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RESEARCH ARTICLE
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Interactions
Weitao Chen1, Qing Nie1, Tau-Mu Yi2*, Ching-Shan Chou3*

1 Department of Mathematics, University of California, Irvine, Irvine, California, United States of America,
2 Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara,
California, United States of America, 3 Department of Mathematics, The Ohio State University, Columbus,
Ohio, United States of America

* taumu.yi@lifesci.ucsb.edu (TMY); chou@math.ohio-state.edu (CSC)

Abstract
Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid

yeast cells secrete mating pheromones that are sensed by the partner which responds by

growing a mating projection toward the source. The two projections meet and fuse to form the

diploid. Successful mating relies on precise coordination of dynamic extracellular signals, sig-

naling pathways, and cell shape changes in a noisy background. It remains elusive how cells

mate accurately and efficiently in a natural multi-cell environment. Here we present the first

stochastic model of multiple mating cells whose morphologies are driven by pheromone gra-

dients and intracellular signals. Our novel computational framework encompassed a moving

boundary method for modeling both a-cells and α-cells and their cell shape changes, the

extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and

both external and internal noise. Quantification of mating efficiency was developed and tested

for different model parameters. Computer simulations revealed important robustness strate-

gies for mating in the presence of noise. These strategies included the polarized secretion of

pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensi-

tivity; all were consistent with data in the literature. In addition, we investigated mating discrim-

ination, the ability of an a-cell to distinguish between α-cells either making or not making α-

factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our

simulations were consistent with previous experimental results. Moreover, we performed a

combination of simulations and experiments to estimate the diffusion rate of the pheromone

a-factor. In summary, we constructed a framework for simulating yeast mating with multiple

cells in a noisy environment, and used this framework to reproduce mating behaviors and to

identify strategies for robust cell-cell interactions.

Author Summary

One of the riddles of Nature is how cells interact with one another to create complex cellu-
lar networks such as the neural networks in the brain. Forming precise connections

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004988 July 12, 2016 1 / 25

a11111

OPEN ACCESS

Citation: Chen W, Nie Q, Yi T-M, Chou C-S (2016)
Modelling of Yeast Mating Reveals Robustness
Strategies for Cell-Cell Interactions. PLoS Comput
Biol 12(7): e1004988. doi:10.1371/journal.
pcbi.1004988

Editor: Leah Edelstein-Keshet, University of British
Columbia, CANADA

Received: January 5, 2016

Accepted: May 16, 2016

Published: July 12, 2016

Copyright: © 2016 Chen et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: CSC was supported by NSF
DMS1253481. QN was supported by NIH grants
R01GM107264 and P50GM76516 and NSF grant
DMS1161621 and DMS1562176. TMY was
supported by NSF DMS1001006. The URL for the
NSF is http://www.nsf.gov/ and the URL for the NIH is
http://www.nih.gov/. The funders had no role in study
design, data collection and analysis, decision to
publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004988&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.nsf.gov/
http://www.nih.gov/


between irregularly shaped cells is a challenge for biology. We developed computational
methods for simulating these complex cell-cell interactions. We applied these methods to
investigate yeast mating in which two yeast cells grow projections that meet and fuse
guided by pheromone attractants. The simulations described molecules both inside and
outside of the cell, and represented the continually changing shapes of the cells. We found
that positioning the secretion and sensing of pheromones at the same location on the cell
surface was important. Other key factors for robust mating included secreting a protein
that removed excess pheromone from outside of the cell so that the signal would not be
too strong. An important advance was being able to simulate as many as five cells in com-
plex mating arrangements. Taken together we used our novel computational methods to
describe in greater detail the yeast mating process, and more generally, interactions among
cells changing their shapes in response to their neighbors.

Introduction
Cell-to-cell signaling via diffusible molecules is an important mode of communication between
cells in many mammalian systems such as neuron axon guidance [1], immune cell recognition
[2], and angiogenesis [3]. These interactions involve sensing an attractant from the partner and
responding by moving or growing in the appropriate direction (i.e. chemo-taxis/tropism),
while secreting signaling molecules in a reciprocal fashion. This behavior is conserved in
eukaryotes from fungi to humans [4,5].

The budding yeast Saccharomyces cerevisiae, undergoes a mating response that has served as a
model system for studying cell-to-cell communication [6]. Yeast cells have two haploid mating
types, a and α. By sensing the pheromone molecules (α-factor and a-factor), a- and α-cells detect
the presence of a mating partner. These secreted peptides form a spatial gradient, bind to the
pheromone-specific receptors, and elicit a response that includes cell-cycle arrest, gene expres-
sion, and formation of a mating projection (“shmoo”). Ultimately, the mating response results in
the fusion of the two cells and nuclei to create an a/α diploid cell (reviewed in [7]).

Mathematical modeling has provided a useful tool for studying cell-cell interactions. Previously,
moving interface models have been used to investigate deforming the shape of eukaryotic cells. In
[8], a 1D continuummodel of cell motility in amoeboid cells based on a viscoelastic description of
the cytoplasm was developed, and in [9], cells in a 2D domain were treated as a two-phase fluid.
The immerse boundary and finite element based approach was developed to model the actin net-
work and cell morphogenesis in [10], an evolving surface finite element method modeled cell
motility and chemotaxis in [11], and the boundary tracking Lagrangian framework was used in
[12,13]. Other models used agent-based frameworks such as the Potts model, which takes into
account detailed chemical networks and moving cells [14]. Level set approaches have also been
adopted [15,16] to simulate the cell membrane deformation coupled to chemistry reaction dynam-
ics. Previous studies focused on the relationship between morphogenesis and its underlying bio-
chemical or mechanical machinery. In this work, we extend this concept by including the
molecular dynamics within the extracellular space to studymulti-cell interactions.

In laboratory yeast mating assays, wild-type cells mate with approximately 100% efficiency
[17]. Genetic screens have identified mutants that mate at reduced efficiency [18]. One class of
mutants prevents mating altogether. In addition, Hartwell and colleagues have modified the
basic assay to investigate “three-way”mating between an a-cell that can mate with either an α-
cell that makes α-factor or an α-cell that does not [19,20]. In this mating discrimination test,
wild-type a-cells mate almost exclusively with α-factor producers. Mutations that affect the
sensitivity of the system, such as the deletion of SST2 (a gene which downregulates signaling
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via the heterotrimeric G-protein) or the deletion of BAR1 (which encodes for an α-factor prote-
ase), dramatically reduce both mating efficiency and mating discrimination [20].

The communication between mating cells is mediated by the mating pheromones which
bind their cognate G-protein-coupled receptors turning them on. Active receptor catalyzes the
conversion of heterotrimeric G-protein into Gα-GTP and free Gβγ. The resulting Gβγ subunit
can then recruit Cdc24 to the membrane where it activates Cdc42. Active Cdc42 is a master
regulator of the cell polarity response orchestrating the cytoskeleton, exo/endocytosis, and sig-
naling complexes [21,22]. All of these processes involve noise due to Brownian motion, sto-
chasticity in gene expression or other intracellular fluctuations [23–26], which may affect cell
assessment of signals and their responses [27]. In particular, the diffusion of ligand into the
local neighborhood of the cell and the binding of ligand to receptor are thought to introduce
significant stochasticity to gradient-sensing systems [24,28]. Therefore, it is necessary to con-
sider the effects of noise when exploring cell behavior during mating.

There has been extensive mathematical modeling of the yeast pheromone response system.
The early models were non-spatial and emphasized signaling dynamics [29–31]. More recent
modeling efforts have incorporated spatial dynamics, both deterministic [32–34] and stochas-
tic [35–37]. Models have ranged from simple generic formulations to detailed mechanistic
descriptions. Finally, we and others have modeled pheromone-induced morphological changes
to cell shape [12,38]. In related research, Diener et al. employed a combination of image pro-
cessing and computational modeling to describe the extracellular α-factor dynamics in a popu-
lation of mating cells, and how those dynamics were altered by the protease Bar1 [39].
However, missing from the literature is modeling of the yeast mating process itself involving
both a- and α-cells.

In this paper, the goal was to construct the computational infrastructure for simulating the
mating of two or more yeast cells, and then to investigate the factors responsible for robust
mating behavior. We want to use our models to understand in greater detail the spatial dynam-
ics that ensure efficient mating, and provide quantitative explanations and predictions on how
perturbing these dynamics (e.g. mutants) disrupts the cell-cell interactions during mating. We
succeeded in developing numerical methods for simulating yeast mating. Key elements include
modeling the shape of the cell described by a moving boundary technique, and the extracellular
diffusion dynamics of the pheromone ligand. Using this framework, we explored different
model structures and parameters in a systematic fashion using generic models. We were able to
simulate the high efficiency of mating among wild-type cells, and their ability to discriminate
among partners that synthesized mating pheromone at different levels. Our simulations sug-
gested that two critical factors ensuring robust mating under noisy conditions were the polar-
ized secretion of mating pheromone, and the presence of the Bar1 protease. In addition, we
demonstrated that supersensitive mutants disrupted both mating efficiency and discrimina-
tion, reproducing experimental data. More generally, this work makes progress toward the goal
of a more detailed description of cell-cell interactions.

Results

1. A stochastic model with dynamic cell shapes for multi-cell mating
systems
In this section, we describe the stochastic model for multi-cell mating systems in two-dimen-
sional space. Cell shape is represented by a level set formulation to capture the deforming
plasma membrane induced by pheromone signaling.

As described in the Introduction, mating occurs when an a-cell and α-cell are in close prox-
imity (Fig 1A). They sense the pheromone gradient generated by the partner and project
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Fig 1. Yeast mating: experiments and simulations. (A) Time-lapse microscopy of mating yeast cells. Wild-
type bar1Δ a-cells (left) and α-cells (right) were imaged over a two-hour period starting at t = 90m. The
polarisome was labeled with Spa2-GFP (a, first row, cells outlined in green) and Spa2-mCherry (α, second
row, cells outlined in red). The GFP and mCherry channels are merged (third row) with the three a-cells and
four α-cells labeled. The DIC images are shown in the fourth row. The pairs a1-α1 and a3-α2 mated
successfully. The presence of Bar1 over time will degrade the α-factor in a mating mix, and so to maximize
the mating response we employed a bar1Δ strain. Scale bar = 5 μm. (B) Schematic diagram of yeast mating
simulations. At the start, two cells are separated by 4 microns. The two mating pheromones (a-factor and α-
factor) diffuse from their respective sources (a-cell and α-cell) which are sensed by the respective partners.
The spatial dynamics of the biochemical reaction network are triggered resulting in the polarization of the
membrane species. The boundary of the cell moves in response to the concentration of the polarized species
resulting in the growth of a mating projection. Mating ends when the tips of the projections contact one
another.

doi:10.1371/journal.pcbi.1004988.g001
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toward the source. In Fig 1A, cells are labeled with a marker for the polarisome (a: Spa2-GFP
or α: Spa2-mCherry), a cellular structure at the tip of the mating projection. From a simulation
standpoint, this process can be broken down into a series of steps (Fig 1B) from the secretion
and diffusion of pheromones to the resulting growth in the mating projection.

Describing the mating process between two cells requires solving diffusion equations for the
ligands in the extracellular space, which evolve according to the shifting positions of the phero-
mone sources. These sources in turn depend on the sensing of the ligand input and the mor-
phological response. Thus, the cell boundary is evolved together with the molecular dynamics
associated with the membrane for each cell.

Unlike our previous model of a single polarizing cell which solves surface reaction-diffusion
equations in Lagrangian coordinates to capture deformation of the cell membrane [12], here
we apply the level set method [40], which can track the moving curve front implicitly by solv-
ing a Hamilton-Jacobi equation. In this way, it is easier to study the interactions of multiple
cells, and it allows a straightforward extension to the case of multicellular interactions by intro-
ducing level set functions for each different cell, and inclusion of the surface diffusions for mol-
ecules on the cell membrane. With this methodology, we can distinguish between the
intracellular and extracellular space, and couple extracellular pheromone diffusion with the
intracellular reaction-diffusion dynamics. The numerical scheme is described in the Methods
section.

For simplicity, the cell is modeled as a two-dimensional (2D) circle with radius of 1 μm; the
actual yeast cell is a three-dimensional (3D) sphere with radius 2 μm. The experimental mating
assay involves placing the cells on a surface (i.e. paper filter) so that the mating reaction is effec-
tively in two dimensions. The time unit is 100 seconds to approximate within an order of mag-
nitude the growth velocity observed in experiments.

In this model, the mating pheromone is denoted by f, which is the external cue of cell polari-
zation. Two membrane-associated species, u1 and u2, initially are uniformly distributed and
then undergo polarization upon sensing the pheromone signal. The system forms a two-stage
cascade in which the output of the first stage (u1) is the input to the second stage whose output
is u2. The species v1 and v2 provide negative feedback (integral feedback) to regulate u1 and u2
(see S1 Text). The cell grows in the direction determined by u2. This model is a generic model
of the mating system and abstracts away the mechanistic details of yeast mating.

As studied in the previous model for the two-stage yeast cell polarity system on a single cell
[41], u1 represents the protein Gβγ, which is the output of the heterotrimeric G-protein system
and the input to the Cdc42 system, and u2 represents active Cdc42, which is the master regula-
tor of yeast cell polarization. Finally, the peak of the u2 distribution represents the polarisome
which directs new secretion driving mating projection growth.

To track morphological changes of multiple cells, we use a level set function, denoted by ϕ
(x, t), to distinguish exterior and interior of one cell such that the domain D is decomposed
into three regions: Γ = {x: ϕ(x, t) = 0} representing the plasma membrane, Oin = {x: ϕ(x, t)< 0}
corresponding to the intracellular space, and Oex = {x: ϕ(x, t)> 0} is the extracellular space.
The membrane is moving in a given velocity field V(x) which is described in the Methods sec-
tion and represents growth of the projection. The stochastic dynamics of the diffusing phero-
mone ligand (fα represents α-factor and fa represents a-factor) are described in (1) and (2):

@fa
@t

¼ DaDfa þ Saðx; tÞ � kafa þ k1fa
@2W1ðx; tÞ

@t@x
; x 2 Oex ð1Þ

@fa
@t

¼ DaDfa þ Saðx; tÞ � kafa þ k1fa
@2W2ðx; tÞ

@t@x
; x 2 Oex; ð2Þ
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where Sα(x, t) and Sa(x, t) denote the sources of pheromones, and they are either constant or
localized Gaussian distributions with support on the membrane (see Methods).

Each cell contains the membrane-associated species (uj, vj), j = 1,2, whose dynamics are
described in Eqs (3–6), and the membrane velocity is described in (7):

@u1

@t
¼ DsDsu1 þ

k10
1þ ðb1

~f Þ�q1
þ k11
1þ ðg1u1p1Þ�h1

� ðk12 þ k13v1Þu1 þ k2u1

@2W3ðx; tÞ
@t@x

; x

2 G ð3Þ

@v1
@t

¼ k14ð~u1 � k1ssÞv1 þ k3v1
@2W4ðx; tÞ

@t@x
; x 2 G ð4Þ

@u2

@t
¼ DsDsu2 þ

k20
1þ ðb2u1Þ�q2 þ

k21
1þ ðg2u2p2Þ�h2

� ðk22 þ k23v2Þu2; x 2 G ð5Þ

@v2
@t

¼ k24ð~u2 � k2ssÞv2; x 2 G ð6Þ

Vðx; tÞ ¼ Vamp � u2 �max 0; h n!; d
!

maxi
� �

; x 2 G ð7Þ

~f ¼ f
max
x2S

f
þ 0:1; ~u1 ¼

Z
s

u1dsZ
s

ds
; ~u2 ¼

Z
s

u2dsZ
s

ds
;

p1 ¼
k10

1þ ðb1
~f Þ�q1

; p2 ¼
k20

1þ ðb2u1Þ�q2 :

Note that Eqs (3–7) are restricted on the plasma membrane Γ, where Δs denotes the surface

Laplace-Betrami operator for the lateral surface diffusion. In Eq (3), ~f is associated with the phero-

mone factor from the opposite mating type; that is, if the cell is an a-cell, then ~f is ~f a. In addition,

instead of f, we use the normalized distribution ~f ; in this definition, a constant is added to make the
parameter consistent with [12]. This normalization represents the adjustable dynamic range mech-
anisms in the system designed to prevent the sensing from saturating (see Discussion). In Eqs (3–
6), we ignore the advection termsrS�(ujV) andrS�(vjV), which describe the increased surface area
where the membrane species reside, because this dilution effect is minimized by the integral control
feedback in the model (see S1 Text). On the other hand, these terms necessitate a smaller time step
because of the curvature appearing during the computation. Therefore, for numerical efficiency, we
simulate Eqs (3–6) on the deforming membrane without the advection terms.

In Eq (7), V(x,t) denotes the normal component of the growth velocity of the plasma mem-
brane which describes the rate and direction of membrane movement (the tangential compo-
nent is ignored by assuming it is small). Vamp is a constant specified with respect to the time

scale, n! is the unit outward normal vector, and d
!

max is the growth direction defined as the
unit outward normal vector at the center of the polarisome. The normal velocity V(x,t) is
assumed to be proportional to u2, i.e., active Cdc42. The concentration and location of active
Cdc42 determines the position of the polarisome, which directs the secretion [21]. We model
the growth direction to be aligned with the normal direction at the polarisome.
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Multiplicative noise was adopted and each of the noise terms was weighted by a parameter
κi, representing external or internal noise sources. The functionWi(x, t) is a random variable

such that the white noise term @2Wiðx;tÞ
@t@x

follows a normal distribution with variance the same as

the time step according to the definition of a Wiener process in our simulations. For simplicity,
we considered three noise effects in the simulations. One represents the diffusive noise of the
extracellular ligands which is described in the pheromone equation. The second is associated
with the dynamics of u1 (Gβγ) which represents noisy internal processes such as fluctuations in
ligand-receptor binding and receptor activation of G-protein. The final noise effect represents
noise in the regulatory feedback loop (v1). Noise introduced in the second stage of the model is
ignored to focus on the sensing noise. In addition, we modified the definition of the velocity
function in the stochastic model. Since the velocity depends on u2 which is fluctuating, it is nec-
essary to apply filtering to smooth the dependence of the velocity function on u2 (see S1 Text).
Finally, we can explore the deterministic dynamics simply by choosing zero for each κi.

The default initial conditions for the simulations are two cells (one a-cell and one α-cell)
whose centers are separated by 4 μm in which the membrane species ui is uniformly distributed
on the cell surface, and thus no polarisome is formed in the beginning and initial pheromone
secretion will be isotropic. Unless otherwise stated, no Bar1 (α-factor protease) is present, i.e.,
cells are considered bar1Δ; there is no background α-factor source.

At this point we note some of the limitations of the model which we expand upon in the
Discussion. First the model is a generic representation of the system that lacks mechanistic
detail. Second we employed a quasi-steady-state approximation of α-factor spatial dynamics to
speed up the simulations. Third there was not rigorous fitting of the parameters to the experi-
mental data but rather a sampling of different regions of parameter space that produced experi-
mentally observed behaviors.

2. Noise disrupts mating alignment between two cells
In this section, we investigated the impact of noise in the context of exploring one specific
parameter in the simulations, the a-factor diffusion constant.

2.1. Varying the diffusion rate of a-factor without noise. The diffusion constants for the
pheromones α-factor and a-factor are known to be different. Because α-factor is water-soluble,
its diffusion constant can be estimated to be Dα ~ 100 μm2/sec based on its molecular weight
[42]. The diffusion coefficient for a-factor is thought to be lower than α-factor because of its
hydrophobic tail, but the value is not known [43]. We investigated a range of values for this
parameter, using our two-cell model in the absence of noise. As shown in Fig 2A, the diffusion
rate Da was varied to be 100, 10, 1 and 0.1 μm

2/s. Overall the mating behaviors were similar
(cells projected toward one another) although the different diffusion coefficients of a-factor
give rise to different morphologies for the α-cell.

2.2. Varying the external and internal noise amplitude. We investigated different values
for the external (κ1) and internal (κ2) noise in the simulations. For simplicity, we set the value of
noise on the negative feedback term to be a constant (κ3 = 0.1) in all simulations in order to focus
on κ1 and κ2. In Fig 2B, we show a table of typical simulations in which κ1 was varied from 0 to
50, and κ2 was varied from 0 to 5.Da was set to a test value of 10 μm

2/s to reflect the fact that the
lipid-modified a-factor is expected to diffuse slower than α-factor (which has no lipid modifica-
tion) but faster than a lipid-modified membrane protein (0.1–1 μm2/s). The sample simulation
indicates the effect of a given level of noise and is representative of at least 10 trial simulations.

Both types of noise make mating more challenging. For κ1 (external), low levels are similar
to no noise. At intermediate levels of κ1 we observe less accurate mating. At high levels, the
cells are unable to polarization. The same trend is observed with the internal noise parameter
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κ2 albeit with an even bigger effect. Combining the two noise terms further decreases mating
and polarization. Based on these results, we selected intermediate values for both κ parameters,
and set the noise amplitudes to be κ1 = 5, κ2 = 3 in the stochastic simulations that follow unless
otherwise specified. This level of noise disrupts mating alignment but does not prevent mating.
These values are consistent with previous theoretical work [25], which when applied to the
yeast system have led to estimates of external noise arising from ligand diffusion and internal
noise arising from ligand-receptor interaction to be in the range from 1 to 10 [28,41].

2.3. Varying the diffusion rate of a-factor with noise. We re-tested the different values
for the diffusion coefficient of a-factor in the presence of noise (Fig 2C) using the noise

Fig 2. Effect of external and internal noise on yeast mating simulations. (A) Varying a-factor diffusion
rates under no-noise simulation conditions. The diffusion constant for a-factor Da was set to 0.1, 1, 10, and
100 μm2/s; the diffusion constant for α-factor was Dα = 100 μm2/s. The cell centers were separated by 4 μm at
the start. In all cases the cells were able to grow toward each other successfully. (B) External and internal
noise disrupt mating. External (κ1) and internal (κ2) noises were added to the simulations using a range of
values (0, 5, 10, 50 for κ1; 0, 3, 5 for κ2). 10 simulations were run for each combination, and an example
simulation is shown for each specified pair of values (κ1, κ2). (C) Varying a-factor diffusion rates in the
presence of noise. Simulations performed as in (A) except in the presence of noise (κ1 = 5, κ2 = 3). All
simulations produced mating exceptDa = 0.1.

doi:10.1371/journal.pcbi.1004988.g002
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parameters κ1 = 5, κ2 = 3. Compared to the no-noise simulations (Fig 2A), we observed that
mating did not occur for the lowest value of Da = 0.1 μm2/s. One explanation is that at very low
values of Da then a-factor does not diffuse far enough to influence mating during the time
period. On the other hand, values of 100, 10, and 1 all resulted in mating; we chose a default
value of 10 μm2/s to maintain the asymmetry between a-factor and α-factor while avoiding low
values that hinder mating.

3. Mating Efficiency of Two Cells
3.1. Defining mating efficiency. A standard laboratory test of yeast mating is the mating

efficiency assay [17]. Populations of a- and α-cells are mixed together and the percent of suc-
cessful matings is calculated, i.e., percent of a-cells that have mated with α-cells to form dip-
loids divided by the total number of a-cells. Below we attempt to reproduce this assay using the
two-cell mating simulations. This approach is a simplification because it ignores the influence
of surrounding cells. Later, we describe three- and five-cell simulations that take into account
more cells.

In the simulations, two cells were started with their centers 4 μm apart to leave sufficient
room for the cells to grow while the mating occurs in a reasonable amount of time which is set
to be 1800 seconds in our simulations. A successful mating was defined as the focal region of u2
(i.e. polarisome) from each cell coming into close contact (Fig 3A, see Methods). Snapshots of
simulations at different time are provided in Fig F in S1 Text.

As a negative control, we performed simulations in the absence of pheromone secretion in
which pheromone was added exogenously to create a uniform distribution. In this case, the
cells did not mate (see S1 Text) consistent with the low mating efficiency of pheromoneless
cells observed experimentally [44].

3.2. Varying velocity only affects the time of cell mating without changing efficiency.
We tested different growth velocities by a 2-fold change to measure the effect on mating behav-
ior in the simulations. Snapshots of simulations at different time points are provided in Fig G
in S1 Text. The distance plot (which measures the distance between polarisomes every 50s) for
a typical simulation at each velocity shows a steady decrease in the distance between projec-
tions. Moreover, when the velocity is decreased in half, it takes approximately twice as long to
mate (Fig 3B and 3D). One can also examine the direction of each projection to see if they are
growing toward one another. The angle of projection of the α-cell is defined in a counterclock-
wise fashion taking values from� p

2
to p

2
, whereas the angle of projection of the a-cell is defined

in the clockwise direction so that two cells grow toward each other when the projection angles
are the same indicated by the diagonal line in Fig 3C. The growth direction is collected every
50s, and the average for each simulation represents a point in the direction plot. The points of
the direction plots for the default (0.0002 μm/s) and slow (0.0001 μm/s) velocities both lie on
the red diagonal line reflecting equivalent mating efficiencies (Fig 3C, mating efficiency
ME = 17/20 for slower velocity and 15/20 for default boundary velocity, p-value is 0.69 by Fish-
er’s exact test). Mating efficiency is calculated by dividing the number of successful matings
(described above) by the total number of mating simulations. Based on the results, the mating
efficiency is not significantly changed by velocity and we set the velocity amplitude to be
0.0002 μm/s for faster simulations.

3.3. Shorter cell-cell distance yields similar results. The distance between two cells can
affect their interactions. We compared the default distance of 4 μm between the cell centers
with a shorter distance of 2.5 μm (0.5 μm between cell boundaries). Snapshots of simulations at
different time are provided in Fig H in S1 Text. The mating efficiency was 15/20 for the 4 μm
distance and 16/20 for the 2.5 μm distance, which were very similar (p-value is 1 by Fisher’s
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exact test). Although the direction vectors showed increased variability reflecting a more scat-
tered distribution around the diagonal at the shorter distance (Fig 3C), ultimately the two pro-
jections were able to find each other. Thus, at the shorter distance, mating efficiency was

Fig 3. Computer simulations of mating efficiency. (A) Schematic of determining mating efficiency. In the
simulation on the left, the tips marked by gray and black dots (polarisomes) of the two projections fall within a
distance threshold (seeMethods) so that the mating is considered successful. In the simulation on the right, the
tips do not pass close enough to one another by the end of the simulation, and so the mating is deemed
unsuccessful. (B) Faster and slower boundary velocities yielded similar mating trajectories. We ran simulations at
two different boundary velocities (Vamp = 0.0001 and Vamp = 0.0002 μm/s). A plot of the distance between
polarisomes of mating partners as a function of time is shown for a sample simulation. The plots are similar except
the slower velocity took approximately twice as long to mate. (C) Direction plots for different boundary velocities and
shorter cell-to-cell distance. In this plot each data circle represents one mating simulation. The average direction of
each projection is plotted on the x-axis for the α-cell, and y-axis for the a-cell. The projections are toward one
another when the data point lies along the diagonal line (i.e. top right and bottom left quadrants). We show the
direction plots for the default simulation parameters (V = 0.0002 μm/s, left), slow boundary simulation
(V = 0.0001 μm/s, middle), and close-cell positions (cell-to-cell distance = 2.5 μm instead of 4 μm, right). The mating
efficiencies were similar for all three simulations. (D) Average mating time of successful matings under different
simulation conditions same as in (C). Each bar represents the average time (± standard deviation) for successful
mating. We performed 20 simulations for each condition, and the numbers of successful matings for default, slow
and close parameters are 15, 17 and 16 respectively.

doi:10.1371/journal.pcbi.1004988.g003
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approximately the same as at the default distance. When we measured the mating time for suc-
cessful matings (Fig 3D), we saw that the mating time was approximately inversely propor-
tional to the membrane velocity and proportional to the distance between cell membranes.

In summary we observed a mating efficiency of approximately 75% in two-cell simulations
at two different distances. This mating efficiency is slightly lower than the 90–100% mating
efficiency observed in experiments [19,45].

4. Robustness Strategies for Optimizing Mating Efficiency
In the natural environment, yeast mating is efficient and robust to a variety of perturbations. In
this section, we explored how features of the mating process could promote robust and efficient
mating; we compared different mating scenarios by modifying the model parameters.

4.1. Polarized pheromone source distribution increases mating efficiency. One impor-
tant variable is the spatial distribution of the pheromone source. We consider two possibilities
with respect to the pheromone source: isotropic or non-isotropic (polarized) secretion. In the iso-
tropic scenario, pheromone is secreted uniformly from all points on the cell surface. In the non-
isotropic scenario, the source would be polarized to the front (Fig 4A). Intuitively, one may imag-
ine that the polarized source distribution would contribute to accurate mating by helping the pro-
jections find each other, and in the simulations described above we used the polarized source as
the default. However we wished to compare these two possibilities quantitatively as follows.

At the start of the simulations both cells secrete isotropically. Once the polarization is acti-
vated, the secretion becomes localized and is confined around the growth tip by being a func-
tion of u2 in the formulation of the polarized (non-isotropic) source distribution, whereas the
isotropic function does not depend on u2 (see Methods).

As expected the polarized pheromone source matings produced higher mating efficiency
(ME = 15/20) than the isotropic source matings (ME = 6/20). By carrying out Fisher’s exact
test on the mating efficiency, p-value is 0.01, therefore the difference between the two ME
scores is significant. The effect could be observed in four sample matings for each scenario.
Snapshots of more examples at different times are provided in Fig I in S1 Text. A picture of the
mating cells (Fig 4B) shows how with the polarized source the projections tend to meet,
whereas with the isotropic source, they sometimes miss. The distance plots measure the dis-
tance between the polarisomes over the course of the simulation (Fig 4C). With the isotropic
matings, sometimes the distance stops decreasing and begins increasing as the projections go
past each other. With the polarized source matings, the projections tend to go toward each
other so that the distance steadily decreases.

In addition, the direction plots (Fig 4D) show that compared to the polarized source case,
the isotropic matings possess projection directions that are not always toward one another (i.e.
points farther off-the-diagonal; 0.26 versus 0.12 radians). The polarized source mating projec-
tions are all in the two quadrants along the diagonal in which the projections are heading in
the correct direction. However, when we measured the average mating time of successful mat-
ings for isotropic and polarized sources (Fig 4E), we did not observe a significant mating time
difference if the mating is successful.

4.2. Supersensitive cells exhibit decreased mating efficiency. For yeast cells, one chal-
lenge is keeping the ligand concentration in the proper range so that the cell can detect spatial
differences. In mutant cells (e.g. sst2Δ) that are overly sensitive to pheromone (supersensitive),
the signaling system becomes easily saturated and the cell cannot determine the concentration.
As a result, they cannot detect the correct gradient direction and fail to mate [19]. We repre-
sented supersensitivity in our model by increasing the parameter β1, the reciprocal of the value
achieving half-maximal activation in the term modeling external stimuli.
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Fig 4. Mating efficiency of isotropic versus polarized pheromone source. (A) Schematic diagram of isotropic versus polarized (non-isotropic)
pheromone source. Top row indicates in black shading the spatial distribution of the pheromone source function. The bottom row depicts the a-factor
diffusion profile shown as a concentration contour plot for the isotropic source (left) and the polarized source (right). (B) Polarization plots of u2 showing
mating cells at end of simulation. Four sample simulations each from the isotropic source group and from the polarized source group are shown. The
normalized level of u2 is color coded on the surface of the cell according to the colormap on right. The polarisome is denoted by the black or gray dot at the
projection tip. The polarized source produces higher mating efficiencies; the 1 or 0 indicates a successful or unsuccessful mating. The polarization plots,
distance plots, and direction plots are color coded (blue, red, green, brown) for a particular simulation. (C) Distance plots for each of the four simulations.
These plots show the distance between polarisomes of the mating partners as a function of time. With the isotropic source, the distances do not converge
to 0 for some of the simulations. The green isotropic source simulation was terminated early because it did not meet the distance/direction threshold. (D)
Direction plots for polarized source and isotropic source simulations. Each data point represents the averaged direction of the projection from each cell
during mating. Axes are described in the legend to Fig 3C. Mating is more likely if the projections are in the same direction i.e. along the diagonal in the top
right or bottom left quadrants. The average distance from the diagonal is 0.26 radians for the isotropic source compared to 0.12 for the polarized source
matings. Colored filled circles correspond to simulations shown in (B) and (C). (E) Average mating time of successful matings with isotropic and polarized
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We tested the case β1 = 2.5 (β1 = 0.92 is default value) for both cells in two-cell mating in a
noisy environment (Fig 5). In the presence of noise, both cells can successfully make a projec-
tion. Although the α-cell can detect the gradient and grow toward the source, the a-cell cannot.
The growth of the a-cell is triggered by noise fluctuations, so that the cell picks a random direc-
tion which may not be correlated with the gradient. As a result, no matings are observed in the
supersensitive simulations (ME = 0/20, p-value = 7.7E-07 by Fisher’s exact test). Snapshots of
more simulations at different time points are provided in Fig J in S1 Text.

In summary, we observed dramatically reduced mating efficiency in supersensitive cells
with ME = 0% in the simulations compared to the 75% in cells possessing normal sensitivity.
Experimentally, past data from this lab showed a decrease in mating efficiency from 96% in
wild-type cells to 28% in sst2Δ supersensitive cells [45].

4.3. The presence of the α-factor protease Bar1 improves mating efficiency. The a-cell
can secrete a protease, Bar1, to degrade α-factor in its vicinity during mating. Up to this point,
we have not tried to model Bar1; in effect, the a-cells have been bar1Δmutants. It is thought
that cells without Bar1 mate less efficiently than cells with Bar1 [46]. One explanation is that
the background level of α-factor increases without the presence of Bar1. This background level
can saturate the sensing apparatus in a similar fashion experienced by the supersensitive
mutants preventing gradient detection.

sources. Each bar represents the average time (± standard deviation) for successful matings. We performed 20 simulations for both conditions, and the
numbers of successful matings for isotropic and polarized sources are 6 and 15 respectively.

doi:10.1371/journal.pcbi.1004988.g004

Fig 5. Reducedmating efficiency for supersensitive cells. (A) Polarization plots of u2 showing four pairs
of supersensitive mating cells at the end time point. The spatial distribution of u2 is represented according to
the normalized color map on the right. The 0’s indicate that none of the matings were successful. Both cells
had β2 = 2.5. (B) Distance plot showing trajectories from four sample supersensitive mating simulations. The
distance between polarisomes was plotted as a function of time. The distances did not steadily decrease as
was observed in the normal sensitivity simulations. The four plots are color-coded to match with the
polarization plots. (C) Direction plot for supersensitive cell mating simulations. Many of the data points lie far
off the diagonal indicating that the cells are not pointing toward each other; the average distance from the
diagonal is 0.68 radians compared to 0.12 for the normal sensitivity matings.

doi:10.1371/journal.pcbi.1004988.g005
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In the previous work [12,38], the authors suggest that Bar1 is necessary for efficient mating
by reshaping the local pheromone concentration and avoiding nonproductive cell-cell interac-
tions. To investigate this process, we compared the behavior of Bar1+ and bar1Δ cells at differ-
ent background pheromone production rates.

For a Bar1+ cell, we need to solve one more equation in extracellular space for the protease
distribution, which is formulated similarly to Eq (1),

@B
@t

¼ DBDBþ SBðx; tÞ � kBB; x 2 Oex: ð8Þ

The equation of α-factor is modified to be

@fa
@t

¼ DaDfa þ Saðx; tÞ � ðka þ kBf ~BÞfa; x 2 Oex; ð9Þ

in which ~B ¼ B
max Bþε

represents the degradation of α-factor by Bar1, and ε(� 10−6) is added to

avoid zero in the denominator. We also set the production of Bar1 to be SB ¼ 1
50
Sa in the simu-

lations. Therefore, if the a-factor is secreted in a polarized fashion, then so is Bar1.
We simulated the increase in background α-factor with a new uniform source function

ðS0
a ¼ Sa þ CÞ that increased the global α-factor levels (by the constant C) while the cells gener-

ated the local α-factor dynamics (Sα). For high values of C, the simulated bar1Δ cells did not
mate as efficiently (Table 1).

We then tested for the effect of the presence of Bar1. When C = 0, the bar1Δ and Bar1+ cells
displayed approximately the same mating efficiency. For the bar1Δ simulations, as we increased
C from 0 to 100, there was a progressive decline in mating efficiency from 15/20 to 2/20. For the
Bar1+ simulations, there was also a decline but it was more gradual. At C = 10, the mating effi-
ciency was still 85% and at C = 100 it was 80%, which was higher than the corresponding bar1Δ
values. To test whether the mating efficiency of Bar1+ is significantly greater than that of bar1Δ, we
performed Fisher’s exact test on H0 (null hypothesis): MEBar1+ =MEbar1Δ, versus HA (alternative
hypothesis): MEBar1+>MEbar1Δ for the different production rates of background α-factor. At dif-
ferent values of C, the p-values are all less than 0.05 so that we can reject H0 at the 95% confidence
level. Thus, in the simulations, Bar1 improves mating efficiency at all levels of background α-factor
especially at higher production rates. The trend that increasing background α-factor decreases mat-
ing efficiency especially in bar1Δ cells is consistent with past experimental observations [19,44].

5. Mating competition among three cells: Bar1 adjusts pheromone
gradient to attract mating partner
A natural extension of two-cell mating simulations is three-cell mating simulations. In three-
cell simulations, the set-up can be either two α-cells and one a-cell, or two a-cells and one α-
cell. In the former case, if the two α-cells are equidistant from the a-cell, we found that in the
absence of noise, the a-cell projected toward the middle in between the two α-cells. Interest-
ingly, if the two α-cells are slightly offset (i.e. the a-cell is located 0.1 microns below the middle

Table 1. Mating efficiency: Bar1+ versus bar1Δ simulations.

Background α-Factor production rate (C)

0 1 10 100

bar1Δ 15/20 9/20 5/20 2/20

Bar1+ 20/20 18/20 17/20 16/20

p-value 0.024 0.0029 0.00016 8E-06

doi:10.1371/journal.pcbi.1004988.t001
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line of two α-cells so that one is closer), then the a-cell still projected toward the middle (Fig
6A). If the a-cell is Bar1+, then the a-cell is able to gradually reorient to the closer mating part-
ner. However adding noise to the simulations, the Bar1+ a-cell projected toward one or the
other α-cell in a random fashion whether or not the cells were offset. Although the no-noise
case is somewhat artificial, it indicates how Bar1 can improve the ability to detect the gradient
direction in this idealized scenario.

Alternatively, the simulation can be between one α-cell and two a-cells. If the two a-cells
have different genotypes, then there is a competition between the two for the single α-cell. This
corresponds to mating competition experiments, a second important type of mating assay [47],
in which one mixes two a-cell genotypes with a limiting quantity of α-cells. We tested the
importance of Bar1 using mating competition. In mating competition simulations between
Bar1+ and bar1Δ cells we found that the Bar1+ cells mated with the single α-cell partner 20/20
times (Fig 6B). Snapshots of more simulations are provided in Fig K in S1 Text.

Greater insight on why the Bar1+ cell has the advantage can be provided by the α-factor
profiles for two sample simulations (Fig 6B, lower). The Bar1 helps to remove the excess α-fac-
tor so that the Bar1+ a-cell is able to sense the gradient from the α-cell. The bar1Δ cell is stuck
in a region of high α-factor in which the gradient is shallower.

6. Mating discrimination among multiple cells
The third mating arrangement is having a single a-cell choose between two α-cells of different
genotypes. One specific scenario is having one α-cell make α-factor whereas the other α-cell
makes less or no α-factor. Experimentally this simulation corresponds to a third important
type of mating assay: mating discrimination in which the a-cell must discriminate between the
α-cell mating partner secreting α-factor from α-cell decoys that do not [20,47]. This assay mea-
sures the ability of an a-cell to sense and respond accurately to a pheromone gradient.

6.1 Mating discrimination for three-cell mating: The a-cell chooses the mating partner
producing more pheromone. The first arrangement we tested was to have one a-cell (bar1Δ)
and two different α-cells; one α-cell makes α-factor and the other does not. In the 20/20 simu-
lations in which a successful mating occurred, the a-cell mated with the correct partner thus
exhibiting perfect mating discrimination (Fig 7A). Snapshots of more simulations are provided
in Fig L in S1 Text.

Experimentally it is known that supersensitive cells exhibit reduced mating discrimination
along with lower mating efficiency. We tested the scenario in which the a-cell is supersensitive
in the three-cell simulations. 11/20 simulations exhibited successful matings, and from the 11
matings, the a-cell correctly mated with the α-cell making pheromone 5/11 times (Fig 7A),
which is close to the random (50%) mating discrimination score observed in experiments [19].
The p-values (Fisher’s exact test) for comparing normal sensitive cells versus supersensitive
cells for mating efficiency (0.0012) and mating discrimination (0.00063) indicated significant
differences between the two sets of simulations.

6.2. Defective mating discrimination by supersensitive cells in five-cell simulations. To
create a more competitive mating situation, we extended the three-cell simulations to five-cell
mating discrimination simulations (Fig 7B). In this scenario, a single a-cell was surrounded on
4 sides by four α-cells (3 non-producers, and 1 producer). The a-cell possessing normal sen-
sitvity was able to mate efficiently (ME = 19/20) and with almost perfect mating discrimination
(MD = 18/19). When the a-cell was supersensitive, we observed slightly increased mating effi-
ciency compared to the three-cell simulations (ME = 12/20); however the mating discrimina-
tion remained poor (MD = 3/12). The latter represents random mating with no regard to
which α-cell is secreting α-factor (Fig 7C). The p-values obtained in Fisher’s exact test were
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0.02 for ME and 9.6E-05 for MD, indicating significant differences between normal sensitive
cells and supersensitive cells. In summary, we observed nearly perfect mating discrimination in
wild-type cells, whereas supersensitive cells exhibited randommating discrimination. These
results match experimental data from wild-type and supersensitive sst2Δ cells [20,45].

6.3. Bar1 improves mating discrimination with background α-factor. In the five-cell
mating discrimination simulations described above, normal sensitivity cells exhibited good
mating discrimination in the absence of Bar1. Experimentally, it has been observed that bar1Δ
cells are indeed capable of mating discrimination, but only at low mating mixture densities
[19]. At high cell densities, bar1Δ cells show poor mating discrimination (nearly random),
whereas Bar1+ cells are still capable of good mating discrimination. We interpreted these find-
ings to mean that a background concentration of α-factor hindered mating discrimination. We
tested this hypothesis by adding a high level of background α-factor to the five-cell mating dis-
crimination simulations.

With background pheromone production rate C = 50, the simulated mating discrimination
for bar1Δ cells was 1/11 compared to 18/19 when C = 0. By comparison, the Bar1+ strains exhib-
ited superior performance with MD = 9/17 when C = 50 (Fig 8). The p-value given by Fisher’s
exact test was 0.041, indicating that mating discrimination was higher for the Bar1+ simulations.
Thus, we show that Bar1 is important for both mating efficiency and mating discrimination in
the presence of background α-factor. Indeed in previous experiments [19], mating discrimination
for bar1Δ cells is sensitive to background α-factor concentrations, with discrimination perfect at
low levels of α-factor but nearly random at high levels. Wild-type Bar1+ cells are much less sensi-
tive to background α-factor concentrations consistent with the simulations.

Insight for this superior performance can be obtained by studying the α-factor profiles from
the matings (Fig 8A, lower). Examining both an earlier and later time point, one observes that
in the absence of Bar1, the level of pheromone becomes very high preventing a significant gra-
dient from being formed. In the presence of Bar1, the background α-factor is sufficiently
degraded so that a steeper gradient is created.

7. Estimate of the a-factor diffusion constant
We imaged mating mixes using both Bar1+ and bar1Δ cells as well as a combination of the
two. We found that mating was short-range when the a-cells were Bar1+, i.e., both a- and α-
cells made short projections (see S1 Text). With the bar1Δ a-cells, there was longer-range mat-
ing with only the a-cells forming longer projections. We hypothesized that degradation of α-
factor by Bar1 resulting in short-range mating in the Bar1+ matings. The projection length in
both simulations and experiments was defined by subtracting the initial cell radius from the
distance between the center of the cell and the point that is farthest from the center on the cell
membrane. The asymmetry in projections lengths in the bar1Δmatings was reminiscent of our
simulations in which we varied the a-factor diffusion rate (Fig 2). In particular, as the a-factor

Fig 6. Three-cell simulations. (A) Bar1 helps a-cell distinguish closer α-cell. Two α-cells and one a-cell were
positioned approximately at the vertices of a triangle with one of the two α-cells slightly closer to the a-cell
than the other. We tested whether a Bar1+ or a bar1Δ a-cell could distinguish between the two α-cells in
simulations performed in the absence of noise. The Bar1+ cell projected toward the closer α-cell, whereas the
bar1Δ cell projected toward the middle between the two α-cells. (B)Mating competition simulations in which
two a-cells compete for a single α-cell. In these three-cell simulations, one a-cell is Bar1+ and the other is
bar1Δ. In 20/20 simulations, the Bar1+ cell mated with the α-cell, and two sample simulations are shown. At
the top are snapshots with the projections in contact. In the middle are the α-factor profiles from the two
simulations, which show how the high concentration of α-factor in the absence of Bar1 precludes gradient
detection. At the bottom is the α-factor distribution along the cross-section between the α-cell and a-cell. In
both cases, the steeper gradient is observed with the Bar1+ a-cell.

doi:10.1371/journal.pcbi.1004988.g006
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Fig 7. Modeling mating discrimination. (A) Three-cell mating discrimination simulations. One a-cell and two α-
cells were arranged so that the a-cell was equidistant from the α-cells. One α-cell makes α-factor (α-factor producer,
green) and the other α-cell does not (α-factor non-producer, blue). 20 simulations were run to determine the ratio at
which the a-cell would mate with the α-factor producer versus the non-producer. Two sample simulations are
presented. The left panel shows an a-cell with wild-type sensitivity, and the right panel shows a supersensitive a-
cell. ME indicates mating efficiency; MD indicates mating discrimination. (B) Five-cell mating discrimination
simulations. Four α-cells are arranged in a square with one bar1Δ a-cell in the center. One α-cell makes α-factor (α-
factor producer, green) and the other three cells α-cell do not (α-factor non-producers, blue). 20 simulations were
run to determine mating discrimination, and two sample simulations are presented. The left panel shows an a-cell
with wild-type sensitivity, and the right panel shows a supersensitive a-cell. (C)Mating location plots for a-cells
possessing normal sensitivity (WT, green) or supersensitivity (SS, red) in five-cell mating discrimination
simulations. Each dot (correct MD) or cross (incorrect MD) symbol represents the polarisome location of the a-cell
at the time of mating. The α-cell producing α-factor was in the top-right quadrant. The cells possessing normal
sensitivity showed significantly better mating discrimination (MD) than the supersensitive cells (p < 0.0001, Fisher’s
Exact Test).

doi:10.1371/journal.pcbi.1004988.g007
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diffusion rates became slower, the α-cell projection became shorter (and the a-cell projection
became longer). We attributed this difference to the reduced spread of a-factor from its source
when its diffusion constant is lower.

To provide an estimate of the a-factor diffusion coefficient, we determined the relative
length of the α-cell projection normalized by the total distance traveled by both projections,

Fig 8. Role of Bar1 in mating discrimination with background α-factor. (A) Five-cell mating
discrimination simulations with background α-factor in the presence and absence of Bar1. Four α-cells are
arranged in a square with one a-cell in the center. One α-cell makes α-factor (α-factor producer, top right
corner) and the other three cells do not. Background α-factor source was set to C = 50. There are two sample
simulations for bar1Δ a-cells (left), and two sample simulations for Bar1+ a-cells (right). ME is mating
efficiency, and MD is mating discrimination. Bar1 was secreted in a polarized fashion. The second row shows
the α-factor profiles for one sample (left) simulation from each group. The third row shows the α-factor profiles
along the top-right to bottom-left diagonal for one example (yellow dotted line). There is an early (T = 50s) and
late (T = 570s) time point for each simulation with α-factor concentration indicated by the shading (color bar).
Pheromone profiles show a steeper gradient in Bar1+ a-cell simulations; troughs represent the cell body
which excludes α-factor. (B)Mating location plots for Bar1+ a-cells (green) or bar1Δ (red) in five-cell mating
discrimination simulations. Each circle (correct MD) or cross (incorrect MD) symbol represents the
polarisome location of the a-cell at the time of mating. The α-cell producing α-factor was in the top-right
quadrant. The Bar1+ cells showed significantly better mating discrimination (MD) than the bar1Δ cells
(p < 0.05, Fisher’s Exact Test).

doi:10.1371/journal.pcbi.1004988.g008
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and plotted this α-cell length for both simulations and experiments in Fig 9. In the simulations
we varied the a-factor diffusion rate from 0.1 to 100. From this comparison we estimate that
the a-factor diffusion rate is 1 μm2/s.

Discussion
In this paper we performed computer simulations of the yeast mating process for the first time.
The main advance was constructing a computational framework for yeast mating which we
used to explore different model structures and parameters. We reproduced qualitatively the
basic mating behaviors and calculated the simulated mating efficiency. In addition, we were
able to model mating competition and mating discrimination which together with mating effi-
ciency form the three basic assays of yeast mating [19,47].

From a computational perspective, we combined modeling the shape of the cell using a
moving boundary technique with the extracellular diffusion of the pheromone ligands with a
previously described minimal model of pheromone-induced cell polarity. The simulations
were CPU intensive because of the multiple time-scales, the evolution of the level set function
over the computational domain, and the calculation of the velocity field. Overall the simulation
time depended on the number of cells, time step size, length of simulation, and α-factor diffu-
sion rate.

We examined for the first time the coupling among ligand secretion, ligand diffusion, and
ligand-induced receptor activation which revealed new cell-cell interaction dynamics that
could not be captured in single-cell simulations. We identified key factors that contributed to
the efficiency and robustness of mating. First polarized secretion of mating pheromone resulted
in higher mating efficiency than isotropic secretion. This finding is consistent with experimen-
tal data in which a-factor secretion through the Ste6 transporter is highly polarized [48]. It is
likely that α-factor is secreted in a polarized fashion given the polarization of the secretory
pathway during mating [22].

A second critical factor is the proper modulation of the sensitivity of the system. In experi-
mental matings, strains that are “supersensitive” show considerably reduced mating efficiency
and mating discrimination because they are unable to determine the pheromone gradient
direction. By increasing the value of the parameter β1 in Eq (3), we were able to mimic the
supersensitive phenotype, and the resulting mating simulations were defective.

Finally, the presence of Bar1 helped cells to mate in the presence of background α-factor.
Bar1 has been implicated to play an important role in modulating the pheromone dynamics
[38,39]. Our results are consistent with the conclusions in [38] that Bar1 helps to shape the α-
factor gradient for optimal mating. More specifically, both results show that Bar1 can create an
α-factor sink that amplifies the α-factor gradient promoting gradient-sensing. The simulations
in this work incorporated stochastic effects, a generic description of intracellular signaling that
drives the cell membrane, and polarized secretion of both pheromone and Bar1.

There are important limitations to this study. First, we did not attempt to present a detailed
quantitative portrait of the mating process with mechanistic reactions. We employed a generic
model of yeast cell polarity with a small number of variables for computational efficiency and
to facilitate parameter exploration. Second, we employed a quasi-steady-state approximation
of α-factor spatial dynamics, although we provide simulation data that this choice does not
affect the basic results. Third, we employed mechanisms that only crudely approximate physi-
cal reality such as ligand normalization. Fourth, we have not attempted to fit the parameters to
actual mating data; rather our approach was to test multiple parameters values to qualitatively
explore different scenarios. We thus achieved our goal of constructing a computational frame-
work that is capable of generating realistic-looking responses and reproducing basic behaviors.
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Fig 9. Estimating the diffusion constant of a-factor. (A) Projection lengths in bar1Δ versus Bar1+ a-cells. In the
presence of Bar1, we only observed short-range matings in which both a-cells and α-cells possessed short
projections. In the absence of Bar1 (bar1Δmatings), we observed longer projections made by the bar1Δ a-cells,
whereas the α-cell projections remained short. The top two panels are fluorescent images of Spa2-GFP (a-cell) and
Spa2-mCherry (α-cell) showing the adjacent/overlapping polarisomes indicating a successful mating. The bottom two
panels are DIC images that depict the projection morphologies of the mating cells. Scale bars = 5 μm. (B) The relative
projection lengths of α-cells versus a-cells in simulations compared to experiments. In the top bar graph, the α-cell
projection length is presented as the fraction of the sum of the two projection lengths (n = 25 matings for Exp.); the
average and standard deviation (error bars) are shown. The two-cell simulations with noise were performed as
described in Fig 2 for varying α-factor diffusion values:Da = 0.1, 1, 10, and 100 μm2/s. The average and standard
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From a technical standpoint, one important future challenge is speeding up the simulations
so that the boundary velocity can be reduced to a more realistic value. One possibility is to
employ a quasi-steady-state approximation for the fast α-factor dynamics. For the model with
multiple cells, each cell would be assigned with a level set function and a velocity field in our
framework, and so there is the potential to improve the efficiency by performing parallel com-
putation for different level set functions or representing all cells by one level set function with a
mixed velocity field. Current simulations are all restricted to two-dimensional space. Theoreti-
cally it is feasible to extend this framework into three dimensions, although the computation
could be very expensive because the computational cost increases exponentially with respect to
dimensionality. In addition, experimentally the mating reaction occurs on a surface (i.e paper
filter) which is effectively two-dimensional [17].

Importantly this research helps to identify the key processes to focus on for future work.
The generic framework is easily extended, and we can incorporate more sophisticated and
detailed mechanistic models. Because of the absence of mechanistic details, the models in this
work can be thought of as “general mating models”, providing a generic description of gradient
tracking informed by the yeast mating system. For example, we plan to replace the normalized
f term with pheromone-induced Bar1. In the future, an important goal is to replace the generic
terms with more mechanistic terms.

With a more realistic mechanistic model of pheromone-induced cell polarity, we could
attempt to simulate the mating defects of a variety of mutants. Numerous mutants have been
isolated that affect mating efficiency and discrimination including fus1Δ, spa2Δ, etc. [49]. One
goal would be to reproduce these mating phenotypes at a quantitative level; another goal would
be to predict novel mutants that may affect mating.

Methods

1. Details of mathematical model
An overview of the model including model equations is presented in the main text in Section 1.
Here we present additional details.

1.1. Pheromone source function. The ligand source Sα(x, t) is a uniform or a smooth and
localized function defined on the whole domain but with support only on the cell membrane.
For the latter case, we approximate this source function by a Gaussian distribution in terms of

the level set function F and the polarized species u2, Sa ¼ 1000ffiffiffiffi
2p

p exp �100�2 � 20 1� u2
u2max

� �2
� �

where u2max is the concentration of u2 at the center of the polarization region. This function
represents the polarized source, whereas the isotropic pheromone source function does not

have any dependence on u2, Sa ¼ 1000ffiffiffiffi
2p

p expð�100�2Þ.
1.2. Model parameters. We used the standard parameters described in previous work that

were slightly modified [41]. The default parameters are given in the S1 Text along with simula-
tion results from an alternative parameter set.

1.3. Geometry of initial mating arrangement. For mating of two cells of different types,
we set up a 2D rectangular domain [−3.6, 3.6] × [−1.6, 1.6] with one cell centered at (-2, 0). and

deviation of the normalized α-cell projection length from 10 simulations are shown. In the bottom bar graph, the
corresponding unnormalized a-cell and α-cell projection lengths (mean ± SD in μm) are shown. The a-cells in both
experiments and simulations are bar1Δ. (C) Concentration profiles of a-factor for different diffusion constants. The a-
factor distribution is color-coded using gray scale at T = 830s in one example simulation for different diffusion rates.
With a diffusion constant of 0.1 μm2/s, a-factor is highly localized to its source and does not reach the mating partner.
With the diffusion constant of 100 μm2/s, a-factor spreads widely and is almost homogeneous distributed.

doi:10.1371/journal.pcbi.1004988.g009
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the other centered at (2, 0). Each cell is initially represented by a circle of radius 1. For mating
of three cells, the one a-cell is centered at (-2, 0), one α-cell centered at (1, 2) and the other cen-
tered at (1, -2) on a rectangle [−3.6, 3.6] × [−2.8, 2.8]. For the five-cell mating discrimination
the a-cell is located at (0, 0), and the 4 α-cells are located at (±2, ±2) on a square [−3.72, 3.72] ×
[−3.72, 3.72].

1.4. Definition of polarisome. We defined the polarisome to be the center of the mini-
mum-length interval which contains an amount of u2 beyond a threshold τ along the cell mem-
brane, which captures the peak of u2. More specifically, given 0< τ< 1, let Θτ to be the set of

intervals [a, b] satisfying
Z b

a

u2 dy � t
Z
S

u2 dy; then the polarisome is (a�+b�)/2 where [a�,

b�] is the interval with smallest b�−a� in Θτ. In our simulations, τ = 0.4.
1.5. Definition of a successful mating. Two cells of opposite mating type successfully

mate if the projections are on average growing toward one another, and the minimum distance
between their respective polarisomes is less than the distance threshold 0.04 (the mesh size).

2. Numerical methods
The evolution of the level set function F is governed by a Hamilton-Jacobi equation

�tðx; tÞ þ V jr�ðx; tÞj ¼ 0; x 2 D;

in which the velocity field V is defined in Eq (6). More information on how the boundary con-
ditions are imposed on the computational grid as well as other technical details can be found in
the S1 Text.

The time step is set to be 4 × 10−4 for extracellular pheromone, and 0.01 for membrane-
associated dynamics.

The simulations were performed with the authors’ original MATLAB codes, and they can
be provided by the authors upon request.

Supporting Information
S1 Text. Supporting information and figures. There are 7 sections and 14 figures (A–N) in
the S1 Text.
(DOCX)
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