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Abstract

System Design and Management with Flexible Structures and Mechanisms
by
Ye Xu
Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research
University of California, Berkeley

Professor Zuo-Jun Shen, Chair

Flexible system design has received increasingly more attention in the last a few decades.
Flexibility can increase systems’ ability to adjust against fast-changing environment, and
thereby improves efficiency and reliability, and avoids huge cost from rare but severe dis-
ruptions, or loss due to congestions caused by system uncertainties. In this dissertation,
we focus on the design and management of flexible systems. In particular, we study three
types of flexibility: process flexibility, network flexibility, and payment flexibility. We present
quantitative formulations for these problems, and develop different methodologies to solve
them. We further conduct numerical studies to generate insights as guidelines for the design
of flexible systems in practice.

Flexible supply chains have been widely used by companies to deal with uncertainties.
It is well known that chaining structure is very efficient in balanced supply chains. How-
ever, it is not clear whether it will work well when supply chains are unbalanced. We study
the flexibility design problem of a general supply chain with unbalanced and nonhomoge-
neous structure. Both demand uncertainty and disruptions are considered in our model.
We derive exact solutions for several special cases of the uncapacitated problem where the
number of links is fixed, propose an efficient algorithm for solving the general uncapacitated
problem, and use simulations to derive some managerial insights for the capacitated problem.

A similar idea is applied to network design. Air transportation networks suffer a lot from
disruptions caused by severe weather, natural disasters, power outage, etc. We propose a
flexible hub-and-spoke structure in which airports are allowed to have up to N hubs, and
formulate the problem as a mixed-integer program that minimizes fixed cost, flexibility cost,
and expected transportation cost and penalty cost. Benders decomposition algorithm is ap-
plied to solve this problem. Numerical studies show that the performance of the network can
be improved substantially with flexible hub assignment, and a flexible structure with N = 2
can achieve most of the benefit of those with greater N. We also demonstrate the impact of
the correlation between airport disruptions and address the importance of considering it in



stochastic air transportation models.

Trade credit, as a form of flexible payment, is a major tool used by small businesses to
obtain external finance. It benefits the buyer and the supplier in multiple ways, and brings
risk to them at the same time. We investigate the impact of trade credit on growing small
businesses and their suppliers. By looking at a one-supplier-one-retailer supply chain, we
study the expansion and inventory policies of the retailer when trade credit is extended or
not. It is shown that the retailer grows faster and orders more with trade credit. It is also
shown by numerical study that the effect of trade credit depends on demand correlation.
When demand is positively correlated, trade credit makes the retailer more likely to go
bankrupt, and thereby lowers the supplier’s long-term profit and may even cause the failure
of the supplier.
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Chapter 1

Introduction

On March 11, 2011, the Tohoku earthquake took place in northeastern Japan. It not only
caused damages, costs, and loss of lives within the country, but also had great and long-lasting
impact on the global semiconductor industry. Taiwan’s chipmakers, as major suppliers of
the manufacturers of electronic products around the world, lost their supply of raw mate-
rials and key components from Japanese wholesale electronics suppliers. Although several
wafer producers in Taiwan and South Korea were running in full capacity to meet demand,
only 30% to 50% of the shortage created by the earthquake was fulfilled ([78]). Taiwan’s
semiconductor manufacturers suffered a lot from shortage in supply. As a result, the price
of electronic components and products raised a lot. To a large extent, all these losses are
caused by the lack of flexibility in the semiconductor supply chain. Taiwan’s semiconductor
manufacturers rely heavily on the supply from Japan. For example, 70% of their imported
12-inch silicon wafers were from Japan ([20]). In addition, the Japanese suppliers located
most of their plants in the northeastern part of Japan, where happened to be close to the
center of the earthquake. Having plants close to each other does have some advantages such
as the economies of scale. However, it makes the system vulnerable to disruptions at the
same time. The example of the Tohoku earthquake one more time reveals that flexibility is
indispensable in supply chains.

Flexible supply chain management has long been studied in the literature, and is com-
monly used in many industries. Actually, the application of flexibility design is not restricted
to supply chain management. It can also be applied in transportation system, financial sys-
tem, product design, military planning, etc. — every system in general. The flexibility of a
system is its ability to adjust itself when environment changes. It measures how much and
how fast it is able to take actions in response to the change. The world is changing in a much
faster pace, and there is much more uncertainty compared to the past. Hence, no one is able
to predict what will happen, and being flexible is even more crucial than ever. Flexibility can
help to hedge against uncertainty and to better utilize limited resources, and eventually save
cost and improve reliability. In addition, flexibility needs to be incorporated into the strategic
level decisions to enable systems to make flexible operations under different circumstances.
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Therefore, the design of flexibility systems is an important issue that deserves a lot attention.

In this dissertation, we study three types of flexibility: (1) process flexibility, (2) net-
work flexibility, and (3) payment flexibility. Chapter 2 discusses the flexibility design of
manufacturing and service systems. We look at a two-layer supply chain which consists of
nonhomogeneous suppliers and retailers. Two types of uncertainty exist: the randomness in
demand faced by retailers, and the disruptions that may happen at suppliers and at the links
between suppliers and retailers. A dedicated structure is usually used in traditional supply
chains, in which each supplier only supplies one retailer, and each retailer only orders from
one supplier. This structure incurs huge lost sales when disruptions take place. To mitigate
the effects of disruptions, we build additional links so that each retailer can obtain prod-
ucts from multiple suppliers. A maintenance cost is incurred for each link at the same time.
Our model seeks to find the optimal link configuration that minimizes the expected total cost.

In Chapter 3, we study the flexibility design of air transportation networks. The tradi-
tional hub-and-spoke structure has a lot of advantages and is widely used in transportation
and communication networks. However, it is vulnerable to disruptions. As a result, the
air transportation network in the United States suffers a lot from disruptions caused by
severe weather, natural disasters, power outage, etc. We present a scenario-based flexible
hub location model that deals with correlated airport disruptions. In this model, each spoke
airport is allowed to select up to N hubs and to decide how much flow to transport via each
hub in each scenario. This structure is referred to as a N-flexible hub-and-spoke structure.
It incorporates flexibility in both strategic level and operational level decisions, and thus
greatly reduces the loss of traveling demand caused by disruptions.

At last, Chapter 4 investigates the impact of trade credit on the growth of small businesses
and their suppliers. Trade credit, as a form of flexible payment, serves as a major tool for
small businesses to obtain external financial resource. Because the growth of small businesses
is often constrained by financial shortage, trade credit accelerates their growths by providing
extra cash without any interest. Suppliers of trade credit also benefit from it because it
creates new business and promote sales. On the other hand, trade credit brings risk to both
the buyer and the supplier. We build a one-supplier-one-retailer supply chain model and
study the effect of trade credit on the supplier and the retailer. It is shown that the retailer
expands more aggressively and the supplier sells more with trade credit. However, when
demand is positively correlated, trade credit makes the retailer more likely to go bankrupt
and thereby hurts the profitability of the supplier.



Chapter 2

Flexibility Design of Nonhomogeneous
Supply Chains with Disruptions

2.1 Introduction

“Everyone has to become more flexible,” said Richard Morris, vice president of BMW Man-
ufacturing Co. ([33]). To cope with rapidly-changing demand, manufacturers have to be
able to shift production of different products among different plants. Since 2007, because
of the steady increase in gas prices, there has been a greater demand in the U.S. for cars
that are more fuel-efficient and affordable. Due to the change of the market, Honda de-
cided to build more 4-cylinder Accords and reduce the production of large vehicles such as
trucks. To do this, they move the production of V-6 Accords from a plant in Ohio to a
plant in Alabama, and use the Ohio plant to produce more 4-cylinder Accords. The plant
in Alabama was a truck plant that had never been used to produce cars like Accord. It
took Honda a few months to change over, but the duration was much shorter compared to
that of its competitors. The reason why Honda could adjust faster is that their vehicles
share some basic design structures. Flexibility can also be within the same factory. Since
2006, Honda has been using the same production line to produce Civic compacts and CR-V
crossover. The setup time is only 5 minutes. In most recent years, Honda has become one
of the most flexible automakers in North America. Its market share in the U.S. is steadily
increasing. Honda’s example shows that flexibility has become one of the keys to improve
the competitiveness of manufacturing and service companies.

One of the most important questions in designing a flexible supply chain is how much
flexibility is enough. Networks with full flexibility usually have the best performance in
terms of inventory and service level. However, this performance is obtained at the cost of
building a huge number of links. E.g. a supply chain with N suppliers and M demands needs
M N links to be fully flexible. [37] introduce the concept of chaining to achieve substantial
benefits from limited flexibility. They show that the chaining structure can achieve perfor-
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mance almost as good as that of the full flexibility structure by only doubling the number of
links in a dedicated structure. This result is of great significance because they find a highly
connected structure that smartly balances between system performance and cost.

The next question is where to build the links. The balanced nature of chaining implies
that it works best in balanced! and homogenous? supply chains. It may not work well when
supply chains are unbalanced and nonhomogeneous, which are more common in practice.
Suppose Dy and D, are random demands in a supply chain with means equal to 100 and 1,
respectively. It is unwise to equalize the capacities allocated to the two demands because
Dy is far more critical than D,. Furthermore, in most unbalanced supply chains, it is even
impossible to have a balanced link structure other than full flexibility.

Supply disruptions are considered in our model. There has been much research on deal-
ing with demand uncertainty using flexible networks, such as, [37], [1] and [45], while only
a few consider supply uncertainty. Supply disruptions have big impact on a supply chain’s
performance, which has been addressed in much literature such as [65], [71], and [76]. More-
over, it is shown that the optimal strategies for supply chains under disruptions are often the
opposite of those under demand uncertainty ([69], [40]). Hence, it is important to consider
the impacts of disruptions on supply chain flexibility design.

The rest of this chapter is structured as follows. Section 2.2 briefly reviews some related
literature. Section 2.3 describes the general model. Section 2.4 studies a series of uncapaci-
tated problems and provide algorithms to solve them optimally. Section 2.5 discusses some
nice properties of capacitated supply chains. Computational studies are performed in section
2.6. A summary is presented in section 2.7. All proofs can be found in the Appendix.

2.2 Literature Review

[37] study the process flexibility in an N-by-N manufacturing system and model it as a bi-
partite graph. They are the first to introduce the chaining structure, in which all nodes are
chained together to form a circle. With full flexibility as a benchmark, they analyze different
levels of flexibility in the system and conclude that (1) partial flexibility could achieve most
of the benefits of full flexibility, (2) a single long chain is more desirable than several short
chains. For supply chains that already exist, principles for adding additional flexibility are
proposed: add links that further balance total demand faced by each plant, further balance
the capacity allocated to each product, and chain as many nodes as possible. They also
investigate the interaction between flexibility and production capacity. It is demonstrated
that adding flexibility could be fully substituted by increasing capacity. Moreover, there is

LA two-layer supply chain is balanced if it has equal numbers of supply nodes and demand nodes.
2A supply chain is homogeneous if it has identical supply nodes, identical demand nodes, and identical
links.
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no benefit to add flexibility if each supplier’s capacity is either no greater than the minimum
demand or no less than the maximum total demand.

[1] justify the results of [37]. They generalize the concept of chaining to a “k-chain”,
which is a bipartite symmetric network in which each node has degree k£ and the graph is
connected in a circular manner. They show that the expected throughput is increasing and
concave in k. This result consolidates the advantage of chaining because 2-chain has the
most marginal value. They at last prove that it is better to balance the degrees of plant
nodes (product nodes) if production capacities (demands) are equal, which is consistent with
the principles proposed by [37].

Other research following Jordan and Graves’ work provides more perceptions about the
chaining concept. [36] evaluate the degree of flexibility of a cross-training CONWIP ([34])
system using the proposed concept structural flexibility matriz. [22] adopt the concept of
graph expander to show that there exist sparse structures which can perform as good as
fully flexible systems, and [21] show analytically that the chaining structure can achieve
about 90% of the benefit of a fully flexible system. [31] extend chaining to a multistage
supply chain setting. They identify the floating and stage-spanning bottlenecks as factors
that cause additional inefficiency when products require multiple process activities, and show
that chaining structure is effective even in large-size supply chains. [24] propose guidelines
on flexibility design in unbalanced symmetric supply chains based on the Chaining principles.

Another stream of research studies the flexibility structure in nonhomogeneous networks.
[45] use a two-stage integer stochastic programming model to formulate the flexibility struc-
ture problem. The paper examines a nonhomogeneous system with imperfect resources.
They use “marginal cross production costs” to model the efficiency loss due to resource shar-
ing. An efficient heuristic algorithm using Lagrangian relaxation is proposed. Computational
results show that their approach generates better solutions than other chaining heuristics
when the system is nonhomogeneous, and/or the cost structure is nonhomogeneous. How-
ever, the flexibility design problem is treated as a pure mathematical programming problem
once the model is set up, which is not very helpful for understanding the underlying nature
of the problem.

[5] consider the question of investing in flexibility in a firm that produces N types of
products. Unlike all the previous work in which resources (or suppliers and their capaci-
ties) are already given, their model assumes that the firm can freely invest in all kinds of
resources. A resource has level k if it is able to produce k types of products, and is further
characterized by the product set it is able to produce. This problem is formulated as a linear
two-stage stochastic program. They prove the decreasing return of flexibility, and show that
there are at most two, adjacent levels of resources in the optimal configuration for supply
chains with symmetric demand distributions. [4] study a similar model in symmetric queue-
ing systems and show that the chaining structure (with level-2 resources only) performs well.
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While all the above literature aims at using flexibility to mitigate demand uncertainty;,
[40] look at the effects of disruptions in a balanced homogeneous system with cost for extra
flexibility. It is assumed that the capacity of each supply node equals to the mean demand
at each demand node. It is demonstrated that the common belief that longer chains are
more robust may fail under the existence of disruptions. Based on chain structures, they
optimize over the size of each subnetwork which has a chain structure. They show that one
should have shorter chains if link failures dominate and longer chains if node failures dom-
inate. The paper also studies the networks facing multiple failures through decomposition,
and shows that focusing on shorter chains are always more preferable when the probability
of disruptions at nodes and/or links is high.

Other literature on flexible systems with disruptions includes: [2] study the problem of
maximizing the capacity of a queueing system with fully flexible servers and develop an algo-
rithm to obtain timed, generalized round-robin policies that approach the maximal capacity
arbitrarily closely. [63] show that a “W” structure can achieve most of the flexibility of a
fully flexible structure in a parallel queueing system with unreliable and nonhomogeneous
servers. [62] model a supply chain with 2 products and unreliable suppliers, and reveal that
it is beneficial to contracting with a backup supplier, especially when the risk of primary
suppliers are well estimated or when the backup premium is high.

Our work contributes to the literature by studying the flexibility design problem of gen-
eral unbalanced and nonhomogeneous supply chains with both demand uncertainty and
disruptions. We develop an efficient algorithm to solve for the optimal flexible structure
when supply capacity is abundant, and show by numerical study that our algorithm may
work well for supply chains with limited capacity as well. We also show the diminishing
returns of flexibility and capacity, and study the interaction between them.

2.3 General Model and Assumptions

We consider a single-period problem in a supply chain with M retailers and N external
suppliers as displayed in Figure 2.1. All retailers are owned by a firm and sell the same
product. They face random demands D = (Dy, ..., D)) having joint distribution function
F and mean p = (pg, ..., py). Unmet demand is lost at the end and incurs a unit penalty
cost p. Retailers acquire product from the external suppliers. However, suppliers are subject
to disruptions. When a supplier is disrupted, it is not able to ship any product. Supplier ¢
fails with probability ¢;, for e = 1,..., N. We assume that suppliers are independent of each
other, so the availability of one supplier does not affect that of the others. We also assume
that each supplier has a capacity limit which may result from limited inventory space or
production rate.
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Figure 2.1: An N-by-M Supply Chain

A retailer can obtain product from a supplier only if there is a “link” between them. A
link can represent the ability of a plant to produce a product or a contract between two
firms. The dashed lines in Figure 2.1 represent potential links to add. We assume that each
retailer can only be supplied by a subset of suppliers which is referred to as the supplier

set. Let §; = z'{l), e ,z'{uj) be the supplier set of retailer j, where u; is the cardinality of

S;. There is a centralized decision maker who decides which links to build at the beginning.
Each link costs the firm ¢ to maintain it. The maintenance cost can be the cost of member-
ship, communication, or transportation. Afterwards, demands are realized and the status
of suppliers are observed. The decision maker then decides how much each retailer should
order from each supplier. We assume that there is no production or transportation lead
time, so orders arrive immediately. Demands are then fulfilled and penalty and maintenance
costs are charged. Our objective is to find the optimal link configuration that minimizes the
expected total cost. Now we summarize the notation used in our model.

Stage 1 decision variables:
V. 1 if build link (4, j)
Y1 0 otherwise

Stage 2 decision variables:
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fi; = amount of product from supplier ¢ to retailer j, j=1,..., M, €S,

Parameters:

c: maintenance cost for each link;

p: penalty cost for each unit of lost sale;

D = (Dy,...,Dy): demands at retailers;

= (p1,- .. ,MM): mean demands at retailers;

d = (dy,...,dy): realized demands at retailers;
q=(q,-..,qn): failure probabilities of suppliers;
C = (C4,...,Cy): capacities of suppliers;

State Variables:

R = (Ry,...,Ry): suppliers’ states. R; = 1 if supplier i is not disrupted, and 0
otherwise;
r = (ry,...,ry): realized states of suppliers;

The problem is formulated as a two-stage mixed integer stochastic programming problem:

e Stage 1:
min (;ZZ i+ PEp R[Q(D, R,Y)]
j=1i€eS;
st. Y;€{0,1} j=1...,M, i€S;
e Stage 2:

Q(d,r,Y) = min Zd _szij

Jj= 1’iESj
Zfz]_ ]:177M (21)
1€S;
> fi<Cry  i=1,..,N (2.2)
JH€eS;
OSfZJSdJY;] g=1,..., M, iESj (23)

Stage 1 problem minimizes the expected total cost (which consists of the link mainte-
nance cost and the expected penalty cost) over all possible link configurations when only
the demand distribution and suppliers’ failure probabilities are known. Function Q(D, R,Y")
denotes the minimum lost sale given demand D, suppliers’ states R, and link structure Y.
Its value in each scenario is obtained by solving the stage 2 problem.
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In stage 2, demands and suppliers’ states are realized. Orders are placed for each retailer
on suppliers in order to minimize lost sale. f;; denotes the size of the order from supplier ¢ to
retailer j. (2.1) requires that the amount of product shipped to retailer j is less than or equal
to the demand at retailer j. (2.2) guarantees that the product is shipped from supplier i only
if supplier 7 is not disrupted, and the total amount should not exceed supplier ¢’s capacity.
(2.3) makes sure that an order can be placed on supplier i for retailer j only if link (7, j)
is built. Since the expected total demand is constant, minimizing lost sale is equivalent to
maximizing sales, and thereby stage 2 problem can be solved by solving a max-flow problem.

This two-stage problem is computational intractable. We apply the integer L-Shape
method ([7]), but it is not efficient for large-size supply chains. An alternative approach is
proposed by [45]. They develop an efficient heuristic algorithm using Lagrangian Relaxation
method which can deal with large scale supply chains with continuous demand distributions.
Although their model does not consider supply disruptions, we believe that their algorithm
still works for our model as the formulation is similar. However, there is no lower bound
provided for their heuristic solution, and it is shown that their solution is outperformed by
chaining in some cases. More importantly, besides looking for high-quality solutions, we
also seek for more insights on the structure of the problem and to develop better solution
methods based on its properties.

The main difficulty in solving the general model lies in the estimation of the expected
lost sale — we have to solve a max-flow problem for each scenario which has no close form
solution. Since we are more interested in the impacts of heterogeneity and disruptions on
supply chain design, we relax the constraints on suppliers’ capacities for a while. When
suppliers are uncapacitated, retailers do not interact with each other so that the expected
lost sale at each retailer can be estimated individually. The uncapacitated version of our
problem is examined in the next section.

2.4 Uncapacitated Supply Chains

Since the general model is difficult to solve, we relax the capacity constraints by assuming
that suppliers have unlimited capacities. Under this assumption, the lost sale at retailer j
in a specific scenario (d,r) is equal to d; if all its suppliers fail, and 0 otherwise. So the lost
sale (or sales) at each retailer only depends on its demand and the states of its suppliers. It
is not affected by any other retailer or supplier. Given configuration Y, the expected lost
sale at retailer j is

Ep; g Dj-I{Zij:O} —ED;]- P RY;=0| =p-[[a"

i€S; 1€S5; 1€S;
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where I{-} is the indicator function. It turns out that the expected lost sale at retailer j is
equal to its mean demand times the probability that all its suppliers are disrupted. Note
that we make no assumption on demand distributions. What only matter are the mean
demands. Our problem can then be formulated as a nonlinear 0 — 1 integer program.

M M
(PG) min Y Y Yy+p D w-[]a”
j=1

7j=1 iESj iGSj

s.t. Y;jG{O,l} j=1..., M, ’iGSj

We note that the maintenance cost is proportional to the summation of Y;;’s. This
enables us to construct subproblems of (PG) by fixing the total number of links. In each
subproblem, we remove the first term of the objective function and impose a constraint on
the total number of links instead. (This constraint might be necessary in some case, e.g. a
company may have a budget limit on link maintenance.) We refer to T as the total number
of links, so T" is an integer between 0 and Z]]Vil uj. Given T' = t, a subproblem decides where
to locate the t links in order to minimize the expected lost sale, or equivalently, to maximize
the expected amount of fulfilled demand. The formulation of the subproblem with T" =t is
given below.

M
(PS) S(t) = max > u|1-][a”
Jj=1

1€S;
M
s.t. E Y;j =t
Jj=11€eS;

Y;]'E{O,l} 7=1..., M, iESj

where S(t) denotes the maximum expected sales if the total number of links is equal to t.
(PG) can then be reformulated as

(PG) min c¢-T—pS(T)
M
s.t. 0<T< Zuj,integer
j=1

Once we find an efficient approach to solve (PS;), we can solve (PG) efficiently.

In the rest of this section, we derive solution methods for subproblems, and develop an
efficient algorithm to solve the master problem. At last, we discuss the flexibility design
problem of an uncapacitated nonhomogeneous supply chain with both supply disruptions
and link disruptions.
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Solving the Subproblems

To make the analysis easier, we rank the suppliers in each supplier set in increasing order

of failure probability. So %, < %, <...< %, for any j. Because the suppliers for each
1 2 u;

retailer are ranked from most reliable to least r]eliable, it is not reasonable for a retailer to
choose a supplier with higher index instead of one with lower index in its supplier set. Then
it is natural to have the following lemma.

Lemma 1. There exists an optimal solution to (PSy) in which if a retailer is supplied by k
suppliers, then it must be supplied by the first k suppliers in its supplier set.

Lemma 1 implies that we only need to decide the number of suppliers assigned to each
retailer. Let K be the number of suppliers assigned to retailer j. Then a solution K =
(K1,...,K)y) represents the link structure in which retailer j is supplied by supplier iZI)

through supplier z% ;) for j=1,...,M. (PS;) can then be reformulated as

M K;
PS,) S(t) = 1= j
(PS) S(t) max ; ) kl;[1 4,

M
s.t. ZKJ =1
j=1
0 < K; < wy,integer j=1....M

We first develop analytical approaches to solve (P.S;) for two special cases of uncapaci-
tated nonhomogeneous supply chains, and then extend them to the general case.

Special Case 1: Homogeneous Mean Demands and Unrestricted Supplier Sets

We begin with a simple case in which all demands have identical mean p as illustrated in
Figure 2.2. Recall that the expected lost sale at a retailer is equal to its mean demand times
the probability that all its suppliers are disrupted. So we do not have to distinguish retailers
from each other in this special case. In addition, we assume that S; = {1,..., N} for any j,
and ¢; < ¢ < ... <gqn. Then (PS;) has a simplified formulation as below.
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Figure 2.2: An N-by-M Supply Chain with Homogeneous Mean Demands, Nonhomogeneous
Supply Reliabilities, and Unrestricted Supplier Sets.
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(PS]) max Z (1 — qu> L

k=1

N
st Y k-Ly=t (1)
k=1

N

ZLk <M (2

k=1

Ly > 0,integer k=1,....N

where Lj; denotes the number of retailers that are supported by k suppliers, where & =
1,...,N. (PS]) maximizes the expected sales while satisfying two constraints: (1) the total

number of links is equal to ¢, and (2) the total number of retailers that are covered is at
most M.

If t < M, any non-negative L that satisfies (1) always satisfies (2), so (2) is redundant
and can be removed. Now (PS}) is reduced to an unbounded knapsack problem, in which
there are N types of goods with unit value (1 — Hle ¢;) and unit cost k, k = 1,..., N,
and we need to decide how many of each goods to take to maximize the total value with a
budget limit is ¢. This problem is NP-complete in general, but our problem can be solved
in polynomial time because of its special property. We relax the integer constraints of the
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knapsack problem, then we only need to find the type of goods with the highest ‘bang per
buck’ and make its quantity as large as possible. The following claim shows that the first
type of goods has the highest ‘bang per buck’.

E o
Claim 2. 1 — ¢, > %, for any k > 2.

Hence, the optimal solution to the LP relaxation of the knapsack problem is L} = ¢, and
Ly =0, for k =2,...,N. Note that L* is integral and thereby feasible and optimal for the
knapsack problem as well. Therefore, the optimal link structure when ¢ < M is to have
supplier 1 supply ¢ retailers.

The above solution, although only solves a special case of (PS]), demonstrates a strategy
of link allocation: try to make full use of more reliable suppliers before considering those less
reliable. Without loss of generality, we can write any ¢ between 0 and M N as t = aM + b,
where a = 0,1,...,N, b=0,1,..., M — 1. Then using the above strategy, we should have
each of the first a suppliers supply all M retailers, supplier a+ 1 supply b of the retailers, and
the other suppliers supply no retailers. Theorem 3 shows that this link structure is actually
optimal for (PS}).

Theorem 3. Let a = max{k € Z: kM <t}, b =t — aM, then there exists an optimal
solution to (PSY), denoted by L*, s.t. Li = M —b, L., =b, and L}, = 0 for any k # a,a+1.

Special Case 2: Homogeneous Supply Reliabilities

In this section, we study another special case of (PS;) in which all suppliers have the same
failure probability ¢ while retailers can have different average demands and restricted supplier
sets. The formulation of this problem is

M
(PS!) max Z,uj (1 — JKJ')
=1

M
s.t. ZKj:t

j=1

0 < K, < u;,integer, j=1....M

Problem (PSH) has a concave objective function and affine constraints. If the integer
constraints are relaxed, the problem becomes a convex optimization problem with strong
duality property. However, we can show that the solution to the relaxation problem is not
necessarily integral. To find the optimal solution to (PS{?), or at least to narrow down the
feasible region, we further investigate the properties of an optimal solution.

Lemma 4. There exists an optimal solution to (PS!'), denoted by K*, s.t. for any j # I,
K < K3, if K <wj and pu < py.
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Figure 2.3: An N-by-M Supply Chain with Nonhomogeneous Mean Demands, Homogeneous
Supply Reliabilities, and Restricted Supplier Sets.

In other words, a retailer with a greater mean demand should not have less suppliers
than one with a smaller mean demand, unless it has been connected to all the suppliers in
its supplier set. This is consistent with the intuition that important retailers deserve more
reliable supply. From Lemma 4, we immediately arrive at the following theorem.

Theorem 5. For (PS!') with t > 0, there exists an optimal solution K* s.t. K]i.k > 1 where

j = argmax{j:uj>0}{luj}‘

In light of Theorem 5, we develop an algorithm to solve (PS/?). The general idea of this
algorithm is to add one link at a time until all ¢ links are assigned. In each iteration, we find
the retailer with the largest expected unmet demand, and connect it to a supplier that has
not been assigned to it if there is any. Here is the notation used in the algorithm:

e v: number of links that have been built, also the iteration number. v € {0,1,...,t}.
o K =(Ki,K,,...,Ky): number of suppliers that have been connected to each retailer.
e u}: upper bound on the number of suppliers that can be assigned to retailer j after

iteration v — 1.

v

e u7: expected amount of uncovered demand at retailer j in iteration v.

tY: number of links to be built after iteration v — 1 .
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Figure 2.4: Solutions to a 2-by-2 Problem

Next, we propose an algorithm to solve problem (PS}?).

Algorithm 1:
Step 0:

,u?<—uj,u9<—N,forj:1,...,M
'« t, v+ 0, K<+ (0,0,...,0)

Step 1:
If t¥ =0, stop. K is the optimal solution.
Otherwise, go to Step 2.

Step 2:

5 — argmax{j:u;’>0}{:ug}
vev+l K« K+e;

Wt —1 il =) auy it =
Y ] N R 4 :
Y { uj”-_1 otherwise * #9 1y ' otherwise

ot —1
Repeat from Step 1.

where e; is the jth unit vector. The complexity of the algorithm is O(t). Since (PS}')
is a special case of (PS;), and Algorithm 2 in next section reduces to Algorithm 1 when
applied to (PSH), the optimality of Algorithm 1 is justified by that of Algorithm 2.
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General Case: Nonhomogeneous Supply Reliabilities, Nonhomogeneous Mean
Demands, and Restricted Supplier Sets

After examining the two special cases, we are ready to move on to (PS;). Now both suppliers
and retailers are nonhomogeneous. As expected, Algorithm 1 is not guaranteed to find the
optimal solution to (PS;). We illustrate this with a small example. Figure 2.4 describes
a 2-by-2 uncapacitated supply chain in which ¢ = (200,10), ¢ = (0.1,0.7), t = 2, and
S1 = Sy = {1,2}. Lemma 1 suggests that link (1,1) must be built in an optimal solution,
and the other link is either (2,1) or (1,2). According to Algorithm 1, we should build link
(2,1) because the expected uncovered demand at retailer 1 (which is equal to 200 x 0.1 = 20)
is greater than that at retailer 2 (which is equal to 10). However, the optimal solution is to
build link (1,2) instead because the expected sales increases by Ao = 10 x (1 —0.1) =9 if
adding link (1,2), and Ay =20 x (1 — 0.7) = 6 if adding link (2,1). This example reveals
that, to find an optimal solution to (P.S;), it is not enough to compare the expected remaining
demands at retailers. The marginal benefit of adding a link is a more reasonable measure,
and it is affected by both the expected remaining demand and the candidate supplier’s
reliability. Then we have the following theorem analogous to Theorem 5.

Theorem 6. For (PS;) with t > 0, there exists an optimal solution K* s.t. K;f > 1 where
j = argmax {,uj <1 — Qi )} :
{jZUj>0} )

Theorem 6 suggests a new criteria for the selection of the additional link in each iteration,
and we use it to develop an algorithm to solve (PS;). We keep the notation of Algorithm 1.
Recall that vector K denotes the numbers of suppliers that have been assigned to retailers.
In the following algorithm, it also specifies which suppliers have been assigned to retailers
because retailers always choose their suppliers in increasing order of failure probability. The
algorithm is depicted below.

Algorithm 2:
Step 0:

,ug-)<—dj,u9<—uj,for any j
0« t, v+ 0, K<« (0,0,...,0)

Step 1:

If t¥ =0, stop. K is the optimal solution.
Otherwise, go to Step 2.

Step 2:
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vev+1l, K« K+e;

v—1 _ P y v—1 if':ﬁ
ulf<—{uj_1 1 ifj=y ’#5%{%{[{,)% J=17

J u? otherwise I3 otherwise
J

Repeat from Step 1.

The complexity of this algorithm is also O(t). Algorithm 2 is essentially a myopic algo-
rithm because we add the link with the most marginal benefit in each iteration. Nevertheless,
in the following theorem, we show that Algorithm 2 is actually global optimal.

Theorem 7. Algorithm 2 gives an optimal solution to problem (PSy).

(PSH) is a special case of (PS;), and Algorithm 1 is a special version of Algorithm 2
when applied to (PS!!). Therefore, the optimality of Algorithm 1 is guaranteed by that of
Algorithm 2.

Back to the Master Problem

Recall that S(T") is the maximum expected sales when the number of links equal to 7', and
the formulation of the master problem is

(PG) min c¢-T—pS(T)

M
s.t. 0<T< Zuj,integer
j=1

S(T') can be estimated efficiently by Algorithm 2, thus we can apply Algorithm 2 for every
T between 0 and Zj\il u;, and identify the 7" value, called 7™, that minimizes the objective
function. The optimal link structure with 7" = 7™ is the optimal solution to (PG). In this

2
way, (PG) can be solved in O ((Z%l uj> + Z]Ai1 uj>. Next, we propose a more efficient

algorithm to solve (PG) based on the following two propositions.

Proposition 8. Solutions given by Algorithm 2 are nested. That is, a solution with T =t

18 fully contained in a solution with T =t+1, fort=1,..., Zj\il uj — 1.

Proposition 8 shows that, in order to find the optimal solution to (PS;), we only need to
start from an optimal solution to (PS;_1). Put another way, we only need to apply Algorithm
2 once with T' = Z]M:1 u; to find the optimal solutions and S(T") values for all values of T'.
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Proposition 9. The marginal increment in S(T) is decreasing in T

The marginal maintenance cost is constant, and Proposition 9 shows that the marginal
increment in expected revenue is decreasing in 7. Hence, we can solve (PG) optimally by
implementing Algorithm 2 with T = Z]Nil uj, and having it terminate once the marginal
increment in expected revenue is less than or equal to the marginal maintenance cost. The
algorithm is summarized as follow.

Algorithm 3:

Step 0:
,u? — dj, u? < uj, for any j
v+« 0, K+ (0,0,...,0)

Step 1:
Ifv= Z]]Vil uj, stop. K is the optimal solution.
Otherwise, go to Step 2.

Step 2:
j Argmaxy;.,v>o} {M]V (1 - QKj+1)}

AS + ,u;f <1 — QK3+1>
If AS < e¢/p, stop. K is the optimal solution.
Otherwise, go to Step 3.

Step 3:

vev+l, K« K+e;
1

v—1 oo A v oo A
u; - —1 ifj= qre, 1t if j =7
R A N A vl :
4 { uj”-_l otherwise /7 { 1 ! otherwise

Repeat from Step 1.

The complexity of the algorithm is O (Zj\il uj) so it is very efficient.

Link Disruptions

It is assumed for all the previous models that links are perfectly reliable. However, besides
suppliers, links may also fail. A lot of literature (such as [40]) have shown that link disrup-
tions may affect the performance of supply chains a lot and in a different way from supply
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disruptions. Therefore, we model the flexibility design problem of an uncapacitated nonho-
mogeneous supply chain with both supply disruptions and link disruptions in this section.
We show that the new model is equivalent to a model with supply disruptions only and can
be solved by our algorithm.

To discriminate between supply disruptions and links disruptions, we replace ¢; and R;
with ¢ and R;, respectively, and define the following new notation:
qéj: failure probability of the link between supplier ¢ and retailer j;
Rﬁj: state of the link between supplier ¢ and retailer 7;
pij « correlation coefficient between R; and Rﬁj.

With non-zero p;;’s, we allow the states of a supplier to be correlated with the states
of the links connected to them. This is usually true because sometimes the disruption at
a supplier and that at a connected link are caused by the same event. Without loss of
generality, assume that supplier sets are unrestricted. As before, because supply capacities
are unlimited, the expected lost sale at each retailer can be calculated individually. At any
retailer j, its demand D; cannot be fulfilled if, for every supplier connected to it, either the
supplier fails itself or the link connecting them fails. Then the expected lost sale at retailer
jis

N N N
Ep, rs ri [Dj A{ > RRLY, =0} | = E[D;] P (Z RiR,Y;; = 0) = ;-] [ P(R;R}; = 0)"%.
=1 i=1 =1

Define g;; = P(R;R; = 0), and by calculation, we have

N

~ S

G = @ + 4 — ¢ di; — piy (71— ¢)ai; (1 — gi;)]

Then the expected lost sale at retailer j is equal to j; vazl c?}?” , and the formulation of the
problem is

N M M N
(PL)  min ¢ > Yi+p (Zﬂj Hzﬁ}f)
i=1 j=1 =1 i=1

st.  Y;€{0,1} i=1,.. Nj=1,..M

This formulation looks very similar to (PG), but now the failure probabilities are defined
for (7, 7) pairs in stead of suppliers.
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Let S; = {(i,j) : i = 1,...,N} for any j, and SN/(Z-J)]- = Y,; for any 4, j. Then by
substitution, (PL) can be expressed as

M M ~
min CZZ?@ +p ZMjHE]V:kj

j=1 keS; j=1  kes,

st. Yy e{0,1} j=1.. Mkebs,

This is exactly the same formulation as (PG) for an M N-by-M supply chain with mean de-
mands p, failure probabilities ¢, and supplier sets S;’s. Therefore, an uncapacitated model
with both supply and link disruptions can always be transformed to an equivalent one with
supply disruptions only. Moreover, it can be solved by Algorithm 3 in O(MN). Because
there is a one-to-one correspondence between Y and }N/, the optimal solution to (PL) can be
easily restored from the optimal Y.

2.5 When Capacity is Limited

So far we have developed algorithms to solve the network configuration problem with unca-
pacitated suppliers. In this section, we discuss some properties of capacitated supply chains.

We have shown in Proposition 9 that the marginal benefit of adding flexibility is de-
creasing when suppliers are uncapacitated. A natural question to ask is: does this property
hold when suppliers have limited capacities? The answer seems to be YES according to
the numerical experiments in [37] and [38]. Besides, [1] provide analytical justification for
the concavity of the throughput in the degree of each node under the assumptions of ho-
mogeneous nodes and symmetric network configuration. Nevertheless, it is very difficult to
give a general proof because the optimal configurations are not necessarily nested in general.
Rather than construct a supply chain in one step, companies usually improve the existing
supply chain when it is not flexible enough. Most of the time, the improvement is basically
adding more links because it is expensive to rebuild the network from scratch, even though
it is not optimal to do so. Based on Corollary 1 in [1], we have a similar proposition as
Proposition 9 for capacitated supply chains.

Proposition 10. In a capacitated nonhomogeneous supply chain, if links are added sequen-
tially following a myopic policy, then the increment in expected sales is non-increasing.

Another way of improving the performance of a supply chain is to expand supply capacity.
We are also interested in how the expected sales change as supply capacity increases.

Proposition 11. In a capacitated nonhomogeneous supply chain, the expected sales is in-
creasing and concave in supply capacity.
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These two propositions reveal the diminishing return from investment in flexibility or
supply capacity. They shed some light on the question how much flexibility (supply capacity)
is necessary in a supply chain. The interaction between the two is further investigated in
the computational study.

2.6 Numerical Study

In this section, we carry out a series of numerical experiments to demonstrate a potential
heuristic algorithm for capacitated supply chains, and to answer some important questions.
The first study discusses about the selection of T" for capacitated supply chains, the second
study tests the performance of Algorithm 2 in capacitated supply chains, and the last study
studies the interaction between flexibility and supply capacity.

Unless otherwise noted, we set the number of suppliers to be 3 and the number of retailers
4. This 3-by-4 structure has several advantages: (a) it has an unbalanced structure, (b) it
has more retailers than suppliers, which is true for most supply chains, (c) it can have three
levels of flexibility: no flexibility (7" < 4), mild flexibility (5 < 7" < 8), and high flexibility
(T'>9), and (d) its small size allows efficient simulation. In all these studies, each supplier’s
state is independently generated according to a Bernoulli distribution with success proba-
bility 1 — ¢;, ¢ = 1,2,3. Demands at retailers are sampled from a 4-dimensional truncated
normal distribution with mean p, standard deviation o = u/4, and the demand distribution
is truncated at p 4 0.5u. We consider both independent demands and positively correlated
demands. In the positively correlated demand case, the correlation coefficient between each
pair of demands is set at 0.5.

A basic block of all the experiments is the estimation of the expected sales per period. If
suppliers’ capacities are unlimited, the expected sales can be calculated analytically. How-
ever, simulation tools are needed for capacitated supply chains. To obtain a sharp estimation,
the simulation horizon is set at 10,000 periods. At the beginning of each period, we gener-
ate a set of demand observations and the suppliers’ states. Given the link structure and the
realized random variables, the maximum throughput of the supply chain is obtained by a
max-flow algorithm. By taking average of the throughputs over the simulation horizon, we
obtain an unbiased estimation of the expected sales.

Selection of the Total Number of Links

We have derived an efficient way to find the optimal number of links in uncapacitated supply
chains, but we have not shown how to identify this value for capacitated supply chains. This
section performs a numerical study on this issue.
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As always argued, flexibility is beneficial but could be costly. Suppose that each link
incurs a cost ¢ per period, and each percent of unmet demand incurs a penalty cost p per
period. Note that here we interpret p as the penalty cost per percentage lost sale instead of
per unit lost sale, so that the effect of demand magnitude is eliminated. If 7" is small, supply
and demand uncertainties may cause large amount of lost sale and thereby a high penalty
cost. On the other hand, the link maintenance cost may be high if 7" is large. So either too
much or too little flexibility is not preferable. The tradeoff between penalty cost and link
maintenance cost indicates that 7" should be set at a proper value in between.

To better understand the effect of T', we simulate the expected total cost of unbalanced
nonhomogeneous supply chains with p = (40, 30,20, 10) and various T, ¢, C, and p. The
expected total cost of a supply chain is obtained by enumerating all possible link configu-
rations with the given T' value and selecting the minimum average total cost. Demands are
independent, or have a 0.5 correlation between each other. For simplicity, we set C' such that
every supplier has the same capacity and the expected total capacity of the supply chain is
equal to the expected total demand.

We plot the expected total cost as functions of T in Figure 2.5. Demands are inde-
pendent in Figure 2.5(a) and 2.5(b) and are correlated with p = 0.5 in Figure 2.5(c) and
2.5(d). Because we only care about the optimal value of T, denoted by 7%, and we can
always rescale the expected total cost by 1/c without changing T*, we fix ¢ = 1 to reduce
the dimension of the factors affecting 7. All curves show that the cost function is convex in
T'. This is because that the expected total cost is the sum of a linear function (maintenance
cost) and a convex function (penalty cost of lost sale) of 7. The convexity of total cost
makes it flat around 7%, hence it only increases slightly if 7" deviates from 7™. It is also
notable that the curves with p = 0.5 are almost identical to those with p = 0, which means
that the expect total cost does not increase substantially if demands are positively correlated.

Figure 2.5 also reveals that T depends on ¢ and p. Consider the extreme cases: if ¢ is the
zero vector, all suppliers are perfectly reliable, then not much flexibility is needed to achieve
a desirable level of expected sales; on the other hand, if ¢ is (1,1,1), no supplier works at
any time, then no link should be built. Hence, T might be concave in ¢. Similarly, 7" might
be increasing with respect to p by intuition, because the harder lost sale is penalized, the
more flexibility is desirable.

To justify the conjectures above, we design an experiment to investigate T™*’s dependency
on ¢ and p. We first consider a 3-by-4 nonhomogeneous supply chain with u = (40, 30, 20, 10).
To make life easier, we let ¢;’s change proportionally, and C' changes accordingly to keep the
expected total supply capacity equal to the expected total demand. Figure 2.6 shows 7™ v.s.
q under different p values with independent or correlated demands. It turns out that 7% is
not concave in ¢ as we expected. However, T™ is quasi-concave in q. Comparing the curves
in the same figure, we find that a curve with a larger p is always above one with a smaller
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Figure 2.5: Expected Total Cost v.s. Number of Links

p, which is consistent with our intuition that 7™ is increasing in p. Again, 7™ has the same
value no matter demands are independent or not, except for the instance when p = 10 and
q = (0.4,0.53,0.67). Therefore, positive correlation between demands has little impact on 7*.

Algorithm Test

It has been shown in the last study that a capacitated supply chain’s expected total cost
is robust against the variability of 7" in a neighborhood of 7%, and there are simple rela-
tionships between 7™, and failure probabilities and the penalty cost. Thus, it is possible to
find a T that generates close-to-optimal expected total cost using some heuristics. Suppose
T is given, we only need an algorithm to determine where to locate these links. In this
study, extensive simulations are carried out to test how Algorithm 2 works with limited
supply capacity. Our results show that Algorithm 2 provides reasonably good solutions for
capacitated supply chains under weak conditions. We demonstrate its performance with the
following numerical examples.
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neous Supply Chains with p = (40, 30, 20, 10)

Consider a 3-by-4 system with p = (40, 30,20, 10), ¢ = (0.1,0.3,0.5), and p = 0. Let
suppliers’ capacities be (30, 30, 30), (50, 50, 50) and (80, 80, 80). These three capacity
portfolios represent the cases that the expected total capacity is (1) less than, (2) roughly
equal to, and (3) greater than the expected total demand, respectively. T increases from
1 to 11 with increment 1 (7" = 0 or 12 is not studied because the problem has unique fea-
sible solution in these cases). For each instance, the optimal link structure is identified by
enumerating all possible structures and choose the one that achieves the maximum average
sales in simulation. As a byproduct of simulation, the expected sales when using the link
structure given by Algorithm 2 are also estimated.

Figure 2.7 compares the expected sales using optimal link configurations and those using
link configurations given by Algorithm 2. In both figures, Algorithm 2 configurations are
dominated by the optimal ones. The difference between the two sets of performance is sub-
stantial when C' = (30, 30, 30), and is almost negligible when C' = (80,80, 80). This result
is not surprising — since the difference is caused by limited capacities, it must go to zero as
capacities become sufficient. Therefore, the link configurations given by Algorithm 2 may
perform almost as good as the optimal ones when supply capacity is large enough.

To gain more insights, we calculate the relative error in expected sales, denoted by er,
which is given by
_ optimal average sales — average sales using Algr.2 solutions

er = , x 100%.
optimal average sales

Figure 2.8 shows er with different 7" and C. As shown in Figure 2.7(a) and Figure 2.7(b), er
decreases as C' increases — it can be over 55% when C' = (30, 30, 30) while it is within 41%
and 14% when C' = (50,50, 50) and (80, 80, 80), respectively. Although er is obviously not
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Figure 2.7: Performance Comparison of Algorithm 2 Solutions and Optimal Solutions with
Different Values of T" and C'
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Figure 2.8: Relative Error in Expected Sales when Applying Algorithm 2 to Capacitated
Supply Chains

monotone with respect to T', the general trend is that er is small when T is large, except for
T =1. When T is restricted to be greater than 4, the number of retailers, the performance
of Algorithm 2 configurations can be greatly improved. For instance, er is within 12% in-
stead of 41% when C' = (50,50,50) and 7" > 4. It is reasonable to believe that Algorithm 2
provides reasonably good solutions for capacitated supply chains when 7% > M, and when
the expected total capacity of the supply chain is close to the expected total demand.

Supply chain i q p
AT (40,30,20,10)  (0.1,0.2,0.3) 0
A2 (40,30,20,10)  (0.1,0.2,0.3) 0.5
B1 (40,30,20,10)  (0.1,0.3,0.5) 0
B2 (40,30,20,10)  (0.1,0.3,0.5) 0.5
C1 (40,30,20,10)  (0.7,0.8,0.9) 0
c2 (40,30,20,10)  (0.7,0.8,0.9) 0.5
D1 (1000, 100,10,1) (0.1,0.2,0.3) 0
D2 (1000, 100, 10,1) (0.1,0.2,0.3) 0.5

Table 2.1: Typical Supply Chains and Their Specifications

To better evaluate Algorithm 2’s performance when supply capacity is limited, we test it
in several more supply chains while keeping the expected total capacity equal to the expected
total demand and increasing 7" from 5 to 8 with increment 1. Those 7" values greater than
8 are not tested because the relative error is negligible in these cases according to Figure
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2.8. Table 2.1 summarizes the specifications of the supply chains considered here. They
are separated into two groups: group 1 (A1, B1, C1, D1) have independent demands, while
group 2 (A2, B2, C2, D2) have positive correlated demands with correlation coefficient 0.5.
Within each group, we consider the four cases: (A) similar demands, and small and similar
failure probabilities, (B) similar demands, and small and very different failure probabili-
ties, (C') similar demands, and large and similar failure probabilities, and (D) very different
demands, and small and similar failure probabilities. The result is described in fig:errors.
We notice that Algorithm 2 performs almost the same no matter demand is indep