A) and krank(A) < ‖vi‖0 ≤ q),

to conclude that ui’s vectors are scaled columns of B.

Case 1: 2 ≤ ‖vi‖0 ≤ krank(A). Here, the number of columns of Ãi ∈ R
p×‖vi‖0 is less than or equal

to krank(A) and therefore it is full column rank. Since, all the components of CP representation

in equation (E.4) are full column rank 2, for any 3 n ≥ 2, we have Rank(ten(ui)) = r = ‖vi‖0 > 1,

which contradicts the fact that maxi Rank(ten(ui)) = 1 in (E.2).

Note that for the full column rank topic-word matrix A ∈ R
p×q (where Rank(A) = krank(A) = q)

as in Corollary 5.1, it is sufficient to argue this case and there is no need to argue next case. This

is why the expansion condition is not required in Corollary 5.1.

Case 2: krank(A) < ‖vi‖0 ≤ q. Here, we first restrict the n-gram matrix B to distinct rows,

denoted by BRest., as defined in Definition E.1. Let u′i = BRest.vi. Since u′i is the restricted version

2Note that for n ≥ 3, this full rank condition can be relaxed by Kruskal’s condition for uniqueness of CP decomposi-
tion [112] and its generalization to higher order tensors [143]. Precisely, instead of saying Rank

(
Ãi

)
= krank

(
Ãi

)
= r,

it is only required to have krank
(
Ãi

)
≥ (2r+n− 1)/n to argue the result of case 1. This only improves the constants

involved in the final result.
3Note that for n = 1, since the (tensor) rank of any vector is 1, this analysis does not work.

312

of ui, we have

‖ui‖0 ≥ ‖u′i‖0 = ‖BRest.vi‖0

>
∣∣NBRest.

(Supp(vi))
∣∣ − |Supp(vi)|

≥ dmax(B),

where the second inequality is from Lemma 4 (which is stated and proved right after this theorem),

and the third inequality follows from the graph expansion property (condition 7). This result

contradicts the fact that maxi‖ui‖0 ≤ dmax(B) in (E.2).

From above contradictions, ‖vi‖0 = 1 and hence, columns of B := A⊙n are the scaled versions of

ui’s. �

The following lemma is useful in the proof of Theorem E.1. The result proposed in this lemma is

similar to the parameter genericity condition in [9], but generalized for the n-gram matrix, A⊙n.

The lemma is proved along the lines of the proof of Remark 2.2 in [9].

Lemma 4. If A ∈ R
p×q is generic (see Definition 5.1), then the n-gram matrix A⊙n ∈ R

pn×q

satisfies the following property with Lebesgue measure one. For any vector v ∈ R
q with ‖v‖0 ≥ 2,

we have

∥∥A⊙n
Rest.v

∥∥
0
>
∣∣∣NA⊙n

Rest.
(Supp(v))

∣∣∣ − |Supp(v)|,

where for a set S ⊆ [q], NA⊙n(S) := {i ∈ [p]n : A⊙n(i, j) 6= 0 for some j ∈ S}.

Here, we prove the result for the case of n = 2. The proof can be easily generalized to larger n.

Let A := P + Z be generic, where P is an arbitrary matrix perturbed by random continuous

independent 4 perturbations Z. Consider the 2-gram matrix B := A ⊙ A ∈ R
p2×q. We show that

the restricted version of B, denoted by B̃ := BRest. ∈ R
p(p+1)

2
×q, satisfies the above genericity

condition. Before that, we first establish some definitions and one claim.
4Note that the distribution of Z does not matter as long as the independence and continuous conditions hold.

313

Definition E.2. We call a vector fully dense if all of its entries are non-zero.

Definition E.3. We say a matrix has the Null Space Property (NSP) if its null space does not

contain any fully dense vector.

Claim 20. Fix any S ⊆ [q] with |S| ≥ 2, and set R := N(P⊙2)Rest.
(S). Let C̃ be a |S|×|S| submatrix

of B̃R,S. Then Pr(C̃ has the NSP) = 1.

Proof of Claim 20: First, note that B̃ can be expanded as

B̃ := (A⊙A)Rest. = (P ⊙ P)Rest. + (P ⊙ Z + Z ⊙ P)Rest. + (Z ⊙ Z)Rest.︸ ︷︷ ︸
:=U

.

Let s = |S| and let C̃ = [c̃1|c̃2| · · · |c̃s]⊤, where c̃⊤i is the i-th row of C̃. Also, let C := [c1|c2| · · · |cs]⊤

and W := [w1|w2| · · · |ws]⊤ be the corresponding |S| × |S| submatrices of
(
P⊙2

)
Rest.

and U , respec-

tively. For each i ∈ [s], denote by Ni the null space of the matrix C̃i = [c̃1|c̃2| · · · |c̃i]⊤. Finally let

N0 = R
s. Then, N0 ⊇ N1 ⊇ · · · ⊇ Ns. We need to show that, with probability one, Ns does not

contain any fully dense vector.

If one of Ni, i ∈ [s], does not contain any full dense vector, the result is proved. Suppose that

Ni contains some fully dense vector v. Since C is a submatrix of
(
P⊙2

)
R,S

, every row c⊤i+1 of C

contains at least one non-zero entry. Therefore,

v⊤c̃i+1 =
∑

j∈[s]
v(j)c̃i+1(j)

=
∑

j∈[s]:ci+1(j)6=0

v(j)(ci+1(j) + wi+1(j)),

where {wi+1(j) : j ∈ [s] s.t. ci+1(j) 6= 0} are independent random variables, and moreover, they

are independent of c̃1, . . . , c̃i and thus of v. By assumption on the distribution of the wi+1(j),

Pr

[
v ∈ Ni+1

∣∣∣∣c̃1, c̃2, . . . , c̃i
]

= Pr

[∑

j∈[s]:ci+1(j)6=0

v(j)(ci+1(j) + wi+1(j)) = 0

∣∣∣∣c̃1, c̃2, . . . , c̃i
]

= 0.(E.5)

314

Consequently,

Pr

[
dim(Ni+1) < dim(Ni)

∣∣∣∣c̃1, c̃2, . . . , c̃i
]

= 1 (E.6)

for all i = 0, . . . , s− 1. As a result, with probability one, dim(Ns) = 0. �

Now, we are ready to prove Lemma 4.

Proof of Lemma 4: It follows from Claim 20 that, with probability one, the following event

holds: for every S ⊆ [q], |S| ≥ 2, and every |S|×|S| submatrix C̃ of B̃R,S where R := N(P⊙2)Rest.
(S),

then C̃ has the NSP.

Now fix v ∈ R
q with ‖v‖0 ≥ 2. Let S := Supp(v) and H := B̃R,S . Furthermore, let u ∈ (R \ {0})|S|

be the restriction of vector v to S; observe that u is fully dense. It is clear that ‖B̃v‖0 = ‖Hu‖0,

so we need to show that

‖Hu‖0 > |R| − |S|. (E.7)

For the sake of contradiction, suppose that Hu has at most |R| − |S| non-zero entries. Since

Hu ∈ R
|R|, there is a subset of |S| entries on which Hu is zero. This corresponds to a |S| × |S|

submatrix of H := B̃R,S which contains u in its null space. It means that this submatrix does

not have the NSP, which is a contradiction. Therefore we conclude that Hu must have more than

|R| − |S| non-zero entries, which finishes the proof. �

E.1.2 Proof of Moment Characterization Lemmata

Remark 32. In Lemmata 2 and 3, a specific case of order and persistence (m = rn) was considered.

Here, we provide the moment form for a more general case. Assume that m = rn + s for some

315

integers r ≥ 1, 1 ≤ s ≤ n
2 , then

M
(n)
2m (x) =

(r times︷ ︸︸ ︷
A⊙n ⊗ · · · ⊗A⊙n⊗A⊙s

)

M̃2r(h)

(
A⊙(n−s) ⊗

r−1 times︷ ︸︸ ︷
A⊙n ⊗ · · · ⊗A⊙n⊗A⊙(2s)

)⊤
,

where M̃2r(h) ∈ R
qr+1×qr+1

is the hidden moment as

M̃2r(h)(
(i1,...,ir+1),(j1,...,jr+1)

) :=





E[hi1 · · · hirh2ir+1
hj2 · · · hjr+1] if ir+1 = j1,

0 o.w .

The tensor form is also characterized as

T
(n)
2m (x) =

[[
S̃r;

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
,

where S̃r ∈
⊗2m

R
q is the core tensor in the above Tucker representation with the sparsity pattern

as follows. Let i := (i1, i2, . . . , i2m). If

i1 = i2 = · · · = in, in+1 = in+2 = · · · = i2n, · · · , i(2r−1)n+1 = i(2r−1)n+2 = · · · = i2rn,

i2(m−s)+1 = i2(m−s)+2 = · · · = i2m,

we have

S̃r
(
i
)

= M̃2r(h)(
(in,i2n,...,irn,im),(i(r+1)n,i(r+2)n,...,i2rn,i2m)

).

Otherwise, S̃r
(
i
)

= 0.

Proof of Lemma 2: The proof is basically incorporating the conditional independence relation-

ships between random variables xl and yj under the n-persistent topic model.

316

In order to simplify the notation, similar to tensor powers for vectors, the tensor power for a matrix

U ∈ R
p×q is defined as

U⊗r :=

r times︷ ︸︸ ︷
U ⊗ U ⊗ · · · ⊗ U ∈ R

pr×qr . (E.8)

First, consider the case m = rn for some integer r ≥ 1. One advantage of encoding yj, j ∈ [2r],

by basis vectors appears in characterizing the conditional moments. The first order conditional

moment of words xl, l ∈ [2m], in the n-persistent topic model can be written as

E
[
x(j−1)n+k|yj

]
= Ayj, j ∈ [2r], k ∈ [n],

where A = [a1|a2| · · · |aq] ∈ R
p×q. Next, the m-th order conditional moment of different views

xl, l ∈ [m], in the n-persistent topic model can be written as

E[x1 ⊗ x2 ⊗ · · · ⊗ xm|y1 = ei1 , y2 = ei2 , . . . , yr = eir] = a⊗ni1 ⊗ a
⊗n
i2
⊗ · · · ⊗ a⊗nir ,

which is derived from the conditional independence relationships among the observations xl, l ∈ [m],

given topics yj, j ∈ [r]. Similar to the first order moments, since vectors yj , j ∈ [r], are encoded by

the basis vectors ei ∈ R
q, the above moment can be written as the following matrix multiplication

E[x1 ⊗ x2 ⊗ · · · ⊗ xm|y1, y2, . . . , yr] =
(
A⊙n

)⊗r
(y1 ⊗ y2 ⊗ · · · ⊗ yr) , (E.9)

317

where the (·)⊗r notation is defined in equation (E.8). Now for the (2m)-th order moment, we have

M
(n)
2m (x) := E

[
(x1 ⊗ x2 ⊗ · · · ⊗ xm)(xm+1 ⊗ xm+2 ⊗ · · · ⊗ x2m)⊤

]

= E(y1,y2,...,y2r)

[
E

[
(x1 ⊗ · · · ⊗ xm)(xm+1 ⊗ · · · ⊗ x2m)⊤|y1, y2, . . . , y2r

]]

(a)
= E(y1,y2,...,y2r)

[
E
[
(x1 ⊗ · · · ⊗ xm)|y1, . . . , y2r

]
E
[
(xm+1 ⊗ · · · ⊗ x2m)⊤|y1, . . . , y2r

]]

(b)
= E(y1,y2,...,y2r)

[
E
[
(x1 ⊗ · · · ⊗ xm)|y1, . . . , yr

]
E
[
(xm+1 ⊗ · · · ⊗ x2m)⊤|yr+1, . . . , y2r

]]

(c)
= E(y1,y2,...,y2r)

[([
A⊙n

]⊗r)
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)⊤

([
A⊙n

]⊗r)⊤
]

=

([
A⊙n

]⊗r)
E

[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)⊤

]([
A⊙n

]⊗r)⊤

(d)
=

([
A⊙n

]⊗r)
M2r(y)

([
A⊙n

]⊗r)⊤
, (E.10)

where (a) results from the independence of (x1, . . . , xm) and (xm+1, . . . , x2m) given (y1, y2, . . . , y2r)

and (b) is concluded from the independence of (x1, . . . , xm) and (yr+1, . . . , y2r) given (y1, . . . , yr)

and the independence of (xm+1, . . . , x2m) and (y1, . . . , yr) given (yr+1, . . . , y2r). Equation (E.9)

is used in (c) and finally, the (2r)-th order moment of (y1, . . . , y2r) is defined as M2r(y) :=

E

[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)⊤

]
in (d).

For M2r(y), we have by the law of total expectation

M2r(y) := E
[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)⊤

]

= Eh

[
E
[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)⊤ |h

]]

= Eh

[(r times︷ ︸︸ ︷
h⊗ · · · ⊗ h

)(r times︷ ︸︸ ︷
h⊗ · · · ⊗ h

)⊤]

= M2r(h),

where the third equality is concluded from the conditional independence of variables yj, j ∈ [2r],

given h and the model assumption that E
[
yj|h

]
= h, j ∈ [2r]. Substituting this in equation (E.10),

finishes the proof for the n-persistent topic model. Similarly, the moment of single topic model

(infinite persistence) can be also derived. �

318

Proof of Lemma 3: Defining Λ := M2r(h) ∈ R
qr×qr and B :=

[
A⊙n]⊗r ∈ R

prn×qr , the (2rn)-th

order moment M
(n)
2rn(x) ∈ R

prn×prn of the n-persistent topic model proposed in equation (5.8) can

be written as

M
(n)
2rn(x) = BΛB⊤.

Let b(i1,...,ir) ∈ R
prn denote the corresponding column of B indexed by r-tuple (i1, . . . , ir), ik ∈

[q], k ∈ [r]. Then, the above matrix equation can be expanded as

M
(n)
2rn(x) =

∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
b(i1,...,ir)b

⊤
(j1,...,jr)

=
∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
[a⊗ni1 ⊗ · · · ⊗ a

⊗n
ir

][a⊗nj1 ⊗ · · · ⊗ a
⊗n
jr

]⊤,

where relation b(i1,...,ir) = a⊗ni1 ⊗· · ·⊗a
⊗n
ir
, i1, . . . , ir ∈ [q], is used in the last equality. Let m

(n)
2rn(x) ∈

R
p2rn denote the vectorized form of (2rn)-th order moment M

(n)
2rn(x) ∈ R

prn×prn . Therefore, we

have

m
(n)
2rn(x) := vec

(
M

(n)
2rn(x)

)

=
∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
a⊗ni1 ⊗ · · · ⊗ a

⊗n
ir
⊗ a⊗nj1 ⊗ · · · ⊗ a

⊗n
jr
.

Then, we have the following equivalent tensor form for the original model proposed in equation

(5.8)

T
(n)
2rn(x) := ten

(
m

(n)
2rn(x)

)

=
∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
a◦ni1 ◦ · · · ◦ a◦nir ◦ a◦nj1 ◦ · · · ◦ a◦njr .

�

319

E.1.3 Sufficient Matching Properties for Rank and Graph Expansion Condi-

tions

In the following lemma, it is shown that under a perfect n-gram matching and additional genericity

and krank conditions, the rank and graph expansion conditions 6 and 7 on A⊙n, are satisfied.

Lemma 5. Assume that the bipartite graph G(Vh, Vo;A) has a perfect n-gram matching (condition

2 is satisfied). Then, the following results hold for the n-gram matrix A⊙n:

1) If A is generic, A⊙n is full column rank (condition 6) with Lebesgue measure one (almost

surely).

2) If krank condition 3 holds, A⊙n satisfies the proposed expansion property in condition 7.

Proof: Let M denote the perfect n-gram matching of the bipartite graph G(Vh, Vo;A). From

Lemma 1, there exists a perfect matching M⊙n for the bipartite graph G(Vh, V
(n)
o ;A⊙n). Denote

the corresponding bi-adjacency matrix to the edge set M as AM . Similarly, BM denotes the

corresponding bi-adjacency matrix to the edge set M⊙n. Note that Supp(AM) ⊆ Supp(A) and

Supp(BM) ⊆ Supp(A⊙n).

Since BM is a perfect matching, it consists of q := |Vh| rows, each of which has only one non-zero

entry, and furthermore, the non-zero entries are in q different columns. Therefore, these rows form

q linearly independent vectors. Since the row rank and column rank of a matrix are equal, and the

number of columns of BM is q, the column rank of BM is q or in other words, BM is full column

rank. Since A is generic, from Lemma 6 (with a slight modification in the analysis 5), A⊙n is also

full column rank with Lebesgue measure one (almost surely). This completes the proof of part 1.

Next, we prove the second part. From krank definition, we have

|NA(S′)| ≥ |S′| for S′ ⊆ Vh, |S′| ≤ krank(A),

5The Lemma 6 result is about the column rank of A itself, but here it is about the column rank of A⊙n for which
the same analysis works. Note that the support of BM (which is full column rank here) is within the support of A⊙n

and therefore Lemma 6 can still be applied.

320

which is concluded from the fact that the corresponding submatrix of A specified by S′ should be

full column rank. From this inequality, we have

|NA(S′)| ≥ krank(A) for S′ ⊆ Vh, |S′| = krank(A). (E.11)

Then, we have

|NA(S)| ≥ |NA(S′)| for S′ ⊂ S ⊆ Vh, |S| > krank(A), |S′| = krank(A),

≥ krank(A)

≥ dmax(A)n, (E.12)

where (E.11) is used in the second inequality and the last inequality is from krank condition 3.

In the restricted n-gram matrix A⊙n
Rest., the number of neighbors for a set S ⊆ Vh, |S| > krank(A),

can be bounded as

∣∣∣NA⊙n
Rest.

(S)
∣∣∣ ≥ |NA(S)|+ |S| (E.13)

≥ dmax(A)n + |S| for |S| > krank(A),

where the first inequality is due to the fact that the set NA⊙n
Rest.

consists of rows indexed by the

following two 6 subsets: n-tuples (i, i, . . . , i) where all the indices are equal and n-tuples (i1, . . . , in)

with distinct indices, i.e., i1 6= i2 . . . 6= in. The former subset is exactly NA(S) while the size of

the latter subset is at least |S| due to the existence of a perfect n-gram matching in A. The bound

(E.12) is used in the second inequality. Since dmax

(
A⊙n) = dmax(A)n, the proof of part 2 is also

completed.

�

Remark 33. The second result of above lemma is similar to the necessity argument of (Hall’s)

Theorem E.2 for the existence of perfect matching in a bipartite graph, but generalized to the case

of perfect n-gram matching and with additional krank condition.

6Note that many terms in this bound are ignored which leads to a loose bound that might be improved.

321

E.1.4 Auxiliary Lemma

Proof of Lemma 1: We show that if G(Y,X;A) has a perfect n-gram matching, thenG(Y,X(n);A⊙n)

has a perfect matching. The reverse can be also immediately shown by reversing the discussion

and exploiting the additional condition stated in the lemma.

Let E⊙n denote the edge set of the bipartite graph G(Y,X(n);A⊙n). Assume G(Y,X;A) has a

perfect n-gram matching M ⊆ E. For any j ∈ Y , let NM (j) denote the set of neighbors of vertex j

according to edge set M . SinceM is a perfect n-gram matching, |NM (j)| = n for all j ∈ Y . It can be

immediately concluded from Definition 5.3 that sets NM (j) are all distinct, i.e., NM (j1) 6= NM (j2)

for any j1, j2 ∈ Y, j1 6= j2. For any j ∈ Y , let N ′
M (j) denote an arbitrary ordered n-tuple generated

from the elements of set NM (j). From the definition of n-gram matrix, we have A⊙n(N ′
M (j), j) 6= 0

for all j ∈ Y . Hence, (j,N ′
M (j)) ∈ E⊙n for all j ∈ Y which together with the fact that all N ′

M (j)’s

tuples are distinct, it results that M⊙n := {(j,N ′
M (j))|j ∈ Y } ⊆ E⊙n is a perfect matching for

G(Y,X(n);A⊙n). �

Lemma 6. Consider matrix C ∈ R
m×r which is generic. Let C̃ ∈ R

m×r be such that Supp(C̃) ⊆

Supp(C) and the non-zero entries of C̃ are the same as the corresponding non-zero entries of C.

If C̃ is full column rank, then C is also full column rank, almost surely.

Proof: Since C̃ is full column rank, there exists a r × r submatrix of C̃, denoted by C̃S , with

non-zero determinant, i.e., det(C̃S) 6= 0. Let CS denote the corresponding submatrix of C indexed

by the same rows and columns as C̃S .

The determinant of CS is a polynomial in the entries of CS . Since C̃S can be derived from CS by

keeping the corresponding non-zero entries, det(CS) can be decomposed into two terms as

det(CS) = det(C̃S) + f(CS),

where the first term corresponds to the monomials for which all the variables (entries of CS) are

also in C̃S and the second term corresponds to the monomials for which at least one variable is

not in C̃S . The first term is non-zero as stated earlier. Since C is generic, the polynomial f(CS) is

non-trivial and therefore its roots have Lebesgue measure zero. It implies that det(CS) 6= 0 with

322

Lebesgue measure one (almost surely), and hence, it is full (column) rank. Thus, C is also full

column rank, almost surely. �

Finally, Theorem 5.1 is proved by combining the results of Theorem E.1 and Lemma 5.

Proof of Theorem 5.1: Since conditions 2 and 3 hold and A is generic, Lemma 5 can be applied

which results that rank condition 6 is satisfied almost surely and expansion condition 7 also holds.

Therefore, all the required conditions for Theorem E.1 are satisfied almost surely and this completes

the proof. �

E.2 Proof of Random Identifiability Result (Theorem 5.2)

We provide detailed proof of the steps stated in the proof sketch of random result in Section 5.7.2.

E.2.1 Proof of Existence of Perfect n-gram Matching and Kruskal Results

Restatement of Theorem 5.3 Consider a random bipartite graph G(Y,X;E) with |Y | = q nodes

on the left side and |X| = p nodes on the right side, and each node i ∈ Y is randomly connected to

di different nodes in X. Let dmin := mini∈Y di. Assume that it satisfies the size condition q ≤
(
c pn
)n

(condition 4) for some constant 0 < c < 1 and the degree condition dmin ≥ max{1 +β log p, α log p}

for some constants β > n−1
log 1/c , α > max

{
2n2
(
β log 1

c +1
)
, 2βn

}
(lower bound in condition 5). Then,

there exists a perfect (Y -saturating) n-gram matching in the random bipartite graph G(Y,X;E),

with probability at least 1− γ1p−β
′
for constants β′ > 0 and γ1 > 0, specified in (5.5) and (5.6).

Proof of Theorem 5.3: Vertex sets X and Y are partitioned, described as follows (see Figure

E.1). Define J := c pn . Partition set X uniformly at random into n sets of (almost) equal size 7,

denoted by X ′
l , l ∈ [n]. Define sets Xl := ∪li=1X

′
i, l ∈ [n]. Furthermore, partition set Y uniformly

at random, hierarchically as follows. First, partition into J sets, each with size at most
(
c pn
)n−1

,

7By almost, we mean the maximum difference in the size of partitions is 1 which is always possible.

323

X

X ′
1 X ′

2 X ′
n

X1

X2

Xn

Y

Y1 Y2 YJ

Figure E.1: Partitioning of sets Y and X, proposed in the proof of Theorem 5.3. Set X is randomly
(uniform) partitioned into n sets of (almost) equal size, denoted by X ′

l , l ∈ [n]. Set Y is also
randomly partitioned in a recursive manner. In each step, it is partitioned to J = c pn = O(p)
number of sets. These smaller sets are again partitioned, recursively. This partitioning process is
performed until reaching sets with size O(p). The first two steps are shown in this figure.

and denote them by Yi, i ∈ [J]. Next, partition each of these new smaller sets Yi further into J

sets, each with size at most
(
c pn
)n−2

. Do it iteratively up to n − 1 steps, where at the end, set Y

is partitioned into sets with size at most c pn . The first two steps are shown in Figure E.1.

Proof by induction: The existence of perfect n-gram matching from set Y to set X is proved by an

induction argument. Consider one of intermediate sets in the hierarchical partitioning of Y with size

O(pl) and its further partitioning into J := c pn sets, each with size O(pl−1), for any l ∈ {2, . . . , n}.

In the induction step, it is shown that if there exists a perfect (l − 1)-gram matching from each

of these subsets of Y with size O(pl−1) to Xl−1, then there exists a perfect l-gram matching from

the original set with size O(pl) to set Xl. Specifically, in the last induction step, it is shown that

if there exists a perfect (n − 1)-gram matching from each set Yl, l ∈ [J], to set Xn−1, then there

exists a perfect n-gram matching from Y to Xn = X.

Base case of induction: The base case of induction argument holds as follows. By applying Lemma 8

and Lemma 7, there exists a perfect matching from each partition in Y with size at most c pn = O(p)

to set X1, whp.

Induction step: Consider J different bipartite graphs Gi(Yi,Xn−1;Ei), i ∈ [J], by considering sets

Yi and Xn−1 and the corresponding subset of edges Ei ⊂ E incident to them. See Figure E.2a. The

324

Y

Y1 Y2 YJ

X

Xn−1 X ′
n

M1 M2 MJ

(a) Partitioning of sets Y and X pro-
posed for the induction step.

Y

Pa(S1) Pa(S2) Pa(S3)

X

Xn−1 X ′
n

S1 S2 S3

perfect matchings from Pa(S) to X′
n

(b) Partitioning of set Y through perfect
(n− 1)-gram matchings Mi, i ∈ [J].

Figure E.2: Auxiliary figures for proof of induction step. (a) Partitioning of sets Y and X proposed
in the proof, where set Y is partitioned to J := c pn partitions Y1, . . . , YJ with (almost) equal size,
for some constant c < 1. In addition, set X is partitioned to two partitions Xn−1 and X ′

n with sizes
|Xn−1| = n−1

n p and |X ′
n| = p

n . The perfect (n − 1)-gram matchings Mi, i ∈ [J], through bipartite
graphs Gi(Yi,Xn−1;Ei), i ∈ [J], are also highlighted in the figure. (b) Set Y is partitioned to subsets
Pa(S), S ∈ Pn−1(Xn−1), which is generated through perfect (n − 1)-gram matchings Mi, i ∈ [J].
S1, S2 and S3 are three different sets in Pn−1(Xn−1) shown as samples. In addition, the perfect
matchings from Pa(S), S ∈ Pn−1(Xn−1), to X ′

n, proposed in the proof, are also highlighted in the
figure.

induction step is to show that if each of the corresponding J bipartite graphs Gi(Yi,Xn−1;Ei), i ∈

[J], has a perfect (n− 1)-gram matching, then whp, the original bipartite graph G(Y,X;E) has a

perfect n-gram matching.

Let us denote the corresponding perfect (n − 1)-gram matching of Gi(Yi,Xn−1;Ei) by Mi. Fur-

thermore, the set of all subsets of Xn−1 with cardinality n − 1 are denoted by Pn−1(Xn−1), i.e.,

Pn−1(Xn−1) includes the sets with (n − 1) elements in the power set 8 of Xn−1. For each set

S ∈ Pn−1(Xn−1), take the set of all nodes in Y which are connected to all members of S according

to the union of matchings ∪Ji=1Mi. Call this set the parents of S, denoted by Pa(S). According

to the definition of perfect (n − 1)-gram matching, there is at most one node in each set Yi which

is connected to all members of S through the matching Mi and therefore, |Pa(S)| ≤ J = c pn . In

addition, note that sets Pa(S) impose a partitioning on set Y , i.e., each node j ∈ Y is exactly

included in one set Pa(S) for some S ∈ Pn−1(Xn−1). This is because of the perfect (n − 1)-gram

matchings considered for sets Yi, i ∈ [J].

Now, a perfect n-gram matching for the original bipartite graph is constructed as follows. For any

S ∈ Pn−1(Xn−1), consider the set of parents Pa(S). Create the bipartite graph GS(Pa(S),X ′
n;ES),

8The power set of any set S is the set of all subsets of S.

325

where ES ⊂ E is the subset of edges incident to partitions Pa(S) ⊂ Y and X ′
n ⊂ X. Denote by

dS the minimum degree of nodes in set Pa(S) in the bipartite graph GS(Pa(S),X ′
n;ES). Applying

Lemma 8, we have

Pr[dS ≥ 1 + β log(p/n)] ≥ 1− J exp

(
− 2

n2
(dmin − βn log(p/n))2

dmin

)
(E.14)

≥ 1− c

n
p−β log 1/c = 1−O(p−β log 1/c),

where β log 1/c > n− 1, and the last inequality is concluded from the degree bound dmin ≥ α log p.

Furthermore, we have |Pa(S)| ≤ c pn = c|X ′
n|. Now, we can apply Lemma 7 concluding that there

exists a perfect matching from Pa(S) to X ′
n within the bipartite graph GS(Pa(S),X ′

n;ES), with

probability at least 1−O(p−β log 1/c). Refer to Figure E.2b for a schematic picture. The edges of this

perfect matching are combined with the corresponding edges of the existing perfect (n − 1)-gram

matchings Mi, i ∈ [J], to provide n incident edges to each node i ∈ Pa(S). It is easy to see that

this provides a perfect n-gram matching from Pa(S) to X.

We perform the same steps for all sets S ∈ Pn−1(Xn−1) to obtain a perfect n-gram matching from

any Pa(S), S ∈ Pn−1(Xn−1), to X. Finally, according to this construction, the union of all of these

matchings is a perfect n-gram matching from ∪S∈Pn−1(Xn−1) Pa(S) = Y to X. This finishes the

proof of induction step. Note that here we analyzed the last induction step where the existence

of perfect n-gram matching is concluded from the existence of corresponding perfect (n− 1)-gram

matchings. The earlier induction steps, where the existence of perfect l-gram matching is concluded

from the existence of corresponding perfect (l − 1)-gram matchings for any l ∈ {2, . . . , n}, can be

similarly proven.

Probability rate: We now provide the probability rate of the above events. Let N
(hp)
l , l ∈ [n], denote

the total number of times that perfect matching result of Lemma 7 is used in step l in order to

ensure that there exists a perfect l-gram matching from corresponding partitions of Y to set Xl,

whp. Let N (hp) =
∑

l∈[n]N
(hp)
l . As earlier, let Pl−1

(
Xl−1

)
denote the set of all subsets of Xl−1

with cardinality l − 1. We have

∣∣Pl−1

(
Xl−1

)∣∣ =

(∣∣Xl−1

∣∣
l − 1

)
=

(l−1
n p

l − 1

)
, l ∈ {2, . . . , n}.

326

According to the construction method of l-gram matching from (l − 1)-gram matchings, proposed

in the induction step,
∣∣Pl−1

(
Xl−1

)∣∣ is the number of times Lemma 7 is used in order to ensure that

there exists a perfect l-gram matching for each partition on the Y side. Since at most Jn−l number

of such l-gram matchings are proposed in step l, the number N
(hp)
l can be bounded as

N
(hp)
l ≤ Jn−l

∣∣Pl−1

(
Xl−1

)∣∣ = Jn−l
(l−1

n p

l − 1

)
, l ∈ {2, . . . , n}. (E.15)

Since in the first step, N
(hp)
1 = Jn−1 number of perfect matchings needs to exist in the above

discussion, we have

N (hp) = Jn−1 +

n∑

l=2

N
(hp)
l

≤ Jn−1 +

n∑

l=2

Jn−l
(l−1

n p

l − 1

)

≤
(
c
p

n

)n−1
+

n∑

l=2

(
c
p

n

)n−l(
e
p

n

)l−1

≤ n
(
e
p

n

)n−1
= O(pn−1),

where inequality (E.15) is used in the first inequality and J := c pn and inequality
(
n
k

)
≤
(
enk
)k

are

exploited in the second inequality.

Since the result of Lemma 7 holds with probability at least 1−O(p−β log 1/c) and it is assumed that

β log 1/c > n−1, by applying union bound, we have the existence of perfect n-gram matching with

probability at least 1−O(p−β
′
), for β′ = β log 1

c − (n− 1) > 0.

Furthermore, note that the degree concentration bound in (E.14) is also used O(pn−1) times.

Since the bound in (E.14) holds with probability at least 1 − O(p−β log 1/c) and it is assumed that

β log 1/c > n− 1, this also reduces to the same probability rate.

The coefficient of the above polynomial probability rate is also explicitly computed, saying that the

perfect n-gram matching exists with probability at least 1− γ1p−β′
, with

γ1 = en−1
(c

nn−1
+

e2

1− δ1
nβ

′+1
)
,

where δ1 is a constant satisfying e2
(
p
n

)−β log 1/c
< δ1 < 1. �

327

Proof of Theorem 5.4: Let G(Y,X;A) denote the corresponding bipartite graph to matrix A

where node sets Y = [q] and X = [p] index the columns and rows of A respectively. Therefore,

|Y | = q and |X| = p. Fix some S ⊆ Y such that |S| ≤ p. Then

Pr(|N(S)| ≤ |S|) ≤
∑

T⊆X:
|T |=|S|

Pr(N(S) ⊆ T)

=
∑

T⊆X:
|T |=|S|

∏

i∈S

(|S|
di

)/(p
di

)

≤
∑

T⊆X:
|T |=|S|

∏

i∈S

(|S|
p

)di

≤
∑

T⊆X:
|T |=|S|

∏

i∈S

(|S|
p

)dmin

=

(
p

|S|

)(|S|
p

)dmin|S|
, (E.16)

where the bound
(|S|
di

)/(
p
di

)
≤
(
|S|
p

)di
is used in the second inequality, and the last inequality is

concluded from the fact that |S|
p ≤ 1.

Let E denote the event that for any subset S ⊆ Y with |S| ≤ r, we have |N(S)| ≥ |S|, i.e.,

E := “∀S ⊆ Y ∧ 1 ≤ |S| ≤ r : |N(S)| ≥ |S|”.

Then, by the union bound and inequality (E.16), we have

Pr(Ec) = Pr(∃S ⊆ Y s. t. 1 ≤ |S| ≤ r ∧ |N(S)| < |S|) ≤
r∑

s=1

(
q

s

)(
p

s

)(
s

p

)dmins

≤
r∑

s=1

(
e
q

s

)s(
e
p

s

)s(s
p

)dmins

≤
r∑

s=1

(
e2qrdmin−2

pdmin−1

)s
,

328

where the bound
(
n
k

)
≤
(
enk
)k

is used in the second inequality. For r = cp , the above inequality

reduces to

Pr(Ec) ≤
r∑

s=1

(
e2cdmin−2 q

p

)s

≤
r∑

s=1

(
e2c′cdmin−1pn−1

)s

≤
r∑

s=1

(
e2c′cβ log ppn−1

)s

=

r∑

s=1

(
e2c′pn−1−β log 1/c

)s

≤ e2c′

pβ′ − e2c′ = O(p−β
′
), for β′ = β log

1

c
− (n− 1) > 0,

where the size condition assumed in the theorem is used in the second inequality with c′ := 1
c

(
c
n

)n
,

and the degree condition is exploited in the third inequality. The last inequality is concluded from

the geometric series sum formula for large enough p.

Then, Lemma 9 can be applied concluding that krank(A) ≥ r = cp, with probability at least

1− γ2p−β
′

for constants β′ = β log 1
c − (n− 1) > 0 and γ2 > 0 as

γ2 =
cn−1e2

nn(1− δ2)
,

where δ2 is a constant satisfying c′e2p−β
′
< δ2 < 1. �

Proof of Remark 25: Consider a random bipartite graph G(Y,X;E) where for each node i ∈ X:

1. Neighbors N(i) ⊆ X are picked uniformly at random among all size d subsets of X.

2. Matching M(i) ⊆ N(i) is picked uniformly at random among all size n subsets of N(i).

Note that as long as n ≤ d, the distribution of M(i) is uniform over all size n subsets of X.

Fix some pair i, i′ ∈ Y . Then

Pr(M(i) = M(i′)) =

(|X|
n

)−1

.

329

By the union bound,

Pr
(
∃i, i′ ∈ Y, i 6= i′ s. t.M(i) = M(i′)

)
≤
(|Y |

2

)(|X|
n

)−1

,

which is Θ(|Y |2/|X|n) when n is constant. Therefore, if d ≥ n and the size constraint |Y | = O(|X|s)

for some s < n
2 is satisfied, then whp, there is no pair of nodes in set Y with the same random

n-gram matching. This concludes that the random bipartite graph has a perfect n-gram matching

whp, under these size and degree conditions.

�

E.2.2 Auxiliary Lemmata

Lemma 7 (Existence of perfect matching for random bipartite graphs). Consider a random bipar-

tite graph G(W,Z;E) with |W | = w nodes on the left side and |Z| = z on the right side, and each

node i ∈ W is randomly connected to di different nodes in set Z. Let dw := mini∈W di. Assume

that it satisfies the size condition w ≤ cz for some constant 0 < c < 1 and the degree condition

dw ≥ 1 + β log z for some constant β > 0. Then, there exists a perfect matching in the random

bipartite graph G(W,Z;E) with probability at least 1−O(z−β log 1/c) where β log 1
c > 0.

Proof: From Hall’s theorem (Theorem E.2), the existence of perfect matching for a bipartite

graph is equivalent to occurrence of the following event

Ẽ := “∀S ⊆W : |N(S)| ≥ |S|”.

330

Similar to the analysis in the proof of Theorem 5.4, applying the union bound we have

Pr
(
Ẽc
)

= Pr(∃S ⊆W s. t. |N(S)| < |S|) ≤
w∑

s=1

(
w

s

)(
z

s

)(
s

z

)dws

≤
w∑

s=1

(
e
w

s

)s(
e
z

s

)s(s
z

)dws

≤
w∑

s=1

(
e2wdw−1

zdw−1

)s

≤
w∑

s=1

(
e2cdw−1

)s
,

where the bound
(
n
k

)
≤
(
enk
)k

is used in the second inequality. From the assumed lower bound on

the degree dw and the fact that 0 < c < 1, we have

Pr
(
Ẽc
)
≤

w∑

s=1

(
e2cβ log z

)s
=

w∑

s=1

(
e2zβ log c

)s
≤ e2

zβ log 1
c − e2

≤ e2

1− δ1
z−β log 1/c,

where the second inequality is concluded from the geometric series sum formula for large enough

z, and δ1 is a constant satisfying e2z−β log 1/c < δ1 < 1. �

Lemma 8 (Degree concentration bound). Consider a random bipartite graph G(Y,X;E) with

|Y | = q and |X| = p, where each node i ∈ Y is randomly connected to di different nodes in set X.

Let Y ′ ⊂ Y be any subset 9 of nodes in Y with size |Y ′| = q′ and X ′ ⊂ X be a random (uniformly

chosen) subset of nodes in X with size |X ′| = p′. Create the new bipartite graph G(Y ′,X ′;E′)

where edge set E′ ⊂ E is the subset of edges in E incident to Y ′ and X ′. Denote the degree of each

node i ∈ Y ′ within this new bipartite graph by d′i. Let dmin := mini∈Y di and d′min := mini∈Y ′ d′i.

Then, if dmin > r pp′ for a non-negative integer r, we have

Pr[d′min ≥ r + 1] ≥ 1− q′ exp

(
−2(p′/p)2

(dmin − (p/p′)r)2

dmin

)
.

Proof: For any i ∈ Y ′, we have

Pr[d′i ≤ r] =

r∑

j=0

(
p′

j

)(
p− p′
di − j

)/(p
di

)
,

9Note that Y ′ need not to be uniformly chosen and the result is valid for any subset of nodes Y ′ ⊂ Y .

331

where the inner term of summation is a hypergeometric distribution with parameters p (popu-

lation size), p′ (number of success states in the population), di (number of draws) and j is the

hypergeometric random variable denoting number of successes. The following tail bound for the

hypergeometric distribution is provided [56, 146]

Pr[d′i ≤ r] ≤ exp(−2t2i di),

for ti > 0 given by r =
(p′
p − ti

)
di. Note that assumption dmin >

p
p′ r in the lemma is equivalent to

having ti > 0, i ∈ Y . Considering the minimum degree, for any i ∈ Y ′, we have

Pr[d′i ≤ r] ≤ exp(−2t2dmin),

for t > 0 given by r =
(p′
p − t

)
dmin. Substituting t from this equation gives the following bound

Pr[d′i ≤ r] ≤ exp

(
−2(p′/p)2

(dmin − (p/p′)r)2

dmin

)
. (E.17)

Finally, applying the union bound, we can prove the result as follows

Pr[d′min ≥ r + 1] = Pr[∩q′i=1{d′i ≥ r + 1}]

≥1−
q′∑

i=1

Pr[d′i ≤ r]

≥1−
q′∑

i=1

exp

(
−2(p′/p)2

(dmin − (p/p′)r)2

dmin

)

=1− q′ exp

(
−2(p′/p)2

(dmin − (p/p′)r)2

dmin

)
,

where the union bound is applied in the first inequality and the second inequality is concluded from

(E.17). �

A lower bound on the Kruskal rank of matrix A based on a sufficient relaxed expansion property

on A is provided in the following lemma which might have independent interest.

332

Lemma 9. If A is generic and the bipartite graph G(Y,X;A) satisfies the relaxed 10 expansion

property |N(S)| ≥ |S| for any subset S ⊆ Y with |S| ≤ r, then krank(A) ≥ r, almost surely.

Before proposing the proof, we state the marriage or Hall’s theorem which gives an equivalent

condition for having a perfect matching in a bipartite graph.

Theorem E.2 (Hall’s theorem, [83]). A bipartite graph G(Y,X;E) has Y -saturating matching if

and only if for every subset S ⊆ Y , the size of the neighbors of S is at least as large as S, i.e.,

|N(S)| ≥ |S|.

Proof of Lemma 9: Denote the submatrix AN(S),S by ÃS , i.e., ÃS := AN(S),S . Exploiting

marriage or Hall’s theorem, it is concluded that the bipartite graph G(S,N(S); ÃS) has a perfect

matching MS for any subset S ⊆ Y such that |S| ≤ r. Denote by ÃMS
the corresponding matrix to

this perfect matching edge set MS , i.e., ÃMS
keeps the non-zero entries of ÃS on edge set MS and

everywhere else, it is zero. Note that the support of ÃMS
is within the support of ÃS . According

to the definition of perfect matching, the matrix ÃMS
is full column rank. From Lemma 6, it is

concluded that ÃS is also full column rank almost surely. This is true for any ÃS with S ⊆ Y and

|S| ≤ r, which directly results that krank(A) ≥ r, almost surely. �

Finally, Theorem 5.2 is proved by exploiting the random results on the existence of perfect n-gram

matching and Kruskal rank, provided in Theorems 5.3 and 5.4.

Proof of Theorem 5.2: We claim that if random conditions 4 and 5 are satisfied, then deter-

ministic conditions 2 and 3 hold whp. Then Theorem 5.1 can be applied and the proof is done.

From size and degree conditions, Theorem 5.3 can be applied, which implies that the perfect n-gram

matching condition 2 is satisfied with probability at least 1− γ1p−β
′

for β′ = β log 1
c − (n− 1) > 0.

The conditions required for Theorem 5.4 also hold and by applying this theorem we have the bound

krank(A) ≥ cp, with probability at least1−γ2p−β′
. Combining this inequality with the upper bound

on degree d in condition 5, we conclude that krank condition 3 is also satisfied whp. Hence, all the

10There is no dmax term in contrast to the expansion property proposed in condition 7.

333

conditions required for Theorem 5.1 are satisfied with probability at least 1− γp−β′
, where

γ = γ1 + γ2 = en−1
(c

nn−1
+

e2

1− δ1
nβ

′+1
)

+
cn−1e2

nn(1− δ2)
,

and this completes the proof. �

Finally, Corollary 5.2 can be also proved by showing that the size and degree conditions satisfy the

full column rank condition required in Corollary 5.1. This is proved in Lemma 7.

E.3 Relationship to CP Decomposition Uniqueness Results

In this section, we provide a more detailed comparison with some uniqueness results of overcomplete

CP decomposition. Here, the following CP decomposition for the third order tensor T ∈ R
p×s×q is

considered,

T =

r∑

i=1

ai ◦ bi ◦ ci, (E.18)

where A = [a1| . . . |ar] ∈ R
p×r, B = [b1| . . . |br] ∈ R

s×r and C = [c1| . . . |cr] ∈ R
q×r.

The most important and general uniqueness result of CP, called Kruskal’s condition, is provided in

[112], where it is guaranteed that the above CP decomposition is unique if

krank(A) + krank(B) + krank(C) ≥ 2r + 2.

Since then, several works have analyzed the uniqueness of CP decomposition. One set of works

assume that one of the components, say C, is full column rank [116, 103]. It is shown in [116], for

generic (fully dense) components A,B and C, if r ≤ q and r(r − 1) ≤ p(p− 1)s(s − 1)/2, then the

CP decomposition in (E.18) is generically unique.

Now, we demonstrate how this CP uniqueness result can be adapted to our setting. First, consider

334

the matrix M ∈ R
ps×q which is obtained by stacking the entries of T as

M(i−1)s+j,k = Tijk.

Then, we have

M = (A⊙B)C⊤. (E.19)

On the other hand, for the 2-persistent topic model with 4 words (n = 2,m = 2), the moment can

be written as

M
(2)
4 (x) = (A⊙A)E

[
hh⊤

]
(A⊙A)⊤,

for A ∈ R
p×q. The following matrix has the same column span of M

(2)
4 (x),

M ′ = (A⊙A)C ′⊤,

for some full rank matrix C ′ ∈ R
q×q. Our random identifiability result in Theorem 5.2 provides the

uniqueness of A and C ′, given M ′, under the size condition q ≤
(
cp2
)2

and the additional degree

condition 5. Note that as discussed in the previous section, this identifiability argument is the same

as the unique decomposition of the corresponding tensor.

Thus, in equation (E.19), by setting A = B and a full rank square matrix C, we obtain the 2-

persistent topic model, under consideration in this work. Thus, the identifiability results of [116]

are applicable to our setting, if we assume generic (i.e. fully dense) matrix A. However, we

incorporate a sparse matrix A, and therefore, require different techniques to provide identifiability

results. We note that the size bound specified in [116] is comparable to the size bound derived

in this work (for random structured matrices), but we have additional degree considerations for

identifiability. Analyzing the regime where the uniqueness conditions of [116] are satisfied under

sparsity constraints is an interesting question for future investigation.

335

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Organization of the Dissertation
	Learning Overcomplete Latent Representations Using Tensor Methods
	Guaranteed Training of Neural Networks
	Identifiability of Overcomplete Topic Models
	Tensor Overview
	Tensor Background and Notations
	Going Beyond Matrices

	Overcomplete CP Tensor Decomposition
	Summary of results
	Guarantees under incoherent components
	Guarantees under random components

	Related Works
	Tensor Decomposition Algorithm
	Tensor power iteration in Algorithm 1
	Coordinate descent iteration in Algorithm 4
	Discussions

	Guarantees for Tensor Decomposition Under Incoherent Components
	Local convergence guarantee
	Global convergence guarantee when k=O(d)

	Proof Outline Under Incoherent Components
	Proof Outline Under Random Components
	Proof outline of Lemma 2.3 (noiseless case of Theorem 2.3)
	Effect of noise in Theorem 2.3

	Experiments

	Learning Overcomplete Representations Using Tensor Methods
	Summary of Results
	Learning Multiview Mixture Model
	Learning ICA and Sparse ICA (Dictionary Learning) Models

	Related Works
	Tensor Decomposition for Learning Latent Variable Models
	Multiview linear mixtures model
	Spherical Gaussian mixtures
	Independent component analysis (ICA)

	Tensor Concentration Bounds
	Multiview linear mixtures model
	ICA and sparse ICA

	Learning Algorithm
	Learning Multiview Linear Mixtures Model
	Semi-supervised Learning
	Unsupervised Learning

	Learning Multiview Mixture Model Under Random Means
	Learning guarantees

	Learning Independent Component Analysis (ICA) and Sparse ICA
	Experiments

	Training Neural Networks Using Tensor Methods
	Summary of Results
	Related works
	Preliminaries and Problem Formulation
	Problem formulation

	NN-LIFT Algorithm
	Score function
	Tensor decomposition
	Fourier method
	Ridge regression method

	Risk Bound in the Realizable Setting
	Risk Bound in the Non-realizable Setting
	Discussions and Extensions
	Contrasting the loss surface of backpropagation with tensor decomposition
	Extensions to cases beyond binary classification
	An alternative for estimating low-dimensional parameters

	Proof Sketch
	Estimation bound
	Approximation bound

	Identifiability of Overcomplete Topic Models and Tensor Tucker Decomp.
	Summary of Results
	Persistent Topic Model
	Deterministic Conditions for Identifiability
	Identifiability of Random Structured Topic Models
	Implications on Uniqueness of Overcomplete Tucker and CP Decompositions

	Overview of Techniques
	Related Works
	Model
	Notation
	Persistent Topic Model

	Sufficient Conditions for Generic Identifiability
	Deterministic Conditions for Generic Identifiability
	Analysis Under Random Topic-word Graph Structures

	Identifiability via Uniqueness of Tensor Decompositions
	Moment Characterization of the Persistent Topic Model
	Tensor Algebra of the Moments

	Proof Techniques and Auxiliary Results
	Proof Sketch
	Analysis of Random Structures

	Bibliography
	Proofs for Overcomplete CP Tensor Decomposition: Incoherent Components
	More Related Works
	Deterministic Assumptions
	Random matrices satisfy the deterministic assumptions

	Proof of Convergence Results in Theorems 2.4 and 2.5
	Convergence of tensor power iteration: Algorithm 1
	Convergence of removing residual error: Algorithm 4

	SVD Initialization Result
	Auxiliary lemmata for initialization

	Clustering Process

	Proofs for Overcomplete CP Tensor Decomposition: Random Components
	Analysis of Induction Argument
	Basis of induction
	Inductive step
	Growth rate of t, 't, 't, *t, *t

	Auxiliary Lemmas for Induction Argument
	Properties of random Gaussian vectors
	Properties of projections
	Bounding correlation between v and w

	Additional Arguments for Noise Analysis

	Proofs for Learning Overcomplete Latent Variable Models
	Proof of Learning Theorems
	Proof of Tensor Concentration Bounds
	Multiview linear mixtures model
	ICA
	Sparse ICA

	Proofs for Guaranteed Training of Neural Networks
	Details of Tensor Decomposition Algorithm
	Proof of Theorem 4.3
	Tensor decomposition guarantees
	Fourier analysis guarantees
	Ridge regression analysis and guarantees

	Proof of Theorem 4.5
	Discussion on Corollary 4.1

	Proofs for Identifiability of Overcomplete Topic Models
	Proof of Deterministic Identifiability Result (Theorem 5.1)
	Deterministic Analysis Based on An
	Proof of Moment Characterization Lemmata
	Sufficient Matching Properties for Rank and Graph Expansion Conditions
	Auxiliary Lemma

	Proof of Random Identifiability Result (Theorem 5.2)
	Proof of Existence of Perfect n-gram Matching and Kruskal Results
	Auxiliary Lemmata

	Relationship to CP Decomposition Uniqueness Results

