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Abstract of the Thesis

Non Parametric Estimation of Inhibition for

Point Process Data

by

Alexa Beyor

Master of Science in Statistics

University of California, Los Angeles, 2015

Professor Frederic R. Paik Schoenberg, Chair

For a single geyser one eruption may inhibit another eruption. The objective is

to estimate the inhibition function of geyser eruptions using a non parametric

algorithm by extending the non parametric estimation method of Marsan and

Lengliné(2008) for clustered Hawkes processes to the case where there may be

inhibition. The proposed method is tested using simulated geyser eruption data

from known densities: Exponential, Pareto, Normal, and Uniform. The method is

then applied ot the actual data from the Lone Pine Geyser in Yellowstone National

Park. The data consists of 163 eruptions from 2011. The results indicate that

geyser eruptions do inhibit other eruptions to some degree.
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CHAPTER 1

Introduction

The goal is to estimate the inhibition function of geyser eruptions using a non

parametric algorithm. The idea for estimating inhibition stems from the Marsan

and Lengliné(2008) algorithm for estimating the triggering cascade of earthquakes.

The Marsan and Lengliné(2008) algorithm estimates the triggering cascade prob-

abilistically for a purely clustered Hawkes point process (Hawkes 1971), whereas

here we allow the process to have both clustering and inhibition at different scales.

A triggering cascade refers to one earthquake triggering another earthquake which

in turn can trigger subsequent earthquakes.

Earthquakes and geyser eruptions are a naturally occurring point processes.

A point process is a collection of random points in space such as location or time.

Both earthquakes and geyser eruptions alter their respective systems when they

occur. Tectonic plates shift during an earthquake, and water is ejected from a

chamber which empties and cools during an eruption. Geysers are a fairly rare

phenomena that only exist under a specific set of environmental conditions. There

must be a source of water, a chamber to hold the water, intense heat, and pressure.

According to Rinehard(1980), a geyser occurs when the surface of a hot spring is

constricted preventing the circulation of water and heat loss. Pressure in the hot

spring increases with depth which can prevent the deepest water from boiling even

when the temperature exceeds the surface boiling point. Steam forms and bubbles

upwards as the water in the chamber rises. As the bubbles rise they expand. At

a critical point, the bubbles will lift the water causing overflow or splashes. The
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overflow and splashing releases the pressure within the system resulting in intense

and violent boiling forcing out the water in the chamber. This eruption of water

is a geyser. The eruption ceases when the system cools or the water is depleted.

The process of geyser eruptions appears to imply one eruption would inhibit

subsequent eruptions of the same geyser. A period of time must pass to allow for

the water to refill the chamber, for pressure to build, and steam to form.

The algorithm proposed in this paper is an extension of the idea from Marsan

and Lengliné(2008) to estimate the triggering function of a Hawkes process non

parametrically, only here the triggering function is allowed to be negative and thus

potentially finding inhibition. Hawkes models are used in the study of earthquakes

(Ogata 1988, Ogata 1998), crime (Mohler et al. 2011, Zipkin et al. 2016), and

invasivie species (Balderama et al. 2012), among other applications. Historically

processes like geysers and other point processes with inhibition have typically been

modeled as a renewal process, Daley and Vere-Jones(2003). The difference here is

that, with a renewal process, the time until the next eruption only depends on the

single previous eruption time, whereas in this paper this assumption is relaxed.

For example, suppose a geyser typically erupts every ten days. Also suppose the

geyser has recently erupted at intervals of two days, three days, and then ten

days. According to the renewal model, it is no more likely than average to take

a long time now, and the two and three day intervals are irrelevant. However, by

common sense one might expect a longer interval. The method proposed in this

paper allows for two and three day intervals to have a lasting effect.

The data set used in this paper is from the Lone Pine Geyser in Yellowstone

National Park. In addition to estimating the inhibition function for this partic-

ular geyser, the non parametric algorithm with also be evaluated. To assess the

performance several simulated data set were created with known densities.
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CHAPTER 2

Procedures & Methods

Estimating the inhibition function of a point process data set requires estimating

the rate, the number expected due to background, the number observed within a

bin, and choosing the interval length, and bin size for the chosen interval. Suppose

guiuj is the inhibition function for the interval u between ui and uj, then g(u) =

guiuj for all u in [ui, uj]. The non parametric equation to estimate inhibition is:

ĝuiuj =

∑n
k=1

∑n
l=1 1tl−tk∈[ui,uj ]

n(uj − ui)
− n

T
(2.1)

and the standard error equation is:

SEguiuj =

√∑n
k=1

∑n
l=1 1tl−tk∈[ui,uj ]

T (uj − ui)
(2.2)

Where n is the total number of observed points, T is the duration of the time

series, n
T

is the rate, t is an event, u is the interval, and ui is the start of the bin

and uj is the end of the bin within the interval. The number expected due to

background is:

k =
n(uj − ui)

T
(2.3)
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The number observed within a bin is:

n∑
k=1

n∑
l=1

1tl−tk∈[ui,uj ] (2.4)

To computer the inhibition estimates and standard errors, iterate through each

bin until the end of the chosen interval is reached. Once all the estimates for each

bin are computed, they are transformed into density estimates using the following

equation:

f(u) =
ĝuiuj

(u)(m)
∑
ĝuiuj

(2.5)

Where m is the number of bins. The density estimates of the inhibition and

95% confidence bounds are then plotted for each bin in the interval. The resulting

plot is then analyzed.

It should be noted that the choice of interval length and bin size play an

intimate role in how well the inhibition estimates and standard errors will recovery

the true (underlying) density. If a bin is too small, there may only be a few

observed points, if any. Not having enough events in a bin results in poor estimates

and poor standard errors. Conversely, if a bin is too large, there may be too many

event is a given bin which may result in missing potential inhibition between

events. This may happen if the two events are captured within the same bin. The

length of the interval is also important as there may be boundary effects if the

interval is excessively large.

Choosing the most appropriate interval length and bin size begins with an

educated guess. With the initial choice, compute the estimates and standard

errors then plot them. Viewing the plotted estimates and standard errors will

reveal if a bin is the incorrect size and if the interval is too large. If the confidence

bounds become larger with each bin, the bin size is typically too small and should
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be increased. The bin size should also be increased if the confidence bound of

an estimate is non-existent as this implies there were no observed points in the

bin. The bin size should be decreased when the plotted estimates do not appear

to converge near zero. It is also important to look at the number of observed

values within a bin. If a bin only has one or two observed events, the bin is too

small. Conversely, if the number of observed events in a bin is significantly larger

the number expected due to background, the bin size is too large. To find the

optimal interval length and bin size, we adjusted the interval length and bin size

and plotted the recomputed estimates and standard errors. Depending on the

resulting plots further adjustments may have been made to interval length or bin

size.
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CHAPTER 3

Simulated Data

In order to assess the performance of the inhibition estimates several sets of sim-

ulated data with known densities were created. The simulations are designed to

be similar to a single geyser with multiple eruptions. To do this start with a set

of random deviates from a Poisson process and arrange them in ascending order.

The Poisson process is ideal for creating a point process set of times since it is a

random process that will count the number of events in a given interval. Points

are removed from the initial set of random deviates using a probabilistic method

with a specific probability density function. Models of the form 3.1 are considered,

where h is non negative and thus there is inhibition, but not so much inhibition

that the conditional intensity dips below zero, which would violate the definition

of a point process intensity, Daley and Vere-Jones(2003). This model is simulated

using a Poisson process and then thinning it, according to the routine of Lewis

and Schedler(1978).

λ(t) = [10−
∑
i=1

h(t− ti)]+ (3.1)

Where ti < t, t is a point in the sorted set of initial times, h(t) is the probability

density function, λ(t) is the estimated rate of events, and λ = 10 is the expected

rate of events for all created simulations. Using λ(t) and λ a probability, p, is

computed using the following equation.
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p =
λ(t)

λ
(3.2)

The probability is compared to a randomly generated uniform value between

0 and 1. The point t will be removed if p greater than or equal to the generated

random uniform. Repeat this process for every point in the sorted set of initial

times. This process will remove approximately half of the points from the initial

set. The thinned data will be referred to as a ”simulation” from here on out.

Twelve simulations were created using the probability density functions of the

Exponential, Pareto, Normal, and Uniform Distributions. The probability density

function, pdf, of each distribution is used for h(t). There are three simulations for

each distribution with approximately 500, 5,000, and 50,000 events. Each distri-

bution was chosen for a particular reason that will be discussed in further detail

in the respective subsections. The various simulations sizes and thinning proba-

bility density functions allow for a better evaluation of the inhibition estimation

algorithm. The aim is to estimate the known density for each simulation. The

main way this will be done is by plotting the known density with the estimates

for each simulation.

3.1 Exponential

The Exponential Distribution was chosen for its monotonically decreasing prob-

ability density function. It also describes the time intervals between events in a

Poisson process. This is useful since a decreasing density is expected if there is

inhibition, and the initial set of random deviates, times, is created with a Poisson

process.

A random rate of λ = 4 was chosen for the pdf. The following is the pdf of

the Exponential Distribution.
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hexponential(t) = λe−λt (3.3)

Figure 3.1 are the plotted estimates and 95% confidence bounds with the

exponential pdf. The interval is from 0-2 with 80 bins. It is evident from looking

at Figure 1 that as the size of the simulation increases the estimates become less

sporadic and the 95% confidence bounds become smaller. Most importantly as

the simulation size increases the estimates follow the pdf better. Even though

the smallest simulation, Figure 3.1a, has the least accurate estimates it still has

the general shape of the exponential pdf. The inhibition estimation algorithm is

preforming alright.
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Figure 3.1: The Exponential pdf with λ = 4, estimates, and 95% confidence
bounds for the simulations created using the Exponential pdf are shown in the
plots The interval is from 0 to 2 with a bin size of .025.
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3.2 Pareto

The Pareto Distribution, similarly to the Exponential Distribution, has a decreas-

ing probability density function. The main difference between the two distribu-

tions is the Pareto Distribution has a heavier tail. Using a slightly different pdf

allows for a more thorough assesment of the inhibition estimation algorithm.

The shape, α = 2, for the pdf was chosen at random, and the scale, tm, is

the minimum value of the simulation. The following is the pdf of the Pareto

Distribution for all t > tm.

hpareto(t) =
αtαm
tα+1

(3.4)

Figure 3.2 are the plotted estimates and 95% confidence bounds with the

Pareto pdf. The interval is from 0 to 3 with 60 bins. Once again as the simu-

lations size increases the estimates become less irregular and the 95% confidence

bounds become smaller. The estimates for all three simulations follow the Pareto

pdf fairly well. It is clear from looking at Figure 3.2a, 3.2b, or 3.2c that the

underlying density is a decreasing one that is similar to a Pareto or exponential.

The inhibition estimation algorithm preforms exceptionally well.
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Figure 3.2: The Pareto pdf with α = 2, estimates, and 95% confidence bounds
for the simulations created using the Pareto pdf are shown in the plots below.
The interval is from 0 to 3 with a bin size of .05.
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3.3 Normal

The Normal Distribution was chosen to help gauge how well the inhibition esti-

mation algorithm would preform with a nonzero peak. An nonzero peak implies

that part of the density will be increasing and the other part will be decreasing.

For the pdf of the Normal Distribution, a nonstandard mean and standard

deviation are used, µ = 2 and σ = .5. The following is the pdf of the Normal

Distribution.

hnormal(t) =
1

σ
√

2π
e

−(t−µ)2

2σ2 (3.5)

Figure 3.3 are the plotted estimates and 95% confidence bounds with the

Normal pdf. The interval is from 1 to 3 with 90 bins. Similar to the other

simulations, as the simulations size increases the estimates and 95% confidence

bounds become less varied and smaller. In Figure 3.3a, there is a slight peak of the

estimates and confidence bounds in the middle. This slight hump makes it easier

to detect the underlying normal pdf, but it would be difficult to see without the

plotted normal pdf. On the other hand, Figure 3.3c, the estimates for the largest

simulation follow the normal pdf extremely well. It appears as though even when

the peak of the density is not at the beginning or at zero the inhibition estimate

algorithm preforms relatively well.
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Figure 3.3: The Normal pdf with µ = 2 and σ = .5, estimates, and 95%
confidence bounds for the simulations created using the Normal pdf are shown in
the plots below. The interval is from 1 to 3 with a bin size of .02.
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3.4 Uniform

Similarly to the Normal Distribution, the Uniform Distribution was chosen due

to the immediate drop from the maximum to minimum value. This will help

with determining how well the inhibition estimation algorithm preforms when the

difference between the maximum (peak) and minimum is not gradual.

The standard values of the minimum and maximum, a = 0 and b = 1, were

used for the Uniform Distribution. The following is the pdf of the Uniform Dis-

tribution for all t ∈ [a, b].

huniform(t) =
1

b− a
(3.6)

Figure 3.4 are the plotted estimates and 95% confidence bounds with the

Uniform pdf. The interval is from 0 to 5 with 25 bins. In figure 3.4a, the estimates

are under and then over estimated. In Figure 3.4b, the estimates of the maximum

of the Uniform pdf are great, but the estimates for the minimum value are more

sporadic and the confidence bounds do not fully capture the plotted Uniform pdf.

In figure 3.4c, the maximum value of uniform pdf is overestimated a bit,and the

estimates for the minimum value are under estimated but converge fairly quickly

to the zero, the minimum value of the pdf. It is interesting to see how the amount

of information in each bin affects how well the estimate preforms.
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Figure 3.4: The Uniform pdf with a = 0 and b = 1, estimates, and 95% confi-
dence bounds for the simulations created using the Uniform pdf are shown in the
plots below. The interval is from 0 to 5 with a bin size of .2.
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CHAPTER 4

Lone Pine Geyser

The data set used is from the Lone Pine Geyser in Yellowstone National Park.

The most recently recorded information about eruptions of this geyser are from

2011. This is the eruption information used in this paper.

The following information about the Lone Pine Geyser is from the Geyser

Observation and Study Association. The eruptions for the Lone Pine Geyser

are relatively predictable with an eruption occurring every 24 to 27 hours. The

duration for each eruptions is about 20 minutes and can reach around 75 feet high.

This would be considered a major eruption. There can also be minor eruptions

an hour or two after a major eruption. These minor eruptions do not appear

to significantly affect the refill rate. The data logger place downstream records

information every minute during the summer months, April to November, and

every 3 minutes during the winter months, December to March. The data logger

detects changes in temperature, a rise in temperature indicates an eruption. Due

to ice formation during the winter months, some eruption information may be lost

due to the increased difficulty of detecting temperature changes.

According to the Geyser Observation and Study Association the eruption data

for 2011 begins during the winter months, and due to an error with the data logger

is missing a month of recordings from June 14 to July 14. To compensate for the

month of unrecorded eruptions, the recorded time stamps after July 14 were moved

forward month by subtracting the time difference between the last recording in

June and the first recording in July. The 2011 data set for the Lone Pine Geyser
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has 163 recorded eruptions.

Figure 4.1 shows the estimates and 95% confidence bounds for the geyser data

with an interval from 0 to 30 days. The estimates appear to oscillate a bit before

converging near zero at the end of the interval. There is one estimate, the first one,

which is noticeably larger than the rest. In Figure 4.1a, there is only one observed

eruption in the first bin. For each bin in the interval , the expected number

of eruptions due to background is approximately 80. In Figure 4.1b, there are

six observed eruptions in the first bin while the expected due to background is

approximately 100. By having only a few observed eruptions within a bin the

resulting confidence bounds are relatively small compared to other bins. This

initially large estimate is followed by a convergence to zero which seems to show

some inhibition similar to the Exponential or Pareto density.
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Figure 4.1: The estimates and 95% confidence bounds for the Lone Pine Geyser
data over a 30 day interval.
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CHAPTER 5

Conclusion

Based on how well the estimates recovered the various probability density func-

tions used to create several simulations with different peaks, it appears the esti-

mates with their confidence bounds are fairly robust. It is clear that number of

events within a bin determines how well the estimates will capture the underlying

density. Knowing this, the choice of bin size is crucial to the performance of the

estimates. As long as the bin size is large enough to contain enough events and

small enough to not lump too much information together the estimates computed

from the non parametric algorithm should recover the inherent density of the data

set. In general, the performance of the algorithm will improve as the size of the

data set being worked with increases.

In the future, a way to determine the best interval length and bin size would

prove incredibly useful. At the moment it begins as an educated guess and is

refined from there. It would also be beneficial to test the algorithm with other

simulated data sets and geyser eruption data set of various sizes.
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