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Abstract 19 

Multi-stressor global change, the combined influence of ocean warming, acidification, and 20 

deoxygenation, poses a serious threat to marine organisms. Experimental studies imply that 21 

organisms with higher levels of activity should be more resilient, but testing this prediction and 22 

understanding organism vulnerability at a global scale, over evolutionary timescales, and in 23 

natural ecosystems remain challenging. The fossil record, which contains multiple extinctions 24 

triggered by multi-stressor global change, is ideally suited for testing hypotheses at broad 25 

geographic, taxonomic, and temporal scales. Here, I assess the importance of activity level for 26 

survival of well-skeletonized benthic marine invertebrates over a 100 million-year long interval 27 

(Permian to Jurassic periods) containing four global change extinctions, including the end-28 

Permian and end-Triassic mass extinctions. More active organisms, based on a semi-quantitative 29 

score incorporating feeding and motility, were significantly more likely to survive during three 30 

of the four extinction events (Guadalupian, end-Permian, and end-Triassic). In contrast, activity 31 

was not an important control on survival during non-extinction intervals. Both the end-Permian 32 

and end-Triassic mass extinctions also triggered abrupt shifts to increased dominance by more 33 

active organisms. Although mean activity gradually returned toward pre-extinction values, the 34 

net result was a permanent ratcheting of ecosystem-wide activity to higher levels. Selectivity 35 

patterns during ancient global change extinctions confirm the hypothesis that higher activity, a 36 

proxy for respiratory physiology, is a fundamental control on survival, although the roles of 37 

specific physiological traits (such as extracellular pCO2 or aerobic scope) cannot be 38 

distinguished. Modern marine ecosystems are dominated by more active organisms, in part 39 

because of selectivity ratcheting during these ancient extinctions, so on average may be less 40 

vulnerable to global change stressors than ancient counterparts. However, ancient extinctions 41 



demonstrate that even active organisms can suffer major extinction when the intensity of 42 

environmental disruption is intense. 43 

 44 

Introduction 45 

Global environmental change subjects marine organisms to the combined stressors of 46 

warming ocean temperatures, decreasing pH, and decreasing dissolved oxygen levels (Doney et 47 

al., 2012). These stresses, if severe enough, could lead to population declines or even extinction. 48 

While these environmental shifts will have negative consequences for many organisms, the traits 49 

that make an organism vulnerable or resilient are incompletely understood and, as a result, 50 

ecosystem-wide outcomes are challenging to predict in the modern ocean (Queirós et al., 2015). 51 

Experimental manipulations are instrumental for understanding the physiological mechanisms, 52 

but the rates of change are much greater than expected in nature (Peck et al., 2009), the short 53 

timescales often preclude population-level responses or evolutionary change, and the organisms 54 

may be removed from ecosystem interactions that also affect their survival (Kroeker et al., 55 

2013). Likewise, natural low-pH vents provide valuable snapshots of communities under stress 56 

(Hall-Spencer et al., 2008), but the long-term evolutionary response under ocean-wide 57 

acidification remains difficult to assess. The fossil record provides an additional approach to 58 

complement the detailed studies of extant organisms, and is ideally suited for examining large-59 

scale or global patterns over evolutionary timescales – spatial and temporal scales that are 60 

difficult to assess in the modern ocean (Queirós et al., 2015). 61 

Global change events in Earth’s deep time past provide natural experiments during which 62 

marine organisms responded to ocean warming, pH decrease, and other stressors. These events, 63 

associated with large-magnitude release of volcanic and volcanic-associated carbon dioxide 64 



(CO2) from voluminous flood basalt eruptions, often triggered extinctions in the marine realm 65 

(Wignall, 2001). In particular, the Permian, Triassic, and Jurassic periods (called “mid-66 

Phanerozoic” here) contained two smaller crises, the Guadalupian and the Toarcian extinctions, 67 

as well as the much larger end-Permian and end-Triassic mass extinctions (Fig. 1). Although the 68 

rates of environmental change are difficult to constrain (Kemp et al., 2015) and the relative 69 

contribution of multiple stressors likely differed among the crises, these mid-Phanerozoic events 70 

likely featured ocean warming (Gómez & Goy, 2011; Sun et al., 2012; Schobben et al., 2014), 71 

pH decrease (inferred from carbon isotope evidence for ocean-atmosphere pCO2 increase 72 

(Hesselbo et al., 2002, 2007; Payne & Clapham, 2012)), and reduced dissolved oxygen levels 73 

(Jenkyns, 1988; Cao et al., 2009; Bond & Wignall, 2010). No single event is a perfect analog for 74 

21st century global change, but consistent patterns of taxonomic or ecological selectivity across 75 

multiple extinctions can test whether traits fundamentally influence survival of marine organisms 76 

during global change. 77 

Extinction selectivity during ancient global change events has often been interpreted in 78 

terms of physiological buffering against CO2 changes, amount of calcification, or the degree of 79 

biological control over calcification (Knoll et al., 2007; Clapham & Payne, 2011; Kiessling & 80 

Simpson, 2011; Bush & Pruss, 2013), although earlier studies also considered a wider range of 81 

physiological traits (Steele-Petrović, 1979; Knoll et al., 1996). The categorization used in these 82 

paleontological studies is only approximate because traits such as extracellular acid-base 83 

buffering cannot easily be generalized at higher taxonomic levels and can vary widely within 84 

groups (Collard et al., 2014). The capacity for acid-base regulation is also unknown in many 85 

important fossil groups, including brachiopods, bryozoans, and crinoids, and has been assumed 86 

in previous studies to be negligible (Knoll et al., 2007; Clapham & Payne, 2011; Kiessling & 87 



Simpson, 2011). Of groups with known pH buffering capabilities, the categorization used in the 88 

previous paleontological studies does not necessarily align with experimental evidence. For 89 

example, bivalve molluscs have typically been placed in a category including groups with 90 

physiological buffering against CO2 changes (Knoll et al., 2007; Clapham & Payne, 2011; 91 

Kiessling & Simpson, 2011), yet experimental studies suggest that bivalves have only limited 92 

ability to compensate for extracellular acid-base changes (Lannig et al., 2010; Heinemann et al., 93 

2012; Parker et al., 2013). 94 

Furthermore, acid-base compensation requires energetically-costly ion transport 95 

mechanisms and may incur trade-offs in other aspects of the organism’s biology, such as growth 96 

or reproduction (Wood et al., 2008; Collard et al., 2014). Other traits, such as inherently high 97 

extracellular pCO2 (or low extracellular pH) may also confer resilience in the face of ocean 98 

acidification without imposing additional costs (Collard et al., 2014). Melzner et al. (2009) 99 

proposed that more active organisms should be less vulnerable during high CO2 events because 100 

of their inherently higher extracellular pCO2, which would maintain the diffusive gradient 101 

between body fluids and seawater even as seawater pCO2 rises. In addition, active organisms 102 

may have better-developed physiological mechanisms for adjusting to exercise-induced acidosis, 103 

which may prove advantageous during seawater-driven acidification (Melzner et al., 2009). 104 

Activity level is also proposed to influence survival during rapid warming events. 105 

Metabolic oxygen demand increases with increasing temperature in marine invertebrates; as a 106 

result, ocean warming can exert stress on marine organisms once oxygen demand exceeds the 107 

organism’s aerobic scope (Pörtner, 2010). Active organisms, which have the capacity to elevate 108 

their metabolic rate during bursts of activity, should on average have higher aerobic scope (the 109 

difference between maximum metabolic rate and standard metabolic rate) than sessile organisms 110 



(Pörtner, 2010). Peck et al. (2009) developed a semi-quantitative activity quotient and found that 111 

more active Antarctic organisms had significantly higher maximum thermal tolerance limits in 112 

experimental trials. 113 

Metabolic rates and extracellular pCO2 levels cannot be assessed directly in fossil 114 

species, but the activity quotient of Peck et al. (2009) is based on ecological attributes (feeding 115 

mode, movement type, movement speed, and movement frequency) that can be applied to extinct 116 

organisms. This is an indirect measure of more directly-relevant physiological parameters, but it 117 

is an approach that can harness the vast scope of the fossil record to examine ecosystem-wide 118 

outcomes among hundreds of calcified taxa at multiple ancient global change events. I used the 119 

fossil records of 3986 benthic marine invertebrate genera from the Paleobiology Database 120 

(www.paleobiodb.org) to test the hypothesis that more active organisms are also more likely to 121 

survive global change stresses, using mid-Phanerozoic extinctions (Guadalupian, end-Permian, 122 

end-Triassic, and Toarcian) as test cases. 123 

Materials and Methods 124 

The Paleobiology Database compiles published fossil records into collections that 125 

represent fossils obtained from a discrete stratigraphic interval (generally a bed or a few beds 126 

representing a short period of sediment deposition) at a single geographic location. The record of 127 

a taxon in that collection, which may be resolved to species, genus, or some higher taxonomic 128 

level, is termed an occurrence. Using the database API (http://paleobiodb.org/data1.2), I 129 

downloaded occurrences of mostly well-skeletonized benthic marine invertebrate groups 130 

(brachiopods, bivalves, gastropods, echinoderms, bryozoans, sponges, cnidarians, trilobites, 131 

ostracods, and malacostracan crustaceans) spanning the Artinskian (Early Permian, c. 280 Ma) to 132 

Bathonian (Middle Jurassic, c. 167 Ma) stages. Only occurrences from marine environments 133 

http://www.paleobiodb.org/
http://paleobiodb.org/data1.2


were downloaded, and they were then filtered to select records identified at the genus level or 134 

lower, and to exclude occurrences where the genus identification was uncertain (marked with cf., 135 

aff., ?, or quotation marks in the database). Occurrences were grouped into geological stages and 136 

only those restricted to a single stage were included. The resulting dataset contained nearly 137 

111,000 genus-level occurrences. 138 

Activity quotient is coded at higher taxonomic levels (mostly order and class level), 139 

following the scheme used by Peck et al. (2009) and using ecology data from the Paleobiology 140 

Database, inference from functional morphology, and information about extant members of the 141 

group (Table S1). Each attribute (feeding mode, movement type, movement speed, and 142 

movement frequency) is scored on an ordinal scale; the quotient is the fourth root of the product 143 

of those scores (Peck et al., 2009). Because it is generally not feasible to assess the activity of 144 

extinct organisms at finer taxonomic levels, all genera within a higher group are assigned the 145 

same activity quotient. As a result, more than 99.5% of occurrences have a recorded activity 146 

quotient. This approach undoubtedly overlooks interspecific variability in activity, but 147 

differences among groups are likely larger than within-group variability. Furthermore, the 148 

activity quotient itself is a broad categorization and is only an approximation of more relevant 149 

physiological traits. 150 

I used logistic regression to test whether activity quotient was an important predictor of 151 

extinction risk, both during global change extinctions and during background intervals of lower 152 

extinction intensity. Extinction can be measured in several ways from stage-level binned data; I 153 

used the boundary-crosser method (Foote, 2000) and a variation of the three-timer method 154 

(Alroy, 2014). For the boundary-crosser method, I examine only the cohort of genera that cross 155 

the bottom boundary of a time interval (i.e., are found both within the interval and in any 156 



preceding interval). A boundary-crossing genus is coded as “surviving” if it is present in any 157 

succeeding interval and “extinct” if it is not. The three-timer method also considers a cohort of 158 

genera that cross the bottom boundary of a time interval, but only those that are present in at 159 

least two consecutive intervals (i.e., both within the interval in question and in the immediately 160 

preceding interval). A genus from that cohort is coded as “surviving” if it is present in the 161 

interval immediately following (it is a “three-timer” sensu Alroy (2014)) and as “extinct” if it is 162 

not present in that interval, regardless of its occurrence in subsequent times. Alroy (2014) 163 

applied a correction for variable sampling when calculating extinction rates, but this cannot 164 

easily be used when coding particular genera as surviving/extinct. Variable sampling 165 

probabilities may cause apparent losses that can change estimates of extinction rate, but that 166 

effect is unlikely to substantially alter activity-based selectivity patterns. 167 

I also quantified the effects that these crises had on global average activity levels to see if 168 

selectivity drove long-term shifts towards communities dominated by more active organisms 169 

(Gould & Calloway, 1980; Sepkoski, 1981). I calculated mean activity level of organisms in 170 

each time interval in two ways. First, I calculated mean activity on a per-occurrence basis 171 

(including an activity value for each occurrence of a genus); this approximates the commonness 172 

of each genus and weights common genera more heavily. For ostracods, which are microfossils 173 

and are sampled with different protocols from the other macrofossils, variations in the number of 174 

occurrences can reflect researcher interest more than true variations in commonness. To account 175 

for that, I also calculated mean activity on a per-genus basis, by including one activity value per 176 

genus regardless of its number of occurrences. 177 

 178 

Results 179 



Extinction selectivity 180 

The Guadalupian (Capitanian stage), end-Permian (Changhsingian and Induan stages), 181 

and end-Triassic (Rhaetian stage) extinctions exhibited significant selectivity against less-active 182 

genera, regardless of the choice of extinction metric (Fig. 2). Most genus extinctions in the 183 

Induan stage occurred in the first 50-100 ka, reflecting the final losses during the end-Permian 184 

mass extinction (Shen et al., 2011). Activity level was not a significant predictor of survival 185 

during the Pliensbachian or Toarcian stages (the Toarcian extinction occurred within the early 186 

part of the Toarcian stage, so . Logistic regression results indicate that the odds of survival 187 

increased by approximately 10% for every unit increase in the activity quotient. One unit 188 

corresponds to the difference between rhynchonelliform brachiopods and infaunal suspension-189 

feeding bivalves, for example, although it should be noted that the activity quotient is a semi-190 

quantitative score, not a linear scale. In contrast, background extinction, in stages other than the 191 

four global change crises, was typically independent of activity quotient or may have 192 

preferentially affected more active genera. The Roadian stage of the Permian and Sinemurian 193 

stage of the Jurassic are significant with the three-timer method, but it should be noted that the 194 

risk of false positive results is elevated when conducting multiple tests (significance in both 195 

boundary-crosser and three-timer analyses is more robust). Although active genera were also 196 

more likely to survive during the Norian stage (with the boundary-crosser method only; fig. 2b), 197 

this may reflect backwards smearing of the end-Triassic extinction in boundary-crosser data 198 

(Alroy, 2014) due to incomplete Rhaetian sampling. 199 

 200 

Trends in activity level 201 



Due to the numerical dominance of brachiopods, mean activity level was consistently low 202 

during the Permian, both when assemblage-wide mean activity is weighted by occurrence counts 203 

(Fig. 3a) or only using a single value per genus regardless of its number of occurrences (Fig. 3b). 204 

Although the Guadalupian extinction exhibited significant selectivity against less active 205 

organisms, there is no noticeable shift in mean occurrence-weighted activity level across the 206 

event. Genus-weighted activity may have increased in the late Permian, consistent with 207 

extinction selectivity, but any shift is small if present, likely the result of the small magnitude of 208 

extinction among marine invertebrates overall (Clapham et al., 2009). Activity levels increased 209 

markedly in the Changhsingian, but that shift is an artifact of intensive sampling of ostracods in 210 

the latest Permian (there is nearly a fourfold increase in the number of ostracod occurrences from 211 

the preceding Wuchiapingian stage). After excluding ostracods, occurrence-weighted activity 212 

levels in both the Wuchiapingian and Changhsingian are consistent with earlier Permian values 213 

and there is no significant trend over time (a non-significant decrease of 0.0009 activity units per 214 

Myr, R2 = 0.01, p = 0.81). In contrast, there was a small increase in mean activity level from the 215 

middle Permian to the late Permian when assemblage-wide mean activity is weighted by genus 216 

rather than by occurrence (Fig. 3b). Mean activity increased from 1.78-1.87 in the late early and 217 

middle Permian (1.95 in the Kungurian) to 2.07 in the Wuchiapingian and 2.08 in the 218 

Changhsingian. 219 

The end-Permian mass extinction, approximately 252 Ma, triggered a large increase in 220 

the mean activity of benthic macroinvertebrates as measured by occurrence-weighted mean 221 

activity (Fig. 3a, excluding ostracods) or by genus-weighted mean activity (Fig. 3b). If ostracods 222 

are included, occurrence-weighted mean activity reached Triassic levels by the Changhsingian 223 

but, as discussed earlier, that increase is an artifact of publication quantity; the increase does not 224 



occur in genus-weighted results or when ostracods are excluded from occurrence-weighted 225 

values. Increased mean activity values primarily resulted from a shift from brachiopod to 226 

mollusk dominance (Gould & Calloway, 1980; Fraiser & Bottjer, 2007), as well as the intense 227 

and selective extinction of other predominantly sessile groups like crinoids, bryozoans, and 228 

corals (Payne & Clapham, 2012). 229 

Mean activity may have trended to lower values during the Triassic as part of post-230 

extinction biotic recovery. Although the slope of the occurrence-weighted trend, excluding 231 

ostracods, does not differ significantly from zero (a decrease of 0.003 activity units per Myr, R2 232 

= 0.14, p = 0.41), the data are noisy and the statistical power with only seven data points is low. 233 

However, the decrease as measured by genus-weighted mean activity is stronger (a decrease of 234 

0.007 activity units per Myr, R2 = 0.52, p = 0.07). Furthermore, independent evidence indicates 235 

that less active groups, such as brachiopods, crinoids, and corals, became more abundant 236 

(Stanley, 2003; Clapham & Bottjer, 2007; Greene et al., 2011), suggesting that the trend toward 237 

lower mean activity is likely real. 238 

Mean activity level also increased following the end-Triassic mass extinction as a result 239 

of the selective losses during the crisis. The magnitude of the increase was smaller than at the 240 

end-Permian event, likely because the end-Triassic extinction was less intense and because latest 241 

Triassic communities already contained a higher proportion of active organisms. Mean activity 242 

levels may have decreased slightly through the Early and Middle Jurassic, although the slope is 243 

shallower than the Triassic decrease. The trend in occurrence-weighted data, excluding 244 

ostracods, does not differ significantly from zero (a decrease of 0.001 activity units per Myr, R2 245 

= 0.03, p = 0.72). The trend in genus-weighted data is slightly stronger (a decrease of 0.003 246 

activity units per Myr, R2 = 0.45, p = 0.1). Despite changes like the increased prominence of 247 



low-activity corals after an Early Jurassic low in reef-building (Stanley, 2003), the overall trend 248 

towards lower mean activity is weak. 249 

Consistent with the lack of observed selectivity, there is only weak evidence for a long-250 

term shift in mean activity associated with the Toarcian extinction. Activity increased in 251 

occurrence-weighted data (Fig. 3a, although actual values are comparable to earlier Jurassic 252 

stages), but decreased in genus-weighted data (Fig. 3b). The timing of the extinction, within the 253 

early Toarcian rather than at a stage boundary, also complicates analysis because some Toarcian 254 

occurrences are derived from pre-extinction strata. The Pliensbachian-Toarcian boundary does 255 

not exhibit any clearer of a shift, however. Mean activity instead decreased from the 256 

Pliensbachian to Toarcian when ostracods are excluded from occurrence-weighted data, 257 

increased slightly when ostracods are included (Fig. 3a), and exhibited a more pronounced 258 

increase in the genus-weighted data (Fig. 3b). Middle Jurassic activity values are also consistent 259 

with a single Jurassic trend to lower mean activity. Although a transient shift following the 260 

extinction cannot be ruled out, especially because the Toarcian data point mixes pre- and post-261 

extinction occurrences, the small magnitude of extinction suggests that long-term global effects 262 

may have been minimal.  263 

 264 

Discussion 265 

Biotic selectivity of global change 266 

The pattern of extinction from the Permian through Jurassic supports the hypothesis of 267 

Peck et al. (2009) that an organism’s activity quotient is an important predictor of survival 268 

during global change events. Active organisms were preferentially likely to survive the 269 



Guadalupian, end-Permian, and end-Triassic extinctions, despite activity levels being largely 270 

unimportant during background intervals (Fig. 2). 271 

Although survival was significantly influenced by the activity quotient during global 272 

change mass extinctions, the magnitude of the effect was small (only a 10% increase in the odds 273 

of survival per unit increase in activity quotient). There are several possible explanations, which 274 

are not mutually exclusive. First, the extinction events were precipitated by multiple stressors 275 

that may have had different effects on marine organisms in combination than alone (Kroeker et 276 

al., 2013; Deutsch et al., 2015). For example, warming temperature and increasing pCO2 were 277 

important during the end-Permian mass extinction (Payne et al., 2004; Sun et al., 2012; 278 

Schobben et al., 2014), driving the selectivity that favored survival of active organisms (Knoll et 279 

al., 2007; Clapham & Payne, 2011). However, expanded oxygen minimum zones (Brennecka et 280 

al., 2011) may have imposed additional or synergistic selective pressures (Deutsch et al., 2015), 281 

while local areas of shallow-marine hydrogen sulfide accumulation (Cao et al., 2009) likely had 282 

unpredictable biotic consequences. The relative importance of warming, ocean pH changes, and 283 

anoxia also differed among the extinctions and likely also varied geographically within each 284 

extinction. The precise contributions of each stressor (water temperature, pH, or oxygenation) to 285 

extinction cannot be disentangled, but that is largely unimportant because all are fundamentally 286 

interlinked during global change events and forced by a common underlying driver (Algeo et al., 287 

2011). 288 

Second, the activity quotient is coded at high taxonomic levels (nearly all gastropods 289 

receive the same score, for example) and is not an exact measure of the physiological attributes 290 

important for survival. Feeding type and movement speed, duration, or frequency are unlikely to 291 

be directly responsible for survival, but the activity quotient should correlate broadly with 292 



relevant physiological traits such as aerobic scope, acid-base regulation, or extracellular pCO2 293 

(Melzner et al., 2009; Peck et al., 2009; Pörtner, 2010). Applying the activity quotient at high 294 

taxonomic levels is also an oversimplification and reduces its predictive power, as physiological 295 

traits like acid-base regulation can differ even among species within a clade (Collard et al., 296 

2014). Global change stressors also act on larval life stages (Byrne & Przeslawski, 2013), in 297 

which case adult traits such as activity may be less important. 298 

Third, survival during mass extinctions is influenced by numerous factors, potentially 299 

including population size or geographic range (Orzechowski et al., 2015), habitat or habitat 300 

breadth (Nürnberg & Aberhan, 2013), body size (Schaal et al., 2016), shell mineralogy (Clapham 301 

& Payne, 2011), or other individual- or population-level traits, diluting the effect of physiology. 302 

Stochastic effects may further obscure deterministic, trait-mediated outcomes during extinctions. 303 

Although activity level is one of many traits that influence survival during complex 304 

environmental perturbations, its consistent significance during extinctions (but not background 305 

intervals) supports hypotheses that physiological traits are a fundamental constraint on extinction 306 

risk during global change. Despite the importance of respiratory physiology on broad taxonomic 307 

patterns of extinction at a global scale, survival of particular species will be strongly modulated 308 

by species-specific traits and local conditions. Nevertheless, activity level emerges as a robust 309 

predictor of survival despite the complex suite of environmental perturbations (ocean warming, 310 

anoxia, and likely pH decrease) during each event and despite likely differences in the magnitude 311 

of stressors among the extinctions.  312 

 313 

Role of global change in long-term ecosystem shifts 314 



The well-skeletonized component of benthic marine ecosystems was once dominated by 315 

sessile, low-activity organisms like brachiopods, bryozoans, and crinoids but is now composed 316 

primarily of more active bivalves, gastropods, crustaceans, and echinoids (Sepkoski, 1981). Mass 317 

extinctions like the end-Permian extinction have long been invoked as a major contributor to this 318 

ecological transition (Gould & Calloway, 1980), driving a shift to more motile organisms 319 

(Bambach et al., 2002), in addition to the roles of longer-term biotic interactions and 320 

environmental changes (Aberhan et al., 2006; Finnegan et al., 2011). Permian-Jurassic trends in 321 

assemblage-wide mean activity levels demonstrate the importance not only of the end-Permian 322 

mass extinction, but also the end-Triassic extinction, as abrupt and major shifts from less active 323 

to more active organisms. Although ecosystem-wide mean activity levels gradually declined 324 

during the post-extinction recovery of groups like brachiopods and corals, the net result was an 325 

episodic ratcheting of marine ecosystems into new states each with increased dominance by 326 

more active organisms. 327 

This stepwise trend toward increasing dominance by more active organisms likely even 328 

underestimates the increase in energetics within the marine ecosystem. The use of the same 329 

activity level across higher taxonomic groups obscures any signal of energetic increases within 330 

groups or of increases in overall biomass (Bambach, 1993). The fossil record contains evidence 331 

for substantial long-term body size increases, both within groups and because of replacement of 332 

smaller-bodied groups with larger ones (Finnegan et al., 2011; Heim et al., 2015). In addition to 333 

body size increases, many Cenozoic groups contain more numerous predatory or otherwise more 334 

active members than occurred during the Paleozoic or early Mesozoic (Bush et al., 2007; 335 

Finnegan et al., 2011). The combination of these longer-term body-size and energetic trends with 336 



the activity ratcheting during mid-Phanerozoic global change extinctions ultimately led to 337 

modern shelly communities dominated by more active taxonomic groups. 338 

The composition of modern marine ecosystems has therefore been shaped by ancient 339 

global change extinctions and the physiological stresses from warming, acidification, and anoxia. 340 

As a result, dominant marine groups today tend to have higher activity levels than dominant 341 

groups in the Permian and should, on average, be less vulnerable to global change stresses. 342 

However, extreme crises like the end-Permian extinction severely impacted nearly all groups, 343 

even organisms with higher activity levels, implying that survival of prior events does not 344 

entirely eliminate the threat from global change. 345 
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 487 

Figure 1. Extinction rate (three-timer method, calculated at www.fossilworks.org using SQS 488 

subsampling at a quorum of 0.8) of well-skeletonized marine invertebrate groups from the Early 489 

Permian to Middle Jurassic. Labels indicate the position of major mass extinctions (end-Permian 490 

and end-Triassic) and smaller extinctions (Guadalupian and Toarcian). 491 

Figure 2. Selectivity of background and mass extinctions, measured by (a) three-timer method or 492 

(b) boundary-crosser method. Positive log odds ratio values indicate that more active organisms 493 

were more likely to survive during a particular stage (red); negative log odds ratios indicate that 494 

higher activity levels increased the risk of extinction (blue). Error bars are 95% confidence 495 

intervals. Stages of the geological timescale are Permian: K=Kungurian, R=Roadian, 496 

W=Wordian, C=Capitanian (Guadalupian extinction), W=Wuchiapingian, C=Changhsingian 497 

http://www.fossilworks.org/


(end-Permian extinction); Triassic: I=Induan (end-Permian extinction), O=Olenekian, 498 

A=Anisian, L=Ladinian, C=Carnian, N=Norian, R=Rhaetian (end-Triassic extinction); Jurassic: 499 

H=Hettangian, S=Sinemurian, P=Pliensbachian, T=Toarcian (Toarcian extinction, although note 500 

that the extinction occurred within, not at the end of, the stage), A=Aalenian, B=Bajocian, 501 

B=Bathonian. 502 

Figure 3. Trends in mean activity level of well-skeletonized benthic invertebrates, averaged by-503 

occurrence (a; one value per occurrence of a taxon) or by-genus (b; only a single value per genus 504 

regardless of the number of occurrences). Per-occurrence mean activity is shown for all studied 505 

taxa (open circles) and after excluding Ostracoda (solid circles). Separate trends and shaded 95% 506 

confidence intervals (data excluding Ostracoda) are shown for the Permian, Triassic, and Jurassic 507 

periods (no trend is given for by-genus activity during the Permian because of the potential shift 508 

at the Guadalupian extinction). Solid vertical lines mark the end-Permian and end-Triassic mass 509 

extinctions; dashed lines mark the Guadalupian and Toarcian extinctions (note that the Toarcian 510 

extinction actually occurred within the early Toarcian, not at its end). 511 
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