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Abstract

Preferential concentration of heavy inertial particles using the two-fluid

equations

by

Sara Nasab

Preferential concentration describes the tendency of heavy particles to accumulate

in certain regions of a turbulent flow. This process has been hypothesized to play

a role in particle growth which is of crucial importance in numerous physical and

engineering applications. The efficiency of preferential concentration is known to

depend on the ratio of the particle stopping time to the turbulent eddy turnover

time, which is called the Stokes number. In this thesis, we investigate the role

of turbulence on preferential concentration of heavy particles with Stokes number

less than unity. We use Direct Numerical Simulations and adopt the two-fluid for-

malism, where the particulate phase is treated as a continuum. In the first work,

we study a two-way coupled system in the particle-induced Rayleigh-Taylor insta-

bility, and observe the striking emergence of dense, filamentary particle structures.

Most notably, we find that the particle concentration enhancement primarily de-

pends on three properties of the system: the rms fluid velocity, the Stokes number,

and the assumed particle diffusivity from the two-fluid equations. Additionally, we

note that when preferential concentration is dominant, the probability distribution

function of the particle concentration takes on a distinctive form, characterized

by an exponential tail whose slope is related to the same three properties listed

above. In the second part, we further extend our study to a regime in which

turbulence is externally-driven, and verify that the results found in the first study

also hold. In the final work, we use a box-counting algorithm to identify and ex-

tract key features of the dense particle structures. We find in particular that these
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structures have a large aspect ratio. We propose an advection-diffusion model to

predict their thickness, and find preliminary evidence that suggests that their long

dimension depends on the Taylor microscale.
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Chapter 1

Introduction

1.1 Particle-laden flows

Particle-laden flows appear in many fields ranging from biology, chemical en-

gineering, to geophysical and astrophysical applications. They are defined as two-

phase flows, consisting of a dispersed phase (usually modeled as spherical particles

such as sediments, droplets, or bubbles) and a continuous carrier phase. These

flows are difficult to model, combining two challenging topics of fluid mechanics:

turbulence and multi-phase physics. The major obstacle keeping us from fully

understanding these flows is the vast range of time and length scales associated

with the microphysics of the particles and the scales of turbulent motion.

A notable physical process of two-phase flows is preferential concentration,

which describes the accumulation of heavy particles within certain regions of the

fluid due to their inertia. Thus, the particle distribution becomes non-uniform,

resulting in regions of higher particle concentration and regions of low concentra-

tion. It has been shown that the primary mechanisms that can cause preferential

concentration are the inertial bias mechanism and the sweep-stick mechanism.

The inertial bias mechanism describes the tendency of small particles to concen-
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trate in regions of high strain and low vorticity (Maxey, 1987), as illustrated in

Figure 1.1 and described in more detail in Section 1.2. For larger particles, the

sweep-stick mechanism plays a dominant role, in which dense clusters form in zero

acceleration points of the flow, subsequently “sticking” and then moving with the

local fluid velocity (Goto & Vassilicos, 2006; Coleman & Vassilicos, 2009). In this

thesis, we focus our investigation on small inertial particles, and therefore only

study the effect of preferential concentration due to the inertial bias mechanism.

Figure 1.1: Illustration of a single particle interacting in 2D flow (figure adapted
from Eaton & Fessler, 1994).

Historically, preferential concentration has been chiefly investigated in systems

well within the dilute limit, where particles are typically characterized as small

and spherical. One of the first reported experimental observations of preferential

concentration was done by Kada & Hanratty (1960). They found that beyond a

certain volume fraction the concentration field of heavy particles was non-uniform;

however these results were not quantitatively explained. Later works in the con-

text of turbulent pipe flows (Fessler et al., 1994; Wang & Squires, 1996; Rouson

& Eaton, 2001) and free shear flows (Crowe et al., 1985; Kobayashi et al., 1988;

Wen et al., 1992; Gañán-Calvo & Lasheras, 1991; Raju & Meiburg, 1997) found

corroborating evidence that confirmed that the largest particle densities were lo-

cated near the outer edges of coherent vortex structures. This observation was

later explained by Maxey (1987), who showed that inertial particles preferentially
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accumulate in regions of low vorticity and high strain rate (see Section 1.2.2 for

more details). Chein & Chung (1988b) further demonstrated that the Stokes

number, which is defined as the ratio of the particle stopping time to the typical

fluid eddy turnover time, has a direct impact on the efficiency of preferential con-

centration. Most of these discoveries have provided the basis for understanding

particle-laden flows (see review papers by Eaton & Fessler 1994; Elghobashi 1994;

Balachandar & Eaton 2010; Monchaux et al. 2012).

Higher concentrations due to preferential concentration can promote collisional

growth, a topic that is particularly relevant in geophysical and astrophysical ap-

plications. For example in clouds, the processes by which growth from micron-

sized droplets to millimeter-sized raindrops occur remain a subject of continuing

research. These processes are thought to include condensational growth, collision-

coalescence, sedimentation, and latent heating. Although a wealth of research

has been done through controlled laboratory experiments (Saw et al., 2008; Bate-

son & Aliseda, 2012) and numerical simulations (Devenish et al. 2012; Grabowski

& Wang 2013 and references therein), most studies remain highly idealized ei-

ther only capturing a subset of physical processes, incorporating a relatively low

Reynolds number, or modeling a monodisperse collection of droplets. Despite

these limitations, it is now known that condensation and Brownian motion alone

are only effective for forming droplets around 20 − 30 µm in diameter. To grow

to sizes needed to initiate rainfall, other pathways to droplet growth need to be

considered. Recent works (Wang et al., 2000; Ghosh & Jonas, 2001; Ayala et al.,

2008) have suggested that preferential concentration does play a role in increas-

ing the local droplet concentration, and thus aid in enhancing collision rates and

contribute to droplet growth.

Preferential concentration has also been widely proposed to play a part in the
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coagulation of dust particles in accretion disks (Weidenschilling & Cuzzi, 1993;

Blum & Wurm, 2008; Birnstiel et al., 2016). During the initial phase of planetary

formation, micron-sized dust grains eventually grow to kilometer-sized planetesi-

mals, however the mechanisms responsible for particle growth are still unclear. It

is known that during the onset of planetary formation, accretion disks are com-

posed of 99% gas and 1% solid micron-sized dust grains. The small dust grains

are well-coupled to the gas, so that their velocities are primarily determined by

Brownian motion and turbulence. Because their velocities are relatively small,

these particles stick on impact resulting in a newly formed larger particle (Wei-

denschilling, 1977; Blum & Wurm, 2008). However in order for these type of

collisions to occur, particles must be relatively near one another, and thus pref-

erential concentration may facilitate this process (see Blum 2006 and references

therein).

1.2 Mathematical formulation

1.2.1 Stokes number

Preferential concentration in turbulent, particle-laden flows has been found to

primarily depend on the nondimensional Stokes number. The Stokes number is

typically defined as the ratio between the particle stopping time τp to the char-

acteristic fluid eddy turnover time τe. It is now known that the Stokes number

controls the effect that particle inertia has on the interactions with turbulence

(Maxey, 1987).

The particle stopping time τp is a parameter that can be easily determined
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based on intrinsic particle properties, and is written as

τp =
d2

pρs

18ρfν
, (1.1)

where dp is the diameter of the particle, ρs is the solid density of the particle, ρf is

the mean fluid density, and ν is the kinematic viscosity of the fluid. On the other

hand, the typical eddy turnover time is one that is not as readily agreed upon.

For simpler flows where there exist only one characteristic timescale, the choice

for τe is obvious. For fully turbulent systems that consist of a wide range of time

scales, the eddy turnover timescale depends on the aspect of the flow that one

wishes to study (which is then used to determine τe). It is common in turbulent

flows to choose the eddy turnover time based on the smallest scales of turbulence

(i.e. on the Kolmogorov scale), but this is not the only possible choice.

It is known that when the Stokes number is much smaller than unity, particle

inertia is negligible and as a result, particle motion is dictated entirely by the

carrier flow (Crowe et al., 1985; Chein & Chung, 1988b; Tang et al., 1992; Maxey,

1987). When the Stokes number is of order unity, particles tend to preferentially

concentrate in regions of low vorticity and high strain rate. Finally when the

Stokes number is much larger than unity, the particles become decorrelated from

fluid motions, and as a result, the particles do not respond to the changes in local

flow structures as compared to the smaller particles.

We can see how the Stokes number influences the spatial distribution of parti-

cles in 3D Direct Numerical Simulations (DNSs) generated for the study described

in Ch. 4. In Figure 1.2, we present snapshots of the particle concentration field in

a turbulent flow after the system has reached a statistically steady state, where

the red color represents larger values in particle concentration and the blue color

represent lower values in particle concentration. When St ∼ O(10−3) as shown
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Figure 1.2: Snapshots of the particle concentration field from Direct Numerical
Simulations with varying Stokes number (with other parameters fixed to be the
same), whose model set-up is described in Section 4.2.
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by Figure 1.2(a), the spatial distribution of the particles appears to be fairly uni-

form, which is expected when particle inertia is negligible. In Figure 1.2(b) when

the Stokes number increases to St ∼ O(0.01), particles begin to accumulate sig-

nificantly more around the vortex edges, resulting in a slight increase in particle

concentration enhancement. When St ∼ O(0.1) as shown in Figure 1.2(c), we

see that the spatial distribution of the particles has indeed become more hetero-

geneous due to preferential concentration. Specifically, we see the emergence of

highly concentrated, filamentary structures (shown in red) as well as contrast-

ing regions void of particles (shown in dark blue). As discussed earlier, previous

studies have likewise shown that inertial particles are rarely found inside vortex

structures, and instead found in the saddle regions between vortices (Fessler et al.,

1994; Crowe et al., 1985; Maxey & Corrsin, 1986).

1.2.2 Maxey’s model

In this section, we show how the Stokes number is related to preferential

concentration following the original derivations by Maxey (1987). We specifically

focus on the long-term behavior of a collection of heavy particles, and ultimately

see how inertial bias creates a tendency for the particles to aggregate in regions

of high strain rate and low vorticity.

Here and for the remainder of this work, we focus on particulate flows in

which the particle solid density is much larger than the mean density of the fluid

(i.e. ρs ≫ ρf ). We also study a monodisperse collection of particles in which

each particle is sufficiently small such that the fluid Reynolds number based on

the particle size and velocity is smaller than one, and thus follows Stokes’ drag.

Following Maxey (1987), the motion of a single spherical particle in this limit is
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then modeled by
dvp

dt
= 1

τp

{
u(xp(t), t) − vp + ws

}
(1.2)

where u is the fluid velocity at the particle position xp at time t, vp is the particle

velocity, and ws = τpg is the particle settling velocity where g = −gêz is the

acceleration due to gravity.

In order to show how the Stokes number St influences particle motion, we

nondimensionalize Eq. (1.2) with respect to a set of characteristic velocity and

length scales for the given system represented by Uc and Lc. The following nondi-

mensional variables are then:

t̂ = t

Lc/Uc

, x̂p = xp

Lc

, û = u
Uc

, v̂p = vp

Uc

. (1.3)

The resulting nondimensionalized form of Eq. (1.2) is then

dv̂p

dt
= 1

St

{
û(x̂p(t), t) − v̂p + ŵs

}
, (1.4)

where St = τp/τe, which we recognize as the ratio of the stopping time to a

characteristic timescale of the flow, as introduced earlier. The nondimensional

settling velocity is given by ŵs = ws/Uc, and the variable t for the remainder of

this derivation is implicitly nondimensional.

First we consider the case when particle inertia is negligible, or when St → 0.

We carry out an asymptotic expansion to the lowest order in St and obtain

v̂p = û(x̂p(t), t) + ŵs, (1.5)

and see that the particle velocity is linearly dependent on the fluid velocity and

the terminal settling velocity. That is, the motion of the particle is dictated by
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the local fluid velocity.

We next consider the case when particle inertia is small but not negligible. We

integrate Eq. (1.4) over the time interval [t0, t] and obtain the integral solution

for the particle velocity v̂p:

v̂p(t) = e−t/Stv̂p(t0) + ws(1 − e−t/St) + 1
St

∫ t

t0
e−(t−t′)/St û(t′) dt′, (1.6)

where û(t) ≡ û(x̂p(t), t) for convenience.

Applying integration by parts yields the following solution for the particle

position x̂p.

x̂p(t) = x̂p(t0)+St(v̂p(t0) − ŵs) + ŵst +
∫ t

t0
û(t′) dt′ − Stû(t)

+ e−t/St

[
− St(v̂p(t0) − ŵs) + Stû(t0)

]
+ O(St2). (1.7)

Since we are interested in the long-term averaged particle velocity solution,

the initial particle velocity does not hold significance to the final solution. With

that in mind, Maxey (1987) substitutes the lowest order particle velocity solution

(1.5)

v̂p(t0) = û + ŵs

in (1.7), so that the particle position then simplifies to

x̂p(t) = x̂p(t0) + Stû(t0) + ŵst +
∫ t

t0
û(t′) dt′ − Stû(t) + O(St2). (1.8)

Next taking the temporal derivative of Eq. (1.8), the updated differential equation

becomes
dx̂p

dt
= û(t) + ŵs − St

dû
dt

+ O(St2). (1.9)
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Up to the first-order correction term in St, we clearly see that the particle velocity

now has additional dependence on the Stokes number given by the last term on the

right-hand side. Note that (1.9) was derived following Maxey for historical accu-

racy, but it can also be obtained more easily by applying Laplace’s approximation

to the particle velocity equation (see Appendix A for more details).

In order to express the particle velocity in (1.9) as a function of the instanta-

neous particle position x̂p, we recast dû/dt as the derivative following the particle

as

dû
dt

=
(

∂û
∂t

+ dx̂p

dt
· ∇û

)∣∣∣∣∣
x̂p(t)

=
(

∂û
∂t

+ (û(x̂p(t), t) + ŵs) · ∇û
)∣∣∣∣∣

x̂p(t)
+ O(St), (1.10)

where in the second line, we substitute the lowest order particle velocity solution

(1.5) for dx̂p/dt. Finally we substitute the first-order solution of (1.10) for dû/dt

in (1.9) and get

dx̂p

dt
= û(x̂p(t), t) + ŵs − St

(
∂û
∂t

+ (û(x̂p(t), t) + ŵs) · ∇û
)∣∣∣∣∣

x̂p(t)
+ O(St2). (1.11)

Written in this way, we easily see the contributions to the particle velocity com-

pared to (1.4) in terms of the fluid velocity, the settling velocity, and the particle

position.

These results were then used to investigate the behavior for a collection of

particles with velocity ûp (defined in Eq. 2.5). For particles with low Stokes

number, Maxey (1987) showed that the long-term collective particle velocity can

be modeled with a similar equation as the one for the single particle velocity

(following methods by Kraichnan 1970, Riley 1971, and Reeks 1980).

Thus in the case for when particle inertia is negligible, the average particle
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velocity can be modeled by

ûp(x̂, t) = û(x̂(t), t) + ŵs. (1.12)

The divergence of Eq. (1.12) yields ∇ · ûp = ∇ · û = 0, implying that the parti-

cle concentration field is incompressible. Therefore clustering due to preferential

concentration cannot occur for particles when St → 0.

On the other hand, when the Stokes number is small but not negligible, the

collective particle velocity is given by

ûp(x̂, t) = û(x̂, t) + ŵs − St

(
∂û
∂t

+ û · ∇û + ŵs · ∇û
)

+ O(St2), (1.13)

where the divergence of (1.13) using Einstein summation convention (in which

repeated indices are implicitly summed over) is

∇ · ûp = −St

4

[(
∂ui

∂xj

+ ∂uj

∂xi

)2

−
(

∂ui

∂xj

− ∂uj

∂xi

)2]
. (1.14)

We clearly see in this case that the divergence of the particle velocity is not

necessarily zero. In the expanded expression on the right-hand side, the first term

corresponds to the strain rate and the second term corresponds to vorticity. For

the divergence of the particle field to be positive, the strain rate is low and the

vorticity is high. In constrast for the divergence to be negative, the strain rate

dominates. Therefore, preferential clustering occurs in regions of low vorticity or

high strain rate.
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1.3 Computational approaches

In this section, we provide a brief overview of the more popular formalisms

used to model two-phase flows. The Equilibrium Eulerian approach assumes a

continuum treatment of the particles, and is given by an explicit representation

for the fluid velocity and a transport equation for the particle concentration. The

two-fluid formalism (which is discussed in Ch. 2) also models the particles as a

continuum; however in this approach, we require an additional momentum equa-

tion for the particle field. The Lagrangian formalism models the dispersed phase

as point particles, in which the motion for each particle is tracked individually.

In fully resolved simulations (which are not covered in this thesis), the interac-

tions between the two phases as well as the local flow around the particles are

fully resolved. Generally speaking, the appropriate formalism in which to model

the system primarily depends on particle size (or, the Stokes number), where the

hierarchy of formalisms is depicted in Figure 1.3. In what follows, we describe

the Equilibrium Eulerian, the two-fluid (separately introduced in Ch. 2), and

Lagrangian formalisms in more detail.

Figure 1.3: Hierarchy of modeling approaches for increasing Stokes number.
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1.3.1 Lagrangian Formalism

With the rise of state-of-the-art computational capabilities, one of the more

popular methods is the Lagrangian formalism which integrates Eq. (1.2) sepa-

rately for each particle in the fluid as

dxp,i

dt
= up,i and dup,i

dt
= ui − up,i

τp

+ g for i = 1, ..., Np, (1.15)

where xp,i is position of the ith particle, ui = u(xi) is the fluid velocity at position

xi, and up,i is the velocity of the ith particle. The back reaction of the particles on

the fluid is accounted for by adding a mean local drag force Fp in the Navier-Stokes

equation shown here for an incompressible fluid of uniform density ρf :

ρf

(
∂u
∂t

+ u · ∇u
)

= −∇p + ρg + ρfν∇2u + Fp, (1.16)

where ρ is the density deviation away from the mean fluid density ρf , p is the

pressure, and Fp is explicitly defined as

Fp(x) =
np(x)∑
i=1

mp

vc(x)
up,i − ui

τi(x)
, (1.17)

where mp and τp are the mass and stopping time of the ith particle, respectively,

and np(x) is the number of particles in small control volume vc(x) centered around

x. It is worth noting that the Lagrangian and fully-resolved approaches are the

only formalisms that can efficiently model a poly-disperse distribution of parti-

cles exactly should this be needed. Although there exist current models using

this approach that are capable of tracking up to O(109) particles, parallelization

issues can arise due to an uneven distribution of particles over the domain due

to preferential concentration. As a result, the computational load will be unbal-
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anced towards the processors responsible for solving the governing equations in

the region of the domain corresponding to higher concentrations of particle, and

the computational cost can be expensive. Thus for systems in which particles

are mono-disperse and are sufficiently small to be well-coupled with the fluid,

alternative approaches can be used.

1.3.2 Equilibrium Eulerian formalism

In the following formalism, the particles are not treated individually, but in-

stead, are modeled as a continuum. We also assume that the collection of monodis-

perse, spherical particles follow Stokes drag. We then define the local mass density

ρp and collective velocity up to describe this “fluid of particles” in a small volume

centered around the position x as

up(x) = 1
np(x)

np(x)∑
i=1

up,i, ρp = 1
vc(x)

np(x)∑
i=1

mp. (1.18)

When particle inertia is negligible, the particles can be modeled together with

the carrier flow as a single fluid. The particle velocity is derived from the La-

grangian equation of motion (1.2) following an expansion in τp in the limit of

τp → 0, and dimensionally written as

up = u + ws. (1.19)

Consequently, the drag term (1.17) greatly simplifies in this limit to become

Fp(x) = ρpg. (1.20)

Additionally, the evolution of the particle concentration is modeled by the trans-
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port equation
∂ρp

∂t
+ up · ∇ρp = κp∇2ρp, (1.21)

where κp represents particle diffusivity. This term is included under our continuum

treatment of particles to stabilize the system when running numerical experiments,

although it is also physically motivated. In reality, a group of particles undergo

both stochastic collisions with the molecules of the carrier fluid, which results in

an added dispersive term in Eq. (1.21) from their Brownian motion, as well as

mutual long-range interactions through their wakes which can also be modeled

as a diffusion term. We also see that in this limit for which particle inertia is

negligible, the particle velocity is divergence free ∇ · up, and thus the advection

term has been simplified from ∇ · (upρp) to up · ∇ρp.

Together, the system of equations for the Equilibrium Eulerian formalism can

be written as

ρf

(
∂u
∂t

+ u · ∇u
)

= −∇p + (ρ + ρp)g + ρfν∇2u, (1.22)

∂ρp

∂t
+ (u − wsêz) · ∇ρp = κp∇2ρp, (1.23)

∇ · u = 0, (1.24)

where the particles and fluid together as a single-phase fluid whose density per-

turbation away from the mean ρf is ρ + ρp. For this limit to apply, the particle

stopping time τp must be small enough to instantaneously respond to changes in

the fluid motion. In recent works, the Equilibrium Eulerian approach has been

adopted (Burns & Meiburg, 2012; Alsinan et al., 2017; Reali et al., 2017) and

has the advantage of using an explicit equation for the particle velocity, which is

straightforward to implement in the fluid momentum equation.

Other versions of this formalism have been proposed, for which particle inertia
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is incorporated in the particle equation. They are easily derived by carrying out

an expansion of (1.2) to higher-order terms in τp. There also exist several variants

of the Equilibrium Eulerian approach that include other relevant forces such as

added mass, Basset history, and Saffman lift in the Fast Eulerian approach, which

we do not cover in this thesis (Maxey & Riley, 1983; Ferry & Balachandar, 2001).

To avoid any confusion, it is worth mentioning that for the remainder of this work,

the Equilibrium Eulerian approach refers to the formalism in which particle inertia

is negligible, although this terminology is used more broadly in other papers.
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Chapter 2

Two-fluid equations

In this section, we present the two-fluid equations in which we use to model

particle-laden flows for the remainder of this work. The contents of Section 2.1

was originally part of the reprint presented in Chapter 3 and moved to this portion

of the thesis for pedagogical purposes.

2.1 Governing equations

The two-fluid formalism for particle-laden flows can be derived starting from

the Lagrangian-Eulerian formalism by locally averaging the particle properties

to obtain the continuum density and momentum conservation equations. This

essentially follows the derivation of Ishii and Mishima (Ishii & Mishima, 1984)

(see also Ishii & Hibiki, 2010; Delhaye & Achard, 1976). The formalism has been

widely used within the astrophysics community for studying protoplanetary disks

(Youdin & Goodman, 2005; Nakagawa et al., 1986), as well as in studies related

to sediment transport in rivers and oceans (Hsu et al., 2004; Bakhtyar et al., 2009;

Revil-Baudard & Chauchat, 2013), for instance.

For simplicity in this work, we focus on particulate flows in which the particle
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solid density ρs is much larger than the mean density of the fluid ρf , such as

droplets or aerosols in the atmosphere or dust in accretion disks. We also assume

that the particles are spherical, monodisperse, and dilute (ensuring that particle-

particle collisions do not dominate the particle evolution equations).

2.1.1 Lagrangian formalism

Under the above assumptions, we can model the motion of a single particle

interacting with the fluid through Stokes drag by solving the coupled ordinary

differential equations

dxp

dt
= up and dup

dt
= u(xp) − up

τp

+ g, (2.1)

where xp is the position of the particle, up is its velocity, u(xp) is the fluid

velocity at xp, g = −gêz is gravity, and τp is the particle stopping time. In (2.1),

we have assumed that the reduced mass (which would normally multiply g) is

approximately 1 since ρs ≫ ρf . We have also neglected other effects such as the

Basset history and Saffman lift terms for the same reason (Maxey & Riley, 1983).

To model a collection of Np monodisperse particles using the LE approach,

(2.1) is integrated separately for each particle in the fluid:

dxp,i

dt
= up,i and dup,i

dt
= u(xp,i) − up,i

τp

+ g for i = 1, ..., Np, (2.2)

where xp,i and up,i are the position and velocity of the ith particle, respectively.

The back reaction of the particles on the fluid is accounted for by adding a mean

local drag force Fp in the Navier-Stokes equation shown here in the limit of the
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Boussinesq approximation (Boussinesq, 1903a; Spiegel & Veronis, 1960):

ρf

(
∂u
∂t

+ u · ∇u
)

= −∇p + ρg + ρfν∇2u + Fp, (2.3)

where ρ is the density deviation away from the mean fluid density ρf , p is the

pressure, ν is the kinematic velocity of the fluid, and Fp is explicitly defined as

Fp(x) = −
Np∑
i=1

mp

vϵ

u(xp,i) − up,i

τp

H(ϵ − |xp,i − x|), (2.4)

where H is the Heaviside function, mp is the particle mass, and vϵ is the volume

of a sphere of radius ϵ. The averaging radius ϵ is typically chosen to be one grid

cell in numerical computations using the LE formalism, but does not need to be

specified here, other than satisfying the requirement that ϵ be small. Equations

(2.2)–(2.4), together with the fluid incompressibility condition ∇ · u = 0, form

the Lagrangian-Eulerian equations. These can now be statistically averaged using

methods motivated from kinetic theory to derive the two-fluid formalism.

2.1.2 Two-fluid formalism

We first define the local mass density of particles ρp and corresponding velocity

up, averaged in a small volume centered around the position x as

ρp = mp

vϵ

Np∑
i=1

H(ϵ − |xp,i − x|), up(x) = 1
vϵ

Np∑
i=1

up,iH(ϵ − |xp,i − x|). (2.5)

Applying this average to the particle evolution equations in (2.2) (as done in Ishii

& Mishima, 1984, for instance), we approximately get

Dpup

Dpt
= u − up

τp

+ g + ... (2.6)
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where Dp/Dpt = ∂/∂t + up · ∇ is the derivative following the mean particle ve-

locity. The evolution equation for the particle density can be obtained by mass

conservation to be
∂ρp

∂t
+ ∇ · (ρpup) = ... (2.7)

In both equations, dots on the right hand side result from three possible

sources: (1) dispersion in both mass and momentum conservation equations due

to the fact that up,i ̸= up; (2) unaccounted for interactions of the particles with the

fluid, which include Brownian motions for very small particles, and self-interaction

of the particle with its own wake if the latter is not perfectly modeled by the Stokes

solution; and (3) long-range interactions of particles with one another due to each

other’s wakes. Aside from Brownian motions, these terms are generally very dif-

ficult to model, leading to strong anisotropic dispersion, and likely to depend

nonlinearly on the mean particle density and velocity.

In what follows, we will model these terms for simplicity as νp∇2up in the

momentum equation and κp∇2ρp in the density equation, so

∂up

∂t
+ up · ∇up + up − u

τp

− g = νp∇2up, (2.8)

∂ρp

∂t
+ ∇ · (ρpup) = κp∇2ρp. (2.9)

These terms are included to stabilize the numerical scheme in the DNSs, although

they are also physically motivated in the limit where Brownian motion is the

dominant source of dispersion. Note that we anticipate the two-fluid approach to

break down when the Stokes number (the ratio of the stopping time to the eddy

turnover time) approaches unity, in which case the particles become uncorrelated

with the fluid and therefore also with one another (Shotorban & Balachandar,

2006). When this happens, the mean particle velocity up is no longer a good
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approximation for each individual particle velocity, and the averaging procedure

becomes meaningless.

To couple the particle and fluid evolution equations, note that the drag term

in the continuum limit in (2.3) becomes

Fp(x) = ρp(x)up(x) − u(x)
τp

, (2.10)

so the two-way coupled equations are

ρf

(
∂u
∂t

+ u · ∇u
)

= −∇p + ρg + ρp
up − u

τp

+ ρfν∇2u, (2.11)

∂up

∂t
+ up · ∇up + up − u

τp

− g = νp∇2up, (2.12)

∂ρp

∂t
+ ∇ · (ρpup) = κp∇2ρp, (2.13)

∇ · u = 0. (2.14)

It is worth noting that in this limit, we are able to account for the inertial

clustering of particles since the particle velocity field up is not required to be

divergence-free (i.e. ρp∇ · up is not necessarily zero in eqn. 2.13). Moreover,

for smaller particles that are well-coupled to the fluid, the two-fluid formalism

recovers the equilibrium Eulerian formalism in which particle inertia is negligible.

We can demonstrate this by taking the formal limit τp → 0 to obtain:

up = u − wsêz, (2.15)

ρf

(
∂u
∂t

+ u · ∇u
)

= −∇p + (ρ + ρp)g + ρfν∇2u, (2.16)

∂ρp

∂t
+ (u − wsêz) · ∇ρp = κp∇2ρp, (2.17)

∇ · u = 0, (2.18)
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where the settling velocity ws is related to the stopping time and gravity via

ws = τpg. The particle velocity up is now determined by the carrier fluid velocity

and the particle settling velocity. Compared to the two-fluid formalism, we see

that ∇ · up ≡ 0; thus, the particle concentration is solely advected by the carrier

flow. As a result, preferential concentration cannot be captured by the equilibrium

Eulerian approach (Maxey & Riley, 1983).

2.2 Advantages of the two-fluid formalism

Due to the continuum treatment of the dispersed phase, the two-fluid for-

malism (as well as the Equilibrium Eulerian formalism) has a number of com-

putational and analytical advantages over the Lagrangian and fully-resolved for-

malisms. First we can easily extract averaged particle properties over a small

control volume (e.g. particle concentration and particle velocity) in the two-fluid

formalism, whereas extracting the same properties with point (or fully-resolved)

particles is not as straightforward. Moreover computational load imbalances that

occur in highly concentrated regions when tracking individual particles is not an

issue in the two-fluid approach. Furthermore if needed, a linear stability analysis

can be used to study the stability properties of the two-phase system. At the

same time, an advantage of using the two-fluid formalism over the Equilibrium

Eulerian approach is that inertial particles can be modeled, and thus, regions of

significant particle concentration enhancement due to preferential concentration

can be captured. Generally speaking when using the two-fluid formalism, the

restrictions on the Stokes number is much more relaxed with St ≲ O(1).
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2.3 Numerical implementation

In order to investigate the nonlinear dynamics of turbulent particle-laden flows

using the two-fluid equations, we use the highly scalable, triply periodic code

PADDI (Stellmach et al., 2011; Traxler et al., 2011b) which was originally used

to study fingering convection and thermohaline staircases (in oceanic contexts).

There exist other versions of the code that have been used to study sedimentary

convection (Reali et al., 2017; Ouillon et al., 2020) and astrophysical instabilities

(Moll et al., 2016; Garaud & Kulenthirarajah, 2016; Harrington & Garaud, 2019).

In this section, we describe the modifications that were made to the original

version of PADDI to incorporate inertial particles. This mainly consisted of adding

the two-fluid equations by incorporating the particle momentum and transport

equations and modifying the I/O subroutines to include particle information.

2.3.1 Structure of PADDI-2F

The version of the code that we use is referred to as PADDI-2F, which models

the evolution of inertial particles in an incompressible flow. The physical system

modeled by PADDI-2F includes an incompressible fluid under the Boussinesq

approximation, along with equations for the particle field:

∂u
∂t

+ u · ∇u = −∇̃p + Dvisc∇2u + Rpart

(
r

up − u
Tp

)
, (2.19)

∂up

∂t
+ up · ∇up = u − up

Tp

− Gpêz + Dvisc,part, (2.20)

∂r

∂t
+ ∇ · (upr) = Dpart∇2r, (2.21)

∇ · u = 0. (2.22)

Note that a temperature equation can also be added if required.
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Table 2.1: Description of input parameters in PADDI-2F in Eqs. (2.19)–(2.22).

Parameter Description
Dvisc Fluid velocity diffusion coefficient
Dvisc,part Particle velocity diffusion coefficient
Dpart Particle concentration diffusion coeff.
Rpart Particle mass loading parameter
Tpart Particle stopping time
Gp Gravity parameter

The particle equations are represented by (2.20)-(2.21), and the back reaction

of the particles is accounted for in the drag term found in the fluid momentum

equation (2.19). The code is written with generalized input parameters that are

highlighted in blue, so that the user has the freedom to select their own nondi-

mensionalization (see Table 2.1 for their definitions). The equations are solved on

a Cartesian grid with periodic boundary conditions, where the domain in physical

space is defined as

Ω =


(0, Lx) × (0, Ly) × (0, Lz) (3D case),

(0, Lx) × (0, Ly) (2D case).

The resolution is specified by the user with the number of grid points in the

x−,y−, and z−directions Nx, Ny, and Nz, respectively. Furthermore, the state

variables are initialized by the user with their choice for u(x, 0), up(x, 0), and

r(x, 0)

PADDI-2F solves the governing equations (2.19)-(2.22) in spectral space, which

has the advantage of providing a high degree of accuracy and can significantly

accelerate the calculation when using fast Fourier transforms as we do here (for

more details, see Stellmach & Hansen, 2008). Diffusion terms are treated implicitly

in spectral space, whereas the nonlinear and drag terms are first computed in
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physical space, transformed into spectral space, and then, integrated explicitly

using a third-order Adams-Bashforth backward-differentiation scheme (where this

spectral method is covered in Peyret, 2002; Canuto et al., 2007).

Furthermore, system diagnostics are computed and written to various external

output files, which are printed periodically at designated timesteps provided by

the user. These files include global diagnostics (such as volume averaged kinetic

energy, minimum and maximum velocities, etc.), vertical profiles (i.e. horizontally

averaged quantities), and energy spectra which have all been modified to include

relevant particle data in PADDI-2F.

2.3.2 Details of the integration scheme

Several numerical choices for the implementation of the two-fluid equations in

PADDI-2F are worth mentioning here. First we incorporate the drag term found

in Eqs. (2.19)-(2.20) in a way to guarantee that momentum is conserved. For each

time step, the drag term is computed using the fluid and particle velocities of the

latest iteration and is stored in physical space. In this manner, the drag term

used to advance either the fluid and particle momentum equations will remain

consistent.

The fluid momentum equation (2.19) is integrated in spectral space with the

following scheme. First, note that we can apply the vector identity

u · ∇u = (∇ × u) × u + 1
2

∇|u|2, (2.23)

to the advection term in Eq. (2.21). The fluid momentum equation can then be

recast as
∂u
∂t

+ (∇ × u) × u = −∇q + Dvisc∇2u + F, (2.24)
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where the terms on right-hand side include the diffusion and body force terms F

along with the total pressure

q = p + 1
2

|u|2. (2.25)

In spectral space, Eq. (2.24) can be written as a set of ODEs for each wavenum-

ber k as (
∂

∂t
− Dvisc|k|2

)
ũk = −ikq̃k − ξ̃k + F̃k, (2.26)

where the accented terms are spectral space representations of the variables pre-

viously written in physical space, and ξ̃k is the transform of (∇ × u) × u.

To ensure that the divergence-free condition for the fluid velocity is satisfied,

the code uses what is referred to as “divergence cleaning” by adjusting the to-

tal pressure q accordingly. To see this, we first take the divergence of the fluid

momentum equation (2.19) and use the property that ∇ · u = 0 to obtain

∇ · [(∇ × u) × u] = −∇2q + ∇ · F. (2.27)

Transforming (2.27) into spectral space and solving for the pressure term yields

q̃k = ikF̃k − ikξ̃k

|k|2
, (2.28)

which now shows what is required (and computed in PADDI-2F) to guarantee

incompressibility.

The particle momentum equation (2.20) is transformed similarly to the fluid

momentum equation without the added “divergence cleaning” step since the pres-

sure term is not present. Using the same vector identity introduced in (2.23) for
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up · ∇up, we then rewrite the particle momentum equation as

∂up

∂t
+ (∇ × up) × up + 1

2
∇|up|2 = Dvisc,part∇2up + Fp, (2.29)

where Fp includes the forces due to gravity and drag.

We then write Eq. (2.29) as a set of equations in spectral space for each

wavenumber k as

(
∂

∂t
− Dvisc,part|k|2

)
ũp,k = −ξ̃p,k + F̃p,k, (2.30)

where ξ̃p,k is the transform for (∇ × up) × up + ∇|up|2/2.

Lastly, the advection–diffusion equation (2.21) for the particle concentration

is written in spectral space as

(
∂

∂t
− Dpart|k|2

)
r̃k = −ξ̃r,k, (2.31)

where ξ̃r,k is the transform for ∇ · (upr).

Once the equations are transformed in spectral space (as shown for the fluid

velocity in Eq. 2.26, the particle velocity in Eq. 2.30, and the particle concentra-

tion in Eq. 2.31), we integrate the ODEs using an Adams-Bashforth backward-

differentiation scheme with adaptive timestepping, with an additional condition

so that the timestep cannot be larger than the particle stopping time.

We also note that as a result of modeling inertial particles that have a tendency

to strongly concentrate in some regions of the fluid, one must account for a higher

resolution in the code to avoid numerical instability. If the resolution is not

sufficiently large, Gibbs oscillations are generated, and the particle concentration

can be over- or underestimated (i.e. mass is not conserved). In all the simulations
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presented in this thesis, we have ensured that the resolution is high enough to

avoid Gibbs oscillations almost all of the time. However, they are very occasionally

observed in a few of the simulations with large Stokes number. To ensure mass

conservation despite these oscillations, we begin by measuring the total mass of

the particles Minit at time t = 0. For each time step, we track the value of the

current mass Mcurr to ensure that mass is conserved (Mcurr = Minit). In most

cases, this condition is satisfied at each time step. However, lower resolution can

induce the Gibbs phenomenon shown by Figure 2.1(a). This leads to regions of

negative particle density which are unphysical, and Mcurr ̸= Minit. In the code,

we remove the negative particle density regions depicted in 2.1(b) and multiply

this now non-negative particle density by Minit/Mcurr. In this manner, particle

mass will be conserved during the simulation. Note that this “fix” is not necessary

as long as the simulations are well-resolved, but is introduced to reduce errors in

the rare occasions where the system does become under-resolved.

Figure 2.1: The schematic shows how we conserve mass in simulations. We
measure the total mass of the particles Minit at time t = 0. If the resolution is
not large enough to resolve simulations, we can encounter the Gibbs phenomenon
(a), which may over- or under-estimate ρp in our system. We first correct this by
removing negative values of ρp (b). Then, we adjust the particle density to Minit

(not shown).
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2.4 Thesis Outline

Preferential concentration of turbulent flows is abundant in a number of phys-

ical and industrial applications. Examples of these processes include droplet

growth in clouds, sediment transport in turbidity currents, aerosol deposition

in pharmaceutical sprays, and dust agglomeration in accretion disks. Although

preferential clustering has been studied thoroughly in the past several decades,

much less has been done in characterizing typical particle sizes and predicting the

resulting particle concentration enhancement. In this thesis, we aim to answer

these questions using various analytical methods such as dominant balance and

asymptotic analysis as well as employing and analyzing numerical simulations us-

ing the two-fluid equations. We restrict our investigation to dilute suspensions of

heavy, inertial particles whose motion follows Stokes’ drag.

In Chapter 3, we study the evolution of particle concentration enhancement

in the particle-induced Rayleigh-Taylor instability. The model setup consists of

an unstable particle layer settling in a carrier fluid with a stable background tem-

perature gradient. Using 2D Direct Numerical Simulations (DNSs), we conduct

a systematic exploration of the parameter space to study the evolution of the

bulk of the particle layer where preferential concentration is most effective. Mo-

tivated by arguments of dominant balance based on the two-fluid equations, we

then find scaling laws to predict the maximum and typical particle concentration

enhancement over the mean.

In Chapter 4, we investigate whether the results from Chapter 3 are also

applicable in the presence of mechanically driven turbulence. We initialize the

system with a uniform distribution of particles and drive the mean flow with an

applied body force to render the system shear-unstable. We then use 3D DNSs to

investigate preferential concentration once the system has reached a statistically
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state. We confirm that the scaling laws that predict the maximum and typical

particle concentration enhancement over the mean also apply in a system in which

the turbulence is mechanically driven.

In Chapter 5, we aim to characterize clusters from the 3D DNSs presented in

Chapter 4. In order to do so, we use a box counting method which first identifies

clusters, and then extracts topological attributes such as cluster mass, thickness,

and shape. We then analyze probability distribution functions of cluster properties

to elucidate the results found in Chapter 4, and deduce properties of these clusters

that may help better understand collisional growth in clouds and accretion disks,

for instance.

Finally in Chapter 6, we summarize the results of this thesis and conclude

with potential ideas for future work.
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Chapter 3

Preferential concentration in the

particle-induced convective

instability

This chapter is composed of a reprint of Nasab & Garaud (2020) published in

Physical Review Fluids (Vol. 5, Iss. 11 November 2020). A section of this reprint

has been moved earlier in the document, and its contents can now be found in

Section 2.1. Further changes to this chapter are marked in italics.

3.1 Introduction

Preferential concentration is the tendency for heavy particles to accumulate in

regions of high strain rate and low vorticity due to their inertia (Csanady, 1963;

Meek & Jones, 1973; Maxey, 1987). Investigations of the process date back to the

1980s and were performed using numerical experiments (Maxey & Corrsin, 1986;

Squires & Eaton, 1991; Elghobashi & Truesdell, 1992) and laboratory experiments

(Fessler et al., 1994; Kulick et al., 1994). For comprehensive reviews of the topic,
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see for instance (Eaton & Fessler, 1994; Crowe et al., 1996; Balachandar & Eaton,

2010; Monchaux et al., 2012) and references therein.

Today, thanks to progress in high-performance computing, Direct Numerical

Simulations (DNSs) are a particularly convenient tool for quantifying preferential

concentration in particle-laden flows. A variety of techniques can be used, which

can be loosely classified into two distinct approaches: the Lagrangian-Eulerian

and Eulerian-Eulerian approaches (see Sections 2.1.1–2.1.2 for more detail). The

Lagrangian-Eulerian (LE) approach is named for the fact that the particles are

evolved individually by integrating their equations of motion, while the carrier

fluid is evolved on an Eulerian mesh. Various degrees of sophistication exist,

depending on whether the particles are modeled realistically using, for instance,

immersed boundary techniques (Mittal & Iaccarino, 2005), or in a simplified way,

as point particles (Toschi & Bodenschatz, 2009). In the latter case, particles can

either be passively advected, or can react back on the fluid through drag. When

particles are modeled exactly, the LE approach is capable of modeling particle-

particle interactions, such as collisions. Otherwise, these interactions must be

accounted for using simplified parameterizations instead. However, as the number

of particles increases, the computational cost can be expensive. In the Eulerian-

Eulerian (EE) approach by contrast, the particles are treated as a continuum

field with its own momentum and mass conservation laws, which are evolved on

an Eulerian mesh (Elghobashi, 1994; Crowe et al., 1996; Morel, 2015). Within

the EE framework, various levels of approximation exist depending on the size

of the particles, ranging from the so-called equilibrium Eulerian limit (Ferry &

Balachandar, 2002; Ferry et al., 2003) in which particle inertia is neglected, to the

two fluid limit (Elghobashi & Abou-Arab, 1983; Druzhinin & Elghobashi, 1998)

which remains valid for somewhat larger particles.
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In regions of the fluid that experience strong local enhancement in the particle

number density, increased collision rates can result in rapid particle growth (Cuzzi

et al., 2001). As such, preferential concentration is thought to play an important

role in controlling the size distribution function of particles suspended in turbulent

fluids. Prior works have focused on certain aspects of preferential concentration

such as the enhancement of the particle settling velocity (Aliseda et al., 2002;

Maxey, 1987; Wang & Maxey, 1993; Mei, 1994; Yang & Lei, 1998; Bosse et al.,

2006), the resulting geometry of the dense particle clusters (Cuzzi et al., 2001;

Monchaux et al., 2010; Goto & Vassilicos, 2006), and the underlying mechanisms

responsible for inertial clustering of particles (Raju & Meiburg, 1995; Obligado

et al., 2014; Goto & Vassilicos, 2008; Coleman & Vassilicos, 2009). Preferential

concentration likely plays a key role in the warm rain formation in clouds (Pinsky

& Khain, 2002; Falkovich et al., 2002; Riemer & Wexler, 2005), protoplanetary

disks (Klahr & Henning, 1997; Chambers, 2010; Cuzzi et al., 2008), estuaries

(Eisma, 1991; Voulgaris & Meyers, 2004), and industrial applications such as

sprays (Cao et al., 2000; Vié et al., 2015). In all of these examples, some of the

key questions that remain to be answered are: (1) What is the maximum particle

concentration enhancement that can be achieved anywhere in the fluid? (2) What

is the typical probability distribution of the volume density of particles? And, (3)

how do these quantities depend on the turbulent properties of the carrier flow?

While these questions have been primarily investigated in forced turbulent

flows so far (Squires & Eaton, 1991; Eaton & Fessler, 1994; Bosse et al., 2006),

they have not been studied extensively to our knowledge in the context of particle-

induced buoyancy instabilities (e.g. convective or Rayleigh-Taylor). Such insta-

bilities are particularly relevant in particle-laden turbidity currents, which play an

important role in sediment transport (Meiburg & Kneller, 2010). Although most
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research to date on particle-laden buoyancy-driven flows has been performed using

in-situ or laboratory experiments (Hoyal et al., 1999; Maxworthy, 1999; Parsons

et al., 2001; Völtz et al., 2001), numerical experiments have only recently begun

to be used in this context. The focus of these numerical studies can be categorized

into two groups: (1) numerical tests, in which various formalisms (i.e. LE versus

EE) are compared to one another (Chou et al., 2014a,a; Chou & Shao, 2016),

and (2) application-driven studies, that investigate, for instance, how the rate of

sedimentation is influenced by particle properties. It was shown that both particle

size and particle volume fraction can control the resulting modes of instability (i.e.

leaking, fingering, stable settling modes) from the initial RT instability configu-

ration, affecting the subsequent evolution of the sedimentation process (Burns &

Meiburg, 2012, 2015; Shao et al., 2017). However, numerical investigations whose

primary focus is on preferential concentration in the particle-driven convective

instability, specifically for two-way coupled systems, have not been performed.

In this paper, we therefore study preferential concentration in the two-way

coupled two-fluid formalism using DNSs of particle-driven convective instabilities.

The original paper contained a section on the derivation of the two fluid formal-

ism, that is now located in Chapter 2 of this thesis. In Section 3.2, we introduce

our model setup and its governing equations. In Section 3.3, we present the results

of the DNSs and investigate how certain parameters influence preferential concen-

tration and the underlying turbulence. In Section 3.4, we present a predictive

model that captures maximum particle concentration enhancement as a function

of time and space. In Section 3.5, we look at the probability distribution function

(PDF) of the relative particle concentration. Section 3.6 summarizes our results

and discusses them in the context of geophysical and astrophysical applications

of particle-laden flows.
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3.2 The Model

3.2.1 Model set-up

We investigate particle-driven convective instabilities in a dilute suspension

using the two-fluid equations. For convenience, we rescale the particle density

with the mean density of the fluid, which defines r = ρp/ρf . Having assumed

that ρs ≫ ρf , it is still possible to have r of order unity even though the volume

fraction of particles is assumed to be very small. We assume that the carrier fluid

has a constant stable background temperature gradient T0z > 0 in the vertical

direction, with the background temperature profile given by T0(z) = Tm + zT0z.

This assumption was originally motivated by applications in which the carrier

fluid is typically stratified, such as in warm clouds or rivers, but does not directly

impact the results presented in this paper. Perturbations in the density of the

carrier fluid ρ are caused by temperature fluctuations T around that background

profile, and are related via ρ/ρf = −αT , where α = −ρ−1
f (∂ρ/∂T ).

In the limit of the Boussinesq approximation, the governing dimensional equa-

tions are then

∂u
∂t

+ u · ∇u = −∇p

ρf

+ αgT êz + r
up − u

τp

+ ν∇2u, (3.1)

∂up

∂t
+ up · ∇up = u − up

τp

+ g + νp∇2up, (3.2)

∂r

∂t
+ ∇ · (upr) = κp∇2r, (3.3)

∂T

∂t
+ u · ∇T + wT0z = κT ∇2T, (3.4)

∇ · u = 0, (3.5)

where u = (u, v, w) and up = (up, vp, wp).
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Using this system of equations, we shall study the evolution of the relative

particle density r. To do so in the context of the convective instability, we start

with initial conditions that take the form of a Gaussian profile of amplitude r0

and width σ:

r(x, y, z, 0) = r0 exp
[

(z − Lz/2)2

2σ2

]
, (3.6)

to which low amplitude random fluctuations are added, and where Lz is the height

of the computational domain. The initial particle velocity is set to be the particle

settling velocity ws, while the carrier fluid is initialized with zero velocity.

3.2.2 Non-dimensionalization

We define the units of length [l], relative particle concentration [r], and tem-

perature [T ] as

[l] = σ, [r] = r0, [T ] = σT0z. (3.7)

We can define a characteristic velocity for the fluid by identifying its kinetic en-

ergy with an estimate of the potential energy of the unstable particle density

distribution:

[u] = √
r0gσ. (3.8)

The characteristic distance and velocity can finally be used to construct a typical

convective eddy turnover time

[t] =
(

σ

r0g

)1/2

. (3.9)
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Thus, the non-dimensional equations are:

∂u
∂t

+ u · ∇u = −∇p + RρT êz + 1
Re

∇2u + r0

(
r

up − u
Tp

)
, (3.10)

∂up

∂t
+ up · ∇up = u − up

Tp

− 1
r0

êz + 1
Rep

∇2up, (3.11)

∂r

∂t
+ ∇ · (upr) = 1

Pep

∇2r, (3.12)

∂T

∂t
+ u · ∇T + w = 1

PeT

∇2T, (3.13)

∇ · u = 0, (3.14)

where all the variables (u, up, p, r, T ) are from here on implicitly non-dimensional,

and where the dimensionless parameters are defined as:

Rρ = ασT0z

r0
Re = (r0g)1/2σ3/2

ν
PeT = (r0g)1/2σ3/2

κT

Tp = τp

(
r0g

σ

)1/2

Rep = (r0g)1/2σ3/2

νp

Pep = (r0g)1/2σ3/2

κp

Ws = Tp

r0
.

Four of these parameters describe diffusive effects: a Reynolds number for the

fluid Re, a Reynolds number for the particles Rep, the particle Péclet number

Pep, and the temperature Péclet number PeT . In the fluid momentum equation,

Rρ is the density ratio, defined by analogy with double-diffusive systems to be the

ratio of the density gradient due to temperature stratification αT0z to the density

gradient due to particle stratification, here estimated as r0/σ. In addition, Tp

is the non-dimensional stopping time, and Ws is the non-dimensional settling

velocity of the particles. Note that our non-dimensionalization defines Tp as the

ratio of the particle stopping time to the estimated turnover time of the layer-scale

eddies. Thus, by construction, Tp is an estimate of the Stokes number St of the

37



convectively turbulent flow.

We define the non-dimensional total density (i.e. consisting of the fluid and

the particles) in the system as

ρtot =
(

1
ασT0z

− z − T

)
+ r

Rρ

, (3.15)

so the non-dimensional total background density gradient is

dρtot

dz
= −

(
1 + dT

dz

)
+ 1

Rρ

dr

dz
. (3.16)

The total density gradient controls the development of the convective instability

and, as shown above, is the sum of the density gradient due to the temperature

stratification and the density gradient due to the particle stratification. At time

t = 0, the non-dimensional initial condition for the particle concentration is

r(x, z, 0) = e−(z−Lz/2)2/2. (3.17)

The particle density gradient is the most unstable at the lower inflection point of

the Gaussian (z = zi) when dr/dz reaches its maximum value, given by

dr

dz

∣∣∣∣∣∣
z=zi

= e−1/2. (3.18)

Thus, the total density gradient at the lower inflection point z = zi at t = 0 is

dρtot

dz

∣∣∣∣∣∣
z=zi,t=0

= −1 + e−1/2

Rρ

. (3.19)
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Using this information, we define a Rayleigh number as

Ra =
(

1
ρf

dρtot

dz

∣∣∣∣
z=zi

)
gσ4

κpν
, (3.20)

where all the quantities on the right-hand side are dimensional. We can then

express (3.20) in terms of the previously defined dimensionless parameters as

Ra =
(

e−1/2

Rρ

− 1
)

RePep. (3.21)

To ensure that overturning convection (rather than double-diffusive instabili-

ties) takes place in all that follows, we set Rρ = 0.5 < e−1/2. We shall then vary

Ra by varying either Re or Pep, ensuring in all cases that Ra is sufficiently large

for turbulent convection to take place. Finally, the Prandtl number will be fixed

and equal to one for the flow to be fairly turbulent for all simulations. This choice

fixes the relationship between Re and PeT :

Pr = PeT

Re
≡ 1. (3.22)

3.3 Numerical Simulations

Since our goal is to characterize preferential concentration of the particles by

the fluid, which is an inherently nonlinear phenomenon, we must use DNSs. In

order to do so, we use the triply periodic pseudospectral PADDI code (Stellmach

et al., 2011; Traxler et al., 2011b) which has been extensively used to study finger-

ing as well as a number of astrophysical instabilities such as semi-convection and

shear (Moll et al., 2016; Garaud & Kulenthirarajah, 2016). A slightly modified

version of the code was also used to study fingering convection in the equilibrium
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Eulerian regime (Reali et al., 2017). We have modified the PADDI code further

by adding a particle field which evolves according to the two fluid equations (3.1)

- (3.5), and refer to the new version of this code as PADDI-2F. Salient properties

of PADDI, as well as the modifications made to include the two-fluid formalism,

are briefly described in Appendix 3.7.

In what follows, we present 2D and 3D simulations with specifications listed

in Table 3.2. We limit the exploration of parameter space to Tp ≤ 0.3 since the

two-fluid equations are not representative of the full dynamics for larger Tp (as

discussed in Ferry & Balachandar, 2001). As described in Section 2.1.2, Rep (or

νp) accounts for the intrinsic dissipation in particle momentum due to Brownian

motion and long-range interactions among particles. Since we are focusing our

investigation to inertial particles, we can fix Rep = 1000 to be sufficiently large to

neglect these dissipative effects for all simulations. The size of the computational

domain is selected based on the following considerations: (1) since the code is

triply-periodic, the domain height must be sufficiently large to avoid unphysical

interactions between the particles that leave the domain at the bottom and re-

enter it at the top. With that in mind, we present simulations with height ranging

from Lz = 10 to Lz = 20. (2) The domain width must be chosen to be large enough

to ensure that there are enough convective eddies in the horizontal direction to

have meaningful statistics. In all the simulations presented below Lx = 10, and

for 3D simulations, we further choose Ly = 2. At this point, we bring attention to

the fact that since most simulations will be in 2D, the term “turbulence” is used

in a loose sense, to describe the inherent nonlinear and chaotic properties of the

flow, rather than in the strict sense.
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3.3.1 Two-fluid code validation against Eulerian simula-

tions

To validate the PADDI-2F code, we begin by comparing a two-fluid simulation

with low Tp solving equations (3.10)–(3.14) with that of an equilibrium Eulerian

simulation solving (2.15)–(2.18) (used in Reali et al., 2017). In both codes, we set

Ws = 0.1, Rρ = 0.5, Re = 1000, P r = 1, PeT = PrRe, Rep = 1000, and Pep =

1000 (corresponding to Ra ≈ 106); for the two-fluid simulation, we additionally set

the particle stopping time to be Tp = 0.005, which should be sufficiently small to

be in the limit where the equilibrium Eulerian formalism is valid. We first compare

the two codes using 2D simulations (see Section 3.3.4 for a comparison of 2D vs.

3D simulations). We set the resolution of the 2D runs to be 768 × 1536 equivalent

grid points in the x− and z− directions, respectively, and set the domain width

and height as Lx = 10 and Lz = 20.

In the snapshots presented in Figure 3.1, we see the evolution of the particle

concentration and the horizontal component of the fluid velocity u in the two-fluid

simulation. Snapshots of the Eulerian simulation (not shown) taken at the same

times look very similar to the two-fluid simulation (bearing in mind the chaotic

nature of the system). The initially unstable total density stratification ρtot(z, 0)

drives the growth of convective eddies, which become visible in the second snap-

shot (t = 27). The particle layer then rapidly spreads vertically under the effect

of turbulent mixing in the third snapshot (t = 40), reducing the unstable particle

gradient. Although there are horizontal inhomogeneities in the particle concen-

tration, these remain small compared with the horizontal mean. In particular,

r never exceeds the initial maximum value of one, consistent with the expected

properties of an advection-diffusion equation when ∇ · up ≃ 0. This shows qual-

itatively that for sufficiently small Tp, the two-fluid simulation recovers behavior
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Figure 3.1: Snapshots of the particle concentration r (top row) and the hori-
zontal component of the fluid velocity u (bottom row) at various times in a two-
fluid simulation with Tp = 0.005, Ws = 0.1, Rρ = 0.5, Re = 1000, Rep = 1000,
Pep = 1000, and Pr = 1.

expected in the absence of particle inertia.

We now compare these simulations more quantitatively by examining the be-

havior of both the particle concentration and the fluid velocity. In order to do so,

we define a number of diagnostic quantities (for convenience listed in Table 3.1).

We first define the maximum particle concentration and maximum horizontal fluid

velocity in the domain at any point in time as

rsup(t) = max
x,z

r(x, z, t) and usup(t) = max
x,z

u(x, z, t). (3.23)

We have selected to look at the behavior of the horizontal component of the

velocity, rather than its vertical component or total amplitude, because it is not

directly influenced by the particle settling motion.
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Table 3.1: Terms defined from text.

Definition Description

r(z.t) = r(x, z, t) = 1
Lx

∫
r(x, z, t) Horizontal average of the particle con-

centration at a given height at time t.

rmax(z, t) = maxx r(x, z, t) Maximum value of the particle concen-
tration at a given height at time t.

rrms(z, t) =
[
[r(x, z, t) − r(z, t)]2

]1/2 Typical enhancement over r̄ at a given
height at time t.

urms(z, t) = [u(x, z, t)2]1/2
Root mean square of the x−component
of the fluid velocity at a given height at
time t.

rrel(x, z, t) = r(x,z,t)
r̄(z,t)

Relative particle concentration at time
t.

Extracted in the bulk of the particle layer:

zmax(t) Height corresponding to the maximum
value of r at time t.

r∗(t) = r(zmax, t) Maximum value of r at time t.

u∗
rms(t) = urms(zmax, t) Value of urms measured at zmax at time

t.

rsup(t) = maxx,z r(x, z, t) Maximum particle concentration in the
domain at time t.

usup(t) = maxx,z u(x, z, t) Maximum value of the horizontal veloc-
ity of the fluid at time t.
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In order to study the evolution of the bulk of the particle layer, we next define

the horizontally averaged particle concentration profile r(z, t), where the overbar

denotes a horizontal average, as in q(z, t) = 1
Lx

∫
q(x, z, t)dx for any quantity

q. The quantity r can be compared to the corresponding analytical expression

obtained when the particles evolve purely diffusively, namely when

∂rdiff

∂t
− Ws

∂rdiff

∂z
= 1

Pep

∇2rdiff . (3.24)

The solution of (3.24) in an infinite domain with initial condition given by (3.17)

is

rdiff(z, t) = 1√
2

P ep
t + 1

exp
[

− [z − (Lz/2 − Wst)]2

2[(2/Pep)t + 1]

]
. (3.25)

As long as 2t/Pep ≪ Lz, this solution is also a good approximation to the diffusive

solution in the periodic domain.

We also extract the maximum value of r at time t, which occurs at the height

z = zmax(t)

r∗(t) = r(zmax, t) = max
z

r(z, t). (3.26)

In what follows, the asterisk will always indicate a quantity measured at the

position zmax(t). We can compare rsup and r∗ to the maximum value of the

diffusive solution, namely

rdiff,sup(t) = max
z

rdiff(z, t) = 1√
2

P ep
t + 1

. (3.27)

Finally, we define the root mean square of the x−component of the fluid ve-

locity at a particular height z and time t, expressed as

urms(z, t) =
[
u(x, z, t)2

]1/2
. (3.28)
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Figure 3.2: Low Tp = 0.005 two-fluid simulation versus an equilibrium Eulerian
simulation with Ws = 0.1, Rρ = 0.5, Re = 1000, Rep = 1000, P ep = 1000, and
Pr = 1, comparing various diagnostics of the particle concentration (a) and of the
horizontal component of fluid velocity (b).

We can study turbulence in the bulk of the particle layer over time by extracting

the corresponding value of urms at the position z = zmax, defined by

u∗
rms(t) = urms(zmax, t). (3.29)

Figure 3.2 shows a comparison of r∗ and rsup for the particle concentration

(Figure 3.2a) and u∗
rms and usup for the fluid velocity (Figure 3.2b) for both the

two-fluid and equilibrium Eulerian simulations. Notably, we see that all the mea-

sured quantities are statistically consistent with one another in the two cases, ver-

ifying that the two-fluid formalism recovers the equilibrium Eulerian formalism

for small Tp. At early times (t = 0−25) prior to the development of the convective

instability, r∗ and rsup follow the purely diffusive solution rdiff,sup, shown as the

black dotted line given by (3.27). Later, we see that r∗ and rsup decrease rapidly

(at times t = 30 − 50), then more slowly again after t = 60. During that time r∗

and rsup roughly decay at the same rate.
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Figure 3.3: Evolution of the mean particle concentration r and of the rms fluid
velocity urms (defined in the main text) profiles for the two-fluid Tp = 0.005 (red)
and equilibrium Eulerian simulations (green) with Ws = 0.1, Rρ = 0.5, Re =
1000, Rep = 1000, P ep = 1000, and Pr = 1. The black dotted Gaussian curve
(first row) represents the purely diffusive solution (3.25) for comparison.
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Looking at the eddy velocities, we see that the intermediate phase (t = 30−60)

corresponds to the peak of the mixing event. The corresponding usup reaches a

maximum value of usup ≈ 0.8 with the rms velocity reaching u∗
rms ≈ 0.25. The fact

that usup and u∗
rms are both of order unity actually holds for all runs (see later),

and proves that the non-dimensionalization selected is appropriate. By t = 80,

the main mixing event is over and the turbulence (as measured both by u∗
rms or

usup) now gradually decays on a much longer timescale.

We can also look at how the particles and the fluid velocity evolve spatially

over time. Figure 3.3 shows the profiles of r and urms at three instants in time

for both simulations, with the black dotted curve representing rdiff (3.25). Recall

that the domain is periodic in both directions so the particle layer re-emerges at

the top after leaving from the bottom. The dotted vertical line zmax marks the

position of the maximum of r. We clearly see that the two-fluid and equilibrium

Eulerian simulations behave in a quantitatively similar way. In both cases, the

particle layer settles roughly at the expected rate set by the value of Ws, but

its vertical density profile r becomes asymmetric and wider than in the purely

diffusive case (black dotted line). The extended tail of r below the bulk of the

layer is associated with more rapidly-moving particle-rich plumes that can clearly

be seen penetrating into the lower particle-free fluid in Figure 3.1. Focusing on the

evolution of the urms profile, we see that at early times the turbulence develops in

the bulk of the particle layer as expected. However, the fluid remains turbulent

even after the particles have settled through a region, which explains why the

size of the turbulent region is much larger than that of the particle layer at late

times (e.g. t = 135). This can be understood by noting that the time it takes for

turbulent motions to decay viscously is much larger than the time it takes for the

particles to settle across the bottom of the box.
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This section has illustrated the interplay between the turbulence and the parti-

cle field for short stopping times. Both the qualitative and quantitative evidence

confirm that the two-fluid model for very low Tp and the equilibrium Eulerian

model have similar dynamics, conclusively validating our two-fluid code.

3.3.2 Comparison between low and high Tp simulations

We now look at the effect of larger stopping time on the evolution of the particle

layer. We continue to work in 2D and choose Tp = 0.1 with the same resolution

(i.e. 768×1536 grid points) keeping the remaining parameters and domain size the

same as in the simulation from Section 3.3.1 (i.e. Ws = 0.1, Rρ = 0.5, Re = 1000,

Rep = 1000, Pep = 1000, Pr = 1; and Lx = 10, Lz = 20). Snapshots of the

particle concentration field as well as the evolution of rsup and r∗ with time are

shown in Figure 3.4. We clearly see the emergence of regions of much higher

particle concentration than at low Tp, located in narrow, wisp-like structures (see

for instance the snapshot at t = 54) with rsup reaching values of as high as 5. The

fact that this is much larger than the initial maximum value of r in the domain

is a distinct signature of preferential concentration, since this only occurs when

∇ · up is non-zero. This also shows that regions of strongly enhanced particle

concentration can develop even when the mean particle concentration in the bulk

of the layer is decreasing. After the main mixing event (around t = 80), rsup drops

again to values that are lower than one, though remains substantially higher than

r∗. This raises the interesting question of what determines the maximum possible

value of the particle concentration field at any given time in the simulation (which

will be further discussed in Section 3.4).

Turning our attention to the evolution of usup and u∗
rms, we see that for larger

Tp at the peak of the mixing event, usup ≈ 1.1 and u∗
rms ≈ 0.3, whereas in the
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Figure 3.4: Top: Snapshots of the particle concentration r at various times in a
simulation with Tp = 0.1, Ws = 0.1, Rρ = 0.5, Re = 1000, Rep = 1000, P ep = 1000,
and Pr = 1. Bottom: Diagnostic properties of the particle concentration and fluid
velocity as a function of time for the same simulation.
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lower Tp case the corresponding values were usup ≈ 0.8 and u∗
rms ≈ 0.25. This

suggests that Tp does not have a major effect on the turbulence of the system (at

least for the parameters explored).

We can measure the maximum particle concentration at a given height in the

domain using

rmax(z, t) = max
x

r(x, z, t). (3.30)

In addition, we can also measure the typical (rather than the maximum) en-

hancement over the mean r as a function of height using

rrms(z, t) =
[
[r(x, z, t) − r(z, t)]2

]1/2

. (3.31)

Figure 3.5 compares the maximum particle concentration rmax with both the

mean particle concentration r and one standard deviation above the mean, r+rrms,

as a function of height, for two simulations with Tp = 0.005 and Tp = 0.1. We

see that for both cases, r and r + rrms have similar profiles. For the low Tp case,

r + rrms typically remains below one. In addition, the profile of rmax also follows

that of r, and lies about two standard deviations above it. As such, it is largest

in the bulk of the particle layer. For high Tp, rmax is also largest in the bulk of

the particle layer, with values peaking at rsup ≈ 2.25 at this particular instant in

time. However, rmax is now several standard deviations above r, implying that

the probability density distribution of the particle concentration has a longer tail

(see Section 3.5 for more on this point).

Figure 3.6 more generally compares the maximum particle concentration rsup

obtained in several simulations with increasing particle stopping time Tp. The

simulations continue to be in 2D with 768×1536 grid points, and all other param-

eters remain unchanged (i.e. Ws = 0.1, Rρ = 0.5, Re = 1000, Rep = 1000, P ep =
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Figure 3.5: Measures of particle concentration at t = 54 of two-fluid simulations
for Tp = 0.005 and Tp = 0.1 with otherwise identical parameters Ws = 0.1, Rρ =
0.5, Re = 1000, Rep = 1000, P ep = 1000, and Pr = 1.

1000, P r = 1). The black dotted line represents r = 1. As expected, we find that

rsup increases with Tp as a result of preferential concentration. Furthermore, we

see that rsup remains above unity for longer times, signifying that dense particle

regions persist in the simulations. On the other hand, we find that preferential

concentration is negligible for Tp ≤ 0.01, and rsup is almost indistinguishable from

that obtained in the equilibrium Eulerian limit.

3.3.3 Impact of Pep and Re

We next look at the impact of the fluid Reynolds number Re and the particle

Péclet number Pep on the evolution of the particle concentration. We continue to

focus on 2D simulations, choosing a relatively large stopping time to ensure that

inertial effects are important. We use Tp = 0.1 with the remaining parameters

and domain size set as Ws = 0.1, Rρ = 0.5, Pr = 1, Lx = 10, and Lz = 20. The

resolution selected for these simulations increases with both Re and Pep, and is

listed in Table 3.2. Figure 3.7 presents snapshots of the particle concentration at

t = 54 for simulations with Pep and Re both varying between 1000 and 10,000.
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Figure 3.6: Comparison of rsup for 2D simulations with varying Tp. Remaining
parameters: Ws = 0.1, Rρ = 0.5, Re = 1000, Rep = 1000, P ep = 1000, P r = 1. An
equilibrium simulation marked “Eulerian” is shown for comparison.
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Figure 3.7: Snapshots of the particle concentration field for varying Re and Pep

with fixed Tp = 0.1 taken at t ≈ 54. Only the vicinity of the particle layer is
shown. Remaining parameters: Ws = 0.1, Rρ = 0.5, Rep = 1000, P r = 1.

When we fix Pep = 1000 and increase Re, the particle concentration snapshots

appear qualitatively similar, consisting of narrow structures comparable in size

and density. The maximum particle concentration enhancement appears relatively

unaffected by the fluid viscosity (at least, for this range of Re, and within the

context of the two-fluid equations). In contrast, if we fix Re = 1000 and increase

Pep, we see a striking difference in both the geometry of the wisps, as well as the

maximum concentration achieved in the wisps. That is, as Pep increases, these

structures become more numerous and narrower, with a corresponding increase in

the maximum particle concentration.

These qualitative trends are confirmed more quantitatively in Figure 3.8, which

shows the maximum particle concentration rsup as a function of time for each of

these five simulations. We see that the evolution of rsup is more or less independent

of the Reynolds number but increases with Péclet number. This trend will be
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Figure 3.8: Comparison of rsup for 2D simulations with varying Pep and Re for
Tp = 0.1. Remaining parameters: Ws = 0.1, Rρ = 0.5, Rep = 1000, P r = 1.

explained by the theory presented in Section 3.4.

In order to gain a more quantitative insight into the two-way coupling between

the particles and the turbulence at all scales, we look at the power spectra of the

particle concentration field and of the fluid velocity field. This time we restrict our

analysis to an interval [t0, tf ] where tf − t0 = 20, during the peak of the mixing

event when the particle concentration is largest. We define the time-averaged

horizontal power spectrum for any state variable ξ as

Pξ(kx) = 1
tf − t0

∫ tf

t0

∑
kz

ξ̂(kx, kz, t)ξ̂∗(kx, kz, t)dt, (3.32)

where the ξ̂(kx, kz, t) is the discrete Fourier transform of ξ and ξ̂∗(kx, kz, t) is the
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Figure 3.9: Power spectra of the particle concentration field (a) and the fluid
velocity field (b) as a function of the horizontal wavenumber kx for varying Re
and Pep. Remaining parameters are Tp = 0.1, Ws = 0.1, Rρ = 0.5, Rep = 1000,
and Pr = 1. The errorbars indicate the rms temporal variability of the spectrum.

complex conjugate of ξ̂(kx, kz, t). Figure 3.9a shows the mean horizontal power

spectrum of the particle concentration field Pr(kx) with corresponding error bars

representing one standard deviation around the mean. When Pep is fixed and Re

increases, we observe a slight increase of power in the range kx = 10 − 100, but

the effect of Re is small. On the other hand, for fixed Re and large values of Pep,

there is substantially more power in the higher wavenumbers, consistent with the

predominance of smaller scales seen in the snapshots.

In Figure 3.9b, we plot the power spectrum of the total fluid velocity field

Pu(kx) + Pw(kx) as function of kx with corresponding error bars. Unlike the

particle concentration field, the spectrum here is affected by both Pep and Re.

That is, the amount of energy at small scales increases when either Pep or Re

increases. This can be explained by the fact that the strength of convection in our

system is directly related to the Rayleigh number, which is proportional to the

product of Pep and Re (3.21). It is therefore not surprising to find that the energy

spectrum depends on the product PepRe rather than Pep and Re individually.
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Figure 3.10: Power spectra of the particle concentration field (left) and the fluid
velocity field (right) as a function of the horizontal wavenumber kx for varying
Tp. Remaining parameters are Ws = 0.1, Rρ = 0.5, Re = 1000, Rep = 1000, P ep =
1000, and Pr = 1. The errorbars indicate the rms temporal variability of the
spectrum (as in the previous figure).

We also look at how the particle stopping time Tp affects the horizontal power

spectra of the particle concentration and velocity fields. Figure 3.10 shows these

power spectra (taken, as before, during the peak of the mixing event), for five

simulations at varying Tp and otherwise fixed parameters (i.e. Ws = 0.1, Rρ =

0.5, Re = 1000, Pep = 1000, Pr = 1; and Lx = 10, Lz = 20 with resolution for

simulations found in Table 3.2). In Figure 3.10a, we see more power at large kx

as Tp increases. We see this as further evidence that the particles increasingly

concentrate in narrower wisps as Tp increases. In Figure 3.10b, profiles of the

total velocity power spectrum, i.e. Pu(kx) + Pw(kx), are strikingly similar to

one another. Thus, Tp does not appear to affect the turbulence in the system

which is somewhat unexpected given the two-way coupling; instead, the velocity

power spectrum is primarily dependent on Ra, at least for the range of parameters

explored here.
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3.3.4 Comparison between 2D and 3D simulations

Owing to the high resolution needed for the two-fluid simulations, especially for

higher Tp, Re, and Pep, 3D simulations are typically prohibitive. However, we have

run several 3D simulations at moderate Re = 1000, Rep = 1000, and Pep = 1000

in order to compare the 3D results with the 2D ones. In this manner, we can

determine whether 2D results can at least qualitatively capture the properties of

the particle layer evolution. For all 3D simulations, we set the non-dimensional

length, width, and height as Lx = 10, Ly = 2, and Lz = 10, respectively. In this

section, we focus on two simulations with Tp = 0.005 and Tp = 0.1, respectively.

The resolution of the low Tp case is 384 × 72 × 384 grid points, while the high Tp

case has a resolution of 768 × 144 × 768 grid points. The remaining parameters

are fixed to be Ws = 0.1 and Rρ = 0.5.

Figure 3.11 shows that the values of usup achieved in the 2D simulation are

consistently larger than the 3D simulation by 30-50% (for both low and high

Tp cases). This result is consistent with those of (van der Poel et al., 2013) for

Rayleigh-Bénard convection (where the rms velocities in 2D are systematically

larger than in 3D by a factor of about 2). As a result, turbulent mixing and

preferential concentration are both more energetic in 2D than in 3D at otherwise

similar parameters. For low Tp where preferential concentration is not present,

enhanced turbulent mixing results in rsup being slightly smaller in 2D than in 3D.

By contrast at high Tp, rsup is slightly larger in 2D than in 3D due to the enhanced

preferential concentration. Generally speaking, however, the dimensionality of

the model does not appear to affect preferential concentration by more than a

constant factor of a few (see more on this below), suggesting that 2D simulations

are appropriate, at least as far as extracting scaling laws is concerned.
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Figure 3.11: Comparison of the fluid velocity usup and particle concentration
rsup (defined in the text) between 2D and 3D simulations with settling velocity
Ws = 0.1, Rρ = 0.5, Re = 1000, Rep = 1000, P ep = 1000, and Pr = 1. Left figure:
Tp = 0.005. Right figure: Tp = 0.1.

3.4 Predicting maximum particle concentration

We now present a simple model to quantify the effects of preferential con-

centration in convective particle-driven instabilities. We begin with the particle

concentration equation (3.12), substituting r = r(z, t) + r′(x, t) (where x is the

position vector):

∂(r + r′)
∂t

+ (r + r′)∇ · up + up · ∇(r + r′) = 1
Pep

∇2(r + r′). (3.33)

By expanding the divergence term, we note that only the second term on the

left-hand side contributes to preferential concentration (when ∇ · up ̸= 0). We

next assume that in the fully turbulent high Tp flow, the formation of regions of

particularly strong particle concentration enhancement results from a dominant

balance between the preferential concentration of the mean particle density and
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diffusion terms of the perturbations so that

r∇ · up ∼ 1
Pep

∇2r′. (3.34)

We then express the particle velocity up in terms of Tp and u, using a standard

asymptotic expansion in Tp (Maxey, 1987):

up = u − Wsêz − Tp

(
u · ∇u + ∂u

∂t

)
+ O(T 2

p ), (3.35)

and thus,

∇ · up = −Tp∇ · (u · ∇u) + O(T 2
p ). (3.36)

Substituting (3.36) in (3.34) results in

r∇ · (u · ∇u)Tp ∼ 1
Pep

∇2r′. (3.37)

Assuming that the length scales of the inertial concentration and diffusion terms

are the same, we finally get

r′

r
∼ |u|2TpPep ∼ u2

rmsτp

κp

, (3.38)

where the third part of this equation is expressed dimensionally. In this model,

we therefore predict that strong particle concentration enhancements above the

mean only depend on the magnitude of the fluid velocity u, the particle stopping

time Tp, and the assumed particle diffusion coefficient Pep. The prediction (3.38)

made for r′/r should hold in a large-scale sense (i.e. a scale greater than several

eddy scales), and can help quantify the expected spatiotemporal evolution of r′

as long as that of r and |u| is known.
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In order to test our model, we have run a large number of 2D simulations

(with a few 3D ones) at different values of Ws, Tp, and Pep, listed in Table

3.2. Since the particle layer is not much wider than the size of an eddy, we

investigate the validity of the model here only as a function of time, focusing on

the behavior within the bulk of the particle layer (i.e. near z = zmax). To estimate

the maximum particle concentration enhancement in the bulk of the particle layer,

we let r′(z, t) = rmax(z, t) − r(z, t) and find the maximum value of r′/r at each

instant in time to obtain

(
r′

r

)
max

≃ max
z∈[zmax−1,zmax+1]

rmax(z, t) − r(z, t)
r(z, t)

. (3.39)

To estimate the corresponding typical fluid velocity, we define the rms total fluid

velocity found within the particle layer, defined as

Urms(t) =
(

1
2LxLy

∫ zmax+1

zmax−1

∫ Ly

0

∫ Lx

0
[u2(x, t) + v2(x, t) + w2(x, t)] dx dy dz

)1/2

,

(3.40)

where Ly = 1 and v(x, t) = 0 for 2D simulations.

In Figure 3.12, we plot (r′/r̄)max versus U2
rmsTpPep for one simulation (Tp =

0.3, Ws = 0.1, Rρ = 0.5, Re = 1000, Rep = 1000, P ep = 1000, and Pr = 1).

Note that each data point represents an instant in time for which the full veloc-

ity and particle fields are available. Points start from the lower left corner and

move up to the right as Urms increases with time during the development of the

convective instability. During the most turbulent stage of the simulation when

particle concentration enhancement occurs, the points are clustered on the upper

right-hand side of the plot. The dashed line represents the scaling relationship

(r′/r̄)max ∝ U2
rmsTpPep, shown here for ease of comparison with later figures.

Comparisons between (r′/r)max and U2
rmsTpPep are next shown in Figure 3.13
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Figure 3.12: Maximum particle concentration enhancement over the mean as
function of U2

rmsTpPep for a simulation with parameters Tp = 0.3, Ws = 0.1, Rρ =
0.5, Re = 1000, Rep = 1000, P ep = 1000, and Pr = 1. Each dot represents an
instant in time, with points moving from the bottom-left corner to the top-right
corner over time. The black solid line shows (r′/r̄)max = (1/4)U2

rmsTpPep.
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Table 3.2: Summary of salient parameters for the numerical simulations. In
all cases, Rρ = 0.5 and Rep = 1000. The first four columns show Ws, Tp, Pep,
and Re. The last column shows the effective number of mesh points used in each
direction. All 2D simulations in this table were run with Lx = 10 and Lz = 20,
and all 3D simulations were run with Lx = 10, Ly = 2, and Lz = 10.

(a) 2D Simulations
Ws Tp Pep Re Nx × Nz

0.1 0.005 1000 1000 768 × 1536
0.1 0.005 10,000 1000 768 × 1536
0.1 0.005 100,000 1000 3072 × 6144
0.1 0.01 1000 1000 768 × 1536
0.1 0.05 1000 1000 768 × 1536
0.1 0.1 1000 1000 768 × 1536
0.1 0.1 3000 1000 1536 × 3072
0.1 0.1 10,000 1000 3072 × 6144
0.1 0.1 1000 3000 1536 × 3072
0.1 0.1 1000 10,000 3072 × 6144
0.1 0.2 1000 1000 1536 × 3072
0.1 0.3 1000 1000 1536 × 3072
0.3 0.005 1000 1000 768 × 1536
0.3 0.01 1000 1000 768 × 1536
0.3 0.05 1000 1000 768 × 1536
0.3 0.1 1000 1000 1152 × 2304
0.3 0.2 1000 1000 1536 × 3072
0.3 0.3 1000 1000 1536 × 3072

(b) 3D Simulations
Ws Tp Pep Re Nx × Ny × Nz

0.1 0.005 1000 1000 384 × 72 × 384
0.1 0.1 1000 1000 768 × 144 × 768
0.1 0.2 1000 1000 768 × 144 × 768
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for all available simulations that have Rρ = 0.5, Re = 1000, Rep = 1000, P ep =

1000, and Pr = 1. Here, the color of the points represents Tp, the shape of the

points represents Ws, and the size of the points corresponds to the dimensionality

(2D vs. 3D), see legend for detail. For a given simulation, each point corresponds

to a particular instant in time selected after the onset of the convective instabil-

ity, but before the bulk of the particle layer has traveled more than one domain

height (to avoid it interacting with itself). The solid line shows the relationship

(r′/r)max = (1/4)U2
rmsTpPep, where the proportionality constant 1/4 was selected

to fit (approximately) the 2D data in the higher Tp runs.

Focusing our attention first on the low Tp 2D simulations (shown in red and

orange), we see that they do not fit the model, regardless of the values of Ws. This

is as expected, since we have found that preferential concentration is negligible for

Tp ≤ 0.01 (e.g. Figure 3.8), and so the dominant balance assumed in deriving the

model in equation (3.38) does not apply. Turning to the remaining 2D simulations,

we see the data fits the predicted model well albeit with a significant scatter

that is expected given the method we are using to extract r′ and Urms. We also

see that even for cases with larger Tp, there appears to be a threshold (namely

U2
rmsTpPep ≈ 1) below which the model is not valid. Above that threshold, the

scaling law proposed correctly predicts how (r′/r)max evolves in a simulation as a

function of time, or how the same quantity depends on input parameters. Finally,

we have run several 3D simulations represented by the larger filled circles, and see

that they also fit the model. We therefore conclude that equation (3.38) provides

a reliable method for estimating the maximum possible particle concentration

enhancement over the mean in a turbulent fluid (within the two-fluid formalism).

Figure 3.14 explores the dependence of the model on Re, Pep, and temperature

stratification. As before, the low Tp simulations (in red) do not fit the model while
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Figure 3.13: Maximum particle concentration enhancement over the mean
as function of U2

rmsTpPep, for varying Ws and Tp (with fixed Rρ = 0.5, Re =
1000, Rep = 1000, P ep = 1000, P r = 1). The black solid line represents
(r′/r)max = (1/4)U2

rmsTpPep. Details of simulations can be found in Table 3.2.

those at higher Tp (all other colors) do. We also see that, as discussed in Section

3.3.3, (r′/r)max is more or less independent of Re, but increases with Pep. Finally,

simulations run in the same model setup but without a background temperature

gradient (black stars) continue to satisfy the same scaling laws.

3.5 Typical particle concentration and pdfs of

the relative particle concentration field

Having constructed a simple analytical model for the maximum particle con-

centration enhancement allowable in the system, we may wonder whether this

model might also provide insight into the typical concentration enhancement. To

do so, we define the typical concentration enhancement within the particle layer
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Figure 3.14: Maximum particle concentration enhancement over the mean as
function of U2

rmsTpPep, for varying Tp, Re, and Pep (with Ws = 0.1, Rρ =
0.5, P r = 1, Rep = 1000). The black solid line represents (r′/r)max =
(1/4)U2

rmsTpPep. Details of simulations can be found in Table 3.2.
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as: (
r′

r

)
rms

= 1
2

∫ zmax+1

zmax−1

rrms(z, t)
r(z, t)

dz, (3.41)

where rrms was defined in (3.31). Results are shown in Figure 3.15, with the same

black line as in Figure 3.13 also plotted to ease the comparison. Here, we see the

data points do not fit this model, and seem to scale as (r′/r)rms ∼ (U2
rmsTpPep)1/2

instead (shown by the blue line). It is interesting to note that although we are

capturing the typical enhancement, this model still depends on the same com-

bination of parameters (i.e. the product of Urms, Tp, and Pep) arising from the

model discussed in Section 3.5. This strongly suggests that the typical particle

concentration enhancement is related to the maximum particle concentration en-

hancement, though exactly how remains to be determined. We also see here that

the low Tp simulations (in red and orange) do not follow the same scaling law as

the high Tp cases.

More insight into the problem can be gained by looking at the probability

distribution function (PDF) of the relative particle concentration:

rrel(x, z, t) = r(x, z, t)
r(z, t)

= 1 + r′(x, z, t)
r(z, t)

. (3.42)

We focus on values of rrel within the bulk of the particle layer in the range z ∈

[zmax(t) − 1, zmax(t) + 1]. Figure 3.16 shows PDFs of rrel for the low and high Tp

cases presented in Section 3.3.4 at various times during the respective simulations.

Prior to the onset of turbulence the PDF of rrel is a δ-function centered at rrel = 1

since r = r. The distribution then widens once the instability develops, and the

maximum value achievable by rrel is equal to the value (r′/r)max + 1 discussed in

Section 3.5.

For the low Tp case, we see from Figure 3.16a that the PDF is more or less
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Figure 3.15: Typical particle concentration enhancement for varying Ws and
Tp with Rρ = 0.5, P r = 1, Re = 1000, Rep = 1000, P ep = 1000, unless otherwise
denoted. The black solid line represents (r′/r̄)rms = (1/4)U2

rmsTpPep, and the
blue line represents (r′/r)rms = (1/5)(U2

rmsTpPep)1/2. Details of simulations can
be found in Table 3.2.
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Figure 3.16: Probability distribution functions for the function rrel (3.42) at
various times during two simulations with Ws = 0.1, Rρ = 0.5, P r = 1, Re =
1000, Rep = 1000, and Pep = 1000 for Tp = 0.005 (a) and Tp = 0.1 (b).

symmetric about rrel = 1 at all times, and remains relatively narrow around this

mean value (at least, compared with the high Tp case described below). As the

simulation proceeds, the width of the PDF first increases and then decreases with

time, as a result of the concurrent increase and decrease of the turbulent fluid

velocity u∗
rms (3.29) in the bulk of the layer during the convective mixing event.

In contrast, for the high Tp simulation shown by Figure 3.16b, the PDF widens

considerably during the convective mixing event and becomes asymmetric. A long

tail of rare events associated with preferential concentration appears. The shape

of the tail appears to be exponential, consistent with what is commonly found in

Eulerian-Lagrangian simulations of preferential concentration (e.g. Shotorban &

Balachandar, 2006; Zaichik & Alipchenkov, 2005).

To explore the properties of this exponential tail, we present PDFs of rrel taken

during the peak of the mixing event for different simulations at fixed Re = 1000

and Pep = 1000 for varying Tp in Figure 3.17a. We observe that as Tp increases,

the slope of the exponential tail becomes shallower as the maximum value of rrel
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Figure 3.17: Time-averaged PDFs of rrel (see Equation 3.42) during the peak of
the mixing event. (a) At fixed Ws = 0.1, Rρ = 0.5, Re = 1000, Rep = 1000, P ep =
1000, and Pr = 1 and varying Tp. (b) At fixed Tp = 0.1, Ws = 0.1, Rρ = 0.5, Rep =
1000, and Pr = 1 and varying Re and Pep.

achieved in the simulation increases. In Figure 3.17b, we present PDFs of rrel for

varying Re and Pep at fixed Tp = 0.1, taken again at the maximum of the mixing

event. We see that the tail widens with increasing Pep but not with Re, which

is consistent with our finding that Re does not directly influence the maximum

particle concentration achievable (at these parameter values and in this model),

but Pep on the other hand does.

We have fitted an exponential function f(x) ∝ e−bx to the tail of the PDF for

each of the cases described above. Figure 3.18 shows b as a function of U2
rmsTpPep

(where Urms and b are computed at the same times). We find that the data

points follow the red solid line b ∼ (U2
rmsTpPep)−1/2, which is the same scaling as

(r′/r)−1
rms. This is perhaps not a coincidence, since the rms of rrel = 1+r′/r would

be equal to 1/b if the distribution was exactly exponential with slope b.
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Figure 3.18: The slope b of the exponential tail of the PDF of rrel as a function
of U2

rmsTpPep for simulations at various Tp, Re, and Pep with Ws = 0.1, Rρ =
0.5, Rep = 1000, and Pr = 1. In all cases, the the PDF is computed during the
peak of the mixing event. The red solid line shows b = 7(U2

rmsTpPep)−1/2.

3.6 Summary, applications, and discussion

3.6.1 Summary

In this work, we studied preferential concentration in a two-way coupled

particle-laden flow subject to the particle-driven convective instability, using DNSs

of the two-fluid equations. We constructed an estimate of the typical turbulent

eddy velocity in the mixing event as urms = √
r0gσ (written here dimensionally),

where r0 is the ratio of the typical particle mass density excess in the layer to the

fluid density, g is gravity, and σ is the unstable layer height. Using this, we then

constructed an estimate of the particle Stokes number as Tp = τp(r0g/σ)1/2, where

τp is the dimensional particle stopping time. We found that for Tp ≤ 0.01, the

system properties are indistinguishable from those obtained using the equilibrium

Eulerian formalism, while for Tp ≥ 0.01, preferential concentration can cause an

increase in the particle density in regions of low vorticity or high strain rate, as
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predicted by (Maxey, 1987). The maximum particle concentration enhancement

over the local mean, max(ρ′
p/ρ̄p), can be predicted from simple arguments of dom-

inant balance to scale as max(ρ′
p/ρ̄p) ∼ u2

rmsτp/κp, where κp is the dimensional

particle diffusivity used in the two-fluid model. We verified that this scaling holds

for a range of simulations with varying input parameters, as long as Tp > 0.01,

and u2
rmsτp/κp > 1. In this regime, we also found that the probability distribu-

tion function of the quantity ρ′
p/ρ̄p has a root mean square value that scales as

(u2
rmsτp/κp)1/2 and an exponential tail whose slope scales as (u2

rmsτp/κp)−1/2.

3.6.2 Applications

We can use the model proposed in Section 3.4 to predict the maximum parti-

cle concentration enhancement over the mean for several applications, where the

main source of turbulence is the particle-driven convective instability. It is impor-

tant to note that our model can only be applied to inertial particles that follow

the conditions used for the two-fluid formalism, namely that (1) particles follow

Stokes’ law; and (2) the Stokes number is less than about 0.3.

We first look at ash created by volcanic eruptions, droplets in stratus clouds,

and sediments suspended in turbidity currents. In all these cases, the particle

stopping time is given by

τp = mp

6πspρfν
, (3.43)

where sp is the particle radius, and so, the terminal settling velocity is given by

ws = τp

(
ρs − ρf

ρs

)
g = 2

9

(
ρs − ρf

ρf

)
g

ν
s2

p. (3.44)

Ash particles are generated by volcanic eruptions and have widespread envi-

ronmental and health implications. Ash particles are transported upwards in the
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volcanic plume, and eventually spread laterally to form an umbrella cloud in the

stratosphere (Sparks & Wilson, 1976; Woods, 1995). In recent years, there has

been renewed interest in predicting the rate of sedimentation of the ash, which is

known to depend on preferential concentration (Cerminara et al., 2016; Carazzo

& Jellinek, 2013; Webster et al., 2012). Suspended ash particles vary widely in

radius, especially between the volcanic plume (where sp ranges from 0.1 mm to 1

mm (Harris & Rose Jr, 1983)) and the umbrella cloud (where sp ranges from 0.1

to 10 µm, since the larger particles have settled out (Carazzo & Jellinek, 2013;

Webster et al., 2012)). Similarly, the typical particle concentration ρp ranges

from 0.1 µg/m3 to 1 mg/m3 (see Carazzo & Jellinek, 2013 and references therein)

within the umbrella cloud with larger concentration values closer to the eruption

site (observed to be 50 mg/m3 from Harris & Rose Jr, 1983, for instance). We

therefore estimate the Stokes number from (3.43) as Tp given by

Tp ≈ (2 × 10−7)
(

ρp

1 mg/m3

)1/2(
σ

1 km

)−1/2(
sp

10 µm

)2

. (3.45)

To arrive at this formula, we have used commonly accepted values for certain

parameters, i.e. (ρs − ρf )/ρf ≈ 1000, ν ≈ 10−5 m2/s, and g ≈ 10 m/s2. We see

that for values characteristic of the umbrella cloud, namely ρp of order 1 mg/m3, σ

of order 1 km and sp of order 10 µm, Tp ∼ O(10−7) ≪ O(0.1). Such a small value

of Tp does not fall in the inertial regime of our model, and thus the effects of pref-

erential concentration due to particle-driven convective instability are negligible.

Closer to the volcanic plume, sp ∼ 0.25 mm and ρp ∼ 50 mg/m3. Keeping the re-

maining parameters as before, we find that Tp ≈ 0.01, which lies at the boundary

of the inertial regime, suggesting that preferential concentration is possible in this

case. To determine the maximum particle concentration enhancement, we then
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use (
ρ′

p

ρ̄p

)
max

= 1
4

|u|2τp

κp

= 25
(

ρp

1 mg/m3

)(
σ

1 km

)(
sp

10 µm

)−1

(3.46)

where |u| is calculated from (3.8) and κp ∼ wssp (see Ham & Homsy, 1988; Nico-

lai et al., 1995; Segre et al., 2001). Thus, from equation (3.46) for conditions

closer to the volcano with ∼0.25 mm ash particle and ρp ∼ 50 mg/m3, we ob-

tain (ρ′
p/ρ̄p)max ≈ O(100), and so, the inertial concentration mechanism may be

important in this case.

We also considered other geophysical applications in which particle-driven con-

vection could be relevant, such as stratus clouds and turbidity currents. Using

commonly accepted values for these systems, we found that the estimated Stokes

number Tp is always very small, and therefore does not fall under the inertial

regime where preferential concentration takes place (see Appendix 3.7 for details).

A more interesting application of our model can be found in the astrophysical

context of a collapsing protostar, i.e. a contracting cloud composed of a mixture

of gas and dust particles that will eventually lead to the formation of a star.

The contraction is usually slow and quasi-hydrostatic, and the gas is generally

stably stratified. However, we expect that waves or shocks propagating through

it would create inhomogeneities in the dust concentration, that are conceivably

gravitationally unstable to particle-driven convective instabilities. With this in

mind, we consider typical interstellar dust particles to have a radius of size sp ∼ 10

µm and solid density ρs ∼ O(103) kg/m3. The gas density within a cloud of

radius R astronomical units (AU, where 1 AU = 1011 m) is typically of order

ρf ∼ O(10−12) kg/m3. The dust-to-gas mass ratio in these clouds is of order

r0 ∼ 0.01, and we anticipate large-scale perturbations above this mean value

driven by waves or shocks to be of the same order of magnitude.

Given that the size of the dust particles in this case is much smaller than the
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mean free path of the gas, the stopping time is now given by

τp = spρs

cρf

, (3.47)

where c is the sound speed (i.e. c ≈ kBT/mH , where kB = 1.38 × 10−23 m2 kg

s−2 K−1 is the Boltzmann constant, mH ≈ 10−27 kg is the mass of a hydrogen

molecule, and T is the local temperature, which is of the order 10 K in clouds

(Tobin et al., 2012)). Using g = GM⋆/R2 in (3.47), where G = 6.7×10−11 m3 kg−1

s−2 is the gravitational constant and M⋆ is the mass of the core of the protostar,

we then find that the non-dimensional stopping time is given by

Tp = (10−1)
(

sp

10 µm

)(
ρs

103 kg/m3

)(
ρf

10−12 kg/m3

)−1

(
T

10 K

)−1/2(
r0

0.01

)1/2(
M⋆

M⊙

)1/2(
R

100 AU

)−1(
σ

0.01 AU

)−1/2

,

where M⊙ = 2×1030 kg is the mass of the Sun. Here, we see that by using typical

values for a protostar and assuming that the particle density inhomogeneities are

initially of size 0.01 AU, then Tp lies within the inertial regime. The relative

maximum particle concentration can be then written as

(
r′

r̄

)
max

= (1011)
(

sp

10 µm

)3(
ρs

103 kg/m3

)(
r0

0.01

)
(

T

10 K

)−1(
M∗

M⊙

)(
R

100 AU

)−2(
σ

0.01 AU

)
.

While this relative enhancement is huge, it is not sufficient to bring particles in

contact with one another. Indeed, the associated volume fraction of particles

would be Φ′ = r0(ρf/ρs)(r′/r)max ≈ 10−6. Nevertheless, this does imply that

the particle collision rate within these enhanced regions would dramatically in-
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crease, suggesting that preferential concentration due to particle-driven convective

instabilities could play a role in star and planet formation.

3.6.3 Discussion

Assuming that the model described in Section 3.4 and summarized in 3.6.1 is

generally valid in particle-laden turbulent flows, it provides a very simple way of

estimating the expected enhancement in the local particle density due to prefer-

ential concentration, which could be very useful for predicting its impact on other

processes, such as particle growth or enhanced settling, as demonstrated in 3.6.2.

However, several caveats of the model need to be kept in mind before doing so.

First and foremost is the fact that the maximum particle concentration enhance-

ment over the local mean depends explicitly on the particle diffusivity κp, which

is derived from a simplistic model of the interaction between the particles and

the fluid, as well as among the particles themselves. In the limit where Brownian

motion is the dominant contribution to the particle diffusivity, then the model

is likely to be valid. This is the case for instance in astrophysical applications.

However, when the interaction of the particle with its own wake or with the wakes

of other particles dominates, then the simple diffusion model κp∇2ρp presumably

fails to capture some of their more subtle consequences and should only be used

with considerable caution. Comparisons of the model with particle-resolving sim-

ulations will help elucidate whether any of our results still holds for more realistic

situations.

Another caveat of the model is the fact that it has only been validated so far

in moderately turbulent flows, for which the inertial range is fairly limited. In

more turbulent systems, where the inertial range spans many orders of magnitude

in scales, the Stokes number at the injection scale could be quite different from
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the Stokes number at the Kolmogorov scale. Assuming a Kolmogorov power

spectrum for the kinetic energy, for instance, it is easy to show that the Stokes

number increases weakly with wavenumber, and can be substantially larger at the

Kolmogorov scale than at the injection scale when the Reynolds number is very

large. This raises the question of whether the model remains applicable when

this is the case. Finally, we note that the model has so far only been tested in

the context of particle-driven convection, where the two-way coupling between

the particles and the fluid likely influence the turbulent cascade. It remains to

be determined whether the same scalings are found in flows where the source

of the turbulence is independent of the particles (such as mechanically driven

turbulence, or thermal convection, for instance). If this is the case, our findings

may have further implications for engineering or geophysical flows. Both of these

questions will be the subject of future work.

There are also several other questions that remain to be answered. The sim-

ulations presented in Section 3.3.3, for instance, clearly show that the particle

Péclet number influences the typical width and separation of the regions of high

particle density, but this effect remains to be explained and modeled. This will

require a better understanding of the influence of the two-way coupling between

the particles and the fluid on the turbulent energy cascade from the injection

scale to the dissipation scale. In particular, it is clear from a cursory inspection of

the kinetic energy spectrum (see Figure 3.9) that the extent of the inertial range

depends on the Reynolds number and, as expected, but also on the particle Péclet

number, suggesting that this two-way coupling dominates the flow dynamics at

small scales. Although this is perhaps not surprising, it deserves to be investigated

further. Moreover, it would be interesting to see whether the same effect occurs

in a system in which the turbulence is not driven by the particles themselves.
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3.7 Appendix

Properties of PADDI

The governing equations are solved in spectral space using a third-order semi-

implicit Adams-Bashforth backward-differencing scheme. Diffusive terms are treated

implicitly. Nonlinear terms and drag terms are first computed in real space, then

transformed into spectral space using FFTW libraries, and advanced explicitly.

Drag terms are tracked and computed in a way that ensures the total momentum

is conserved (other than the dissipation terms) throughout the simulations.

We encountered various numerical obstacles during the implementation of the

two-fluid equations in PADDI-2F that are worth mentioning here. Due to the fact

that particle inertia tends to increase particle concentration in certain regions for

large enough Tp, one must use a very high spatial resolution to avoid numerical

instability. Even when the resolution is large enough to ensure numerical stability,

a slight under-resolution can result in the particle concentration being slightly

over- or underestimated, resulting in the total mass not being exactly conserved.

Indeed, in a spectral code, low resolution can induce the Gibbs phenomenon which

can create regions of unphysical negative particle density near the edges of a
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particle front. In the code, we zero out the negative particle density regions and

rescale the particle concentration r at every point in space to ensure that the

total particle mass is equal to its initial value at each time step. Note that this

“fix” is generally not necessary as long as the simulations are well-resolved, but is

introduced to reduce errors in the rare occasions where the system does become

slightly under-resolved.

Other geophysical applications

We looked at the applicability of our model for the preferential concentra-

tion of water droplets found in stratus clouds. These clouds are a more relevant

application of our model than convective clouds (i.e. cumulus and cumulonim-

bus) in which turbulence is primarily driven by thermal convection rather than

particle-driven convection. We estimate r0 and Tp as

r0 = (2.5 × 10−4)
(

ρp

0.25 g/m3

)
, (3.48)

Tp ≈ (3.5 × 10−6)
(

ρp

0.25 g/m3

)1/2(1 km
σ

)1/2(
sp

10 µm

)2

, (3.49)

where ρp here is otherwise known as the liquid water content which is typically

of the order of 0.25 g/m3 for stratus clouds (Frisch et al., 2000). We have also

applied commonly accepted values for certain parameters for these formulas (i.e.

ρs/ρf ≈ 1000, ν ≈ 10−5 m2/s, g ≈ 10 m/s2). According to (3.49), we see that for

any reasonable droplet size, Tp is in the regime where preferential concentration

would not occur due to the particle-driven convective instability.

We now look at particle concentration in the context of turbidity currents

which play a vital role in the global sediment cycle. We consider sediments con-

sisting of clay, silt, or sand that vary in radius from O(10−4)−O(10−1) cm (where
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clay is found at the lower end of this range, while sand particles are found at the

larger end) with solid density typically around ρs ≈ 2000 kg/m3. For a particle

volume fraction Φ in the dilute regime, Φ ≲ 0.01 and so, r0 ⪅ 0.02, and

Tp ≈ (2 × 10−4)
(

10 m
σ

)1/2(
sp

0.1 mm

)2( Φ
0.01

)1/2

, (3.50)

in which we have assumed that (ρs−ρf )/ρf ∼ O(1). We therefore see that even for

the largest particle size and for the maximum volume fraction allowable, for any

reasonable value of σ, Tp ≪ 0.1 so preferential concentration due to particle-driven

convective instabilities is again negligible.
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Chapter 4

Preferential concentration by

mechanically-driven turbulence in

the two-fluid formalism

This chapter is composed of a working revision after comments by the referees

of Nasab & Garaud (2021), which has been submitted to Physical Review Fluids.

4.1 Introduction

Particle-laden flows are a special class of two-phase fluid flows, characterized by

a continuous carrier phase and a dispersed, and typically dilute, particle phase.

They appear in numerous physical and engineering applications, including for

instance clouds, turbidity currents, protoplanetary disks, and industrial sprays.

An important physical process in such flows is the tendency of inertial particles to

accumulate in regions of high strain and low vorticity (Maxey, 1987), otherwise

known as preferential concentration. This process is thought to play a fundamental

role in promoting collisional growth. In clouds for example, the growth of micron-
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size to millimeter size droplets is not quite understood. Although processes such

as Brownian motion and condensation can contribute to droplet growth, it is

thought that they alone cannot promote sufficient growth to initiate rainfall. For

this reason, preferential concentration is considered to be the key process that

may result in the enhanced collision rates required for larger raindrop formation

(Wang et al., 2008; Devenish et al., 2012; Grabowski & Wang, 2013). Similarly

in accretion disks, preferential concentration is widely hypothesized to be a vital

process for the growth of dust particles into planetesimals (Birnstiel et al., 2016;

Weidenschilling & Cuzzi, 1993). Thus, our primary goal is to investigate and

quantify particle concentration enhancement due to preferential concentration in

turbulent flows.

In this work (as also in Nasab & Garaud, 2020), we use the two-fluid formalism

and treat the particles as a continuous phase of the system that is distinct from

the carrier fluid (see Crowe et al., 1996; Elghobashi, 1994; Morel, 2015 and refer-

ences within). This continuum approximation is derived by applying techniques

motivated by kinetic theory in which the positions and velocities of the particles

are statistically averaged to create a local particle density ρp and velocity up.

We focus on the case where the solid density of the particle ρs is much greater

than the mean density of the carrier flow ρf , which is true for many applications.

In this limit, the importance of particle inertia is traditionally measured by the

Stokes number St = τp/τe, defined as the ratio of the particle stopping time τp to

the eddy turnover time τe. It has been established that the two-fluid formalism

is valid provided that St ≤ 0.3 (Ferry & Balachandar, 2002). For larger St, the

particles become increasingly uncorrelated with the fluid, and in turn, with one

another. When this occurs, the continuum treatment is no longer appropriate.

Using the two-fluid formalism, we recently explored preferential concentration
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in the context of the particle-induced convective instability (Nasab & Garaud,

2020). Our model setup consisted of a carrier fluid with an assumed stable tem-

perature gradient, to which a layer of small and dense inertial particles was added

to create linearly unstable initial conditions. We restricted our study to parti-

cles with St ≤ 0.3 in order to stay within the limit of validity of the two-fluid

model. In addition, due to the high computational cost required to resolve fine

particle structures, we primarily ran 2D Direct Numerical Simulations (DNS).

In all cases, we ran the simulations long enough to study the development of

the Rayleigh-Taylor instability, and measured the maximum and typical particle

concentration enhancement above the horizontally-averaged particle density.

Most notably, we found that the maximum particle concentration enhance-

ment above the mean is related to the particle stopping time τp, the rms fluid

velocity in the turbulent layer urms, and the assumed particle diffusivity κp, scal-

ing as u2
rmsτp/κp. Additionally, we showed that the typical particle concentration

enhancement over the mean scales as (u2
rmsτp/κp)1/2. We also computed the proba-

bility distribution function (pdf) of the particle concentration enhancement above

the mean and found that in the presence of inertial particles, the tail of the pdf

appears to be an exponential whose slope scales as (u2
rmsτp/κp)−1/2. We then

explained the importance of the parameter group u2
rmsτp/κp using arguments of

dominant balance between the inertial concentration and diffusion terms in the

particle transport equation (more details can be found in Section 4.4). Although

we showed that the model was quite useful in predicting the maximum particle

concentration in turbulent flows, our study was limited to flows where the tur-

bulence was driven by the particles themselves. Therefore, whether these results

are more generally applicable to any turbulent particle-laden flow remained to be

established. This crucial question is answered in the present paper.
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The paper is organized as follows. In Section 4.2 we introduce the model setup

and the governing equations based on the two-fluid formalism. In Section 4.3 we

present DNS for varying governing parameters (such as the Stokes number and the

fluid Reynolds number, for instance), and explore how they affect both preferential

concentration and the energetics of the system. In Section 4.4 we briefly review

the predictive model for maximum particle concentration enhancement presented

in Nasab & Garaud (2020) and compare it to the new DNSs. We further look

at the typical particle concentration enhancement and the associated pdf of the

particle concentration. Section 4.5 briefly summarizes and presents applications

of our model. We discuss the implications of these results and conclude with final

remarks.

4.2 The Model

In this work we use the two-fluid model described in Nasab & Garaud (2020) to

study the dynamics of a dilute monodisperse suspension of particles in a turbulent

carrier fluid once it reaches a statistically stationary state. For simplicity, we

assume that the inertial particles have a solid density that is much larger than the

mean fluid density such that ρs ≫ ρf . We also assume that they are sufficiently

small so that Stokes’ law can be applied, in which case τp = ρsd
2
p/18ρfν, where dp

is the diameter of the particle, ρf and ν are the mean density and the kinematic

viscosity of the fluid, respectively. Since the particles are much denser than the

fluid, effects incorporated in terms such as the Basset history, Faxen correction,

and added mass can be neglected (Maxey & Riley, 1983). We additionally require

that the particle stopping time τp should be much smaller than the typical eddy

turnover time of the carrier fluid τe, so St ≪ 1.

We use the Boussinesq approximation (Boussinesq, 1903a) for the carrier fluid
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and obtain the following governing equations after a suitable approximation of

the particle equations (see Nasab & Garaud, 2020):

∂u
∂t

+ u · ∇u = −∇p

ρf

+ r
up − u

τp

+ ν∇2u + 1
ρf

F, (4.1)

∂up

∂t
+ up · ∇up = u − up

τp

+ νp∇2up, (4.2)

∂r

∂t
+ ∇ · (upr) = κp∇2r, (4.3)

∇ · u = 0, (4.4)

where the fluid velocity is u = (u, v, w), p is the pressure, and the particle velocity

is up = (up, vp, wp). Within this formalism, we define the local number density of

particles to be np, and the corresponding mass density to be ρp = npmp, where

mp is the mass of a single particle. For convenience, we refer to r = ρp/ρf as the

rescaled particle density with respect to the mean density of the carrier fluid (see

Nasab & Garaud, 2020 for details).

By treating the particles as a continuum, we need to account for the stochastic

aspect of particle trajectories, such as Brownian motion and the interaction of a

particle with its own or another particle’s wake. Generally these interactions are

complex in nature, and thus, difficult to implement realistically and numerically.

Here we assume that they take the form of a diffusion operator in the equations for

the particle density and velocity and set the corresponding diffusivities νp and κp

to be constant. This approximation is actually valid in the limit where Brownian

motion is dominant, but is used for simplicity otherwise.

We initialize the particles with a uniform distribution in r such that r = r0

everywhere in the domain. In this study, we choose to explore the range 0.1 ≤

r0 ≤ 10. Note that r0 = Φ0ρs/ρf , where the initial volume fraction of the particles

Φ0 is small so that the system is well within the dilute limit. Smaller values of
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r0 correspond to systems such that ρs/ρf ≲ O(1). In this case, particle settling

due to gravity is negligible, and can thus be ignored. Values of r0 > 1 can in

principle be obtained when ρs ≫ ρf , such as is the case for aerosols or dust in

accretion disks. However, particle settling should be taken into account in that

limit. Therefore for simplicity, we also omit gravity from the particle momentum

equation (4.2) to avoid the effect of settling on the dynamics of the system.

Lastly in this work, we drive the turbulence mechanically, by forcing the flow

to be shear-unstable. We drive the mean flow using a constant body force given

by F = F0 sin(ksz)êx, where F0 is the forcing amplitude and ks = 2π/Lz is the

wavenumber corresponding to the domain height Lz. By selecting a non-cubic

domain (where Lx > Lz), the Kolmogorov flow thus generated is linearly unstable

for large enough Reynolds number (Beaumont, 1981).

4.2.1 Nondimensionalization

In what follows, we define the characteristic length and velocity scales to be

Lc = 1
ks

= Lz

2π
and Uc =

(
LzF0

2πρf

)1/2

, (4.5)

and by construction, the typical eddy turnover time is

τc =
(

Lzρf

2πF0

)1/2

. (4.6)

This choice effectively assumes a balance in the carrier fluid momentum equation

between the inertial terms and the forcing, such that u · ∇u ∼ F0/ρf . After using

(4.5) and (4.6) to scale Eqs. (4.1)-(4.4), the nondimensional governing equations
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are

∂û
∂t

+ û · ∇û = −∇p̂ + r0r̂
ûp − û

Tp

+ 1
Re

∇2û + sin(z)êx, (4.7)

∂ûp

∂t
+ ûp · ∇ûp = û − ûp

Tp

+ 1
Rep

∇2ûp, (4.8)

∂r̂

∂t
+ ∇ · (ûpr̂) = 1

Pep

∇2r̂, (4.9)

∇ · û = 0, (4.10)

where the hatted quantities (as well as the independent variables) are now nondi-

mensional, where r̂ = r/r0, and where

Tp = τp

τc

(4.11)

is the nondimensional stopping time, which can be viewed as an estimate of the

Stokes number based on the turnover time of the energetically-dominant eddies.

Additionally, the diffusion terms are now characterized by a Reynolds number for

the fluid Re, a Reynolds number for the particles Rep, and the particle Péclet

number Pep respectively defined by

Re = UcLc

ν
, Rep = UcLc

νp

, P ep = UcLc

κp

. (4.12)

4.3 Numerical simulations

4.3.1 The PADDI-2F code

We use Direct Numerical Simulations to investigate the effects of preferential

concentration in the model described in Section 4.2. We use a modified ver-

sion of the pseudospectral PADDI code, which was originally developed to study
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double-diffusive phenomena in oceanic contexts (Traxler et al., 2011b,a; Stellmach

et al., 2010), and later extended to astrophysical applications (Moll et al., 2016;

Garaud & Kulenthirarajah, 2016) and to particle-laden flows (Nasab & Garaud,

2020). PADDI-2F solves the governing equations (4.7)-(4.10) in spectral space.

Specifically, diffusion terms are treated implicitly in spectral space, whereas both

nonlinear and drag terms are first computed in real space, transformed into spec-

tral space, and then, integrated explicitly using a third-order Adams-Bashforth

backward-differencing scheme. Drag terms are computed in a way that ensures

the total momentum is conserved (other than the dissipation terms) throughout

the simulations.

The computational domain is triply-periodic, with (Lx, Ly, Lz) = (4π, 2π, 2π)

to ensure that the flow is linearly unstable under the selected forcing. All simu-

lations are run until a statistically steady state has been reached, either starting

from the initial conditions as described in Section 4.2, or starting from the end of

another simulation at nearby parameters. Due to the high cost of running sim-

ulations in 3D and the resolution needed to resolve fine-scale particle structures,

we restrict our simulations to Re ≤ 600 and up to moderate values of the Stokes

number Tp ≤ 0.03 in which the two-fluid formalism is valid. Specifications of all

simulations are listed in Table 4.1.

4.3.2 The effect of Re on the turbulence in the absence of

particles

Shear-driven turbulence, created in the model setup selected here, is not as

commonly used as homogeneous isotropic turbulence for the study of particle-

laden flows. For this reason, we begin by presenting some of the properties of

the fluid in the absence of particles, in particular with respect to variations of
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the Reynolds number. Note that studies of the onset of turbulence in this type

of Kolmogorov flow were presented by Platt et al. (1991); Tithof et al. (2017);

van Veen & Goto (2016), while studies of stratified turbulence in the same system

were presented by Garaud et al. (2015).

In this section, we therefore only use the momentum equation (4.7) and the

divergence-free condition (4.10), and set r0 = 0. We set the resolution of the 3D

runs to be 768×384×384 equivalent grid points in the x−, y−, and z−directions,

respectively. Once the simulations have reached a statistically stationary state,

they have a well-defined mean flow ū(z) (where the overbar denotes a horizontal

average) in the x direction that varies sinusoidally in the z direction, as expected.

The amplitude of the mean flow is roughly equal to one, again as expected from

the non-dimensionalization selected. It is maintained by a balance between the

unidirectional forcing term and the turbulent Reynolds stresses, which are gen-

erated by the shear instability. Figure 4.1 illustrates this in the simulation with

Re = 600.

Figure 4.1: Mean flow ū and Reynolds stress uw as function of height z for a
simulation in the absence of particles with Re = 600. The blue curve represents
the temporal average of the gray curves, which have been extracted at various
times after the system has reached a statistically steady state.

Energy in this system is input at the largest possible scale, and dissipated at

88



the smallest scales by the turbulence. In a statistically stationary state, and in

the absence of particles, we have the balance

⟨F̂ · û⟩ = ⟨sin(z)û⟩ = ϵ̂ = Re−1|∇û|2, (4.13)

where the angular brackets denote a volume average, and where ϵ̂ is the kinetic

energy dissipation rate. The latter is roughly equal to 0.5 for all simulations

without particles regardless of Re, consistent with the fact that the mean flow

ū ≃ sin(z).

We can examine the power spectra of the fluid velocity field once the system has

reached a statistically steady state, and compare the results for different Reynolds

numbers. We define the power in mode k for a scalar quantity ξ̂ (e.g. û, v̂, and

ŵ) as

Pξ̂(k, t) = ξ̃(k, t)ξ̃∗(k, t) (4.14)

where k = (kx, ky, kz) is the nondimensional wavevector and ξ̃(k, t) and ξ̃∗(k, t) are

the Fourier transform of ξ̂ and its complex conjugate, respectively. For Figures

4.2, 4.4, 4.5, 4.6, and 4.8 we present the power spectra Pξ̂(|k|, t) as a function

of the total wavenumber |k| = (k2
x + k2

y + k2
z)1/2, where Pξ̂(|k|, t) is the power

contained in all the modes whose amplitudes lie between |k| and |k| + 1.

Figure 4.2 presents the power spectra of the total fluid velocity field Pû(|k|) +

Pv̂(|k|) + Pŵ(|k|) extracted at an instant in time after the system has reached

a statistically steady state for three simulations with Re = 100, 300, and 600,

respectively. For sufficiently large Re, the system exhibits a well-known energy

cascade whose inertial range scales as |k|−5/3, shown here by the black line for

ease of comparison. This suggests that the turbulence is relatively isotropic at

larger wavenumbers, a fact that has been verified by comparing the power spectra
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of û, v̂, and ŵ (not shown).

With this in mind, we can estimate the Taylor microscale and Kolmogorov

scale using the standard formula from homogeneous isotropic turbulence. The

non-dimensional Taylor microscale is given by λ̂ =
√

5/ϵ̂ReÛrms where Ûrms ≃ 1

is the nondimensional time-averaged rms velocity of the fluid (see Section 4.3.7 for

detail). This corresponds to kλ = 2π/λ̂, which is equal to kλ ≈ 20 for Re = 100,

kλ ≈ 35 for Re = 300, and kλ ≈ 50 for Re = 600. The associated Reynolds

numbers based on the Taylor microscale are Reλ = Û2
rms

√
5Re/3ϵ̂ ≃ 18, 30 and 45,

respectively. Similarly, we can compute the Kolmogorov scale using the formula

η̂ = (ϵ̂Re3)−1/4. This corresponds to η̂ ≃ 0.037 for Re = 100, η̂ ≃ 0.016 for Re =

300, and η̂ ≃ 0.01 for Re = 600. The product of largest resolved nondimensional

wavenumber with the nondimensional Kolmogorov scale is larger than one for

all cases (though admittedly quite close to one for Re = 600), showing that

simulations are resolved.

In geophysical and astrophysical applications, Re and Reλ are much larger,

with an established inertial range spanning many orders of magnitude, which we

do not see for the simulations presented here. Therefore, one must be careful

about extrapolating the results obtained in this paper to systems with Re ≫ 103

(see Section 4.5.2 for more details).

4.3.3 The effect of Tp on preferential concentration

We now add particles and explore how the various input parameters affect

preferential concentration, and how this in turn alters the energetics of the system.

We first look at how the non-dimensional stopping time, which is also a proxy

for the Stokes number of the particles, affects the system by comparing a 3D

simulation with a very low Tp = 0.005 to another at a higher Tp = 0.03. To
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Figure 4.2: Instantaneous power spectra of the total fluid velocity field as func-
tion of |k| for simulations in the absence of particles for Re = 100, 300, and 600.
The black solid line scales as |k|−5/3.

do so, we use the PADDI-2F code using Eqs. (4.7)–(4.10), with the remaining

parameters set as r0 = 0.1, Re = 100, Rep = 600, and Pep = 600. The resolution

and domain size for the simulations are set to 768 × 384 × 384 equivalent grid

points, and as before, Lx = 4π and Ly = Lz = 2π (see Table 4.1 for more details).

We present snapshots in Figure 4.3 of the particle concentration field after

the system has reached a statistically steady state. In the volume renderings

shown in Figures 4.3(a) and 4.3(b), we highlight areas of relatively higher particle

concentration in red. In both simulations the particle field develops sheet-like

structures which appear to be about the same size, but denser for the high Tp

case. We can see the particle structures in more detail in Figures 4.3(c) and

4.3(d), which show the particle concentration deviation from the mean (namely,

r̂ − 1) in a slice taken at y = 0. We clearly see that the denser particle structures

indeed appear to be the same size for both simulations. The densest structures

for the high Tp case have values of r̂−1 ≈ 3 compared to r̂−1 ≈ 0.5 for structures

found in the low Tp case.

The fact that preferential concentration is more efficient at higher values of Tp
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recovers the well-known results of Maxey (1987), which are expressed as follows

in the two-fluid formalism. Using the particle momentum equation (4.9), we can

express ûp in terms of û and Tp using an asymptotic expansion in Tp:

ûp = û − Tp

(
û · ∇û + ∂û

∂t
− 1

Rep

∇2û
)

+ O(T 2
p ). (4.15)

Taking the divergence of (4.15), we then obtain

∇ · ûp = −Tp∇ · (û · ∇û) + O(T 2
p ), (4.16)

which shows that ∇ · ûp is non zero even though ∇ · û = 0, and furthermore

depends linearly on Tp for small Tp. It is easy to see (from Eq. 4.9) that the

particle concentration grows (or decays) exponentially since

∂r̂

∂t
= −r̂(∇ · ûp) + ..., (4.17)

showing that the growth or decay rate of r̂ is given by |∇·ûp|. Figure 4.3 compares

the particle concentration enhancement r̂−1 (panels 4.3(c) and 4.3(d)) to the value

of ∇ · ûp (panels 4.3(e) and 4.3(f)) at the same time. We see that areas where

∇ · ûp < 0 (shown in blue) correspond to regions where r̂ − 1 is maximal, while

regions with ∇ · ûp > 0 (shown in red) correspond to regions where r̂ is close to

0 (equivalently, r̂ − 1 is close to −1), as expected from the argument above.

We next compare the power spectra (using Eq. 4.14) of the particle concen-

tration and fluid velocity fields for simulations with varying Tp, with the remain-

ing parameters fixed as r0 = 0.1, Re = 100, Rep = 600 and Pep = 600. Figure

4.4(a) shows the power spectrum of the total fluid velocity field Pû(|k|)+Pv̂(|k|)+

Pŵ(|k|). The solid black line represents the Kolmogorov spectrum given by |k|−5/3.
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Figure 4.3: Comparison of particle concentration snapshots for low Tp = 0.005
(left column) and high Tp = 0.03 (right column) simulations. Each snapshot was
extracted once the system has reached a statistically steady state. (a)-(b): volume
rendering of r̂; (c)-(d): snapshots of the particle concentration enhancement r̂ − 1
at y = 0; (e)-(f): snapshots of ∇ · ûp at y = 0. The remaining parameters are:
r0 = 0.1, Re = 100, Rep = 600, P ep = 600.
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Figure 4.4: Instantaneous power spectra of (a) the total fluid velocity field and
(b) the particle concentration field as a function of the total wavenumber |k| for
varying Tp. The remaining parameters are r0 = 0.1, Re = 100, Rep = 600, and
Pep = 600.

Although there is a subtle decrease in power across all scales for larger Tp, the

velocity spectrum appears to be overall relatively unaffected.

Figure 4.4(b) shows the power spectrum of the particle concentration Pr̂(|k|).

We see that increasing Tp causes an increase in Pr̂(|k|) at all scales, with the

exception of the k = 0 mode whose amplitude instead decreases (not shown

here). This is consistent with our expectation that increasing inertia causes an

increase in preferential concentration, and is directly related to the snapshots in

Figure 4.3: comparable-sized particle structures are denser (higher r̂) for large Tp

than for small Tp.

4.3.4 The effect of r0 on preferential concentration

We next look at the effect of the particle mass loading fraction r0 on the

energetics of the system. We set Tp = 0.01, Re = 100, Rep = 600, and Pep = 600

(see Table 4.1 for more details) and present the power spectra of the particle

concentration and total fluid velocity fields (using Eq. 4.14) in Figures 4.5(a) and

4.5(b), respectively.
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Turning first to the power spectrum of the velocity field in Figure 4.5(a), we see

that r0 has a strong effect on the total energy of the turbulent flow. The inertial

range still shows the usual |k|−5/3 power law as in the case without particles

(r0 = 0 with Re = 100, Rep = 600, P ep = 600 in Figure 4.2), but its amplitude

decreases with increasing r0. In order to understand why increasing r0 reduces

the turbulent energy, note that in a statistically stationary state, the momentum

equation (4.1) reaches a balance between the inertial terms and body force terms,

expressed dimensionally as ρf (u · ∇u) ∼ F. With the addition of particles that

are well-coupled to the fluid (i.e. if Tp → 0), the dominant balance becomes

(ρf + ρp)(u · ∇u) ∼ F. In the nondimensionalization presented in Section 4.2.1,

this balance implies (1 + r0)û2 ≃ O(1). With this in mind, we can then expect

that Pû(|k|)+Pv̂(|k|)+Pŵ(|k|) ought to scale like 1/(1+r0) at the injection scale.

The scaling is confirmed in Figure 4.5 for r0 = 0.1, r0 = 1, and r0 = 10 given by

the solid, dashed, and dotted lines, respectively.

Figure 4.5(b) shows the power spectrum of the particle concentration field

Pr̂(|k|), and we see that larger r0 corresponds to smaller Pr̂(|k|) across all scales

(except the k = 0 mode which is not shown). This is consistent with the fact that

larger r0 results in a decrease in the turbulence intensity (and therefore preferential

concentration) across all scales, as observed from the velocity power spectrum.

4.3.5 The effect of Re on preferential concentration

In this section, we investigate how varying the fluid Reynolds number affects

the energetics, while fixing the other parameters to be Tp = 0.01, r0 = 0.1, Rep =

600, and Pep = 600 (see Table 4.1 for more details). Figures 4.6(a) and 4.6(b)

show the power spectra of the total fluid velocity and particle concentration fields,

respectively (using Eq. 4.14).
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Figure 4.5: Instantaneous power spectra of (a) the total fluid velocity field and
(b) the particle concentration field as a function of the total wavenumber |k| for
varying r0. The remaining parameters are Tp = 0.01, Re = 100, Rep = 600, and
Pep = 600. The solid, dashed, and dotted lines represents the predicted scaling
for the power at the injection scale for r0 = 0.1, 1, and 10, respectively (see main
text for details).

In Figure 4.6(a), the velocity spectra shown are more or less indistinguishable

from those of the corresponding fluid-only simulations presented in Section 4.3.2.

This is not surprising since the value of r0 = 0.1 chosen for these simulations

is quite small. Because a larger Re extends the inertial range, finer scales of

turbulence are generated. Consequently in Figure 4.6(b), we also see substantially

more power in the particle density field at smaller scales when Re increases. More

precisely, we see that the spectrum of the particle concentration increases mildly

with |k| at low wavenumber, and appears to peak around |k| ≃ kλ/3. Beyond

that, Pr̂(|k|) drops rapidly with increasing wavenumber. This suggests that the

typical scale of particle structures ought to be more closely related to the Taylor

microscale than to the Kolmogorov scale. This is confirmed in the snapshots of the

particle concentration enhancement (r̂ − 1) shown in Figure 4.7, which compare

simulations with Re = 100 and Re = 600. The finer scales of turbulence for larger

Re cause the denser particle structures to appear overall more fragmented and

convoluted. We note, however, that the densest filamentary regions (shown in
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Figure 4.6: Instantaneous power spectra of (a) the total fluid velocity field and
(b) the particle concentration field as a function of the total wavenumber |k| for
varying Re. The remaining parameters are Tp = 0.01, r0 = 0.1, Rep = 600, and
Pep = 600. On the right plot, we mark kλ/3 given by the vertical dashed line
with the same color as the corresponding simulation.

Figure 4.7: Snapshots of the particle concentration enhancement above the mean
r̂ − 1 for two different simulations with Re = 100 and Re = 600. The remaining
parameters are Tp = 0.01, r0 = 0.1, Rep = 600, and Pep = 600.

dark red) have comparable thickness for varying Re.

4.3.6 The effect of Pep and Rep on preferential concentra-

tion

Finally, we examine how the particle diffusion coefficients Pep and Rep affect

the energetics of the system. As described in Section 4.2, the particle concentra-

tion and momentum diffusivities are necessary when modeling the particles as a

continuum, but their origin is grounded in the notion that the particle velocities
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Figure 4.8: Instantaneous power spectra of (a) the total fluid velocity field and
(b) the particle concentration field as a function of the total wavenumber |k| for
varying Pep. The remaining parameters are Tp = 0.01, r0 = 0.1, Re = 100, and
Rep = Pep.

have a stochastic component in addition to the mean ûp. Since the origin of the

particle diffusivity is likely the same as that of the momentum diffusivity, we may

expect Pep and Rep to be related, and close to one another. In what follows, we

take Pep = Rep for simplicity.

Figure 4.8 shows the power spectra of the particle concentration field and the

total fluid velocity field. In Figure 4.8(b), we see that a larger Pep (equivalently,

a lower particle diffusivity) results in significantly larger Pr̂(|k|) across all scales,

and thus, the presence of smaller-scale structures in the particle concentration

field. By contrast, we see in Figure 4.8(a) that Pep does not affect the velocity

power spectrum significantly, other than a slight decrease in energy across all

scales for larger Pep.

4.3.7 Quantifying particle concentration enhancement

In what follows, we quantify particle concentration enhancement by first defin-

ing several terms:

r̂sup(t) = max
x

r̂(x, t) (4.18)
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representing the maximum particle concentration across the domain,

r̂rms(t) =
[

1
LxLyLz

∫∫∫
(r̂ − 1)2 dxdydz

]1/2

, (4.19)

defined as the standard deviation around the mean particle density r̂ = 1, and

the rms fluid velocity defined as

Ûrms(t) =
[

1
LxLyLz

∫∫∫
[û2(x, t) + v̂2(x, t) + ŵ2(x, t)] dxdydz

]1/2

. (4.20)

We first look at how the two measures of particle concentration enhancement

defined above, as well as the rms fluid velocity, vary with respect to Tp, r0, Re,

and Pep (assuming as above that Rep = Pep). For each simulation presented,

we take a temporal average of the quantities defined by Eqs. (4.18) – (4.20)

after the system has reached a statistically steady state over a time range ∆t,

and report the means as r̂sup, r̂rms, and Ûrms in Table 4.1. We then take the

standard deviation around this temporal average as an estimate of the errorbar

(quantifying the variability). Figure 4.9 presents the temporally averaged values

of r̂sup − 1, r̂rms, and Ûrms for selected simulations. In Figure 4.9(a), we present

simulations for varying Tp, while holding r0 = 0.1, Re = 100, Rep = 600, and

Pep = 600 constant. We see that both r̂sup − 1 and r̂rms increase with Tp, while

Ûrms is overall unaffected. This is consistent with the observation in Section 4.3.3

that Tp only has a small effect on the overall power spectrum of the turbulence,

but directly controls the rate of preferential concentration. In Figure 4.9(b), r0 is

varied, while Tp = 0.01, Re = 100, Rep = 600, and Pep = 600 are held constant.

We see that all quantities decrease with increasing r0. This can be explained

by the fact that an increase in r0 corresponds to a decrease in the turbulent

fluid velocity, resulting in a subsequent decrease in the particle concentration
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enhancement (see Section 4.3.4). Moving on to Figure 4.9(c) where Re is varied

while Tp = 0.01, r0 = 0.1, Rep = 600, and Pep = 600 are held constant, we see

that Ûrms and r̂rms are overall unchanged, at least within the range of Re shown.

In contrast, we see a slight increase of r̂sup − 1 with Re. Finally in 4.9(d), where

Pep (and Rep) is varied while Tp = 0.01, r0 = 0.1, and Re = 100 are held constant,

we see that both r̂sup − 1 and r̂rms increase with Pep, while Ûrms is unchanged

(see Section 4.3.6). Therefore, we see that the quantities r̂sup, r̂rms, and Ûrms for

varying parameters are consistent with the spectra shown in Sections 4.3.3-4.3.6.

4.4 Predictive model

As discussed in Section 4.1, Nasab & Garaud (2020) found that the maximum

particle concentration in a fluid where the turbulence is driven by the particle

Rayleigh-Taylor instability scales as u2
rmsτp/κp, and presented theoretical argu-

ments of dominant balance that support this law. For pedagogical purposes, we

reproduce the arguments here, and then verify whether the same scaling law ap-

plies for particles in mechanically-driven (shear-induced) turbulence as studied in

this paper.

We start with the particle concentration equation (4.9) and substitute r̂ = 1+r̂′

to get
∂r̂′

∂t
+ (1 + r̂′)∇ · ûp + ûp · ∇r̂′ = 1

Pep

∇2r̂′, (4.21)

where r̂′ is the particle concentration enhancement over the mean.

As in Nasab & Garaud (2020), we assume that in regions of maximal concentra-

tion enhancement there is a dominant balance between the inertial concentration
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Figure 4.9: Temporally averaged maximum and typical particle concentration
enhancement (r̂sup − 1 and r̂rms, respectively) and the temporally averaged rms
fluid velocity Ûrms for (a) varying Tp, (b) varying r0, (c) varying Re, and (d)
varying Pep and Rep from simulations that have reached a statistically steady
state. Error bars represent one standard deviation around the mean. Unless
otherwise stated, Tp = 0.01, r0 = 0.1, Re = 100, Pep = 600, and Rep = 600 (see
main text). More details of the simulations can be found in Table 4.1.
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term and the diffusion term expressed as

∇ · ûp ∼ 1
Pep

∇2r̂′. (4.22)

Using Eq. (4.16) in Eq. (4.22), we obtain

− Tp∇ · (û · ∇û) ∼ 1
Pep

∇2r̂′. (4.23)

Assuming that the characteristic lengthscale involved in the inertial term and

the diffusive term are the same, dimensional analysis reveals that

r̂′ ∼ Û2
rmsTpPep, (4.24)

where Ûrms represent the characteristic fluid velocity of the system (see Eq. 4.20).

Dimensionally, this expression becomes

(
ρ′

p

ρ̄p

)
max

∼ u2
rmsτp

κp

, (4.25)

where ρ′
p = r̂′r0ρs is the local particle density enhancement over the mean ρ̄p =

r0ρs (see Nasab & Garaud, 2020 for more details) and urms is the dimensional rms

fluid velocity. We now have a scaling law relating particle concentration enhance-

ment r̂′ to only three properties of the flow: the characteristic fluid velocity, the

particle stopping time, and the particle diffusivity.

4.4.1 Maximum particle concentration enhancement

As in Nasab & Garaud (2020), we compare the scaling law (4.24) to our

selected measure of maximum particle concentration enhancement r̂sup−1 (see Eq.

4.18). In Figure 4.10, we present r̂sup − 1 versus Û2
rmsTpPep (with the legend and
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Figure 4.10: Maximum particle concentration enhancement over the mean as
function of Û2

rmsTpPep with varying parameters (i.e. Tp, r0, Re, Rep, and Pep).
The black solid line represents r̂sup−1 = (1/10)Û2

rmsTpPep. The legend and details
of simulations can be found in Table 4.1.

simulation details found in Table 4.1). Each point corresponds to one simulation,

where the values of r̂sup and Ûrms were extracted after the system has reached a

statistically steady state. Various marker types represent varying Tp, r0, Re, Pep,

and Rep: the color represents the value for Tp or Re, the shape represents r0, and

colored outlines represent Pep (or equivalently Rep, since Rep = Pep). The solid

line represents the scaling r̂′ ∼ Û2
rmsTpPep.

Our main conclusion is that the scaling law proposed by Nasab & Garaud

(2020) in the context of the particle-driven convective instability also holds more

generally in mechanically-driven turbulent flows, which is perhaps not surprising,

but needed to be established. As expected, we see points for larger Tp or smaller

r0 have larger r̂sup, while larger r0 results in a smaller Ûrms, and therefore smaller

r̂sup, as discussed in Section 4.3.7. We also see that for larger Re, Ûrms increases

slightly, resulting in larger r̂sup.
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Figure 4.11: Typical particle concentration enhancement over the mean as a
function of Û2

rmsTpPep with varying parameters (i.e. Tp, r0, Re, Rep, and Pep).
The black dotted line represents r̂rms = (0.07)Ûrms(TpPep)1/2 and the solid line
represents r̂rms = (1/10)Û2

rmsTpPep. The legend and details of simulations can be
found in Table 4.1.

4.4.2 Typical particle concentration enhancement

In our previous work (Nasab & Garaud, 2020), we also showed that the typical

particle concentration enhancement r̂rms did not follow the scaling law given by

Eq. (4.24), but instead scaled like

r̂rms ∼
√

Û2
rmsTpPep, (4.26)

which dimensionally is (
ρ′

p

ρ̄p

)
rms

∼
(

u2
rmsτp

κp

)1/2

. (4.27)

We see that this result also holds for this work in Figure 4.11. The data points do

not follow the scaling law (4.24) shown by the solid line, and instead follow the

dashed line representing r̂rms ∼ Ûrms

√
TpPep.
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As argued by Nasab & Garaud (2020), the fact that r̂rms depends on the same

combination of parameters as r̂sup − 1 (albeit with a different power law) strongly

suggests that the entire pdf of the concentration enhancement depends on the

combination Û2
rmsTpPep. To see whether a similar argument applies here, Figure

4.12 presents pdfs of r̂ for selected simulations of varying (a) Tp and (b) r0 (with

simulation details in Table 4.1). These pdfs represent the probability of one pixel

in the simulation to have a concentration whose value lies between r̂ and r̂ + ∆r̂,

where ∆r̂ = 0.002. The pdf would take the form of a delta function centered on

r̂ = 1 in the absence of preferential concentration (Tp → 0), since the particle

density in that case remains equal to one everywhere and at all times.

On the other hand when preferential concentration is present, the pdf broadens

as the particle density becomes more inhomogeneous. We see in Figure 4.12(a),

where Tp is varied while holding r0 = 0.1, Re = 100, P ep = 600, and Rep = 600

constant, that the pdf appears relatively narrow around the mean value r̂ = 1 for

small Tp. As Tp increases, the spatial distribution of the particles becomes more

heterogeneous due to preferential concentration, and the pdf widens considerably.

We also see an increase in the probability of events of no particles (when r̂ ≃ 0) and

the appearance of an elongated tail capturing extreme events where the particle

concentration is largest. The tail is exponential, of the form p(r̂) ∝ e−br̂ (see

Nasab & Garaud, 2020). Moving to Figure 4.12(b) in which r0 is varied while

Tp = 0.01, Re = 100, P ep = 600, and Rep = 600, we see that increasing r0 causes

the pdf to become narrower. This is consistent with the fact that a larger r0

lowers the amplitude of the turbulence in the system, and consequently, weakens

preferential concentration.

Nasab & Garaud (2020) studied more quantitatively the exponential tail of the

pdf, which seems to be almost ubiquitous, and found that its decay rate b scales as
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Figure 4.12: Probability distribution functions for r̂, computed from simulations
that have reached a statistically steady state (a) for varying Tp with r0 = 0.1, Re =
100, P ep = 600, Rep = 600 and (b) for varying r0 with Tp = 0.01, Re = 100, P ep =
600, Rep = 600. The gray lines fit the tail of each pdf and are of the form
p(r̂) ∝ e−br̂. Values of b and simulation details can be found in Table 4.1.

(Û2
rmsTpPep)−1/2. In Figure 4.13, we present b as a function of Û2

rmsTpPep, where

b was found by fitting a decaying exponential function to the pdfs presented in

Figure 4.12, along with additional pdfs computed from simulations with varying

Re, Pep, and Rep. Each simulation is represented by one data point with the same

marker type used in Figures 4.10 and 4.11 (with simulation details in Table 4.1),

where the errors on b are not shown since they are much smaller than the marker

size. The data points appear to follow the blue line given by (Û2
rmsTpPep)−1/2,

consistent with results from Nasab & Garaud (2020). This demonstrates that

r̂rms ∼ 1/b, a result that is not entirely surprising since it would actually be exact

if the pdfs were purely exponential.

4.5 Summary, Applications, and Discussion

4.5.1 Summary

In Nasab & Garaud (2020) we studied preferential concentration in a two-way

coupled particle-laden flow in the context of the particle-driven convective insta-
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Figure 4.13: The slope b of the exponential tail of the pdf of r̂ as a function of
Û2

rmsTpPep for simulations at various Tp, r0, Re, Rep, and Pep (where Rep = Pep).
The blue solid line shows b ∼ (Û2

rmsTpPep)−1/2. See Table 4.1 for more details.

bility. We found that the maximum particle concentration enhancement above

the mean scales as u2
rmsτp/κp, where urms is the rms fluid velocity, τp is the par-

ticle stopping time, and κp is the assumed particle diffusivity. Additionally, we

found that the typical particle concentration enhancement over the mean scales as

(u2
rmsτp/κp)1/2 and the pdf of the particle concentration over the mean has an expo-

nential tail whose slope scales like (u2
rmsτp/κp)−1/2. However, it was not clear that

these results would remain valid in a system in which the turbulence is not driven

by the particles themselves. In this work, we confirm that the results of Nasab &

Garaud (2020) apply in a system in which the turbulence is mechanically-driven.

With this extension to a much wider class of turbulent systems, our model has

important consequences for preferential concentration in the various applications

introduced in Section 4.1. In the next sections, we discuss the potential caveats

one should bear in mind before applying the model to real physical systems, and

present a particular prediction of the model for droplet concentration in clouds.
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4.5.2 Caveats of the model, and extension to higher Re

In general, realistic applications of preferential concentration in natural sys-

tems take place in environments such as clouds, river outflows, or accretion disks,

that are highly turbulent in nature, and whose Reynolds numbers are asymptot-

ically large. Because of this, the velocity spectra have an inertial range which

spans many orders of magnitudes in lengthscales. For sufficiently turbulent flows

satisfying Kolmogorov’s scaling laws, the eddy turnover timescale is proportional

to the eddy lengthscale to the power of 2/3, so one may expect the Stokes number

to increase with wavenumber and reach a maximum at the end of the inertial

range (i.e. near the Taylor microscale). This is at least qualitatively validated

by our finding that the power spectrum of the particle density fluctuations peaks

near the Taylor microscale (see Figure 4.6). This poses two problems in terms of

the extension of our results to very strongly turbulent flows.

On the one hand, it is possible for the Stokes number at the Taylor microscale

Stλ to exceed the threshold of validity of the two-fluid approximation (even if St

is small at the injection scale). This is not a problem for the DNS presented here,

where Stλ = Tpλ̂−2/3 ≲ 0.06 for all simulations listed1 in Table 4.1. However,

real-life turbulent flows that have a very large inertial range (Re ≫ 1) are more

likely satisfy Stλ > 0.3, in which case the two-fluid approximation breaks down

and the scalings discussed here do not apply.

We also note that our theory is predicated upon the assumption that a sin-

gle (possibly scale-dependent) Stokes number adequately summarizes the particle

dynamics for the entire simulation. In practice, of course, this is not the case,

and individual particles traveling through the turbulent flow experience a wide

range of Stokes numbers depending on the local conditions within the eddy they
1With the Taylor microscales computed in Section 4.3.2, we find that Stλ is roughly 2Tp for

Re = 100, 3Tp for Re = 300, and 4Tp for Re = 600
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are currently interacting with. As a result, the two-fluid approximation can lo-

cally break down even if it holds on average. Since one of the main results of our

analysis is concerned with extreme events (i.e. the prediction of the maximum

particle density, and the existence of an exponential tail within the particle den-

sity pdf), one cannot rule out the possibility that these events coincidentally occur

in the rare conditions for which the two-fluid approximation would break down.

This can only be checked by performing Lagrangian simulations with a very large

number of particles (so the tail of the distribution can be probed), and computing

the instantaneous Stokes number of each particle while they are located in dense

regions, which is beyond the scope of this study.

On the other hand, one also needs to question whether results obtained in

DNS at moderate Reynolds numbers remain valid when Re → ∞. Indeed, due to

the high computational cost of running 3D DNS, we only looked at moderately

turbulent systems where Re ≲ 600. In that case, the inertial range of the velocity

spectra is quite limited (see Section 4.3). As a result, the characteristic fluid

velocity measured at the injection scale is comparable to the corresponding fluid

velocity measured at the Taylor microscale. However when Re → ∞, the velocities

at these two scales may be vastly different. This naturally brings up a valid

question concerning the predictive model: is the maximum particle concentration

enhancement dependent on the fluid velocity measured at the injection scale (as

we assumed in this work), or near the Taylor microscale which seems to set the

dominant scale of the particle concentration fluctuations? A further look into the

data may provide some preliminary clue to the answer (although simulations at

much higher Re will ultimately be needed to fully confirm the results).

We saw in Section 4.4 that our predictive model for maximum particle concen-

tration enhancement in the two-fluid approximation depends on the fluid velocity,
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the particle stopping time, and the assumed particle diffusivity, as

(
ρ′

p

ρ̄p

)
max

≈ α
u2(ℓ)τp

κp

(4.28)

for some prefactor α, where here we allow for the possibility that the correct value

of u may be different from urms. We now consider the hypothesis raised above

that the fluid velocity may need to be that of the Taylor microscale instead, such

that ℓ = λ. Assuming a Kolmogorov scaling, it then follows that

u(λ) = urms(λks)1/3, (4.29)

where we recall that 2π/ks = Lz is the height of the computational domain.

Using the fact that λks = λ̂ ∝ Re−1/2 we obtain

u(λ) ∝ urmsRe−1/6. (4.30)

Substituting u(λ) in (4.28), the maximum particle concentration enhancement in

this alternative model would be

(
ρ′

p

ρ̄p

)
max

∼ Re−1/3 u2
rmsτp

κp

. (4.31)

This formula suggests that (ρ′
p/ρ̄p)max should decrease with increasing Re. If

this were the case, then we would expect that (ρ′
p/ρ̄p)max should be approximately

twice as large for Re = 100 in comparison to Re = 600 (with the remaining

parameters fixed to be the same). This is contrary to the observations from our

simulations, in which we see the opposite trend (see, e.g. Figure 4.9(c)). We

therefore conclude that our original model, in which (ρ′
p/ρ̄p)max ∼ u2

rmsτp/κp,

is closer to the correct answer. However, since it does not predict any direct
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dependence of (ρ′
p/ρ̄p)max on Re, while the data suggests that there may be some,

we also acknowledge that it cannot be the complete answer. Simulations at much

higher Reynolds number will be needed to clarify the situation.

4.5.3 Application to natural systems

While the question of the applicability of our model to very large Reynolds

number systems was partially addressed in the previous section, a second, much

more difficult question arises concerning the applicability and validity of the two-

fluid equations themselves. In particular, the central result of this work is the role

of particle diffusion (κp) in controlling the maximum and typical (rms) particle

concentration enhancement (see Sec. 4.4.1-4.4.2), so one may rightfully question

whether the diffusion approximation used in Eqs. (4.1)–(4.4) is valid in the first

place. A complete answer to this question is largely beyond the scope of this

paper, and will require either delicate laboratory experiments, or DNS of a large

number of fully-resolved particles interacting with a turbulent fluid.

In the limit where the particles are very small, however, stochastic collisions

with the fluid molecules are a source of dispersion in the particle transport equa-

tion (usually referred to as Brownian motion), that can be modeled as a diffusion

process and whose coefficient is given by

κp ≈ kBTm

6πspρfν
, (4.32)

where kB = 1.38 × 10−23 J · K−1 is the Boltzmann constant, Tm is the mean

temperature of the fluid, and sp is the particle radius. This expression can be

considered as a lower limit on the effective particle diffusivity, and using it in

conjunction with Eq. (4.25) and (4.27), provides an upper limit on the maximum

particle concentration (ρ′
p/ρ̄p)max and the rms particle concentration enhancement
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(ρ′
p/ρ̄p)rms.

To see what kind of prediction for particle concentration this lower-limit esti-

mate for κp leads to, it is helpful to consider a specific application, such as that

of rain formation in warm clouds (e.g. cumulus or stratocumulus clouds). In

this application, turbulence is generally mechanically-driven, generated by verti-

cal drafts and wind shear. It has been largely hypothesized that the broadening

of the droplet spectrum during the initial stage of droplet growth is due to pref-

erential concentration followed by enhanced collision rates and coalescence Shaw

(2003). With this in mind, we consider small droplets of radius sp = 10 µm and

density ρs = 1000 kg/m3 with the typical values for the properties of ambient air

being ρf = 1 kg/m3, ν ≈ 10−5 m2/s, and a mean temperature of Tm ≈ 300 K.

Based on these estimates, the stopping time for a cloud droplet is given by

τp =
2ρss

2
p

9ρfν
≈ (2 × 10−3 s)

(
sp

10 µm

)2

, (4.33)

and the particle diffusivity due to Brownian motion is given by

κp = (2 × 10−12 m2/s)
(

10 µm
sp

)(
Tm

300 K

)
. (4.34)

Using this, we can then obtain an upper limit estimate of the maximum and

rms particle concentration enhancements as

(
ρ′

p

ρ̄p

)
max

≲ α
u2

rmsτp

κp

≈ 108
(

urms

1 m/s

)2(
sp

10 µm

)2(2 × 10−12 m2/s
κp

)
(4.35)

(
ρ′

p

ρ̄p

)
rms

≲ γurms

√
τp

κp

≈ 2 × 103
(

urms

1 m/s

)(
sp

10 µm

)(
2 × 10−12 m2/s

κp

)1/2

(4.36)

where we have used α ≈ 0.1 and γ ≈ 0.07 extracted from our simulations (see
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Figures 4.10 and 4.11), and a fiducial value of urms = 1 m/s was assumed. This

result is quite remarkable, given that the characteristic Stokes number St associ-

ated with these droplets is very small. Indeed, assuming that the eddy turnover

time is τe ∼ L/urms where L ∼ 1 km is a typical cloud height, we find that

St ≃ τp

τe

≈ (2 × 10−6)
(

sp

10 µm

)2(1 km
L

)(
urms

1 m/s

)
. (4.37)

This suggests that strong preferential concentration is possible even when St ≪ 1

(a surprising result that is supported by the DNS presented in Section 4.3).

Of course, as discussed above, this provides only an upper limit estimate of the

particle concentration enhancement, which is only valid as long as κp is dominated

by the effects of Brownian motion. To check whether this is likely true in the cloud

application considered, we compute the corresponding volume fraction occupied

by the particles in regions of maximal concentration. We find that if the mean liq-

uid water content of the cloud is ρ̄p ≈ 1 mg/m3, then the average volume fraction

occupied by the droplets is Φ̄ = (ρ̄p/ρs) ≈ 10−9. Thus, the associated maximum

and typical volume fraction achievable though preferential concentration are

Φmax ≈ Φ̄(ρ′
p/ρ̄p)max ≈ O(0.1), (4.38)

Φrms ≈ Φ̄(ρ′
p/ρ̄p)rms ≈ O(10−6). (4.39)

With the possibility of very large volume fractions emerging out of the pref-

erential concentration process, we must therefore account for the possibility that

particles may interact hydrodynamically through their wakes, which would in-

crease κp (and therefore lower (ρ′
p/ρ̄p)max and Φmax, and possibly also (ρ′

p/ρ̄p)rms

and Φrms). For simplicity, we use the results of Segre et al. (2001) to construct

an effective diffusion coefficient associated with hydrodynamic interactions. They
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suggest that that the mutually-induced dispersion can be modeled by

κp ≈ β(Φ)spVp, (4.40)

where β is a function of the volume fraction Φ occupied by the particles and Vp

is the velocity of the particles relative to the fluid. Segre et al. (2001) found that

β(Φ) ≲ 0.1 for volume fractions of up to Φ ≈ 0.2. Thus we can construct an

approximate upper limit for κp by setting β = 0.1.

The relative velocity of the particles with respect to the fluid is obtained

following Maxey (1987) (and the arguments presented in Eq. 4.15) to be

Vp = |up − u| ≈ τp

∣∣∣∣∣∂u
∂t

+ u · ∇u
∣∣∣∣∣+ O(τ 2

p ). (4.41)

We can estimate it roughly using dimensional arguments as

Vp(ℓ) ≈ τp
u2(ℓ)

ℓ
≈ τp

u2
rms

L

(
ℓ

L

)−1/3

, (4.42)

assuming a Kolmogorov scaling for the eddy velocity u(ℓ) at scale ℓ. We therefore

see that Vp will be largest at the Taylor microscale, and set ℓ = λ ≈
√

15Re−1/2L

to obtain an upper limit for Vp:

Vp ≲ τp
u2

rms

L
(15)−1/6Re1/6. (4.43)

Using (4.43) in (4.40) we can now obtain an upper limit on κp, as

κp ≲ βspVp ≈ (3 × 10−11 m2/s)
(

sp

10 µm

)3(
urms

1 m/s

)13/6(1 km
L

)5/6

, (4.44)

which is only about one order of magnitude larger than the value for κp obtained
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by considering the contribution due to Brownian motion only (for Eq. 4.35).

We apply this formulation for κp in (4.28) and find that

(
ρ′

p

ρ̄p

)
max

≲ α
u2

rmsτp

κp

≈ 107
(

urms

1 m/s

)2(
sp

10 µm

)2(3 × 10−11 m2/s
κp

)
, (4.45)

(
ρ′

p

ρ̄p

)
rms

≲ γurms

√
τp

κp

≈ 600
(

urms

1 m/s

)(
sp

10 µm

)(
3 × 10−11 m2/s

κp

)1/2

, (4.46)

with a corresponding maximal and rms volume fraction

Φmax ≈ Φ̄(ρ′
p/ρ̄p)max ≈ O(0.01), (4.47)

Φrms ≈ Φ̄(ρ′
p/ρ̄p)rms ≈ O(10−6). (4.48)

Note that since these were obtained using upper limits on κp, they can be viewed

as lower limits on Φmax and Φrms.

Overall, this shows that both lower and upper limit estimates for the particle

diffusivity κp yield relatively consistent results in the context of cloud applications,

and more importantly, that cloud turbulence could produce very large localized

enhancements of the droplet concentration, despite the fact that the Stokes num-

ber is very low. Applications of this work to dust growth in protoplanetary disks

were discussed by Garaud & Nasab (2019), with very similar conclusions.

Of course, our results also show that these extreme events where Φ approaches

Φmax are rare, belonging to the tail of an exponential distribution. However, it

is also well known in the context of both rain formation (Devenish et al., 2012;

Grabowski & Wang, 2013) and planet formation (Birnstiel et al., 2016; Weiden-

schilling & Cuzzi, 1993), that producing a few larger particles is all it takes for

the process to start. Indeed, these larger “lucky particles” then sediment or drift

with respect to the smaller ones, and can continue to grow by sweeping the latter.
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As such, particle growth in these contexts is controlled by what happens in the

tail of the particle size distribution, which is why the results discussed here are

particularly relevant.
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Chapter 5

Identification and classification of

particle clusters

5.1 Motivation and goals

In Chapters 3 and 4, we found that the maximum and typical particle concen-

tration enhancement in a particle-laden flow can be predicted using scaling laws

that depend on certain properties of the system, namely the particle stopping

time τp, the rms fluid velocity urms, and the assumed particle diffusivity κp. In

these studies, we also observed that due to preferential concentration, the particle

field develops dense sheet-like structures (as shown in Figure 4.3). However, we

have yet to quantitatively investigate the physical characteristics of these dense

regions, which may shed light on processes associated with particle growth in rel-

evant applications. For example when studying rain formation, it is important

to study the dynamics that may contribute to enhanced collision rate of smaller

droplets. At the same time, it may also be worth examining how the typical shape

and mass of these dense regions are dependent on the inherent properties of the
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system (such as particle size, turbulence, etc.). From there, we may be able to

distinguish which of these characteristic features play a role in catalyzing droplet

growth. Therefore in this chapter, we focus on identifying characteristic features

of the densest particle concentrations, referred to as “clusters” hereafter.

There are several techniques used in the literature to identify clusters and

their associated topological features. One method to characterize their shape is

that of Minkowski functionals (Minkowski, 1903), which has been primarily used

in cosmology to identify features of large-scale galactic structures (Mecke et al.,

1993; Schmalzing et al., 1995; Schmalzing & Buchert, 1997). Using methods from

integral geometry, Schmalzing & Buchert (1997) developed numerical methods to

quantify the morphology of isodensity contours of a scalar field, where they have

posited that the morphology of a d-dimensional structure is described by d + 1

Minkowski functionals. In 3D for example, the four functionals used are based

on the volume, surface, curvature, and Euler number (based on the number of

vertices, edges, and faces) for a given structure (or in our case, cluster). Other

characteristics can be obtained using these functionals, such as typical dimensions

and general shape of the structure analyzed.

Another standard class of techniques for cluster identification is box-counting

methods, which we use in this study. The name refers to the fact that the do-

main is generally divided into boxes of equal size, so that an averaged particle

concentration can be computed for a given box. A threshold value is employed in

order to identify the denser clusters in the domain. For formalisms which track

individual particles (such as the Lagrangian or fully-resolved formalisms), the

threshold can be set in terms of the number density of particles per box. On the

other hand for two-fluid and Equilibrium formalisms, the threshold can be easily

set by some value of the particle concentration already measured in the system.
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Once the boxes characterized by relatively denser concentrations are found, we

can then determine which of the connected boxes constitute a given cluster. With

the clusters identified, we can then extract and compute relevant quantities of

interest.

Although there exist studies classifying large-scale structures in astrophysical

applications, there are very few studies done in the context of preferential concen-

tration (Aliseda et al., 2002), and none to the author’s knowledge in conjunction

with the two-fluid formalism. In what follows, we revisit the 3D Direct Numerical

Simulations (DNSs) generated from Chapter 4, and develop the tools necessary

to identify particle clusters and compute their aforementioned properties.

For completeness, we present the model and he model set-up consisted of a

particle-laden flow following the two-fluid formalism in which the turbulence is

mechanically-driven by a sinusoidal Kolmogorov flow.associated non-dimensional

equations used from Chapter 4 here. T The system is initialized with a uniform

distribution of particles (see Section 4.2 for more details). The non-dimensional

governing equations are

∂û
∂t

+ û · ∇û = −∇p̂ + r0r̂
ûp − û

Tp

+ 1
Re

∇2û + sin(z)êx, (5.1)

∂ûp

∂t
+ ûp · ∇ûp = û − ûp

Tp

+ 1
Rep

∇2ûp, (5.2)

∂r̂

∂t
+ ∇ · (ûpr̂) = 1

Pep

∇2r̂, (5.3)

∇ · û = 0, (5.4)

where the hatted quantities represent the non-dimensional state variables. These

include the pressure p̂, the fluid velocity û, the particle ûp velocity, and the rescaled

particle concentration r̂ = ρp/(ρfr0) where the ρp is the local particle mass density

and ρf is the mean fluid density, and at initialization r̂ = 1 everywhere. The

120



non-dimensional parameters consist of the non-dimensional stopping time Tp, the

mass loading r0, the fluid Reynolds number Re, the particle Reynolds number

Rep, and the particle Péclet number Pep. We analyze the clusters only after the

system has reached a statistically steady state. We also use several of previously

defined quantities to aid in analyzing the clusters, namely the maximum particle

concentration across the domain r̂sup (4.18), the standard deviation around the

mean particle density r̂ = 1 given by r̂rms (4.19), and the rms fluid velocity Ûrms

(4.20).

Some of the key questions that we hope to answer are the following: (1) Can we

predict cluster characteristics, such as shape and mass, from the parameters of the

system? and (2) How do the individual clusters inform the shape of the probability

distribution function of the particle concentration? With this in mind, the chapter

is organized as follows: In Section 5.2, we introduce the algorithm used to identify

clusters as well as the techniques used to extract certain cluster characteristics. In

Section 5.3, we present the results of our algorithm when applied to the simulations

generated for Chapter 4, and highlight observed trends in the cluster data. We

conclude in Section 5.4 with a discussion of the implications from our findings to

real-life applications, and work that remains to be done in future investigations.

5.2 Methodology

In this section, we describe the algorithm used to identify characteristic fea-

tures of individual particle clusters due to preferential concentration, such as mass,

size, and shape. The method we developed consists of three stages: (1) identifying

and labeling clusters, (2) computing relevant quantities from each cluster, and (3)

filtering and extracting the data pertinent to our study. We also provide several

tests which we ran to verify the accuracy of our algorithm.
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5.2.1 Algorithm

Identification of clusters

The algorithm that we use follows the connected-component labeling (CCL)

method, which was shown to be effective for “blob” classification and extraction

for image analysis (Shapiro, 1992). In order to distinguish denser particle regions

from regions of lower particle concentration, we select a threshold value r̂crit in

which to analyze only the clusters for which r̂ ≥ r̂crit. We create a binary_mask

array to determine where the clusters are located, where the dimensions of the

array correspond to the size of the computational domain. We construct the array

in a way that the elements that are labeled with ones correspond to the grid points

for which r̂ ≥ r̂crit, whereas the remaining elements for which r̂ < r̂crit are labeled

with zeros. We refer to the elements labeled with ones as foreground elements,

and we refer to the elements labeled with zeros as background elements. For our

study, we design the binary_mask array with Nx × Ny × Nz elements so that the

indexed position (i, j, k) corresponds to a grid point at the same indexed position

in physical space.

At this point, we define several other terms that will help us when describing

the labeling procedure. In 2D, two elements are neighbors if they touch one

another on their corners or edges, so that each element has 8 neighbors. In 3D,

two elements are neighbors if they touch one another on their faces, edges, or

corners. As such in 3D, each element is surrounded by 26 neighbors. A cluster

is composed of all of the foreground elements that are connected, and is given a

unique identification number which we refer to here as a label.

We next describe the labeling procedure that consists of a two-pass algorithm.

The first pass assigns temporary labels to the foreground elements, and the second

pass merges any connected clusters and reassigns the same label to the resulting
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merged cluster. We store the labels in the label_mask array, which is initialized

with zeros (and has the same dimensions of the computational domain, i.e. Nx ×

Ny × Nz).

The first pass algorithm is carried out by iterating over each element of the do-

main in row-major order, beginning at (i, j, k) = (0, 0, 0) and ending at (i, j, k) =

(Nx, Ny, Nz). The procedure is outlined below:

1. If the element is a background element, continue to the next element and

repeat step (1). If the element is a foreground element, continue to step (2).

2. Obtain the neighboring labels of the current element from the label_mask

array. If all of the neighboring labels are zeros, then assign and store a

unique label to the current element in the label_mask array. Continue to

the next element, and start over at step (1). Otherwise if at least one the

neighboring labels is non-zero, continue to step (3).

3. Find the neighbor with the smallest label. Assign and store this label to

the current element in the label_mask array. Continue to the next element

and start over at step (1).

It is worth noting that the algorithm takes into account the periodic boundary

conditions. Thus for elements that lie on the boundaries, all neighboring labels

(8 labels for the 2D case, 26 labels for the 3D case) can be successfully obtained.

In Figure 5.1, we show how the first pass labeling procedure uses the binary_mask

array (a) to find the labels of the connected clusters stored in the label_mask ar-

ray (b). For ease of understanding, we present 2D arrays and do not incorporate

periodic boundary conditions in this example. As illustrated in Figure 5.1(b),

there are cases after the first labeling pass where two connected regions (that

should ultimately be labeled as one cluster) have different labels.

We fix this issue with the second labeling pass with what is often called in the
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Figure 5.1: Identification of clusters. Each square in either figure corresponds
to one grid point in a hypothetical 2D 9 × 10 simulation. (a) Binary mask:
Foreground elements are labeled, while background elements are unlabeled. (b)
First pass labeling: When an element is surrounded by neighboring elements with
different labels (boxed in yellow), the element is labeled with the lowest numbered
label.

computer vision community as a union-find data structure (or a merge-find data

structure) (Shapiro, 1992). We keep track of how the different labels are connected

using the parent array. We illustrate how the parent array is constructed in

Figure 5.2, where we use the label_mask found in Figure 5.1(b). In Figure 5.2

we present a tree diagram on the left, where each node of the tree represents

a label and points upwards to another node, otherwise referred to as its parent

node. As shown, there are two disjoint trees (representing the two unconnected

clusters) that are given by the set of labels {1, 2, 3} and {4, 5, 6, 7}. For example,

we see that the parent node of 7 is 5, and the parent node of 5 is 4. We also see

that the root parent nodes are 1 and 4. We store this hierarchy of labels in the

parent array whose index represents a label, and whose values are the labels of

the parent nodes. A parent value that is equal to 0 represent the node of the root

of the tree.

The second labeling pass (or the merging procedure) is then carried out by
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Figure 5.2: Example of a tree diagram and the corresponding parent array.

collapsing the tree structure to its root parent nodes, by reassigning the non-root

node labels with its respective root parent node label. We include the updated

parent array and label_mask in Figure 5.3. We clearly see that after the second

labeling pass, the two disjoint clusters are now correctly labeled.

Extracting cluster information

We then extract relevant quantities of interest from each individual cluster. To

do so, we define a number of diagnostic quantities. The maximum density within

the ith cluster, which occurs at the position x = xsup,i(t) at time t, is defined as

ϱsup,i(t) = r̂(xsup,i, t) = max
χi

r̂(t), (5.5)

where χi is the set of all elements of the ith cluster. The total particle mass is

computed by summing up the mass of each element in χi written as

Mi(t) =
∑
χi

r̂(t) ∆x∆y∆z, (5.6)

where ∆x is the distance between two mesh points in the x direction, and similarly

for ∆y and ∆z.

We are also interested in quantifying the shape of the clusters, in the vicinity

125



Figure 5.3: Merging of clusters. (a) After first pass labeling. (b) After second
pass labeling (merging).

of xsup,i. Therefore, another quantity of interest is the thickness of each cluster

which is defined as the smallest dimension of the cluster around xsup,i. Com-

pared to the previous diagnostic quantities, the thickness for each cluster is not

as straightforward to compute and requires several steps. The first step is to

determine the cluster dimensions along the principal axes around xsup,i. We can

estimate the particle concentration r̂(x) near xsup,i by carrying out a second-order

Taylor expansion given by

r̂(x) ≈ 1
2

(x − xsup,i)T H(xsup,i) (x − xsup,i), (5.7)
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where the Hessian matrix H using (5.7) is

H =



rxx rxy

rxy ryy

 (2D case),



rxx rxy rxz

rxy ryy ryz

rxz ryz rzz,


(3D case),

and where we estimate the partial derivatives by using finite difference approx-

imations. We can then find the principal axes about xsup,i by solving for the

eigenvectors of H (using the dsyev LAPACK routine, see Anderson et al., 1999).

The respective ratios of the eigenvectors can be used to estimate the shape of the

cluster in the vicinity of its densest point.

We can use this information to compute the thickness of a cluster along its thin

dimension. To search for the edge of the cluster, we begin by defining a continuous

version of the binary_cluster array that exists at every point in space, namely

the function A(x) constructed using a particle-in-cell (PIC) weighting scheme,

illustrated in Figure 5.4 and defined in 2D as

A(x, z) = 1
∆x∆z

[
(xhi − x)(zhi − z) binary_cluster(ilo, klo)

+ (xhi − x)(z − zlo) binary_cluster(ilo, khi)

+ (x − xlo)(zhi − z) binary_cluster(ihi, klo)

+ (x − xlo)(z − zlo) binary_cluster(ihi, khi)
]
,

In this formula, the contribution from each neighboring grid point located at
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(x∗, z∗) to the particle is computed as follows:

(
∆x − |x − x∗|

∆x

)(
∆z − |z − z∗|

∆z

)
binary_cluster(i∗, k∗),

where ∆x = xhi − xlo and ∆z = zhi − zlo. With this definition, A is exactly equal

to the binary mask on grid points, but is continuously interpolated in between

grid points. For example, it is easy to see in Figure 5.4 that the contribution to

the particle from the grid point at (xlo, zhi) (corresponding to the index (ilo, khi)

in the binary_cluster array) is the smallest, whereas the contribution from the

grid point at (xhi, zlo) is the largest.

The extension to this algorithm in 3D is trivial, and accounts for the eight

neighboring grid points, where the contribution from each neighboring point

(x∗, y∗, z∗) is

(
∆x − |x − x∗|

∆x

)(
∆y − |y − y∗|

∆y

)(
∆z − |z − z∗|

∆z

)
binary_cluster(i∗, j∗, z∗),

where ∆y = yhi − ylo.

It is also worth mentioning that the PIC weighting scheme incorporates several

special cases with respect to the relative position of the particle to neighboring

particles. For example, if a particle is precisely located on the edge between two

grid points, only the contributions from the two neighboring points are incorpo-

rated into the value for A. If a point lies on the plane of four neighboring points

in 3D, only the contributions from those four points are incorporated (instead of

all eight).

Once A(x) is determined, in order to find the boundary point of a cluster,

we start at xsup,i and go along the direction of the eigenvector with the smallest

eigenvalue, searching for the location where A(x) drops below 1/2. Note that in
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Figure 5.4: Particle-in-cell weighting scheme. We determine the weight of the
particle at (x, z) by taking into account the values of the neighboring points found
in the binary_cluster array.

practice, A(x) is not monotonic, and as a result, we use a two-step method in

order to find the boundary point. The first is a linear stepping scheme in which

we gradually increase the distance from xsup,i until A(x) < 0.2, as illustrated in

Figure 5.5(a). Then we use an interval halving scheme to more precisely pinpoint

the boundary point, corresponding to the location where 0.45 < A(x) < 0.5, as

shown by Figure 5.5(b).

Filtering

As a consequence of choosing a relatively large threshold value for r̂crit, a

significant number of very small clusters are identified (i.e. clusters consisting of

a very small number of foreground elements). In order to eliminate these smaller

clusters from the final data set (and thus the subsequent analyses), we apply a

filter so that the extracted clusters are of the size Ni ≥ 27 for 3D clusters, and

Ni ≥ 9 for 2D clusters.
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Figure 5.5: (a) Linear stepping method to find a point that is sufficiently far
from the cluster corresponding to the region A(x) < 0.2 colored in light blue. (b)
Interval halving method to find the boundary point of the cluster corresponding
to the region 0.45 < A(x) < 0.5 colored in light red.
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5.2.2 Selection of r̂crit

We explored various choices of threshold values r̂crit on our simulations, where

the primary objective here was to isolate a sufficient number of relatively dense

clusters, to gain some confidence in the statistics of their measured properties. In

real-life applications such as clouds for instance, the rationale for choosing r̂crit

may be more physical in nature. For instance, one may be interested in detecting

only the highest density regions for which collisions of smaller droplets are likely

to occur, eventually leading to rain formation.

Recall that for systems in which preferential concentration takes place, an

exponential tail appears for values of r̂ ranging from 1 + r̂rms to r̂sup (see Figure

4.12). Therefore we would expect that regions for which rain formation occur

would coincide with values of r̂ specifically within this exponential tail.

That being said, we found that applying a fixed threshold for each simulation,

e.g. r̂crit = 2 or r̂crit = 1.2, is not useful. This is because the maximum particle

concentration varies dramatically between simulations with low Stokes number

(where r̂sup remains close to 1) and simulations with large Stokes number (where

r̂sup can be much larger than one). We therefore need to select r̂crit to guarantee

that 1 < r̂crit < r̂sup, while providing a meaningful number of clusters across all

simulations.

With that in mind, we systematically explored values of the form r̂crit =

1 + σ r̂rms, where σ is the number of standard deviations above the mean particle

concentration r̂ = 1. When r̂crit is too small, it is difficult to distinguish highly

concentrated regions from lower density regions that also fall within the threshold.

On the other hand when r̂crit is too large, only a handful of clusters are detected,

which is neither realistic nor statistically useful.

Unless otherwise mentioned for the simulations presented here, we set r̂crit =
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1 + 2 r̂rms which we found to be optimal in identifying a substantial number of

clusters, without ever exceeding r̂sup. Note that in real applications, however,

r̂sup is much greater than r̂crit, and the threshold density of interest (e.g. for rain

formation) may have the form 1 + σ r̂rms with σ ≫ 1 instead.

5.2.3 Testing

We verify the accuracy of our algorithm by generating several test cases con-

sisting of clusters of varying size and orientation. For the purpose of clarity, we

refer to any values obtained from our algorithm as “extracted” values, and known

parameters or values originally set in our test simulations as “actual” values.

First we present 2D test cases, shown in Figure 5.6(a), where several clusters

were artificially created. The particle concentration fields of clusters no. 1, 2, 5

and 6 take the form of a Gaussian profile given by

r̂(x, z) ∼ exp
[

− (x − x0)2

2σ2
1

− (z − z0)2

2σ2
2

]
, (5.8)

where the densest region is by construction located at xsup,i = (x0, z0) and the

semi-major axes are given by σ1 and σ2, respectively.

To look at cases where the semi-major axes are not aligned with the x− and

z− axes of the simulation, we model the particle concentration of clusters no. 3

and 4 with

r̂(x′, z′) ∼ exp
[

− (x′ − x′
0)2

2σ2
1

− (z′ − z′
0)2

2σ2
2

]
, (5.9)

where we rotate the points (x, z) counterclockwise through the angle θ with respect
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to the x-axis about the origin with the following transformation

x′ = x cos θ − y sin θ,

y′ = x sin θ + y cos θ.

In Figure 5.6(a), highly concentrated regions are shown in red, and areas with

little to no particles are shown in blue. We select r̂crit to be 1 + 2r̂rms for each

cluster, and outline in yellow where r̂ = r̂crit. We mark the extracted boundary

points in red, and see that they lie on the edges of the cluster (where r̂ = r̂crit)

fairly well. In this test case, we include one cluster (i.e. cluster no. 1) that

intersects the periodic boundaries to ensure that the algorithm correctly identifies

this as one cluster instead of two or more separate clusters.

We compare several actual characteristic quantities of each cluster, such as

the center, the aspect ratio, and the dimensions of the cluster to the extracted

quantities as measured from the algorithm in Table 5.1. The actual center is easily

obtained by xsup,i = (x0, z0) from the equation used to generate each cluster (5.8),

and compares well with the extracted data. The semi-major axes are given by

σ⃗ = (σ1, σ2). To compare the geometry of the clusters, we look at the normalized

vector σ⃗/|σ⃗| for the actual cluster and the normalized vector λ⃗/|λ⃗|, consisting of

the eigenvalues λ⃗ = (λ1, λ2) for the extracted cluster. The actual dimensions of the

cluster are found by solving for the distance between the two boundary points that

lie on r̂ = r̂crit for each of the principal axes. Corresponding cluster diagnostics

extracted from the data are found using the searching scheme previously described.

We include errors for each set of quantities in Table 5.1(a), and see that our

algorithm performs well within an acceptable margin of error.

In Figure 5.6(b), we present a single cluster whose center is located at the

bottom left-hand corner. As a result, the cluster appears on all four quadrants of
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the snapshot. In Table 5.1, we verify that the algorithm accurately identifies this

cluster as a single cluster (and not multiple clusters). In addition, the remaining

extracted values are comparable to those of the actual values. The results of these

boundary test cases are relevant to this study since a significant amount of clusters

do intersect the boundaries of the domain.
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Figure 5.6: Snapshots of the particle concentration field of the 2D test cases.
Concentrated regions are shown in red, and less dense areas are shown in blue.
The dimensions are (Lx, Lz) = (4π, 2π) for (a) and (Lx, Lz) = (π/2, π/2) for (b).
Comparisons of the actual and extracted quantities are provided in Table 5.1.
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Figure 5.7: Snapshots of the particle concentration field of the 3D test cases
taken at y = Ly/2. The dimensions are (Lx, Ly, Lz) = (π/2, π/2, π/2) for both
(a) and (b). Comparisons of the actual and extracted quantities are provided in
Table 5.2.

We also present two 3D test cases where each cluster is of the form

r̂(x, y, z) ∼ exp
[

− (x − x0)2

2σ2
1

− (y − y0)2

2σ2
2

− (z − z0)2

2σ2
3

]
. (5.10)

We compute similar quantities to those of the 2D test cases and present the

results in Table 5.2. We see that as in the 2D test case, the extracted values are

comparable to the respective set of actual values.

5.3 Results

In this section, we describe the results of the cluster algorithm applied to the

snapshots of the particle concentration field r̂ of the 3D DNSs presented in Ch.

4. For each simulation, we apply the algorithm to a single snapshot (taken at one

instant in time) only once the system has reached a statistically steady state. For

reference, the model set-up is described in Section 4.2 with specifications listed in
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Table 5.3. Here we focus our analysis to systems with a particle size range of up

to Tp ≊ 0.03 in moderately turbulent flows with Re ≤ 600.

5.3.1 Properties of the identified clusters

We begin by looking at the properties of the identified clusters detected by

the algorithm, which are found for values of r̂ ≥ r̂crit. As previously mentioned in

Section 5.2.2, we have selected a value of r̂crit well within the exponential tail of

the pdf, which is associated with larger values of r̂. For systems with low Stokes

number, the tail is fairly short so r̂sup − r̂crit is small. In contrast for higher Stokes

number, the exponential tail is much longer due to preferential concentration, and

thus, r̂sup − r̂crit is relatively larger.

We therefore investigate the relationship between r̂sup − r̂crit and certain char-

acteristics of the clusters, such as mass and size. We start by looking at the total

mass fraction of particles contained within the identified clusters which we define

as the ratio of the total mass of the identified clusters to the total particle mass

in the system, namely

ζm =
∑C

i Mi

LxLyLz

, (5.11)

where Mi is the mass of the ith identified cluster (as defined by Eq. 5.6) and C is

the number of identified clusters. Note that because we initialize the system with

a uniform distribution of particles with r̂ = 1 at each grid point, the total particle

mass can then be expressed as the volume of the domain, i.e. LxLyLz.

In Figure 5.8, we present the mass fraction within clusters ζm (5.11) against

dr̂ = (r̂sup − r̂crit)/r̂sup. We note that for this figure as well as for Figures 5.9, 5.11,

5.12, 5.16, and 5.19, each point corresponds to an instant in time once the system

has reached a statistically steady state for a given simulation. The points in red

mark simulations with Re ≥ 300, and the points in yellow represent simulations
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with low Pep = 100; otherwise, the remaining simulations are shown in blue. We

also include several points with a higher detection threshold of r̂crit = 1 + 3 r̂rms

in green. The number next to each point refers to the number of the simulation

listed in Table 5.3, where its characteristics can be found.

We see on Figure 5.8 that for dr̂ < 0.2, the data points appear to be grouped

together with relatively small values of ζm ranging from 10−3 to 10−2. These

points correspond to systems in which preferential concentration is not dominant,

consisting of smaller values of Tp and Pep. In contrast as we move along to larger

values of dr̂ ≥ 0.4, for which preferential concentration is significant, ζm spans

larger values of ζm from about 10−2 to 10−1. These points refer to simulations

with larger Tp ≥ 0.01 (with r0 ≤ 1 and Pep ≥ 300). For the alternative analysis of

simulations 8, 14, and 15 using r̂crit = 1+3 r̂rms, the green points are shifted to the

left and down compared to the corresponding ones obtained using r̂crit = 1+2r̂rms,

as expected from the selection of a higher density threshold. It is interesting to

note that the data appears to collapse to some universal curve, at least for a given

choice of σ (i.e. the green points, which have σ = 3 seem to lie somewhat below

all the other points, which have σ = 2).

We next explore if the identified clusters occupy a significant volume fraction

of the domain. To do so, we consider the total volume fraction of the identified

clusters defined by

ζv =
∑C

i Vi

LxLyLz

=
∑C

i Ni

NxNyNz

, (5.12)

where Vi = Ni ∆x ∆y ∆z is the volume of the ith cluster and Ni is the number

of elements (or grid points) for that same cluster. In Figure 5.9, we present the

volume fraction ζv against dr̂ = (r̂sup − r̂crit)/r̂sup. We see a similar trend as in

Figure 5.8, where larger values of dr̂ result in larger volume fractions ζv. However

it is surprising that for the largest value of dr̂ ≈ 0.9, the value of ζv remains
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Figure 5.8: Mass fraction of the identified clusters ζm versus dr̂ = (r̂sup −
r̂crit)/r̂sup. The number next to each point refers to the number of the simu-
lation listed in Table 5.3, where r̂crit = 1 + 2r̂rms except for select simulations
shown in green with r̂crit = 1 + 3r̂rms. The points in red mark simulations with
Re ≥ 300, and the points in yellow represent simulations with low Pep = 100;
otherwise, the remaining simulations are shown in blue.

relatively low, on the order of O(10−2), given that the relative mass contained

in the clusters can reach values close to 0.1 (se Figure 5.8). This demonstrates

that the mean value of the particle density within clusters has increased quite

significantly.

5.3.2 Properties of the most massive cluster

Since we are interested in the properties of extreme events in particle concen-

tration such as r̂sup, we now focus on the most massive cluster for each simulation,

which we refer to as the “MMC” hereafter. In Figure 5.10, we present a snap-

shot of the particle concentration field r̂ of the MMC for simulations with two

different values of Tp (with the remaining parameters set as r0 = 0.1, Re = 100,

and Rep = Pep = 600). We clearly see that the MMC varies in size, where for
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Figure 5.9: Volume fraction of the identified clusters ζv versus dr̂ = (r̂sup −
r̂crit)/r̂sup. The number next to each point refers to the number of the simulation
listed in Table 5.3, where r̂crit = 1 + 2r̂rms except for select simulations shown in
green with r̂crit = 1 + 3r̂rms. The points in red mark simulations with Re ≥ 300,
and the points in yellow represent simulations with low Pep = 100; otherwise, the
remaining simulations are shown in blue.

the smaller Tp = 0.01, the MMC occupies a small fraction of the domain. On the

other hand for larger Tp = 0.03, the MMC appears to take up almost the entire

volume of the domain.

Figure 5.10: Snapshot of the particle concentration field of the massive cluster
(MMC) for Tp = 0.01 (simulation 6 in Table 5.3) and Tp = 0.03 (simulation 15
in Table 5.3) with the remaining parameters set as r0 = 0.1, Re = 100, P ep =
600, Rep = 600. The minimum value of the colorbar corresponds to r̂crit.
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To gain further insight on why the size of the MMC increases with Tp so much,

we can look at the ratio of the mass of the MMC to the total mass of the identified

clusters given by

M = max Mi∑C
i Mi

. (5.13)

This ratio quantifies how dominant the MMC is compared with all the other

identified clusters: when M is small, the MMC mass is presumably not much

larger than the average mass of other clusters in the simulation, while when M is

closer to one, the MMC contains almost all of the mass of the identified clusters.

In Figure 5.11, we present the relative mass M against dr̂ = (r̂sup − r̂crit)/r̂crit

for each simulation found in Table 5.3. We find that for dr̂ ≤ 0.4, most of the

simulations have a mass fraction M ≈ 0.2, implying that the MMC contains

about 20% of the total mass of dense clusters. In contrast for larger dr̂, almost all

of the simulations are found to have M ≥ 0.3, found within the region boxed in

yellow. We see that for several simulations consisting of higher Tp (specifically for

simulations 10, 14, and 15), M ⪆ 0.6, where one simulation has an exceedingly

large mass fraction of M ≈ 0.9.

We originally speculated that the unexpected size of the MMC relative to the

others in these simulations was due to the neighbor definition set in Section 5.2,

which ultimately determines the size of a single cluster. Recall that in 3D we

impose the condition that two elements are neighbors (and thus part of the same

cluster) if they touch one another on their faces, edges, or corners. Therefore,

a neighboring element simply needs to be within the neighborhood of the 26 el-

ements surrounding the current one. We explored the effect of restricting this

neighborhood size further by imposing the condition that two elements are neigh-

bors only if they touch one another on their faces, decreasing the neighborhood

size to 6 elements. However, we found that this condition did not significantly
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change the size of the MMC, nor the size of the other clusters in the simulation.

From here on, we therefore continue with the original definition of connectivity.

In order to understand why and when the MMC becomes so dominant, we

note that this is certainly the natural outcome one may expect when the volume

fraction of the domain occupied by clusters becomes large, and the probability

that they are connected increases (hence appearing as one large cluster instead of

several small ones). To analyze this more quantitatively, Figure 5.12 shows the

relative mass fraction of the MMC M, versus the total volume fraction ζv of all

the clusters. We see there appears to be a sharp transition between simulations

at low volume fraction (for which M remains small), and simulations at a volume

fraction of ∼ 0.01, where M suddenly jumps to much larger values.

Figure 5.11: Relative mass of the MMC M versus dr̂ = (r̂sup − r̂crit)/r̂sup.
The number next to each point refers to the number of the simulation listed in
Table 5.3, where r̂crit = 1 + 2r̂rms except for select simulations shown in green
with r̂crit = 1 + 3r̂rms. The points in red mark simulations with Re ≥ 300, and
the points in yellow represent simulations with low Pep = 100; otherwise, the
remaining simulations are shown in blue.
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Figure 5.12: Relative mass of the MMC M as a function of volume fraction of the
identified clusters ζv. The number next to each point refers to the number of the
simulation listed in Table 5.3, where r̂crit = 1+2r̂rms except for select simulations
shown in green with r̂crit = 1 + 3r̂rms. The points in red mark simulations with
Re ≥ 300, and the points in yellow represent simulations with low Pep = 100;
otherwise, the remaining simulations are shown in blue.

5.3.3 Connectivity

However, we were initially very surprised to find that the transition between

low M to high M happens at relatively small volume fraction of 0.01. Indeed,

it is easy to show that if the clusters are spherical, and occupy a volume fraction

close to 0.01, they are not expected to be connected (and therefore would not

appear as a single large cluster).

To show this, let’s assume the clusters are spherical with radius rc. Thus for

two clusters to touch, their centers merely need to be within 2rc of one another

as shown by Figure 5.13.

We assume that the probability that a cluster is located at a given position

is uniform in the domain. Then the probability that two clusters are within a
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Figure 5.13: Two spherical clusters with radius rc touch if their centers are
within a distance 2rc of one another.

distance of 2rc is given by the volume of the sphere of radius 2rc divided by the

volume of the domain, namely

4
3π(2rc)3

LxLyLz

= 8Φc, (5.14)

where Φc is the volume fraction of a single spherical cluster.

Following the same logic if there are N clusters in the domain, the probability

that another cluster touches the MMC is

8(N − 1) Φc ≃ 8ζv. (5.15)

We see that if ζv ≃ 0.01, then the probability of any cluster touching the MMC

is around 0.08, which is too low to explain the predominance of large values of

M for ζv ∼ O(0.01). This shows that the results presented in Figure 5.12 are

inconsistent with spherical clusters, and that instead, the transition observed at

ζv = 0.01 must be due to the fact that the clusters are strongly aspherical.
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5.3.4 Shape of the clusters

We take a closer look at the shape of the identified clusters, by first examining

the ratio of the largest dimension of the cluster δ̂max to the smallest dimension

(also referred to as the “thickness”) of the cluster δ̂min, extracted using the method

described in Section 5.2.

In Figure 5.14, we present this aspect ratio δ̂max/δ̂min measured in each cluster,

a function of the maximum cluster density ϱsup,i, for three simulations with varying

Tp (other parameters being held the same, and equal to r0 = 0.1, Re = 100, P ep =

600, Rep = 600, listed as simulations 1, 6, and 15 in Table 5.3, respectively). Each

data point represents a single cluster for a given simulation at an instant in time.

We clearly see that the majority of the clusters have an aspect ratio of about 5

to 15, with several clusters from each simulation exceeding an aspect ratio of 20.

This signifies that the majority of clusters for the simulations presented here are

not spherical.

We also circle the MMC in red for each simulation, and find that the MMC

has a lower aspect ratio compared to clusters with lower ϱsup,i. Note that this is

not the case in all the simulations (where the MMC is sometimes very elongated).

We can explain this by presenting zoomed-in snapshots of r̂ from a simulation

with Tp = 0.01, r0 = 0.1, Re = 100, P ep = 600, Rep = 600 (listed as simulation 6

in Table 5.3). We see on the left in Figure 5.15(a) that the densest regions are

found near the edges of the obvious vortex structure, as expected from Maxey’s

theory. Once the algorithm is applied and only data with r̂ ≥ r̂crit is kept, as

shown in Figure 5.15(b), two clusters are identified.

We also see that the aspect ratio appears to be of order unity for the denser

cluster, but much thinner for the weaker cluster, consistent with Figure 5.14.

However, we now also see why this may be the case: in the MMC, xsup,i is deeply
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Figure 5.14: Aspect ratio of the clusters δ̂max/δ̂min as a function of ϱsup,i for a
simulation with varying Tp with r0 = 0.1, Re = 100, P ep = 600, Rep = 600 (listed
as simulations 1, 6, and 15 in Table 5.3). Note that the lower limit for ϱsup,i in
each simulation is r̂crit, equal to 1.4, 1.6, and 2.5, respectively as Tp increases. The
MMC is circled in red in each case.

Figure 5.15: (a) Zoomed-in snapshot of r̂ for a simulation with Tp = 0.01, r0 =
0.1, Re = 100, P ep = 600, Rep = 600 (listed as simulation 6 in Table 5.3). The
corresponding snapshot (b) depicts the clusters identified by the algorithm, with
the colorbar spanning values from r̂crit to r̂sup.

embedded in a sizable region of r̂ ≥ r̂crit, and the isocontours of r̂ around ϱsup,i

are elliptical (but do not have a particularly extreme aspect ratio). On the other

hand, the weaker cluster has a maximum density that is barely above r̂crit, and
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therefore traces the edge of the r̂ = r̂crit isocontour, which accordingly is sheet-like

or rod-like and has a relatively large aspect ratio.

For completeness, we also look at the average aspect ratio δ̄max/δ̄min and the

aspect ratio δ̂max/δ̂min of the MMC for each simulation in Table 5.3. In Figure 5.16,

we present two sets of data points, where the first is comprised of the filled data

points which capture the relationship between the mean largest dimension δ̄max

against the mean thickness δ̄min of the identified clusters for a given simulation.

The second dataset consists of the non-filled points for which we extract δ̂max

versus δ̂min for the MMC. We clearly see that the filled data points follow the

scaling δ̄max ≃ 10 δ̄min, given by the black dashed line, suggesting that the typical

aspect ratio is approximately 10 for all simulations. This may not be entirely

unexpected since for the simulations presented in Figure 5.14, the aspect ratio

of the clusters is also centered around 10. On the other hand, we previously

postulated that the aspect ratio of the MMC (as circled in red in Figure 5.14)

may be smaller than the average. However this is clearly not the case when we

consider all simulations in Figure 5.16, where we see that for most cases, the

aspect ratio δ̂max/δ̂min of the MMC is also approximately 10 with some degree of

variability.

We can next investigate the shape of the clusters (to determine whether they

are more rod-like or more sheet-like) by looking at the respective ratio of the

Hessian eigenvalues λ3/λ2, and λ2/λ1 (see Section 5.2), where by definition λ1 is

the smallest eigenvalue and λ3 is the largest. The results are presented in Figure

5.17, where we present λ3/λ2 as a function of λ2/λ1. Each data point represents

a single cluster from a simulation with Tp = 0.01, r0 = 0.01, Re = 100, P ep = 600,

and Rep = 600 (listed as simulation 6 in Table 5.3 for details). For reference, we

have also circled the MMC in red. Note that if the clusters were indeed spherical,
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Figure 5.16: Largest dimension versus the smallest dimension, where we look at
the average dimensions using δ̄max and δ̄min represented by the filled data points,
and the dimensions of the MMC δ̂max and δ̂min represented by the non-filled data
points. The number next to each point refers the the number of the simulation
listed in Table 5.3.

then the data points would be found at the bottom left-hand corner with λ3/λ2 = 1

and λ2/λ1 = 1, which is not the case for any of the clusters shown here.

We see instead that the ratio of the two smaller sides λ2/λ1 are found primarily

in the range from 1 to 20, and the ratio of the two larger sides λ3/λ2 are found to

span a larger range from about 1 to 100. Given that the majority of the points

lie about λ3/λ2 = 10 with λ2/λ1 ≤ 10, we can confirm that the clusters are more

likely to be rod-like in shape. We also see several cases in which the shape of the

clusters are sheet-like. These points are found in the right-hand side represented

by values for λ3/λ2 that are relatively small compared to λ2/λ1.
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Figure 5.17: Comparison of dimension lengths with λ3/λ2 as a function of λ2/λ1
for a simulation with Tp = 0.01, r0 = 0.1, Re = 100, P ep = 600, Rep = 600 (listed
as simulation 6 in Table 5.3).

5.3.5 Quantifying the size of the clusters

Next, in order to better understand how the input parameters affect the size

of the clusters, we look at how the thickness δ̂min varies with respect to Tp, Re,

and Pep (where we have assumed here that Rep = Pep). Figure 5.18 shows pdfs

that represent the probability p(δ̂min) of a cluster to have a thickness value that

lies between δ̂min to δ̂min + ∆δ̂, where ∆δ̂ = 0.005. Note that the thickness of a

cluster is measured around xsup,i along its thin dimension (and not the typical

length of an entire cluster).

The blue pdf in Figures 5.18(b)-(d) represents a reference simulation with Tp =

0.01, r0 = 0.1, Re = 100, P ep = 600, and Rep = 600 (given by simulation number

6 in Table 5.3), whose corresponding snapshot of r̂ is given by Figure 5.18(a).

To help visualize the thickness of the clusters in comparison to the reference

simulation, we also include the snapshot of r̂ next to the pdf in red for Figures
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5.18(b)-(d). The colorbar of the snapshots is created to show r̂ < r̂crit in dark

blue, so that the clusters are easily distinguished.

We begin with Figure 5.18(a) in which we compare the results of the reference

simulation to another with lower value of Tp = 0.005, while keeping r0 = 0.1, Re =

100, P ep = Rep = 600 constant (corresponding to simulations 1 and 6 in Table

5.3). We see that the pdf thickness is overall unaffected. This is consistent with

the snapshots shown for (a) and (b), where we see that the thickness of the particle

structures in regions of high density is about the same size for varying Tp. Next in

Figure 5.18(b), we compare the reference simulation with another at higher Re =

600, while holding Tp = 0.01, r0 = 0.1, P ep = Rep = 600 constant (corresponding

to simulations 6 and 8 in Table 5.3). We see the clusters are both more numerous,

as well as smaller and thinner; this can be seen both in the size pdf, and in the

snapshots. Finally in Figure 5.18(c), we compare the reference simulation with

one at lower Pep = Re = 100, while holding Tp = 0.01, r0 = 0.1, Re = 100

constant (corresponding to simulations 4 and 6 in Table 5.3). Although the pdfs

are quite similar, there is a slight increase in thinner clusters for larger Pep. This

is consistent with a visual comparison of the snapshots (d), which show that

the clusters are thinner at larger Pep, consistent with the fact that the particle

diffusivity is smaller in that case.
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Figure 5.18: Probability distribution functions for the thickness δ̂min for (b)
varying Tp, (c) varying Re, and (d) varying Pep and Rep at an instant in time from
simulations that have reached a statistically steady state. The blue pdf represents
a reference simulation where Tp = 0.01, r0 = 0.1, Re = 100, P ep = 600, Rep = 600
(simulation number 6 in Table 5.3), where the corresponding snapshot of r̂ is
shown in (a).

We explored several possible models and ideas to quantify the dependence of

the cluster thickness with input parameters. One of the models explored considers
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that these elongated clusters may be modeled as advection-diffusion boundary

layers in the particle field. The balance between advection and diffusion in the

particle transport equation (5.3) reads as

ûp · ∇r̂ ∼ 1
Pep

∇2r̂. (5.16)

After applying dimensional analysis, we can solve for a lengthscale

δ̂ ∼ 1
ÛrmsPep

, (5.17)

which we assume is a first estimate of δ̂min for a single cluster.

We test the scaling (5.17) against the average thickness of all clusters in a

given simulation, given by δ̄min (shown by the circular points) in Figure 5.19.

We also show, for comparison, the average largest dimension δ̄max (shown by the

triangular points) for all simulations listed in Table 5.3. For each point, we include

errorbars that represent one standard deviation around the mean thickness. Here

we use the same color scheme as previous plots, where the yellow color corresponds

to low Pep = 100, the red color corresponds to high Re ≥ 300, and the blue

color corresponds to remaining simulations for which r̂crit = 1 + 2 r̂rms; otherwise,

the green color represents r̂crit = 1 + 3 r̂rms. The predicted scalings, namely

δ̄ ∼ (ÛrmsPep)−1 are shown as solid black lines.

Focusing on the circular points corresponding to δ̄min first, we see that the

scaling appears to hold for low Pep (shown in yellow). On the other hand for

those points on the right with effectively larger Re or higher Ûrms, the points

appear to asymptote to a constant value that is close to twice the resolution for

our simulations given by 2(Lz/Nz). In other words, the value extracted for δ̄min

on this side of the figure may be an artifact of the truncation set by the grid scale
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of our simulations.

Moving on to the triangular points corresponding to δ̄max, we see that they

follow a very similar trend to the the one found for δ̄min, which is consistent with

our earlier finding that δ̄max ≃ 10δ̄min. Once again simulations with low Pep appear

to follow the scaling law associated with an advection diffusion balance, but as we

move to the right, the points asymptote to a constant. Interestingly, δ̄max seem

to approach the Taylor microscale computed for the corresponding value of Re

(see horizontal lines). This result is consistent with the findings of Chapter 4 (see

Section 4.3) where we saw that the power spectrum of the particle concentration

field peaks near the Taylor microscale. In this case, by contrast with δ̂min, the

results are not expected to be constrained by the numerical resolution, so they

are likely robust.

Figure 5.19: Average thickness δ̄min (circular points) and δ̄max (triangular points)
against ÛrmsPep. The two solid lines represent the scaling δ̄ ∼ (ÛrmsPep)−1. The
dashed horizontal line represents δ̄ = 2(Lz/Nz), and the blue and red dotted lines
correspond to the Taylor microscale λ̂ for Re = 100 and Re = 600, respectively.
Errorbars for each data point represent one standard deviation around the mean.
The labels represent the simulation number found in Table 5.3.

155



5.3.6 Shape of the probability distribution function

The second question of interest raised earlier is to try and understand how

the largest clusters in the simulations contribute to the shape of the particle

density pdfs originally presented in Section 4.4.2, focusing in particular on the

exponential tail of the pdf. That is, we are interested in determining whether the

tail is mostly associated with a single, or a few larger clusters, or whether it is

created by the sum of many smaller clusters. To do so, we present pdfs of r̂ for

Tp = 0.005 (a) and for Tp = 0.01 (b), where we hold the other parameters to be

r0 = 0.1, Re = 100, P ep = 600, Rep = 600. These are listed as simulations 1 and

6 in Table 5.3. The value for p(r̂) represents the probability of one grid point in

the simulation to have a particle concentration whose value lies between r̂ and

r̂ + ∆r̂, where ∆r̂ = 0.002. Since we are interested in the contributions from the

clusters identified by the algorithm, we have set the minimum value on the x-axis

to be equal to r̂crit = 1+2 r̂rms. The black histogram captures the pdf for r̂, while

the colored histograms represent the individual contribution from the five most

massive clusters. The cluster pdfs are labeled in such a way that cluster no. 1 is

the MMC, cluster no. 2 is the second massive cluster, etc.

For the low Tp simulation shown in Figure 5.20(a), we note first that the

shape of the total particle density pdf at the highest values of r̂ is not determined

by the MMC (shown in red) but rather by two clusters no. 2 and 3, which

contain the points with the highest density. We also see that the shape of the

pdf for lower values of r̂ is not determined by those five clusters alone since the

sum of probabilities for a given r̂ is significantly smaller than p(r̂) of the total

density pdf (in black). On the other hand for larger Tp = 0.01, the MMC clearly

dominates across the entire range from r̂crit to r̂sup, compared to the other four

clusters. In this case, we see that the shape of the total density pdf for the highest
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values of r̂ can solely be attributed to the MMC. However, we see again that for

smaller values of r̂, the shape of the total pdf cannot be accounted for by the

five most massive clusters alone, and must instead be due to the combination

of many smaller clusters instead. We note that the pdfs of the largest clusters

in this simulation are also exponential. However, we also know that, had we

selected a higher r̂crit, these would be split into a number of smaller clusters.

We therefore generally hypothesize that the exponential tail of the pdf results

from the superposition of many small clusters whose own density pdf may not be

exponential.

Figure 5.20: Probability distribution functions for r̂ simulations with (a) Tp =
0.005 and (b) Tp = 0.01 (with r0 = 0.1, Re = 100, P ep = 600, Rep = 600). The
black histogram represents the pdf for r̂, where we have set the minimum value of
r̂ = r̂crit. The colored curves represent the top five massive curves (with respect
to Mi).

5.4 Summary and discussion

In Chapters 3 and 4 we first observed that regions of high densities typically

consisted of fine, elongated particle structures due to preferential concentration.

Thus in this chapter, we aimed to identify key features of these structures such
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as the typical aspect ratio, size distribution, volume fraction, etc. that may help

better understand the impact of preferential concentration on particle growth.

We focused our study on the 3D DNSs originally presented in Chapter 4, in

which the turbulence of the system was mechanically-driven by a sinusoidal shear.

There, we showed that when preferential concentration occurs, an exponential

tail associated with large densities appears in the pdf for r̂ (see Figure 4.12).

Thus, in order to focus on clusters whose densities are within the exponential

tail, we restricted our analysis to particle structures of densities several standard

deviations above the mean.

We used a box-counting algorithm to identify the regions of denser concentra-

tions, and accordingly labeled the connected regions as clusters. We found that

the clusters generally take the form of thin, elongated structures, with a typical

aspect ratio of about 10. Additionally upon further examination of the density

field near the center of each cluster, we showed that the cluster shape is found to

be either rod-like or sheet-like. These results coincide with the qualitative data of

the particle concentration field presented in Chapter 4 (see Figures 4.3 and 4.7).

We also looked at how r̂sup − r̂crit was related to the mass and size of the

identified clusters. We noted that larger r̂sup − r̂crit associated with preferential

concentration often resulted in larger total mass fraction ζm and total volume

fraction ζv of the clusters. However, we also found that ζv remained rather small,

with values no more than 10% across all simulations regardless of the value for

r̂sup − r̂crit. To see why this may be the case, we looked at a particular cluster

in the domain: the most massive cluster (MMC). We found that a significant

proportion of the mass (and volume) of the clusters were found in the MMC,

as well as r̂sup. Although one may argue that the existence of the MMC is an

artifact of how the algorithm identifies the clusters, we nevertheless observed that
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the largest concentrations were located within one region of the domain, which

has potential implications to applications for which particle growth is relevant.

For instance we can extend the existence of the MMC to clouds, where we would

then expect to see a relatively large region consisting of higher concentrations of

droplets, where rain formation is most likely to occur.

We then explored the individual contributions of the clusters to the shape of

the total density pdf. We determined that the exponential tail is composed of

many smaller clusters, rather than a single cluster. This is an important result

because it can help constrain models for the origin of the tail, which remains to

be explained.

Contrary to commonly-held beliefs, we also found that the characteristic di-

mension of the cluster along the long-axis is commensurate with the Taylor mi-

croscale, and not the Kolmogorov scale. This is consistent with the discussion

from Chapter 4 (see Section 4.5) that suggested that the Taylor microscale is the

dominant scale of the particle concentration fluctuations as evidenced by the fact

that the power spectrum of the particle concentration field peaked around the

Taylor microscale (see Section 4.3). We explored an advection-diffusion model to

for the width of the cluster, and found it to work as long as the predicted length-

scale was larger than twice the grid resolution. For clusters that would be thinner

than that, we found that the measured thickness was commensurate with the grid

scale, suggesting that our detection algorithm (and simulations) may be limited

by the resolution of the algorithm. Higher resolution simulations will be needed

to establish whether the advection-diffusion model for the cluster thickness holds

for a wider range of parameter space.

Finally, another question that deserves further attention concerns the lifetime

of the identified clusters, and specifically, how the shape and densities of the

159



clusters change over time. With this in mind for clouds, we may be able to

determine the likelihood for coalescence to occur, and thus, be able to predict the

probability of larger raindrops forming for a given cluster. In order to answer this

question however, we would require other means to track clusters individually,

which we do not do in this study.
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Chapter 6

Conclusion

This thesis is motivated by the need to understand particle growth in a num-

ber of geophysical and astrophysical applications, such as in clouds and accretion

disks. One physical process that may play a fundamental role in enhancing colli-

sion rates in particle-laden flows is turbulence-induced preferential concentration,

which describes the tendency of inertial particles to accumulate in certain regions

of the flow, subsequently increasing local particle concentrations. In this work, we

investigated the effect of preferential concentration in turbulent systems consisting

of small, heavy particles using the two-fluid equations. We attempted to charac-

terize and quantify the dependence of various statistical properties of the particle

density field (such as its extremum, its rms, and the tail of the pdf), on the prop-

erties of the turbulence. Finally, we explored the properties of these dense clusters

that may help shed light on collisional growth of relevant applications. One of the

most important conclusions of this thesis is that preferential concentration can

be important even when the Stokes number St is not particularly large, and that

the statistical properties of the particle density distribution are interesting, and

worth studying, even for low St.

In Chapter 3, we studied preferential concentration in a two-way coupled
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particle-laden flow in the particle-induced Rayleigh-Taylor instability. The model

set-up consisted of an unstable particle layer that settles in a stably stratified

fluid. We used 2D DNSs and limited our exploration to particles with Stokes

number ≲ O(0.1). In the presence of preferential concentration during the peak

of the mixing event, we noted strongly enhanced particle concentrations with ob-

served densities several standard deviations above the mean within the bulk of

the particle layer.

We found that the particle concentration enhancement of the system could

be predicted by assuming a dominant balance between the inertial concentration

term and diffusion term from the particle transport equation. Specifically, we

showed that the maximum particle concentration enhancement above the mean is

related to the particle stopping time τp, the rms fluid velocity in the turbulent layer

urms, and the assumed particle diffusivity κp, scaling as u2
rmsτpκp. We also found

that the typical particle concentration enhancement over the mean scales like the

square root of the same parameter group, expressed as (u2
rmsτpκp)1/2. We showed

that the pdfs of particle concentration enhancement had an exponential tail, whose

slope scales as (u2
rmsτpκp)−1/2. Although our findings were valid in the context of

particle-driven convection, it remained to be determined whether the same results

could be obtained in systems where turbulence was driven independently from the

particles themselves.

For this reason in Chapter 4, we tested if the same scalings were also valid

for particle-laden flows in which turbulence was mechanically-driven. To do so,

we drove the mean flow using a body force given by a sinusoidal flow, forcing the

system to be shear-unstable. Due to the high resolution needed for the 3D DNSs

used in this case, we limited our parameter space to Stokes number ≲ O(0.01)

and moderate turbulence with fluid Reynolds number Re ≤ 600. For this study,
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we analyzed the system only once the simulations reached a statistically steady

state. We confirmed that the same scalings for the maximum and typical particle

concentration enhancements applied here as well. Additionally, we showed that

the pdf of the particle concentration again has an exponential tail whose slope

scaled like (u2
rmsτpκp)−1/2.

The predominance of the parameter group u2
rmsτpκp in all of these scalings is to

some extent rather surprising, because it arises from very simplistic arguments of

dominant balance that, admittedly, are probably not very well justified. Indeed,

we assumed a balance between the preferential concentration of the mean particle

density and diffusion terms of the perturbations, shown dimensionally as

r̄∇ · up ∼ κp∇2r′.

But since in many of the simulations r′ ≫ r̄, the largest term in the particle

equation should logically be r′∇ · up instead. However, if we were to follow the

same derivation for the predictive model as originally presented in Section 3.4

with

r′∇ · up ∼ κp∇2r′,

the terms involving particle concentration r′ would cancel out, and one would not

recover the observed scaling for r′/r̄. The fact that two distinct sets of numerical

experiments follow the scaling law proposed in Section 3.4, despite the flaws in

the dominant balance argument, is therefore quite surprising. Future work will

therefore be needed to understand why it works. A possible explanation may lie

in the statistics of the simulations – i.e. the balance r̄∇ · up ∼ κp∇2r′ may only

be true on average in dense clusters, rather than for individual realizations of the

flow.
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Additionally, it also remains unclear, and perhaps counterintuitive, as to why

the proposed scaling depends on urms, and not another measure of the fluid veloc-

ity. Although we do have tenuous evidence that these scalings do hold, this may

be tied to the fact that the turbulence driven in the systems we have explored so

far has a small inertial range, so urms may be taken as a reasonable estimate for

the velocity of the eddies at all scales. By contrast, for turbulence at much higher

Reynolds number, the inertial range spans many decades in eddy scales, so the

typical eddy velocity at the injection scale will be very different from the eddy

velocity at, e.g. the Taylor microscale. When this is the case, the scalings dis-

cussed here may break down. However if the scalings are found to be universally

true (i.e. the urms is the correct choice for systems with higher Reynolds number),

this will have a substantial impact on understanding how turbulence affects the

resulting particle concentration enhancement.

Similarly, another key question that remains unanswered is the reason as to

why the exponential tail of the pdfs of the particle concentration exists in the first

place, and why its slope scales like (u2
rmsτpκp)−1/2. Although we have a strong

clue indicating that the shape of the pdf is related to the fact that it is made up

of many clusters, and that the slope relates to the rms particle concentration, the

reason still remains unclear, and therefore in that regard, future work is needed.

On a positive note, we found that Shotorban & Balachandar (2006) also show

that an exponential tail develops in the particle density pdfs both in the two-fluid

and in the Lagrangian formalisms, demonstrating that it is not an artifact of the

two-fluid equations in our own simulations.

Finally in Chapter 5, we aimed to characterize key attributes of the particle

structures due to preferential concentration. We restricted our study to the dense

regions found within the exponential tail of the pdfs of the particle concentration.
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In order to identify the clusters, we used a box counting algorithm and extracted

cluster features such as mass, size, and shape. Snapshots of the particles in

Chapter 4 showed that the densest regions appeared to be found in elongated, thin

layers. We confirmed this, showing that the typical particle clusters are indeed

filamentary, with a mean aspect ratio of 10. We explored the physics responsible

for the distinct shape of the particle clusters, and found partial evidence that the

long dimension of the clusters is commensurate with the Taylor microscale, while

the smaller dimension may (or may not) be commensurate with the characteristic

width due to the advection-diffusion balance, i.e. δ̂min ∼ (ÛrmsPep)−1 (the latter

finding remains to be confirmed for larger Re, and we would require using a higher

resolution). If these results are proven to hold, then we may be able to use them

to estimate the average volume and mass of particle clusters.

In this thesis, we have demonstrated that preferential concentration can be sig-

nificant for small Stokes number, which has been shown to be relevant for various

applications (see Sections 3.6.2 and 4.5.3). These findings also provide a different

perspective to the current literature, which has primarily focused on particles with

Stokes number of unity, where preferential concentration is found to be the most

efficient in accumulating particles. Our goals in this study were aimed to enable us

to predict statistical properties of the number density of cloud droplets, and then

later to forecast properties of the coagulated drops. In that respect, we were able

to go part way in characterizing several notable aspects of the regions correspond-

ing to significant particle concentration enhancement, where collisional growth is

relevant. In future work, we hope to investigate other turbulent systems and re-

gions of parameter space, such as higher Reynolds numbers, and explore if these

results also hold, which may have further implications to real-life applications.
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Appendix A

Laplace’s Approximation

We start from the nondimensional equation describing the motion of a single

spherical particle as introduced in (1.4)

dv̂p

dt
= 1

St

{
û(x̂p(t), t) − v̂p + ŵs

}
,

where û is the fluid velocity at the particle position x̂p at time t, v̂p is the particle

velocity, and ŵs is the particle settling velocity.

We integrate it over the time interval [t0, t] and obtain the integral solution

for the particle velocity v̂p:

v̂p = e−t/Stv̂p(t0) + ŵs(1 − e−t/St) +
∫ t

t0

û(t′)
St

e(t′−t)/St dt′. (A.1)

In the limit of t ≫ St, the exponential terms outside of the integral are vanishingly

small, and we rewrite v̂p as

v̂p = ŵs + 1
St

∫ t

t0
û(t′)e−(t′−t)/St dt′. (A.2)

We can solve for the integral on the right-hand side by applying the Laplace
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approximation. To do so, we note this term is of the form

∫ b

a
e−λ(t′−t)f(t′) dt′, (A.3)

where

1. λ = 1/St is very large (provided St is very small), and

2. f(t) = ûi(t) is a smooth function,

so that we can use Laplace’s approximation:

∫ b

a
e−λtf(t) dt ≈ e−λa

(
f(a)

λ
+ f ′(a)

λ2

)
. (A.4)

Thus, v̂p can be written as:

v̂p(t) = û(t) + ŵs − St
dû
dt

+ O(St2), (A.5)

which agrees with the equation for the instantaneous particle velocity given by

(1.9).
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