
UC San Diego
UC San Diego Previously Published Works

Title
Eddy viscosity and laminarization of sheared flow in three dimensional reduced 
magnetohydrodynamic turbulence

Permalink
https://escholarship.org/uc/item/7p904253

Journal
Physics of Plasmas, 8(8)

ISSN
1070-664X

Authors
Kim, Eun-jin
Hahm, TS
Diamond, PH

Publication Date
2001-08-01

DOI
10.1063/1.1383284
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7p904253
https://escholarship.org
http://www.cdlib.org/


PHYSICS OF PLASMAS VOLUME 8, NUMBER 8 AUGUST 2001
Eddy viscosity and laminarization of sheared flow in three dimensional
reduced magnetohydrodynamic turbulence

Eun-jin Kima)

Department of Physics, University of California–San Diego, La Jolla, California 92093-0319

T. S. Hahm
Princeton University, Princeton Plasmas Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543

P. H. Diamond
Department of Physics, University of California–San Diego, La Jolla, California 92093-0319

~Received 12 March 2001; accepted 10 May 2001!

The effect of Alfvén waves on turbulent momentum transport is studied in three-dimensional
reduced magnetohydrodynamic turbulence. A strong external uniform magnetic fieldB0 is assumed
to be present orthogonal to both background shear flow and its inhomogeneity. Energy is injected
into the fluid and/or magnetic field on small scales. It is shown analytically that eddy viscosity is
reduced as 1/B0

2 for a strongB0 , due to the cancellation of the Reynolds stress by Maxwell stress.
The sign of eddy viscosity is found to depend on the detailed properties of forcings. Specifically, it
is positive for fluid forcing but depends on the anisotropy of the forcing in the case of magnetic
forcing. Furthermore, it is indicated that a magnetic field tends tolaminarizea mean shear flow. The
possible implication of these results for the dynamics of the zonal flows in tokamaks is discussed in
view of the cancellation of stresses. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1383284#
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I. INTRODUCTION

One of the most basic concepts of turbulence theory
modeling is that of eddy~turbulent! viscosity. Eddy viscosity,
which represents the overall effect of momentum transp
by small-scale fluctuations~turbulent momentum transpor!
on a mean sheared flow, has played a crucial role in
problem of momentum~or angular momentum! transport in
laboratory and space plasmas, for instance, in tokama1

accretion disks,2 and the solar interior.3 It is well known that
in two-dimensional hydrodynamic turbulence~2-D HD!,
eddy viscosity is negative, as a consequence of the con
vation of enstrophy, with energy cascading from small
large scales~inverse cascade!. In contrast, the energy cascad
is direct in three dimensions~3-D!, since the vortex stretch
ing breaks the conservation of enstrophy. In view of the co
mon occurrence of magnetic fields in laboratory and sp
plasmas, mentioned previously, it is, however, importan
incorporate the effect of magnetic fields on eddy viscos
namely to consider magnetohydrodynamic turbulen
~MHD!.4 Note that enstrophy is no longer an ideal invaria
of MHD, even in 2-D, on account of the Lorentz force.

In MHD, eddy viscosity originates not only from fluid
~Reynolds! stress but also from magnetic~Maxwell! stress,
and there is a possibility of cancellation between the t
stresses.5,6 Characteristic of a magnetized system is t
dominance of Alfve´n waves in turbulence, which turn ran
dom ~irreversible! eddy motion into coherent~reversible!
wave-like motion with an enhanced memory time~i.e., the
so-called Alfvénization process!. As a consequence o

a!Electronic mail: ejk@physics.ucsd.edu
3571070-664X/2001/8(8)/3576/7/$18.00
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Alfvénization, equipartition between fluid kinetic and ma
netic energies can be realized, which can then lead to
cancellation of Reynolds~fluid! stress by Maxwell~mag-
netic! stress. Such cancellation was indeed found in the p
vious works by Kim and Dubrulle, who analytically derive
the eddy viscosity in a 2-D MHD, where a strong large-sc
magnetic field and background shear flow are in paralle5,6

They also demonstrated laminarization of a mean shear
by a magnetic field. The purpose of the present work is
extend these studies to the simplest 3-D system by adop
3-D reduced MHD~RMHD! and by assuming that a stron

external large-scale magnetic fieldB0ẑ lies in the direction

orthogonal to both large-scale shear flowU(y) x̂ and its in-

homogeneity (ŷ).
The result of this paper is directly related to the MH

drag reduction in laboratory experiments, where the int
duction of external magnetic field was shown to lead to
duction in turbulent transport~eddy viscosity! as well as to
laminarization of a mean shear flow.7 Our work may also
have application in the following systems. First, note that
mean field configuration that we consider in this paper
reminiscent of those in tokamaks and accretion disks. In
kamaks, a zonal flow is perpendicular to a strong equilibri
magnetic field. Here, a zonal flow is a toroidally and polo
dally symmetricEÃB flow, which is radially sheared and i
thought to be generated by Reynolds stress in drift-w
turbulence.1 Even if 3-D RMHD does not capture all aspec
of the dynamics of a zonal flow, the present work may y
shed some light on the effect of Alfve´n waves on the genera
tion of a zonal flow for highb plasmas. It may also have a
implication for the~angular! momentum transport in accre
6 © 2001 American Institute of Physics
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tion disks, which is thought to be crucial to accreting mat
to a central object.2 In addition, some relevance may b
found in the drag reduction in turbulent polymer solutio
where Reynolds stress can be canceled by elastic stress~due
to elastic waves!, instead of Maxwell stress.8

In the present paper, we study momentum transp
~eddy viscosity! and laminarization of a mean shear flow
3-D RMHD. We assume that the background turbulence
generated by an external forcing which injects energy int
fluid and/or magnetic field on small scales. The main aim
then to analytically calculate eddy viscosity~or turbulent vis-
cosity! by using two-scale and quasilinear analyses,9 together
with the Gabor transform.10 We explore the dependence
eddy viscosity on the properties of forcings, by adopting
ther fluid or magnetic forcing under the assumption t
these forcings are isotropic or anisotropic. The Gabor tra
form is employed here to rigorously incorporate the inhom
geneity of a background shear flow order by order, in ter
of small parametere5 l /L, wherel andL are the character
istic scales of small and large scale fields. As shall be sho
later, the Gabor transform is related to the use of shea
coordinates which explicitly incorporates the shearing
eddy by a background shear in the evolution of wave num
in parallel to the shear.11 In contrast to a conventional Fourie
transform, the Gabor transform allows us to study the str
shear limit wherej[unk2/Vu!1, using eikonal theory. Here
V52]yU(y) is a shear;n is the viscosity andk;1/l . In
addition to the aforementioned shear parameterj, our prob-
lem has another dimensionless parameter,g5uB0q/Vu,
which measures the ratio of the Alfve´n frequency of modeq
to its shearing rate. Hereq is the wave number alongB0ẑ.
Due to the complexity of the analysis, we will mainly focu
on strong shear (j!1) and strong magnetic field (g@1)
limits, unless mentioned otherwise.

The structure of the paper is as follows. We formula
the problem in Sec. II and analytically solve the equatio
for fluctuations in terms of the Gabor transform in Sec.
The result on the eddy viscosity is presented in Sec. IV. O
conclusion is provided in Sec. V. Appendices contain
summary of properties of the Gabor transform and some
the detailed algebra leading to main equations in the tex

II. GOVERNING EQUATIONS

We consider a 3-D system in Cartesian coordina
where a strong uniform magnetic fieldB0 points in thez

direction (B05B0ẑ); in tokamak,z represents the toroida
direction. The fluid and magnetic field are assumed to
externally stirred by small-scale random forcings. Then,
equations governing 3-D RMHD are12

H ]

]t
1u"¹J v52~B"¹!¹'

2 a1n¹'
2 v1Fv , ~1!

H ]

]t
1u"¹J a5B0]zf1h¹'

2 a1Fa . ~2!

Here B5B0ẑ1b is the total magnetic field where the pe
turbed magnetic fieldb is related to the magnetic vecto
potentiala asb5¹3aẑ5(]ya,2]xa,0); v is the vorticity
r
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related to the stream functionf asv52¹'
2 f and velocity

u asv ẑ5¹'Ãu5(]xuy2]yux) ẑ; Fv andFa are small-scale
random forcings acting on the fluid and magnetic field,
spectively;n and h are viscosity and Ohmic diffusion;¹'

2

5]xx1]yy is the two-dimensional Laplacian. For the r
mainder of the paper,n shall be taken to be the same ash
~i.e., n5h) to simplify the analysis.

We assume that the velocityu has a large-scale compo
nentU5U(y) x̂ in the x direction on scaleL in addition to a
small-scale componentu8 on scalel in thex–y plane. By the
ordering of reduced MHD equations, the large-scale veloc
U(y) is weaker than the uniform magnetic fieldB0ẑ. Since
the main interest of this paper lies in the momentum tra
port, a magnetic field is taken to have no large-scale com
nent in thex–y plane. Then, by assuming a scale separat
betweenL and l (e5 l /L!1), we express the magnetic an
velocity fields as follows:u5^u&1u85U1u8, v5^v&
1v85V1v8, b5^b&1b85b8, and a5^a&1a85a8.
Here the angular brackets denote an average over the s
tics of the random forcingsFv andFa ~see Sec. IV!. Thus,U
andV52]yU are large-scale fields andu8, v8, b8, f8, and
a8 are small-scale fields;̂u8&5^v8&5^b8&5^a8&5^f8&
5^Fv&5^Fa&50. By neglecting local interaction term
compared to nonlocal terms,9 the equations for fluctuation
can then be written in the following form:

H ]

]t
1U]xJ v852B0]z¹'

2 a81n¹'
2 v81Fv , ~3!

H ]

]t
1U]xJ a85B0]zf81n¹'

2 a81Fa . ~4!

For the evolution of the mean fieldU, we keep the nonlinea
effect of small-scale fields to obtain

]

]t
U52]x^p&2]y^ux8uy82bx8by8&1n]yyU, ~5!

wherep[2@ p̃1b82/2# is the total pressure andp̃ the pres-
sure. In Eq.~5!, ^ux8uy82bx8by8& is the total stress, or turbulen
momentum flux, which consists of Reynolds and Maxw
stresses. It can be expressed in terms of the eddy~turbulent!
viscositynT as

^ux8uy82bx8by8&52nT]yU5nTV. ~6!

Note that a shear flowU(y) x̂ shears an eddy, reducin
its scale iny as time progresses. That is, the magnitude
wave numberp increases for larget as p(t)5p(t50)
1kVt ~see Sec. III!. In a strong shear limit (j!1), the
shearing effect cannot be treated as a perturbation, maki
inappropriate to use a conventional Fourier transform.
this reason, we adopt the Gabor transform10,13,14 in the fol-
lowing analysis, which can capture such a strong shear
fect. We note that one alternative way is to use shear
coordinates.11 The Gabor transform of a given functionc is
defined by
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ĉ~k,x,t ![E d3x8 f ~ ux2x8u!eik"(x2x8)c~x8,t !, ~7!

where f (x) is a filter function with a characteristic scalel
where l !l!L, which decreases rapidly for largex. One
example of such filter functions is a Gaussian filter with
form of f (x)5exp(2x2/l2). As be seen from Eq.~7!, the
Gabor transform is a special case of the wavelet transfo
and can be viewed as a localized Fourier transform wit
compact supportl. ~See Appendix A for a few key proper
ties of the Gabor transform.! In Sec. III, the coupled equa
tions ~3! and~4! are solved in terms of the Gabor transform
nT is then obtained in Sec. IV by computing^ux8uy82bx8by8&
in real space. Here the average is taken over the statistic
forcings.

III. FLUCTUATIONS

We denote the Gabor transforms of fluctuationsu8, v8,
f, b8, a8 andF by û, v̂, f̂8, b̂, â, andF̂. With the help of
the properties of the Gabor transforms summarized in
pendix A, the equations for fluctuations~3! and ~4! can be
written in the Gabor space as follows:13,14

@Dt1n~k21p2!#v̂5 iB0q~k21p2!â1F̂v , ~8!

@Dt1n~k21p2!#â5
iq

k21p2v̂B01F̂a . ~9!

Herek5(k,p,q) andDt is the total derivative defined by

Dt[] t1U]x1kV]p , ~10!

where V52]yU. Therefore, along a particle trajectory
the Gabor~eikonal! space (x,k,t), the following relations
hold: x5x01U(t2t0), y5y0 , z5z0 , k5k0 , p5p0

1kV(t2t0), andq5q0 .13,14 Without loss of generality, we
shall assume for the remainder of the paper thatt050 and
V52]yU.0.

We note that Eqs.~8! and ~9! become identical to thos
derived in Ref. 5 ifq on the right-hand sides is replaced byk.
Thus, the procedure required to obtain solutions to Eqs.~8!
and ~9! is very similar to that described in Ref. 5. For com
pleteness, some of intermediate steps are provided in Ap
dix B.

Solutions

According to 3-D RMHD ordering, the Alfve´n frequency
of the modeq along a strong magnetic fieldB0 is larger than
the shearing rate, i.e.,g[uB0q/Vu@1 since uB0q/Vu
;(B0 /U)(L/ l z)@(B0 /U)( l H / l z);O(1). Here l H and l z

are characteristic radial and parallel scales of perturba
andL is the characteristic scale of a mean flow. Note that t
conditiong@1 can also be realized for typical tokamak p
rameters. Thus, the solutions forâ(x,k,t) and ûy(x,k,t) are
found in the case ofg@1 in Appendix B, which can be
written in the following form:
,
a

.

of

-

n-

n
is

â~x,k,t !5aE d3x8d3k8E
0

t

dt8 g~x,k,t:x8,k8,t8!

3F ima8c8

umukuku
sinzF̂v

1S 1

a8
cosz1

a8b8c8

g
sinz D F̂aG , ~11!

ûy~x,k,t !52
V

B0
E d3x8d3k8E

0

t

dt8 g~x,k,t:x8,k8,t8!

3F ia8ac8

umukuku S 2a2bc2 sinz1
g

c
cosz D F̂v

1
1

m H 2a3bc2S a8b8c8

g
sinz1

1

a8
cosz D

1
a

c S a8b8c8 cosz2
g

a8
sinz D J F̂aG . ~12!

Here

m[
q

k
, a[

uku

Ak21p2
, a8[

uk8u

Ak821p82
,

b[
p

k
, b8[

p8

k8
, ~13!

c[F12
a4

2g2G21

, c8[F12
a84

2g2G21

,

z[gV~ t2t8!2
1

4g
~ tan21 b2tan21 b81a2b

2a82b8!;

F̂v[F̂v(x8,k8,t8), F̂a[F̂a(x8,k8,t8), and g(x,k,t:x8,
k8,t8) is a Green’s function along the particle trajector
modified by the viscosity/diffusivity and the magnetic field

g~x,k,t:x8,k8,t8!

5d~x2x82U~ t2t8!!d~y2y8!d~z2z8!d~k2k8!

3d~p2p82kV~ t2t8!!d~q2q8!expH a42a84

4g2 J
3expH 2nS k2t1

p3

3VkD J expH nS k82t81
p83

3Vk8
D J .

~14!

We note that the solution forûy is correct to second order in
1/g although that forâ is correct to third order. Thus, Sec
IV, the eddy viscosity will be calculated up to second ord
in 1/g.
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IV. MOMENTUM FLUX AND EDDY VISCOSITY

To evaluate the total stress, we assume that the cor
tion function of the forcing takes the following form:13

^F̂ i~x1 ,k1 ,t1!F̂ j~x2 ,k2 ,t2!&

;~2p!3d i j d~k11k2! f 2~ u~x12x2!/2u!

3ei (x12x2)"k2f̃ i~k2 ,t22t1!, ~15!

where i , j 5v,a and f̃ i is the Fourier transform of correla
tion functionf i(r ,t)[^Fi(x,t1)Fi(x1r ,t2)& that is assumed
ng

ri-
ll

e
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s
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to be homogeneous. Note that the summation over indexi is
not implied in Eq.~15!; ^Fa(x,t1)Fv(x1r ,t2)&50. For sim-
plicity, we shall takef̃ i(k2 ,t22t1) to be delta correlated in
time, i.e.,

f̃ i~k2 ,t22t1!5f̂ i~k2!d~ t22t1!. ~16!

The total stresŝ ux8uy82bx8by8& is then easily computed by
using ûx52pûy /k and Eqs.~12!–~16! and ~A3! as
^ux8uy82bx8by8&52
V

2B0
2~2p!3E d3k

k2

q2E
b

`

dt e2x̄expH 2jFb1
1

3
b3G J expH 22jFt1

1

3
t3G J

3F f̂v~k!

k2~k21p2!
H 2g2t

11t2 cos~2w̄ !2
2gt2

~11t2!2 sin~2w̄ !1
t32t

~11t2!3J
1

f̂a~k!

a2 H 22g2t

~11t2!
cos~2w̄ !12g sin~2w̄ !S t2

~11t2!2 2
2tb

11t2D1
t32t

~11t2!3J G , ~17!
ty:

the
eld
l as

r

on

ic
n-

d
-

e

in the limit ast→`. Here

b[
p

k
, a[

1

A11b2
, j[

nk2

V
,

w̄[g~t2b!2
1

4g F tan21 t1
t

11t2 2tan21 b2a2bG ,
~18!

c[F12
a4

2g2G21

,

x̄[
1

4g2 F 1

~11t2!2 2a4G .
For the analysis, we leave the power spectra for the forci
f̂v and f̂a unspecified and evaluate thet integral only in
Eq. ~17!. It is important to remark that the dominant cont
bution to thet integral in individual Reynolds and Maxwe
stresses is not shown in Eq.~17!. It is because both of them
have the same magnitude and therefore cancel each oth
the total stress, to leading order. Note that these leading o
terms are independent ofB0 and lead to a logarithmic diver
gence asj→0. The same cancellation, observed in 2
MHD,5,6 simply reflects the fact that the fluid motion b
comes dominated by Alfve´n waves for a strongB0 . This
cancellation is imperfect in the presence of flow shear
shown in Eq.~17!. As shall be shown shortly, though, th
next order non-trivial term in the total stress is inverse
proportional toB0

2.
To evaluate thet integral in Eq.~17!, we consider the

strong shear casej5unk2/Vu!1, where the effect of shear i
more important than that of viscosity/diffusivity. The opp
site limit of weak shear (j@1) will be briefly discussed a
s

r in
er

s

the end of this section. In the limit ofj!1, thet integral can
easily be performed, leading to the following eddy viscosi

nT5
1

4B0
2~2p!3E d3k

k2

q2 F k2

~k21p2!3f̂v~k!

1
2p22k2

k21p2 f̂a~k!G . ~19!

A few aspects of this result are of interest. First, it reveals
reduction in the momentum transport due to a magnetic fi
since the amplitude of eddy viscosity becomes very smal
B0 ~or g5uB0q/Vu) increases. Note that the limitB0→0
cannot be taken in Eq.~19!, since the latter is valid only
when g@1. Second, as the amplitude ofnT}1/B0

2 is inde-
pendent of a shearV, an equilibrium profile of a mean shea
flow becomes either linear or parabolic.5 That is, a magnetic
field tends to laminarize a mean shear flow. Third, Eq.~19!
indicates that the sign of eddy viscosity may depend
whether the energy is injected into fluid (fvÞ0) or mag-
netic field (faÞ0), and also whether forcings are isotrop
or anisotropic. Let us now look at this interesting depe
dence in detail.~i! In the limit where the energy is injecte
only into the fluid (f̂a50): nT is always positive irrespec
tive of the nature off̂v . ~ii ! In the opposite limit with a
magnetic forcing only (f̂v50): The sign ofnT hinges on
whetherf̂a is isotropic or anisotropic, as follows.

~a! When f̂a is isotropic in thex–y plane, i.e.,f̂a(k)
5f̂a(Ak21p2,q): nT is always negative. This can easily b
shown by using cylindrical coordinates (r , u, q) such that
d3k5dr r du dq, k5r cosu, and p5r sinu, and then by
doing the angular (u) part of k integral to yield
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nT52
1

32~2p!2B0
2E dq dr f̂a~r ,q!

r 3

q2 . ~20!

~b! Whenf̂a is anisotropic in thex–y plane,nT is posi-
tive if the forcing mainly consists of components withp/k
@1 while it is negative if the opposite holds. Recalling th
k andp are the wave numbers parallel and perpendicula
the shear flow, in tokamaks, a magnetic forcing withp/k
@1 corresponds to a forcing with a poloidally elongat
structure localized inr, and that withp/k!1 represents a
forcing which is radially elongated and localized in the p
loidal direction. The above-mentioned results are to be c
trasted to the 2-D MHD case,6 where an isotropic magneti
forcing leads to a positive eddy viscosity while an anis
tropic magnetic forcing can result in a negative viscosity.

Before concluding this section, we comment on t
weak shear limitj@1. As the effect of the magnetic field i
of interest to us, we assumeg@j@1 so that the dissipation
does not wipe out magnetic fields. In this limit, Eq.~17! can
be shown to give

nT5
1

4B0
2~2p!3E d3k

k2

q2

3F 1

~k21p2!2f̂v~k!2
k3~k24p!

~k21p2!2 f̂a~k!G . ~21!

Therefore,nT is always positive for fluid forcing, whereas
is likely to be negative for magnetic forcing.

V. CONCLUSIONS

We have studied the momentum transport in 3
RMHD. The magnetic contribution~Maxwell stress! to total
stress was demonstrated to cancel out the leading order
in the Reynolds stress. This cancellation results in a t
stress proportional toV/B0

2 for g5uB0q/Vu@1, thereby sig-
nificantly reducing the momentum transport~or eddy viscos-
ity! for a strong magnetic fieldB0 . Since the amplitude o
eddy viscositynT;1/B0

2 is independent ofV, besides be-
coming very small asB0→`, it indicates the tendency to
ward effective ‘‘laminarization’’ of a mean shear flow by
magnetic field. We also found that the sign of eddy viscos
depends on the properties of forcings, such as the ampli
and anisotropy. Specifically, in the strong shear limitj
!1), a fluid forcing gives rise to a positive eddy viscosi
consequently energy is transferred from large to small sca
In contrast, in the case of a magnetic forcing only, the ed
viscosity is negative, unless the magnetic forcing mai
consists of eddies that are elongated in the direction par
to the shear flow. In reality, these forcings are expected
originate from some underlying instability as well as inc
herent nonlinear interaction.

The result mentioned previously has a direct applicat
to the problem of drag reduction in MHD.7 As the basic
physics underlying the reduction of eddy viscosity in o
problem arises from the cancellation of Reynolds stress
Maxwell stress via Alfve´nization, a similar reduction is
likely to occur in turbulent polymer solutions through th
near cancellation of Reynolds stress by elastic stress.
t
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-
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e

note that in 3-D MHD, the cancellation between total flu
and current helicities, again due to Alfve´nization, is respon-
sible for the suppression of thea effect.15

It is instructive to compare this result with the two
dimensional hydrodynamic turbulence~2-D HD!, which is
equivalent to the neglect of magnetic perturbation or Alfv´n
waves, and then to speculate on its possible implication
the dynamics of the zonal flows in tokamaks. As mention
in Sec. I, in 2-D HD, the eddy viscosity is negative,14,5 and
accordingly, the energy is transferred from small to lar
scales~inverse cascade!. That is, a small-scale fluctuatin
velocity acts as a source for the generation of a large-s
flow. As the effect of magnetic perturbations becomes imp
tant ~or, going from 2-D HD to 3-D RMHD!, the amplitude
of eddy viscosity becomes small due to cancellation of to
stress, and the sign of eddy viscosity can even become p
tive. If the eddy viscosity remains negative~as may be the
case with a magnetic forcing!, a large-scale flow can stil
grow, but at a much slower rate because of the smaller
plitude of the eddy viscosity. On the other hand, if the ed
viscosity becomes positive~as in the case of a fluid forcing!,
a large-scale flow will decay. Note again that in both cas
the generation of a large-scale flow is reduced due to Alfv´n
waves. Although the full dynamics of the zonal flows in t
kamaks cannot be addressed in the framework of 3
RMHD, this result indicates the possibility of the cancell
tion of stresses for Alfve´n waves. If modulation of the tota
stress is the mechanism for the generation of the zonal flo
our work suggests the reduction in the generation of zo
flows and even the decay of zonal flows by the reversa
energy cascade direction. It will be interesting to study th
by considering the modulational instability of a zonal flow
the presence of a gas of Alfve´n waves and drift waves. This
will be undertaken in a future paper.
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APPENDIX A: PROPERTIES OF THE GABOR
TRANSFORM

A few key properties of the Gabor transform are as f
lows. First, the derivative of the Gabor transform can
shown to be

] i û8' ik i û81O~1/~kl!!, ~A1!

wheree* [1/(kl)!1 is a small parameter:e!e* !1. Sec-
ond, the Gabor transform of the product of a function va
ing over large scales~e.g.,U andA) and a function varying
over small scales~e.g.,u8 andb8) can be expressed to firs
order ine[ l /L:
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U j û8~k,x,t !5E f ~x2x8!eik"„x2x8…U j~x8,t !u8~x8,t !dx8

'U j~x,t !û81 i¹ l~U j~x,t !!¹kl
û81O~e2!,

~A2!

where we used a Taylor expansion ofU around the pointx to
first order ine and an integration by parts. The Taylor e
pansion converges rapidly since the kernelf varies over
scales of the orderl, while U varies over scales of the orde
L. Third, the inverse transform of the Gabor transform is j
an integration over all wave numbers with a proper norm
ization factor:

c~x,t !5
1

f ~0!~2p!3E d3kĉ~x,k,t !. ~A3!

Finally, the Gabor transform commutes with time derivati
] t . It also commutes with space derivative¹ if a quantity of
interest vanishes on the boundaries; otherwise, the com
tation is subject to surface terms which are negligible if
region of interest is farther from the boundaries than
distancel.

APPENDIX B: DERIVATION OF EQS. „11… and „12…

In this appendix, we provide intermediate steps lead
to Eqs.~11! and ~12!. First, to solve coupled equations~8!
and ~9!, we introduce a variable

R5
p

k
5p0 /k1Vt,

where k5k0 is used. Note thatDR5(Dt/DR)Dt5Dt /V
and R.0 for t.up0 /ku/V. Then, Eqs.~8! and ~9! can be
rewritten in terms ofR as

DRṽ5 i
B0

V
mk3~11R2!ã1

1

V
F̃, ~B1!

DRã5 i
B0

V

m

k

ṽ

11R2 . ~B2!

Here P̃ is related toP̂ as

P̃[expH 2jS R1
R3

3 D J P̂, ~B3!

for P5v, a, andF; m5q2/k2. We note that the above equa
tions become identical to those in Ref. 5 whenm51. From
Eqs.~B1! and ~B2!, we can form a single equation forã as
follows:

DR@~11R2!DRã#1g2~11R2!ã5
imB0

V2k
F̃, ~B4!

whereg[uqB0 /Vu. In terms ofu5tan21 R, Eq.~B4! can be
simplified somewhat to

@Duu2Q#ã5
iB0m

V2k
sec2 uF̃, ~B5!

where Q[2g 2sec4 u. We now provide a Wentzel–
Kramers–Brillouin~WKB! solution to Eq.~B5! when g(1
t
l-

u-
e
e

g

1R2)@1. This condition is satisfied for allR wheng@1. To
solve the inhomogeneous equation~B5! in the WKB ap-
proximation, we first construct a Green’s function fro
WKB solutions to the homogeneous equation that are cor
to third order in 1/g:

ã;cosu expH 6 igF tanu2
u1sin 2u/2

4g2 G1
cos4 u

4g2 J ,

as

G~u,u8!5Q~u2u8!
cosu cosu8

g~12cos4 u8/2g2!

3sinw expH 1

4g2 @cos4 u2cos4 u8#J . ~B6!

Here w[g(tanu2tanu8)2@u2u81(sin 2u2sin 2u8)/2#/
4g, and Q(x) is a step function. We have assumedâ

5DRâ5v̂50 atR5R0 ~or t50). Then, the WKB solution
to Eq. ~B5!, in terms ofR, is

ã~R,R0!5
1

gV

1

A11R2ER0

R dR8c̃~R8!

A11R82

3sin$w̃~R;R8!%exp$x̃~R;R8!%

3F iB0

kV
mF̃v~R8!1DR8@~11R82!F̃a~R8!#G ,

~B7!

where

c̃~R8![F12
1

2g2~11R82!2G21

,

w̃~R;R8![g~R2R8!2
1

4g

3F tan21 R2tan21 R81
R

11R2 2
R8

11R82G ,

x̃~R;R8![
1

4g2 F 1

~11R2!2 2
1

~11R82!2G .

The solution forâ(x,k,t) can now be expressed in terms
k, p5kR5k(R01Vt) and t to obtain Eq.~11! in the main
text.

Next, by usingũy52 i ṽ/k(11R2) and Eq.~B2!, the
solution forûy can be constructed in a similar way, resultin
in Eq. ~12! in the main text.
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