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RESEARCH ARTICLE Open Access

Distinctive gene and protein characteristics
of extremely piezophilic Colwellia
Logan M. Peoples1,2, Than S. Kyaw1, Juan A. Ugalde3, Kelli K. Mullane1, Roger A. Chastain1, A. Aristides Yayanos1,
Masataka Kusube4, Barbara A. Methé5 and Douglas H. Bartlett1*

Abstract

Background: The deep ocean is characterized by low temperatures, high hydrostatic pressures, and low
concentrations of organic matter. While these conditions likely select for distinct genomic characteristics within
prokaryotes, the attributes facilitating adaptation to the deep ocean are relatively unexplored. In this study, we
compared the genomes of seven strains within the genus Colwellia, including some of the most piezophilic
microbes known, to identify genomic features that enable life in the deep sea.

Results: Significant differences were found to exist between piezophilic and non-piezophilic strains of Colwellia.
Piezophilic Colwellia have a more basic and hydrophobic proteome. The piezophilic abyssal and hadal isolates have
more genes involved in replication/recombination/repair, cell wall/membrane biogenesis, and cell motility. The
characteristics of respiration, pilus generation, and membrane fluidity adjustment vary between the strains, with
operons for a nuo dehydrogenase and a tad pilus only present in the piezophiles. In contrast, the piezosensitive
members are unique in having the capacity for dissimilatory nitrite and TMAO reduction. A number of genes exist
only within deep-sea adapted species, such as those encoding d-alanine-d-alanine ligase for peptidoglycan
formation, alanine dehydrogenase for NADH/NAD+ homeostasis, and a SAM methyltransferase for tRNA
modification. Many of these piezophile-specific genes are in variable regions of the genome near genomic islands,
transposases, and toxin-antitoxin systems.

Conclusions: We identified a number of adaptations that may facilitate deep-sea radiation in members of the
genus Colwellia, as well as in other piezophilic bacteria. An enrichment in more basic and hydrophobic amino acids
could help piezophiles stabilize and limit water intrusion into proteins as a result of high pressure. Variations in
genes associated with the membrane, including those involved in unsaturated fatty acid production and
respiration, indicate that membrane-based adaptations are critical for coping with high pressure. The presence of
many piezophile-specific genes near genomic islands highlights that adaptation to the deep ocean may be
facilitated by horizontal gene transfer through transposases or other mobile elements. Some of these genes are
amenable to further study in genetically tractable piezophilic and piezotolerant deep-sea microorganisms.

Keywords: Piezophile, Colwellia, Deep sea, Hadal, Trench, Hydrostatic pressure, Genomic island

Background
The deep biosphere makes up one of the largest biomes
on earth. An inherent environmental parameter present

throughout deep oceanic and subsurface habitats is high
hydrostatic pressure. Elevated hydrostatic pressure influ-
ences many aspects of biochemistry and requires adapta-
tions throughout the cell (e.g. [128]). One well-studied
adaptation is the incorporation of unsaturated fatty acids
into the membrane to combat physical changes such as
decreased fluidity (e.g. [3, 29, 30]). Additional
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membrane-associated adaptations are linked to porin-
mediated nutrient transport [11, 12], respiration (e.g.
[141, 144, 145]), and flagellar function [38]. Within the
cell, changes in DNA replication, DNA structure, protein
synthesis, and compatible solutes are also important [36,
67, 81, 148]. Pressure-induced changes in transcription
implicate additional functions (e.g. [19, 92]). Despite the
fact that pressure exerts a profound influence on the na-
ture of life at depth, it is largely ignored in studies of
deep-ocean biomes, and in marked contrast to microbial
adaptation to temperature or salinity, a robust descrip-
tion of biochemical adaptation to high pressure is
lacking.
Only a modest number of psychrophilic (cold-loving)

and piezophilic (high-pressure loving) species have
been isolated to date, in large part due to the con-
straints imposed by culturing under under in situ, high
hydrostatic pressure conditions. However, metagenomic
sequencing of deep-ocean communities, and additional
analyses of individual microbial genomes, have pro-
vided insights. Metagenomic investigations have in-
cluded locations within the North Pacific subtropical
gyre, the Mediterranean and the Puerto Rico Trench
[31, 39, 61, 86, 124]. Genomic studies include those
on Pseudoalteromonas [116], Alteromonas [55], Shewa-
nella [6, 142], Photobacterium [18, 70, 141], SAR11
[135], and members of the Thaumarchaeota [79, 130].
One picture that has emerged from the examinations
at this level is that deep-sea microbes are enriched in
mobile elements, such as phage and transposases [31,
39, 55, 68, 69, 72, 116, 124]. This has been attributed
to the relaxation of purifying selection as an adaptive
mechanism [61], either to deep-ocean conditions or to
the conditions found on particles [45]. Additional
properties include an enrichment in heavy metal resist-
ance genes [39, 43, 55, 116, 124], the ability to use
persistent dissolved organic material under oligotrophic
conditions (e.g. [7, 55, 64, 86]), and widespread ability
for chemoautotrophy [35, 94, 102, 129, 130]. The small
number of genome sequences of experimentally-
confirmed deep-ocean piezophiles include hyperther-
mophilic archaea (Pyrococcus and Thermoccus [25, 58,
139];), a thermophilic bacterium (Marinitoga [78];), a
mesophilic bacterium (Desulfovibrio [113];) and
psychrophilic bacteria (Photobacterium, Psychromonas,
and Shewanella [6, 68, 69, 141, 155];). The genomic
adaptations of these microorganisms to the deep ocean
or high hydrostatic pressure have not been fully ex-
plored (e.g. reviewed in [67, 100, 106, 122]). Thus far
the genome characteristics of only one experimentally-
confirmed obligately psychropiezophilic bacterial spe-
cies, Shewanella benthica [68, 155], and one species of
obligately thermopiezophilic archaeon, Pyrococcus
yayanosii [58], have been described.

Most known psychropiezophilic strains belong to
phylogenetically narrow lineages of Gammaproteobac-
teria, including members of the Colwellia, Shewanella,
Moritella, Photobacterium, and Psychromonas (reviewed
in [56, 98]). The genus Colwellia contains some of the
most psychrophilic and piezophilic species currently
known. Members of this genus are heterotrophic and
facultatively anaerobic [16]. This genus has been of re-
cent interest because of its association with the Deepwa-
ter Horizon oil spill, where members of the Colwellia
became some of the most abundant taxa present because
of their ability to degrade hydrocarbons [60, 88, 117]. Al-
though Colwellia do not appear to be abundant mem-
bers of deep-ocean or hadal (typically < 1%; e.g. [39, 107,
133]) communities, they can become dominant members
under mesocosm conditions [15, 49, 109]. At least four
piezophiles have been successfully isolated and described
from this genus. The first known obligate psychropiezo-
phile, originally designated Colwellia sp. MT41, was iso-
lated from the amphipod Hirondellea gigas from the
Mariana Trench at a depth of 10,476 m [151]. Strain
MT41 shows optimum growth at 103 Megapascals
(MPa) and does not grow at a pressure below 35MPa,
approximately the pressure at average ocean depths [28,
150, 151]. Recently, Colwellia marinimaniae MTCD1,
the most piezophilic microbe known to date, was iso-
lated from an amphipod from the Mariana Trench [62].
This strain displays an optimum growth pressure of 120
MPa and a growth range from 80 to 140MPa, higher
than the pressure found at full ocean depth. Based on
16S rRNA gene similarity both strains MT41 and
MTCD1 were determined to belong to the species Col-
wellia marinimaniae [62]. Other psychropiezophiles
within the genus include C. hadaliensis [32] and C.
piezophila [97], isolated from the Puerto Rico and Japan
trenches, respectively. While the growth characteristics
and fatty acid profiles of these piezophilic species of Col-
wellia have been reported, other adaptations of these
strains for dealing with high hydrostatic pressure and
deep-ocean environmental conditions have not been in-
vestigated in great detail.
In this study, we compared the genomes of members

of the Colwellia to identify attributes that confer adapta-
tion to the deep ocean. We report the genome se-
quences of three obligately piezophilic Colwellia;
Colwellia marinimaniae MT41, C. marinimaniae
MTCD1, and a new isolate obtained from sediment in
the Tonga Trench, Colwellia sp. TT2012. We compared
these genomes, along with the publicly-available genome
of C. piezophila ATCC BAA-637 (isolated as strain
Y223G [97];), against three piezosensitive strains of C.
psychrerythraea. The piezosensitive strains include the
most well-studied member of the Colwellia, C. psychrer-
ythraea 34H, a psychrophile isolated from Arctic ocean
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sediments [53] whose adaptations to low temperature
have been investigated at multiple levels (e.g. [87, 121]),
including with genomics [91]. The two other comparison
strains are C. psychrerythraea GAB14E and ND2E, ob-
tained from the Great Australian Bight at a depth of
1472 m and the Mediterranean Sea from 495m, respect-
ively (Fig. 1a [134];). While the C. psychrerythraea
strains share 99% identical 16S rRNA sequences, they
have very divergent average nucleotide identities (ANI
[134];). Because low temperatures and high pressures
have similar effects on biochemical processes, these
three microbes were selected as comparison strains be-
cause they all show growth at low temperatures, redu-
cing the impact of temperature as a confounding factor.
Through the comparison of these seven strains depth
and pressure-associated shifts were identified in protein
amino acid distributions and isoelectric points, as well as
in gene abundances, including the discovery of
piezophile-specific genes.

Results
General characteristics
We first evaluated the influence of high hydrostatic pres-
sure on the growth of the seven strains of Colwellia. The
pressure-dependent growth characteristics of Colwellia
marinimaniae MT41, C. marinimaniae MTCD1, and C.
piezophila have been previously reported, showing
growth optima at 103MPa [28, 150], 120MPa [62], and
60MPa [97], respectively. Colwellia sp. TT2012 is obli-
gately piezophilic, showing growth at 84 and 96MPa but
not at atmospheric pressure. Prior to further growth rate
analyses strain TT2012 was lost following cryopreserva-
tion. Therefore, we tentatively report the optimum
growth pressure in this manuscript as 84MPa as this
was the original pressure of isolation. The three C. psy-
chrerythraea strains displayed different growth patterns
from one another, but similarly all grew at atmospheric
pressure yet showed no growth at a pressure of 40MPa

after 10 days regardless of temperature (4 °C or 16 °C;
Supplementary Fig. 1). Based on these growth character-
istics, we classified the microbes as either piezophilic (C.
marinimaniae MT41, C. marinimaniae MTCD1, Col-
wellia sp. TT2012, and C. piezophila) or piezosensitive
(C. psychrerythraea strains 34H, GAB14E, and ND2E).
These terms are used to describe these groupings for the
remainder of the manuscript.
To identify genomic attributes that facilitate growth at

high pressure in the deep sea, we compared the genomes
of the piezophilic and piezosensitive strains (Table 1).
We report here for the first time the genome sequences
of Colwellia marinimaniae MT41, C. marinimaniae
MTCD1, and Colwellia sp. TT2012. The remaining
genomes are either publicly available (C. piezophila,
[63]) or have been previously reported (strain 34H, [91];
strains ND2E and GAB14E, [134]). The piezophiles are
more closely related to one another than to the piezo-
sensitive strains based on a whole genome marker tree
and average nucleotide identity (Fig. 1). This is also true
when the strains are compared using a ribosomal 16S
RNA gene phylogenetic tree (Supplementary Fig. 2).
Colwellia marinimaniae MT41, C. marinimaniae
MTCD1, and Colwellia sp. TT2012 share approximately
96% 16S rRNA gene sequence similarity and formed a
monophyletic clade with an isolate from the Kermadec
Trench. Despite being isolated 34 years apart, strains
MT41 and MTCD1 share greater than 99% 16S rRNA
gene sequence similarity and ANI. In contrast, the ANI
of these strains are only 95% similar to TT2012, indicat-
ing that TT2012 likely represents a distinct species.
C. piezophila does not appear to belong to this 16S
rRNA gene tree piezophile-only monophyletic clade
(Supplementary Fig. 2). Despite showing greater than
98% 16S rRNA gene sequence similarity, the ANI of
C. psychrerythraea strains 34H, GAB14E, and ND2E is
less than 90%, indicating that they have highly variable
genome sequences.

Fig. 1 a Approximate sample collection locations for the Colwellia strains compared in this study. The map was created using the R package
marmap [104]. b Whole genome phylogenetic tree and shared average nucleotide identities among the seven strains of interest
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GC content and amino acid features
We first compared general genomic attributes of the
piezophilic and piezosensitive strains, including genome
size, GC content, isoelectric point, and amino acid distri-
bution. Genome sizes ranged between 4.3 and 5.7 Mbp
in size (Table 1). The three piezophiles isolated from the
deepest depths (strains MT41, MTCD1, TT2012) have
smaller genomes than the piezosensitive strains (T-test,
p < .031), but no correlation between genome size and
optimum growth pressure was found when considering
C. piezophila and other members of the Colwellia (Sup-
plementary Fig. 3). Coding density is lower in the piezo-
philic Colwellia. This is true even when including all
sequenced members of the Colwellia (T-test, p < .01).
GC content ranged between ~ 38 and 39%, with slightly
higher GC present in the piezophiles. This is also true
when compared with other Colwellia strains with the ex-
ception of C. chukchiensis (Supplementary Fig. 3; T-test,
p < .08). However, when examining members of the gen-
era Colwellia, Psychromonas, and Shewanella, no correl-
ation was apparent between % GC and growth pressure
(Supplementary Fig. 4). No correlation was found be-
tween optimum growth pressure and % GC within full
length 16S rRNA genes in the Colwellia.
Next, we evaluated the isoelectric point distributions

of the Colwellia proteomes. Both piezophilic and piezo-
sensitive strains show a similar bimodal distribution of
protein isoelectric points. However, the piezophiles have
a higher number of basic proteins (Fig. 2; T-test, p < .01).
This shift is also seen when comparing within a broader
number of Colwellia (T-test, p < .01) with the exception
of C. chukchiensis (Supplementary Fig. 4). Piezophilic
strains within the genera Psychromonas and Shewanella
also show a higher number of basic proteins compared
to their piezosensitive counterparts (Supplementary
Fig. 4; T-test, Psychromonas, p < .03; T-test, Shewanella,
clade 3, p < .34), with obligate piezophiles such as She-
wanella benthica KT99, Psychromonas sp. CNPT3, and
an uncultured Psychromonas single-amplified genome
from a hadal amphipod [72] having dramatically more
basic proteins. GC content or optimum growth
temperature does not appear to be responsible for this
shift in pI bias, even when taking into account within-
genus phylogenetic clades (Supplementary Fig. 4, Sup-
plementary Fig. 5).
Comparisons of amino acid abundances within con-

served, orthologous proteins showed that certain amino
acids are more abundant in the piezophilic proteins
when compared to those in C. psychrerythraea 34H (Fig.
2). Amino acids that are specifically enriched in the
piezophiles included tryptophan (W), tyrosine (Y), leu-
cine (L), phenylalanine (F), histidine (H), and methionine
(M). In contrast, amino acids enriched in the piezosensi-
tive strain included glutamic acid (E), aspartic acid (D),

asparagine (N), and serine (S). Specific amino acid asym-
metrical substitutions in which one amino acid consist-
ently replaced another, including substitutions that were
also conserved in comparisons within members of the
Shewanella, from piezosensitive to piezophilic amino
acid were: glutamic acid ➔ alanine (A), proline (P) ➔

alanine, threonine (T) ➔ isoleucine (I), valine (V) ➔ iso-
leucine (I), glutamic acid ➔ lysine (K), asparagine (N) ➔
lysine, glutamic acid ➔ glutamine (Q; Fig. 2). Further
asymmetrical substitutions specific to the genus Colwel-
lia include, from non-piezophile to piezophile, aspartic
acid ➔ alanine, glycine (G) ➔ alanine, serine ➔ alanine,
asparagine ➔ histidine, valine ➔ leucine, and glutamic
acid ➔ threonine.

Gene differences
We compared the predicted gene complements of the
piezophilic and piezosensitive strains. When comparing
relative abundances of clusters of orthologous genes
(COGs; Fig. 3), piezophilic Colwellia have a higher per-
centage of genes for replication/recombination/repair
(Category L), cell wall/membrane biogenesis (Category
M), cell motility (Category N), extracellular structures
(Category W), and translation and ribosomal structure
(Category J). The piezosensitive strains have higher per-
centages of genes for transcription (Category K), second-
ary metabolite biosynthesis/transport/metabolism
(Category Q), and general function prediction (Category
R). Transposable elements are notably more abundant in
the piezophiles, with the exception of C. piezophila, hav-
ing almost twice as many transposases as their piezosen-
sitive counterparts (Fig. 3). Toxin-antitoxin genes are
also enriched in the piezophiles, with piezophilic strains
containing 24–33 toxin-antitoxin genes while the piezo-
sensitive Colwellia have 9–18 copies. We found that
strain MT41 and C. psychrerythraea 34H have approxi-
mately 11 and 9 genomic islands (GIs), respectively, as
determined using Island Viewer [13]. We do not report
the total number of GIs in the other strains because the
fragmentation of their genomes likely leads to GI mis-
identification. Of the 11,343 unique genes identified at
70% similarity using Roary [103], 2035 genes were
shared amongst all seven strains. Only 45 genes were
present in all four piezophilic Colwellia but none of the
piezosensitive strains (Fig. 3; Supplementary Table 1).
All of the strains analyzed are heterotrophic. However,

potential differences in carbon metabolism exist (Fig. 3).
Genes for sarcosine oxidase (soxBDAG), which function
in the catabolism of glycine betaine in Colwellia [24], are
present in 34H and ND2E but not in the piezophiles.
Transporters and permeases for putrescine are enriched
in 34H and GAB14E, strains where putrescine has been
experimentally shown to be used as a sole carbon source
[134]. In contrast, we identified genes involved in chitin
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degradation, such as a chitin binding protein and chiti-
nase (family 10 and 18), in the piezophiles and GAB14E
but not in the other piezosensitive strains.
Members of the Colwellia are facultative anaerobes

capable of respiration and fermentation. While all the
Colwellia compared here use both the rnf (rnfABCDGE)
and Na+-nqr (nqrABCDEF) respiratory complexes, the
NADH dehydrogenase I complex (nuoABCEF-
GHIJKLMN) is only present in the three hadal piezo-
philes. These genes show similarity to those in the
piezophiles Shewanella benthica and S. violacea and to
metagenomic sequences from hadal sediments [108].
While all seven strains have genes for respiration via ni-
trate reduction (napCBADFE), genes for dissimilatory
nitrite reduction (nirSCFNTB) are only present in

C. psychrerythraea strains 34H and ND2E. The dissimi-
latory nitrite reduction gene nirK is present in C.
piezophila, although this strain was shown to reduce ni-
trate but not nitrite [97]. The gene cluster for nitrous
oxide reduction, nosRZDFYL, is present in strains 34H,
ND2E, and C. piezophila. This operon is flanked by con-
served regions found in the other strains, suggesting an
insertion or deletion event. Furthermore, the capacity
for trimethylamine-N-oxide (TMAO) reduction using
torSTRECAD is present in strains 34H and ND2E but
not in any of the piezophiles.
The seven strains of Colwellia compared are psychro-

philic or psychrotolerant and have adaptations to low
temperatures. For example, all contain pfaABCD to pro-
duce polyunsaturated fatty acids to counteract decreases

Fig. 2 a; Isoelectric point distribution of proteins within piezophilic (blue points) or piezosensitive (black) strains, with an average line of fit within
each group. b; Isoelectric point protein bias within each strain as a function of their growth pressure. c; Asymmetry index values indicating
preference of amino acids in the piezophiles or C. psychrerythraea 34H within orthologous proteins present in all strains. d; Specific amino acid
substitutions from C. psychrerythraea 34H to the piezophiles within orthologous proteins. The substitutions shown were also identified within
comparisons between piezophilic and piezosensitive Shewanella
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in membrane fluidity because of low temperatures. In
the case of the deep-sea Colwellia this system will also
optimize membrane phospholipid physical state at high
pressure. However, a number of genes involved in mem-
brane adaptation are differentially present among the
two Colwellia groups. All piezophilic Colwellia have
genes encoding delta-9 acyl-phospholipid desaturase, an-
other enzyme promoting unsaturated fatty acid synthesis
by introducing double bonds directly into membrane
phospholipid saturated fatty acids. In contrast, a fatty
acid cis/trans isomerase that alters the ratio of cis- and
trans- phospholipids by isomerizing -cis to -trans double
bonds, is encoded within all piezosensitive Colwellia but
is notably absent in the piezophilic Colwellia. Further-
more, the piezophilic strains encode almost twice as
many glycosyltranferases, enzymes involved in extracel-
lular polysaccharide synthesis.
Stress-response genes are also differentially present in

the genomes. Deoxyribopyrimidine photolyase (DNA
photolyase; phrB), which is involved in repairing DNA
damaged by ultraviolet light, is found in strains 34H and
ND2E but notably absent in all piezophilic Colwellia.
Both piezophilic and piezosensitive strains contain
superoxide dismutase and catalase for responding to oxi-
dative stress. The genes araC and lysR, whose products

control the expression of a variety of stress response sys-
tems, are more abundant in the piezosensitive Colwellia.
The piezophilic Colwellia are distinct in having multi-
copper oxidases and copper chaperones for coping with
heavy metal damage and maintaining copper homeosta-
sis. Phenotypic analysis of the Colwellia showed that the
piezophiles appear more resistant to copper exposure
compared to their non-piezophilic counterparts (Supple-
mentary Fig. 6). Some of the genes which putatively con-
fer heavy metal resistance are similar to other
piezophiles and are located near genomic islands or
other horizontally transferred elements, consistent with
the hypothesis that heavy metal genes can be horizon-
tally transferred (e.g. [20, 96, 101]).
We identified other unique genes that differ not only

between Colwellia strains but show biased distributions
towards additional piezophilic microbes and deep-ocean
metagenomic datasets (Table 2 [34, 51, 108, 137];). For
example, a putative S-adenosyl-l-methionine (SAM)
dependent methyltransferase (pfam13659) is present in
the piezophiles and strain GAB14E. This protein is simi-
lar to those present in bacterial and archaeal piezophiles,
including members of the genera Colwellia, Shewanella,
Moritella, Psychromonas, Methanocaldococcus, Thermo-
coccus, and Pyrococcus. The related methyltransferase

Fig. 3 a; Distribution of genes within the seven comparative strains using Roary [103]. Core genes were found in all seven genomes, shell genes
in 2–6 genomes, and cloud genes in only one genome. b; Differentially abundant COG categories within piezophilic or piezosensitive Colwellia. c
Specific genomic attributes that were differentially present in piezophilic or piezosensitive strains. Present, grey; absent, white
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isolated from Pyrococcus abysii (39% similar to MT41
protein) functions in tRNA modification [47]. Piezophilic
Colwellia have two copies of d-alanine-d-alanine ligase
(pfam07478), a gene which may be involved in peptidogly-
can synthesis. Unlike the situation in piezophilic Shewa-
nella [155], this gene is not present near flagellar assembly
components. While all strains have operons for a Type II
secretion system and a Type IV pilus, a tad pilus involved
in adhesion is found only in the piezophiles and related to
that in Shewanella violacea. This operon is also found in
GAB14E; however, this strain lacks a number of putative
tadE-like genes that are present in the piezophile operons.
Two alanine dehydrogenases are also present in the piezo-
philic strains while only one is present in the piezosensi-
tive members. The piezophile-specific dehydrogenase
(pfam05222) is thought to catalyze the NAD-dependent
reversible amination of pyruvate to alanine. It is similar to
a dehydrogenase present in other piezophilic species, in-
cluding Shewanella benthica, Moritella yayanosii, Photo-
bacterium profundum SS9, and binned genomes from a
deep subsea aquifer [137] and trench sediments [108].

A number of the genes specific to piezophiles are
present near one another, rather than individually spread
throughout the genome (Table 2). Many of these genes
are near variable regions containing genomic islands,
phage genes, transposases, and toxin-antitoxin system
genes (Supplementary Fig. 7). For example, the d-
alanine-d-alanine ligase in strain MT41 is next to two
putative genomic island regions, one of which is differ-
ent than that present in strain TT2012 (Fig. 4). Because
genomic islands are identified based on nucleotide bias
across the genome and the Colwellia sp. TT2012 gen-
ome is fragmented into short contigs, the lack of pre-
dicted genomic islands does not preclude their presence.
In the piezophile Moritella yayanosii this gene is near a
gene encoding a predicted phage integrase protein, while
in Shewanella benthica KT99 it is present in a flagellar
operon that also contains a transposase embedded
within it. Similarly, the piezophile-specific alanine de-
hydrogenase is present near a number of phage and
toxin/antitoxin genes and downstream from a genomic
island. In strain TT2012, this gene is in the middle of a

Table 2 Genes identified in piezophilic Colwellia but not the piezosensitive strains and which show a biased presence within other
known piezophilic microbes and deep-ocean datasets. The gene description describes more specific annotations for select genes in
each genomic region identified

IMG Gene ID MT41 Start MT41 (bp) End MT41 (bp) Similar to: Gene description(s)

2501712773–
2501712774

738561 741622 P. hadalis, S. benthica, S. violacea, M. yayanosii,
Moritella sp. PE36, [108], [51], [137]

Lipoprotein

2501712781 748798 749364 S. benthica, [137], [34] CDP-alcohol phosphatidyltransferase

2501712785 751307 751420 P. hadalis, [108] Chemotaxis-related

2501713024–
2501713025

1002,24 1003568 M. yayanosii, Moritella sp. PE36, [137], [34] Hypothetical, copper chaperone

2501713028–
2501713043

1004921 1020893 P. hadalis, S. benthica, S. violacea, M. yayanosii,
Moritella sp. PE36, [51], [137]

Tad pilus

2501713628 1635614 1636453 P. hadalis, S. benthica, S. violacea, M. yayanosii,
Moritella sp. PE36, piezophilic archaea, [51], [137]

SAM-dependent methyltransferase

2501713976 1995082 1995321 S. benthica RelE toxin

2501714033 2052,42 2052666 S. benthica Hypothetical

2501714084 2101280 2101915 P. hadalis, S. benthica, S. violacea, M. yayanosii,
Moritella sp. PE36, [137]

Hypothetical

2501714124–
2501714126

2137413 2141565 P. hadalis, S. benthica, M. yayanosii, [137], [34] D-alanine-D-alanine ligase

2501714471–
2501714485

2514635 2530350 S. benthica, S. violacea, [108] NADH dehydrogenase

2501714619 2663589 2663918 S. benthica, [108], [137] Heat shock protein

2501714669 2714988 2715770 M. yayanosii, Moritella sp. PE36, SAR324, [108], [137] Hydrolase

2501715698 3869630 3871057 Photobacterium profundum SS9, S. benthica,
M. yayanosii, Moritella sp. PE36, [108], [137]

Alanine dehydrogenase

2501715722 3894109 3895707 P. hadalis, [137] Arylsulfatase

2501715931–
2501715932

4122279 4122819 S. benthica, M. yayanosii RelE toxin

2501716002–
2501716003

4182966 4183371 S. benthica, M. yayanosii, [137] YoeB toxin
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putative genomic island (Fig. 4), while in Photobacterium
profundum SS9 it is flanked on one side by a transpo-
sase. Some of the genes present in these variable regions,
when not specific to piezophiles, display low similarity
to members of the genus Vibrio. The similarity of vari-
able genes within Colwellia to species of Vibrio has been
previously noted [24]. Horizontal gene transfer has been
shown to be important in the evolution of Vibrio species
[40].

Discussion
In this study we compared the genomes of members of
piezophilic Colwellia – including the most high
pressure-adapted species known to date – with their
piezosensitive counterparts to search for features that
could confer adaptation to the deep sea. These microbes
were isolated from surface and bathyal waters to abyssal
and hadal depths. Both 16S rRNA gene sequence-based
phylogenetic analyses and phylogenomic analyses indi-
cate that the piezophilic Colwellia are closely related.
While the piezophiles appear to form a single cluster
based on the phylogenomic tree, in the 16S rRNA gene
phylogenetic tree C. piezophila appears basal to not only
the piezophiles but also a clade that includes piezosensi-
tive lineages. Therefore, it is possible that piezophily has

evolved multiple times within the Colwellia. Further
whole genome sequencing will be needed to determine if
all piezophilic Colwellia form a single clade independent
from other piezosensitive microbes as has been reported
for Shewanella [6]. Piezophilic Colwellia have now been
isolated from five different trenches, including the Mari-
ana (strains MT41, MTCD1), Puerto Rico (C. hadalien-
sis), Japan (C. piezophila), Tonga (strain TT2012), and
Kermadec (Bartlett laboratory unpublished [65, 66, 109];
). Piezophilic members of the genus Colwellia are there-
fore widespread within deep-ocean and hadal
environments.
While the piezophiles have lower coding density than

their non-piezophilic counterparts, no correlation was
found between genome size and optimum pressure of
growth. This is in contrast to comparisons between shal-
low and deep pelagic datasets showing that deeper line-
ages appear to have larger genomes (e.g. [14, 39, 61,
135]). Instead, the three piezophiles with the deepest
collection depths represented some of the smallest Col-
wellia genomes examined. One possibility is that these
differences reflect different selective pressures operating
within seawater, sediments and amphipods. It is remark-
able that strain MT41 and MTCD1, two piezophiles iso-
lated from amphipod material in the Mariana Trench

Fig. 4 The location of a d-ala-d-ala ligase (a) and alanine dehydrogenase (c) in strains MT41 and TT2012, with surrounding genes labeled. Protein
trees of the d-ala-d-ala ligase (b) and alanine dehydrogenase (d) with sequences approximately > 50% similar shown
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34 years apart, share over 99% ANI. Perhaps this reflects
strong selection for a particular Colwellia strain within
the microbiome of Mariana Trench Hirondellea gigas
amphipods, such as that seen within symbionts of deep-
sea anglerfishes [9]. Their consistent isolation from am-
phipods (e.g. [62, 151]) suggests that some members can
be associated with hosts, and host-microbe relationships
can lead to genome streamlining and smaller genome
sizes [89]. Nearly all known piezophilic genera have been
found in conjunction with hosts (e.g. [95]) and the mi-
crobial activity of the gut contents of deep-sea animals
shows high levels of piezophily [131]. However, the
genus Colwellia is not present in recognizable abun-
dances within hadal amphipod metagenomes [154], their
high % GC is not indicative of an endosymbiont [89],
and the obligate piezophile Colwellia sp. TT2012 was
isolated from sediments rather than amphipods. An al-
ternative hypothesis is that Colwellia may be undergoing
genome reduction because of a specialized lifestyle
within the deep sea, as hypothesized for some psychro-
philes within sea ice [42]. Members of this genus may
instead be isolated in conjunction with amphipods be-
cause of their ability to degrade nutrient-rich decaying
amphipod material, for example using genes for chitin
degradation. Colwellia may also be ingested by amphi-
pods as a byproduct of the feeding of these deep-sea
scavenging macrofauna because of the preference of Col-
wellia for nutrient-rich particulate organic material [15,
49, 107].
The isoelectric point (pI) distribution of proteins

within a proteome can correlate with the ecological
niche of an organism [59]. Here we found that piezophi-
lic Colwellia have more basic proteins than their piezo-
sensitive counterparts. This pattern is conserved in
comparisons between piezophilic and piezosensitive
members of the genera Shewanella and Psychromonas,
indicating it is a property that may be widespread
amongst piezophiles within the Gammaproteobacteria.
Although intracellular microorganisms also have more
basic proteomes than free-living species [59], this is as-
sociated with an AT base pair enrichment not present in
the piezophilic Colwellia. A basic proteome may be the
result of the accumulation of mutations [59], consistent
with the low coding density and high numbers of trans-
posable elements within the piezophiles. Alternatively, it
could arise to help with charge balance within the cyto-
plasm, analogous to the role of the more acidic prote-
ome of haloarchaea, which counters the high
intracellular potassium ion levels present at high osmotic
pressures [26], or the osmotic differences between fresh-
water and marine species [17]. The intracellular inor-
ganic and organic solute levels within piezophiles are
not well known, but could be important to the mainten-
ance of macromolecule function at high pressure [81,

146, 147]. Among orthologous proteins piezophiles are
also enriched in hydrophobic residues, including trypto-
phan, tyrosine, leucine, phenylalanine, histidine, and me-
thionine. This finding has been noted in metagenomes
from 4000m [61] and may be important in maintaining
protein structure against water penetration at high pres-
sure [52, 125]. Specific amino acid substitutions where
one amino acid is consistently replaced by another indi-
cate that small nonpolar compounds (alanine, isoleu-
cine), amine-containing polar compound (glutamine),
and a positively charged basic compound (lysine) are se-
lected for in piezophiles, while negatively charged acidic
compounds (glutamate), polar compounds (threonine,
asparagine), and non-polar compounds (valine, proline)
are selected against. Similar shifts were also seen in
Desulfovibrio piezophilus [113], although different amino
acids were preferentially abundant in piezothermophilic
archaea [33].
We identified a number of gene abundance character-

istics that could confer adaptation to the deep ocean.
Enrichments in COG J (translation), L (replication and
repair), M (cell wall/membrane biogenesis), and N (cell
motility) appear enriched in the piezophiles. An enrich-
ment of category M and L has previously been observed
within deep ecotypes of Alteromonas [55]. The enrich-
ment within the piezophiles of COG M is in part due to
higher abundances of glycosyltransferases, which appear
to correlate with depth within metagenome datasets
[31]. Glycosyltransferases have been predicted to con-
tribute to low temperature-adaptation [91] and could be
more abundant in the psychropiezophiles because they
are more stenothermic. In contrast, a fatty acid cis/trans
isomerase was present only in the piezosensitive strains.
The rapid cis-to-trans isomerization of unsaturated fatty
acids via this isomerase has been observed in Pseudo-
monas putida P8 in response to changes in temperature
and salinity [50, 76]. Furthermore, the COG category for
transcription (K) is significantly enriched in non-
piezophiles compared to piezophiles. This is in part due
to an enrichment in the transcription factors AraC and
LysR, which have a wide variety of regulatory functions
including carbon metabolism and stress response [44,
80]. The enrichment of COG category K in shallow-
water organisms has been observed in the surface-water
ecotype of Alteromonas macleodii [55]. These findings
could reflect the adaptation of non-piezophilic shallow-
water microbes to a more dynamic environment, such as
rapid salinity or temperature shifts associated with sea-
ice or surface seawater. In contrast, autochthonous, obli-
gate deep-ocean microbes would not be expected to ex-
perience similar rates or magnitudes of these changes.
Other specific genes biased towards piezophiles within

COG M include delta-9 acyl-phospholipid desaturase
and a CDP-alcohol phosphatidyltransferase. While the
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desaturase is upregulated at high pressure in Photobac-
terium profundum SS9 [18], this gene is present in other
non-piezophilic strains of the Colwellia not examined
here, indicating it may not be pressure-specific. An extra
copy of d-alanine-d-alanine ligase is present in the
piezophiles and may function in peptidoglycan biosyn-
thesis. While this gene was reported within a flagellar
operon in Shewanella benthica [155], in strain MT41 it
is present next to a putative genomic island (Fig. 4). The
non-piezophile-specific copy of d-alanine-d-alanine lig-
ase is upregulated in the proteome of strain 34H after
incubation at − 1 °C [99], perhaps reflecting a role in low
temperature acclamation. Overall, the enrichment in
piezophiles of genes involved in COG category M is con-
sistent with a wealth of experimental evidence demon-
strating that changes in membrane structure are critical
for adapting to high hydrostatic pressure. Unsaturated
fatty acids help maintain membrane structure under
high pressure [2, 3, 21, 138, 149], with strain MT41 able
to produce more than 15% of its total membrane fatty
acids as docosahexaenoic acid (22:6 [30];).
Another adaptation associated with the membrane in-

volves energetics and respiration. We identified an add-
itional NADH ubiquinone oxidoreductase (nuo) gene
cluster in a number of piezophiles. This unique NADH
dehydrogenase, which translocates four protons per two
electrons [111], may help with energy acquisition under
in situ, high pressure conditions. We also identified an
alanine dehydrogenase specific to the piezophiles that
may function in the reversible amination of pyruvate to
alanine coupled with the oxidation of NADH to NAD+.
This may act as an adaptive strategy under inhibited re-
spiratory conditions by maintaining NADH/NAD+

homeostasis [57], such as during shifts to anoxic condi-
tions [41, 54] or after exposure to physical stressors im-
peding electron flow. Alanine dehydrogenases in Listeria
are insensitive to inactivation up to pressures of 550
MPa [123], transcriptionally upregulated in Desulfovibrio
piezophilus at high pressure [113], and abundant in the
proteomes of strain 34H at sub-zero temperatures [99].
We speculate that the piezophilic alanine dehydrogenase
functions in NADH/NAD+ homeostasis under high
hydrostatic pressure conditions. In contrast, we found
that TMAO reductase (torECAD), which reduces TMAO
to TMA, was not present in any of the piezophilic Col-
wellia. A similar finding has been noted in genomes of
Psychromonas from the guts of hadal amphipods, where
the lack of TMAO reductase was attributed to the pref-
erential need for TMAO as a piezolyte in the host
amphipod over its use as an electron acceptor by the mi-
crobe [153]. An alternative hypothesis is that TMAO is
used by microbial piezophiles as a piezolyte as it is in
deep-sea metazoans [147, 148]. Finding differences in re-
spiratory capacity within piezophiles is not unexpected.

Others have previously noted the influence of collection
depth and pressure on the presence and regulation of re-
spiratory membrane-bound cytochrome c oxidases and
hydrogenases [22, 72, 92, 132, 140, 141, 144, 145, 153].
These changes could stem directly from pressure influ-
ences or from a greater reliance on the colonization of
reduced oxygen niches associated with particles or ani-
mals [15, 109]. This latter possibility could be facilitated
by the tad pilus present in the piezophilic Colwellia
[112, 115, 136].
Horizontal gene transfer (HGT) can provide genetic

material that enhances fitness in new environments. An
experimental demonstration of this impact is the intro-
duction of a DNA photolyase gene, missing in piezophi-
lic Colwellia and other deep-sea species [31, 61, 67, 110],
into the piezophile Photobacterium profundum SS9 to
generate a UV resistant phenotype [70]. It is striking that
many of the Colwellia genes most similar to those in
other piezophiles appear in clusters within variable re-
gions that include genomic islands, putative phage genes,
transposases, and toxin-antitoxin systems. Despite their
smaller genome sizes, laterally transferred elements such
as transposase and toxin-antitoxin genes are more abun-
dant in the piezophilic Colwellia examined here, consist-
ent with their lower coding densities. Another notable
feature of these variable regions is that they differ even
between closely-related strains, such as between Colwel-
lia marinimaniae MT41 and C. marinimaniae MTCD1.
Mobile genetic elements have been suggested to confer

adaptations to extreme conditions (e.g. [5, 23, 43, 77, 84,
113]), such as in the known piezophile Photobacterium
profundum SS9 [18]. Deep-sea specific toxin-antitoxin
systems have been identified in members of the Shewa-
nella [155] and have been shown to influence the growth
of Pyrococcus yayanosii at different pressures [74, 75].
Mobile genetic elements may provide new metabolisms
within strains of Colwellia psychrerythraea, including
the transfer of sox genes involved in sarcosine metabol-
ism [24, 134]. Because of the similarity of many genomic
island-associated genes in members of the piezophilic
Colwellia to those in other gammaproteobacterial piezo-
philes, we suggest that HGT is a significant evolutionary
process governing high pressure adaptation. Future stud-
ies should evaluate these regions and their associated
genes for their importance in piezophily.

Conclusions
In this study we compared the genomes of piezophilic
and piezosensitive Colwellia to identify adaptations to
extreme deep-ocean conditions. Differences in amino
acid composition, membrane and cell wall structure, re-
spiratory capacity, tRNA modification, and complex or-
ganic carbon utilization appear to be important for life
at hadal depths. It appears that adaptation to the deep-

Peoples et al. BMC Genomics          (2020) 21:692 Page 11 of 18



ocean therefore requires many changes throughout the
cell (Fig. 5). Many piezophile-enriched genes are located
near areas of genomic variability and could be shared
among piezophiles by horizontal gene transfer. Some of
the adaptations identified may not be for high pressure
adaptation per se, but for lifestyles favored in hadal
trenches such as affiliation with particulate organic car-
bon or animals. Comparative transcriptomics of these
isolates will provide further insight into their adaptations
to high hydrostatic pressure.

Methods
Sample collection and high-pressure cultivation
conditions
Colwellia sp. TT2012 was isolated from sediments col-
lected via gravity core in the Tonga Trench (16° 38.505′
S, 172° 12.001′ W) at a depth of 9161 m on September
2, 2012 aboard the R/V Roger Revelle. Sediment from
the upper three cm sediment depth horizon was mixed
with filter-sterilized trench seawater and maintained at a
pressure of 84MPa and 4 °C. A subset of this material
was inoculated into ZoBell 2216 Marine Medium (BD
Difco, Thermo Fisher, Waltham, MA, USA) under the
same pressure and temperature conditions. Colwellia sp.
TT2012 was eventually isolated as a pure culture follow-
ing a number of dilution to extinction inoculations.

The isolation of both strains of Colwellia marinima-
niae have been previously described. Colwellia marini-
maniae MTCD1was isolated from amphipods at a depth
of 10,918 m in the Challenger Deep [62]. Colwellia mari-
nimaniae MT41 was also isolated from amphipods at a
depth of 10,476 m [151]. Both strains were maintained
in pressurizable polyethylene transfer pipette bulbs
(Samco Scientific, USA) with Zobell 2216 Marine
Medium broth at 4 °C and high pressure prior to
sequencing.

Pressure sensitivity and heavy metal sensitivity testing
The growth of the strains was evaluated under different
pressure and temperature conditions. Cultures of Col-
wellia strains 34H, GAB14E, and ND2E were incubated
in Zobell 2216 marine medium supplemented with 100
mM HEPES and 20mM glucose at 4 °C. Growth under
high hydrostatic pressure was evaluated by incubating
cultures at 20MPa increments between 0.1–80MPa at
4 °C and 16 °C in triplicate. The OD600 was measured
every 2.5 days for 10 days. Growth rates of Colwellia sp.
TT2012 were conducted at 0.1, 84, and 96MPa at 4 °C.
Copper sensitivity tests were also performed on the
piezophilic (strains MT41, MTCD1, and TT2012) and
non-piezophilic Colwellia strains (strains 34H, GAB14E,
ND2E). Copper (II) chloride dihydrate in concentrations
ranging from 0 to 1.5 mM in 0.3 mM increments were

Fig. 5 A cell schematic highlighting adaptations within piezophilic Colwellia identified in this study. The figure was created using Biorender.com
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added to inoculated 2216 media and the cultures were
incubated at 4 °C for 1–4 weeks with weekly inspection.

Genome sequencing and assembly
Genomic DNA from C. marinimaniae MTCD1 was ex-
tracted from 100mL of liquid culture after 4 weeks of in-
cubation at 110MPa. DNA was isolated using the Mo-
Bio Ultraclean Microbial DNA Isolation Kit (Mo-Bio,
USA). Genomic DNA was obtained from Colwellia sp.
TT2012 after growth at 84MPa and 4 °C for 3 weeks.
Cells were filtered onto a 0.22 um Millipore Sterivex fil-
ter cartridge (Fischer Scientific, USA) and first subjected
to a lysis buffer (50 mM Tris-HCl at pH 8.3, 40 mM
EDTA at pH 8.0, 0.75M sucrose) and R1804M Ready-
Lyse lysozyme solution (Illumina, USA). After 15 min of
incubation at 37 °C, proteinase K and sodium dodecyl
sulfate were added to a final concentration of 0.5 mg/ml
and 1% respectively. The mixture was then incubated at
55 °C for 25 min, followed by 70 °C for 5 min. The lysate
was treated two times with phenol-chloroform-isoamyl
alcohol (24:24:1) and chloroform:isoamyl alcohol (24:1)
and further purified using a Mo-Bio Utraclean DNA Iso-
lation Kit spin column. The genomes of C. marinima-
niae and Colwellia sp. TT2012 were sequenced at the
Institute for Genomic Medicine (IGM) at UCSD using
the MiSeq sequencing platform (Illumina, San Diego).
The raw forward and reverse reads were merged using
FLASH version 1.2.10 [83] and assembled with SPAdes
version 3.1.0 [10].
The genome of strain MT41 was sequenced to closure

by whole random shotgun sequencing. Briefly, one small
insert plasmid library (2–3 kb) and one medium insert
plasmid library (10–15 kb) were constructed by random
nebulization and cloning of genomic DNA. The se-
quences were assembled using the TIGR Assembler
[127]. All sequence and physical gaps were closed by
editing the ends of sequence traces, primer walking on
plasmid clones, and combinatorial PCR followed by se-
quencing of the PCR product.

Genomic completeness, phylogenetic analysis, and
annotation
The genomes were evaluated for their completeness and
phylogenetic relationships. Genome completeness and
contamination was estimated using CheckM [105]. A
whole-genome phylogenetic tree was built using RAxML
[126] on the CIPRES science gateway [93] using the
single-copy marker genes identified within CheckM.
Ribosomal 16S RNA gene trees were also built by align-
ing sequences using the SINA Aligner [114] and built
using RAxML All trees were visualized using the Inter-
active Tree of Life [73]. Genomes were annotated using
the Integrated Microbial Genomes pipeline (IMG/ER
[85];). Pairwise average nucleotide identity between the

genomes was evaluated within both the IMG interface
and with orthoANI [71].

Comparative genomic analysis
A comparative genomic analysis was performed between
the piezophilic and non-piezophilic strains of Colwellia
to identify whole-genome changes and specific genes
unique to piezophiles. The isoelectric point (pI) of each
predicted proteome was calculated using the compute
pI/MW tool in the ExPASy Bioinformatics Resource
Portal [8]. Isoelectric point values from ExPASy were
rounded to the nearest tenth and the frequency of each
protein pI was plotted in Fig. 2a as a percent of the total
proteome. Each proteome was divided into an acidic set
of proteins (pI< 7; Na) and a basic set (pI> 7; Nb) and the
bias quantified using the formula ((Nb-Na)/(Nb + Na) ×
100). The pI bias percentage is calculated such that
100% means the proteins in the entire proteome are
basic, − 100% means all the proteins are acidic, and 0%
means equal percentage of basic and acidic proteins.
To identify specific amino acid substitutions that may

correlate with piezophily, amino acid asymmetry was
calculated using the procedure and software described in
McDonald et al. [90]. First, proteins from the genomes
were clustered using TribeMCL ([37]; scripts available at
https://github.com/juanu/MicroCompGenomics) with a
Blastp cutoff of 1e-5 and an inflation value of 1.4. Ortho-
logous single-copy gene clusters present in both the
piezophiles and Colwellia psychrerythraea 34H were
aligned using MAFFT [82] and then processed with the
Asymmetry programs AmbiguityRemover (using a value
of 2 for the number of adjacent sites), AsymmetryCoun-
ter, and AsymmetryScaler (with three decimal places
and 100 replicates [90];). Approximately 346,000 aligned
amino acid sites were examined in each comparison.
Comparisons were also performed between the Shewa-
nella strains S. benthica KT99, S. violacea DSS12, and S.
piezotolerans WP3 against the piezosensitive S. sediminis
EB3.
Protein abundances from the genomes were compared

to identify attributes preferentially enriched in either the
piezophiles or piezosensitive strains. General COG cat-
egory distributions were evaluated using IMG/ER anno-
tations. For the identification of differentially-abundant
specific proteins, genomes were annotated using Prokka
[120] and compared using Roary [103] at a similarity cut
off of 70% identity. Gene distributions were visualized
using Phandango [48]. Protein clusters were also gener-
ated using the TribeMCL analysis as described above.
Identified protein clusters using these techniques were
further screened using blastp [4] against the nr database
for their prevalence in other Colwellia genomes, other
piezophile genomes, or other metagenomes. This man-
ual curation allowed for the identification of both genes
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differentially abundant within the groups of genomes
immediately discussed here but also allowed for a culled,
smaller dataset of genes that may be present in other
deep-ocean isolates and datasets.
Certain genomic features within the genomes were

also identified. Genomic islands were identified using
IslandViewer [13]. Regions that may represent genomic
islands were also identified using the Mean Shift Gen-
omic Island Predictor (MSGIP [27];). As incomplete ge-
nomes appeared to give spurious results, the total
number of genomic islands are reported only for the
complete genomes of Colwellia marinimaniae MT41
and C. psychrerythraea 34H. However, genomic islands
for some of the partial genomes are shown here (e.g. Fig-
ure 4) only when IslandViewer or MSGIP identified a re-
gion as a genomic island, it was in a similar region as a
genomic island found in either of the 34H or MT41 ge-
nomes, and it appeared to be a region of variability
based on IMG/ER annotations. The homology of these
variable regions was analyzed using blastn and visualized
with the R package genoPlotR [46] and Kablammo [143].
Putative transposases and toxin/antitoxin genes were
identified based on IMG/ER annotations. Putative viral
regions of each genome were also identified based pre-
dominantly on IMG/ER annotations with a functional
search using the terms ‘phage’ and ‘virus,’ but also with
VirFinder [118] and VirSorter [119]. Different types of
flagella and pili were annotated using MacSyFinder and
TXSScan ([1]; https://galaxy.pasteur.fr/#forms::txsscan)
with default parameters. Carbohydrate-active enzymes
within each genome were identified using dbCAN [152].
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