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Eddy viscosity and laminarization of sheared flow in three dimensional
reduced magnetohydrodynamic turbulence
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Princeton University, Princeton Plasmas Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543

P. H. Diamond
Department of Physics, University of Califorri8an Diego, La Jolla, California 92093-0319

(Received 12 March 2001; accepted 10 May 2001

The effect of Alfven waves on turbulent momentum transport is studied in three-dimensional
reduced magnetohydrodynamic turbulence. A strong external uniform magnetiBfiedcdhssumed

to be present orthogonal to both background shear flow and its inhomogeneity. Energy is injected
into the fluid and/or magnetic field on small scales. It is shown analytically that eddy viscosity is
reduced as Bg for a strongB,, due to the cancellation of the Reynolds stress by Maxwell stress.
The sign of eddy viscosity is found to depend on the detailed properties of forcings. Specifically, it
is positive for fluid forcing but depends on the anisotropy of the forcing in the case of magnetic
forcing. Furthermore, it is indicated that a magnetic field tendartonarizea mean shear flow. The
possible implication of these results for the dynamics of the zonal flows in tokamaks is discussed in
view of the cancellation of stresses. @01 American Institute of Physics.

[DOI: 10.1063/1.1383284

I. INTRODUCTION Alfvénization, equipartition between fluid kinetic and mag-
netic energies can be realized, which can then lead to the
One of the most basic concepts of turbulence theory angdgncellation of Reynoldsfluid) stress by Maxwell(mag-
modeling is that of eddgturbuleny viscosity. Eddy viscosity, petjg) stress. Such cancellation was indeed found in the pre-
which represents the overall effect of momentum transpor{ioyus works by Kim and Dubrulle, who analytically derived
by small-scale fluctuation&urbulent momentum transp_a)rt the eddy viscosity in a 2-D MHD, where a strong large-scale
on a mean sheared flow, has played a crucial role in thg,,qnetic field and background shear flow are in parifiel.
problem of momentuntor angular momentuirtransport in ey 4150 demonstrated laminarization of a mean shear flow
laboratory and space plasmas, for instance, in tokaﬁwaksby a magnetic field. The purpose of the present work is to
accretion disk$,and the solar interictIt is well known that — _* .. 4 these studies to the simplest 3-D system by adopting

n twojdlme_ns[onal hydrodynamlc turbulend@-D HD), 3-D reduced MHD(RMHD) and by assuming that a strong
eddy viscosity is negative, as a consequence of the conser-

vation of enstrophy, with energy cascading from small toexternal large-scale magnetic fieR}z lies in Ehe direction
large scaleginverse cascadeln contrast, the energy cascade Orthogonal to both large-scale shear flaigy)x and its in-
is direct in three dimension@-D), since the vortex stretch- homogeneity ¥).
ing breaks the conservation of enstrophy. In view of the com-  The result of this paper is directly related to the MHD
mon occurrence of magnetic fields in laboratory and spacdrag reduction in laboratory experiments, where the intro-
plasmas, mentioned previously, it is, however, important taduction of external magnetic field was shown to lead to re-
incorporate the effect of magnetic fields on eddy viscosityduction in turbulent transpofeddy viscosity as well as to
namely to consider magnetohydrodynamic turbulencéaminarization of a mean shear flowOur work may also
(MHD).* Note that enstrophy is no longer an ideal invarianthave application in the following systems. First, note that the
of MHD, even in 2-D, on account of the Lorentz force. mean field configuration that we consider in this paper is
In MHD, eddy viscosity originates not only from fluid reminiscent of those in tokamaks and accretion disks. In to-
(Reynolds stress but also from magnetiMaxwell) stress,  kamaks, a zonal flow is perpendicular to a strong equilibrium
and there is a possibility of cancellation between the twonagnetic field. Here, a zonal flow is a toroidally and poloi-
stresses?® Characteristic of a magnetized system is thega|ly symmetricEXB flow, which is radially sheared and is
dominance of Alfvae waves in turbulence, which turn ran- thought to be generated by Reynolds stress in drift-wave
dom (irreversiblg eddy motion into coherentreversible  y,rhylence: Even if 3-D RMHD does not capture all aspects
wave-like motion with an enhanced memory tirfie., the  of the dynamics of a zonal flow, the present work may yet
so-called Alfvaization process As a consequence Of gheq some light on the effect of Affaevaves on the genera-
tion of a zonal flow for high3 plasmas. It may also have an
3Electronic mail: ejk@physics.ucsd.edu implication for the(angulay momentum transport in accre-
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tion disks, which is thought to be crucial to accreting matterrelated to the stream functiop asw= —qub and velocity
to a central object. In addition, some relevance may be aSwi=VL><u=(r9Xuy—z9yux)i; F, andF, are small-scale

found in the drag reduction in turbulent polymer solutionsrandom forcings acting on the fluid and magnetic field, re-
where Reynolds stress can be canceled by elastic sttees  spectively;» and 7 are viscosity and Ohmic diffusior¥?
to elastic waveks instead of Maxwell stres. = duxt dyy is the two-dimensional Laplacian. For the re-

In the present paper, we study momentum transporgnainder of the paper; shall be taken to be the same &as
(eddy viscosity and laminarization of a mean shear flow in (j.e., y=7) to simplify the analysis.

3-D RMHD. We assume that the background turbulence is We assume that the Ve|ocit_yhas a |arge_sca|e compo-
generated by an external forcing which injects energy into'q,]emU: U(y)§< in the x direction on scalé. in addition to a

fluid and/or magnetic field on small scales. The main aim ismai-scale component on scald in thex—y plane. By the
then to analytically calculate eddy viscosity turbulent vis-  qering of reduced MHD equations, the large-scale velocity
cosity) by using two-scale and quasilinear analySesgether U(y) is weaker than the uniform magnetic fieig2. Since

with the Gabor transforrt We explore the dependence of - ) C
) . ; . : . the main interest of this paper lies in the momentum trans-
eddy viscosity on the properties of forcings, by adopting ei- L
) . . . ort, a magnetic field is taken to have no large-scale compo-
ther fluid or magnetic forcing under the assumption tha

. . . . . nent in thex—y plane. Then, by assuming a scale separation

these forcings are isotropic or anisotropic. The Gabor trans: - X

. ; . . etweenL andl (e=1/L<1), we express the magnetic and
form is employed here to rigorously incorporate the inhomo- S o . , N

; . velocity fields as follows:u=(u)+u'=U+u', o=(w)
geneity of a background shear flow order by order, in terms+w, —0+w', b=(b)+b'=b', and a=(a)+a'=a’
of small parametee=1/L, wherel andL are the character- ' ' ' .
L ! Here the angular brackets denote an average over the statis-
istic scales of small and large scale fields. As shall be show

later, the Gabor transform is related to the use of shearinPICS of the random forcings,, andF, (see Sec. IV. Thus,U

coordinates which explicitly incorporates the shearing orgr,]dQ: —9yJare Iarge—scalt? fflds,aﬁd’ (,‘) ;b f ¢_’ ar,1d
. . a' are small-scale fields{u’)=(w')=(b")=(a’')=(¢")

eddy by a background shear in the evolution of wave number:<F )=(F,)=0. By neglecting local interaction terms

in parallel to the shedt:In contrast to a conventional Fourier com wared tao nor.1loc>zl;\I tergn?sthe ge uations for fluctuations

transform, the Gabor transform allows us to study the stron%an ?hen be written in the foIIowinq form:

shear limit whereg=|vk?/ Q2| <1, using eikonal theory. Here g '

Q=-9,U(y) is a sheary is the viscosity anck~1/. In

addition to the aforementiohed shear paramétesur prob- 7 + Uﬂx] w'=—By,V?a' +vVie' +F,, (3
lem has another dimensionless parametes; |Boq/Q|, ot

which measures the ratio of the Alfwdrequency of mode

to its shearing rate. Herg is the wave number annBOE. ﬁ L , 2,

Due to the complexity of the analysis, we will mainly focus ot FUd 2" =Bod,¢’ +rVial+F,. @

on strong sheard<1) and strong magnetic fieldy&1)

limits, unless mentioned otherwise. For the evolution of the mean field, we keep the nonlinear
The structure of the paper is as follows. We formulateeffect of small-scale fields to obtain

the problem in Sec. Il and analytically solve the equations

for fluctuations in terms of the Gabor transform in Sec. lll. J

The result on the eddy viscosity is presented in Sec. IV. Our ;U= — d(m) — dy(uyuy—biby)+va, U, 5

conclusion is provided in Sec. V. Appendices contain the

summary of properties of the Gabor transform and some of o~ . ~

the detailed algebra leading to main equations in the text. wheres= —[p+b’ 2{2] 'S, tr)e.total pressure arglihe pres-

sure. In Eq(5), (uxu,—bgby) is the total stress, or turbulent

momentum flux, which consists of Reynolds and Maxwell

stresses. It can be expressed in terms of the éndulen)
We consider a 3-D system in Cartesian coordinateviscosity vt as

where a strong uniform magnetic fiel8, points in thez

direction Bo=B,2); in tokamak,z represents the toroidal (uguy—bgbg)=—wvra, U=w1Q. (6)

direction. The fluid and magnetic field are assumed to be

1. GOVERNING EQUATIONS

equations governing 3-D RMHD are its scale iny as time progresses. That is, the magnitude of
J wave numberp increases for larga as p(t)=p(t=0)
E-FU-V w=—(B-V)Va+rVZw+F,, (1) +kQt (see Sec. Il In a strong shear limit {<1), the

shearing effect cannot be treated as a perturbation, making it
inappropriate to use a conventional Fourier transform. For
this reason, we adopt the Gabor transftfi4in the fol-

. lowing analysis, which can capture such a strong shear ef-
Here B=Byz+b is the total magnetic field where the per- fect. We note that one alternative way is to use shearing
turbed magnetic field is related to the magnetic vector coordinates! The Gabor transform of a given functiahis
potentiala as b=an2=(aya,—axa,0); w is the vorticity  defined by

d
—+uV

- a=Byd,p+ pVia+F,. 2)
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t
z://(k,x,t)EJ' d3x’ f(|x—x'[)e* XV y(x 1), 7) é(x,k,t)zaf d3x’d3k’fodt’ g(x.k,t:x" k', t")
wheref(x) is a filter function with a characteristic scale ipa'y
where |<\<L, which decreases rapidly for large One Wsmg&,
example of such filter functions is a Gaussian filter with a
form of f(x)=exp(—x%\?). As be seen from Eq(7), the "By .
Gabor transform is a special case of the wavelet transform, +| — cos{+ Sln§> Fal, (11)
and can be viewed as a localized Fourier transform with a @

compact suppork. (See Appendix A for a few key proper- Q .
ties of the Gabor transformin Sec. Ill, the coupled equa- ﬂy(x,k,t)= - _J d3x’d3k’f dt’ g(x,k,t:x’" ,k’,t")
tions (3) and(4) are solved in terms of the Gabor transform. Bo 0

vy is then obtained in Sec. IV by computifgyuy—byby)

in real space. Here the average is taken over the statistics of %
forcings.

%( —a?ByP sin+ %cosg

Fo

1 al i i 1
+ —{ - a3ﬁ¢2( ﬂsing% —,cosg)
IIl. FLUCTUATIONS M Y @

We denote theAGeiboAr traAnsforms 9f quF:tuatimhs o', n a o' B cost— lsin{) ] IA:a . (12
¢, b’,a’ andF by u, o, ¢', b, a, andF. With the help of b a’
the properties of the Gabor transforms summarized in Ap-
pendix A, the equations for fluctuatiort8) and (4) can be Here
written in the Gabor space as follows*

a I Ik
[D+ v(K2+ p2) Jo=iBoq(k2+ p2)a+E, ®) ke T e ¢ kZip?
- I N . !
[Di+ v(k*+p?)]a= kZquszOJrFa. (9) ﬁEE, 3'5% (13)

Herek=(k,p,q) andD; is the total derivative defined by

a,4 -1
l//E[l—ﬁ} .
D=0, +Ud,+kQd,, (10 4

where )= —4,U. Therefore, along a particle trajectory in
the Gabor(eikona) space %,k,t), the following relations
hold: x=xy+U(t—ty), Y=VYo, Z2=25, k=Kky, pP=po

1
[=yQ(t—t")— E(tan‘lﬂ—tan‘lﬁ#aZ,B

1207
+kQ(t—ty), andg=q,. >**Without loss of generality, we a'"B');
;s)hilll_%szu;ng for the remainder of the paper thatO and ﬁwzﬁw(x’,k’,t’), ﬁazﬁa(x’,k’,t’), and g(x.k.t:x',
=—d, _

k’,t") is a Green's function along the particle trajectory,

We note that Eqs(8) and (9) become identical to those modified by the viscosity/diffusivity and the magnetic field:

derived in Ref. 5 ifg on the right-hand sides is replacedlby
Thus, the procedure required to obtain solutions to Egjs. gOx.k,t:x’ k' \t)

and(9) is very similar to that described in Ref. 5. For com-

pleteness, some of intermediate steps are provided in Appen- _ S(x—x'—U(t—t")8(y—y')8(z—2") S(k—k')
dix B.

. a4_al4
Solutions ><5(p—p’—kﬂ(t—t’))é(q—q’)em{ ; }
According to 3-D RMHD ordering, the Alfuefrequency 4y

of the modeg along a strong magnetic fiel, is larger than ps p’3
the shearing rate, i.e.y=|Boq/Q|>1 since |Byq/Q] xexp[—v k2t+m ]exp[ v(k’zt’+ ,)
~(Bo/U)(L/1,)>(Bo/U)(I4/1,)~O(1). Here |, and I, 30k

are characteristic radial and parallel scales of perturbation (14)
andL is the characteristic scale of a mean flow. Note that this

condition y>1 can also be realized for typical tokamak pa- We note that the solution fcfly is correct to second order in
rameters. Thus, the solutions fﬁ(x,k,t) and Gy(x,k,t) are  1/y although that fora is correct to third order. Thus, Sec.
found in the case ofy>1 in Appendix B, which can be 1V, the eddy viscosity will be calculated up to second order
written in the following form: in 1/y.



Phys. Plasmas, Vol. 8, No. 8, August 2001 Eddy viscosity and laminarization of sheared flow . . . 3579

IV. MOMENTUM FLUX AND EDDY VISCOSITY to be homogeneous. Note that the summation over index

To evaluate the total stress, we assume that the correlg'-(_)t_implied in Eq.(lSZ; (Fa(x,t))Fo(x+T.12))=0. For S'm'_
tion function of the forcing takes the following forf: plicity, we shall take;(k,,t,—1t;) to be delta correlated in

R R time, i.e.,
(Fi(xq, kg, t)Fj(X2,kz,t2))
~ 35 2 — ~ n
(276 8lka ka) (|00 = x2)/2) Bika.to—t) = dilko) St~ ty). 16
x el CamNe g (ky o= 1), (15
wherei,j=w,a and'$; is the Fourier transform of correla- The total stresgu,uy—b,by) is then easily computed by
tion function¢;(r,t)=(F;(x,t;)Fi(x+r,t,)) thatis assumed usingu,=—pu,/k and Eqs(12)—(16) and (A3) as

T p— jd3kk2jwd Xexp| 26| p+ 2 B2 26 7+ 2 7
<UXUy— X y>——W EZ p Tetex gﬁ §ﬁ ex <K §T

bo(K) 2y?r oo 2yr? oo B-7
“lieerpp |1+ 20820~ e 22O iy
ba(k) [ —29%7 — = 72 270 B—7
o2 | (15 72) L0 T2y SN2\ e T 2 | ) | (17
|
in the limit ast—o. Here the end of this section. In the limit @< 1, ther integral can
easily be performed, leading to the following eddy viscosity:
p 1 vk?
IBE E’ a= > gz ﬁ’ 2 2
V1+8 _;f d3kk— [ (k)
. aBieme) Ol aerprte
.
o=y(t—B —4—7 tan 7+ 1+7_2—tan’1[3—a2B , 2p2_k2a} (k)} 9
+ —— .
s (18) k?+p= 78
o
=1l-5>| . . : oo

v [ 22 A few aspects of this result are of interest. First, it reveals the
reduction in the momentum transport due to a magnetic field

- i, 1 since the amplitude of eddy viscosity becomes very small as

T4 1+ Y By (or y=|Boq/Q|) increases. Note that the limBy—0

cannot be taken in Eq19), since the latter is valid only
For the analysis, we leave the power spectra for the forcinggnen y>1. Second, as the amplitude o= 1/53 is inde-
¢, and ¢, unspecified and evaluate theintegral only in  pendent of a shed?, an equilibrium profile of a mean shear
Eq. (17). It is important to remark that the dominant contri- flow becomes either linear or parabgdlihat is, a magnetic
bution to ther integral in individual Reynolds and Maxwell field tends to laminarize a mean shear flow. Third, B)
stresses is not shown in E@7). It is because both of them indicates that the sign of eddy viscosity may depend on
have the same magnitude and therefore cancel each otherwhether the energy is injected into fluids(+#0) or mag-
the total stress, to leading order. Note that these leading ordewtic field (¢,#0), and also whether forcings are isotropic
terms are independent 8 and lead to a logarithmic diver- or anisotropic. Let us now look at this interesting depen-
gence asé—0. The same cancellation, observed in 2-Ddence in detail(i) In the limit where the energy is injected

MHD,>® simply reflects the fact that the fluid motion be- gnly into the fluid (,=0): vy is always positive irrespec-

coOmes d_omlr_wat_ed by Alf\r_ewaves for a strond,. This tive of the nature ofg%w. (ii) In the opposite limit with a
cancellation is imperfect in the presence of flow shear as

shown in Eq.(17). As shall be shown shortly, though, the Magnetic forcing only ,=0): The sign ofvr hinges on
next order non-trivial term in the total stress is inverselyWhethere, is isotropic or anisotropic, as follows.
proportional toB3. (8 When ¢, is isotropic in thex—y plane, i.e.,¢p,(k)

To evaluate ther integral in Eq.(17), we consider the = ¢,(Vk?+p?,q): vt is always negative. This can easily be
strong shear case=|vk?/Q|<1, where the effect of shear is shown by using cylindrical coordinates, (6, q) such that
more important than that of viscosity/diffusivity. The oppo- d®k=dr r d6 dg, k=r cos6, and p=r siné, and then by
site limit of weak shear §>1) will be briefly discussed at doing the angular ) part ofk integral to yield
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1 . r3 note that in 3-D MHD, the cancellation between total fluid
V=" o5 2R2 zf dqdrgy(r,q) —. (200 and current helicities, again due to Alfvieation, is respon-
32(27)°Bg q : : 15
. sible for the suppression of the effect:
(b) When ¢, is anisotropic in thex—y plane,vt is posi- It is instructive to compare this result with the two-

tive if the forcing mainly consists of components wibiik dimensional hydrodynamic turbulené¢2-D HD), which is
>1 while it is negative if the opposite holds. Recalling thatequivalent to the neglect of magnetic perturbation or Aifve
k and p are the wave numbers parallel and perpendicular tavaves, and then to speculate on its possible implication for
the shear flow, in tokamaks, a magnetic forcing wittk  the dynamics of the zonal flows in tokamaks. As mentioned
>1 corresponds to a forcing with a poloidally elongatedin Sec. I, in 2-D HD, the eddy viscosity is negatit’e, and
structure localized irr, and that withp/k<1 represents a accordingly, the energy is transferred from small to large
forcing which is radially elongated and localized in the po-scales(inverse cascadeThat is, a small-scale fluctuating
loidal direction. The above-mentioned results are to be convelocity acts as a source for the generation of a large-scale
trasted to the 2-D MHD casewhere an isotropic magnetic flow. As the effect of magnetic perturbations becomes impor-
forcing leads to a positive eddy viscosity while an aniso-tant (or, going from 2-D HD to 3-D RMHD, the amplitude
tropic magnetic forcing can result in a negative viscosity. of eddy viscosity becomes small due to cancellation of total
Before concluding this section, we comment on thestress, and the sign of eddy viscosity can even become posi-
weak shear limitt>1. As the effect of the magnetic field is tive. If the eddy viscosity remains negativas may be the
of interest to us, we assume>£>1 so that the dissipation case with a magnetic forcifnga large-scale flow can still
does not wipe out magnetic fields. In this limit, E47) can  grow, but at a much slower rate because of the smaller am-

be shown to give plitude of the eddy viscosity. On the other hand, if the eddy
2 viscosity becomes positivi@s in the case of a fluid forcing
1 k ) X )
Vr=—py—— f 3k— a large-scale flow will decay. Note again that in both cases,
4Bg(2m) q the generation of a large-scale flow is reduced due to Alfve
R k3(k—4p) waves. Although the full dynamics of the zonal flows in to-

X

(21)  kamaks cannot be addressed in the framework of 3-D
RMHD, this result indicates the possibility of the cancella-

Therefore, vt is always positive for fluid forcing, whereas it tion of stresses for Alfue waves. If modulation of the total

is likely to be negative for magnetic forcing. stress is the mechanism for the generation of the zonal flows,

our work suggests the reduction in the generation of zonal

flows and even the decay of zonal flows by the reversal of

energy cascade direction. It will be interesting to study this,
We have studied the momentum transport in 3-Dby considering the modulational instability of a zonal flow in

RMHD. The magnetic contributiofMaxwell stresgto total  the presence of a gas of Alfwevaves and drift waves. This

stress was demonstrated to cancel out the leading order terwill be undertaken in a future paper.

in the Reynolds stress. This cancellation results in a total

stress proportional t6/B2 for y=|Boq/Q|> 1, thereby sig-

nificantly reducing the momentum transp@ut eddy viscos-

ity) for a strong magnetic fiel®,. Since the amplitude of

eddy viscosityv;~1/B3 is independent of), besides be- This research was supported by U.S. Department of En-

coming very small a8,—°, it indicates the tendency to- ergy Grant No. FG03-88ER 53275 and U.S. Department of

ward effective “laminarization” of a mean shear flow by a Energy Contract No. DE-AC02-76-CHO-3073. E.K. also ac-

magnetic field. We also found that the sign of eddy viscosityknowledges partial support from HAO/NCAR where part of

depends on the properties of forcings, such as the amplitudgis work was completed.

and anisotropy. Specifically, in the strong shear limit (

<1), a fluid forcing gives rise to a positive eddy viscosity,

consequently energy is transferred from large to small scales. )

In contrast, in the case of a magnetic forcing only, the eddy%‘giﬁggglqﬁ PROPERTIES OF THE GABOR

viscosity is negative, unless the magnetic forcing mainly

consists of eddies that are elongated in the direction paraIIeI A few key properties of the Gabor transform are as fol-

to the shear flow. In reality, these forcings are expected tQows. First, the derivative of the Gabor transform can be
originate from some underlying instability as well as inco- shown to be

herent nonlinear interaction.

The result mentioned previously has a direct application  4.0"~ik;0u’ +O(1/(k\)), (A1)
to the problem of drag reduction in MHDAs the basic
physics underlying the reduction of eddy viscosity in ourwheree* =1/(kA\)<1 is a small parametee<e* <1. Sec-
problem arises from the cancellation of Reynolds stress bynd, the Gabor transform of the product of a function vary-
Maxwell stress via Alfvaization, a similar reduction is ing over large scaleg.g.,U andA) and a function varying
likely to occur in turbulent polymer solutions through the over small scalege.g.,u’ andb’) can be expressed to first
near cancellation of Reynolds stress by elastic stress. Werder ine=I/L:

T2 22Pu(K)— Tz ba(K) |
(k=+p9) (k*+p?)

V. CONCLUSIONS

ACKNOWLEDGMENTS
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U,-D'(k,x,t)zf f(x—x") e Dy (x',tu’ (x',t)dx’

~Uj (XU’ +iV(Uj(x,1) V0" +O(€?),
(A2)
where we used a Taylor expansionlbfiround the poink to

first order ine and an integration by parts. The Taylor ex-

pansion converges rapidly since the kerfebaries over

Eddy viscosity and laminarization of sheared flow . . . 3581

+R?>1. This condition is satisfied for ak wheny>1. To
solve the inhomogeneous equati@B5) in the WKB ap-
proximation, we first construct a Green’s function from
WKB solutions to the homogeneous equation that are correct
to third order in 14:

scales of the ordex, while U varies over scales of the order @S

L. Third, the inverse transform of the Gabor transform is just
an integration over all wave numbers with a proper normal-

ization factor:

_ 1 37
lﬂ(X,t)— WJ d kl//(X,k,t). (A3)

Finally, the Gabor transform commutes with time derivativeHere

d; . It also commutes with space derivatiVeif a quantity of

- _ 6+sin20/2| cod 6
a~cosfexp *ivy|ltanf— 5 + 1
4y 4y
cosf cosfh’

G(0,0')=0(0—-06'
( ) ( ) y(1—cog 0'/2y?)

X sing exp[%/z[coél 6—cod 0’]]. (B6)

e=ry(tanfd—tand')—[ 06— 0" + (sin 20—sin 20')/2]/
4y, and ©(x) is a step function. We have assumed

interest vanishes on the boundaries; otherwise, the commu=p_3—4—0 atR=R, (or t=0). Then, the WKB solution
tation is subject to surface terms which are negligible if theyy £q. (B5), in terms ofR, is

region of interest is farther from the boundaries than the

distance\.

APPENDIX B: DERIVATION OF EQS. (11) and (12)

In this appendix, we provide intermediate steps leading

to Egs.(11) and (12). First, to solve coupled equatioii8)
and(9), we introduce a variable

R= E:polk‘FQt,
where k=k, is used. Note thaDg=(Dt/DR)D;=D,/Q
and R>0 for t>|py/k|/Q. Then, Egs.(8) and (9) can be
rewritten in terms oR as

- Bo .. L~ 1.
Driv=i o wk(L+Ra+ 5F, (B1)
~ BO ,LL Z)
Dra=1g } 17R2 (B2)
HereP is related toP as
- R3\) .
PEexp[—f(RJr ?”P (B3)

- 1 1 RAR Y(R’)
a(R,Ry)= — J
YQ J1+R%JRy V1+R'2
xsin{p(R;R")}exp{x(R;R")}
iBO T ’ 12\ ’
X|iq #Fa(RD+DrI(I+RFL(R)]],
(B7)
where
-1
YRH=[1-——
VR 2y7(1+R’?)?
»(R;R)=y(R—R’ !
o(R;R")=y(R— )_E
X|tam 'R—tan 'R’ + R
1+R? 14R'2/
~ RR)= 1 1 1
XEEIT 22 (v R (14R22)

The solution fora(x,k,t) can now be expressed in terms of

for P=w, a andF; u=0q%/k?. We note that the above equa- k, p=kR=k(Ry+Qt) andt to obtain Eq.(11) in the main

tions become identical to those in Ref. 5 wher 1. From
Egs.(B1) and(B2), we can form a single equation faras

follows:

i,LLBO~
%k
wherey=|qBy/Q|. In terms ofg=tan 1 R, Eq.(B4) can be
simplified somewhat to

DRI (1+R?)Dga]+ y2(1+R?a= (B4)

[Dy—Qla= 'S—g’k’“see oF, (B5)

where Q=—1y2seé¢ . We now provide a Wentzel—
Kramers—Brillouin(WKB) solution to Eq.(B5) when y(1

text.

Next, by usingu,=—iw/k(1+R? and Eg.(B2), the
solution forfjy can be constructed in a similar way, resulting
in Eg. (12) in the main text.
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