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From the structure of experience to concepts of structure: how 
the concept ‘cause’ is attributed to objects and events

Anna Leshinskaya and Sharon L. Thompson-Schill
Department of Psychology, University of Pennsylvania

Abstract

The pervasive presence of relational information in concepts, and its indirect presence in sensory 

input, raises the question of how it is extracted from experience. We operationalized experience as 

a stream of events in which reliable predictive relationships exist among random ones, and in 

which learners are naïve as to what they will learn (i.e., a statistical learning paradigm). First, we 

asked whether predictive event pairs would spontaneously be seen causing each other, given no 

instructions to evaluate causality. We found that predictive information indeed informed later 

causal judgments, but did not lead to a spontaneous sense of causality. Thus, event contingencies 

are relevant to causal inference, but such interpretations may not occur fully bottom-up. A second 

question was how such experience might be used to learn about novel objects. Because events 

occurred either around or involving a continually present object, we were able to distinguish 

objects from events. We found that objects can be attributed causal properties by virtue of a 

higher-order structure, in which the object’s identity is linked not to the increased likelihood of its 

effect, but rather, to the predictive structure among events, given its presence. This is an important 

demonstration that objects’ causal properties can be highly abstract: they need not refer to an 

occurrence of a sensory event per se, or its link to an object, but rather, to whether or not a 

predictive relationship holds among events in its presence. These learning mechanisms may be 

important for acquiring abstract knowledge from experience.
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GENERAL INTRODUCTION

A cardinal and puzzling quality of concepts is that their content often lacks any physical 

referent: there is nothing we can point to as serving the meaning of words like believe, 

nutritious, or communicate; yet these concepts denote properties that often belong to people 

and physical objects. One proposal for the source of such concepts is that they refer to a 

relational structure among certain sensory qualities, rather than those qualities themselves 
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(Carey, 2009; Chatterjee, 2008; Gopnik & Meltzoff, 1997; Jones & Love, 2007; Kemp, 

Tenenbaum, Niyogi, & Griffiths, 2010; Markman & Stilwell, 2001). For example, 

communication may denote a reliably predictive relation between speaking and receiving a 

reply; belief may denote a reliably causal relation between seeing, knowing, and acting. The 

elements alone, without the correct structure, would not be sufficient, suggesting that such 

concepts package relational information itself. What makes such meaning abstract is that it 

is only indirectly present in the information arriving to the senses: it must be inferred, and 

thus its representation depends on the operation of our minds (Dennett, 1987). The present 

research investigates such operations: how we extract relations from sensory experience in 

the temporal domain, how these relations can characterize concrete objects, and whether and 

how they can affect conceptual interpretation.

A wealth of research on lexical semantics and category learning confirms that relational 

structure is part of the meaning of concepts. This is particularly notable for the “cause” 

relation and its importance in verb meanings (Garvey & Caramazza, 1974; Pinker, 1989)—

pushing would not be the same if the pusher applied force to himself rather than the pushee, 

or if the pushee fell over simultaneously with the pusher’s actions rather than because of 

them. Thus, the structure of a relation matters for meaning, holding constant the tangible 

entities or qualities entering in that relation. Relatedly, adults incorporate explicitly 

presented causal information when learning new categories of entities (Ahn, 1998; Ahn, 

Kim, Lassaline, & Dennis, 2000; Genone & Lombrozo, 2012; Murphy & Medin, 1985; 

Rehder, 2003b, 2003a; Sloman, Love, & Ahn, 1998), and artifact categories critically rely on 

functional properties, which refer in part to what those objects cause (Bechtel, Jeschonek, & 

Pauen, 2013; Futó, Téglás, Csibra, & Gergely, 2010; Hernik & Csibra, 2009; Keil, Smith, 

Simons, & Levin, 1998; Kelemen & Carey, 2007; Kemler Nelson, Frankenfield, & Morris, 

2000; Träuble & Pauen, 2011; Truxaw, Krasnow, Woods, & German, 2006).

The pervasive presence of relational information in concepts, and its indirect presence in 

sensory input, raises the question of how it can be extracted from experience and 

conceptualized. Although accounts of relational reasoning tacitly assume that relations are 

already-formed concepts, our view is that relations inferred from experienced events are 

inputs to conceptualization. In other words, relational information can be extracted from 

experience to inform the formation of novel concepts and categories. Prior work on 

visuospatial relations supports the idea that learners can form relation-based categories from 

visual evidence (Corral & Jones, 2014; Goldstone, Medin, & Gentner, 1991; Stuhlmueller, 

Tenenbaum, & Goodman, 2010; Tomlinson & Love, 2010). Here, we focus on temporal-

predictive relations, and their relation to the concept cause. We ask whether the meaning of 

the concept cause can be said to refer to a pattern of predictive relations.

Prior work on statistical models of causal reasoning can be seen as partial support of this 

idea. When asked to determine if some event A causes some event B, adults and children 

appear to use specific statistical criteria for assessing causality: that the covariation between 

A and B is strong, independent, and unique compared to other, alternative potential causes 

(Buehner, Cheng, & Clifford, 2003; Cheng, 1997; Gopnik et al., 2004; Griffiths & 

Tenenbaum, 2009; Penn & Povinelli, 2007; Schulz & Gopnik, 2004; Shanks, 1985; Sloman 

& Lagnado, 2015; Sobel & Kirkham, 2007; Spellman, 1996). Towards our question of what 
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relational concepts refer to, this suggests that the concept cause denotes (in part) a certain 

pattern of statistical information, which is in principle possible to extract from the 

experience of events.

This account is incomplete, however, for several reasons. The first is that these judgments 

have been approached from only one direction: participants are told at the start to evaluate 

causality, and are then given evidence to do so. For example, they are told that they are 

doctors seeing patients, and must determine what causes a disease, or whether it seems 

likely that a certain virus causes it. We term this a “top down” causal task, because 

participants are given the concept to apply to evidence. But to represent the meaning of a 

concept, it is important to be able to do the converse. For example, the proper possession of 

the concept ‘dog’ would enable someone to pick out instances given the label, and apply the 

label when presented with instances. Thus, we ask whether, given the evidence, participants 

will recognize causality on their own accord. We call this situation a “bottom up task,” and 

reason that if participants use the concept cause to designate a special pattern of the 

statistical evidence, then when the right pattern of statistical relations is presented, 

participant should see or recognize causation. This ability is important because real-world 

learners do not know in advance what they are about to learn (Aslin & Newport, 2012) – and 

thus, building a causal model of the world would strongly benefit from being able to 

recognize causation when its signature is observed among events.

A second limitation is that causal reasoning experiments are different from everyday 

experiences of events. Participants are shown contingency information though clearly 

demarcated instances in which (for example) a disease occurs with, or without, the presence 

of a virus. Although this might simulate the situation of doctors seeing clinical cases, or 

gardeners varying individual flower beds, it is not representative of daily sensory experience, 

in which events unfold sequentially in time without demarcated trials, there are many 

candidate events to track, and learners must determine the extent to which X uniquely 

predicts Y rather than Y, Z, or W. Thus, classic causal reasoning experiments present 

evidence in a way that is quite different from how we typically observe events, though 

increasingly more naturalistic paradigms are being employed (Bramley, Mayrhofer, 

Gerstenberg, & Lagnado, 2017; Buchsbaum, Griffiths, Plunkett, Gopnik, & Baldwin, 2015; 

Buehner & May, 2009; Greville & Buehner, 2010; Rottman & Keil, 2012). We thus adopted 

a paradigm which better captured everyday experience, by presenting a relatively large 

number of events in a continuous sequence. We then asked whether the presence of the right 

statistical information in such displays would be sufficient to lead to recognition that 

causality was present. Answering this will help us understand whether the content denoted 

by the concept cause is something we may naturally recognize in the course of everyday 

observation.

Finally, most formal accounts of the statistical evidence supporting causal judgments do not 

readily explain how we attribute causality to objects as opposed to events. Adults and 

children readily make attributions of causality to objects, and this critically influences how 

they categorize artifacts (Gopnik & Sobel, 2000; Kemler Nelson et al., 2000; Träuble & 

Pauen, 2007, 2011). Kettles cause water to boil; telephones enable communication. Few 

such causal powers are mechanically transparent, suggesting that predictive or statistical 
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information is essential (Gopnik et al., 2004; Gopnik & Schulz, 2004). However, it seems 

unlikely that objects are treated in the same way as events when learning their causal 

powers. Under most statistical models of causality, events are expected to attain causal 

powers by a unique, independent correlation between their presence and an effect. But for 

many everyday objects, this seems inadequate: experience is replete with objects whose 

causal effects occur neither frequently nor uniquely in their presence. For instance, coffee 

makers produce coffee but spend more time standing inert in the kitchen; light switches are 

present on the wall regardless of whether the light is on or off; poisons are largely stored in a 

cupboard. On the other hand, mugs appear with coffee, the contents of the room with the 

light, and so on. An increased presence of coffee, light, or toxic effects cannot explain how 

these objects attain their causal powers.

We thus test a different possibility, that objects are granted causal powers by virtue of a 

higher-order structure, in which the object’s identity is linked not to the increased likelihood 

of its effect, but rather, to a lower-order predictive structure among events, given its 

presence. An event (hitting a switch on the coffee maker) is what elicits the effect (the 

production of coffee); the coffee maker obtains its causal powers by serving as a broader 

context for this relationship. In this view, objects condition event relations: if something is a 

nutrient, ingesting it will help you; if it is a poison, ingesting it will hurt you. This account 

would make objects’ causal properties a level more abstract than the event relationships 

which enter those relations directly.

This account closely aligns with the philosophical view of objects as having dispositions 
(Goodman, 1955; Mumford, 1998; Ryle, 1959). A disposition is a conditional relation 

governing how a thing will behave in various circumstances, rather than a physical feature or 

the occurrence of any state or event. For example, fragility is the propensity to break if 

dropped, rather than a frequent event of dropping or breaking (Mumford, 1998; Ryle, 1959). 

This makes it both related systematically to observable experience, but also abstracted from 

it by virtue of this higher-order relation. When entities are described as agents rather than 

patients (i.e., targets of an action), they are seen as having an increased disposition to cause 

events, affecting judgments about responsibility (Mayrhofer & Waldmann, 2015). 

Furthermore, literature on context-dependent learning further supports the idea that higher-

order relations can be readily acquired from evidence, and related to spatial or temporal 

contexts—for example, how different chambers of a maze may govern whether or not a tone 

predicts a shock (Gershman, 2016; Urcelay & Miller, 2010, 2014). Here we empirically test 

whether such higher-order conditionals can inform how participants attribute causality to 

objects, as a way to account for the distinct way in which we judge objects to have causal 

powers. We term this prediction the dispositional/conditional view.

In summary, we ask two major questions. First, is presenting patterns of statistical 

dependence among events sufficient to recognize causality when not expressly looking for it, 

when those patterns are typically sufficient to judge causality in “top down” tasks? Second, 

can attributions of causality to objects be seen as higher-order conditionals among events? 

We ask these questions in the context of a task designed to better capture spontaneous 

observational learning from continuously presented events.
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Towards this end, we created a learning environment that was adopted from the statistical 

learning (SL) tradition (Fiser & Aslin, 2002; Kirkham, Slemmer, & Johnson, 2002; Saffran, 

Aslin, & Newport, 1996; Turk-Browne, Jungé, & Scholl, 2005). In these paradigms, which 

we refer to as SL scenarios, a variety of events occur in succession; events can be speech 

sounds, or the appearances and disappearances of static visual images. Unbeknownst to the 

learner, these streams contain regularities in which certain events predict the subsequent 

appearance of others with a high probability, while other event pairs are not predictive: they 

are equiprobably followed by any of a number of events. Thus, SL scenarios allow the 

researcher to precisely control contingency statistics, and build in just the sort of statistical 

dependencies well known to influence causal judgments in other paradigms (Buehner et al., 

2003; Cheng, 1997; Griffiths & Tenenbaum, 2005). However, they allow us to capture 

several features of naturalistic experience: there is no task demand to infer causality or any 

instruction; events appear in sequence without trial structure; and participants must extract 

systematic structure from randomness in the context of a number of different events. Thus, 

although originally conceived to study speech segmentation, the SL paradigm captures 

something important about the nature of everyday experience more generally.

However, this type of paradigm has been very rarely used in combination with causal 

judgments. In a notable exception, the SL paradigm has been used to study the segmentation 

of motion streams into meaningful actions, and such meaningful actions were judged as 

more likely to be causes of a separate, prespecified effect event (Buchsbaum et al., 2015). 

However, the unique question of interest here is whether predictive relations among events in 

such a scenario will themselves be seen as causal, when no instruction to look for causality 

is given ahead of time.

In Experiment 1, we presented learners with a continuous stream of events, some of which 

formed part of strongly predictive pairs. Our first question was whether this exposure to 

regularities would be sufficient to give learners a sense that the strongly predictive events 

cause each other, over and above the weak ones, despite no expectation to judge causality 

ahead of time. We measured spontaneous causal attribution by asking participant to describe 

what they had learned from the streams, and more solicited causal judgments by asking them 

to evaluate the extent to which various event pairs seemed to be causally related.

We also addressed our second question, whether causal attributions to objects can be based 

on higher-order statistics, as predicted by the dispositional/conditional view. To do so, we 

included in each event stream a continually present object, whose movements or color 

change could reliably predict the occurrence of another event in the environment. We then 

asked whether participants would be more likely to agree that the object caused this event, 

relative to another event that appeared even more frequently in its presence. In Experiment 2 

we asked whether such statistical attributes support category learning. Finally, in Experiment 

3, we used a convergent and more direct test of the dispositional/conditional view by varying 

the conditional relations among events in the context of two objects, and asking whether this 

difference led to distinct causal attributions towards them. Data and experiment materials are 

made freely available at https://osf.io/2d85n/.
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EXPERIMENT 1

Introduction

Statistical models of causality were developed to account for participants’ causal judgments 

on the basis of co-variation among events, such as between the administration of a medicine 

and a resulting headache across a number of trials (Buehner et al., 2003; Cheng, 1997). At 

the core of these models is the ΔP formula (Allan, 1980; Rescorla & Wagner, 1972; Shanks, 

1985):

ΔP = P(B A) − P(B A) Eq 1.

which captures the idea that a causal relation between A and B should be both strong and 

unique. Suppose that two events A and B coincide, such that after most occurrences of A, B 

occurs. However, B also occurs without A at a very high rate. One would not represent a 

strong link between A and B in this case. While formal models of causal inference differ in 

their details, nearly all of them share the core intuition behind ΔP (Hattori & Oaksford, 

2007). This includes the noisy-OR model (Griffiths & Tenenbaum, 2005), power PC model 

(Buehner et al., 2003; Cheng, 1997), and Causal Support models (Griffiths & Tenenbaum, 

2005; Kemp et al., 2010). Even though other models capture additional, nuanced aspects of 

causal judgments, strong differences in ΔP are expected to affect causal judgments under all 

of them, all else being equal. That is, participants will judge that medicine A causes 

symptom B to the extent that the occurrence of B increases when A is present, relative to its 

occurrence without A, assuming there is sufficient evidence to evaluate these quantities and 

priors to believe they are possible (see Griffiths & Tenenbaum, 2005 for direct model 

comparisons)1.

As discussed in the General Introduction, however, these tasks always provide participants 

with the goal to evaluate causality at the outset. Participants thus keep in mind the target 

concept, cause, while considering evidence. We were interested in testing whether the same 

sort of statistical dependency—a high ΔP—would give rise to a sense of causality 

spontaneously. We thus presented participants with the evidence to see whether the inference 

work in this direction—from statistical information to the concept cause?

We presented statistical information in the context of a visual SL paradigm, in which several 

different visual events appeared in a sequential stream (Figure 1). Unlike typical SL 

paradigms, our events were animated changes-of-state that occurred in a persistent visual 

world with a continually present object in the background. We showed each participant two 

streams, each cued by a distinct background object, but containing largely the same events. 

In each stream, one pair of events was chosen to have a strong statistical dependency in one 

direction, such that B followed A with a high probability, but rarely followed other events. 

On the other hand, A did not often follow B, and was quite likely instead to follow all other 

1A recent model called “Informative Transitions” (Derringer & Rottman, 2018) also predicts that participants care about contingency 
as described by ΔP, but that they specifically compute it over variables that change from the previous trial. This model is also in line 
with our predictions, as every trial in this paradigm involves a change from the last trial, and should thus expect very strong causal 
ratings among predictive events.
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the events. Thus, while A to B transitions had strong dependency, B to A transitions had 

weak dependency. According to the prior models reviewed above, participants should judge 

that A causes B. In the second stream, a similar pair of events was again dependent, but in 

the opposite direction (A followed B). Here, participants should judge that B causes A. This 

reversal allowed us to control, within participant, any effect of stimulus identity or 

background expectation about mechanism, and vary only the statistical dependency among 

events according to formulas in prior models. The key question was to what extent 

participants would spontaneously see these statistical relations as causal, or whether they 

required prompting to do so.

We used two dependent measures of causal judgment, one more self-generated or 

spontaneous, and the other more solicited. The more spontaneous measure was a free 

response, in which participants described what they had learned in each video. Truly 

spontaneous causal recognition should lead participants to describe the relation between A 

and B in causal terms. Such descriptions would suggest that the statistical patterns 

themselves led participants to see causal relations, with no prompting or suggestion that the 

concept should apply. The second was a solicited causal judgment, in which participants 

rated how much they agreed with statements saying that A caused B, vs. that B caused A. 

This is less spontaneous because it is probed, but nonetheless reflects conclusions made after 
the evidence was processed by the participant. If participants accept these causal statements 

for the strongly predictive event pairs (that A caused B when A predicts B), relatively more 

than for the weak ones, it would suggest that they were able to make use of predictive 

statistics learned outside of an explicitly causal context to inform later causal judgments. 

This would indicate a moderate level of unsolicited inference from statistical patterns to the 

application of the concept cause.

Our paradigm also allowed us to ask about causal attributions to the objects in these streams. 

A different object was present in each of the two streams, and we used the object’s 

movement or color change as the cause in one of these streams. For example, in stream 1, 

object A tilting might be followed reliably by the light flashing, while the confetti appear 

unpredictably (as in Figure 1). However, we ensured that confetti were actually more 

frequent in the presence of the object than the light flash, and much less frequent in the 

presence of object B. According to the dispositional/conditional view outlined in the General 

Introduction, it is the dependent event, light flash, which should be seen as being caused by 

the object, even though it does not covary with its presence like the confetti does. Rather, the 

light flash participates in a disposition: a conditional rule governing how an object will 

behave in specific conditions, rather than any specific state in which the object appears. We 

thus probed participants’ judgments about what they believed the object caused, and 

predicted they should judge the light flash to be chosen more than the confetti (in this 

example).

Methods

Participants—70 participants were recruited and tested using Amazon’s Mechanical 

Turk2. The sample size was chosen to be in line with that of related work on causal 

reasoning (Bramley, Gerstenberg, & Lagnado, 2014; Buchsbaum et al., 2015). Procedures 

Leshinskaya and Thompson-Schill Page 7

J Exp Psychol Gen. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were approved by the Institutional Review Board of the University of Pennsylvania, and all 

participants provided electronic consent. Participation was compensated with $3.00 plus a 

performance-based bonus of up to $4.00. One participant was excluded for previously 

participating in another experiment involving these stimuli; of the remaining 69, 12 (17%) 

were excluded for failing to pass an attention check measure (described below). Of the 57 

remaining participants included in the sample reported below, 30 were female and 27 were 

male, and their ages ranged from 21 to 62, with a mean of 36.

Stimuli—The stimuli are shown in Figure 1. They consisted of two novel, geometrical 

objects which each appeared in several types of animated events, presented as GIFs. Three 

events were object based: tilting (the entire object rotated −10 degrees), part moving (a 

detachable part on the object either slid up and down for object A or rotated for object B), 

and color changing (the object gradually changed from white to peach and back). Three 

others were ambient: light flashing (the background changed from gray to yellow and back), 

bubbles appearing (blue bubbles floated across the scene), and confetti (multi-colored stars 

streamed across the scene). GIFs were generated by hand-drawing individual frames using 

Adobe Illustrator and concatenating them into GIF files using Matlab (Mathworks). The 

GIFs were composed of 12 frames each, with each frame playing for 100ms, for a total event 

duration of 1200ms. A static event showed the object still on the screen for 2400ms. The 

object shapes (A or B) designated as object 1 and object 2 were randomized, and were given 

randomly assigned pseudoword names (sibbie or thale).

The GIFs were shown in continuous sequences, in which event transitions were governed by 

a pairwise transition matrix that specified the probability of any particular event following 

another. This was defined in a fixed way across all event assignments, objects and 

participants (Figure 1B). The transition matrix specified the following regularities: two 

events were designated as the cause and effect. If the cause event occurred on trial n, the 

effect occurred on trial n+1 with a 92% probability. Following other events, however, the 

effect occurred with very low probability (~.01). To compute ΔP, we used Eq 1, such that 

causal strength from A to B was given by the transition probability from A to B minus the 

transition probability from all other events to B3. This latter quantity is computed by the 

proportion of time that, given a non-A event on trial n, B occurred on trial n+1. For the 

cause-effect relation, the ΔP value was high (.91), as was, correspondingly, the power PC 

value (.91), and thus by prominent statistical models of causal inference, should lead to 

strong causal judgments (Cheng, 1997; Griffiths & Tenenbaum, 2005). On the other hand, 

the relation from effect to cause is much weaker: the probability of the cause on trial n+1 

given the effect on trial n is .25, and also relatively high given other events, resulting in a ΔP 

value of .05 (power PC .06). Thus, these models would predict that participants should judge 

that the cause produces the effect, but not that the effect produces the cause.

2Participants were required to have a 95% approval rating and have an IP address located in the United States.
3We take ~A as indicating the set of events in which A is absent, by normal assumptions of logic and probability. Nonetheless, it is 
important to point out that the set of alternative events to A can at times be a subset (Cheng & Novick, 1990; Shanks, 1995). If there is 
no appropriate set of alternative events in our scenario, then the probability of B given ~A is 0, and ΔP is still high from cause to 
effect, and substantially lower from effect to cause. The present design was not intended to be a test discriminating models of causal 
reasoning, but rather, to present statistical dependencies that would by all such models be considered strong evidence towards a causal 
link. However, our recent work indicates that ΔP captures learning in exactly this kind of paradigm, such that the probability of B 
given ~A is indeed computed as calculated here (Leshinskaya & Thompson-Schill, 2018).
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Two other events appeared in the sequences and were designated frequent and rare; these 

were designed to occur slightly more often and very much less often than the other events, 

respectively, while the cause and effect had equal frequencies. This was specified by the 

stationary distribution of the transition probability matrix, in which rare would occur on 3% 

of trials, frequent on 28%, and cause and effect on 20%. The frequent and rare events were 

relatively often (70% and 49%) followed by static to avoid giving the impression of a causal 

relation from frequent to cause (or other events). The frequent vs rare manipulation was used 

to test whether a frequency difference between events in the presence of object 1 vs 2 would 

lead to causal attribution—an alternative to the conditional/dispositional view—as well as a 

basic attention check (see below).

The specific events assigned to each abstract type in the matrix were randomized across 

subjects and varied systematically between objects. Thus, for a given subject, one pair of 

events was designated as the effect and the cause for object 1, and swapped for object 2 (so 

that the cause became the effect and vice-versa). Any of the 6 non-static events could serve 

as the effect or cause, with the constraint that if the effect was ambient, the cause was object-

based, and vice versa. Two other events were chosen to be rare and frequent, one of which 

was object-based and the other ambient; these assignments also swapped between objects. 

Thus, each participant was exposed to 4 of the 6 possible types of events (plus static).

Sequences were generated by running a weighted walk: each step was chosen according to 

the transition probabilities specified in the row of the transition matrix corresponding to the 

previous step. Sequences contained 250 events, which were split into a shorter preview video 

of 75 events and a longer video of 175 events. To ensure each walk was a good reflection of 

the requested transition matrix, the walks were generated iteratively and verified until they 

met several criteria: the mean difference between the generated and requested matrix 

transition probabilities was below an absolute value of .0002 (reflecting the average 

difference between the specified transition probabilities and actual transition probabilities 

between each pair of events); the standard deviation between total counts of the cause and 

effect events was less than 3.5 (which amounted to a difference of fewer than 5 occurrences); 

and the rare event occurred at least 4 times. Figure 1 displays the mean, obtained transition 

matrix across all included subjects. With respect to obtained frequencies: the effect event 

occurred 1.25 trials more for object 2 than object 1, averaging across subjects, a difference 

that is unlikely perceptible over a 250-trial sequence. The cause event occurred an average of 

1.29 trials more than the effect event, while the frequent event occurred for one object 62.90 

more times than for the other object.

Procedure—The task was implemented using JavaScript and presented in participants’ 

web-browsers via the Mechanical Turk interface. Participants were instructed as follows: 

“You will see animated videos about two different novel objects. Pay close attention to each 

video and learn as much as you can about the objects and events. You will be asked 

questions about the videos and will receive a bonus for accuracy of up to $4.” They then saw 

a preview video about each object lasting 75 trials, or approximately 1.5 minutes. Above the 

video for its entire duration, participants saw text indicating the object’s name (“this object 

is called a sibbie / thale”) and a reminder to pay close attention. After the two previews, they 

saw longer videos about each object, each lasting 175 trials (~4.5 minutes). During these 

Leshinskaya and Thompson-Schill Page 9

J Exp Psychol Gen. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



videos, they were additionally instructed to try to predict what will happen, and hit the ‘a’ 

key whenever “something unexpected happened”. This was to keep participants engaged and 

was not a dependent measure. Because the two objects’ properties (names, shapes, and event 

assignments) were randomized, their order of presentation was not systematically linked to 

any of these properties; ‘object 1’ thus refers to the first object the participant saw and 

‘object 2’ the second.

Measure of spontaneous causal attribution.—After both videos for an object were 

complete, subjects were asked to “describe what you have learned about sibbies / thales”, for 

each object; they typed their response into a separate text box for each. This was used to 

spontaneous ascription of causality. Descriptions were coded for use of the term ‘causes’ or 

‘makes’.

Attention check.—Attention check questions asked participants to judge the relative 

frequency of certain events. The rare event question asked participants to identify which 

event occurred more than once, but the least often, from a list of 6 event descriptions, which 

included events that never occurred in either video. Only one option could be selected.

After the second object only, participants saw a relative frequency question, asking “Which 

event occurred more often for this object that the previous one?” and shown a list of 6 event 

descriptions; they could choose just one.

Participants were included if, on the rare event questions for both objects, they did not 

choose an event that never occurred, by the reasoning that they would be tempted to select 

this option only if they had not watched the video in its entirety. They could also be included 

if they were accurate on the relative frequency question for object 2 and the rare event 

question for object 1. These criteria were determined using a pilot sample, to balance having 

a reasonable rate of inclusion while not including participants with overly low accuracy on 

the other learning measures.

Familiarity forced-choice test.—Following all videos and attention check questions for 

both objects, participants were given a forced-choice test to assess how well they had 

learned the pairwise predictive relationships among the events. This follows typical 

procedure in statistical learning paradigms (e.g., Turk-Browne et al., 2005), and is a useful 

measure because it allows a clear definition of chance. Questions were blocked by object 

with order of objects randomized. On each trial, two videos were played sequentially, one on 

the left and one on the right, and participants had to choose which one was more typical or 

familiar. Presentation side was randomized for each trial. Each of the two videos showed a 

pair of events. One was a strong (high transition probability) pair, and the other a weak (low 

transition probability) pair (except filler items, see below). To respond, participants clicked 

on one of two buttons that appeared above each video after they both finished playing. They 

had the option to replay the videos before making their selection, but not to change their 

answer or to move on without answering. No feedback was given. Participants’ accuracy 

was computed as the average across four forced-choice trials.
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Because there was only one strongly predictive event pair (the cause-to-effect transition), the 

question set was composed of the cause-effect pair as the high probability pair compared to 

various weaker pairs (effect to cause, effect to frequent, and cause to frequent). The critical 

pair was the comparison between cause-effect and effect-cause videos, and was presented 4 

times; the other questions were presented twice each. To avoid cuing participants to the right 

answer on critical pairs, via their relative frequency within the other test items, filler 

questions presented the same (non-critical) questions with the effect-to-cause event as the 

“high probability pair” in place of the cause-to-effect pair, making them balanced in 

frequency. Filler trials did not have a correct answer and were not analyzed. Questions were 

presented in randomized order.

Sentence acceptability test.—Participants were asked to rate verbal statements on a 1–

5 scale, in which 1 = Definitely False, 2 = Likely False, 3 = Unsure, 4 = Likely True, and 5 = 

Definitely True. This scale was chosen so that responses could be compared to a meaningful 

midpoint (ratings above 3 suggest acceptance). Furthermore, by framing the question in 

terms of degree of belief, rather than probability, this allowed statements to be rejected 

because they were poor descriptions, rather than simply rarely occurring phenomena. The 

object’s image appeared above the question as a mnemonic, and its name was used in the 

question text. Questions were shown in randomized order but blocked by object, with order 

of objects randomized and interspersed in randomized order with the forced-choice test.

The questions were of four kinds: order questions, unordered relation questions, causal 
questions, and frequency questions. These were used to probe the nature of participants’ 

interpretation of the statistical evidence they were exposed to.

Order questions described a predictive relationship between a pair of events using the term 

“after”, for example: “After the light flashes, sibbies tend to tilt”. Such questions were asked 

about the cause and effect events. Causal questions described the relations using causal 

language, for example, “Light flashing causes sibbies to tilt,” and was asked about the cause 

and effect events in both directions (cause-to-effect and effect-to-cause). These were used to 

probe the possibility that participants saw statistical dependencies as predictive, but not 

causal.

Causal questions were also asked in a ‘simple’ format, for example, “Sibbies cause the light 

to flash”. These were asked about the effect event if it was ambient, and about the frequent 

event if it was ambient. (It did not make sense to ask the question of an object-based event 

such as tilting). This allowed us to probe judgments attributing causal properties to the 

object itself, as opposed to an event explicitly.

Unordered relation questions probed knowledge of association without demand to retrieve 

order; for example, “Light flashing and sibbies tilting are strongly related”, and were asked 

about cause and effect events as well as frequent and effect events. This was used to assess 

whether participants represented directionality, given prior work suggesting that associative 

representations could be symmetrical (Asch & Ebenholtz, 1962; Endress & Wood, 2011; 

Kahana, 2002).
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Finally, frequency questions asked subjects to judge event frequency and compare relative 

frequency of the frequent and rare events. Simple statements read, for instance, “Confetti 

often tends to appear around Thales”. Relative statements read, for example, “Sibbies’ 

changing color is more frequent than confetti appearing around them,” for both frequent and 

rare events in both directions. This served as the basis for the attention check. Altogether, 

this formed a total of 12 questions per object.

Statistics presented are two-tailed, planned comparison t-tests, with an alpha of .05. Effect 

sizes (Cohen’s d) and confidence intervals (95%) are reported for tests of principal 

hypotheses.

Results

Familiarity forced-choice test—Participants were reliably accurate on the critical trials 

of the forced-choice test, which required them to discriminate between cause-to-effect and 

effect-to-cause event pairs (e.g., tilting followed by bubbles vs. bubbles followed by tilting), 

for the object learned first (M = 70%, SE = 0.05, t(56) = 4.05, p < .001) and the object 

learned second (M = 67%, SE = 0.05, t(56) = 3.49, p < .001), with no difference between 

objects (t < 1). Thus, participants had reliable access to the predictive statistics between the 

relevant events, allowing us to query how they interpreted them conceptually.

Spontaneous causal attribution—Participants were asked to describe in their own 

words “what they learned about” each object immediately following each video 

presentation. This allowed us to query their spontaneous, conceptual interpretation of the 

stimuli. We found that 35/57 participants accurately noticed and described the predictive 

pattern between cause and effect, for at least one object; and 32 of these described it in the 

correct direction. 20 participants accurately described the predictive patterns for both 
objects, and 14 of these described both of them in the correct direction. Critically, however, 

only 4 participants used any kind of causal language in their descriptions. This suggests that 

while the majority of participants had explicitly noticed the predictive dependencies, very 

few of them saw these statistics as causal. It should be noted that participants who did not 

describe the correct predictive patterns were also not reliably accurate on the forced-choice 

familiarity test, for either object alone or collapsing across objects (ps > .3). This suggests 

that these participants were not simply reluctant to offer descriptions, but likely failed to 

learn the statistics.

Sentence acceptability test—Analogously to most causal reasoning experiments, we 

asked participants to provide causal judgments by rating the extent to which they believed 

event A caused event B. These judgments were solicited, unlike the spontaneous causal 

judgments, but unlike in past experiments, were given as a surprise measure—participants 

were not expecting to make such judgments while viewing the evidence.

Causal statements about the effect and cause.: These statements described the 

relationship between cause and effect events in causal terms (e.g., “Thales’ tilting causes 

bubbles to appear”), and were evaluated on a 1 – 5 scale where 5 indicated “Definitely 

True”, 1 indicated “Definitely False”, and 3 indicated “Unsure”. We thus compared 
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participants’ ratings to a mean of 3 to test acceptance or rejection. As shown in Figure 2B, 

such statements were strongly accepted when they were in the correct direction (object 1: M 
= 3.68, SE = 0.16, CI [3.37, 3.99], t(56) = 4.43, p < .0001, d = .59 ; object 2: M = 3.58, SE = 

0.15, CI [3.29, 3.87], t(56) = 3.97, p < .001, d = 0.53), but rejected when they were in the 

reverse, incorrect direction (from effect to cause), for object 1 (M = 2.54, SE = 0.16, CI 

[2.23, 2.85], t(56) = −2.95, p = .005, d = −0.39), though neither accepted nor rejected for 

object 2 (M = 2.74, SE = 0.16, CI [2.42, 3.05], t(56) = −1.67, p = .10); however, there was 

no difference between objects (t < 1) and the effect held overall (t(56) = 2.86, p = .006, d = 
−0.22). Causal statements in the right direction were accepted significantly more than causal 

statements in the reverse direction for both objects (object 1: t(56) = 4.74, p < .001, d = 0.63; 

object 2: t(56) = 3.21, p = .002, d = 0.43).

Thus, participants attributed causality to strongly predictive events more than to weakly 

predictive ones, indicating that they were not attributing causality indiscriminately, but were 

using statistical dependency to do so. This confirms that models based on ΔP are good 

predictors of solicited causal judgments (though does not contradict the argument that more 

than just ΔP is needed to account for causal reasoning).

Causal vs. predictive judgments.: One possible explanation for participants’ acceptance of 

the causal statements were that they were assuming that causal statements were simply 

paraphrases of the non-causal, predictive statements. To assuage these worries, we report 

findings from a related experiment (Leshinskaya & Thompson-Schill, 2018b). In this 

experiment, participants were taught predictive information about events in a very similar 

paradigm, in the presence of similar kinds of objects, albeit with additional feedback, such 

that they had highly robust representations of event order. At the end of the study, 

participants evaluated statements phrased as follows: “For two of the objects, their 

movements predicted the occurrence of another event (e.g., the appearance of a light flash, 

bubbles, or stars). To what extent did you perceive this relationship as causal? Did these 

objects seem to cause this event?” Thus, the question already assumed predictive knowledge, 

which they had already demonstrated, and probed the causal interpretation of that predictive 

relationship as a conceptually distinct attribute. Although no causal language had been used 

at any point in the experiment, participants largely accepted this causal interpretation, both 

for events predicted by object movements (M = 4.04, SE = 0.20, CI [3.64, 4.44], t(35) = 

5.27, p < .001, d = 0.88) and for object movements predicted by events (M = 3.98, SE = 

0.21, t(35) = 4.53, p < .001, d = 0.75 ).

Predictive non-causal statements.: Results regarding predictive non-causal statements are 

reported in Appendix A. The key finding was that participants were equally accurate in 

responding to ordered predictive statements as for the unordered statements relating cause 

and effect, t(56) = 1.45, p = .154. This suggests that participants did not discard 

directionality information about the predictive relations (c.f., Endress & Wood, 2011; Turk-

Browne & Scholl, 2009) and that directionality information was recalled at no greater cost 

than non-directed association.

Attributions to objects.: We were also interested in causal attributions to the objects in the 

event streams. Participants reliably accepted statements that described the objects as being 
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causes of the effect event, such as, “Thales cause the light to flash” (object 1: M = 3.84, SE 
= 0.17, CI [3.38, 4.29], t(30) = 3.76, p = .001, d = 0.68; object 2: M = 3.85, SE = 0.13, CI 

[3.44, 4.25], t(25) = 4.28, p < .001, d = 0.84), shown in Figure 2B. This suggests that 

participants accepted an attribution of causality to the object itself. Because the effect event 

(e.g., light flash) occurred equally often in the presence of each object, these judgments were 

not due to the relative frequency of the effect in the presence of the two objects. On the other 

hand, the frequent event was more frequent in the presence of one object than the other (28% 

vs 3%) but was not strongly or uniquely predicted by any other event in the sequences. We 

thus also asked whether participants saw a causal relation between the object and the 

frequent event. We first ensured that participants were sensitive to these properties of the 

frequent event; these results are reported in Appendix A under Frequent Event Validation 
Measures.

To assess causal judgment of the frequent event, we used the simple causal statements (such 

as, “sibbies cause confetti to appear”), for the object whose frequent event was ambient. 

These results are shown in Figure 2C. We found no reliable acceptance of these causal 

statements (t(24) = 1.00, p = .33). Conversely, in the same participants, we found significant 

acceptance of the cause-to-effect statements (M = 3.96, SE = 0.17, CI [3.43, 4.49], t(24) = 

3.77, p < .001, d = 0.75), which was reliably greater than of the frequent event causal 

statements (t(24) = 2.63, p = .015, d = 0.53).

To ensure that this was not due to differences in these questions’ wording style, we also 

compared causal judgments of the frequent event to simple causal statements about the 

effect event, which read, for example, “Thales cause the light to flash”. Acceptance of these 

statements was also assessed only for the object which had an ambient effect; this reduced 

the sample size of responses. Nonetheless, participants reliably accepted simple causal 

statements about the effect (M = 4.05, SE = 0.16, CI [3.49, 4.61], t(19) = 3.94, p = .001, d = 

0.88), and more so than for the frequent causal statements (t(8) = 3.82, p = .005, d = 1.27).

Discussion

Participants watched continuous streams of events, in which one pair of events was strongly 

predictive in one direction: for example, an object tilting strongly predicted bubbles 

appearing, but not vice versa. According to statistical theories of causal attribution, 

participants should judge tilting to cause bubbles, more so than the reverse, by virtue of their 

relative statistical dependence (Buehner et al., 2003; Cheng, 1997; Cheng & Buehner, 2012; 

Griffiths & Tenenbaum, 2009; Spellman, 1996). Indeed, when probed to evaluate causal 

statements, participants’ judgements followed this prediction. Critically, however, our 

participants had not been told in advance of exposure that they would be making causal 

judgments. This result suggests that causal inference can, in fact, be informed by statistics 

learned independently of any explicit goal to evaluate causality. This supports the idea that, 

to some degree, the presence of the right statistical pattern, observed without the intention to 

judge causality, can indeed inform the way learners build causal models of their world. The 

relatively naturalistic design of our task increases our confidence that this kind of learning 

could take place in everyday observational experience.
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However, this conclusion falls alongside an important caveat. Our most unsolicited measure 

of causal perception—where participants described in their own what they had learned—

showed that fully spontaneous causal perception was rare: only 4 participants of 57 gave 

descriptions with causal language. This suggests that the presence of statistical dependency 

can inform causal questions when presented, but does not give rise to the perception or 

recognition of causality on its own. This presents a problem for the strong hypothesis that 

the concept cause is immediately recognized when such dependency is detected. Although 

statistical dependency was indeed reliably detected, as shown by forced-choice questions 

and the unsolicited, freeform responses, it was suspended of a causal interpretation until the 

possibility was suggested by our questions.

Thus, towards our question of whether statistical contingency can drive participants to see 

causation, we conclude statistical contingency does not obligatorily give rise to a sense of 

causality, but enables it optionally. Prior to encountering causal questions, participants 

maintained robust predictive knowledge, suspended from causal belief. Once the question 

arose, they were able to put it appropriately to use.

One might argue that using the concept cause in self-generated descriptions requires a higher 

level of confidence than circling “Likely True” on a 5-point causal scale. That may be, but 

the latter—a solicited judgment on a numerical scale—has been taken as a principal measure 

of causal inference in much prior work. One might restate our findings as indicating that 

predictive information is insufficient for generating strong, unsolicited causal judgment, but 

sufficient for weaker, or less confident, solicited judgment. The point nonetheless holds: 

predictive information alone does not give rise to a strong sense of causality, at least absent 

of strong prior expectations for seeing it, as here. However, to the extent that solicited 

numerical ratings are a reasonable measure of causal judgment (as they have been treated in 

the literature), predictive information can be appropriately informative.

The second question we investigated was how causality might be attributed to objects. At 

face value, statistical models of causal attribution might predict that objects are granted 

causal properties much as events are: by virtue of their co-variation with an effect. 

According to the dispositional/contingent view, however, the continual presence of objects is 

not itself so much a causal event, but is rather a conditioning context for causal relations 

among other events in its presence (Mumford, 1998; Ryle, 1959). These alternatives have 

been rarely tested because in typical paradigms, events and objects are not explicitly 

distinguished—for instance, ‘medicine’ is both an object and the event of taking it (as noted 

by Mayrhofer & Waldmann, 2015). We found support for the dispositional/conditional view, 

though not to the exclusion of the former.

When an effect event was contingent on an object-based event, such as the object’s 

movement or color change, the object was granted causal powers: participants reliably 

accepted that “thales cause the light to flash” when light flashing depended on thales’ 

movement or color change. This was true even though the light flash occurred equally often 

in the presence of the other object (and thus, its ΔP value low with respect to object 

presence). Critically, participants accepted this statement more than “thales cause confetti to 

appear”, when confetti was an event which did covary between the two objects: it occurred 
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frequently around thales, but less frequently around the other object. However, this event 

was not contingent on the object’s movement (or other event). This implies that causal 

attribution to an object can arise without statistical dependence on the object’s presence; 

instead, statistical dependency on an object-based event is sufficient and perhaps more 

effective. This supports the dispositional/conditional view.

It is also worth contrasting our view from that of enabling conditions. For example, oxygen 

“enables” fire, even when it is judged to be caused by a match being struck. Are objects in 

our experiment enabling conditions in this way? Formal and empirical work (Cheng & 

Novick, 1991) suggests otherwise: enabling conditions are only given causal powers when 

they covary with effects, albeit across contexts. For example, in a room without oxygen, fires 

would no longer occur. On the other hand, a factor that does not covary with an effect is seen 

as causally irrelevant, rather than an enabling condition. The objects in our experiment, by 

design, did not covary with their effects: light flashing occurred equally often in the presence 

of both objects. The difference was that light flashing only depended on movement in the 

presence of one of them. We thus argue that an account of our data requires representing 

relations hierarchically: top-level factors (here, objects) enable lower-order relations (rather 

than event occurrences), but are nonetheless attributed causal powers.

We acknowledge a few limitations to our conclusions. First, this finding does not preclude 

the possibility that in other situations, objects can be seen to cause their effects by virtue of 

their presence alone (e.g., a table may be said to causally enable support), or that a stronger 

demonstration of such a dependence could not lead to causal judgment. Second, in all cases, 

the effect was dependent on an object-based event—an event that took place 

spatiotemporally on the object, such as a movement or color change. We do not know what 

kinds of attributions participants would make if the effect dependent on another, non-object 

based event. Along the same lines, we cannot determine here how the nature of the stimuli 

influences the kinds of statistics learners attend to. For example, the fact that the 

dispositional statistic was ascribed to the “object” in our paradigm may not have anything 

inherently to do with it being a bounded shape, or even that it appeared for long durations. 

Rather, it may be the very fact that its appearance predicted a relation which led to this style 

of attribution (Gershman, 2016). We leave these questions for future research.

Finally, we showed that learners were highly sensitive to predictive directionality—essential 

for spontaneous causal learning to get off the ground in event stream learning scenarios. Not 

only was directionality discriminated, but it was effectively free: to the extent that we could 

determine, performance was no better when participants only needed to indicate that cause 

and effect events were related, than when asked to indicate their direction (results reported in 

Appendix A). This was not guaranteed by prior findings, which have shown that event 

contingencies can often be encoded symmetrically (discarding order information), at least in 

cases where there are no temporal boundaries (pauses) segmenting the cause-effect pair from 

the stream (Endress & Wood, 2011).

Overall, our findings so far suggest that adult learners possess mechanisms to spontaneously 

extract information from continuous event streams in the right form to be useful for causal 
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reasoning, including its use to attributing causal properties to objects. However, two open 

questions motivate the subsequent two experiments.

The first concerns the nature of the attributional judgment to the objects. We relied on the 

acceptability of the statement “thales cause the light to flash” to indicate that a causal 

property is indeed assigned to the object itself. However, participants could have seen this as 

a short-hand paraphrase of the statement “thales tilting causes the light to flash”, or accepted 

it because they inferred such a meaning on behalf of the experimenter. In the subsequent 

experiments, we push this kind of attribution further by measuring object categorization 

(Experiment 2) and asking participants to determine what they think an object causes, and 

measuring what they choose (Experiment 3).

EXPERIMENT 2

Introduction

In Experiment 1, participants might have learned that tilting predicts bubbles, and ascribed 

causality to this predictive structure. However, learning a causal relation between two 

specific events is not per se the same as identifying the abstract relation “cause”. If what 

learners extracted was indeed an abstract relational representation, then it should be the case 

that the same relation with some different participating events should be recognized as 

similar: it should generalize to a visibly different object whose movements also predict, say, 

bubbles. Here, we are concerned with the conceptual property “causes X”, where X is one of 

our specific events; we expect participants to group together objects whose movements also 

predict X, while placing objects whose movements follow X in a different category. Our aim 

in this experiment was to establish that this is indeed how participants encoded their 

experiences.

Simultaneously, participants’ categorization of objects on the basis of predictive relations 

would bolster the notion such predictive structure was attributed to their identity. If causation 

is assigned to events, not objects, it would not support object categorization. Broadly, then, if 

statistics among events are indeed the kind of thing that could affect object property and 

category learning, and if they do so at an abstract, relational level, it would be supportive of 

our account of how abstract properties can be learned in bottom-up fashion from experience.

To this end, we presented learners with similar displays as in Experiment 1, but here, objects 

were given one of two category labels, and participants were told that their objective was to 

learn about these categories. They were then asked to categorize a test object. We asked 

whether participants would use the directionality of predictive events to make this decision. 

If so, it would suggest that this form of relation is seen as relevant to object category 

membership, that relations can be extracted from experience, and were spontaneously 

represented in abstract relational form. We also compared category formation on the basis of 

relational properties to those based on object-relative event frequency, given suggestions in 

the literature that causal properties may have precedence over ones based on frequency 

(Ahn, 1998; Gopnik & Sobel, 2000; Rehder, 2003a). Thus, we created two conditions. In the 

Contingency condition, objects were assigned labels on the basis of similar predictive 

structure among their events: objects with the same label both caused X, rather than reacted 
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to X. In the Frequency condition, objects were assigned labels on the basis of event 

frequency (i.e., the same events were relatively more frequent vs. rare). We then measured 

whether participants would extend the label appropriately to a third object with the 

characteristics of one of the categories.

Methods

Participants—80 participants were recruited and tested using Amazon Mechanical Turk 

(following similar procedures as in Experiment 1). Procedures were approved by the 

Institutional Review Board of the University of Pennsylvania, and all participants provided 

electronic consent. Participation was compensated with $2.00 plus a performance-based 

bonus of up to $3.00. None of the participants had previously performed any similar 

experiment, which was verified by checking their unique worker ID against a master list of 

worker IDs of participants in other experiments, and the possibility of which was minimized 

by only allowing workers who had not previously participated in similar tasks to view it. Of 

these participants, 37 were female and 43 were male, and their ages ranged from 18 to 74, 

with a mean of 35.

Stimuli—Stimuli were similar to those used in Experiment 1. Four distinct object shapes 

were used (Figure 3A). These were all shown, separately one at a time, in the context of 

animated sequences of events. There was a preview video (50-event, ~1.25 minute) and a 

longer video (200-event, ~4.5 minute) for each object. As before, the sequences involved 5 

different events. This always included static, as well as 4 others selected at random from a 

pool of 6 (light, bubbles, confetti, tilt, part-move, and color change), and assigned also at 

random to an abstract type: cause, effect, frequent, and rare, which designated their 

transition properties as specified in a 5 by 5 transition matrix, depicted in Figure 3B. There 

were always two object-based events: one was either the cause or the effect and the second 

was either frequent or rare; the others were ambient.

As before, sequences were generated by a weighted walk governed by the transition matrix. 

The transition matrix specified that the effect followed the cause 94% of the time, but 

followed other events < 5% of the time. Transitions to the rare event were all low to ensure it 

was the least frequent (7% of trials), while the cause, effect and frequent events were equally 

frequent (22% of trials), as determined by the steady state values of the transition matrix. All 

of these properties were verified by iteratively generating and checking the walks (as in 

Experiment 1). We additionally ensured that the frequency of the rare events was consistent 

among the four objects so that this could not be used as a cue for categorization.

There were two categories of objects, which differed in terms of their sequence properties. 

Each category was given a label, either sibbies or thales, assigned randomly for each 

participant. There were three training objects and one test object, creating two exemplars of 

one category and one of the other. The choice to present three rather than four objects was 

primarily to reduce testing time and discourage participants from quitting the task. The 4 

object shapes were assigned to the four exemplars in randomized fashion.

Categories were created by swapping the assignments of some of the events to different 

positions in the transition matrix. In the Contingency Condition, the identity of the cause and 
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effect events swapped between the two categories. Thus, for example, sibbies might both tilt 

prior to the light flashing, while thales might tilt after the light flashes. In the Frequency 

condition, the identity of the frequent and rare events swapped between the two categories. 

Thus, sibbies might be commonly surrounded by bubbles, while thales might be more 

commonly surrounded by confetti.

The test object matched category 1 for half of the participants, and category 2 for the other 

half, in its statistical properties. To ensure that these sets of participants received unbiased 

and equated stimuli, we yoked participants such that two were given identical training 

materials and shape assignments, with only the statistical properties of the test object 

varying. Concretely, for one assignment of events to event types, one assignment of object 

shapes to object types, and a single set of training object walks, two subjects were tested, 

whose experience differed only in terms of the sequence properties of the test object they 

saw. These test objects had the same shape, but inherited the sequence properties of category 

1 (with two exemplars) or category 2 (with one exemplar). Any biases towards classifying 

the test object to the category with fewer or more exemplars would thus cancel out, and 

could not allow above-chance performance alone.

Procedure.: Participants were instructed that their task was to learn about two categories of 

objects, sibbies and thales, and randomly assigned to the Contingency or Frequency 

condition. They saw a short, preview video about each of the three training objects (~1 

minute), in randomized order, followed by longer videos (~4.5 minutes), in the same 

randomized order. During the preview phase, they were asked to watch attentively and learn 

as much as they could. During the longer videos, they were asked to press the ‘a’ key 

whenever something unexpected happened, where unexpected was not defined, and to 

continue to learn about this type of object. The name of the object was written above the 

video for its duration. Following each longer video, participants were given a freeform 

question asking them to describe what they learned about that object and what might make it 

a sibbie or thale. Finally, they were given a fourth longer video (~6 minutes). Ahead of this 

video, they were told that they will see a video about a new object and to “try to determine 

whether this object is a sibbie or a thale”. This instruction persisted above the video for its 

duration. After the video, a freeform question asked participants to describe “in what ways 

this object is similar to or different from sibbies and thales”. Subsequently, they were asked 

whether this object is a sibbie or a thale, and to rate its similarity to sibbies on a 5 point scale 

from Very Dissimilar to Very Similar, and to rate its similarity to thales on a similar scale.

Attention check.: Following each video, participants were asked to select from a list of 

event descriptions those which never occurred during the last video. This list included the 4 

which occurred and 2 which never occurred. Unfortunately, a large proportion of participants 

failed this attention check, suggesting that the event descriptions might have been 

ambiguous. We thus did not use any attention check and included all participants.

Freeform response coding.: Participants’ freeform responses were coded for whether they 

accurately noticed any of the contingency or frequency information.
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Statistics presented are two-tailed, planned comparison t-tests, with an alpha of .05. Effect 

sizes (Cohen’s d) and confidence intervals (95%) are reported for tests of principal 

hypotheses.

Results

The principal measure of interest was the classification accuracy of the test object. These 

results are shown in Figure 4. In the Contingency condition, where categories were based on 

the direction of dependence between two events, participants were significantly accurate 

(Binomial test against 50%, 25/40 passing, p = .037). They were also significantly accurate 

in the Frequency condition, where categories were based on relative event frequency 

(Binomial test, 26/40 passing, p = .021). There was no difference in success rates between 

these conditions (Chi square, p > .9). We also measured similarity ratings of the test object 

to the two categories. Across conditions, participants rated the test object as more similar to 

the matching object category (M = 4.47, SE = 0.13) than to the non-matching category (M = 

3.88, SE = 0.14), CI [0.15, 1.05], t(79) = 2.67, p = .009, d = 0.50, though the effect within 

each condition alone was marginal (Contingency condition: CI [−0.06, 1.26], t(39) = 1.85, p 
= .071, d = 0.49; Frequency condition: CI [−0.04, 1.24], t(39) = 1.90, p = .065, d = .50). 

There were again no differences between conditions (indeed, the means were identical; p = 

1).

Participants entered freeform responses describing what they had learned about each object 

following its (longer-video) presentation. These were scored to measure whether participants 

explicitly noticed the relevant properties (predictive direction for the Contingency condition, 

and frequency for the Frequency condition, although both statistics were present in both 

conditions). Participants often described both kinds of statistics as well as other observations 

about the objects, such as their shapes, manners of movement, etc. We also coded 

participants’ descriptions of how the test object was similar to or different from the objects 

in two categories, entering a score of 1 if they mentioned the category-relevant statistic (even 

if they also mentioned other factors), and 0 otherwise. A score of .5 was given in ambiguous 

cases.

These measures allowed us to compare the Contingency and Frequency conditions on 

difficulty: were participants equally likely to pick up on one kind of statistic than another? 

We found this to not be the case: participants were equally likely to notice/describe the 

relevant statistic in each condition (25/40 subjects in the Contingency condition; 24/40 in the 

Frequency condition; Chi Square, p = 1.00). They were also equally likely to describe the 

relevant statistic when describing differences and similarities of the test object to the training 

objects (20 in the Contingency condition; 21 in the Frequency condition; p > .80). This 

suggests that learning of the relevant information in the two conditions was similar, and thus, 

test object classification performance similarity was not masking underlying differences in 

learning that were then counteracted by differences in categorization relevance4.

4Participants rarely described the category-irrelevant statistic (5/40 in the Contingency condition; 13/40 in the Frequency condition) 
but this difference was marginally significant, Chi Square = 3.512, p = .061. This difference between conditions might suggest that 
contingencies were more salient than frequencies overall, but it still does not imply that the conditions were differentially difficult.
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Finally, we asked whether participants who did not explicitly notice the statistical 

regularities for any object (n = 16) were still able to use them successfully to classify the 

novel object, perhaps by the use of an implicit impression or other intuitive strategy. We 

found that they were not able to do so, in either condition alone or collapsing across 

conditions (ps > .10). This suggests that the representations driving successful performance 

in this task were explicit.

Discussion

Participants were taught two categories of objects based on the statistics of events 

surrounding or involving them, in a presentation largely similar to Experiment 1. Each 

exemplar exhibited two regularities: one strong predictive relation between two events (the 

‘cause’ and the ‘effect’), and one frequency difference, in which one event (‘rare’) was less 

frequent than the others. In the Contingency condition, object category labels grouped the 

objects exhibiting the same predictive relation, while in the Frequency condition, object 

categories grouped objects by the identity of the rare event. The test was to categorize a 

novel object, which matched one of the two categories on the relevant statistic. We found 

that participants in both conditions learned the relevant statistics and successfully used them 

to categorize the test object.

Although this experiment was very simple, it was essential in establishing that the 

information acquired by our participants was, indeed, the kind that could serve as the basis 

of category formation, in two ways: first, that predictive event information was encoded at a 

sufficiently abstract, relational level, and second, that it was attributed to objects and thus 

relevant to their identity. We rejected the alternative possibility that, when asked to learn 

“about object categories” with minimal guidance in an SL scenario like ours, learners would 

not attend to or use event contingencies. Instead, a substantial proportion of participants 

described such properties, and used them in classification.

The role of causality in categorization of novel objects has been previous shown, when this 

information is presented explicitly to participants (Ahn, 1998; Rehder, 2003b, 2003a; 

Sloman et al., 1998). Most of this work investigates causal relations among an object’s 

features, however, rather than between their actions and effect on the world. Relatedly, 

however, Lien and Cheng (2000) argue that it is rational to group different causes of the 

same effect into a common category in order to create a coherent model of the world: if two 

causes both result in an effect, overall predictive strength is maximized if those causes are 

grouped into a common class. We add to this body of work by showing that this 

phenomenon can arise even when causal structure is observed passively on the basis of 

statistics in event streams and not made explicit to the participants.

Past findings have also indicated that causal information is privileged over the frequency of 

features in category learning (Ahn, 1998; Rehder, 2003b, 2003a; Sloman et al., 1998), and 

we thus expected that contingency-based categories would be better learned than frequency-

based ones. However, this is not what we found: test object classification was significant in 

both conditions, and we detected no difference between them. Of course, it is possible that 

we lacked power to detect an effect of condition, or that such effects arise only when these 

two sources of information conflict and individual subjects must choose between them. 
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However, it also remains possible that the privileging of causal information does not extend 

to the kind of learning scenarios presented here, where it was less explicitly causal. This 

remains an open question for future research.

EXPERIMENT 3

In our final experiment, we aimed to substantiate the claim from Experiment 1 that objects 

can gain causal properties by virtue of the dependency structure among events in their 

presence, without an increased occurrence of the event they cause. We addressed the 

potential shortcoming in Experiment 1 that participants might have accepted causal 

statements (such as “sibbies cause the light to flash”) due to their beliefs about what the 

experimenter meant by object causation, rather than due to their own beliefs, or that they 

saw it as a short hand for other causal statements presented in the experiment (“sibbies’ 

movement causes the light to flash”). Here, we gave participants the top-down goal to judge 

object causality, and evaluated whether they used event contingency to do so.

The participants’ task was simple: they were asked to determine what they think each object 

causes, if anything. They then saw two objects in turn, each embedded in an event sequence. 

These sequences both contained the same set of events, but the dependency structure among 

the events varied (Figure 5). For object 1, the hypothesized effect event (say, bubbles) 

appeared reliably following one of the object’s movements, while the other (‘random’) 

events were neither strongly nor uniquely predicted by any event. For object 2, one of the 

events that had been random for object 1 became the effect, such that now it reliably 

followed one of the object’s movements (for example, confetti became predictable while 

bubbles became unpredictable). The critical comparison is between the two events which are 

predictable for one object but random for the other: we expect that participants will judge 

that object 1 causes bubbles, but not stars, and the reverse for object 2.

These two events were matched on two important properties. First, within and across 

objects, the subjective (perceived) frequencies of the hypothesized effect and the other-

object effect were empirically matched. In addition, both the hypothesized effect and the 

other-object effect followed the object’s movements equally often—just with different 

reliabilities. Each object exhibited a second, distinct movement (‘non-causal movement’) 

which was highly frequent, but followed by equiprobably by all of the non-effect events. The 

number of times participants saw the other-object effect follow this movement was very 

close to the number of times they saw the effect follow the other movement. However, only 

the latter was uniquely predictive.

In summary, we anticipated that participants would judge that both objects had causal 

properties, but that the effects they caused would vary: only the highly predictable event 

would be seen as each object’s effect. If participants did not take predictive event structure 

into account, they should not ascribe different causal effects to the two objects. As described 

in Experiment 1, these predictions arise from a dispositional/contingent view of how 

causality is attributed to objects (Mumford, 1998), in that it suggests that objects’ causal 

properties are dispositions that are cashed out in contingencies: here, that the reliable 

contingency between the object moving and the appearance of bubbles will lead to 
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participants’ judgments that the object causes bubbles. This should be true despite the fact 

that the bubbles are not particularly frequent events when the object is present. That is, the 

object causes bubbles not by virtue of being often seen with bubbles, but by virtue of being 

linked to a conditional relation: that, if it moves in just the right way, bubbles reliably 

appear.

Methods

Participants—82 participants were recruited and tested using Amazon’s Mechanical Turk 

following similar procedures as previous experiments. Procedures were approved by the 

Institutional Review Board of the University of Pennsylvania, and all participants provided 

electronic consent. Participation was compensated with $2.00 plus a performance-based 

bonus of up to $1.50. Five participants reported experiencing technical glitches during the 

task and were excluded. None participated in related experiments.

As described below, not all participants passed a learning criterion, but results are described 

both including (Appendix B) and excluding these participants (Results). In the accuracy-

filtered sample (n = 48), 30 were female and 18 were male, and their ages ranged from 21 to 

71, with a mean of 37. In the overall sample, 45 were female and 32 were male, with ages 

ranging from 21 to 71 and a mean of 27. A power analysis on data from Experiment 1, using 

the comparison of causality ratings for the cause-effect relation vs. the frequent event, 

indicated that a sample of 30 would be sufficient to detect a similar effect with 80% power 

(Cohen’s d = 0.52). A target sample size of 48 (following performance-based filtering) was 

chosen in order to also complete two sets of counterbalancing conditions.

Stimuli—Stimuli resembled those in Experiment 1. Two novel objects appeared one at a 

time in 250-trial (~ 4 minute) animated sequences composed of 6 different events (Figure 5). 

Two of the events were object-based (tilting and part-moving), and four were ambient (light 

flash, bubbles, confetti, and leaves falling). It was assumed that learners would expect the 

effect to be ambient; the design therefore manipulated the statistical properties of the 

ambient events and then assessed which of them would be seen as the effect. Object shapes 

were assigned in randomized fashion. Objects here did not have any names in order to 

simplify memory demand: each had a different color and was referred to by its color (e.g., 

“the green object”).

One of the two object-based events was designated as the “cause” and the other as the “non-

causal movement” (randomized across participants), and the four ambient events were 

designated as the “effect”, “random 1”, “random 2” and “random 3” in counterbalanced 

fashion across participants (creating 24 counterbalancing conditions, which were used 

twice). Event assignments were varied systematically between the two objects. Random 

event 1 of object 1 became the effect of the object 2, so is henceforth referred to as the 

“other-object effect”. Random event 2, which stayed random in both objects, was used in the 

probe questions as a control (see below), and is henceforth termed the “random” event.

The predictive relations among all events are shown in the transition matrix in Figure 5 

(bottom), which governed the weighted walks used to generate the sequences. Notably, the 

cause was followed with a ~95% probability by the effect, and the effect was not preceded 
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by any other event. The 3 random events were equally likely to follow the effect, the non-

causal movement, and each other, and were thus neither strongly nor uniquely predicted by 

any event. No static events appeared (except as the very first and last events). All events had 

an equal probability of repeating (10%). Thus, neither repetition structure nor static event 

(pause) occurrence could be used as cues to causality. The same transition matrix was used 

for both objects; their only difference was an exchange of the effect event and random event 

1.

The individual frequencies of the 6 events were such that the cause and the effect each 

occurred 7% of the time, and the others each occurred 20–21% of the time (on average 

across subjects, and as specified by the steady state of the transition matrix). Notably, 

therefore, the effect appeared less frequently than any other ambient event in the presence of 

its respective object, and hence, less frequently than in the presence of the other object. This 

was done in order to match effect and non-effect events for subjective frequency, as detailed 

in the Pilot section below. As a result, “chunk” (pair) frequency among event movement-

ambient event pairs was highly similar: there were 17 vs. 14 instances of the cause – effect 

pair vs. the non-causal-movement – other-effect pair, on average. These values are likely 

within the range of discriminability over a 250 event sequence, and thus, chunk frequencies 

were reasonably well matched between effect and non-effect events.

Procedure—Participants were given the following instructions: “You will watch short (4-

minute) animated videos about two objects. Your task is to learn what each object causes, if 

anything. After the videos, you will be asked about what you have learned and various 

questions about the videos. Pay close attention throughout as there will be additional 

questions about the videos.” They then saw the 250-event sequence for object 1, followed by 

a freeform response box asking them what they had learned about this object. They then saw 

a force-choice familiarity test, as in Experiments 1 and 2, which was composed of the 

following critical questions: cause - effect vs. effect - cause, cause - other-object-effect, 

cause - random, and non-causal-movement - random. These were presented in randomized 

order amongst filler questions that balanced the number of times each kind of event pair was 

shown. The four non-filler question response accuracies were averaged into an overall score. 

They then saw a 250-event sequence for object 2, including a reminder to pay attention to 

the entire video, and similar tests. Performance on the familiarity forced-choice responses 

was used as inclusion criteria for the accuracy-filtered sample. These participants were 

required to have an overall average performance above 50% on non-filler questions.

Following all videos and familiarity tests, participants saw a set of conceptual questions. 

Questions were blocked by object and object blocks were presented in the same order as the 

learning videos. A picture of the relevant object was shown at the start of its question block, 

and its name was given by reference to its color (“green object”, “blue object”, etc.).

Binary causal questions.: The first page always revealed the question, “Which of the 

following do you think this object caused? Check all that apply.” A list of events was shown 

in randomized order, naming the effect, the other-object-effect, and the random event; these 

were followed by the options “something else” and “it had no causal effect”. These 
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questions allowed us both to determine what participants thought the object caused, as well 

as allowing the belief that there was nothing that it caused.

Continuous Causal Questions.: The second page instructed participants to “evaluate how 

true these statements seem to you”, and listed a set of statements that participants could 

evaluate on a scale from 1 (‘Definitely False’) to 5 (‘Definitely True’), with 3 indicating 

‘Unsure’. Statement acceptance in absolute terms was evaluated by comparing responses to 

a rating of 3. Three statements were shown describing the causal properties of the object (for 

example, “The green object seemed to cause the multi-colored stars to appear”), each with a 

different effect: the effect, the other-object effect, and the random event. Because all 

statements were shown simultaneously, it encouraged participants to express their relative 

beliefs about these different causal possibilities, and the continuous scale allowed finer 

grained measures of belief. Thus, it served as a complementary measure to the binary 

questions.

Following the causal questions, participants were asked to evaluate relative event frequency. 

This ordering decontaminated the causal questions from the influence of frequency 

questions. These questions were used to validate the assumption that participants did not 

believe the effect event was more frequent than the other events, neither relative to those that 

appeared in the presence of its object, nor relative to its occurrence in the presence of the 

other object.

Object-relative frequency questions.: The first set of frequency questions asked 

participants to evaluate statements about the relative frequencies of events between the two 

objects. These read, for example, “When the green object was present, leaves falling 

happened more often than when the blue object was present.” A 5-point scale was shown 

below each, just as in the continuous causal questions. The object named first in the question 

was the one being queried in that block; hence, symmetrical statements were asked in the 

other object’s block. There were 3 questions, which probed the effect event, the other-object 

effect, and the random event.

Event-relative frequency questions.: On a subsequent page, participants were asked to 

evaluate statements concerning the relative frequencies of the events to each other, within 

the presently probed object. These read, for example, “When the green object was present, 

leaves falling happened more often than blue bubbles floating up”. Responses were collected 

with a similar 5-point scale. Events presented for comparison were the effect vs. other-object 

effect, and the effect vs. the random event, in both directions, creating 4 questions.

Piloting—Two pilot samples were used to approximate the point of subjective equality of 

event frequency. In the first, 24 participants (19 included based on accurate forced-choice 

performance, as here), saw largely similar stimuli and questions, but all of the events had 

equal frequency. On continuous causal questions, participants rated the effect event (M = 
4.00, SE = 0.20) as more likely to be caused by the object, relative to the other-object effect 

(M = 3.05, SE = 0.25), CI [0.36, 1.53], t(18) = 3.41, p = .003, d = 0.95. However, they also 

rated the effect event (M = 3.84, SE = 0.30) as having appeared more frequently than the 

other-object-effect (M = 2.74, SE = 0.33), CI [0.30, 1.91], t(18) = 2.90, p = .010, d = 0.81, 
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which was empirically false. They also believed that each object’s effect event was more 

frequent in its presence than in the presence of the other object (M = 3.92, SE = 0.21, CI 

[3.49, 4.36], t(18) = 4.45, p < .001, d = 1.02). Thus, participants were not simply unsure 

about frequency, nor randomly guessing about it, but were systematically incorrect, such that 

they perceived caused or strongly predictable events as more common. This is in line with 

prior findings that predictable events are attentionally enhanced, aiding in their recognition, 

memory and perceptual discrimination (Barakat, Seitz, & Shams, 2013; Otsuka & Saiki, 

2016; Zhao, Al-aidroos, & Turk-Browne, 2013). This is a natural explanation for why they 

were judged as more frequent, as they would be over-represented in memory.

Even though the direction of influence is clearly from higher predictability to increased 

frequency perception (since only the former varied), it is nonetheless possible that frequency 

perception, and not predictability, is what influenced causality judgments in this sample. 

Thus, to avoid subjective frequency perception as an explanation of causal ratings, 

subsequent experiments reduced the frequencies of the effect (and the cause) relative to the 

other events. A second, though small, sample of 10 participants (5 included) determined that 

a relative frequency of 1/2 was still insufficient to compensate for frequency misperception 

effects (t(4) = 3.09, p = 0.037, for relative frequency judgment). On this basis, we reduced 

the frequency to 1/3 (7% vs. 21%) in the present, reported experiment.

Statistics presented are two-tailed, planned comparison t-tests, with an alpha of .05. Effect 

sizes (Cohen’s d) and confidence intervals (95%) are reported for tests of principal 

hypotheses.

Results

Familiarity forced choice.—Forced choice accuracy was used to verify that participants 

had learned the relative contingencies among events, prior to probing their causal 

attributions. We report subsequent results from participants who reached an overall average 

performance above 50% on this test. In Appendix B, we report details about this measure 

and report the remaining results from the unfiltered group, which align nearly perfectly.

Continuous causal questions.—The key question in this experiment was which 

event(s) participants would believe each object causes. We report results from the binary 

causal questions in Appendix B under Binary Causal Questions. Continuous questions asked 

participants to evaluate the veracity of various statements about objects’ causal properties, 

on a 1–5 scale with 3 indicating unsure. Participants saw a statement describing the object’s 

appropriate effect, the other object’s effect, and a random event, as being caused by the 

object. This served as a measure of participants’ beliefs about what each object caused, and 

we predicted that participants should judge that each object caused its putative effect over 

and above other events.

A 2 (object) by 3 (event type) ANOVA revealed a main effect of object (F(1,47) = 5.84, 

MSE = 5.84, p = .041, partial η2 = 0.01) and a main effect of event type (F(2,188) = 39.00, 

MSE = 37.42, p < .001, partial η2 = 0.13), with no interaction (F < 1). The main effect of 

object indicated that object 1 (M = 3.56, SE = 0.15) was given overall higher acceptability 

ratings than object 2 (M = 3.27, SE = 0.17; t(47) = 2.09, p = .041) Given the absence of an 
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interaction with question, we report planned comparisons collapsing over object (though 

effects hold in the two objects individually as well).

As shown in Figure 6, causal acceptability of the appropriate effect event was significantly 

higher than unsure (M = 4.12, CI [3.84, 4.41], t(47) = 7.99, p < .001, d = 1.15), whereas it 

was not reliably so for the other-object effect (M = 2.96, CI [2.59, 3.33], t(47) = −0.22, p = .

823) nor for the random event (M = 3.16, CI [2.76, 3.55], t(47) = 0.80, p = .427). 

Consequently, we found significantly higher causal ratings for the effect event compared to 

the other-object effect (CI [0.75, 1.58], t(47) = 5.64, p < .001, d = 1.02), and compared to the 

random event (CI [0.56, 1.38], t(47) = 4.73, p < .001, d = 0.82). This supports the 

predictions and the findings from the binary causal question.

Comparisons between causality and frequency—We first validated that participants 

did not believe that the effect event was more frequent than other events, and report these 

tests in Appendix B, Validating Assumptions about Frequency Perception. To statistically 

establish that frequency perception could not account for causal judgment, we performed a 

comparison between frequency and causality judgments. First, we found that participants’ 

acceptance of the causal statement about the effect (M = 4.12, SE = 0.14) was significantly 

higher than their acceptance of the object-relative frequency statement about the effect (M = 

3.07, SE = 0.17), CI [0.68,1.43], t(47) = 5.64, p < .001, d = 0.98, as shown in Figure 6. That 

is, they more strongly endorsed statements such as, “The green object causes confetti to 

appear” than they endorsed “When the green object was present, confetti appeared more 

frequently than when the blue object was present”. Second, we found that causal 

discrimination was significantly stronger than frequency discrimination: the difference 

between accepting the effect event and the other-object effect event (M = 1.17, SE = 0.21) 

was greater than the difference between accepting the object-relative frequency statements 

about the effect event and a rating of ‘unsure’ (M = 0.07, SE = 0.17), t(47) = 4.20, p < .001, 

d = 0.83. Finally, participants accepted the causal statement about the effect (M = 4.12, SE = 

0.14) significantly more than they accepted that the effect event was more frequent than the 

other-object event (M = 2.86, SE = 0.16), t(47) = 6.35, p < .001, d = 1.20, also shown in 

Figure 6. Likewise, causal discrimination (M = 1.17, SE = 0.21) was significantly more 

accurate than event-relative frequency discrimination (M = −0.14, SE = 0.16), t(47) = 5.02, p 
< .001, d = 1.01).

Discussion

When asked to evaluate the causal properties of objects, participants reliably made use of a 

strong and unique statistical relationship between event pairs – one of the object’s 

movements and an ambient event – to decide what each object caused. Although this 

strongly predictable event was objectively less frequent than the other events in the object’s 

presence, participants overwhelmingly selected it as the object’s effect.

Indeed, even having recognized that one of the unpredictable (“random”) events occurred 

more frequently than the predictable one, participants still chose the predictable, rare event 

as the effect. Furthermore, the effect was not the only event to follow an object movement: 

unpredictable events all followed another one of the object’s movements, and these 
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movement-event pairs each occurred nearly as often as the cause-effect pairs (on average, 

only 3 instances fewer over 250 events). Thus, the only source of this difference is that many 

different events could follow one movement, while only one event, the effect, reliably 

followed another. In sum, participants relied on unique predictive relationships among 

individual events to assign causality to objects, against the grain of frequency information. 

This supports the dispositional/contingent hypothesis, that participants would use event 

contingency to assign causality to objects, rather than event frequency in the object’s 

presence.

Event predictability also enhanced the perception of frequency, skewing it away from the 

evidence: predictable events were systematically perceived as being more frequent than they 

truly were. This was found in pilot experiments, where predictable events were seen as more 

frequent than unpredictable events, even when matched for frequency, and in the main 

experiment, where infrequent predictable events were seen equally as frequent as more 

frequent, unpredictable events. This corroborates past findings on the salience of predictable 

events—such events are better noticed and remembered (Barakat et al., 2013; Otsuka & 

Saiki, 2016). An event which is more salient and memorable will naturally be over-estimated 

in frequency. Overall, then, not only did participants disregard available frequency 

information for causal judgment, but predictability itself skewed frequency information to be 

in line with it. This suggests that event-event predictive information may have precedence 

over frequency information.

As in Experiment 1, we do not claim that objects can never appear to cause events that occur 

frequently around them. Our frequency manipulations were not particularly dramatic. If 

bubbles had appeared 90% of the time that one object was on the screen, and 0% in the 

presence of the other object, perhaps participants might have accepted that the first object 

caused the bubbles to appear. Our point was not to rule out that adults ever use frequency, 

but rather to show that it is not necessary, and that participants are indeed sensitive to a more 

higher-order structure. Further, the latter appears more plausible as a source of causal 

knowledge for real-world objects—that a coffee maker enables making coffee not by its 

presence, but by affecting the relations among others events surrounding it. Although this 

point is simple and intuitive, it helps explain how certain conceptual properties can appear so 

abstract: because they rely on a higher-order prediction between an object and an event-

event relation, rather than a prediction between two sensory qualities (the object and an 

event).

GENERAL DISCUSSION

The findings across the three experiments presented here illustrate three main points. 

Experiment 1 demonstrated that predictive information, in the form of transition 

probabilities between events, was able to inform later causal judgment, without giving rise to 

a strong sense of causation spontaneously. This indicates that knowledge relevant to causal 

inference can be acquired spontaneously from predictive statistics; that is, without an 

exogenously supplied goal to infer causality. However, prior to the demand to make a causal 

judgment, causal interpretation of predictive statistics was suspended. This implies a 
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moderate extent to which causal inference works in the “bottom up” direction, that is, from 

statistical evidence to the application of the concept cause.

Experiment 2 illustrated that predictive event information acquired in this fashion was 

encoded at an abstract, relational level, and that it was seen as sufficiently relevant for 

categorization that participants were willing to use this information to classify objects, with 

similar ease as using co-occurring events to do so. In other words, participants were able to 

attach to a category label the abstract relation “causes X” and extend it to a new object. This 

served to bolster the finding from Experiment 1, that predictive structure among events in 

the presence of an object was a relevant source of evidence for assigning (causal) properties 

to that object itself.

Experiment 3 further supported this claim, in demonstrating that objects could be granted 

causal powers specifically on the basis of predictive structure among events in their 

presence, holding object-effect co-variation constant. We now discuss these findings with 

respect to prior work.

Bottom-up Causality

Prior work on causality has rigorously explored the statistical conditions under which 

learners will infer causality on the basis of contingency (Buehner et al., 2003; Cheng, 1997; 

Gopnik et al., 2004; Griffiths & Tenenbaum, 2009; Rehder, 2014; Spellman, 1996), but have 

always done so in the context of a “top-down” task, in which their explicit goal was to 

evaluate causality. Our question was to what extent causal inference can work in the other 

direction: given the statistical evidence, would participants see causality? This is critical to 

understanding how contingency information experienced outside of explicit causal reasoning 

contexts can be used: whether contingency information can be represented with a suspension 

of a causal interpretation—and reinterpreted afterwards. Indeed, this is what we found: 

causal interpretation was not obligatory, but fully supported, by environmental contingency 

statistics5.

This argument is strongly in line with the view of causality as a conceptual label which can 

be optionally applied to evidence, but where evidence is represented in a distinct vocabulary

—that of co-variation or prediction (Cheng, 1997; Cheng & Buehner, 2012). However, it is 

inconsistent with a strong view that the concept cause denotes a pattern of statistical 

dependency, such that when the right statistical pattern is observed, causality is recognized. 

As in our opening example, we expect both directions of inference to occur for concepts like 

dog. This suggests that to elucidate the meaning of the concept cause, more elaborated 

models may need to distinguish between criteria used to recognize vs. evaluate causation. 

We expect that recognition may have stricter criteria, and perhaps may rely relatively more 

on intervention data.

It is important to emphasize that our interest is in how adults use the concept cause, and that 

a model of the meaning of this concept is a rather different question than how well adults 

5We do not intend to claim that this holds for causal perception of mechanical events (e.g., Schlottmann & Shanks, 1992), which 
appear more obligatory.
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reason in normative ways about causality, or how they distinguish true causality from 

spurious cases. Covariation is a useful guide towards what could be a causal relationship, 

which ultimately, intervention evidence will bear out (Hattari & Oaksford, 2007; Pearl & 

Mackenzie, 2018). Just as we use heuristic cues like eyes and movement to infer whether 

something is alive (Carey, 2009), we use covariation to detect what might be a causal fact—

but can be proven wrong if further inferences are not borne out.

Causal Categorization

Our finding that learners are willing to form categories of novel objects on the basis of 

predictive information in an SL scenario fills an important gap between experiments on 

statistical learning, which have not explored how event statistics inform object knowledge6, 

and experiments on object categorization, which present relational properties explicitly (i.e., 

verbally), where these properties are already attributed to the objects and are at the right 

level of abstraction (Ahn, 1999; Goldwater & Gentner, 2015; Jones & Love, 2007; Markman 

& Gentner, 1993; Rehder, 2003b; Rehder & Ross, 2001; Sloman et al., 1998). Without 

explicitly specifying that an object causes bubbles, for example, it is possible that a 

predictive relation between an object’s movements and bubbles appearing are seen as a fact 

about the environment, not relevant to the category membership of the object. However, we 

found that event statistics were used to assign properties to objects, sufficiently well for 

learners to categorize novel entities.

This finding bolsters prior work on relational category learning in the visuo-spatial domain 

(Christie, Gentner, Call, & Haun, 2016; Corral & Jones, 2014; Stuhlmueller et al., 2010; 

Tomlinson & Love, 2007), which demonstrates that adult learners are able to form categories 

on the basis of relational qualities present in static images (such as ‘above’ or ‘brighter 

than’), in supervised contexts. An important open question for both prior work and ours is to 

what extent such categories are formed without supervision (i.e., when exemplars are not 

labeled).

Finally, it supports and extends past work using observed events in more ostensive scenarios

—for example, work in the blicket detector paradigm (Gopnik & Sobel, 2000; Gopnik, 

Sobel, Schulz, & Glymour, 2001; Nazzi & Gopnik, 2003)—and in more operant-like 

paradigms where participants can interact with objects to learn their relations to other 

objects (Kemp et al., 2010; Tenenbaum & Niyogi, 2003), which also demonstrate relational 

category learning on the basis of event contingencies. Our paradigm uniquely isolated 

predictive relations among events as a source of object property knowledge, in absence of 

any physical interaction by an actor, and substantially fewer top-down cues towards the 

relevant statistics.

This line of research is important, given that many object kinds are organized around 

relational properties: particularly so, artifact categories, whose function properties rely on 

causality (Bechtel et al., 2013; Futó et al., 2010; Hernik & Csibra, 2009; Keil et al., 1998; 

6In that ‘objects’ and ‘events’ are conflated in these studies, since events are the appearances and disappearances of visual symbols or 
patterns. Our view is that real-world objects are more likely to persist in time, while events are briefer state changes around them. This 
distinction has allowed us to treat them separately.
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Kelemen & Carey, 2007; Kemler Nelson et al., 2000; Träuble & Pauen, 2011; Truxaw et al., 

2006). The extent to which predictive relations among observed events are a source of 

relational properties (like causality) has not been determined: for example, function learning 

could rely more on physical/mechanical reasoning, or reasoning about actors’ intentions 

(Bloom, 1996; Kelemen, Seston, & Georges, 2012; Matan & Carey, 2001), than on 

predictive relations. Simultaneously, predictive relations are pervasive aspects of experience 

readily available to learners. Thus, the extent to which they contribute to learning of real-

world categories of objects is a ripe possibility (for similar ideas, see Johnson, Shimizu, & 

Ok, 2007; Ullman, Harari, & Dorfman, 2012; Wellman, Kushnir, Xu, & Brink, 2016).

How Objects get their Causal Properties

While it has been well established that events are judged to cause other events on the basis 

of contingency statistics, we suggest that objects (stationary entities that tend to persist in 

time) obtain their causal properties in a distinct fashion: by a higher level of conditioning 

over top of predictive event relations. Our findings supported this view, by demonstrating 

that the occurrence of an event need not be more frequent in the presence of an object for 

that event to be selectively seen as that object’s effect. Rather, a reliable contingency 

between an object-based event (a movement or color change) and another event was, on its 

own, highly effective evidence for object causality.

This is strongly in line with the philosophical view that objects possess dispositions that can 

be expressed as contingencies, and this can give rise to causal attribution (Mumford, 1998, 

Ryle). Contingencies are probabilistic rules governing how an object is expected to behave 

in various circumstances; here, this is expressed as the prediction that after the object moves 

a certain way, a specific result will obtain. A disposition is not the observation that an object 

tends to move or that an event happens around it, but the dependent between the two. We 

showed that a specifically dispositional quality enabled causal judgments.

This result puts learning objects’ causal properties closely in line with work on context-

dependent and hierarchical learning. For example, physical and temporal contexts can serve 

as ‘occasion setters’ for the retrieval of another association, e.g., between a shock and tone 

(Urcelay & Miller, 2010, 2014). Context-based occasion setting is thought to be the result of 

learners inferring the latent structure governing their world, to best explain the evidence they 

are confronted with (Coutanche & Thompson-Schill, 2012; Gershman, 2016; Gershman, 

Blei, & Niv, 2010; Gershman & Niv, 2012). Furthermore, visuo-motor mappings are 

spontaneously encoded hierarchically by task context (Collins & Frank, 2013). It is possible 

that attributing causal properties to objects relies on similar, or even shared, mechanisms, 

where objects act as contexts. This is a direct prediction for future research.

The important implication of our finding is that the ability to encode higher-order 

contingencies may be an essential part of how even very concrete things can come to have 

non-concrete properties. If causing bubbles was represented only by virtue of a link between 

an object shape and the appearance of bubbles, the property “causes bubbles” would have a 

more direct pointer to something in the world. Such a pointer was insufficient to explain the 

kind of representations our participants acquired. In Experiments 1 and 2, one object would 

cause bubbles while another reacted to it, but all appeared with bubbles equally. In 

Leshinskaya and Thompson-Schill Page 31

J Exp Psychol Gen. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Experiment 3, bubbles also appeared (subjectively) equally with both objects, but were 

reliably predicted by an object-based event only for one. As such, it was insufficient to 

represent a pointer to a sensory event to distinguish the objects’ causal properties. Instead, it 

was essential to link the objects to the presence or absence of relation, which itself is not in 

the world—despite its precise definition in statistical evidence. It is learners’ use of 

sophisticated statistical reasoning machinery that can close this gap.

Conclusion

Our aim in this work was to understand some aspects of the cognitive machinery that 

translates statistically definable aspects of event experience into content useful for 

conceptual inference—here, the application of the concept ‘cause’, its assignment to objects, 

and the formation of novel object categories—in a more or less bottom-up fashion. Our 

findings make several points about how we do so: that the concept cause is optionally but 

not obligatorily applicable to pure predictive evidence; that it can be assigned to objects on 

the basis of higher-order conditioning; and that objects’ causal properties can be represented 

without making reference to the occurrence or non-occurrence of specific events, but to their 

predictive relational structure alone. Altogether, these findings provide insights into how we 

employ statistical inference to create abstract representations out of concrete streams of 

events.
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APPENDICES

Appendix A.: Additional Results for Experiment 1

Ordered predictive statements

These statements described event order in non-causal terms (e.g., “After thales tilt, bubbles 

tend to appear”). Participants reliably accepted statements that described cause events 

preceding effect events, for both objects (object 1: M = 4.07, SE = 0.13, t(56) = 8.10, p < .

001; object 2: M = 3.84, SE = 0.15, t(56) = 5.55, p < .001), with no difference between 

objects (t = 1.34, p = .19). They accepted these statements more than statements describing 

effects preceding causes for both object 1 (M = 2.84, SE = 0.17; t(56) = 5.09, p < 0.001) and 

object 2 (M = 2.93, SE = 0.18; t(56) = 3.17, p = .002), which they neither accepted nor 

rejected (ts < 1).

We found that non-causal, predictive statements were accepted to a greater degree than 

analogous causal statements (object 1: t(56) = −3.04, p = .004, d = −0.40; object 2: t(56) = 

−2.32, p = .024, d = −0.31). However, there was no difference in how well participants 

discriminated between cause-to-effect vs. effect-to-cause directionality within causal vs. 

non-causal statement sets; i.e., the difference in ratings between the statements differing in 

direction (ts < 1). Furthermore, directionality discrimination was highly correlated between 

causal and non-causal statements (object 1: r(55) = 0.77, p < .001, object 2: r(55) = 0.84, p 
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< .001), suggesting that individuals made use of their predictive knowledge to make these 

judgments.

Unordered predictive statements

Although accuracy on ordered predictive statements was high, it was not at ceiling. We can 

thus ask whether participants performed better on an unordered version of these statements, 

such as, “Thales tilting and bubbles appearing were strongly related”, which did not require 

recalling the directionality of the relationship. This would suggest that they discarded 

directionality information. As shown in Figure 2A, participants strongly accepted unordered 

statements for both objects (object 1: M = 4.25, SE = 0.13 t(56) = 9.71, p < .001; object 2: M 
= 3.96, SE = 0.15, t(56) = 6.43, p < .001), and they accepted them more strongly than 

similarly phrased, unordered statements describing a strong relationship between unrelated 

events (the effect and the frequent event), for object 1 (M = 3.11, SE = 0.16; t(56) = 5.68, p 
< .001) and object 2 (M = 3.02, SE = 0.16; t(56) = 4.09, p < .001), which they did not accept 

nor reject (ts < 1). However, importantly, we did not find an advantage for the unordered 

statements (relating cause and effect) over the ordered ones: they were no more likely to be 

accepted for either object or overall (t(56) = 1.45, p = .154). This suggests that participants 

did not reliably discard directionality information about the predictive events (c.f., Endress 

& Wood, 2011; Turk-Browne & Scholl, 2009).

Frequent Event Validation Measures

To ensure that participants did not see the frequent event as dependent on other events, we 

used accuracy on the forced-choice questions which contrasted cause-effect pairs with 

cause-frequent pairs and with effect-frequent pairs; participants had to select cause-effect as 

more typical than the others, above-chance on average over 4 trials. The resulting means in 

the included group were 93% and 95% for objects 1 and 2, respectively. Exclusion was done 

on a per-object basis, so that only the accurate object(s) were included in subsequent 

analyses; this left 33 responses for object 1, and 26 for object 2.

To establish that these participants also recognized that the frequent events for each object 

were more frequent for one object than the other, we used the object-relative frequency 

question that was part of the attention check measure. Because participants were already 

excluded partly on this basis, it was unsurprising that these participants were 86% correct on 

this test (in which chance was 1/6). This demonstrated their knowledge that the frequent 

event of the second object appeared more often in its presence than that of the first object. To 

ensure they also recognized this of the frequent event for object 1, we used the relative 

frequency judgment, in which participants had to accept that the frequent event occurred 

more often than the rare event. We only included object 1 data from participants who gave 

this statement a rating above 3 (either “Likely True” or “Definitely True”), leaving 21 

responses for object 1.
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Appendix B.: Additional Results from Experiment 3

Forced-Choice Test Data

In the unfiltered sample, participants were largely accurate, performing reliably above 

chance (50%) on the forced choice questions for object 1 (M = 0.65, SE = 0.04, t(76) = 3.57, 

p < .001) and object 2 (M = 0.70, SE = 0.04, t(76) = 5.63, p < .001), with no difference 

between objects (t(76) = −1.37, p = .17). In the filtered sample (n = 48), participants’ 

accuracies on the forced-choice test were 84% and 89% on objects 1 and 2 respectively, with 

no difference between objects (t(47) = −0.92, p = .36). We chose to report data from both 

samples. Under one view, only including accurate participants is essential for validity: 

participants must have picked up on the statistical information in order for us to properly 

assess whether they use or it or not for causal judgment. Further, because participants were 

instructed to attend to the entire video and to prepare for questions, which were possible to 

fully anticipate for object 2, poor performance was an indicator of inattention. Under another 

view, however, participants’ inattention to event contingencies could be driven by their belief 

that it is not relevant to causation, and thus, they should be included in the evaluation of our 

hypothesis. We thus report data using both approaches, which align almost perfectly.

Binary causal questions

This measure asked participants to select what they believed each object caused from a list 

of events, giving them the option to select or not select any of a number of response options. 

We predicted that participants would be more likely to select the putative effect more often 

than any other option, for both objects.

A 2 (object) by 5 (response option) ANOVA revealed no effect of object (F(1,47) = 0.37, p 
= .54), but a significant effect of response option (F(4,376) = 42.47, MSE = 6.86, p < .001, 

partial η2 = 0.26), and no interaction. Planned comparisons, collapsing across objects, 

revealed that the appropriate effect event (M = 81%, SE = 0.05) was chosen significantly 

more often than the other-object effect (M = 44%, SE = 0.06), CI [0.24, 0.51], t(47) = 4.78, 

p < .001, d = 0.96. It was also chosen more often than the random event (M = 52%, SE = 

0.06), CI [0.15, 0.43], t(47) = 4.35, p < .001, d = 0.76, and more than the ‘something else’ 

option (M = 22%, SE = 0.05), CI [0.47, 0.72], t(47) = 9.49, p < .001, d = 1.70, and more 

than the ‘nothing’ option (M = 14%, SE = 0.04), CI [0.51, 0.85], t(47) = 7.98, p < .001, d = 

2.15. Thus, participants indeed chose the hypothesized effect event over and above other 

options.

Results in the Unfiltered Sample

On binary causal questions, a 2 (object) by 5 (response option) ANOVA revealed no effect of 

object (F < 1, p = .40), but a significant effect of response option (F(4,608) = 36.31, MSE = 

7.03, p < .001), and a marginal interaction (F(4,608) = 2.17, MSE = 0.421, p = .071). 

Planned comparisons were thus performed within each individual object, and revealed 

mostly similar patterns: the effect event was chosen significantly more often than the other 

object’s effect (object 1: t(76) = 3.20, p = .002; object 2: t(76) = 2.59, p = .010), more often 

than the random event for object 1 (t(76) = 2.01, p = .048), though not for object 2 (t(76) = 
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1.52, p = .132), but more often than the ‘something else’ option (object 1: t(76) = 9.33, p < .

001; object 2: t(76) = 6.31, p < .001) and more often than the ‘nothing’ option (object 1: 

t(76) = 7.78, p < .001; object 2: t(76) = 3.60, p < .001).

On continuous causal questions, a 2 (object) by 3 (event type) ANOVA revealed a main 

effect of object (F(1,76) = 7.34, MSE = 10.91, p = .008) and a main effect of event type 

(F(2,304) = 29.72, MSE = 24.68, p < .001), with no interaction. Participants accepted the 

effect event as being caused by the object (M = 3.86, SE = 0.12, CI [3.63, 4.08], t(76) = 

7.50, p < .001, d = 0.85), but we did not find this for the other-object effect (t < 1, p = 0.411) 

nor for the random effect (t(76) = 1.70, p = .093). Correspondingly, participants’ causal 

ratings were significantly higher for the effect event compared to the other-object effect (CI 

[0.45, 1.04], t(76) = 5.02, p < .001, d = 0.68), and compared to the random event (CI [0.33, 

0.91], t(76) = 4.26, p < .001, d = 0.56).

We also found that causal discrimination was significantly stronger than frequency 

discrimination, (t(76) = 6.15, p < .001, d = 0.82; and t(76) = 3.94, p < .001, d = 0.89), and 

that participants accepted the causal statement about the effect significantly more than they 

accepted that the effect event was more frequent than the other-object event, t(76) = 6.08, p 
< .001, d = 0.89. Likewise, causal discrimination was significantly more accurate than event-

relative frequency discrimination, t(76) = 4.14, p < .001, d = 0.68.

Validating Assumptions about Frequency Perception

Event-relative frequency questions.

These questions were used to rule out that for any object or any event, participants believed 

the effect was more frequent than other events, as an alternative account of why they may 

have judged it to be what the object causes. To this end, participants were asked to judge 

whether the effect event occurred more frequently than other events, within the context of 

each object. Our assumption was verified: accuracy-filtered participants did not reliably 

accept any statements indicating that the effect event was more frequent than the other-

object effect event (ts < 1, ps > .400), individually and collapsing across objects. Neither did 

participants accept the reversed statements—that the other-object effect was more frequent 

than the effect (ps > .148; combined across objects, p = .344). Thus, subjective frequency 

was well matched for the effect and other-object effect events, although objective frequency 

was in fact three times as high for the other-object effect. This corresponds with our pilot 

findings (see Methods), in which participants judged predictable events (the effect events) as 

more frequent than unpredictable ones, even when their frequencies were objectively 

matched. Among the unfiltered group, we likewise found no reliable acceptance that the 

effect occurred more often than the other-object effect (all ts < 1; ps > .59). However, these 

participants did accurately accept that the other-object effect was more frequent than the 

effect (M = 3.31, SE = 0.12, t(76) = 2.67, p = .01). Since their predictive knowledge was by 

definition less precise, this effect is fully consistent with the above findings.
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Object-relative frequency questions.

As above, these questions were used to rule out that participants’ differential causal 

judgments were due to differential perceptions of frequency, but this time by comparing the 

perceived frequencies of events across objects (for example, “When the green object was 

present, leaves falling happened more often than when the blue object was present”). We 

again used planned t-tests to evaluate participants’ acceptance of these statements in each 

individual object. We found that none of these statements was reliably accepted (all ts < 1, 

ps > .376). This was also true in the unfiltered group (ps > .290).
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CONTEXT OF RESEARCH

The first author, A.L., has previously investigated conceptual knowledge of attributes that 

lack a clear physical or sensory basis. Specifically, she has studied the neural 

representation of the goals of actions, the belief attributes of social groups, and abstract 

functions of artifacts. The current experiments arose from the question of what, in 

experience, such conceptual knowledge might refer to—what kind of evidence would 

people use to infer such sorts of attributes? Starting with causality was a natural point, 

given the importance of causality in function, and given the rich prior work on causal 

inference. From the perspective of this question, several gaps in knowledge became 

apparent. Would people recognize causality from contingency evidence, outside of 

explicit causal reasoning contexts? And in what ways would causality be attributed to 

objects, rather than events? These two questions formed the basis of the current work, 

which fills those immediate gaps. Answering them is one step towards the broader 

question of what we mean when we believe an object has causal properties. The 

importance of relations—of which contingency knowledge is one kind—in conceptual 

knowledge is a key part of the research program of the second author, S.L.T-S. Both 

authors see a promising avenue stemming from the current findings towards 

understanding how relations are extracted from experience and put to conceptual use, 

ultimately helping explain how the mind comes to have such abstract ideas as belief, 
communication, or nutrition.
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Figure 1. 
A. The stimuli used in Experiment 1. Two novel objects (left; A and B) appeared in 

animated events (right). Three events were object-based (top) and three were ambient 

(bottom). Specific event assignments to abstract event types were counterbalanced across 

participants. B. Top: transition structure, defined over abstract event types, which governed 

the sequence of event occurrences. An example assignment is shown in graph form (below). 

The effect for object 1 became the cause for object 2 and vice-versa. The Frequent and Rare 

events also swapped between objects. C. Sample presentation sequence.
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Figure 2. 
Experiment 1 results; error bars reflect the standard error of the mean. * p <.05; ** p <.01; 

*** p<.001. A. Acceptability ratings for the non-causal statements, collapsing across 

objects, showing comparisons to a rating of 3 (Unsure) as well as between statement types. 

Statements indicating the cause preceded the effect, and that the effect and the cause were 

related, were accepted more strongly than the reverse relation (that the effect preceded the 

cause). B. Acceptability ratings for the causal statements, showing comparisons to Unsure as 

well as between statements. Statements indicating that the cause event caused the effect 

event were accepted, as were statements that the object caused the effect event, more than 

causal statements in the incorrect direction (from effect to cause). C. Acceptability of causal 

statements about the frequent and effect events, within a subgroup of participants who met 

the criteria for representing frequency appropriately. These participants accepted causal 

descriptions of the effect event more than the of the frequent (non-contingent) event.
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Figure 3. 
Stimuli and Design for Experiment 2, contingency condition. A. Sample event assignment 

for training and test objects. Each participant saw either Test Object 1 or Test Object 2, 

which matched either Category 1 or Category 2 (respectively) on predictive relations. B. 
Obtained (actual) transition matrix governing the conditional probabilities among events for 

each object. Objects differed only in the event assignments to this matrix.
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Figure 4. 
Experiment 2 results; error bars reflect the standard error of the mean; * p < .05. Accuracy in 

categorizing the test object in each condition was above chance (50%) but there were no 

differences between conditions.
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Figure 5. 
Experimental design for Experiment 3. Above: sample event assignment over two objects. 

Below: Empirical (obtained) transition matrix governing event transitions among abstractly 

defined events. Illustration of a sample event assignment over two objects. The effect and 

other-object-effect events swapped between objects.
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Figure 6. 
Experiment 3 results; error bars reflect the standard error of the mean; *** p < .001. 

Sentence acceptability task ratings are shown for the accurate learners (n = 48). Ratings for 

each statement type are compared to 3 (Unsure) and to each other. Ratings for causal 

statements about the hypothesized effect (predictable event) were higher than for causal 

ratings regarding other events, and surpassed beliefs about their relative frequency relative to 

other events within and across objects. Results are shown for the other-object effect.
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