UC San Diego UC San Diego Previously Published Works

Title

Identifying Common Genetic Variants in Blood Pressure Due to Polygenic Pleiotropy With Associated Phenotypes

Permalink https://escholarship.org/uc/item/7p71269j

Journal Hypertension, 63(4)

ISSN 0194-911X

Authors

Andreassen, Ole A McEvoy, Linda K Thompson, Wesley K <u>et al.</u>

Publication Date

2014-04-01

DOI

10.1161/hypertensionaha.113.02077

Peer reviewed

Genetics

Identifying Common Genetic Variants in Blood Pressure Due to Polygenic Pleiotropy With Associated Phenotypes

Ole A. Andreassen, Linda K. McEvoy, Wesley K. Thompson, Yunpeng Wang, Sjur Reppe, Andrew J. Schork, Verena Zuber, International Consortium for Blood Pressure Genome-Wide Association Studies, Genetic Factors for Osteoporosis Consortium, Elizabeth Barrett-Connor, Kaare Gautvik, Pål Aukrust, Tom H. Karlsen, Srdjan Djurovic, Rahul S. Desikan, Anders M. Dale

Abstract—Blood pressure is a critical determinant of cardiovascular morbidity and mortality. It is affected by environmental factors, but has a strong heritable component. Despite recent large genome-wide association studies, few genetic risk factors for blood pressure have been identified. Epidemiological studies suggest associations between blood pressure and several diseases and traits, which may partly arise from a shared genetic basis (genetic pleiotropy). Using genome-wide association studies summary statistics and a genetic pleiotropy-informed conditional false discovery rate method, we systematically investigated genetic overlap between systolic blood pressure (SBP) and 12 comorbid traits and diseases. We found significant enrichment of single nucleotide polymorphisms associated with SBP as a function of their association with body mass index, low-density lipoprotein, waist/hip ratio, schizophrenia, bone mineral density, type 1 diabetes mellitus, and celiac disease. In contrast, the magnitude of enrichment due to shared polygenic effects was smaller with the other phenotypes (triglycerides, high-density lipoproteins, type 2 diabetes mellitus, rheumatoid arthritis, and height). Applying the conditional false discovery rate method to the enriched phenotypes, we identified 62 loci associated with SBP (false discovery rate <0.01), including 42 novel loci. The observed polygenic overlap between SBP and several related disorders indicates that the epidemiological associations are not mediated solely via lifestyle factors but also reflect an etiologic relation that warrants further investigation. The new gene loci identified implicate novel genetic mechanisms related to lipid biology and the immune system in SBP. (Hypertension. 2014;63:819-826.) • Online Data Supplement

Key Words: arterial pressure ■ comorbidity ■ genetic pleiotropy ■ genome-wide association study

High blood pressure affects >1 billion individuals,¹ and even small increments increase morbidity and mortality. Though heritability estimates of systolic blood pressure (SBP) exceed 50%,^{2,3} genes identified to date explain only a small proportion of heritability.⁴ It has been argued that the genetic architecture of blood pressure regulation in the general population cannot be explained by commonly occurring genetic variation, suggesting that genome-wide association studies (GWAS) will continue to fail in hypertension.^{5,6} However, recent results indicate that GWAS have the potential to explain a greater proportion of heritability of most common complex phenotypes.^{7,8} This polygenic architecture suggests that a large number of single nucleotide polymorphisms (SNPs) will have associations too weak to be identified using traditionally used analytic methods and limited sample sizes.⁹ This has led to recent National Institutes of Health and European Union calls for new cost-effective analytical methods to reliably identify a larger proportion of SNPs associated with complex diseases and traits using existing GWAS, because recruitment and genotyping of new participants are expensive. One such approach relies on genetic pleiotropy,¹⁰ that is, the association of individual SNPs or genes with ≥ 2 phenotypes. Given the large number of traits in humans, and the relatively small number of genes, some genes are likely to affect multiple traits. Moreover, because there are often overlapping traits among behaviorally or clinically defined phenotypes, shared genetic influences between such phenotypes are likely.

Hypertension is available at http://hyper.ahajournals.org

Received July 21, 2013; first decision August 14, 2013; revision accepted December 6, 2013.

From NORMENT-KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine (O.A.A., Y.W., V.Z., S.D.), and Institute of Basic Medical Sciences (K.G.), University of Oslo, Oslo, Norway; Division of Mental Health and Addiction (O.A.A., Y.W., V.Z., S.D.), Department of Medical Biochemistry (S.R., K.G.), Division of Cancer Medicine, Surgery, and Transplantation, Research Institute of Internal Medicine (T.H.K.), and Section of Clinical Immunology and Infectious Diseases, Research Institute of Internal Medicine (P.A.), Oslo University Hospital, Oslo, Norway; Department of Psychiatry (O.A.A., W.K.T., A.M.D.), Multimodal Imaging Laboratory (L.K.M., Y.W., A.J.S., R.S.D., A.M.D.), Department of Radiology (L.K.M., R.S.D., A.M.D.), Cognitive Sciences Graduate Program (A.J.S.), Family and Preventive Medicine, Division of Epidemiology (E.B.-C.), and Department of Neurosciences (Y.W., A.M.D.), University of California San Diego, La Jolla, CA; Department of Medical Biochemistry, Lovisenberg Deacon Hospital, Oslo, Norway (K.G.); and Division of Gastroenterology, Institute of Medicine, University of Bergen, Bergen, Norway (T.H.K.).

The online-only Data Supplement is available with this article at http://hyper.ahajournals.org/lookup/suppl/doi:10.1161/HYPERTENSIONAHA. 113.02077/-/DC1.

Correspondence to Anders M. Dale, Department of Radiology, University of California, San Diego, 8950 Villa La Jolla Dr, Suite C101, La Jolla, CA 92037-0841. E-mail amdale@ucsd.edu; and Ole A. Andreassen, NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital, Ullevål, PO Box 4956 Nydalen, 0424 Oslo, Norway. Email o.a.andreassen@medisin.uio.no

^{© 2014} American Heart Association, Inc.

factors for cardiovascular diseases (CVDs),^{11,12} including hypertension, obesity, diabetes mellitus, and dyslipidemia.^{1,13-15} Several other traits and disorders have also been associated with blood pressure, including height,^{2,3,16} osteoporosis,^{4,17} schizophrenia,5,6,18 diabetes mellitus,7,8,19 and autoimmune disorders.9,20 However, observational and clinical studies cannot fully elucidate the etiologic relationship between these phenotypes. Methods for assessing genetic pleiotropy offer great promise for delineating the basis of shared phenotypic correlations and for cost-effective identification of new loci.^{10,21,22} This could be particularly meaningful for essential hypertension, where multiple pathogenic processes are likely involved^{11,12,23} and overlapping genetic associations with multiple phenotypes may be frequent. Here, we applied a recently developed genetic pleiotropy-informed analytical method for GWAS that captures more of the polygenic effects in complex disorders and traits (hereafter referred to as polygenic pleiotropy).²² We used this approach to leverage the power of multiple large independent GWAS for identifying SNPs exhibiting pleiotropy between SBP and 12 associated traits and disorders where recent GWAS results are available, namely, bone mineral density (BMD),²⁴ low-density lipoprotein (LDL)-cholesterol, highdensity lipoprotein (HDL)-cholesterol, triglycerides (TG),25 type 2 diabetes mellitus (T2D),²⁶ body mass index (BMI),²⁷ waist/hip ratio (WHR),28 height (HT),29 schizophrenia (SCZ),30 type 1 diabetes mellitus (T1D),³¹ rheumatoid arthritis (RA),³² and celiac disease (CeD).^{33,34} By combining data from these different GWAS, we hypothesized that the genetic pleiotropyinformed approach can improve the discovery of SBP genes and inform the etiologic relationship between blood pressure and epidemiologically related phenotypes.

Epidemiological studies have identified several major risk

Methods

Participant Samples

We obtained complete GWAS results in the form of summary statistics P values from public access websites or through collaboration with investigators (Table 1). Details of inclusion criteria and phenotype characteristics of different GWAS are described elsewhere.^{4,25-28} There was some overlap among several of the participants in the CVD risk factor GWAS and the SBP GWAS samples.⁴ The relevant institutional review boards or ethics committees approved the research protocol of individual GWAS, and all participants gave written informed consent. All studies adhered to the principles of the Declaration of Helsinki.

Statistical Analyses

Genomic Control

We applied a control method using only intergenic SNPs to compute the inflation factor, λ_{GC} , and divided all test statistics by λ_{GC} , as detailed in previous publications.^{21,22}

Conditional Quantile-Quantile Plots for Pleiotropic Enrichment

Enrichment of statistical association relative to that expected under the global null hypothesis can be visualized through quantile-quantile (Q-Q) plots of nominal P values obtained from GWAS summary statistics. Genetic enrichment results in a leftward shift in the Q-Q curve, corresponding to a larger fraction of SNPs with nominal $-\log_{10} P$ value greater than or equal to a given threshold. Conditional Q-Q plots are constructed by creating subsets of SNPs based on the significance of each SNP's association with a related phenotype and computing Q-Q plots separately for each level of association (for further details, see Andreassen et al^{21,22}). We constructed conditional Q-Q plots of empirical quantiles of nominal $-\log_{10}(P)$ values for SNP association with SBP for all SNPs and for subsets of SNPs determined by nominal P values of their association with each of the 12 related phenotypes $[-\log_{10}(P) \ge 0, -\log_{10}(P) \ge 1, -\log_{10}(P) \ge 2, \text{ and } -\log_{10}(P) \ge 3$ corresponding to $P \le 1$, ≤ 0.1 , ≤ 0.01 , and ≤ 0.001 , respectively]. The nominal P values $[-\log_{10}(P)]$ are plotted on the y axis and the empirical quantiles $[-\log_{10}(q), \text{ where } q=1-\text{CDF}(P)]$ are plotted on the x axis. To assess polygenic effects, we focused the conditional Q-Q plots on SNPs with nominal $-\log_{10}(P) < 7.3$ (corresponding to $P > 5 \times 10^{-8}$).

Conditional False Discovery Rate

Enrichment seen in the conditional Q-Q plots can be directly interpreted in terms of false discovery rate (FDR)^{21,22} (equivalent to [1– true discovery rate]).³⁵ We applied a conditional FDR method^{22,36,37} and constructed true discovery rate plots, as described earlier^{21,22} and detailed in the online-only Data Supplement.

Table 1. Genome-Wide Association Studies Data Used in the Current Study

Disease/Trait	Ν	Number of SNPs	Reference
Systolic blood pressure	203 056	2382073	International Consortium for Blood Pressure Genome-Wide Association Studies ⁴
ow-density lipoprotein	99 900	2508375	Teslovich et al ²⁵
High-density lipoprotein	96 598	2508370	
Triglycerides	96 568	2 508 369	
Height	183727	2 398 527	Lango Allen et al ²⁹
Body mass index	123 865	2 400 377	Speliotes et al ²⁷
Waist/hip ratio	77 167	2376820	Heid et al ²⁸
Type 2 diabetes mellitus	22044	2426886	Voight et al ²⁶
Type 1 diabetes mellitus	16 559	841 622	Barrett et al ³¹
Rheumatoid arthritis	25708	2560000	Stahl et al ³²
Bone mineral density	32961	2500000	Estrada et al ²⁴
Celiac disease	15283	528969	Dubois et al ³⁴
Schizophrenia	21 856	1171056	Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium ³⁰

For more details, see also http://www.genome.gov/gwastudies. SNP indicates single nucleotide polymorphism.

Conditional Statistics: Test of Association With SBP

To improve detection of SNPs associated with SBP, we conditioned SNPs based on *P* values in the related phenotype.^{21,22} We then assigned a conditional FDR value (denoted as FDR_{SBP|related phenotype}) for SBP to each SNP, for each related phenotype by interpolation, using a 2-dimensional look-up table of conditional FDR values^{21,22} computed for each of the specific data sets used in the current study (Figure S3 in the online-only Data Supplement). All SNPs with FDR_{SBP|related phenotype}<0.01 [$-\log_{10}$ (FDR_{SBP|related phenotype})>2] in SBP given association with any of the 12 related phenotypes are listed in Table 1 after pruning (ie, removing all SNPs with r²>0.2 based on 1000 Genomes Project linkage disequilibrium [LD] structure). A significance threshold of FDR<0.01 corresponds to 1 false-positive per 100 reported associations.

Conditional FDR Manhattan Plots

To illustrate the localization of genetic markers associated with SBP given the related phenotype effect, we used a conditional FDR Manhattan plot, plotting all SNPs within an LD block in relation to their chromosomal locations. The strongest signal in each LD block was identified by ranking all SNPs in increasing order, based on the conditional FDR value for SBP and then removing SNPs in LD $r^2>0.2$ with any higher ranked SNP. Thus, the selected locus was most significantly associated with SBP in each LD block.

Results

Pleiotropic Enrichment–Polygenic Overlap

Conditional Q-Q plots for SBP conditioned on nominal P values of association with LDL, BMI, BMD, T1D, SCZ,

and CeD showed enrichment across different levels of significance (Figure 1A–1F). For LDL, the proportion of SNPs in the $-\log_{10}(P_{LDL}) \ge 3$ category reaching a given significance level [eg, $-\log_{10}(P_{SBP}) > 6$] was ≈ 100 times greater than for $-\log_{10}(p_{LDL}) \ge 0$ category (all SNPs), indicating a high level of enrichment (Figure 1A). A similar level of enrichment was seen for BMI and SCZ (Figure 1B and 1C); CeD, T1D, and BMD also showed a high level of enrichment (Figure 1D–1F). Weaker pleiotropic enrichment was seen for WHR (Figure S1), with little or no evidence for enrichment in RA, HDL, TG, T2D, and HT (Figure S1). We also illustrated the high level of polygenic pleiotropic enrichment in LDL, BMI, BMD, T1D, SCZ, and CeD using enrichment plots (Figure S2).

Gene Loci Associated With SBP

The conditional FDR Manhattan plot in Figure 2 shows the 62 independent gene loci significantly associated with SBP based on conditional FDR<0.01 obtained from associated phenotypes. The 30 complex loci and 32 single gene loci (after pruning) were located on 16 chromosomes (Table 2). Only 11 of these loci would have been discovered using standard statistical methods (Bonferroni correction; bold values in the SBP *P* value column; Table 2). Using the FDR method, 25 loci were identified (bold values in the SBP FDR column; Table 2). The remaining 37 loci would not have been identified

Figure 1. Quantile-quantile (Q-Q) plots of pleiotropic enrichment in systolic blood pressure (SBP) conditioned on associated phenotypes. Conditional Q-Q plot of nominal vs empirical $-\log_{10} P$ values (corrected for inflation) in SBP below the standard genome-wide association studies threshold of $P < 5 \times 10^{-8}$ as a function of significance of association with (**A**) low-density lipoprotein cholesterol (LDL), (**B**) body mass index (BMI), (**C**) bone mineral density (BMD), (**D**) type 1 diabetes mellitus (T1D), (**E**) schizophrenia (SCZ), and (**F**) celiac disease (CeD) at the level of $-\log_{10}(P) > 0$, $-\log_{10}(P) > 2$, $-\log_{10}(P) > 3$ corresponding to P < 1, <0.1, <0.01, <0.001, respectively. Dotted lines indicate the null hypothesis.

in the current sample without using the pleiotropy-informed conditional FDR method. Of the 62 loci identified, 42 were novel; 20 were reported in the primary analysis of the current sample.⁴ Many of these new loci are located in regions with borderline significant association with SBP in previous studies.⁴ Of interest, several loci had multiple pleiotropic SNPs from several associated phenotypes, indicating overlapping genetic factors among these phenotypes.

Follow-up ingenuity pathways analysis is presented in Tables S3 and S4, identifying the traits in the categories Cardiovascular Disease or Cardiovascular System Development and Function, respectively, that may be affected by gene heterogeneities in the vicinity of indicated SBPassociated genes. Figure S4, made by the network function in ingenuity pathways analysis, demonstrates that a large proportion of SBP-associated genes are functionally related.

Discussion

Our findings demonstrate polygenic pleiotropy between SBP and BMI, T1D, SCZ, CeD, and BMD, with strongest pleiotropy between SBP and LDL. Combining GWAS data from multiple different phenotypes, we identified 62 SBP susceptibility loci, including 42 novel loci.

In the original SBP GWAS sample, 29 loci were identified.⁴ By combining the original SBP sample with GWAS of epidemiologically related phenotypes, we found significant pleiotropic signals in 62 loci. Thus, although the original SBP GWAS was quite large,⁴ the increased power provided by additional GWAS of associated phenotypes together with the FDR method more than doubled gene discovery. These findings underline the cost-effectiveness of the current statistical methods and strongly suggest that SBP is a highly polygenic trait, in line with recent findings.³⁸

Our findings also provide novel insights into the relationship between SBP and other major CVD risk factors, which frequently co-occur. The combination of dyslipidemia (primarily increased TG levels and decreased HDL levels), T2D, and high blood pressure forms the metabolic syndrome.¹²⁻¹⁶ These results demonstrate an interesting genetic dissociation among cardiovascular risk factors. We found that LDL, a classic CVD risk factor, showed strongest pleiotropy with SBP, whereas factors associated with the metabolic syndrome (TG, HDL, and T2D) showed little genetic pleiotropy with SBP. Further research is needed to determine whether there is strong genetic pleiotropy among the metabolic risk factors, which would provide a genetic basis for the metabolic syndrome. The strong pleiotropy between LDL and SBP suggests that many genes related to lipid biology are pleiotropic with SBP and indicates common mechanisms related to atherosclerosis. This is further supported by the individual loci identified, of which the majority was based on conditional FDR with LDL, BMI, or WHR. Several of the genes in LD with these new SBP-associated loci are involved in lipid metabolism and regulation. Lipid metabolism regulation may also underlie the observed pleiotropy between SBP and BMD, as suggested by gene expression in bone tissue.³⁹ However,

Figure 2. False discovery rate (FDR) Manhattan plot of conditional $-log_{10}$ (FDR) values for systolic blood pressure (SBP) alone (black) and SBP given the associated phenotypes low-density lipoprotein cholesterol (LDL; SBPILDL, blue), body mass index (BMI; SBPIBMI, green), bone mineral density (BMD; SBPIBMD, red), type 1 diabetes mellitus (T1D; SBPIT1D, light blue), schizophrenia (SCZ; SBPISCZ, purple), and celiac disease (CeD; SBPICeD, chartreuse). Single nucleotide polymorphisms (SNPs) with conditional $-log_{10}$ FDR>2 (ie, FDR<0.01) are shown with large points. A black circle around the large points indicates the most significant SNP in each linkage disequilibrium block, antigen (HLA) region on chromosome 6, and in Table S2 in the online-only Data Supplement. The figure shows the localization of 62 loci on 16 chromosomes (1–12, 15–17, and 20). Details for the loci with $-log_{10}$ FDR>2 (ie, FDR<0.01) are shown in Table 1.

Locus	SNP	Position	Gene	Chr	SBP <i>P</i> Value	SBP FDR	Min condFDR	Associated Phenotype
1	rs2748975	1886519	KIAA1751	1	1.81E-06	0.01493	0.0095053	WHR
2	rs880315	10796866	CASZ1	1	1.44E-05	0.04983	0.0040514	CeD
3	rs17367504	11862778	MTHFR*	1	9.86E-11	0.00003	0.0000013	WHR
	rs2050265	11879699	CLCN6	1	2.38E-10	0.00003	0.0000026	WHR
4	rs6676300	11925300	NPPB	1	1.47E-05	0.04983	0.0054695	CeD
5	rs783622	42366988	HIVEP3	1	1.04E-05	0.03839	0.0028136	LDL
6	rs12048528	113210534	CAPZA1	1	3.84E-06	0.02209	0.0014541	BMI
	rs2932538	113216543	MOV10*	1	1.78E-06	0.01493	0.0014684	BMI
7	rs4332966	43083831	HAAO	2	1.58E-05	0.04983	0.0025790	BMI
8	rs9309112	44169889	LRPPRC	2	1.56E-05	0.04983	0.0047478	LDL
9	rs12619842	164945044	FIGN	2	1.01E-05	0.03839	0.0089999	LDL
	rs16849397	165108248	GRB14	2	4.76E-07	0.00665	0.0025354	WHR
10	rs2594992	11360997	ATG7	3	2.24F-06	0.01687	0.0076216	WHR
11	rs6806067	14948702	FGD5	3	2.23E-06	0.01493	0.0033240	BMI
12	rs6797587	48197614	CDC25A	3	1.32E-06	0.01180	0.0043919	BMI
13	rs223102	169100755	MFCOM*	3	4.56F-08	0.00112	0.0006796	WHR
14	rs9290369	169324783	MECOM	3	8.04F-07	0.000112	0.0066551	WHR
15	rs10006384	38385187	FL 113197	4	2 71E-06	0.01687	0.0054382	BMI
16	re1//58038	81164723	FGE5*	4	1.08E-00	0.00004	0.0004302	WHR
17	rs13107325	103188709	SI C3948*	4	1.55E-07	0.00004	0.0000220	BMI
18	re11737/3	32775047	NDR3	5	1.53E-07	0.00271	0.0000223	BMI
10	re1172771	22215022	CEorf22*	5	4.70E-07	0.00003	0.000/773	
10	ro/59159	100400101	DDMG	5	6.44L-00	0.00102	0.0004338	007
19	15430130	122402101		5	0.70E-00	0.02945	0.0071803	30Z
20	1511750762	122970743	CONK 103	э г	0.75E-00	0.02945	0.0070269	
21	1811953630	15/845402	EBF1"	5	3.64E-07	0.01007	0.0029954	WHR
22	199205	7736417	BINIPO	0	2.29E-06	0.01687	0.0076216	WHK
23	rs9467445	25234884	BC029534	6	2.20E-06	0.01493	0.0011956	עוו
24	rs11754013	25370200	LRRC76A	6	1.32E-05	0.04368	0.0076472	LDL
25	rs2/36155	31605199	PRRC2A (BA12)*	6	1.41E-06	0.01180	0.0002670	BMI
	rs805303	31616366	BAG6 (BAT3)*	6	8.17E-07	0.00909	0.0000941	SCZ
26	rs429150	32075563	TNXB	6	1.70E-05	0.04983	0.0090475	LDL
27	rs394199	33553580	GGNBP1 (AY383626)	6	3.96E-05	0.08570	0.0034152	T1D
28	rs581484	126665180	CENPW (C6orf173)	6	3.08E-06	0.01922	0.0089438	LDL
29	rs853964	127029267	AK127472	6	2.63E-06	0.01687	0.0076216	WHR
30	rs2969070	2512545	BC034268	7	2.64E-07	0.00386	0.0014814	T1D
31	rs3735533	27245893	HOTTIP (AK093987)	7	1.37E-05	0.04368	0.0056631	LDL
32	rs7777128	27337113	EVX1	7	6.04E-06	0.02945	0.0020776	LDL
33	rs7787898	106409897	AF086203	7	2.60E-06	0.01687	0.0062017	SCZ
34	rs3088186	10226355	MSRA	8	1.97E-05	0.05707	0.0019924	SCZ
35	rs4735337	95973465	NDUFA6 (C8orf38)	8	3.54E-05	0.07505	0.0028564	T1D
36	rs12006112	21042299	PTPLAD2	9	5.02E-05	0.09719	0.0058735	T1D
37	rs4978374	111646983	IKBKAP	9	9.87E-06	0.03839	0.0094345	BMD
38	rs12570727	18425519	CACNB2*	10	4.07E-08	0.00093	0.0001882	SCZ
39	rs12258967	18727959	CACNB2	10	1.42E-07	0.00271	0.0015659	WHR
								(Continued)

Table 2. Independent Loci Associated With SBP Through Conditional False Discovery Rate (FDR; <0.01) With Associated</th>Phenotypes

Table 2. Continued

Locus	SNP	Position	Gene	Chr	SBP <i>P</i> Value	SBP FDR	Min condFDR	Associated Phenotype
40	rs4590817	63467553	C10orf107*	10	3.40E-08	0.00077	0.0001588	WHR
41	rs12247028	75410052	SYNP02L	10	1.59E-06	0.01328	0.0067916	WHR
42	rs932764	95895940	PLCE1*	10	1.47E-07	0.00271	0.0001182	LDL
43	rs10786156	96014622	PLCE1	10	2.51E-06	0.01687	0.0020927	BMI
44	rs10883766	104464763	ARL3	10	1.91E-05	0.05707	0.0071447	CeD
	rs284844	126665180	WBP1L (C10orf26)	10	5.48E-09	0.00015	0.0000039	BMI
	rs1926032	127029267	CNNM2	10	2.77E-10	0.00003	0.0000001	BMI
	rs11191548	2512545	NT5C2*	10	2.43E-10	0.00003	0.0000001	SCZ
45	rs7129220	27245893	EF537580*	11	6.92E-08	0.00135	0.0006154	SCZ
46	rs1580005	27337113	EF537580	11	2.80E-06	0.01687	0.0057696	LDL
47	rs381815	106409897	PLEKHA7*	11	1.25E-09	0.00005	0.0000205	BMI
48	rs642803	10226355	OVOL1	11	1.14E-05	0.04368	0.0065527	LDL
49	rs633185	95973465	FLJ32810*	11	2.98E-08	0.00077	0.0004474	WHR
50	rs11105328	21042299	POC1B (WDR51B)	12	5.35E-10	0.00003	0.0000080	SCZ
	rs2681472	111646983	ATP2B1*	12	5.14E-13	0.00003	0.0000062	SCZ
51	rs7297186	18425519	CUX2	12	1.88E-06	0.01493	0.0005328	CeD
	rs3742004	18727959	FAM109A	12	6.39E-07	0.00783	0.0003417	WHR
	rs653178	63467553	ATXN2	12	4.58E-10	0.00003	0.0000002	BMI
	rs1005902	75410052	HECTD4 (C12orf51)	12	2.62E-06	0.01687	0.0005845	LDL
	rs12580178	95895940	RPH3A	12	4.21E-06	0.02209	0.0007345	LDL
52	rs7299238	96014622	CABP1	12	6.25E-05	0.10892	0.0053975	LDL
53	rs11070252	104464763	GOLGA8T (AK310526)	15	3.86E-06	0.02209	0.0078255	CeD
54	rs1378942	75077367	CSK*	15	1.63E-10	0.00003	0.0000002	CeD
55	rs8032315	91418297	FURIN	15	1.83E-07	0.00323	0.0000828	SCZ
	rs2521501	91437388	FES*	15	7.16E-08	0.00162	0.0011762	WHR
56	rs11643718	56933519	SLC12A3	16	3.30E-05	0.07505	0.0037698	T1D
57	rs4793172	43131480	DCAKD	17	7.05E-07	0.00783	0.0040625	SCZ
	rs2239923	43176804	NMT1	17	3.97E-07	0.00558	0.0008079	BMD
	rs12946454	43208121	PLCD3	17	5.17E-08	0.00112	0.0000647	BMD
58	rs11012		PLEKHM1	17	4.12E-05	0.08570	0.0034152	T1D
59	rs17608766		GOSR2*	17	4.59E-07	0.00665	0.0005684	BMI
60	rs6055905		PLCB1	20	3.04E-05	0.07505	0.0064506	LDL
61	rs6072403		CHD6	20	5.59E-06	0.02552	0.0058812	LDL
62	rs6015450		ZNF831*	20	5.63E-08	0.00135	0.0006154	SCZ

Independent complex or single-gene loci (r^2 <0.2) of single nucleotide polymorphisms (SNPs) with a conditional FDR (condFDR)<0.01 in systolic blood pressure (SBP) given the significance level in the associated phenotype. We defined the most significant SBP SNP in each linkage disequilibrium (LD) block based on the minimum condFDR (min condFDR) for each associated phenotype. The most significant SNPs in each gene of the LD block are listed along with the associated phenotype that provided the signal. BMD indicates bone mineral density; BMI, body mass index; CeD, celiac disease; Chr, chromosome location; LDL, low-density lipoprotein cholesterol; SCZ, schizophrenia; T1D, type 1 diabetes mellitus; and WHR, waist/hip ratio. SBP FDR values <0.01 and *P* values <5×10⁻⁸ are in bold.

*Same locus identified in previous SBP genome-wide association studies. The most significant phenotype associations per gene are shown. All genes are shown in Table S1 in the online-only Data Supplement. All data were first corrected for genomic inflation. Gene titles and gene ontology functional terms are displayed in Table S2. Ingenuity pathway analysis was used to generate a network displaying direct interactions among proteins encoded by these SBP-related genes (shown in Figure S3). The molecules associated with some of the top functional clusters of these genes are shown in Tables S3 and S4.

age-related mechanisms may also underlie the overlap seen between SBP and BMD. 40

Pleiotropy is defined as a single gene or variant being associated with >1 distinct phenotype.⁴¹ Rather than representing genetic pleiotropy, it is also possible that some of the loci identified in the current study may underlie common aspects of the SBP and CVD phenotypes. Moreover, the shared genetic loci may also represent mediated pleiotropy. For example, for LDL and SBP overlap may be because of the fact that lipid deposition leads to stiff arteries and thus higher blood pressure.

Another novel finding is the overlap between SBP and immune-related disorders, including CeD and T1D. Based on conditional analysis of these 2 phenotypes, 24 loci were identified. These phenotypes also showed strong polygenic pleiotropy, with clear enrichment in the Q-Q plots. Although previous studies have suggested a link between T2D and SBP, the present study found an overlap between T1D, but not T2D, and SBP, suggesting immune-mediated rather than metabolic links between diabetes mellitus and SBP. The immune-related mechanisms involved in SBP seem to be quite specific because we found little enrichment with RA, a prototypical autoimmune disorder. Moreover, although we found no or weak association with other inflammatory bowel disorders (data not shown), CeD, a T-cell-mediated disease,42 showed much stronger enrichment. SCZ also showed strong enrichment with 12 independent SBP loci identified based on enrichment from the SCZ GWAS. In a previous study,²¹ we successfully used the polygenic pleiotropy approach to increase gene discovery in SCZ by enriching on CVD risk factors, identifying a shared genetic basis for the increased CVD mortality and higher incidence of hypertension in SCZ patients.18 Our findings of several shared loci between SBP and SCZ point to common underlying mechanisms, which warrant further experimental investigation.

Because of the overlap in some of the GWAS samples examined, we cannot exclude contribution from environmental or behavioral factors or other nongenetic correlations. Still, our genetic pleiotropy results strongly imply the existence of shared pathophysiological processes across SBP and associated phenotypes, because we controlled for pleiotropic inflation using genomic control correction of each primary single-phenotype GWAS. Moreover, the overlapping loci are located on 16 chromosomes, suggesting that the findings are not because of common genetic variation in potentially overlapping control groups. Furthermore, the GWAS of blood lipids used the same sample to discover new genes for 3 different phenotypes.²⁵ Because we do not have access to additional samples or individual substudies, we cannot provide evidence of replication, which is a limitation of the current study. However, we have previously shown that the genetic findings obtained using the conditional FDR approach used here replicate at the same or higher rate compared with findings obtained with traditional GWAS methods. Importantly, we have also demonstrated that these FDR-based methods increase sensitivity for a given specificity, thus improving statistical power for SNP detection.²² Because of the overlap in some of the GWAS samples examined, we cannot exclude the contribution from environmental or behavioral factors or other nongenetic correlations.

Another limitation of the current study is our inability to relate the genetic findings to clinical outcomes, such as stroke and congestive heart failure, because we do not have access to clinical outcome measures. However, the current findings suggest that leveraging more powerful statistical techniques, building on empirical Bayesian mixture models, may be a fruitful approach to better select plausible candidate SNPs for improved polygenic risk scores,⁴³ which may lead to personalized medicine approaches and potentially individual prediction of disease risk. We are currently working toward developing prediction and stratification algorithms that incorporate multiple small effects to increase prediction and classification power. In conclusion, we found substantial genetic overlap between SBP and several related conditions, including BMI, WHR, T1D, SCZ, CeD, BMD, and in particular LDL. This suggests an etiologic relationship between these phenotypes, which could include lipid disturbances and certain immunologic pathways.

Perspectives

The current results demonstrate the feasibility of using a genetic epidemiology framework that leverages overlap in genetic signal from independent GWAS of associated phenotypes, both for cost-effective gene discovery and for elucidating the shared genetic basis between related phenotypes. This approach identified 42 novel gene loci in SBP, arguing that GWAS have the potential to uncover more of the genetic basis of hypertension when new statistical methods are used. The observed polygenic overlap between SBP and several comorbid disorders indicates that the epidemiological associations are not mediated solely via lifestyle factors but also reflect an etiologic relation. Our findings also shed new light on the pathogenic mechanisms in SBP, which warrants further investigation. The novel genetic loci identified here implicate genetic mechanisms related to lipid biology and the immune system in SBP. These findings may have implications for early diagnosis, prevention strategies, and therapeutic regimens for hypertension.

Acknowledgments

We thank the DIAGRAM Consortium, Psychiatric Genomics Consortium Schizophrenia Working Group, Celiac Disease GWAS Consortium, and Type 1 Diabetes Consortium for the summary statistics of genome-wide association studies data.

Sources of Funding

O.A.A. was supported by the Research Council of Norway (213837), the South East Norway Health Authority (2010-074), and the Kristian Gerhard Jebsen Foundation. R.S.D. was supported by a grant from the National Institutes of Health (NIH; T32 EB005970). A.M.D. was supported by NIH grants R01AG031224, R01EB000790, and RC2DA29475. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the article.

Disclosures

None.

References

- Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. *Lancet*. 2005;365:217–223.
- Kotchen TA, Kotchen JM, Grim CE, George V, Kaldunski ML, Cowley AW, Hamet P, Chelius TH. Genetic determinants of hypertension: identification of candidate phenotypes. *Hypertension*. 2000;36:7–13.
- Levy D, DeStefano AL, Larson MG, O'Donnell CJ, Lifton RP, Gavras H, Cupples LA, Myers RH. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study. *Hypertension*. 2000;36:477–483.
- International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB, Munroe PB, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. *Nature*. 2011;478:103–109.
- Kurtz TW. Genome-wide association studies will unlock the genetic basis of hypertension: con side of the argument. *Hypertension*. 2010;56:1021–1025.
- Doris PA. The genetics of blood pressure and hypertension: the role of rare variation. *Cardiovasc Ther*. 2011;29:37–45.
- Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin NG, Montgomery GW, Goddard ME, Visscher PM. Common SNPs explain a large proportion of the heritability for human height. *Nat Genet.* 2010;42:565–569.

- Yang J, Manolio TA, Pasquale LR, et al. Genome partitioning of genetic variation for complex traits using common SNPs. *Nat Genet*. 2011;43:519–525.
- Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. *Nature*. 2009;461:747–753.
- Wagner GP, Zhang J. The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. *Nat Rev Genet*. 2011;12:204–213.
- D'Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. *Circulation*. 2008;117:743–753.
- Conroy RM, Pyörälä K, Fitzgerald AP, et al; SCORE Project Group. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. *Eur Heart J.* 2003;24:987–1003.
- Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111:3481–3488.
- Messerli FH, Williams B, Ritz E. Essential hypertension. *Lancet*. 2007;370:591–603.
- Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. *Lancet*. 2005;365:1415–1428.
- Rosner B, Prineas RJ, Loggie JM, Daniels SR. Blood pressure nomograms for children and adolescents, by height, sex, and age, in the United States. J Pediatr. 1993;123:871–886.
- Caudarella R, Vescini F, Rizzoli E, Francucci CM. Salt intake, hypertension, and osteoporosis. J Endocrinol Invest. 2009;32(4 suppl):15–20.
- Birkenaes AB, Opjordsmoen S, Brunborg C, Engh JA, Jonsdottir H, Ringen PA, Simonsen C, Vaskinn A, Birkeland KI, Friis S, Sundet K, Andreassen OA. The level of cardiovascular risk factors in bipolar disorder equals that of schizophrenia: a comparative study. *J Clin Psychiatry*. 2007;68:917–923.
- Group TAS. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–1585.
- Panoulas VF, Metsios GS, Pace AV, John H, Treharne GJ, Banks MJ, Kitas GD. Hypertension in rheumatoid arthritis. *Rheumatology (Oxford)*. 2008;47:1286–1298.
- Andreassen OA, Thompson WK, Schork AJ, et al; Psychiatric Genomics Consortium (PGC); Bipolar Disorder and Schizophrenia Working Groups. Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. *PLoS Genet*. 2013;9:e1003455.
- 22. Andreassen OA, Djurovic S, Thompson WK, Schork AJ, Kendler KS, O'Donovan MC, Rujescu D, Werge T, van de Bunt M, Morris AP, McCarthy MI, Roddey JC, McEvoy LK, Desikan RS, Dale AM; International Consortium for Blood Pressure GWAS; Diabetes Genetics Replication and Meta-Analysis Consortium; Psychiatric Genomics Consortium Schizophrenia Working Group. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am J Hum Genet. 2013;92:197–209.
- Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. *Nat Med.* 2011;17:1402–1409.
- Estrada K, Styrkarsdottir U, Evangelou E, et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. *Nat Genet.* 2012;44:491–501.
- Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. *Nature*. 2010;466:707–713.
- Voight BF, Scott LJ, Steinthorsdottir V, et al; MAGIC Investigators; GIANT Consortium. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. *Nat Genet*. 2010;42:579–589.

- Speliotes EK, Willer CJ, Berndt SI, et al; MAGIC; Procardis Consortium. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. *Nat Genet.* 2010;42:937–948.
- Heid IM, Jackson AU, Randall JC, et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. *Nat Genet*. 2011;43:1164–1164.
- Lango Allen H, Estrada K, Lettre G, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. *Nature*. 2010;467:832–838.
- Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. *Nat Genet.* 2011;43:969–976.
- Barrett JC, Clayton DG, Concannon P, et al; Type 1 Diabetes Genetics Consortium. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. *Nat Genet.* 2009;41:703–707.
- 32. Stahl EA, Raychaudhuri S, Remmers EF, et al; BIRAC Consortium; YEAR Consortium. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. *Nat Genet.* 2010; 42:508–514.
- Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. *Nat Genet.* 2010;42:1118–1125.
- Dubois PC, Trynka G, Franke L, et al. Multiple common variants for celiac disease influencing immune gene expression. *Nat Genet*. 2010;42:295–302.
- Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57:289–300.
- Sun L, Craiu RV, Paterson AD, Bull SB. Stratified false discovery control for large-scale hypothesis testing with application to genome-wide association studies. *Genet Epidemiol*. 2006;30:519–530.
- Yoo YJ, Pinnaduwage D, Waggott D, Bull SB, Sun L. Genome-wide association analyses of North American Rheumatoid Arthritis Consortium and Framingham Heart Study data utilizing genome-wide linkage results. *BMC Proc.* 2009;3(suppl 7):S103.
- 38. Schork AJ, Thompson WK, Pham P, Torkamani A, Roddey JC, Sullivan PF, Kelsoe JR, O'Donovan MC, Furberg H, Schork NJ, Andreassen OA, Dale AM; Tobacco and Genetics Consortium; Bipolar Disorder Psychiatric Genomics Consortium; Schizophrenia Psychiatric Genomics Consortium. All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs. *PLoS Genet.* 2013;9:e1003449.
- Reppe S, Refvem H, Gautvik VT, Olstad OK, Høvring PI, Reinholt FP, Holden M, Frigessi A, Jemtland R, Gautvik KM. Eight genes are highly associated with BMD variation in postmenopausal Caucasian women. *Bone*. 2010;46:604–612.
- Dokos C, Savopoulos C, Hatzitolios A. Reconsider hypertension phenotypes and osteoporosis. J Clin Hypertens (Greenwich). 2011;13:E1–E2.
- Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T, Rudan I, McKeigue P, Wilson JF, Campbell H. Abundant pleiotropy in human complex diseases and traits. *Am J Hum Genet*. 2011;89:607–618.
- Qiao SW, Sollid LM, Blumberg RS. Antigen presentation in celiac disease. Curr Opin Immunol. 2009;21:111–117.
- Andreassen OA, Thompson WK, Dale AM. Boosting the power of schizophrenia genetics by leveraging new statistical tools. *Schizophr Bull*. 2013 Dec 6 [Epub ahead of print].

Novelty and Significance

What Is New?

- · We used new statistical methods to improve gene discovery.
- · We identified 42 novel gene loci associated with blood pressure.
- We demonstrated shared genes between blood pressure and several associated diseases/traits.

What Is Relevant?

- The new gene loci may inform the underlying genetic mechanisms of hypertension.
- The genetic overlap with immune-mediated diseases and blood lipids suggests common mechanisms with hypertension.

 The findings may have implications for early diagnosis, prevention strategies, and therapeutic regimens in hypertension.

Summary

We identified 42 new gene loci for blood pressure and found genetic overlap between blood pressure and several associated diseases and traits, particularly immune-mediated diseases and blood lipids. This suggests an etiologic relationship between hypertension and lipid disturbances and immunologic abnormalities.

Identifying Common Genetic Variants in Blood Pressure Due to Polygenic Pleiotropy With Associated Phenotypes

Ole A. Andreassen, Linda K. McEvoy, Wesley K. Thompson, Yunpeng Wang, Sjur Reppe, Andrew J. Schork, Verena Zuber, Elizabeth Barrett-Connor, Kaare Gautvik, Pål Aukrust, Tom H. Karlsen, Srdjan Djurovic, Rahul S. Desikan and Anders M. Dale International Consortium for Blood Pressure Genome-Wide Association Studies, Genetic Factors for Osteoporosis Consortium

 Hypertension. 2014;63:819-826; originally published online January 6, 2014; doi: 10.1161/HYPERTENSIONAHA.113.02077
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2014 American Heart Association, Inc. All rights reserved. Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at: http://hyper.ahajournals.org/content/63/4/819

Data Supplement (unedited) at: http://hyper.ahajournals.org/content/suppl/2014/01/06/HYPERTENSIONAHA.113.02077.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Hypertension* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Hypertension* is online at: http://hyper.ahajournals.org//subscriptions/

ONLINE SUPPLEMENT

Identifying common genetic variants in blood pressure due to polygenic pleiotropy with associated phenotypes

Ole A. Andreassen, Linda K. McEvoy, Wesley K. Thompson, Yunpeng Wang, Sjur Reppe, Andrew J. Schork, Verena Zuber, The International Consortium for Blood Pressure GWAS, The GEFOS Consortium, Elizabeth Barrett-Connor, Kaare Gautvik, Pål Aukrust, Tom H. Karlsen, Srdjan Djurovic, Rahul S. Desikan, Anders M. Dale

Statistical Analysis

Conditional False Discovery Rate (FDR)

As we have previously described¹⁻³, the FDR for a given p-value cut-off value is defined as

$$FDR(p) = \pi_0 F_0(p) / F(p),$$
 [1]

where π_0 is the proportion of null SNPs, F_0 is the null cdf, and F is the cdf of all SNPs, both null and non-null; see below for details on this simple mixture model formulation⁴. Under the null hypothesis, F_0 is the cdf of the uniform distribution on the interval [0,1], so that Eq. [1] reduces to

$$FDR(p) = \pi_0 p / F(p), \qquad [2]$$

The cdf F can be estimated by the empirical cdf $q = N_p / N$, where N_p is the number of SNPs with pvalues less than or equal to p, and N is the total number of SNPs. Replacing F by q in Eq. [2], we get

Estimated FDR(p) =
$$\pi_0 p / q$$
, [3]

which is biased upwards as an estimate of the FDR⁴. Replacing π_0 in Eq. [3] with unity gives an estimated FDR that is further biased upward;

$$q^* = p/q \qquad [4]$$

If π_0 is close to one, as is likely true for most GWAS, the increase in bias from Eq. [3] is minimal. The quantity 1 - p/q, is therefore biased downward, and hence is a conservative estimate of the TDR. Referring to the formulation of the Q-Q plots, we see that q* is equivalent to the nominal p-value divided by the empirical quantile, as defined earlier. Given the $-\log_{10}$ of the Q-Q plots we can easily obtain

$$-\log_{10}(q^*) = \log_{10}(q) - \log_{10}(p)$$
 [5]

demonstrating that the (conservatively) estimated FDR is directly related to the horizontal shift of the curves in the conditional Q-Q plots from the expected line x = y, with a larger shift corresponding to a smaller FDR¹⁻³. For each subset of p-values in an associated trait, we calculated the TDR as a function of p-value in SBP using each observed p-value as a threshold, according to Eq. [5].

Pathway Analysis

The 74 different genes associated with the 62 loci are listed with complete name and gene ontology in Table S2, and were analyzed by Ingenuity Pathway Analysis (IPA) to identify clusters among these genes known to be related to SBP. In the category "Top Bio Functions", Cardiovascular Disease was among the top 5 with p-values: $2.07 \times 10^{-3} - 3.68 \times 10^{-2}$. These genes are associated with 19 Functional Annotations as shown in Table S3. In the category "Physiological System Development and Function", Cardiovascular System Development and Function were among the top 5 with 12 molecules as shown in Table S4.

Using the network function in IPA, we demonstrate that many of the genes have functional interactions as illustrated in Figure S2. This suggests that the genes in the vicinity of the identified SNPs are associated with the trait SBP.

Supplemental references

- Andreassen OA, Thompson WK, Schork AJ, Ripke S, Mattingsdal M, Kelsoe JR, Kendler KS, O'Donovan MC, Rujescu D, Werge T, Sklar P, Roddey JC, Chen C-H, McEvoy L, Desikan RS, Djurovic S, Dale AM. Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. *PLoS Genet*. 2013;9:e1003455.
- Andreassen OA, Djurovic S, Thompson WK, Schork AJ, Kendler KS, O'Donovan MC, Rujescu D, Werge T, van de Bunt M, Morris AP, McCarthy MI, Roddey JC, McEvoy LK, Desikan RS, Dale AM. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. *Am J Hum Genet*. 2013;92:197–209.
- 3. Andreassen OA, Thompson WK, Dale AM. Boosting the power of schizophrenia genetics by leveraging new statistical tools. *Schizophr Bull*. 2014 In Press.
- 4. Efron, B. Size, power and false discovery rates. *Ann Statist*, 2007;35:1351–1377.

locus	SNP	Gene	chr	SBP p-value	SBP FDR	Min cond FDR	Associated Phenotype
1	rs2748975	KIAA1751	1	1.81E-06	0.01493	0.0095053	WHR
2	rs880315	CASZ1	1	1.44E-05	0.04983	0.0040514	CeD
3	rs17367504	MTHFR†	1	9.86E-11	0.00003	0.0000013	WHR
	rs2050265	CLCN6	1	2.38E-10	0.00003	0.0000026	WHR
	rs12567136	CLCN6	1	1.62E-10	0.00003	0.0000023	WHR
4	rs6676300	NPPB	1	1.47E-05	0.04983	0.0054695	CeD
5	rs783622	HIVEP3	1	1.04E-05	0.03839	0.0028136	LDL
6	rs6690292	CAPZA1	1	6.37E-06	0.02945	0.0043802	BMI
	rs12048528	CAPZA1	1	3.84E-06	0.02209	0.0014541	BMI
	rs2932538	<i>MOV10</i> †	1	1.78E-06	0.01493	0.0014684	BMI
7	rs1347930	HAAO	2	1.68E-05	0.04983	0.0037835	BMI
	rs4332966	HAAO	2	1.58E-05	0.04983	0.0025790	BMI
8	rs9309112	LRPPRC	2	1.56E-05	0.04983	0.0047478	LDL
9	rs12619842	FIGN	2	1.01E-05	0.03839	0.0089999	LDL
	rs2218101	GRB14	2	6.66E-07	0.00783	0.0006895	LDL
	rs1371182	GRB14	2	5.20E-07	0.00665	0.0006913	LDL
	rs16849397	GRB14	2	4.76E-07	0.00665	0.0025354	WHR
	rs16849404	GRB14	2	5.80E-07	0.00783	0.0015277	CeD
10	rs2594992	ATG7	3	2.24E-06	0.01687	0.0076216	WHR
	rs2606738	ATG7	3	1.67E-05	0.04983	0.0084614	T1D
11	rs6806067	FGD5	3	2.23E-06	0.01493	0.0033240	BMI
12	rs12495221	CDC25A	3	2.04E-06	0.01493	0.0045240	BMI
	rs6766754	CDC25A	3	2.06E-06	0.01493	0.0038713	BMI
	rs6797587	CDC25A	3	1.32E-06	0.01180	0.0043919	BMI
13	rs223102	MECOM†	3	4.56E-08	0.00112	0.0006796	WHR
	rs448378	MECOM	3	5.21E-08	0.00112	0.0006796	WHR
	rs6779380	MECOM	3	1.31E-07	0.00229	0.0012231	CeD
14	rs9290369	MECOM	3	8.04E-07	0.00909	0.0066551	WHR
	rs9290370	MECOM	3	9.90E-07	0.01041	0.0069713	BMI
	rs7619166	MECOM	3	2.15E-06	0.01493	0.0080103	CeD
15	rs10006384	FLJ13197	4	2.71E-06	0.01687	0.0054382	BMI
	rs12509057	FLJ13197	4	2.85E-06	0.01922	0.0006895	T1D
16	rs1458038	FGF5†	4	1.08E-09	0.00004	0.0000228	WHR
17	rs13107325	SLC39A8†	4	1.55E-07	0.00271	0.0000229	BMI
18	rs1173743	NPR3	5	4.78E-07	0.00665	0.0007773	BMI
	rs1173771	C5orf23†	5	8.44E-08	0.00162	0.0004338	WHR
	rs7733331	C5orf23	5	1.24E-07	0.00229	0.0006654	WHR
	rs13154066	C5orf23	5	1.27E-07	0.00229	0.0006026	WHR
19	rs458158	PRDM6	5	6.76E-06	0.02945	0.0071865	SCZ

Table S1. Independent loci associated with SBP through Conditional FDR with associated phenotypes.

20	rs10477646	CSNK1G3	5	8.58E-06	0.03370	0.0031951	LDL
	rs11750782	CSNK1G3	5	6.75E-06	0.02945	0.0070289	BMD
21	rs4704775	EBF1	5	1.65E-06	0.01328	0.0075865	SCZ
	rs11953630	EBF1†	5	3.64E-07	0.00558	0.0029954	WHR
	rs12187017	EBF1	5	3.78E-07	0.00558	0.0026225	WHR
	rs12332652	EBF1	5	7.93E-06	0.03370	0.0040996	LDL
22	rs199205	BMP6	6	2.29E-06	0.01687	0.0076216	WHR
23	rs9467445	BC029534	6	2.20E-06	0.01493	0.0011956	T1D
	rs11755567	BC029534	6	3.09E-06	0.01922	0.0008619	T1D
24	rs11754013	LRRC16A	6	1.32E-05	0.04368	0.0076472	LDL
25	rs2736155	PRRC2A	6	1.41E-06	0.01180	0.0002670	BMI
		(BAT2)†					
	rs1077393	BAG6(BAT3)	6	1.45E-06	0.01328	0.0003843	BMI
	rs805303	BAG6(BAT3)†	6	8.17E-07	0.00909	0.0000941	SCZ
26	rs429150	TNXB	6	1.70E-05	0.04983	0.0090475	LDL
	rs2269426	TNXB	6	2.02E-05	0.05707	0.0041353	CeD
27	rs394199	GGNBP1	6	3.96E-05	0.08570	0.0034152	T1D
		(AY383626)					
28	rs581484	CENPW	6	3.08E-06	0.01922	0.0089438	LDL
		(C6orf173)					
29	rs853964	AK127472	6	2.63E-06	0.01687	0.0076216	WHR
30	rs2969070	BC034268	7	2.64E-07	0.00386	0.0014814	T1D
31	rs3735533	HOTTIP	7	1.37E-05	0.04368	0.0056631	LDL
		(AK093987)					
32	rs7777128	EVX1	7	6.04E-06	0.02945	0.0020776	LDL
33	rs7787898	AF086203	7	2.60E-06	0.01687	0.0062017	SCZ
34	rs3088186	MSRA	8	1.97E-05	0.05707	0.0019924	SCZ
35	rs4735337	NDUFA6	8	3.54E-05	0.07505	0.0028564	T1D
		(C8orf38)					
36	rs12006112	PTPLAD2	9	5.02E-05	0.09719	0.0058735	T1D
37	rs4978374	ΙΚΒΚΑΡ	9	9.87E-06	0.03839	0.0094345	BMD
38	rs2357790	CACNB2	10	7.05E-07	0.00783	0.0032139	SCZ
	rs12570727	CACNB2†	10	4.07E-08	0.00093	0.0001882	SCZ
39	rs11014166	CACNB2	10	3.66E-06	0.02209	0.0023029	LDL
	rs12258967	CACNB2	10	1.42E-07	0.00271	0.0015659	WHR
40	rs2393833	C10orf107	10	1.52E-07	0.00271	0.0002575	BMI
	rs4590817	C10orf107†	10	3.40E-08	0.00077	0.0001588	WHR
41	rs9664184	SYNPO2L	10	1.76E-06	0.01328	0.0034926	T1D
	rs12247028	SYNPO2L	10	1.59E-06	0.01328	0.0067916	WHR
42	rs2901761	PLCE1	10	1.76E-07	0.00271	0.0001993	LDL
	rs932764	PLCE1†	10	1.47E-07	0.00271	0.0001182	LDL
	rs11187808	PLCE1	10	2.72E-06	0.01687	0.0035477	BMI
43	rs10786156	PLCE1	10	2.51E-06	0.01687	0.0020927	BMI
44	rs10883766	ARL3	10	1.91E-05	0.05707	0.0071447	CeD
	rs284844	WBP1L	10	5.48E-09	0.00015	0.0000039	BMI

		(C10orf26)					
	rs1926032	CNNM2	10	2.77E-10	0.00003	0.0000001	BMI
	rs943037	CNNM2	10	3.17E-10	0.00003	0.0000001	BMI
	rs11191548	NT5C2†	10	2.43E-10	0.00003	0.0000001	SCZ
	rs12220743	NT5C2	10	2.89E-10	0.00003	0.0000001	BMI
45	rs7129220	EF537580†	11	6.92E-08	0.00135	0.0006154	SCZ
46	rs1580005	EF537580	11	2.80E-06	0.01687	0.0057696	LDL
47	rs381815	PLEKHA7†	11	1.25E-09	0.00005	0.0000205	BMI
	rs11024074	PLEKHA7	11	1.75E-08	0.00042	0.0001290	CeD
48	rs642803	OVOL1	11	1.14E-05	0.04368	0.0065527	LDL
49	rs633185	FLJ32810†	11	2.98E-08	0.00077	0.0004474	WHR
	rs604723	FLJ32810	11	4.49E-08	0.00112	0.0003394	CeD
50	rs11105328	POC1B	12	5.35E-10	0.00003	0.0000080	SCZ
		(WDR51B)					
	rs2681472	ATP2B1†	12	5.14E-13	0.00003	0.0000062	SCZ
51	rs7297186	CUX2	12	1.88E-06	0.01493	0.0005328	CeD
	rs3742004	FAM109A	12	6.39E-07	0.00783	0.0003417	WHR
	rs10774625	ATXN2	12	5.61E-10	0.00003	0.0000002	BMI
	rs653178	ATXN2	12	4.58E-10	0.00003	0.0000002	BMI
	rs1005902	HECTD4	12	2.62E-06	0.01687	0.0005845	LDL
		(C12orf51)					
	rs741334	RPH3A	12	5.15E-06	0.02552	0.0008286	LDL
	rs12580178	RPH3A	12	4.21E-06	0.02209	0.0007345	LDL
52	rs7299238	CABP1	12	6.25E-05	0.10892	0.0053975	LDL
53	rs11070252	GOLGA8T	15	3.86E-06	0.02209	0.0078255	CeD
		(AK310526)					
54	rs4886629	CSK	15	6.38E-10	0.00004	0.000008	LDL
	rs1378942	CSK†	15	1.63E-10	0.00003	0.0000002	CeD
	rs3784789	CSK	15	5.10E-10	0.00003	0.0000007	LDL
	rs12442901	CSK	15	7.06E-10	0.00004	0.000008	LDL
55	rs8032315	FURIN	15	1.83E-07	0.00323	0.0000828	SCZ
	rs2521501	FES†	15	7.16E-08	0.00162	0.0011762	WHR
	rs1029420	FES	15	1.61E-07	0.00271	0.0008476	CeD
56	rs11643718	SLC12A3	16	3.30E-05	0.07505	0.0037698	T1D
57	rs4793172	DCAKD	17	7.05E-07	0.00783	0.0040625	SCZ
	rs2239923	NMT1	17	3.97E-07	0.00558	0.0008079	BMD
	rs12946454	PLCD3	17	5.17E-08	0.00112	0.0000647	BMD
58	rs11012	PLEKHM1	17	4.12E-05	0.08570	0.0034152	T1D
59	rs17608766	GOSR2†	17	4.59E-07	0.00665	0.0005684	BMI
60	rs6055905	PLCB1	20	3.04E-05	0.07505	0.0064506	LDL
61	rs6072403	CHD6	20	5.59E-06	0.02552	0.0058812	LDL
	rs4810332	CHD6	20	1.36E-05	0.04368	0.0030113	LDL
62	rs6026728	ZNF831	20	1.63E-07	0.00271	0.0012300	SCZ
	rs6026742	ZNF831	20	2.15E-07	0.00323	0.0008109	CeD

rs6026747	ZNF831	20	7.04E-08	0.00135	0.0005233	SCZ
rs6015450	ZNF831†	20	5.63E-08	0.00135	0.0006154	SCZ

Independent complex or single gene loci ($r^2 < 0.2$) of SNP(s) with a conditional FDR (condFDR) < 0.01 in Systolic Blood Pressure (SBP) given the significance level in the associated phenotype. We defined the most significant SBP SNP in each LD block based on the minimum condFDR (min condFDR) for each associated phenotype. The most significant SNPs in each gene of the LD block are listed along with the associated phenotype that provided the signal. Low density lipoprotein (LDL) cholesterol, body mass index (BMI), waist hip ratio (WHR), bone mineral density (BMD), type 1 diabetes (T1D), celiac disease (CeD), schizophrenia (SCZ), chromosome location (Chr). SBP FDR values < 0.01 and p-values < 5 x 10⁻⁸ are in bold. †Same locus identified in previous SBP genome-wide association studies. Gene titles and gene ontology functional terms are displayed in Table S2. All data were first corrected for genomic inflation.

Table S2 Gene titles and gene ontology function terms

Gene Symbol	Gene Title	go molecular function term
AF086203 AK127472		
ARL3	ADP-ribosylation factor-like 3	GTPase activity /// protein binding /// GTP binding /// microtubule binding /// GDP binding /// metal ion binding
ATG7	autophagy related 7	nucleotide binding /// catalytic activity /// ubiquitin activating enzyme activity /// protein binding /// APG12 activating enzyme activity /// protein homodimerization activity
ATP2B1	ATPase, Ca++ transporting, plasma membrane 1	nucleotide binding /// catalytic activity /// calcium-transporting ATPase activity /// protein binding /// calmodulin binding /// ATP binding /// ATPase activity, coupled to transmembrane movement of ions, phosphorylative mechanism /// hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement of substances /// metal ion binding
ATXN2	ataxin 2	RNA binding /// epidermal growth factor receptor binding /// protein binding /// protein C-terminus binding
BAG6 (BAT3)	BCL2-associated athanogene 6	protein binding /// polyubiquitin binding /// ribosome binding /// proteasome binding
BC029534 BC034268		
BMP6	bone morphogenetic protein 6	cytokine activity /// growth factor activity /// protein heterodimerization activity /// BMP receptor binding
C10orf107	chromosome 10 open reading frame 107	
C5orf23	chromosome 5 open reading frame 23	
CABP1	calcium binding protein 1	enzyme inhibitor activity /// calcium ion binding /// metal ion binding /// calcium-dependent protein binding
CACNB2	calcium channel, voltage- dependent, beta 2 subunit	ion channel activity /// voltage-gated ion channel activity /// voltage- gated calcium channel activity /// calcium channel regulator activity /// calcium channel activity /// protein binding
CAPZA1	capping protein (actin filament) muscle Z-line, alpha 1	actin binding
CASZ1	castor zinc finger 1	DNA binding /// zinc ion binding /// metal ion binding
CDC25A	cell division cycle 25 homolog A (S. pombe)	phosphoprotein phosphatase activity /// protein tyrosine phosphatase activity /// protein binding /// hydrolase activity /// protein kinase
CENPW (C6orf173)	centromere protein W	DNA binding /// protein binding
CHD6	chromodomain helicase DNA binding protein 6	nucleotide binding /// nucleic acid binding /// DNA binding /// chromatin binding /// helicase activity /// ATP binding /// ATP- dependent helicase activity /// hydrolase activity, acting on acid anhydrides
CLCN6	chloride channel, voltage-sensitive 6	nucleotide binding /// ion channel activity /// voltage-gated chloride channel activity /// ATP binding /// antiporter activity
CNNM2	cyclin M2	
СЅК	c-src tyrosine kinase	nucleotide binding /// protein kinase activity /// protein tyrosine kinase activity /// non-membrane spanning protein tyrosine kinase activity /// protein binding /// ATP binding /// protein C-terminus binding /// kinase activity /// transferase activity /// transferase activity, transferring phosphorus-containing groups /// protein phosphatase binding /// proline-rich region binding

CSNK1G3	casein kinase 1, gamma 3	nucleotide binding /// protein serine/threonine kinase activity /// ATP binding /// transferase activity, transferring phosphorus-containing groups
CUX2	cut-like homeobox 2	sequence-specific DNA binding transcription factor activity ///
DCAKD	dephospho-CoA kinase domain containing	nucleotide binding /// dephospho-CoA kinase activity /// ATP binding
EBF1	early B-cell factor 1	DNA binding /// sequence-specific DNA binding transcription factor activity /// metal ion binding /// C2H2 zinc finger domain binding
EF537580		
EVX1	even-skipped homeobox 1	sequence-specific DNA binding transcription factor activity
FAM109A	family with sequence similarity 109, member A	protein binding /// phospholipid binding /// protein homodimerization activity
FES	feline sarcoma oncogene	nucleotide binding /// protein tyrosine kinase activity /// non- membrane spanning protein tyrosine kinase activity /// ATP binding /// lipid binding /// kinase activity /// transferase activity, transferring phosphorus-containing groups /// immunoglobulin receptor binding /// phosphatidylinositol binding
FGD5	FYVE, RhoGEF and PH domain containing 5	guanyl-nucleotide exchange factor activity /// Rho guanyl-nucleotide exchange factor activity /// phospholipid binding /// small GTPase binding /// metal ion binding
FGF5	fibroblast growth factor 5	fibroblast growth factor recentor binding /// growth factor activity
FIGN	fidgetin	nucleoside binding /// ATP binding /// protein C-terminus binding /// nucleoside-triphosphatase activity
FLJ13197	uncharacterized FLJ13197	······
FLJ32810		
FURIN	furin (paired basic amino acid cleaving enzyme)	protease binding /// serine-type endopeptidase activity /// serine-type endopeptidase inhibitor activity /// peptidase activity /// serine-type peptidase activity /// hydrolase activity /// peptide binding /// metal ion binding /// nerve growth factor binding
GGNBP1	gametogenetin binding protein 1	
(AY383626)	(pseudogene)	
GOLGA8T (AK310526)	golgin A8 family, member T	
GOSR2	golgi SNAP receptor complex member 2	receptor activity /// transporter activity
GRB14	growth factor receptor-bound protein 14	receptor activity /// SH3/SH2 adaptor activity /// phospholipid binding /// phosphoprotein binding
ΗΑΑΟ	3-hydroxyanthranilate 3,4- dioxygenase	3-hydroxyanthranilate 3,4-dioxygenase activity /// iron ion binding /// electron carrier activity /// oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygen /// oxygen binding /// metal ion binding
HECTD4	HECT domain containing E3	ubiquitin-protein ligase activity /// ligase activity /// acid-amino acid
(C12orf51)	ubiquitin protein ligase 4	ligase activity
HIVEP3	human immunodeficiency virus type I enhancer binding protein 3	nucleic acid binding /// DNA binding /// zinc ion binding /// metal ion binding
HOTTIP	HOXA distal transcript antisense	
(AK093987)	RNA	
ΙΚΒΚΑΡ	inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase complex-associated protein	DNA binding /// protein kinase activity /// signal transducer activity /// protein binding /// ATP binding /// phosphorylase kinase regulator activity /// kinase activity
KIAA1751	KIAA1751	
LKPPKC	repeat containing	protein binding /// single-stranded DNA binding /// RNA binding /// protein binding /// microtubule binding /// beta-tubulin binding /// actin filament binding

LRRC16A	leucine rich repeat containing 16A	
MECOM	MDS1 and EVI1 complex locus	nucleic acid binding /// DNA binding /// sequence-specific DNA binding transcription factor activity /// protein binding /// zinc ion binding ///
MOV10	Mov10, Moloney leukemia virus 10, homolog (mouse)	nucleotide binding /// RNA binding /// helicase activity /// protein binding /// ATP binding /// hydrolase activity
MSRA	methionine sulfoxide reductase A	peptide-methionine-(S)-S-oxide reductase activity /// oxidoreductase activity, acting on a sulfur group of donors, disulfide as acceptor
MTHFR	methylenetetrahydrofolate reductase (NAD(P)H)	methylenetetrahydrofolate reductase (NADPH) activity /// oxidoreductase activity /// modified amino acid binding
NDUFA6	NADH dehydrogenase (ubiquinone)	NADH dehydrogenase (ubiquinone) activity
(C8orf38)	complex I, assembly factor 6	
NMT1	N-myristoyltransferase 1	glycylpeptide N-tetradecanoyltransferase activity /// transferase activity, transferring acyl groups /// myristoyltransferase activity
NPPB	natriuretic peptide B	receptor binding /// hormone activity /// diuretic hormone activity /// peptide hormone receptor binding
NPR3	natriuretic peptide receptor	receptor activity /// G-protein coupled peptide receptor activity ///
	C/guanylate cyclase C	natriuretic peptide receptor activity /// peptide hormone binding ///
	(atrionatriuretic peptide receptor C)	hormone binding /// protein homodimerization activity
NT5C2	5'-nucleotidase, cytosolic II	nucleotide binding /// catalytic activity /// protein binding /// 5'- nucleotidase activity /// hydrolase activity /// metal ion binding
OVOL1	ovo-like 1(Drosophila)	RNA polymerase II core promoter proximal region sequence-specific
		DNA binding transcription factor activity involved in negative
		regulation of transcription /// DNA binding /// zinc ion binding ///
		metal ion binding
PLCB1	phospholipase C, beta 1	phosphatidylinositol phospholipase C activity /// phospholipase C
	(phosphoinositide-specific)	activity /// signal transducer activity /// GTPase activator activity ///
		calcium ion binding /// protein binding /// calmodulin binding /// lamin
		binding /// phosphatidylinositol-4,5-bisphosphate binding ///
		binding /// protoin homodimorization activity
	phospholipaso C dolta 2	phoenbatidylinacital phoenbalinase C activity /// phoenbalinase C
FLCDS	phospholipase C, delta S	activity /// signal transducer activity /// calcium ion hinding ///
		phospholinid hinding /// phosphoric diester hydrolase activity ///
		metal ion binding
PLCE1	Phospholipase C, epsilon 1	phosphatidylinositol phospholipase C activity /// phospholipase C
		activity /// signal transducer activity /// receptor signaling protein
		activity /// guanyl-nucleotide exchange factor activity /// calcium ion
		binding /// protein binding /// phosphoric diester hydrolase activity ///
		hydrolase activity /// Ras GTPase binding /// enzyme binding
PLEKHA7	pleckstrin homology domain	phospholipid binding /// delta-catenin binding
	containing, family A member 7	
PLEKHM1	pleckstrin homology domain	phospholipid binding
	containing, family IVI (with RUN	
	domain) member 1	nolynontido N acotylgalactosaminyltransforaso activity /// transforaso
		activity transferring glycosyl groups /// carbohydrate hinding
PRDM6	PR domain containing 6	nucleic acid hinding /// methyltransferase activity /// zinc ion hinding
		/// transferase activity /// histone-lysine N-methyltransferase activity
		/// protein homodimerization activity /// metal ion binding
PRRC2A (BAT2)	proline-rich coiled-coil 2A	protein binding
PTPLAD2	protein tyrosine phosphatase-like A	lyase activity
	domain containing 2	
RPH3A	rabphilin 3A homolog (mouse)	transporter activity /// calcium ion binding /// protein binding /// phosphatidylinositol-4,5-bisphosphate binding /// zinc ion binding ///

SLC12A3	solute carrier family 12 (sodium/chloride transporters), member 3	selenium binding /// Rab GTPase binding /// phosphate ion binding /// metal ion binding /// inositol 1,4,5 trisphosphate binding transporter activity /// protein binding /// symporter activity /// cation:chloride symporter activity /// sodium:chloride symporter activity
SLC39A8	solute carrier family 39 (zinc transporter), member 8	metal ion transmembrane transporter activity
SYNPO2L	synaptopodin 2-like	actin binding
TNXB	tenascin XB	receptor binding /// integrin binding /// extracellular matrix structural constituent /// collagen binding /// heparin binding
WBP1L	WW domain binding protein 1-like	
(C10orf26)		
ZNF831	zinc finger protein 831	nucleic acid binding /// zinc ion binding /// metal ion binding

Table S3 Diseases and disorders – Cardiovascular disease

Functions Annotation	n Valua	Malaaulaa
Functions Annotation	p-value	Wolecules
Cardiomyopathy	2,07E-03	CACNB2, FURIN, LRPPRC, NPPB, NPR3
hypertrophy of ventricular myocytes	3,30E-03	PLCB1, PLCE1
Leigh syndrome	3,74E-03	LRPPRC
French-Canadian type Leigh syndrome	3,74E-03	LRPPRC
chronic right ventricular overload	3,74E-03	NPPB
pulmonary valve regurgitation	3,74E-03	PLCE1
Danish type familial amyloid cardiomyopathy	7,46E-03	FURIN
dysfunction of heart	1,07E-02	CACNB2, GRB14
non-ST elevation myocardial infarction	1,12E-02	NPPB
valvular regurgitation of aortic valve	1,12E-02	PLCE1
stenosis of aortic valve	1,28E-02	FURIN, PLCE1
Pulmonary Hypertension	1,33E-02	NPPB,NPR3
Heart Disease	1,53E-02	CACNB2 ,FES, FURIN, LRPPRC, MECOM, MSRA, NPPB, NPR3, PLCE1
acute pulmonary embolism	2,22E-02	NPPB
diastolic heart failure	2,59E-02	NPR3
Hypotension	2,60E-02	NPPB, NPR3
Hypertension	2,76E-02	MECOM, NPPB, NPR3, SLC12A3
Brugada syndrome	2,95E-02	CACNB2
cardia bifida	3,68E-02	FURIN

Table S4 Diseases and disorders – Cardiovascular System Development and Function

Functions Annotation	p-Value	Molecules
looping morphogenesis of heart	1,60E-03	FURIN, IKBKAP, MECOM
formation of endothelial progenitor cells	3,74E-03	MTHFR
migration of cardiomyocytes	3,74E-03	FURIN
diameter of carotid artery	7,46E-03	MTHFR
development of cardiovascular system	1,17E-02	BMP6, CSK, FES,FGF5, FURIN, IKBKAP, MECOM, NPPB, PLCD3, PLCE1
morphogenesis of blood vessel	1,73E-02	FES, FURIN
development of blood vessel	1,82E-02	BMP6, CSK, FES, FGF5, FURIN, IKBKAP, NPPB, PLCD3
outgrowth of microvessel	2,22E-02	BMP6
vasculogenesis of yolk sac	2,22E-02	FURIN
abnormal morphology of dilated heart ventricle	2,39E-02	FES,PLCE1
proliferation of ventricular myocytes	2,95E-02	PLCE1
abnormal morphology of blood platelets	3,31E-02	MECOM
development of vascular tissue	3,31E-02	FURIN
proliferation of cardiac fibroblasts	3,31E-02	NPPB
morphogenesis of capillary vessel	3,68E-02	FES
abnormal morphology of enlarged heart	3,68E-02	FES, PLCE1
proliferation of heart cells	4,02E-02	NPPB, PLCE1
size of ventricular myocytes	4,04E-02	PLCB1
morphology of pulmonary valve	4,75E-02	PLCE1

Figure S1 Conditional Q-Q Plots

Pleiotropic Enrichment. Conditional Q-Q plot of nominal versus empirical $-\log_{10} p$ -values (corrected for inflation) in systolic blood pressure (SBP) below the standard GWAS threshold of p < 5x10-8 as a function of significance of association with A) Waist to Hip Ratio (WHR), B) Rheumatoid Arthritis (RA), C) High Density Lipoprotein (HDL), D) Triglycerides (TG), E) Type 2 Diabetes (T2D) and F) Height (HT) at the level of $-\log_{10}(p) > 0$, $-\log_{10}(p) > 1$, $-\log_{10}(p) > 2$, $-\log_{10}(p) > 3$ corresponding to p < 1, p < 0.1, p < 0.01, p < 0.001, respectively. Dotted lines indicate the null-hypothesis.

Figure S2 Enrichment Plots

Pleiotropic Enrichment. Enrichment plot of x-fold enrichment vs. empirical $-\log_{10} p$ -values (corrected for inflation) in systolic blood pressure (SBP) below the standard GWAS threshold of p < 5x10-8 as a function of significance of association with **A**) Low density Lipoprotein cholesterol (LDL), **B**) Body Mass Index (BMI), **C**) Bone Mineral Density (BMD), **D**) Type 1 Diabetes (T1D), **E**) Schizophrenia (SCZ) and **F**) Celiac Disease (CeD) at the level of $-\log_{10}(p) > 0$, $-\log_{10}(p) > 1$, $-\log_{10}(p) > 2$, $-\log_{10}(p) > 3$ corresponding to p < 1, p < 0.1, p < 0.01, p < 0.001, respectively.

Figure S3 Conditional look-up tables

Based on the combination of p-value for the SNPs in Systolic Blood Pressure (SBP) (P_{SBP}) and that of the pleiotropic trait: A. low density lipoprotein (LDL) cholesterol (P_{LDL}), B. body mass index (BMI) (P_{BMI}), C. bone mineral density (BMD) (P_{BMD}), D. type 1 diabetes (T1D) (P_{T1D}), E. schizophrenia (SCZ) (P_{SCZ}), F. celiac disease (CeD) (P_{CeD}), we assigned a conditional FDR value to each SNP associated with SBP, by interpolation into a 2-D look-up table. Color scale refers to the conditional FDR values.

Figure S4

Ingenuity pathway analysis was used to generate a network displaying direct interactions among proteins encoded by the 74 SBP related genes (red symbols) based on the manually curated IPA database. Red symbols are identified in Table S1. White symbols represent the following genes: HNF4A: hepatocyte nuclear factor 4, alpha; MYC: myelocytomatosis viral oncogene homolog; YY1: YY1 transcription factor; HTT: huntingtin; FOS: FBJ murine osteosarcoma viral oncogene homolog; CACNA1B: calcium channel, voltage-dependent, N type, alpha 1B subunit; EXOC4: exocyst complex component 4; UBC: ubiquitin C