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Preface

This document informally describes our current design for the Titanium language. It is in
the form of a set of changes to Java. Unless otherwise indicated, the reader may assume
the syntax and semantics of Java, version 1.0.
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Chapter 1

Lexical Structure

Titanium adds the following new keywords to Java:

broadcast foreach from immutable inline

local nonshared op overlap partition

polyshared sglobal single template

and the following reserved identifiers:

Domain Point RectDomain
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Chapter 2

Program Structure

Types introduced by Titanium are contained in the package ti.lang (‘Ti’ being the stan-
dard chemical symbol for Titanium). There is an implicit declaration

import ti.lang.*;

at the beginning of each Titanium program.
The main procedure of a Titanium program must have signature

public single static void main(String single [] single args) {

...

}

However, this is sufficiently annoying that the standard Java declaration

public static void main(String [] args) {

...

}

is allowed as an abbreviation.
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Chapter 3

New Standard Types and
Constructors

3.1 Points

The immutable class Point<N>, for N a manifest positive integer constant, is a tuple of
N int’s. Point<N>s are used as indices into N -dimensional arrays.

Operations. In the following definitions, p and pi are of type Point<N>; x, k, and ki

are integers;

• p[i], 1 ≤ i ≤ N , is component i of p. That’s right: the numbering starts at 1. It is
an error for i to be out of bounds.

• [k1, . . . , kn] is a point whose component i is ki.

• Point<N>.all(x) is the Point<N> each of whose components is x.

• Point<N>.direction(d, x) for 1 ≤ |d| ≤ N , is the Point<N> whose component |d|
is x · sign(d), and whose other components are 0. x defaults to 1.

• The arithmetic operators +, -, *, /, applied to two Point<N>s produce Point<N>s
by componentwise operations. * and / are also defined between Point<N>s and
(scalar) integers: for p a Point<N>, s a scalar, and ⊕ an arithmetic operator, p⊕s =
p ⊕ Point<N>.all(s) and s ⊕ p = Point<N>.all(s) ⊕ p. The / operator, in
contrast to its meaning on two scalar integer operands, rounds toward −∞, rather
than toward 0. It is an error to divide by 0.

• If R is any of <, >, <=, >=, or ==, then p0 R p1 for Point<N>s p0 and p1, if p0[i] R
p1[i] for all 1 ≤ i ≤ N . The expression p0!=p1 is equivalent to !(p0==p1).
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• The expression p0.permute (p1), where the pi are Point<N>s and p1 is a permuta-
tion of 1, . . . , N is the Point<N> p for which p[p1[i]] = p0[i].

• p.arity = N , and is a manifest constant.

• The expression p.toString() yields a text representation of p.

3.2 Domains and RectDomains

The type Domain<N>, for N a manifest positive integer constant, is an arbitrary set of
Point<N>s. The type RectDomain<N> is a “rectangular” set of Point<N>s: that is, a set

{p | p0 ≤ p ≤ p1, and for some x, p = p0 + S∗x}

where all quantities here are Point<N>s. S here (a Point<N>) is called the stride of the
RectDomain<N>, p0 the origin, and p1 the upper bound. RectDomain<N>s are used as the
index sets (bounds) of N -dimensional arrays.

Operations: In the following descriptions, N is positive integer, D is a Domain<N>, R
is a RectDomain<N>, and RD may be either a Domain<N> or a RectDomain<N>.

• There is a standard (implicit) coercion from RectDomain<N> to Domain<N>.

• RD.isRectangular() is true for all RectDomains and for any Domain that is rect-
angular.

• A Domain<N> may be explicitly converted to a RectDomain<N> using the usual con-
version syntax: (RectDomain<N>) D. It is a run-time error if D is not rectangular.

• If p0 and p1 are Point<N>s, then [ p0 : p1 ] is the RectDomain<N> with stride
Point<N>.all(1), origin p0, and upper bound p1. If s is also a Point<N>, s >
Point<N>.all(0), then [ p0 : p1 : s ] is the RectDomain<N> with origin p0, upper
bound p1, and stride s. Because of the definitions of origin and upper bound at the
beginning of this section, it follows that if not p0 ≤ p1, then both [ p0 : p1 ] and [

p0 : p1 : s ] are empty.

So, for example, to get the set of all Point<2>s of the form [i, j], with 0 ≤ i < M
and 0 ≤ j < N , we may use

[ [0, 0] : [M-1, N-1] ]
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and to get the subset of this set in which all coordinates are even we may write

[ [0, 0] : [M-1, N-1] : [2, 2] ]

• If ij, kj, and sj, 1 ≤ j ≤ N , are ints, with sj > 0, then

[ i1 : k1 : s1, . . . , iN : kN : sN]

is the same as

[ [ i1, . . . , iN ] : [ k1, . . . , kN ] : [ s1, . . . , sN] ].

and

[ i1 : k1, . . . , iN : kN]

is the same as

[ [ i1, . . . , iN ] : [ k1, . . . , kN ] ].

• RD.arity = N , and is a manifest constant.

• The expression RD.min() yields a Point<N> such that RD.min()[k] is the min-
imum over all p in RD of p[k]. Likewise for RD.max(). For empty domains,
RD.min() yields a point all of whose coordinates are Integer.MAX VALUE, and
RD.max() yields a point all of whose coordinates are Integer.MIN VALUE.

• RD.boundingBox() yields

[ RD.min() : RD.max() ].

For RectDomains R with unit stride, R.boundingBox()=R.

• R.stride() yields the minimal Point<N>, s > Point<N>.all(0) such that R =

[p0 : p1 : s] for some p0 and p1. (This need not be the same as the stride used to
construct R in the first place: for example,

([ 0:1:2, 0:1:2 ]).stride()

is [1,1], not [2,2].)

• RD.size() is the cardinality of RD (the number of Points it contains). The predicate
RD.isNull() is true iff RD.size() = 0.

• R.permute(p1) is the RectDomain<N> consisting of all points p.permute(p1) for p
in RD.
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• The operations +, -, and * are defined between any combination of RectDomain<N>s
and Domain<N>s. They stand for union, difference, and intersection of the sets of
elements in the operand domains. The intersection of two RectDomain<N>s yields a
RectDomain<N>. All other operations and operands yield Domain<N>s.

• For a Point<N>, p, the expressions RD+p, RD−p, RD∗p, and RD/p compute the
domains

{d|d = d′ ⊕ p, for some d′ ∈ RD}

where ⊕ = +, -, *, or integer division rounded toward −∞ (unlike ordinary integer
division, which rounds toward 0). Divisions require that each p[i] be non-zero, and,
if RD is a RectDomain, that each RD.stride(i) either be divisible by p[i] or less
than p[i]; it is an error otherwise. If RD is a RectDomain, so is the result.

• The operations <, ==, !=, >, <=, and >= are defined between RectDomains and between
Domains and represent set comparisons (< is strict subset, etc.).

• The expression RD.contains(p), for Point<N> p, is true iff p ∈ RD.

• The expression R.accrete(k, dir, s) gives the result of adding elements to R on
the side indicated by direction dir , expanding it by k ≥ 0 strides of size s > 0 (all
arguments but R are integers). That is, it computes

R+(R+Point<N>.direction(dir, s))+ . . .+(R+Point<N>.direction(dir, s ·k))

and returns the result (always rectangular) as a RectDomain. It is an error if R could
not have been constructed with a stride of s in direction dir, so that the resulting set
of elements would not be a RectDomain. [It is not possible always to get the stride
from R, since it is not well-defined when R is degenerate (empty or having only one
value for index k of its Points.] The argument s may be omitted; it defaults to 1.
Requires that 1 ≤ |dir| ≤ N .

• The expression R.accrete(k, S) gives the result of expanding R on all sides by
k ≥ 0, as for the value V computed by the sequence

V = R.accrete(k, 1, S[1]); V = V .accrete(k, -1, S[1]);
V = V .accrete(k, 2, S[2])....

The argument S is a Point with the same arity as R. It may be omitted, in which
case it defaults to all(1).

• The expression R.shrink(k, dir) gives the result of shrinking R on the side indi-
cated by direction dir by k ≥ 0 strides of size R.stride(|dir |) That is, it computes

R∗(R+Point<N>.direction(dir, s))∗ . . . ∗(R+Point<N>.direction(dir,−k ·s)).

7



where s is R.stride(|dir |). Requires that 1 ≤ |dir| ≤ N .

• The expression R.shrink(k) gives the result of shrinking R on all sides by k ≥ 0
strides, as for the value V computed by the sequence

V = R.shrink(k, 1).shrink(k, -1).shrink(k, 2)....

• The expression R.border(k, dir, shift) consists, informally, of the k-thick (k ≥ 1)
layer of index positions on the side of R indicated by dir , shifted by shift positions
in direction dir . Thus,

R.border(1, dir, 0)

is the layer of cells on the face of R in direction dir , while

R.border(1, dir, 1)

is the layer of cells just over that face (outside the interior of R). More formally, it is

R.accrete(k, dir) - R + Point<N>.direction(dir, shift-k)

Requires that k ≥ 0, 0 < |dir| ≤ N . As shorthand,

R.border(k, dir) = R.border(k, dir, 1)

and

R.border(dir) = R.border(1, dir, 1).

• The expression R.slice(k), where 0 < k ≤ N , and N > 1 is a RectDomain<N − 1>
consisting of the set

{[p1, . . . , pk−1, pk+1, . . . , pN ] | p = [p1, . . . , pn] ∈ R}.

• The expression D.RectDomainList() returns a one-dimensional array (see §4.2) of
type RectDomain<N>[1d] containing zero or more disjoint, non-null domains whose
union (treated as Domain<N>s) is D.

• The expression Domain<N>.toDomain(X), where X is of type RectDomain<N>[1d]

and has disjoint members, yields a Domain<N> consisting of the union of the elements
of X.

8



• The expression D.PointList() returns an array of type Point<N>[1d] of distinct
points consisting of all the members of D.

• The expression Domain<N>.toDomain(X), where X is of type Point<N>[1d] and
has distinct members, yields a Domain<N> whose members are the elements of X.

• The expression RD.toString() yields a text representation of RD.

• The expression Domain<N>.setRegion(reg), where reg is a Region, is described in
§6.3.2.

Control Structures: The construct

foreach (p in RD) S

for RD any kind of domain, executes S repeatedly, binding p to the points in R in some
unspecified order. The scope of the control variable p is S. It is constant (final) within its
scope. The control constructs break and continue function in foreach loops analogously
to other loops.

9



Chapter 4

New Type Constructors

4.1 Syntax

Titanium modifies Java syntax to allow for grid types (§4.2), and the qualifiers local

(§6.1), nonshared (§6.2), polyshared (§6.2) and single (§9.3.1).

Type:
QualifiedBaseType ArraySpecifiersopt

QualifiedBaseType:
BaseType Qualifiersopt

ArraySpecifiers:
ArraySpecifiers ArraySpecifier
ArraySpecifier

ArraySpecifier:
[] Qualifiersopt
[ IntegerConstantExpression d ] Qualifiersopt

Qualifiers:
Qualifier Qualifiers
Qualifier

Qualifier: single | local | nonshared | polyshared

BaseType: PrimitiveType | ClassOrInterfaceType

10



where PrimitiveType and ClassOrInterfaceType are from the standard Java syntax. The
grouping of qualifiers with the types they modify is as suggested by the syntax: In Quali-
fiedBaseType, the qualifiers modify the base type. Array specifiers apply to their Qualified-
BaseType from right to left: that is, ‘T [1d][2d]’ is “1-D array of (2-D arrays of T).” The
qualifiers in the array specifiers apply to the type resulting from the immediately preceding
array specification. That is, for qualifiers Q1, Q2, Q3,

Object Q3 [] Q1 [] Q2 V;

defines V to be a Q1 array of Q2 arrays of Q3 Objects. We call Q1 the top-level qualifier,
and Q3 the base qualifier.

The qualifier single is outwardly contagious. That is, the type “array of single T” (T
single [...]) is equivalent to “single array of single T” (T single [...] single).

Atomic types. An atomic type is either a primitive type (int, double, etc.), or an
immutable class (see §5) whose fields all have atomic type.

4.2 Arrays

A Java array (object) of length N—hereafter called a standard array—is an injective
mapping from the interval of non-negative integers [0, N) to a set of variables, called
the elements of the array. Titanium extends this notion to grid arrays or grids; an N -
dimensional grid is an injective mapping from a RectDomain<N> to a set of variables. As
in Java, the only way to refer to any kind of array object—standard or grid—is through
a pointer to that object. Each element of a standard array resides in (is mapped to from)
precisely one array1. The elements of a grid, by contrast, may be shared among any number
of distinct grids. That is, even if the array pointers A and B are distinct, A[p] and B[p]

may still be the same object. We say then that A and B share that element.
As for other objects, The value null is a legal value for a grid variable, and it is legal to

compare grid quantities (using == or !=) against the literal null. However, it is not legal
to compare non-null grids with == or !=. It is also illegal to cast grid values to the type
Object.

For a non-grid type T , the type “N -dimensional grid with element type T” is denoted

T[Nd]

1This does not mean that there is only one name for each element. If X and Y are arrays (of any kind),
then after ‘X=Y;’, X[p] and Y[p] denote the same variable. That is an immediate consequence of the fact
that arrays are always referred to through pointers.
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where N is a positive manifest integer constant. When that constant is an identifier, it
must be separated from the ‘d’ by a space2. To declare a variable that may reference
two-dimensional grids of doubles, and initialize it to a grid indexed by the RectDomain<2>
D, one might write

double[2d] A = new double[D];

For the type “N0-dimensional grid whose elements are N1-dimensional grids. . . whose ele-
ments are of type T ,” we write

T[N0d][N1d]· · ·.

There is a reason for this irregularity in the syntax (where one might have expected a
more compositional form, in which the dimensionalities are listed in the opposite order).
The idea is to make the order of indices consistent between type designations, allocation
expressions, and array indexing. Thus, given

double[1d][2d] A = new double[D1][D2];

we access an element of A with

A[p1][p2]

where D1 is a RectDomain<1>, D2 a RectDomain<2>, p1 a Point<1>, and p2 a Point<2>3.
Two grid types are assignment compatible only if they are identical, aside from nar-

rowing and widening conversions on top-level qualifiers (see §6.1 and §6.2.4). This is in
contrast to the restriction for Java arrays, which is as in standard Java: assignment conver-
sion of one array-of-reference type to another is possible if the element types are assignment
convertible.

Grid types are (at least for now) not quite complete Java Objects, in that they may
not be coerced to type Object. This restriction aside, they are otherwise reference types,
and are subject to reference qualification (see §4).

4.2.1 Operations:

In the following, take p, p0, . . . to be of type Point<N>, A to be a grid of some type T
[Nd], and D to be a RectDomain<N>.

2It is true that when N is an integer literal, Nd is syntactically indistinguishable from a floating-point
constant in Java. However, in this context, such a constant would be illegal.

3Take these examples with a grain of salt. In general, it is preferable to use a RectDomain<3> index set
in preference to the array-of-arrays seen here, if the algorithm justifies it, because compilers are apt to do
better with the former.
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• A.domain() is the domain (index set) of A. It is a RectDomain<N>.

• A[p] denotes the element of A indexed by p, assuming that p is in A.domain(). It
is an lvalue—an assignable quantity—unless A is a global array of local references,
in which case it is unassignable.

• The expression A.copy(B) copies the contents of the elements of B with indices
in A.domain()*B.domain() into the elements of A that have the same index. It is
illegal if A and B do not have the same grid type. It is also illegal if A is a global
array whose element type has local qualification (it is easy to construct instances in
which such a copy would be unsound). Finally, it is illegal if B resides in a private
region, A resides in a shared region (see §6.3), and the elements of B have a non-
atomic type (see §4.1). (This last provision is a conservative restriction to prevent
situations where objects allocated in shared regions contain references to objects in
private regions.) It is legal for A and B to overlap, in which case the semantics are
as if B were first copied to a (new) temporary before being copied to A. See also the
operations for sparse-array copying described in §12.11.

• A.arity is the value of A.domain().arity when A is non-null, and is a manifest
constant.

• If i1, . . . , iN are integers, then A[i1, . . . , iN] is equivalent to A[ [i1, . . . , iN] ]. (Syn-
tactic note: this makes [...] similar to function parameters; applications of the
comma operator must be parenthesized, unlike C/C++)

• The following operations provide remappings of arrays.

– A.translate(p) produces a grid, B, whose domain is A.domain()+p, such that
B[p+x] aliases A[x].

– A.restrict(R) produces the restriction of A to index set R. R must be a
RectDomain<N>.

– A.inject(p) produces a grid, B, whose domain is A.domain()*p, such that
B[p*x] aliases A[x].

– A.inject(p).project(p) produces A. For other arguments, project is unde-
fined.

– A.slice(k, j) produces the grid, B, with domain A.domain().slice(k) such
that

B[[p1, . . . , pk−1, pk+1, . . . , pn]] = A[[p1, . . . , pk−1, j, pk+1, . . . , pn]].

It is an error if any of the index points used to index A are not in its domain,
or if A.arity()≤ 1.
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– A.permute(p), where p is a permutation of 1, . . . , N , produces a grid, B, where
A[i1, . . . , iN] aliases B[ip[1], . . . , ip[N ]].

• A.set(v), where v is an expression of type T , sets all elements of A to v.

• The I/O operations described in §12.12.1.

• The sparse-copying operations described in §12.11.

4.2.2 Overlapping Arrays.

As for any reference type in Java, two grid variables can contain pointers to the same
grid. In addition, several of the operations above produce grids that reference the same
elements. The possibility of such overlap does not sit well with certain code-generation
strategies for loops over grids. Using only intraprocedural information, a compiler can
sometimes, in principle, determine that two grid variables do not overlap, but the problem
becomes complicated in the presence of arbitrary data structures containing grid pointers,
and when one or more grid variable is a formal parameter.

For these reasons, Titanium has a few additional rules concerning grid parameters:

• Formal grid parameters to a function (including the implicit this in the case of
methods defined on grids) may not overlap unless otherwise specified—that is, given
two formals F1 and F2, none of the variables F1[p1] may be the same as F2[p2]. It is
an error otherwise.

• The qualifier ‘overlap(F1,F2)’ immediately following a method header, where F1

and F2 name formal parameters of that method, means that the restriction does not
apply to F1 and F2. (There is no restriction that F1 and F2 have the same type or
even that they be grids. When they are not grids of the same type, however, the
qualifier has no effect.)

• To specify that two grid variables X and Y do not overlap at some point in a program,
the programmer inserts the call

X.noOverlap(Y ).

This is a method on grids that behaves somewhat as if defined

public void noOverlap (T[] B) {},

which, by the rules above, does nothing and requires that B and this not overlap.
The qualifier “somewhat” is needed in this description because in fact the call is legal
regardless of the element type or local qualification of any of the operands.
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4.2.3 Restrictions on Standard Arrays

The possibilities of local qualification and of residence in private regions require additional
restrictions on the standard array method System.arraycopy, analogous to those on the
.copy operation for grids. For standard arrays A and B, the call

System.arraycopy (A, k0, B, k1, len)

is illegal if A is a global array whose element type has local qualification. It is also illegal
if A resides in a private region, B resides in a shared region (see §6.3), and the elements
of A have a non-atomic type (see §4.1).
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Chapter 5

Immutable Classes

Immutable classes (or immutable types) extend the notion of Java primitive type to classes.
An immutable class is a final class that is not a subclass of Object and whose non-static
fields are final. It is declared with the usual class syntax and an extra modifier

immutable class C { ... }

Non-static fields are implicitly final, but need not be explicitly declared as final.
Because immutable classes are not subclasses of any other class, their constructors may

not call super() explicitly, and, contrary to the usual rule for Java classes other than
Object, do not do so implicitly either.

There are no type coercions to or from any immutable class, aside from those defined
on standard types in the Titanium library (see §3.2). The standard classes Point<N>,
RectDomain<N>, and Domain<N> are immutable.

The value null may not be assigned to a variable of an immutable class. The initial
value of a variable of immutable class T is new T()1. Initialization of the fields in objects
of these types follows the rules of Java 1.2.

Circular chains of immutable types are disallowed. That is, no immutable type may
contain a subcomponent of its own type. Here, a subcomponent is a field, or a subcompo-
nent of a field, where the field has an immutable type.

By default, the operators == and != are defined by comparison of the fields of the
object. Any void finalize() method supplied with an immutable object is ignored.

1This is not quite sufficient, but suffices for non-pathological programs. In standard Java, the effect of
accessing a field before it has been properly initialized is well-defined (even when it is illegal!) in such a
way as to be easy to implement (i.e., zero out all storage immediately upon allocation). The analogous
implementation for a field of immutable class, assuming that objects of that class are unboxed, has a
peculiar semantic description: the field is initialized to point to an uninitialized object in which all fields
have their default values. This object is then initialized at the normal time (i.e., at the time its constructor
would have executed had it been of an ordinary class).
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As a consequence of these rules, it is impossible, except in certain pathological programs,
to distinguish two objects of an immutable class that contain equal fields. The compiler is
free to ignore the possibility of pathology and unbox immutable objects.

The ‘+’ operator (concatenation) on type String is extended so that if S is a string-
valued expression and X has an immutable type, then S+X is equivalent to S+X.toString()

and X+S is equivalent to X.toString()+S. These expressions are therefore illegal if there
is no toString method defined for X, or if that method does not return a String or
String local.
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Chapter 6

Pointers and Storage Allocation

6.1 Demesnes: local vs. global pointers

In Titanium, the set of all memory is the union of a set of local memories, called demesnes
here to give them a veneer of abstraction. Each object resides in one demesne. Each
process (§9) is associated with one demesne—called simply the demesne of the process. A
local variable resides in the demesne of the process that allocates that variable. An object
created by new and the fields within it reside in the demesne of the process that evaluates
the new expression.

The intent is that on a uniprocessor implementation, there will be a single demesne,
and likewise on a shared-memory multiprocessor. On a pure distributed-memory multi-
processor, there would be a single demesne corresponding to each processor. Finally, on a
distributed cluster of shared-memory multiprocessors, there would be one demesne for the
processes on each shared-memory node.

The static types ascribed to variables (locals, fields, and parameters) containing refer-
ence values and to the return values of functions that return reference values are either
global or local. A variable having a local type will contain only null or pointers whose
demesnes are the same as that of the variable. A pointer contained in a variable with
global type may have any demesne. A locally qualified variable may be assigned only a
value whose type is (statically) local. The purpose of the distinction between local and
global references is to improve performance. Dereferencing a global reference requires a test
to see whether the referenced datum is accessible with a native pointer; communication is
needed if it is not. Local references are for those data known to be accessible with a native
pointer. Global references can be used anywhere but local references don’t travel well.

Standard Java type designators for reference types denote global types. The modifier
keyword local indicates a local reference. For examples:

Integer i1; /* i is a global reference */
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Integer local i2; /* i is a local reference */

int local i3; /* illegal: int not a reference type */

Reference types used in static fields may never be local. For grids, there is an additional
degree of freedom:

/* A1 is a global pointer to an array of variables that may reside

* remotely (i.e., in a different demesne from the variable A1). */

int[1d] A1;

/* A2 is a local pointer to an array of variables that reside

* locally (in the same demesne as A2). */

int[1d] local A2;

/* A3 is a local pointer to an array of variables that reside

* locally and contain pointers to objects that may reside

* remotely. */

Integer [1d] local A3;

/* A4 is a local pointer to an array of variables that reside

* locally and contain pointers to objects that reside locally */

Integer local [1d] local A4;

/* A5 is a global pointer to an array of variables that may

* reside remotely and contain pointers to objects that

* may reside remotely */

Integer [1d] A5;

/* A6 is a global pointer to an array of variables that may

* reside remotely and contain pointers to objects that reside

* in the same demesne as that array of variables. */

Integer local [1d] A6;

We refer to a reference type apart from its local/global attribute as its object type.
Coercions between reference types are legal if, first, their object types obey the usual

Java restrictions on conversion (plus Titanium’s more stringent rules on arrays). Second,
a reference value may only be coerced to have a local type (by means of a cast) if it is null
or denotes an object residing in the demesne of the process performing the coercion. It is
an error to execute such a cast otherwise. Coercions from local to corresponding global
types are implicit (they extend assignment and method invocation conversion). Global to
local coercions must be expressed by explicit casts.

If a field selection r.a or r[a] yields a reference value and r has static global type,
then so does the result of the field selection.

All reference classes support the following operations:
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r.creator() Returns the identity of the lowest-numbered process whose demesne contains
the object pointed to by r. NullPointerException if r is null. This number may differ
from the identity of the process that actually allocated the object when multiple
processes share a demesne.

r.isLocal() Returns true iff r may be coerced to a local reference. This returns the same
value as r instanceof T local, assuming r to have object type T. On some (but
not all) platforms r.isLocal() is equivalent to r.creator() == Ti.thisProc().

r.regionOf() See §6.3.2.

r.clone() Is as in Java, but with local references inside the object referenced by r set
to null. The result is a global pointer to the newly created clone, which resides in
the same region (see §6.3.2) as the object referenced by r. This operation may be
overridden.

r.localClone() Is the default clone() function of Java (a shallow copy), except that r
must be local. The result is local and in the same region (see §6.3.2) as the object
referenced by r.

To indicate that the special variable this in a method body is to be a local pointer,
label the method local by adding the local keyword to the method qualifiers:

public local int length () {...}

Otherwise this is global. If necessary, the value for which a method is invoked is coerced
implicitly to be global. A static method may not be local.

6.2 Data Sharing

In Titanium, the type of any reference includes information about how the referent is
shared among multiple processes. The nonshared and polyshared qualifiers encode this
information. By default, most data is assumed to be shared; there is no explicit shared

qualifier. A nonshared qualifier declares that the reference addresses data that is not
shared: it is only accessible by processes within the same demesne as the data itself. A
polyshared qualifier indicates that the reference addresses data that may be shared or
may be non-shared.

6.2.1 Basic Syntax

The nonshared and polyshared qualifiers can modify any reference type, including named
reference classes, named interfaces, Java arrays, and Titanium arrays. Sharing qualifiers
on arrays may be set independently for elements and for the array as a whole. Thus:
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/* a shared object */

Object x;

/* a non-shared object */

Object nonshared y;

/* either a shared or a non-shared array of non-shared objects */ \\

Object nonshared [] polyshared z;

Sharing qualifiers may modify types in any context where types are expected, includ-
ing field declarations, variable declarations, formal parameter declarations, method return
type declarations, catch clauses, cast expressions, instanceof expressions, and template
parameters. The nonshared qualifier can be used in allocation expressions to allocate non-
shared data rather than the default shared data. However, the polyshared qualifier may
not be used to directly allocate data with unknown sharing; this is a compile-time error:
allocated data must be either shared or non-shared at the topmost level. Thus:

/* ok: a shared object */

Object a = new Integer(6);

/* ok: a non-shared object */

Object nonshared b = new Integer nonshared (6);

/* error: cannot allocate polyshared data */

Object polyshared z = new Integer polyshared (6);

/* ok: a shared array of polyshared objects */

Object polyshared [] c = new Object polyshared [10];

/* ok: a non-shared array of polyshared objects */

Object polyshared [] nonshared d = new Object polyshared [10] nonshared;

/* error: cannot allocate polyshared data */

Object polyshared [] polyshared e = new Object polyshared [10] polyshared;

Reference types can have zero or one sharing qualifier: it is an error to qualify any type
as both nonshared and polyshared. Primitive and immutable types may not be qualified
as either nonshared or polyshared.

6.2.2 Methods

Within a reference class, a sharing qualifier may also appear among the qualifiers for a
non-static method or constructor, in which case it applies to the implicit this parameter
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within the method or constructor body. It is an error to add any sharing qualifier to a
static method, immutable method, or immutable constructor. It is an error to add more
than one sharing qualifier to a reference class method.

Types that vary only in their sharing qualifiers are considered distinct types for purposes
of method overloading and method overriding. This applies equally to formal method
parameters, method return types, and the this qualifier.

6.2.3 Implicit Sharing Qualifiers

In several instances, the sharing status of entities is implicit:

• Within field initialization expressions of reference classes, this is assumed to be
polyshared.

• If the compiler provides a default constructor (Java spec §8.8.7), then this constructor
is assumed to be polyshared.

• String literals are assumed to be shared.

• The null type can be converted to any shared, non-shared, or polyshared reference
type, so the sharing qualification of the null literal is unspecified and irrelevant.

In all other contexts, unqualified types are assumed to be shared.

6.2.4 Conversion

Standard Java conversion rules are modified as follows.
All widening reference conversions (Java spec §5.1.4) are restricted to apply only when

at least one of the following conditions hold:

• the source type and destination type have identical top-level sharing qualifiers (that
is, the sharing qualifiers that apply to the types as a whole—as opposed to the types
of components—are identical).

• the source type is the null type

• the destination type’s top-level sharing qualifier is polyshared

Widening reference conversion of array types is further constrained to apply only when
the top-level sharing qualifiers of the element types are identical. For example:
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/* ok: (top-level) destination type is polyshared */

Object polyshared o1 = new Integer nonshared (7);

/* ok: top-level destination type is polyshared, element types

* match. */

Object nonshared [] polyshared o2 =

new Object nonshared [10] nonshared;

Object nonshared [] polyshared [] nonshared o3 =

new Object nonshared [10] nonshared [10] nonshared;

/* error: top-level qualifiers on elements do not match:

* (polyshared vs. non-shared) */

Object polyshared [] o4 = new Integer nonshared [];

Object nonshared [] nonshared [] polyshared o3 =

new Object nonshared [10] nonshared [10] nonshared;

All narrowing reference conversions (Java spec §5.1.5) are restricted to apply only when
the source type and destination type have identical top-level sharing qualifiers. Narrowing
reference conversion of array types is further constrained to apply only when the top-
level sharing qualifiers of the element types are identical. Informally, one cannot convert
polyshared data back to shared or non-shared data, even using a run time test.

6.2.5 Restricted Operations

Non-shared data must only be used by processes in the same demesne. Local references
carry no special restrictions, as the data to which they refer is already known to reside in the
appropriate demesne. Any reference to shared data is similarly unconstrained. However,
a global reference to non-shared or polyshared data is restricted. If p is a global reference
to non-shared or polyshared data, then the following operations are forbidden:

• reading the value of any field of p;

• reading the value of any element of p, if p is an array;

• assigning into any field of p;

• assigning into any element of p, if p is an array;

• calling any non-static method of p;
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• evaluating p instanceof T for any type T;

• performing a narrowing reference conversion of p to a global type;

• using a synchronized statement to acquire the mutual exclusion lock of p;

• using p within a string concatenation expression.

The restriction on narrowing reference conversion does allow casting to a local type. It
merely forbids checked casts that do not simultaneously recover localness.

6.2.6 Early Enforcement

Titanium contains two alternative definitions of sharing. Late enforcement is the more re-
laxed of the two, and entails only those restrictions already listed above. Early enforcement
entails the following additional restrictions:

• Any type that is non-shared or polyshared must also be local; global pointers may
only address shared data.

• If any use of a named class is (implicitly) qualified as shared, then all fields embedded
within that class must be qualified as shared. “Embedded” here is defined as:

– If class C defines field C.f , then field C.f is embedded within class C.

– If class C has superclass D, then all fields embedded within class D are also
embedded within class C.

– If class C has embedded field B.f , and B.f has immutable type I, then fields
embedded within immutable class I are also embedded within class C.

• If any use of an array type is (implicitly) qualified as shared, then the elements of
the array must be shared as well.

6.3 Region-Based Memory Allocation

Java uses garbage collection to reclaim unreachable storage. Titanium retains this mech-
anism but also includes a more explicit (but still safe) form of memory management:
region-based memory allocation.

In a region-based memory allocation scheme, each allocated object is placed in a
program-specified region. Memory is reclaimed by destroying a region, freeing all the
objects allocated therein. A simple example is shown in Figure 6.3. Each iteration of the
loop allocates a small array. The call r.delete() frees all arrays.
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class A {

void f()

{

PrivateRegion r = new PrivateRegion();

for (int i = 0; i < 10; i++) {

int[] x = new (r) int[i + 1];

work(i, x);

}

try {

r.delete();

}

catch (RegionInUse oops) {

System.out.println("oops - failed to delete region");

}

}

void work(int i, int[] x) { }

}

Figure 6.1: An example of region-based allocation in Titanium.

A region r can be deleted only if there are no external references to objects in r (a
reference external to r is any pointer not stored within r). A call to r.delete() throws
an exception when this condition is violated.

6.3.1 Shared and Private Regions

There are two kinds of regions: shared regions and private regions. Objects created in a
shared region are called shared-region objects; all other objects are called private objects.
Garbage-collectible objects are taken to reside in an anonymous shared region. It is an
error to store a reference to a private object in a shared-region object. It is also an error
to broadcast or exchange a private object. As a consequence, it is impossible to obtain a
private pointer created by another process.

All processes must cooperate to create and delete a shared region, each getting a copy
of the region that represents the same, shared, pool of space. The copy of the shared region
object created by a process p is called the representative of that region in process p (see
the Object.regionOf method below). Creating and deleting shared regions thus behaves
like a barrier synchronization and is an operation with global effects (see §9.3.1).
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A region is said to be externally referenced if there is a reference to an object allocated
in it that resides in

• A live local variable;

• A static field;

• A field of an object in another region.

The process of attempting to delete a region r proceeds as follows:

1. If r is externally referenced, throw a ti.lang.RegionInUse exception.

2. Run the finalize methods of all objects in r for which it has not been run1.

3. If r is now externally referenced, throw a ti.lang.RegionInUse exception.

4. Free all the objects in r and delete r.

Garbage-collected objects behave as in Java. In particular, deleting such objects differs
from the description above in that finalization does not wait for an explicit region deletion.

6.3.2 Detailed Specification of Region-Based Allocation Constructs

Shared regions are represented as objects of the ti.lang.SharedRegion type, private
regions as objects of the ti.lang.PrivateRegion type. The signature of the types is as
shown in Figure 6.2.

The Java syntax for new is redefined as follows (T is a type distinct from ti.lang.PrivateRegion

and ti.lang.SharedRegion):

• new ti.lang.PrivateRegion() or new ti.lang.SharedRegion(): creates a region
containing only the object representing the region itself.

• new T...: allocate a garbage-collected object, as in Java.

• new (expression) T... creates an object in the region specified by expression.
The static type of expression must be assignable to ti.lang.Region. At runtime
the value v of expression is evaluated. If v is:

– null: allocate a garbage-collected object, as in Java.

– an object of type ti.lang.PrivateRegion or ti.lang.SharedRegion: allocate
an object in region v.

1As of this writing, finalization is not implemented.

26



package ti.lang;

final public class PrivateRegion extends Region

{

public PrivateRegion() { }

/** Run finalization on all unfinalized objects in THIS.

* Frees all resources used to represent objects in THIS.

* Throws RegionInUse if THIS is externally referenced

* before or after finalization. */

public void delete() throws RegionInUse;

};

final public class SharedRegion extends Region

{

public single SharedRegion() { }

/** See PrivateRegion.delete, above. */

public single void delete() throws RegionInUse single;

};

abstract public class Region

{

};

Figure 6.2: Library definitions related to regions.
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– In all other cases a runtime error occurs.

The class java.lang.Object is extended with the following method:

public final ti.lang.Region local regionOf();

This returns the region of the object, or null for garbage-collected objects. For shared-
region objects, the local representative of the shared region is returned.

The expression Domain<N>.setRegion(reg), where reg is a Region, dynamically causes
reg to become the Region used for allocating all internal pointer structures used in repre-
senting domains (until the next call of setRegion). A null value for reg causes subsequent
allocations to come from garbage-collected storage. Returns the previous value passed to
setRegion (initially null). The value of N is irrelevant; all general domains are allocated
in the same region.
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Chapter 7

Templates

Titanium uses a “Templates Light” semantics, in which template instantiation is a some-
what augmented macro expansion, with name capture and access rules modified as de-
scribed below.

7.1 Instantiation Denotations

Define

TemplateInstantiation:
template Name "<" TemplateActual { "," TemplateActual }* ">"

TemplateActual:
Type | AdditiveExpression

where the AdditiveExpression is a ConstantExpression. Resolution of Name is as for
type names. [Note: We use AdditiveExpression to prevent non-LALRness with < and >

operators.] It is devoutly to be hoped that the bogus template keyword can be eliminated
from instantiations.

7.2 Template Definition

TemplateDeclaration:
TemplateHeader ClassDeclaration
TemplateHeader InterfaceDeclaration

TemplateHeader:
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template "<" TemplateFormal { "," TemplateFormal }* ">"

TemplateFormal:
class Identifier
BasicType Identifier

The first form of TemplateFormal allows any type as argument; the second allows Con-
stantExpressions of the indicated type.

7.3 Names in Templates

A template belongs to a particular package, as for classes and interfaces. Access rules for
templates themselves are as for similarly modified classes and interfaces.

Template instantiations belong to the same package as the template from which they
are instantiated. As a result, it is essentially useless to instantiate a template from a
different package except with public classes and interfaces1.

Names other than template parameters in a template are captured at the point of the
template definition. Names in a TemplateActual (and at the point it is substituted for in
a template instantiation) are resolved at the point of instantiation.

7.4 Template Instantiation

References to TemplateInstantiation are allowed as Types. They are not allowed in extends

or implements clauses. Instantiations that cause an infinite expansion or a loop are
compile-time errors. Inside a template, one may refer to the “current instantiation” by
its full name with template parameters; or by the template’s simple name. The con-
structor is called by the simple name. Template formals may not be used in extends or
implements clauses.

template<class T> class List {

...

List (T head, List tail) {...}

List tail() { ... }

}

1An alternative rule (not currently implemented) states that template instantiations have package-level
access to all classes and interfaces mentioned in the template actuals, so that the expansion of a template
might be illegal according to the usual rules (e.g., the template expansion could reside in package P and
yet contain fields whose types were non-public members of package Q). The rationale for this alternative
is that otherwise, a package of utility templates would be useless unless one was willing to make public all
classes used as template parameters.
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or

template<class T> class List {

...

List (T head, template List<T> tail) {...}

template List<T> tail() { ... }

}

7.5 Name Equivalence

For purposes of type comparison, all simple type names and template names that appear
as TemplateActuals are replaced by their fully-qualified versions. With this substitution,
two type names are equivalent if their QualifiedName parts are identical and their Tem-
plateActuals are identical (identical types or equal values of the same type).

7.6 Type Aliases

[NOTE: This section is as yet unimplemented.] The import clause is extended to include

ImportDeclaration:
import Identifier "=" Type";"

which introduces Identifier as a synonym for Type in the current compilation. The standard
type import

import Qualifier.Name;

is thus shorthand for

import Name = Qualifier.Name;
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Chapter 8

Operator Overloading

Titanium allows overloading of the following Java operators:

Unary prefix - ! ~

Binary < > <= >= == !=

+ - * / & | ^ % << >> >>>

Matchfix [] []=

Assignment += -= *= /= &= |= ^= %= <<= >>= >>>=

If ⊕ is one of these operators, then declaring op⊕ produces a new overloading of that
operator. No space is allowed between the keyword op and the operator name. These
methods can be called like normal methods, e.g. a.op+(3). There are no restrictions
on the number of parameters, parameter types or result type of operator methods. In
addition,

• An expression E1 ⊕ E2, where ⊕ is binary, is equivalent to E1.op ⊕ (E2) as long as
E1 is not of a primitive type.

• An expression ⊕E1, where ⊕ is unary, is equivalent to E1.op ⊕ (), as long as E1 is
not of a primitive type.

• An expression E0[E1, . . . , En] = E is equivalent to E0.op[]=(E1, . . . , En, E).

• In other contexts, an expression E0[E1, . . . , En] is equivalent to E0.op[](E1, . . . , En).

It is not possible to redefine plain assignment (=). It is possible to redefine the op-
erator assignment methods, but the assignment remains: E1 ⊕ =E2 is equivalent to E1 =

E1.op⊕=(E2), except that expression E1 is evaluated only once.
There is a conflict between Java’s description of how the ‘+’ operator works when the

right argument is of type String and the description above, which arises whenever the
programmer defines op+ with an argument of type String. We resolve this by analogy with
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ordinary Java overloading of static functions. If class A defines op+ on String, then anA +

aString resolves to the user-defined ‘+’, as if resolving a match between an overloaded two-
argument function whose first argument is of type Object and one whose first argument
is of type A.
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Chapter 9

Processes

A process is essentially a thread of control. Processes may either correspond to virtual
or physical processors—this is implementation dependent. Each process has a demesne
(an area of memory heap; see §6) that may be accessed by other processes through point-
ers. Each process has a distinct non-negative integer index, returned by the function call
Ti.thisProc(). The indices of all processes form a contiguous interval of integers begin-
ning at 0.

Process teams. At any given time, each process belongs to a process team. The function
Ti.myTeam() returns an int[1d] containing the indices of all members of the team in
ascending order. Teams are the sets of processes to which broadcasts, exchanges, and
barriers apply. Initially, all processes are on the same team, and all execute the main
program from the beginning. This team has the index set [0:Ti.numProcs()-1].

In the current version of Titanium, there is only one process team—the initial one. The
process-team machinery in accordingly a bit heavier than needed. It will become useful
should we decide to introduce the partition construct (see §11.1).

9.1 Interprocess Communication

Exchange. The member function exchange, defined on Titanium array types, allows all
processes in a team to exchange data values with each other. The call

A.exchange(E)

acts as a barrier (see §9.2) among the processes with indices in Ti.myTeam(). Specifically,
all of the processes in the team wait until Here, E is of some type T and A is a grid of
T with an index set that is a superset of Ti.myTeam().domain(). When all processes in
a team have reached a call to exchange, then, assuming that all their arguments are of
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the same type, for each i in Ti.myTeam()’s domain, element i of each array is set to the
argument E supplied by the process indexed by Ti.myTeam()[i]. It is an error if the
processes reach different textual instances of exchange. It is illegal to exchange arrays of
local pointers (that is arrays of a type qualified ‘local’).

Thus, the code

double [1d] single [2d] x = new double[Ti.myTeam().domain()][2d];

x.exchange(new double [D]);

creates a vector of pointers to arrays, each on a separate processor, and distributes this
vector to all processors.

Broadcast. The broadcast statement allows one process in a team to broadcast a value
to all others. Specifically, in

broadcast E from p

—where E is an arbitrary value and p is the index of a process on the current process team—
process p (only) evaluates E, and all other processes in the team wait at the broadcast

(if necessary) until p performs the evaluation and then all return the value E. Processes
may proceed even if some processes have not yet reached the broadcast and received the
broadcast value. It is an error if the processes reach a different sequence of textual instances
of the call. It is an error if the processes do not agree on the value p—in fact, p must be a
single-valued expression (see §9.3.1). It is an error for the evaluation of E on processor p to
throw an exception (which, informally, would keep one process from reaching the barrier).

9.2 Barriers

The call

Ti.barrier();

causes the process executing it to wait until all processes in its team have executed the
same textual instance of the barrier call. It is an error for a process to attempt to execute
a different sequence of textual instances of barrier calls than another in its team. Each
textually distinct occurrence of partition and each textually distinct call on exchange

waits on a distinct anonymous barrier.
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9.3 Checking Global Synchronization

In SPMD programs, some portions of the data and control-flow are identical across all
processes. In particular, the sequences of global synchronizations (barriers, broadcasts,
etc.) in each process must be identical for the program to be correct. With the aid of
programmer declarations, the Titanium compiler performs a (conservative) check for this
correctness condition statically. To be able to perform this check, the compiler must know
that certain parts of the program’s data are replicated across all processes in the current
process team, and that this replicated storage contains coherent values everywhere. By
coherent we mean that values of primitive types are identical, and that values of reference
types point to replicated objects that are of the same dynamic type. The programmer
must use the type qualifier single to indicate what storage must be coherent.

The formal definition of “coherent” is in terms of pairs of storage locations: two storage
locations a and b, residing in demesnes ra and rb respectively, and containing values of static
type t are consistent if t is not single, or if:

• t is a primitive type: the values of a and b are identical;

• t is a java or titanium array type: a and b have the same bounds, the elements of
a reside in ra, the elements of b reside in rb, and the corresponding elements are
consistent;

• t is an object type (immutable or not): a and b have the same dynamic type, the
object referred to by a resides in ra, the object referred to by b resides in rb, and
corresponding non-static fields of a and b are consistent.

The compiler constrains all Titanium programs as follows. Given any program state-
ment S, and the current process team P , and assuming

• all free variables of S and all static variables of the program have consistent values
in all processes in P ;

• this has a consistent value in all processes in P

then after the execution of S, and assuming that all processes in P terminate:

• all free variables of S and all static variables of the program still have consistent
values in all processes in P;

• all processes have executed the same sequence of methods qualified with single—in
particular this implies that all processes have executed the same sequence of global
synchronization operations.
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The following properties are important in checking that programs meet this constraint:

• an expression e is single-valued if it evaluates to a consistent value in all processes P
that start executing e;

• a termination T (exception of type t, a break, continue or return) of a statement S is
universal if either all processes P that start S terminate abruptly with termination T
or no process P that starts S terminates abruptly with termination T—in addition,
if the termination is an exception the value of the exception must be consistent in all
processes in P ;

• a statement has global effects if it or any of its substatements: assigns to any stor-
age (variable, field or array element) whose type is t single, may call a method or
constructor which has global effects, or is a broadcast expression;

• a method has global effects if any of the statements of its body have global effects;
however, assignments to single local variables do not count as global effects;

• a native or abstract method has global effects if it is qualified with single (which is
a new MethodModifier that can modify a method or constructor declaration);

• a constructor has global effects if any of the statements of its body have global
effects; however, assignments to single local variables, or non-static single fields of
the object being constructed do not count as global effects (the destination of these
field assignments must be specified as an unqualified name or as this.name and the
assignment must occur in the body of the constructor);

• a method call e1.m1(. . .) may call a method m2 if m2 is m1, or if m2 overrides (possibly
indirectly) m1

A catch clause in a try statement and the throws list of a method or constructor
declaration indicate that an exception is universal by qualifying the exception type with
single.

9.3.1 Single-valued expressions

In the following, the ei are expressions, v is a non-static member and vs a static member.
The following expressions are single-valued. In these descriptions, all instances of opera-
tors refer to built-in definitions; user-defined operators are governed by the same rules as
function calls.

• constants;
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• this;

• variables whose type is t single;

• e1.v if e1 is single-valued and v is declared single;

• e1.vs if vs is a final field with an atomic type (§4.1).

• e1[e2] if e1 and e2 are single-valued, e1 is an array (standard or grid), and the type
of the elements of e1 is single;

• e1[e2] if e1 and e2 are single-valued and e1 is a Point.

• e1 ⊕ e2, for e1 and e2 single-valued and ⊕ a built-in binary operator (likewise for
unary prefix and postfix operators);

• (T )e1 if T is single;

• e1 instanceof T if e1 is single-valued;

• e1 = e2 if e2 is single-valued;

• e1⊕ = e2 if e1 and e2 are single-valued and ⊕ = a built-in assignment operator;

• e1?e2 : e3 if e1, e2 and e3 are single-valued;

• e0.v(e1, . . . , en) if:

– e0 is single-valued

– ei is single-valued if the i’th argument of v is declared single;

– the result of v is declared single;

• e0.vs(e1, . . . , en) if:

– ei is single-valued if the i’th argument of vs is declared single;

– the result of vs is declared single;

• new T (e1, . . . , en) if ei is single-valued if the i’th argument of the appropriate con-
structor for T is declared single;

• new T [e1] . . . [en] if e1, . . . , en are single-valued (in this case the type is

T single [t1]...[tn]

where ti is the type of ei)
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• [e1, . . . , en] if e1, . . . , en are single-valued;

• [e1 : e2 : e3] if e1, e2, e3 are single-valued (and similarly for the other domain literal
syntaxes);

• broadcast e1 from e2, if e1 has a primitive type, or an immutable type with no
reference-type fields.

Note. The rule for broadcast excludes reference values from single expressions, which
may seem odd since the recipients of the broadcast will manifestly get the same value. This
merely illustrates, however, the subtle point that “single” and “equal” are not synonyms.
Consider a loop such as

x = broadcast E from 0;

while (x.N > 0) {

...

Ti.barrier ();

x.N -= 1;

}

(where ‘x’ and the ‘N’ field of its type are declared single). If we were to allow this, it is
clearly easy to get different processes to hit the barrier different numbers of times, which
is what the rules concerning single are supposed to prevent.

9.3.2 Restrictions on statements with global effects

The following restrictions on individual statements and expressions are enforced by the
compiler:

• assignments to a local variable, method or constructor argument, field or array ele-
ment whose type is single must be with a single-valued expression;

• if a method call e0.v(e1, . . . , en) may call method m1 which has global effects then:

– e0 must be single-valued

– ei must single-valued if the i’th argument of v is declared single;

• in a method call e0.vs(e1, . . . , en) if vs has global effects then ei must be single-valued
if the i’th argument of vs is declared single;

• in an object allocation new T (e1, . . . , en), if the constructor c is qualified with single
then ei must be single-valued if the i’th argument of c is declared single;
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• in an array allocation new T [e1], if T is an immutable type and the zero argument
constructor for T is qualified with single then e1 must be single-valued;

• in broadcast e1 from e2, e2 must be single-valued

9.3.3 Restrictions on control flow

The following restriction is imposed on the program’s control flow: the execution of all
statements and expressions with global effects must be controlled exclusively by single-
valued expressions. The following rules ensure this:

• an if (or ? operator) whose condition is not single-valued cannot have statements
(expressions) with global effects as its ‘then’ or ‘else’ branch;

• a switch statement whose expression is not single-valued cannot contain statements
with global effects;

• a while, do/while or for loop whose exit condition is not single-valued, and a
foreach loop whose iteration domain(s) are not single-valued cannot contain state-
ments or expressions with global effects;

• if the main statement of a try has non universal terminations then its catch clauses
cannot specify any universal exceptions;

• associated with every statement or expression that causes a termination t is a set
of statements S from the current method or constructor that will be skipped if
termination t occurs. If the termination is not universal, then S must not contain
any statements or expressions with global effects;

The rules for determining whether a termination is universal are essentially identical
to the restrictions on statements with global effects: any termination raised in a statement
that cannot have global effects is not universal. In addition:

• in throw e, the exception thrown is not universal if e is not single-valued;

• in a call to method or constructor v declared to throw exceptions of types t1, . . . , tn,
exception ti is universal only if type ti is single and the following conditions are met:

– Normal method call e0.v(e1, . . . , en): if e0 is single-valued and ei is single-valued
when the i’th argument of v is declared single;

– Static method call e0.vs(e1, . . . , en): if ei is single-valued when the i’th argument
of vs is declared single;
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– Object allocation new T (e1, . . . , en): if ei is single-valued when the i’th argument
of the appropriate constructor for T is declared single;

– Immutable array allocation new T [e1] . . . [en]: if e1, . . . , en are single-valued

9.3.4 Restrictions on methods and constructors

The following additional restrictions are imposed on methods and constructors:

• If a method is declared to return a single result, then the expression in all return
statements must be single-valued. The return terminations must all be universal;

• Including throws t single in a method or constructor signature does not allow the
method or constructor body to throw a non-universal exception assignable to t;

• A method f that overrides a method g must preserve the singleness of the method
argument and result types.

9.4 Consistency of Shared Data

The consistency model defines the order in which memory operations issued by one pro-
cessor are observed by other processors to take effect. Although memory in Titanium is
partitioned into demesnes, the union of those demesnes defines the same notion of shared
memory that exists in Java. Titanium semantics are consistent with Java semantics in
the following sense: the operational semantics given in the Java Language Specification
(Chapter 17) correctly implements the behavioral specification given below. We use the
behavioral specification here for conciseness and to avoid constraints (or the appearance
of constraints) on implementations.

As Titanium processes execute, they perform a sequence of actions on memory. In Java
terminology, they may use the value of a variable or assign a new value to a variable. Given
a variable V , we write use(V, A) for a use of V that produces value A and assign(V, A) for
an assignment to V with value A. A Titanium program specifies a sequence of memory
events, as described in the Java specification:

[An implementation may perform] a use or assign by [thread] T of [variable]
V . . . only when dictated by execution by T of the Java program according to
the standard Java execution model. For example, an occurrence of V as an
operand of the + operator requires that a single use operation occur on V ;
an occurrence of V as the left-hand operand of the assignment operator (=)
requires that a single assign operation occur.
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Thus, a Titanium program defines a total order on memory events for each pro-
cess/thread. This corresponds to the order that a naive compiler and processor would
exhibit, i.e., without reorderings. The union of these process orders forms a partial order
called the program order. We write P (a, b) if event a happens before event b in the program
order.

During an actual execution, some of the events visible in the Titanium source may be
reordered, modified, or eliminated by the compiler or hardware. However, the processes
see the events in some total order that is related to the program order. For each execution
there exists a total order, E, of memory events from P such that:1:

1. P (a, b) ⇒ E(a, b) if a and b access the same variable.

2. P (l, a) ⇒ E(l, a), if l is a lock or barrier statement.

3. P (a, u) ⇒ E(a, u), if u is an unlock or barrier statement.

4. P (l1, l2) ⇒ E(l1, l2), if l1 and l2 are locks, unlocks, or barriers.

5. E is a correct serial execution, i.e.,

(a) If E(assign(V, A), use(V, B)) and there is no intervening write to V , then A =
B.

(b) If there were n processes in P , then there are n consecutive barrier statements
in E for each instance of a barrier.

(c) A process T may contain an unlock operation l, only if the number of preceding
locks by T (according to E) on the object locked by l is is strictly greater than
the number of unlocks by T .

(d) A process T may contain a lock operation l, only if the number of preceding
locks by other processes (according to E) is equal to the number of preceding
unlocks.

6. P (a, b) ⇒ E(a, b) if a and b both operate on volatile variables.

Less formally, rule 1 says that dependences in the program will be observed. Rules 2 and
3 say that reads and writes performed in a critical demesne must appear to execute in-
side that demesne. Rule 4 says that synchronization operations must not be reordered.
(Titanium extends the Java rules for synchronization, which include only lock and unlock
statements to explicitly include barrier.) Rule 5 says that the usual semantics of mem-
ory and synchronization constructs are observed. Rule 6 says that operations on volatile
variables must execute in order.

1See author’s notes 1 and 2.
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As in Java, the indivisible unit for assignment and use is a 32-bit value. In other
words, the assign and use operations in the program order are on at most 32-bit quantities;
assignment to double or long variables in Titanium source code corresponds to two separate
operations in this semantics. Thus, a program with unsynchronized reads and writes of
double or long values may observe undefined values from the reads2. It is a weakness
of current implementation, unfortunately, that global pointers are not indivisible in this
sense.

2See authors’ note 3.
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Chapter 10

Odds and Ends

Inlining. The inline qualifier on a method declaration acts as in C++. The semantics
of calls to such methods is identical to that for ordinary methods. The qualifier is simply
advice to the compiler. In particular, you should probably expect it to be ignored when
the dynamic type of the target object in a method call cannot be uniquely determined at
compilation time.

The qualifier may also be applied to loops:

foreach (p in Directions) inline {

...

}

This is intended to mean that the loop is to be unrolled completely. It is ignored if
Directions is not manifest.
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Chapter 11

Features Under Consideration

This section discusses features of Titanium whose implementation we have deferred indef-
initely until we can evaluate the need for them.

11.1 Partition

The constructs

partition { C0 => S0; C1 => S1; ...; Cn−1 => Sn−1; }

and

partition V { C0 => S0; C1 => S1; ...; Cn−1 => Sn−1; }

divide a team into one or more teams without changing the total number of processes.
The construct begins and ends with implicit calls to Ti.barrier(). When all processes

in a team reach the initial barrier, the system divides the team into n teams (some possibly
empty). All those for which C0 is true execute S0. Of the remaining, all for which C1 is
true execute S1, and so forth. All processes (including those satisfying none of the Ci) wait
at the barrier at the end of the construct until all have reached the barrier.

Since the construct partitions the team, it also changes the value of Ti.myTeam(), (but
not Ti.thisProc()) for all processes for the duration of the construct. If supplied, the
variable name V is bound to an integer value such that Ti.thisProc() = Ti.myTeam()[V ].
Its scope is the text of all the Si.
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Chapter 12

Additions to the Standard Library

12.1 Grids

This syntax is not, of course, legal. We use it simply as a convenient notation. For each
type T and positive integer n:

final class T [n d] {

public static final int single arity = n;

public RectDomain<n> single domain();

public T [n d] single translate(Point<n> single p);

public local T [n d] local single translate(Point<n> single p);

public T [n d] single restrict(RectDomain<n> single d);

public local T [n d] local single restrict(RectDomain<n> single d);

public T [n d] single inject(Point<n> single p);

public local T [n d] local single inject(Point<n> single p);

public T [n d] single project(Point<n> single p);

public local T [n d] local single project(Point<n> single p);

public T [n d] single permute(Point<n> single p);

public local T [n d] local single permute(Point<n> single p);

// only if n > 1

public T [(n - 1)d] single slice(int single k, int single j);

public local T[(n - 1)d] local single slice(int single k, int single j);
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public void set(T value);

public boolean isLocal ();

public int creator ();

public ti.lang.Region local regionOf ();

public void noOverlap (TA B);

/* Where TA is any grid type */

public void copy(T [n d] x) overlap(this, x);

public single void exchange(T myValue);

public void readFrom(java.io.RandomAccessFile file)

throws java.io.IOException;

public void readFrom(java.io.DataInputStream str)

throws java.io.IOException;

public void writeTo(java.io.RandomAccessFile file)

throws java.io.IOException;

public void writeTo(java.io.DataOutputStream str)

throws java.io.IOException;

}

12.2 Points

template<int n> public immutable class Point {

public static Point<n> single all(int single x);

public static Point<n> single direction(int single k, int single x);

public static Point<n> single direction(int single k);

public Point<n> single op+(Point<n> single p);

public Point<n> single op+=(Point<n> single p);

public Point<n> single op-(Point<n> single p);

public Point<n> single op-=(Point<n> single p);

public Point<n> single op*(Point<n> single p);

public Point<n> single op*=(Point<n> single p);

public Point<n> single op/(Point<n> single p);

public Point<n> single op/=(Point<n> single p);

public Point<n> single op*(int single n);

public Point<n> single op*=(int single n);

public Point<n> single op/(int single n);
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public Point<n> single op/=(int single n);

public boolean single op==(Point<n> single p);

public boolean single op!=(Point<n> single p);

public boolean single op<(Point<n> single p);

public boolean single op<=(Point<n> single p);

public boolean single op>(Point<n> single p);

public boolean single op>=(Point<n> single p);

public int single op[] (int single x);

public static int single arity () { return n; }

public Point<n> single permute (Point<n> single p);

}

12.3 Domains

template<int n> public immutable class Domain {

public static final int single arity = n;

// Domain set relationships

public Domain<n> single op+(Domain<n> single d);

public Domain<n> single op+=(Domain<n> single d);

public Domain<n> single op-(Domain<n> single d);

public Domain<n> single op-=(Domain<n> single d);

public Domain<n> single op*(Domain<n> single d);

public Domain<n> single op*=(Domain<n> single d);

// Domain boolean relationships

public boolean single op==(Domain<n> single d);

public boolean single op!=(Domain<n> single d);

public boolean single op<(Domain<n> single d);

public boolean single op<=(Domain<n> single d);

public boolean single op>(Domain<n> single d);

public boolean single op>=(Domain<n> single d);

// Point set relationships

public Domain<n> single op+(Point<n> single p);

public Domain<n> single op+=(Point<n> single p);

public Domain<n> single op-(Point<n> single p);

public Domain<n> single op-=(Point<n> single p);
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public Domain<n> single op*(Point<n> single p);

public Domain<n> single op*=(Point<n> single p);

public Domain<n> single op/(Point<n> single p);

public Domain<n> single op/=(Point<n> single p);

// Shape information

public int single arity() { return n; }

public Point<n> single lwb();

public Point<n> single upb();

public Point<n> single min();

public Point<n> single max();

public int single size();

public boolean single contains(Point<n> single p);

public RectDomain<n> single boundingBox();

public boolean single isNull();

public boolean single isRectangular();

}

12.4 RectDomains

template<int n> public immutable class RectDomain {

public static final int single arity = n;

public boolean isRectangular();

public Domain<n> single op+(RectDomain<n> single d);

public Domain<n> single op+=(RectDomain<n> single d);

public Domain<n> single op-(RectDomain<n> single d);

public Domain<n> single op-=(RectDomain<n> single d);

public RectDomain<n> single op*(RectDomain<n> single d);

public RectDomain<n> single op*=(RectDomain<n> single d);

public RectDomain<n> single op+(Point<n> single p);

public RectDomain<n> single op+=(Point<n> single p);

public RectDomain<n> single op-(Point<n> single p);

public RectDomain<n> single op-=(Point<n> single p);

public RectDomain<n> single op*(Point<n> single p);

public RectDomain<n> single op*=(Point<n> single p);

public RectDomain<n> single op/(Point<n> single p);

public RectDomain<n> single op/=(Point<n> single p);

public boolean single op==(RectDomain<n> single d);
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public boolean single op!=(RectDomain<n> single d);

public boolean single op<(RectDomain<n> single d);

public boolean single op<=(RectDomain<n> single d);

public boolean single op>(RectDomain<n> single d);

public boolean single op>=(RectDomain<n> single d);

public Domain<n> single op+(Domain<n> single d);

public Domain<n> single op+=(Domain<n> single d);

public Domain<n> single op-(Domain<n> single d);

public Domain<n> single op-=(Domain<n> single d);

public boolean single op==(Domain<n> single d);

public boolean single op!=(Domain<n> single d);

public boolean single op<(Domain<n> single d);

public boolean single op<=(Domain<n> single d);

public boolean single op>(Domain<n> single d);

public boolean single op>=(Domain<n> single d);

public final static int arity () { return n; }

public Point<n> single lwb();

public Point<n> single upb();

public Point<n> single min();

public Point<n> single max();

public Point<n> single stride();

public int single size();

public boolean single isNull();

public RectDomain<n> single accrete(int single k, int single dir,

int single s);

public RectDomain<n> single accrete(int single k, int single dir);

public RectDomain<n> single accrete(int single k, Point<n> single S);

public RectDomain<n> single accrete(int single k); // S = all(1)

public RectDomain<n> single shrink(int single k, int single dir);

public RectDomain<n> single shrink(int single k);

public final Point<n> single permute (Point<n> single p);

public RectDomain<n> single border(int single k, int single dir,

int single shift);

public RectDomain<n> single border(int single k, int single dir);

public RectDomain<n> single border(int single dir);

public boolean single contains(Point<n> single p);

public RectDomain<n> single boundingBox();

// only if n > 1

public RectDomain<n - 1> single slice(int single k);

}
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12.5 Reduction operators

Each process in a team must execute the same sequence of textual instances of calls on
reduction operations, barriers, exchanges, and broadcasts.

package ti.lang;

class Reduce

{

/* The result of Reduce.F (E) is the result of applying the binary

* operator F to all processes’ values of E in some unspecified

* grouping. The result of Reduce.F (E, k) is 0 or false for all

* processes other than K, and the result of applying F to all the

* values of E for processor K.

*

* Here, F can be ’add’ (+), ’mult’ (*), ’max’ (maximum),

* ’min’ (minimum), ’and’ (&), ’or’ (|), or ’xor’ (^).

*/

public static single int add(int n, int single to);

public static single long add(long n, int single to);

public static single double add(double n, int single to);

public static single int single add(int n);

public static single long single add(long n);

public static single double single add(double n);

public static single int mult(int n, int single to);

public static single long mult(long n, int single to);

public static single double mult(double n, int single to);

public static single int single mult(int n);

public static single long single mult(long n);

public static single double single mult(double n);

public static single int max(int n, int single to);

public static single long max(long n, int single to);

public static single double max(double n, int single to);

public static single int single max(int n);

public static single long single max(long n);

public static single double single max(double n);

public static single int min(int n, int single to);

public static single long min(long n, int single to);

public static single double min(double n, int single to);

public static single int single min(int n);
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public static single long single min(long n);

public static single double single min(double n);

public static single int or(int n, int single to);

public static single long or(long n, int single to);

public static single boolean or(boolean n, int single to);

public static single int single or(int n);

public static single long single or(long n);

public static single boolean single or(boolean n);

public static single int xor(int n, int single to);

public static single long xor(long n, int single to);

public static single boolean xor(boolean n, int single to);

public static single int single xor(int n);

public static single long single xor(long n);

public static single boolean single xor(boolean n);

public static single int and(int n, int single to);

public static single long and(long n, int single to);

public static single boolean and(boolean n, int single to);

public static single int single and(int n);

public static single long single and(long n);

public static single boolean single and(boolean n);

/* These reductions use OPER.eval as the binary operator, and are

* otherwise like the reductions above. */

public static single Object gen(ObjectOp oper, Object o, int single to);

public static single Object gen(ObjectOp oper, Object o);

public static single int gen(IntOp oper, int n, int single to);

public static single int single gen(IntOp oper, int n);

public static single long gen(LongOp op, long n, int single to);

public static single long single gen(LongOp oper, long n);

public static single double gen(DoubleOp oper, double n, int single to);

public static single double single gen(DoubleOp oper, double n);

}

package ti.lang;

class Scan
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{

/* Scan.F (E) produces the result of applying the operation F to all

* values of E for this and lower-numbered processes, according to

* some unspecified grouping. */

public static single int add(int n);

public static single long add(long n);

public static single double add(double n);

public static single int mult(int n);

public static single long mult(long n);

public static single double mult(double n);

public static single int max(int n);

public static single long max(long n);

public static single double max(double n);

public static single int min(int n);

public static single long min(long n);

public static single double min(double n);

public static single int or(int n);

public static single long or(long n);

public static single boolean or(boolean n);

public static single int xor(int n);

public static single long xor(long n);

public static single boolean xor(boolean n);

public static single int and(int n);

public static single long and(long n);

public static single boolean and(boolean n);

/* As for the preceding scans, but with the operation F being

* oper.eval. */

public static single Object gen(ObjectOp oper, Object o);

public static single int gen(IntOp oper, int n);

public static single long gen(LongOp oper, long n);

public static single double gen(DoubleOp oper, double n);

}
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interface IntOp {

int eval(int x, int y);

}

interface LongOp {

long eval(long x, long y);

}

interface DoubleOp {

double eval(double x, double y);

}

interface ObjectOp {

Object eval(Object arg0, Object arg1);

}

12.6 Timer class

A Timer (type ti.lang.Timer provides a microsecond-granularity “stopwatch” that keeps
track of the total time elapsed between start() and stop() method calls.

package ti.lang;

class Timer {

/** The maximum possible value of secs (). Roughly 1.84e13. */

public final double MAX_SECS;

/** Creates a new Timer object for which secs () is initially 0. */

public Timer ();

/** Cause THIS to begin counting. */

public void start();

/** Add the time elapsed from the last call to start() to the value

* of secs (). */

public void stop();

/** Set secs () to 0. */

public void reset();
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/** The count of THIS in units of seconds, with a maximum

* granularity of one microsecond. */

public double secs();

/** The count of THIS in units of milliseconds, with a maximum

* granularity of one microsecond. */

public double millis();

/** The count of THIS in units of microseconds, with a maximum

* granularity of one microsecond. */

public double micros();

}

12.7 Additional properties

The values of the following properties are available, as in ordinary Java, through calls to
java.lang.System.getProperty.

runtime.distributed Has the value "true" if and only if the Titanium program reading
it has been compiled for a platform with a distributed memory architecture, and
otherwise "false".

runtime.shared Has the value "true" iff some processes may share a memory space.
(The CLUMP backends make “shared” and “distributed” orthogonal, rather than
mutually exclusive.)

runtime.model Indicates the specific platform that the Titanium program reading it has
been compiled for.

java.version, java.vm.version The tc (Titanium compiler) version.

runtime.boundschecking Has the value "true" if bounds checking is on.

runtime.gc Has the value "true" if garbage collection is on.

compiler.flags Flags passed to tc to compile the application.

55



12.8 java.lang.Object

As indicated in §6.1, all reference types implement the following, which may therefore be
considered part of java.lang.Object:

• r.creator() returns the identity of the lowest-numbered process whose demesne
contains the object pointed to by r. NullPointerException if r is null. This number
may differ from the identity of the process that actually allocated the object when
multiple processes share a demesne.

• r.isLocal() returns true iff r may be coerced to a local reference. This returns the
same value as r instanceof T local, assuming r to have object type T. On some
(but not all) platforms r.isLocal() is equivalent to r.creator() == thisProc().

• r.clone() is as in Java, but with local references inside the object referenced by r

set to null. The result is a global pointer to the newly created clone, which resides
in the same region (see §6.3.2) as the object referenced by r. This operation may be
overridden.

• r.localClone() is the default clone() function of Java (a shallow copy), except
that r must be local. The result is local and in the same region (see §6.3.2) as the
object referenced by r. See also §6.1.

• r.regionOf () See §6.3.2.

12.9 java.lang.Math

The static methods in java.lang.Math, with the exception of java.lang.Math.random,
take single arguments and produce single results.

12.10 Polling

The operation Ti.poll() services any outstanding network messages. This is needed in
programs that have long, purely-local computations that can starve the NIC (e.g. a self-
scheduled computation). It has no semantic content, and affects only performance (on
some systems).
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12.11 Sparse Titanium Array Copying

The copy method described in §4.2.1 applies to dense (rectangular) regions of grids specified
by RectDomains. Here, we describe more general copying methods that take their index
sets from general domains or from arrays of points.

The Titanium array operation .copy() takes an optional second parameter that can
be a Domain<N> or a Point<N> [1d], specifying the set of points to be copied (the types
Domain<N> and RectDomain<N> have methods that make it easy to convert back and forth
from Point<N> [1d]). For the purposes of modularity and performance, other sparse-
array copying operations are divided into two lower-level components: a gather operation,
which copies selected elements to contiguous points in an array, and its inverse, a scatter
operation, which scatters values from a dense array using an index vector of points.

12.11.1 Copy

Assuming

T [N d] dest, src;

Domain<N> dom;

Point<N> [1d] pts;

the calls

dest.copy(src, dom)

dest.copy(src, pts);

copy the specified points from src to dest.

Restrictions.

• pts must not overlap dest or src.

• Each point element of pts or dom must be contained within the intersection of
dest.domain() and src.domain() (it is a fatal error otherwise).

• If T is a non-atomic type, then it may not be the case that src resides in a private
region and dest resides in a shared region.

• If T contains embedded local pointers then src and dest must both be local.

• The contents of src and dest may not be modified (i.e., by other processes) during
the operation.
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Effects. After the operation completes, the following conditions will hold:

• For every Point<N> p in dom (or in pts), dest[p] == src’[p] (where src’ denotes
the contents of src prior to the operation).

• All other values are unchanged.

• pts is permitted to contain duplicate points, but by definition these will not affect
the result.

• src and dest are permitted to overlap, and if they do it will be as if the relevant
values were first copied from src to an intermediate temporary array and then to
dest.

• During the operation, the contents of dest at affected points is undefined.

12.11.2 Gather

Assuming

T [N d] src;

Point<N> [1d] pts;

T [1d] dest;

the call

src.gather(dest, pts);

packs the values from src selected by pts into dest, maintaining ordering of the points
and data, and preserving any duplicated points in the packed array.

Restrictions.

• dest.domain().size() >= pts.domain().size() (i.e. there is enough space to
gather into). It is a fatal error otherwise.

• Each point value in pts must be in src.domain(). It is a fatal error otherwise.

• None of the arrays may overlap.

• If T is a non-atomic type, then it may not be the case that src resides in a private
region and dest resides in a shared region.

• If T contains embedded local pointers then src and dest must both be local.

• The contents of src and pts may not be modified (i.e., by other processes) during
the operation.
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Effects. After the operation completes, the following conditions will hold:

• src and pts will be unchanged

• For all i such that 0 ≤ i < pts.size(),
dest[[i] + dest.min()] == src[pts[[i] + pts.min()]].

• The contents of dest are undefined while operation is in progress.

• pts is permitted to contain duplicate points. If it does, the corresponding dest

elements will contain the relevant data values once for each duplicate (as implied by
the description of the effects).

12.11.3 Scatter

Assuming

T [1d] src;

Point<N> [1d] pts;

T [N d] dest;

the call

dest.scatter(src, pts);

unpacks the values from src into dest at the positions selected by pts.

Restrictions.

• pts.domain().size() <= src.domain().size() (i.e. there are enough values to
be scattered in src). It is a fatal error otherwise.

• Each point value in pts must be in dest.domain(). It is a fatal error otherwise.

• None of the arrays may overlap.

• If T is a non-atomic type, then it may not be the case that src resides in a private
region and dest resides in a shared region.

• If T contains embedded local pointers then src and dest must both be local.

• The contents of src and pts may not be modified (i.e., by other processes) during
the operation.
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Effects. After the operation completes, the following conditions will hold:

• src and pts will be unchanged.

• For all i such that 0 ≤ i < pts.size(),
dest[ptArray[[i] + ptArray.min()]] == src[[i] + destArray.min()].

• ptArray is permitted to contain duplicate points. If it does, the relevant destArray
element will contain the data value corresponding to the highest-indexed duplicate
in ptArray.

• The contents of destArray at the affected points are undefined while operation is in
progress.

12.12 Bulk I/O

This library supports fast I/O operations on both Titanium arrays and Java arrays. These
operations are synchronous (that is, they block the caller until the operation completes).

12.12.1 Bulk I/O for Titanium Arrays

Bulk I/O works through two methods on Titanium arrays: .readFrom() and .writeTo().
The arguments to the methods are various kinds of file—currently: RandomAccessFile,
DataInputStream, DataOutputStream, in java.io and their subclasses BulkRandomAccessFile,
BulkDataInputStream, and BulkDataOutputStream in ti.io.

Consider a Titanium array type whose elements are of an atomic type (§4.1). The
methods following are defined for this type:

/** Perform a bulk read of data into the elements of this

* array from INFILE. The number of elements read will be

* equal to domain().size(). They are read sequentially in

* row-major order. Throws java.io.IOException in the

* case end-of-file or an I/O error occurs before all

* data are read. */

void readFrom (java.io.RandomAccessFile infile)

throws java.io.IOException;

void readFrom (java.io.DataInputStream infile)

throws java.io.IOException;

60



/** Perform a bulk write of data from the elements of this array

* to OUTFILE. The number of elements written will be equal

* to domain().size(). They are written sequentially in row-major

* order. Throws java.io.IOException in the case of disk full or

* other I/O errors. */

void writeTo (java.io.RandomAccessFile outfile)

throws java.io.IOException;

void writeTo(java.io.DataOutputStream outfile)

throws java.io.IOException;

I/O on partial arrays. To read or write a proper subset of the elements in a Ti array,
first use the regular array-selection methods such as .slice() and .restrict() to select
the desired elements, then make I/O calls on the resultant arrays (these operations are
implemented very efficiently without performing a copy).

12.12.2 Bulk I/O for Java Arrays in Titanium

The BulkDataInputStream, BulkDataOutputStream, and BulkRandomAccessFile classes
in the ti.io package implement bulk, synchronous I/O. They subclass the three classes
in java.io that can be used for I/O on binary data (so you can still use all the familiar
methods), but they add a few new methods that allow I/O to be performed on entire ar-
rays in a single call, leading to significantly less overhead (in practice speedups of over 60x
have been observed for Titanium code that performs a single large I/O using the readAr-
ray() and writeArray() methods, rather than many calls to a single-value-at-a-time method
like DataInputStream.readDouble()). These classes only handle single-dimensional Java
arrays whose elements have atomic types (see §4.1).

package ti.io;

public interface BulkDataInput extends java.io.DataInput {

/** Perform bulk input into A[OFFSET] .. A[OFFSET+COUNT-1] from this

* stream. A must be a Java array with atomic element type.

* Requires that all k, OFFSET <= k < OFFSET+COUNT be valid indices

* of A, and COUNT>=0 (or throws ArrayIndexOutOfBoundsException).

* Throws IllegalArgumentException if A is not an array of appropriate

* type. Throws java.io.IOException if end-of-file or input error

* occurs before all data are read. */

void readArray(Object A, int offset, int count)

throws java.io.IOException;
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/** Equivalent to readArray (A, 0, N), where N is the length of

* A. */

void readArray(Object primjavaarray)

throws java.io.IOException;

}

public interface BulkDataOutput extends java.io.DataOutput {

/** Perform bulk output from A[OFFSET] .. A[OFFSET+COUNT-1] to this

* stream. A must be a Java array with atomic element type.

* Requires that all k, OFFSET <= k < OFFSET+COUNT be valid indices

* of A, and COUNT>=0 (or throws ArrayIndexOutOfBoundsException).

* Throws IllegalArgumentException if A is not an array of appropriate

* type. Throws java.io.IOException if disk full or other output

* error occurs before all data are read. */

void writeArray(Object primjavaarray, int arrayoffset, int count)

throws java.io.IOException;

/** Equivalent to writeArray (A, 0, N), where N is the length of

* array A. */

void writeArray(Object primjavaarray)

throws java.io.IOException;

}

public class BulkDataInputStream

extends java.io.DataInputStream

implements BulkDataInput

{

/** A new stream reading from IN. See documentation of superclass. */

public BulkDataInputStream(java.io.InputStream in);

public void readArray(Object A, int offset, int count)

throws java.io.IOException;

public void readArray(Object A)

throws java.io.IOException;

};
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public class BulkDataOutputStream

extends java.io.DataOutputStream

implements BulkDataOutput

{

/** An output stream writing to OUT. See superclass documentation. */

public BulkDataOutputStream(java.io.OutputStream out);

public void writeArray(Object A, int offset, int count)

throws java.io.IOException;

public void writeArray(Object A)

throws java.io.IOException;

};

public class BulkRandomAccessFile

extends java.io.RandomAccessFile

implements BulkDataInput, BulkDataOutput

{

/** A file providing access to the external file NAME in mode

* MODE, as described in the documentation of the superclass. */

public BulkRandomAccessFile(String name, String mode)

throws java.io.IOException;

/** A file providing access to the external file FILE in mode

* MODE, as described in the documentation of the superclass. */

public BulkRandomAccessFile(java.io.File file, String mode)

throws java.io.IOException;

public void readArray(Object A, int offset, int count)

throws java.io.IOException;

public void readArray(Object A)

throws java.io.IOException;

public void writeArray(Object A, int offset, int count)

throws java.io.IOException;

public void writeArray(Object primjavaarray)

throws java.io.IOException;

};
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Chapter 13

Various Known Departures from Java

Blank finals. Currently the compiler does not prevent one from assigning to a blank
final field multiple times. This minor pathology is sufficiently unimportant that is unlikely
to be fixed, but it is best for programmers to adhere to Java’s rules.

Finalization. Currently finalization is not implemented.

Main procedure. There can only be one main function matching the required signature
in the union of all the source files processed during a compilation.

Dynamic class loading. Titanium does not implement java.lang.ClassLoader or the
java.lang.Class.forName method.

Thread creation. SPMD processes are the only threads that may be created. Java
classes that depend on thread creation, such as those in java.awt and java.net, are
consequently not implemented.
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Chapter 14

Handling of Errors

Technically, in those places that the language specifically says that “it is an error” for the
program to perform some action, the result of further execution of the program is undefined.
However, as a practical matter, compilers should comply with the following constraints,
absent a compelling (and documented) implementation consideration. In general, a situ-
ation that “is an error” should halt the program (preferably with a helpful traceback or
other message that locates the error). It is not required that the program halt immediately,
as long as it does so eventually, and before any change to state that persists after execution
of the program (specifically, to external files). Therefore, it is entirely possible that several
erroneous situations might be simultaneously pending, and such considerations as which
of them to report to the user are entirely implementation dependent.

Erroneous exceptions. In addition to the erroneous conditions described in other sec-
tions of this manual, it is an error to perform any action that, according to the rules of
standard Java, would cause the implementation to throw one of the following exceptions
implicitly (that is, in the absence of an explicit ‘throw’ statement):

ArithmeticException ArrayStoreException,

ClassCastException,

IndexOutOfBoundsException, NegativeArraySizeException,

NullPointerException,

ThreadDeath,

VirtualMachineError (and subclasses)
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Appendix A

Planned Modifications

We currently intend to add the following features to vanilla Java:

• Foreign-function interfaces.

• A library of shared data types.

• A library class that provides the effect of “process static variables,” that is variables
that have one instance per process (as opposed to static variables, which have one
instance per instance of the entire program).

In addition, we expect the following modifications to existing features:

• Remove the Thread and ThreadGroup classes and methods in other classes that
produce them.

• Modifications to arithmetic engine.

• Different handling of exceptions in members of a process team.

• Explicit data-layout support.
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Appendix B

Notes

These are collected discussion notes on various topics. This section is not part of the
reference manual.

B.1 On Consistency

Note 1. We debated whether there should be a single total order E for a given execution
or one for every process in the execution. The latter seems to admit cache implementa-
tions that are not strictly coherent, since processes may see writes happening in different
orders. Our interpretation of the Java semantics is the stronger single serial order, so we
have decided to use that in Titanium. This is subject to change if we find a significant
performance advantage on some platform to the weaker semantics. Even with the single
serial order, the semantics are quite weak, so it is unlikely that any program would rely on
the difference. The following example is an execution that would be correct in the weaker
semantics, but not in the stronger one – we are currently unable to find a motivating
problem in which this execution would arise.

// initially X = Y = 0

P1 P2 P3

X = 2 X = Y Y = X

Y = 1

// Separating and labeling the accesses:

P1 P2 P3
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(A) Write X Read Y (C) Read X (E)

(B) Write Y Write X (D) Write Y (F)

// The following execution constitutes an incorrect behavior:

Read Y (C) returns 1, Read X (E) returns 2,

X = 2, Y = 1 at the end of execution.

We observe that:

• Access (C) consumes the value produced by (B) since it returns 1. The only other
candidate is (F). Let us assume that (F) indeed wrote the value 1. That would imply:

– (D) hasn’t taken place yet

– (E) read 1

– (A) must have written 1, which is false.

• Similarly (E) consumes the value produced by (A).

• According to P2, since the final value of X is 2:

B < C < D < A

• According to P3, since the final value of Y is 1:

A < E < F < B

Note 2. The Titanium semantics as specified are weaker than Split-C’s in that the default
is weak consistency; sequential consistency (the default in Split-C) can be achieved through
the use of volatile variables. However, this semantics is stronger than Split-C’s put and
get semantics, since Split-C does not require that dependences be observed. For example,
a put followed by a read to the same variable is undefined in Split-C, unless there is an
intervening synch. This stronger Titanium semantics is much nicer for the programmer, but
may create a performance problem on some distributed memory platforms. In particular,
if the network reorders messages between a single sender and receiver, which is likely if
there are multiple paths through the networks, then two writes to the same variable can
be reordered. On shared memory machines this will not be an issue. We felt that it was
worth trying to satisfy dependences at some risk of performance degradation.
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Note 3. The Java specification makes this qualification about divisibility only on non-
volatile double and long values. It gives the (unstated) impression that accesses to 64-bit
volatile values are indivisible. This seems to confuse two orthogonal issues: the size of an
indivisible value and the relative order in which operations occur.

B.2 Advantages of Regions [David Gay]

• The memory management costs are more explicit than with garbage collection: there
is a predictable cost at region creation and deletion and on each field write. The costs
of the reference counting for local variables should be negligible (at least according
to the study we did for our PLDI paper, but I am planning a somewhat different
implementation). With garbage collection, pauses occur in unpredictable places and
for unpredictable durations.

• Region-based memory management is safe.

• I believe that this style of region-based memory management is more efficient than
parallel garbage collection. Obviously this claim requires validation.

• When reference-counting regions instead of individual objects two common problems
with reference counting are ameliorated: minimal space is devoted to storing reference
counts, and cyclic structures can be collected so long as they are allocated within a
single region.

B.3 Disadvantages of Regions [David Gay]

• Regions are obviously harder to use than garbage-collection.

• As formulated above, regions will not mesh well with threads: you need to stop
all threads when you wish to delete a shared region. Currently this is enforced by
including a barrier in the shared region deletion operation - with threads this is no
longer sufficient. There are a number of possible solutions, but none of them seem
very good:

– Require r.delete() to be called from all threads. This would be painful for
the programmers.

– The implementation of r.delete() can just stop the other threads on the same
processor. However, to efficiently handle local variables containing references I
need to know all points where a thread may be stopped (and obviously if these
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points are “all points in the program” then efficiency is lost). So this solution
doesn’t seem very good either.
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localClone, 56
regionOf, 28

ObjectOp, 54
op, 2
operator overloading, 32–33
Reduce.or method, 52
Scan.or method, 54
origin, 5
overlap, 2
overlap method qualifier, 14
overlap method (on grid), 47
overlapping arrays and grids, 14

partition, 2
partition statement, 45
Point.permute method, 5, 48
RectDomain.permute method, 6, 50
permute method (on grid), 14, 47
Point, 2, 4–5
Point methods

all, 4, 48
arity, 5, 48
direction, 4, 48
permute, 5, 48
toString, 5

Domain.PointList method, 9
Ti.poll method, 56
polyshared, 2, 11, 20
polyshared, 20–24
private regions, 25–26
PrivateRegion, 26
process, 34
process team, 34
project method (on grid), 13, 47

QualifiedBaseType, 11
Qualifier, 11
qualifier, base, 11
qualifier, top-level, 11

BulkDataInput.readArray method, 62
BulkDataInputStream.readArray method,

62
BulkRandomAccessFile.readArray method,

63
readFrom method (on grid), 47, 61
RectDomain, 2, 5–9
RectDomain fields

n, 50
RectDomain methods

accrete, 7, 50
all, 50
arity, 6, 50
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border, 8, 50
boundingBox, 6, 50
contains, 7, 50
isNull, 50
isRectangular, 5, 50
lwb, 50
max, 6, 50
min, 6, 50
permute, 6, 50
shrink, 8, 50
size, 6, 50
slice, 8, 50
stride, 6, 50
toString, 9
upb, 50

Domain.RectDomainList method, 8
Reduce methods

add, 52
and, 52
gen, 52
max, 52
min, 52
mult, 52
or, 52
xor, 52

reference methods
clone, 20
creator, 20
isLocal, 20
localClone, 20
regionOf, 20

region-based allocation, 24–28
RegionInUse, 26
Object.regionOf method, 28
regionOf method (on grid), 47
regionOf method (on reference), 20
regions, allocating from, 26
Timer.reset method, 55
restrict method (on grid), 13, 47
runtime.boundschecking property, 55

runtime.distributed property, 55
runtime.gc property, 55
runtime.model property, 55
runtime.shared property, 55

Scan methods
add, 54
and, 54
gen, 54
max, 54
min, 54
mult, 54
or, 54
xor, 54

scatter method (on grid), 59
Timer.secs method, 55
set method (on grid), 14, 47
Domain.setRegion method, 9, 28
sglobal, 2
shared regions, 25–26
SharedRegion, 26
sharing qualification, 20–24
RectDomain.shrink method, 8, 50
single, 2, 11, 37
single analysis, 36–41
single-valued expression, 37–39
Domain.size method, 6, 49
RectDomain.size method, 6, 50
RectDomain.slice method, 8, 50
slice method (on grid), 13, 47
sparse grids, copying, 57–60
standard arrays, restrictions, 15
Timer.start method, 55
Timer.stop method, 55
stride, 5
RectDomain.stride method, 6, 50
String literals, sharing qualification, 22

template, 2
TemplateActual, 29
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TemplateDeclaration, 30
TemplateFormal, 30
TemplateHeader, 30
TemplateInstantiation, 29, 30
templates, 29–31

defining, 29
denoting instantiations, 29
instantiation, 30
name equivalence, 31
names in, 30

this, sharing qualification, 22
Ti.thisProc method, 34
threads, absence of, 64
Ti methods

barrier, 35
poll, 56
thisProc, 34

ti.lang, 3
Timer, 54–55
Timer methods

micros, 55
millis, 55
reset, 55
secs, 55
start, 55
stop, 55

Titanium array, see grid
Domain.toDomain method, 8, 9
Domain.toString method, 9
Point.toString method, 5
RectDomain.toString method, 9
translate method (on grid), 13, 47
Type, 11
type aliases, 31

universal termination, 37
Domain.upb method, 49
RectDomain.upb method, 50

BulkDataOutput.writeArray method, 62

BulkDataOutputStream.writeArray method,
63

BulkRandomAccessFile.writeArray method,
63

writeTo method (on grid), 47, 61

Reduce.xor method, 52
Scan.xor method, 54
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