
UC Irvine
UC Irvine Previously Published Works

Title
Translator writing systems

Permalink
https://escholarship.org/uc/item/7p07s766

Journal
Communications of the ACM, 11(2)

ISSN
0001-0782

Authors
Feldman, Jerome
Gries, David

Publication Date
1968-02-01

DOI
10.1145/362896.362902

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7p07s766
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Programming Languages 
N. Wirth, Editor 

A STATE-OF-THE-ART SURVEY 

Translator Writing Systems 

BY J E R O I ~ E  t ~ E L D M A N  AND D A V I D  G R I E S  

Stanford University, Stanford, California 

An Exploration of Concepts and Principles 

A critical review of recent efforts to automate the writing of translators of programming lan- 
guages is presented. The formal study of syntax and its application to translator writing 
are discussed in Section II. Various approaches to automating the postsyntactic (semantic) as- 
pects of translator writing are discussed in Section III, and several related topics in Section IV. 
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I. INTRODUCTION 

"... for all of it is contained in a long poem which neither 
I, nor anyone else, has ever succeeded in wading through." 
So speaks The Devil in Shaw's Man and Superman. 

Compiler writing has long been a glamour field within 

programming and has a well-developed folklore [Knu 62, 

Ros 64b]. ~/[ore recently, the attention of researchers has 

been directed toward schemes for automating different 

parts of the compiler writer's task. This paper is an at- 

tempt to critically survey these research efforts. An early 

version of this survey, Stanford Computer Science Report 

CS69, June 1967, was circulated widely, and the many 

thoughtful comments we received have made an inesti- 
mable contribution to the accuracy and conceptual clar- 
ity of the present paper. 

Before we describe the particular systems, we say a few 
things about the general problem of translator writing. 
We concentrate on compilers, because these contain all the 
essential problems found in asselnblers and interpreters. 
Considering the amount of effort that  has gone into com- 
piler writing, there has been relatively little published on 
the subject. This lack of literature has forced translator 
writing system (TWS) designers to t ry  to formalize tech- 
niques which have never been described carefully. A 
further difficulty is that  there are no accepted standards of 

T h i s  w o r k  w a s  p a r t i a l l y  s u p p o r t e d  b y  t h e  U S  A t o m i c  E n e r g y  

C o m m i s s i o n  a n d  b y  t h e  A d v a n c e d  R e s e a r c h  P r o j e c t s  A g e n c y .  
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performance for translators, only shibboleths, such as 
efficiency. The efficiency of a compiler depends on its 
ability to conserve both t ime and space while t ranslator  
and during execution of the object program. The ease of 
use, the error detection and recovery facilities, the editing 
facilities, and the speed of recompilation have important  
effects on efficiency. As not all these goals are mutual ly 
compatible, one can expect no absolute measure of per- 
formance for compilers. The designers of the TWSs 
considered here have varied greatly in their preferred 
choice of compromises. 

Since compiler writing is a large programming task with 
many  aspects, it is not surprising that  many  different 
techniques have been proposed as aids to compiler writers. 
In  a very real sense, any system feature (e.g. trace, edit) 
which helps one produce large programs is a compiler- 
writing tool. This remark will become relevant as we 
examine various systems for their specificity to compiler 
writing. Since there is as yet no general agreement on 
terminology, we here define a term translator writing system 
(TWS)  to denote the programs and proposed programs 
considered here. A translator written in a TWS might be 
an interpreter, a compiler, an incremental compiler, or an 
assembler. 

This paper contains neither a history of nor an intro- 
duction to the work on TWSs;  the references at the end of 
this section provide what  introductory material  there is in 
the literature. Although we compare individual systems 
and also various techniques, this paper  is not intended to 
be a consumer's guide to translator writing systems. The 
intended purpose is to consider the existing work carefully 
in an a t t empt  to form a unified scientific basis for future 
research. Toward this end we emphasize the intellectual 
content of the various TWS designs, rather than the sys- 
tern features available in a particular implementation. 

The  use of TWSs to write commercial compilers is just 
now becoming common. This lag of about three years is not 
excessive, but  it has led some people to disregard the 
entire TWS development. While it is true tha t  any par- 
ticular TWS is more suited to certain compiler charac- 
teristics, this does not seem to be the major  bar  to their 
use. The successful TWSs have all been done in a research 
environment by people who have not shown an entre- 
preneurial bent. Most  importantly,  the idea of flexible 
languages, inherent in TWS work, runs counter to the 
manufacturer ' s  emphasis on ever greater standardization. 
Although commercial compiler writers are starting to use 
TWSs, it will take a minor revolution to put  TWSs in the 
hands of the user where they belong. 

Unfor tunate ly ,  one has to exercise considerable care in 
reading the TWS literature. A system described formally 
in a paper  is rarely adequate to completely handle the ap- 
plications claimed for it. There is also a strong current of 
mathemat ism,  tha t  is, the notion tha t  the use of symbolic 
notat ion automatically increases the value of a paper. 
Communication between various workers seems to be poor; 
there is much rediscovery and little cross-referencing 

within the field. The existence--and tolerance by  referees--  
of the situation mars an otherwise excellent record in TWS 
research. 

Our review of TWSs is divided into two major  headings, 
syntax and semantics. The work on automated syntax 
methods is the oldest and best understood aspect of TWS 
research. Syntax methods are further divided into those of 
limited generality, which have been used in TWSs, Section 
I I .B,  and the theoretically more powerful but  as yet 
inapplicable methods of Section I I .C.  

The division of semantic considerations into three sec- 
tions is along somewhat more controversial lines. The  
syntax-directed symbol processors of Section I I I . A  share 
the approach of considering translators as a speciM case of 
a problem which is best t reated generally. The compiler- 
compilers of I I I . B  a t tempt  to provide many  specific 
mechanisms to help in the postsyntactic processing of 
programs. Section I I I . C  considers two related sets of 
a t tempts  to extend the conventional macro assembler 
to a TWS. 

The related topics discussed in Section IV were chosen 
to complement the review sections and are treated in 
much less detail. The treatments of the other uses of syn- 
tax-directed techniques and related mathematical studies 
are aimed at elucidating their relationships with TWS 
efforts. Finally, a number of potentially fruitful research 
topics related to the future development of translator 
writing systems are sketched. The bibliography is ar- 
ranged alphabetically; in addition, references pertinent 
to each section are indicated at the end of the section. 

REFERENCES FOR I 
The Communications of the ACM and to a lesser extent the Com- 

puter Journal of the British Computer Society are the major 
journals for publications on translator writing. See especially 
Comm. ACM 4 (Jan. 61), 7 (Feb. 64), and 9 (Mar. 66). 

Other general references: Che 64a, Flo 64b, Hals 62, Knu 62, 
Ran 64, Ros 64b, Weg 62, Wil 64b. 

Formal descriptions of various programming languages: Bac 59, 
Ber 62, Brook 61, BroS 63, EvA 64, Gor 61, IBM 66, Naur 60, 
63b, Rab 62, Samm 61, Shaw 63, Tay 61, Wir 66b, 66c. 

I I .  S Y N T A X  

A.  T e r m i n o l o g y  

One of the minor irri tants in TWS literature is the lack 
of uniform notation. In  order to make this paper  more 
readable, we have taken the liberty to change the symbols 
and sometimes the syntax used by various authors. For 
the discussions on syntax we have decided on the notation 
used by  Ginsburg [Gin 66a, pp. 8, 9]. However,  as a non- 
conflicting alternative, the notat ion of the syntactic 
metalanguage Backus-Naur  Form (BNF),  especially the 
symbol ":: = ", is used where it is more readable. 

In  this paper  many  words are used in both the formal 
and the informal sense; in this section on syntax the usual 
sense is the formal, while in sections I I I  and IV, the in- 
formal. The  formal definitions of such terms as " syn tax"  
and "semantics"  are not generally agreed upon, and we 
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(program> ~ ± E ± (program> : :=  .~ E x 
E--~ T E : :=  T I E +  T 
E--~E.-b T T ::= P I T *  P 
T ~  P P : :=  f [ (E) 
T - - ~ T * P  
P ~ (E) 
P---~ I 

(a) formal notation (b) BNF notation 
Nonterminal symbols: (program) E T P. 
Terminal symbols: [ ( ) --]- * z. 

FIG. 1. Example of a phrase structure grammar 

discuss them further in Section IV. Informally, we con- 
sider syntax to be a specification of the well-formed 
statements of a language, usually incorporating a mecha- 
nism for structural descriptions, and semantics to be a 
specification of how these statements are to be executed 
by a real or abstract computer. 

In  general throughout the paper, a language £ is some 
subset of the set et* of all finite strings of symbols from an 
alphabet a. The specification of which strings are in the 
language £ (syntax of £)  is described in a syntactic recta- 
language. The syntactic metalanguage is procedural and 
describes either an algorithm for generating strings of 
(synthetic syntax) or for recognizing if an element of a* is in 

(analytic syntax). Statements in a syntactic metalan- 
guage are often called productions. Any process utilizing a 
nontrivial analytic syntax is called syntax-directed. 

The symbols in the alphabet (~ are called terminal 
symbols, and in Section I I  are denoted by T, T~, T2, etc. 
A syntactic metManguage may include a set of nonterminal 
symbols, v, not in a, which are used in defining the lan- 
guage. These nonterminals are normally enclosed in angle 
brackets "(" and "}", as in the ALGOL report, and appear 
in the text as well as in formal syntax rules. 

In this section where we deal more formally with syntax, 
we omit the brackets and represent all nonterminals by 
Latin capitals U, V, and Z. These sections on syntax also 
require a fairly extensive technical vocabulary, which we 
now describe in detail. 

The vocabulary ~ is defined as the union of a (the set of 
terminM symbols) and v (the nonterminal symbols). The 
symbols S, $1, $2, etc. are used to denote members of ~, 
while strings of symbols (including the empty string A )  
are denoted by lowercase Latin letters u, v, w , . . . .  If  
z = xy is a string, x is a head and y a tail of z. 

We specify a language, 2~, by a phrase structure gram- 
mar, ~, which is defined as a finite set of productions of the 
form U~ --~ u~ with the following properties: 

(1) each ul is a nonempty string whose symbols are in 
the vocabulary ~d; 

(2) each U~ is a nontenninal symbol: U~ ~ n; 
(3) There is exactly one U~, called the distinguished 

symbol Z, which occurs in no ui .  
U~ is called the left part and u~ the right part of the produc- 
tion U~ ~ u~. Figure l(a) is an example of a grammar, 
with Z = (program}. Figure l (b)  gives an alternate nota- 
tion for the same phrase structure grammar, the Baekus- 

{program> {p rog ram> (program> 

/ ? ' x  
T * P  

(a) (b) (c) 

(program> (program) 

± / / / f f ~ ±  _ L ~ a -  

E + T 

T T * P  T 
r 
P 

(e) 

Syntax trees 

(d) 

FiG. 2. 

Naur  Form (BNF) .  Here " : : = "  is substituted for "---~" 
and the metasymbol "1" is used to separate different right 
parts corresponding to the same left part. 

In  some of the work reviewed, productions with empty 
right parts are allowed, though we may not always mention 
it. 

In  order to show how a (phrase structure) grannnar de- 
fines a language, we need some further definitions. We say 
that  v is a direct derivative of w (written w ~ v) by applica- 
tion of the production U ~ u if there are (possibly empty)  
strings x and y such that w = xUy and v = xuy. 

The transitive closure of " ~ "  is denoted by " ~ " ;  
w ~ v if there exist strings w0, wl, . . - ,  wi (i > 0) such 
that  w = w0, w0 ~ wl, • • • , 'wi-1 ~ ¢-/)i and w~ = v. v is 
then called a derivative of w, and the sequence w = w0 
wl, • • • , w~_~ ~ w~ = v a derivation of v from w. 

The derivatives of the distinguished symbol Z are called 
sentential forms. The language £~ is defined as the set of 
sentences, i.e. the set of sentential forms consisting only of 
terminal symbols: 

£~ :=  { x l Z ~ x  and x E a*} 

In  the grammar ~ of Figure 1, £~ is the set of all arith- 
metic expressions (using operators -5 and ,, parentheses 
( and ) and the operand I ) .  The beginning and end of the 
arithmetic expressions are explicitly indicated by the 
symbol .L. 

The sentential form ~P -5 T • P~ has at least two deriva- 
tions (according to the grammar of Figure 1) : 

(program) =* . E -  ~ -E  -5 T-  ~ -T  + T~ 
(2.1) 

z P - 5  T J . ~ P - 5  T * P J .  

(progrmn} ~ ±EJ. ~ :.E -5 T~. ~ .LE -5 T • P.L 
(2.2) 

~ . L  T -5 T * P.L ~ . L P  -5 T * P.L 

A derivation may be illustrated by a syntax tree, which 
is drawn for derivation (2.2) as follows: Starting from the 
symbol (program) a branch is drawn, as in Figure 2(a). 
The branch is the set of lines emanating downward from 
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E + T 

(program) 

tka. 3. Upside-down syntax tree 

the node (program), together with the nodes (the labels) 
at the ends of these lines. These nodes concatenated form 
the string ±E± which replaced <program) in the derLvation. 
We continue in the same manner; for each application of a 
production U ::= x (each direct derivation), from the 
node U, which is being replaced, we draw a branch whose 
nodes form the replacing string x. This is illustrated for 
derivation (2.2) by the sequence of syntax trees in Figure 
2, with Figure 2(e) representing the complete derivation. 
Note that  the end nodes of the tree (those with no branches 
emanating downward from them),  when concatenated, 
yield the final sentential form. 

Although there are two derivations of ±P + T • Pj., both 
have the same syntax tree, since the derivations differ 
only in the order in ~hich the productions are applied as 
direct derivations. A grammar ~ is said to be ambiguous if 
there is a sentence of 29 which has more than one syntax 
tree relative to ~. 

Given a synthetic phrase structure granmtar one can 
randomly generate sentences of the language by deriving 
them and their syntax trees from the distinguished symbol 
Z. Compilers on the other hand have the opposite problem: 
given a sentence x and a grammar ~, construct a deriva- 
tion of x and find a corresponding syntax tree. This is 
called parsing, recognizing (whence the term recognizer), or 
analyzing the sentence. 

There are two different parsing strategies, called top- 
down and bottom-up, which are sometimes confused. One 
reason is that  people draw syntax trees differently; the 
tree in Figure 2(b) (which is how we draw it) could also be 
drawn as in Figure 3. Another reason is that  these two 
strategies have actually merged as recognizers become 
sophisticated. We discuss this later in this section and 
again in Section II.C.5. Both types of strategies are called 
left-right, since the general order of processing the symbols 
in the sentence is from left to right whenever possible. 

A pure top-down recognizer is entirely goal-oriented. The 
main goal is, of course, the distinguished nonterminal 
symbol Z - - a  prediction is made that  the string to be recog- 
nized is actually a sentence. Therefore the first step is to 
see whether the string can be reduced to the right part  
$1S2.. .  Sn of some production Z ~ $1S2".. S,~. 

This is done as follows: For the application of the 
production to be valid, if S~ is a terminal symbol, then the 
string must begin with this terminal. If $1 is nontenninal, 
a subgoal is established and tried: see whether some head 
of the string may be reduced to S~. If  this proves true, 

(program) 

/i r r l r  + 1 * I  a. • I + I *  I 
(a) partial top-down parse (b) partial bottoln-up parse 

~IG. 4 

$2 is tested in the same manner, then $3, and so on. If no 
match can be found for some S~, then application of an 
alternate production Z ~ S i ' S ( . . .  S, /  is at tempted. 

Subgoals U are tested in the same manner; a production 
U --~ $1S2.. • S,, is tested to see whether it can be applied. 
TMs,  new subgoals are continually being" generated and 
attempted. If a subgoal is not met, failure is reported to 
the next higher level, which must t ry  another alternative. 

Left recursion sometimes causes trouble in left-right 
top-down recognizers; productions of the form U1 :: = Ulx 
may cause infinite loops. This is because when U1 becomes 
the new subgoal, the first step is to create again a new sub- 
goal U~. The left recursion problem is sometimes solved by 
changing the grammar or modifying the recognizer in some 
way (see below). The order in which the different right 
parts of productions for the same left part  are tested can 
also play a large role here. If there is only one right part  
which contains left recursion this one should be the last 
one tested. However, this might conflict with other order- 
ing problems, such as testing the shortest right part  last. 

The top-down recognizer gets its name from the way 
the syntax tree is being constructed. At any point of the 
parse certain connections have been made (perhaps incor- 
rectly) by constructing the tree from the top node and 
reaching down to the string (Figure 4 (a ) ) .  Such recog- 
nizers are sometimes called predictive [see Kun  62], since at 
each step they t ry  to predict the connections to be made. 

A top-down recognizer may be programmed in many 
different ways--as  recursive subroutines, as a single 
routine working with a stack, etc. The significant feature 
is that  it is goM-oriented. 

In  contrast, a pure bottom-up recognizer has essentially 
no long-range goals (except of course the implicit goal Z).  
The string is searched for substrings which are right parts 
of productions. These are then replaced by the corre- 
sponding left side. This is illustrated by Figure 4(b) .  We 
will go into some detail here in order to introduce termi- 
nology needed in later sections. 

Although the syntax tree is not present when we start to 
parse a sentence, it is clearer to present the idea behind 
bottom-up parsing as if it were. Let  us therefore suppose 
we have a sentential form s and its syntax tree. We define 
a phrase of s to be the set of end nodes of some subtree of 
the syntax tree. We now define the handle of s relative to 
the syntax tree to be the leftmost phrase which contains no 

8 0  C o m m u n i c a t i o n s  o f  t h e  ACM V o l u m e  11 / N u m b e r  2 / F e b r u a r y ,  1968 



phrases other than itself. For example, in the syntax tree of 
Figure 2(e) there are four phrases: P, T * P, P ~ T * P, 
and xP "4- T * Px. Two of these contain no other phrases: 
P and T * P.  The handle is the leftmost such phrase: P.  

The following algorithm represents the general phi- 
losophy behind left-right bottom-up parsing: starting with 
a sentential form s = So (and a syntax tree for it) ,  repeat 
the following steps for i = 0, 1, . . .  , n until s,~ = Z has 
been produced: 

1. Find the handle of s~ (by looking at the syntax tree 
for s0. 

2. l~eplace the handle of sl by the label on the node 
naming the corresponding branch, yielding the sen- 
tential form si+1. 

3. Prune the tree by deleting the handle from it. 
The sequenceZ = s~ ~ S~-l~'.-~ sl ~ So is thena 
derivation of So. For example, given the sentential form 
So = zP -4- T * P~ and its syntax tree in Figure 2(e), the 
handle P is replaced by T and pruned from the tree, yield- 
ing sl = zT q- T * Px and the syntax tree of Figure 2(d). 
The handles for the syntax trees in Figures 2(d), 2(c), 
2(b), and 2(a) are, respectively, T, T. P, E q- T, and 
.LEz. The syntax tree of Figure 2(c) arises by pruning the 
handle of 2(d), 2(b) arises by pruning the handle of 2(c), 
and 2(a) comes similarly from 2(b). This sequence yields 
the derivation (2.2). 

The pure bottom-up recognizer, like the pure top-down 
recognizer, will normally make reductions (or connections) 
which turn out to be incorrect. This may be handled in one 
of two different ways. The first method is to back up 
(backup or backtracking) to a point where another alterna- 
tive may be tried. This involves restm~ng parts of the 
string to a previous form or erasing some of the connections 
made. The second method is to carry out all possible 
parses in parallel. As some of them lead to "dead ends" 
(no more reductions or connections are possible), they are 
dropped. COGENT (Section III.A.3) uses this method in a 
top-down scheme. See also [~un 62]. 

In  order to reduce the probability of making incorrect 
reductions, more sophisticated recognizers have been de- 
veloped. For instance, before starting out on a new sub- 
goM, a ~odified top-down recognizer might look in a pre- 
constructed table to see whether some derivative of the 
subgoal can actually start  with the initial symbol of the 
substring in question (look ahead), or whether the subgoal 
being at tempted could occur in the partial tree formed so 
far (memory). Examples of modified top-down recognizers 
are those in [Ir 61, May  61, and War 64]. Most of the 
syntax-directed symbol processors of Section III .A use 
modified top-down recognizers. 

Similarly, modified bottom-up recognizers look at the 
context around a possible handle to aid in the decision. In 
practice, these recognizers have become sophisticated 
enough so that,  with certain restrictions on the grammar, 
backup or parallelism is unnecessary. 

These modifications have contributed to the (con)fusion 
of the two concepts. I t  is sometimes very difficult to 

classify a particular recognizer as bottom-up or top-down. 
For  instance, a production language recognizer as gener- 
ated by Earley's algorithm (cf. Section II.B.5) has some 
of the properties of both. If a recognizer has any explicit 
goals and subgoals to meet, we tend to call it (modified) 
top-down, since it is goal-oriented. See Section III.C.5 
for a fm'ther discussion on this problem. 

Most of the remaining terminology should be familiar 
to anyone with general knowledge of computer science. We 
use a few data structure terms which require definition. 
The term list structure system is used generically to de- 
scribe any programming system making significant use of 
pointers (links) and dynamic storage allocation. A list 
structure which does not allow more than one path be- 
tween any two nodes is a tree. A list structure which ex- 
plicitly allows general connectivity and where each element 
is a block of storage containing several (often two-way) 
links is called a plex. We also use the terms LIFO (last-in- 
first-out) and FIFO (first-in-first-out) as general rules for 
handling sequential information. 

REFERENCES FOR II. A 
Che 64c, Chom 63, Flo 64b, Gin 66a,Ir 61, Kun 62, Naur 60, War 64. 

B.  A u t o m a t i c a l l y  C o n s t r u c t e d  R e c o g n i z e r s  

In this section severM practical techniques for parsing, 
or for recognizing, sentences of languages defined by 
grammars are described and evaluated. A "practical" 
technique is one tha t  has been or is being used to write a 
compiler. Such a recognizer may  be in the form of tables to 
be used by a set of basic routines or in the form of a pro- 
gram in some language. Each of the recognizers described 
here has an associated algorithm, called a constructor, for 
generating it from a suitable grammar. Finally, all are left- 
right recognizers which work with one LIFO stack and 
have no backup facilities. 

The property of automatic generation is very important  
to the compiler writer. Most of the constructors check the 
grammar for ambiguity before actually constructing the 
recognizer--a decided advantage. Automatic construction 
of parts of a compiler also means less work, leaving more 
time for considerations such as code optimization. More- 
over, the automatic construction guarantees that  the 
recognizer follows the formal syntax. 

Unfortunately, these recognizers and their constructors 
do not solve all problems. First, the existing formal no- 
tions of syntax cannot be used to completely describe the 
syntax of most programming languages. Second, semantics 
form a much larger and more difficult part  of a program- 
ruing language--often either the grammar or the generated 
recognizer must be changed in order to fit in semantics 
properly. Third, while a technique may be theoretically 
sound, the restrictions necessary for its use may require 
substantial alteration-of the conventional grammar of the 
programming language. 

We note in passing that  the "efficiency" of several 
recognizers has been compared by Griffiths and Petrick 
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[Grif 65]. Although it is of some theoretical interest, this 
comparison is of no practical value in writing compilers, 
since it is based mainly on the efficiency of Turing machines 
corresponding to each of the recognizers. We are interested 
in comparing the recognizers with respect to the following 
points: 

(a) How much space does the recognizer use? 
(b) How fast is the recognizer? 
(c) How much does a conventional grammar have to be 

altered in order to be accepted by the constructor? 
(d) Once the recognizer is constructed, how easy is it to 

insert semantics and the syntactic properties not ex- 
pressed by the grammar? 

The reader must note that  our comparisons are based on 
these recognizers as formally applied and that  they are 
general observations; by bit-pushing or devising fast list 
searching techniques, a particular implementation can 
greatly increase efficiency. The above properties also de- 
pend on the type of compiler being built, the language in 
question, and so forth. The answer to question (d) in 
particular depends very much on whether some internal 
form of the source program or machine code itself is to be 
generated and on the power of the semantic processes 
available in the compiler. 

Although it is possible to build bottom-up recognizers 
which allow backup, this has rarely been done. Restric- 
tions are usually placed on the grammar to assure its un- 
ambiguity and to assure that  the unique handle of any 
sentential form can be efficiently detected and reduced. All 
of the recognizers discussed here do this. On the other 
hand, many of the top-down recognizers in use today allow 
backup, or they carry out possible parses in parallel; the 
only restriction is that  left recursion is not allowed (see p. 
80). The existing top-down recognizers therefore accept 
a wider class of grammars but  tend to be less efficient; 
backup can lead to very inefficient recognizers if the gram- 
mar is not written cleverly. 

Pure top-down recognizers were discussed briefly in 
Section II.A, and therefore are not discussed here. See 
[War 61] for details of compilers which use modified top- 
down recognizers. [Che 64c] is a good tutorial paper on the 
use of top-down recognizers in compiling, and [Flo 64b] 
also contains a good description of the technique. 

Some of the recognizers discussed here have been used 
in many compilers by many people; we cannot list ref- 
erences to all of them. For  each recognizer we give 
references to papers where both the recognizer and its 
constructor are discussed. Some theoretically interesting 
recognizers which can be mechanically constructed, as 
well as formal properties of systems described here, are 
discussed briefly in Section II.C. 

The grammar in Figure 1 (p. 79) is used throughout  
this section as an example. At this point it  may  be advis- 
able for the reader to briefly review Section II .A for 
definitions and notations. 

Syntax tree (program) (program} (program> 

T T * P T 
L I 

P P 
Prime phrase T * P P ~ T ± E -L 

(a) (b) (c) 

FZG. 5. Parse using operator precedence 

B.1. OPERATOR PRECEDENCE (Floyd [Flo 63]) 
The grammar is first of all restricted to an operator 

grammar; no production may be of the form U ~ x U1U2y 
for some strings x and y and nonterminals U1, U2. This 
means that  no sentential form contains two adjacent non- 
terminal symbols. This is not a serious restriction; many 
programming language grammars are already in this form, 
and most programming ]angnage grammars not in this 
form can be made into operator grammars without essen- 
tially disturbing the structure of the language. 

Given an operator grammar, let s be a sentential form. 
We define a prime phrase of s to be a phrase which contains 
no phrase other than itself but  at least one terminal charac- 
ter T. (Compare this with the definitions of phrase and 
handle on p. 80.) For  instance, in Figure 5(a) the phrases 
a r e P ,  T , P ,  P +  T * P a n d , P +  T * P ~ ; t h e p r i m e  
phrase is T * P.  Similarly in Figure 5(b) the prime phrase 
is P -/- T, in 5(c) ±E,.  The recognizer to be described 
reduces at each step the leftmost prime phrase, and not the 
handle. However, we still call this a bottom-up, left-right 
recognizer, since it is proceeding essentially in a left to 
right manner. 

Equivalently, x is a prime phrase of at least one sen- 
tential form s if and only if x contains at least one terminal 
and either there exists a production U --~ x or a production 
U --~ x' where x' ~ x and the only productions applied in 
the derivation x r ~ x are of the form U~ --~ Uj. 

During the parse of a sentence Ti • • • Tm, a LIFO stack 

will contain symbols SoSi "" Si of the partially reduced 
string SoSi "" SiTjTj+i ... Tm • At any step, it is neces- 

sary to be able to tell solely from the symbols S~-i, S~ 

and Tj whether (i) S~ is the tail symbol of the leftmost 

prime phrase in the stack; or whether (2) S~ is not the tail 

and Tj must be pushed into the stack. 
In order to do this, the following three relations are 

defined between terminal symbols TI and T2 of an operator 

grammar. 
I. Ti ~ T2 if there is a production U --~ xTiT2y or 

U ~ xTiUiT2y where Ui is nonterminal. 
2. Ti "> T2 if there is a production U ~ x UiT2y and a 

derivation Ui ~ ZTl or Ui ~ zTiU2 for some z and 

U~. 
3. Ti < T2 if there is a production U ~ xTiU1y and a 

derivation Ui ~ T2z or UI ~ U~T2z for some z and 

U~. 
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S o ~ 'i' So,Si,..-3S i IS A STACK HOLDING A PORTIOH 

" U ~ ~  OF THE SENTENTIAL FORM UNDER ANALYSIS 

i 

READ OUR SYMBOL FROM 
SOURCE PROGRAM; STORE IN R 

Yes 

No No 

IS S. A TERMINAL No 
J SYMBOL? 

PROCESS PRIME PHRASE Sj+i-..S i 

(CALL A SEMANTIC ROUTiTIE); GET 
LEFT PART U; i ~ j + l; S i ~- U [ 

f 

FIG. 6. Recognizer using operator precedences 

If  at most one relation holds between any ordered pair 
T~, T2 of terminal symbols, then the grammar is called an 
operator precedence grammar and the language an operator 
precedence language. 

In an operator precedence language, these unique rela- 
tions may be used quite simply for detecting a substring 
which may be reduced (prime phrase). Suppose ToxT is a 
substring of a sentential form s = x~ToxTx2 and that  the 
terminal symbols in the substring x are, in order, T~, 
T2, • • • , T~ (n > 1). Now suppose the following relations 
hold between To, T1, • • • , T~ and T: 

T o <  Ti ~- T2 ~ . . .  ~ T , , >  T. 

(Note  that  nonterminals of x play no role here.) Then x is 
a prime phrase. Furthermore the reduction of x to some U 
may always be executed to yield the sentential form 
xlToUTx~ . 

The parse of a sentence (or program) is quite straight- 
forward (see Figure 6). Symbols are pushed into the stack 
until the relation T~ .~ T holds between the top terminal 
stack symbol T~ and the next incoming symbol T. If  the 
string is indeed a sentence of the language, the top stack 
elements then hold a string Tox as described above. One 
searches back in the stack, using the relations, to find To 
and the beginning of x. x is then a prime phrase and can 
then be reduced to some U, yielding ToU in the stack. The 
process is then repeated by comparing To with T. 

As an example, the sentential form ~P + T * P~ would 
be parsed (using the grammar of Figure 1) as illustrated 
in Figure 5, where each tree is derived by pruning the 
prime phrase of the preceding syntax tree. 

TABLE I 

T2 

) 
I 

÷ 
( 
± 

( I * + ± ) T f(T) g(T) 

) 5 1 
I 5 6 
* 5 4 
--P 3 2 
( 1 6 
± 1 1 

The relations .~, ~ and < can be kept in an l X l 
matrix, where l is the number of terminal symbols of the 
grammar. ( In  [Flo 63], the matrix for an ALGoL-like 
language is about 35 X 35.) The comparison is then just 
a test of the relation in the matrix element defined by the 
row corresponding to the top stack terminal symbol and 
the column corresponding to the incoming symbol. 

The space needed for the relations may be reduced to 
two vectors of length 1 if two integer precedence functions 
f ( T )  and g(T)  can be found such that  T1 < T2 implies 
f (  T1) < g( T2), T1 --" T~ implies f (  T~) = g( T2) and 
T1 -~ T2 implies f (  T1) .> g(T2). 

Floyd outlines the algorithm for finding the matrix of 
precedence relations, and an algorithm which finds the 
functions f and g if and only if they exist. For  the language 
of Figure 1 the precedence matrix and functions in Table I 
are generated. 

I t  is rather difficult to figure out a good error recovery 
scheme if the functions f and g are used, since an error can 
be detected only when a probable prime phrase turns out 
not to be one. With the full matrix, an error is detected 
whenever no relation exists between the top terminal stack 
symbol and the incoming symbol. Therefore the functions 
should be used only if a previous pass has provided a com- 
plete syntax check. (Some compilers actually parse the 
program twice. The first parse makes a complete syntax 
check and also allows one to collect global ilfformation 
about variables, blocks, etc. The second parse uses the 
efficient operator precedence technique the functions--  
and the information collected during the first parse to 
generate code. The trend is, however, to let the syntax 
checker produce an altered form of the source program--  
reverse polish, triples, etc. (see Section I I I .B .2 ) - - f rom 
which code may be generated more easily, making a 
second parse unnecessary.) 

One objection to this technique is that  the language may 
still contain ambiguous sentences. The structure of the 
parse tree is unambiguous if the grammar is an operator 
precedence grammar, but  the names of the nodes may not 
be unambiguous. For a prime phrase x there may exist 
more than one nonterminal to which it may be reduced, 
since there is no restriction that  right parts of productions 
be unique. This objection is part ly answered by the fact 
tha t  the nonterminals are usually manipulated by semantic 
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~'outines anyway, and not so much by the syntax. The 
syntax defines the structure; whether a node is named 
(say) {integer expression) or (real expression) is a semantic 
matter. 

A semantic routine is called when a prime phrase is 
recognized and is to be reduced. A separate routine is 
written to process each different prime phrase. This some- 
times requires an alteration of the grammar, depending of 
course on the semantic processing to be carried out. For  
instance, the production 

(cond) --~ i f  (be) t h e n  (expr) e l se  (expr) 

would normally be changed to 

{if el) --~ i f  (be) 
(if-then) --~ (ifel} t h e n  <expr} 
(eond) --~ {if-then) e l se  (expr) 

so that  the tests and jumps may be inserted at the proper 
places by semantic routines. 

However, the revised grammar will not, in all likelihood, 
be essentially different from the original reference grammar 
of the language (see for example Floyd's language in 
[Flo 63]). Although to our knowledge no compiler contains 
a mechanically constructed recognizer of this type, the 
precedence technique itself has been used in quite a few 
ALGOL, iVIAD, and F o ~ a ~  compilers and will be used in 
many more. The technique is easy to understand, flexible, 
and very efficient. 

B.2. PRECEDENCE (Wirth and Weber [Wir 66c]) 
Wirth and Weber modified Floyd's precedence concept. 

The grammar is not restricted to an operator grammar and 
the relations ©, © and @ may hold between all pairs 
$1, $2 of symbols: 

1. S, © $2 if there is a production U ~ xS1S2y. 
2. S~ @ $2 if there is a production U --~ x U~S2y (or 

U ~ xU1U~y) and a derivation U1 ~ zS1 (and 
U2 ~ S2w) for some z, w. 

3. S, © $2 if there is a production U ~ xStU~y and a 
derivation U~ ~ S2z for some z. 

If at most one relation holds between any pair S~, $2 of 
symbols, and if no two productions have identical right 
parts, then the grammar is called a precedence grammar and 
the language a precedence language. Any sentence of a 
precedence language has a unique syntax tree. When 
parsing, as long as either the relation © or © holds be- 
tween the top stack symbol S~ and the incoming symbol 
T, T is pushed into the stack. When S~ @ T, then the 
stack is searched downward for the configuration 

Sj_~ © Si © . . .  © S~_~ © S~. 

The handle is then Sj - . .  S~ and is replaced by the left 
part  U of the unique production U ::= Si " "  S~. The 
main difference between this technique and Floyd's is tha t  
the relations may hold between any two symbols and not 
just between terminal symbols; therefore, the handle and 
not the prime phrase is reduced. Algorithms for generating 
the matrix of precedences and functions f and g similar to 
Floyd's are given in [Wir 66@ 

TABLE II 
S2 

E' 
E 
T' 
T 
P 
) 
I 

+ 
( 
4_ 

E ' E  T '  T P ( I * + ) ± 

© © ©  
© © © © ©  

© @ © © © © ©  
@ © @ @ @ © @  

© ©  
© @ @  
@ ® @  

© @ ® ®  
® ® @ @  
® @ @ @  
® @ @ @  

s f(s) g(S) 

E' 1 1 
E 2 2 
T' 3 2 
T 3 3 
P 4 3 
) 4 1 
I 4 4 
* 3 3 

-4- 2 2 
( 1 4 
± 1 1 

For the grammar of Figure 1, relations + © T, zc © T; 
± © E, ± © E;  and ( © E, ( © E hold. These conflicts may 
be disposed of by changing the grammar to the following 
equivalent one: 

(program) --+ J. E '  ± 
E'  ----~ E 
E--~ T' 
E----~ E-4- T' 
T'---~ T 
T--* P 
T---~ T*P 
P ~ ( E ' )  
P----~ I 

The precedence matrix and functions for this grammar 
are given in Table II .  Actually, any phrase structure 
grammar can be modified, without doing violence to its 
phrase structure, such that  there is at most one precedence 
relation between any two symbols. Ambiguities show up in 
nonunique right sides of productions [Michael Fisher, 
Harvard U.]. The problem of multiple right sides makes 
this rather unpractical, even if the grammar is unam- 
biguous. 

As with Floyd's recognizer, one may use either the 
precedence matrix or the functions f and g. The matrix is 
much larger than Floyd's (over 70 X 70 for ALGOL), since 
the relations may hold between any two symbols. Again, 
semantic routines may only be called when a handle is 
detected. 

Theoretically, the technique is very sound and efficient. 
Since the relations may hold between any two symbols, it 
is in a sense more reliable than Floyd's; in a precedence 
grammar one knows that a unique canonical parse exists for 
each sentence. In practice, however, the restriction to 
unique right parts is not followed; each semantic processor 
for a handle which is reducible in more than on e rWay must 
determine the correct nonterminal to replace /c from the 
context and global information. This is necessary for pro- 
ductions such as 

<array identifier} --> <identifier> 
(procedure identifier} ~ <identifier) 
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T A B L E  I I I  

M A T R I X 1  

t.~2 
E I '  P ( [ . + 

E 
T 
P 
) 
[ 

+ 
( 
± 

@ @ 
@ @ © 

@ @ @ @ 
@ @ @ @ 

@ 
@ 
@ 
@ 

@ 
@ 
@ 
@ 

@ 
@ 
@ 
@ 
@ 

M A T R I X 2  

~2 
s ~ E  T P  ( [ • + )  

E 
T 
P 
) 
I 

+ 
( 
± 

@ © © 
® @ © © 

® © @ © © 
® © @ © © 

) ± 

@ @ 
@ @ 
@ @ 
@ @ 
@ @ 

@ @ @ 
@ @ @ @ 
@ @ @ @ 
@ @ @ @ 
@ @ @ @ 

F u n c t i o n  P1 n o t  
n e c e s s a r y ,  s ince  
t he  eonfl ie t  (~) 
does  no t  ar ise .  

F u n c t i o n  P2  (On ly  nec -  
e s s a r y  t r ip le s  w h i c h  also 
f o r m  va l i d  s u b s t r i n g s  of 
s o m e  s e n t e n t i a l  f o r m  
l i s t ed . )  

P 2 [ ± , E , + ]  = T R U E  
P 2 [ ± , E , ± ]  = F A L S E  
P 2 [ ( , E , + ]  = T R U E  
P 2 [ ( , E , ) ]  = F A L S E  
P2[+,T,*] = T R U E  
P2[+,T,+] = F A L S E  
P 2 [ + , T , ) ]  = F A L S E  
P 2 [ W , T , ± ]  = F A L S E  

Moreover, one must manipulate a grammar for an average 
programming language considerably before it is a prece- 
dence grammar. The reason is that  not enough context is 
used in determining the precedence relations; very often 
more than one relation holds between two symbols. I t  
may be necessary to insert intermediate productions (as 
in the above example) or even to use a different symbol 
for (say) a comma depending on its context. In  the latter 
ease a preseanner must then be ehanged to look at the 
context and decide which internal symbol to use for each 
comma. The final grammar could not be presented to a 
programmer as a reference to the language. 

B.3. EXTENDED PRECEDENCE (McKeeman [MeKee 66]) 
McKeeman extended Wirth's concept by first separating 

the precedence matrLx into two tables--one for looking for 
the tail of the handle, the other, for the head of a handle--- 
and then having the recognizer look at more context so 
that  fewer precedence conflicts arise. The constructor will 
therefore accept a much wider class of grammars. 

(a) The top two symbols S~_~, S~ of the stack and T, the 
incoming symbol, are used to decide whether T should be 
put into the stack, or whether Si is the tail of a handle 
and a reduction should take place. 

(b) Similarly, in order to go back in the stack to find the 
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SotSl~...,S i IS A STACK HOLDING A PORTION 
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1 
S i ~-R 

READ OUR SYMBOL FROM 
SOURCE PROGRAM; STORE IN R 

® 

TRUE 

Yes 

@ 

FIG. 7. 

(PL ~ (Sj_l, Sj, S j+ I) ? F~S E 

TRUE 

AND GET LEFT PART U; i ~- j ; S i ~- U 

. 

Recognizer using Wh'th precedences plus 
M c K e e m a n  t r i p l e s  

initial symbol of the handle, three symbols instead of two 
are used. 

This technique should be compared with the one pro- 
posed by Eickel et al. [Ei 63]. See Section II.C.1. In prac- 
tice, the number of different triples is too large (over 10,000 
for a dialect of PL1).  Also, in most cases two symbols 
suffice to determine uniquely what is to be done. McKee- 
man's recognizer compromises by using Wirth's two- 
argument precedences whenever possible and switching to 
triples only when necessary. When looking to the right to 
see if the stack contains a handle, a matrix MATRIX1 
with entries @ ( © or ©) ,  @, and ® ( @ and either © or 
© ) are used. If ® holds between the top stack symbols Si 
and the incoming symbol T then a list of triples is searched 
to find the vMue of the following three-argument function 
P1; 

l t r u e  S~ © 7'(S~ is ta i l  of  a h an d l e )  in  t h e  
P I  (Si-1, S~ , T) :=  c o n t e x t  Si-1 S~ T ;  

[ f a l s e  Ti @ S holds  in t he  c o n t e x t  Si-lSi T. 

Of course this function nmst be single valued for all 
triples, and the constructor checks this. A similar matrix 
M A T R I X 2  with entries @, © and @ ( © and either © 
or @) and a function P2 are used when looking in the 
stack for the initial symbols of the handle: 

t t r u e  S]--1 © S j ( S  i is  h e a d  of  a hand le )  i n  

P2(Si-t, Sj , Sj+~) = t he  c o n t e x t  Sj-~ Si Si+~ ; 
I f a l s e  Si-1 ( ~  Si holds  in t h e  c o n t e x t  

Si--i S i Sj+I • 

For the grammar of Figure 1, matrices and functions in 
Table I n  are generated; the recognizer is given in Figure 7. 
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The use of triples helps avoid most of the unpleasantness 
one encounters with precedence grammars. But  again, 
semantic routines may only be called when a handle is 
detected, so that  it may be necessary to alter the grammar 
for this reason. McKeeman is writing a compiler for a 
dialect of PL1 on the IBM 360 using this technique. The 
matrices MATRIX1 and MATRIX2  are about 90 X 45 
and 90 X 90 (each matrix element is two bits long), while 
roughly 450 triples are necessary. An alternative approach 
now being considered is to throw out the 90 X 90 matrix 
used to find the head of the handle. Then, when a handle is 
in the stack, all possible right parts will be compared with 
the stack contents to determine the correct production to 
apply. 

B.4. TRANSITION MATRICES 
(Samelson and Bauer [Sam, 60], Gries [Grie 67a]) 

This technique for parsing sentences was first introduced 
by Samelson and Bauer. In  their version two stacks are 
used--an  operator stack and an operand stack. The sen- 
tence is processed from left to right; incoming identifiers 
are pushed onto the operand stack, while the incoming 
operators ( + , / ,  begin ,  etc.) are compared with the top 
operator on the operator stack. If  a reduction cannot be 
performed, the incoming operator is pushed onto the 
operator stack. If  a reduction can be performed, a sub- 
routine is executed that  performs some operation using 
the top operator stack element and the operands on the 
operand stack, deletes those elements used, and pushes a 
resulting operand onto the operand stack. Note the 
similarity with the operator precedence technique; two 
terminals (operators) are used to determine the process to 
be performed--nonterminals (operands) play no role in 
this. The extra operand stack is used just to make it easy 
to reference the terminals and nonterminals separately and 
is a practical, not a theoretical, consideration. The only 
real difference is that,  while the operator precedence 
technique uses a matrix of precedences, the transition 
matrix technique uses a matrix of subroutine names. The 
top operator stack element and the incoming symbol 
determine an element of the matrix which is the name of a 
subroutine to execute; this subroutine then performs the 
necessary reduction or pushes the symbol into the operator 
or operand stack. Thus the productions do not have to be 
searched at each step to determine the reduction to make. 

The transition matrix has been used as an analytic 
syntax language in a number of compilers. Gries has writ- 
ten a constructor which builds a transition matrix recog- 
nizer for a large class of operator grammars. The restric- 
tion to operator grammars was made so that  the con- 
structed recognizers would be similar to the recognizers 
produced by hand. 

The constructor begins by using the following scheme to 
reduce the number of elements in the stack which must be 
tested in order to find the beginning of the prime phrase 
(not the handle). Suppose that  

<cond} ~ i f  <be} t h e n  (expr) else (expr) (4.1) 

S O ~- "l";U1 = ~4PTY; 

ie-o 

1 
READ ONE CHARACTER 

FROM SOURCE PROGRAM; 

STORE IN R 

1 
JU~ ° TO SUBROUTINE DEFINED BY 

~ATRIX EL~T CORRESPONDING TO 

ROW DETEEMINED BY S i and 

COL DETERMINED BY R. 

FIo. 8. Transition matrix recognizer 

Son...S i IS A STACK HOLDING 

SYMBOLD Vl~... ,V i OF THE 

SEN~ENTZAL FORM UNDER ANALYSIS. 

is a production of the grammar. This would be changed to 
the four productions 

"if" ~ i f  
"ibt" ~ "if" (be} then  
"ibtee" --~ "ibt" <expr) else  
(cond} --~ "ibtee" (expr) 

These intermediate reductions merely allow us to pu t  
into the stack a representation " ib t"  of the three symbols 
i f  (be) t h e n .  Similarly we represent i f  (be)  t h e n  (expr} 
e l s e  by "ibtee".  These new "quoted"  nonterminals we 
represent by V, V1, V2, etc. 

At any step of the parse, then, the stack will consist of 
symbols Vj ,  j = 1 , - . . ,  i, each of which is a quoted 
symbol- -a  representation for the head of the right part  of 
some original production--plus perhaps a final non- 
terminal operand U. The sequence 

V1V2 . . .  V~(U) TjTj+i . . .  T,~ 

is thus not a sentential form but a representation of one. 
(The  parentheses around U indicate that  it may  or may 
not be there.) In  general there are three possible actions 
at each step of the parse: 

1. (U)Tj  may form the head of another right part,  
yielding upon reduction V1V2"" V~V~+iTj+i 
• . .  Tm; 

2. V~(U) and perhaps Ti may form a right part  to be 
reduced, yielding ViV2. ."  V~-iU1Tj '"  Tm or 
V1V2.. .  V~_iU1Tj+i... Tm; 

3. V~( U)Ty may form the head of some right part ,  
! 

yielding upon reduction V1V2"" V~-iVi T j+ l ""  
Tm. 

The  constructor checks each pair V, T and each triple V, 
U, T to see which of the three possibilities exist. If  at 
most one exists for each pair and triple, and if the reduc- 
tion to be performed is unique, then the transition matrix 
and subroutines are constructed as follows: One row is 
allotted to each quoted symbol V and one column to each 
possible terminal symbol T. In  each matrix element 
Mv,r  is stored the number of a subroutine to execute if V 
appears as V~ and T as the incoming symbol. A corre- 
sponding subroutine is constructed which checks for the 
presence of the nonterminal U and executes the appro- 
priate reduction. We use a single stack, V~, V2, • • • , V~ 
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TABLE IV 

"E+" I 
" T * ' [  
"C [ 
1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

T~ 
J_ + * ( ) I 

1 4 5 6 8 
2 2 5 6 2 8 
3 3 3 6 3 8 

4 5 6 7 8 

i f  U1 = E o r  U1 = T o r  U1 = P 
t h e n  S U C C E S S  E X I T  e l s e  ERROR; 
i f  U1 = T o r  U1 = P 
t h e n  begin i ~-- i -- 1 ; U1 +- E; g o  t o  GO I N  e n d  e l s e  

ERROR; 
i f  U1 = P 

t h e n  b e g i n  i ~-- i --  1; U1 +- T; g o  t o  GOIN e n d  e l s e  
ERROR; 

i f  U1 = E o r  U1 = T o r  U1 = P 
t h e n  b e g i n  i +- i + 1; Si  ~ " E + " ;  U1 ÷-empty; g o  t o  

S C A N  e n d  e l s e  ERROR; 
i f  U1 = P o r  U1 = T 
t h e n  b e g i n  i ~-- i + 1; S~ +- " T * ' ;  U1 +-empty; g o  t o  

S C A N  e n d  e l s e  ERROR; 
i f  U1 = e m p t y  
t h e n  begin i ~ i + 1; S~ ~-- " (" ;  U1 +--empty; g o  t o  

S C A N  e n d  e l s e  ERROR; 
i f  U1 = E o r  U1 = T o r  U1 = P 
then  begin i ~-- i -- 1; U1 ~-- P; g o  t o  SCAN e n d  e l s e  

ERROR; 
i f  U1 = e m p t y  
t h e n  b e g i n  U1 ~ P; g o  t o  SCAN e n d  e l s e  ERROR; 

and put  the U in location U1. The  basic recognizer is given 
in Figure 8 ; the matrix and subroutines generated from the 
g rammar  in Figure 1 are given in Table  IV. 

A matrix for ALGOL is about  50 X 40, with perhaps 500 
subroutines. The  checks for U1 = e m p t y  may  be deleted 
by  doubling the number  of rows of the matr ix  (see [Grie 
67a] ). Some alterations are usually necessary once the 
recognizer is generated, but  semantics m a y  be inserted at  
any step of the parse (in any of the subroutines 1-8, Table  
IV), and not just when a right par t  is recognized. The  
g rammar  does not have to be changed much, although it  
must  be an operator grammar.  The  constructor itself has 
not yet  been used to generate a compiler, but  the generated 
recognizers closely resemble recognizers built by  hand 
using the same technique (see [Grie 65] ). 

This is perhaps the fastest technique. In  general, 
switching tables are used whenever speed is essential. 
Note  tha t  the productions need not be searched each t ime 
to determine the reduction to make and the semantic 
routine to execute. I t s  drawbacks are the space used and 
the large number  of subroutines needed to implement the 
technique. 

B.5. PRODUCTION LANGUAGE 
(Floyd [Flo 61], Evans  [Ev 64], Earley [Ear 65] ) 

Production language is an ana ly t i c  syntactic meta-  
language for writing compilers, introduced by  Floyd and 
modified by Evans.  I t  consists of a set of p r o d u c t i o n s  (note 
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ERROR EXIT 

Production language recognizer 

carefully the different use of the word produc t ions ) ,  an  

example of which is: 

L0: $3S~1 I ~ $2'$1' l'G1 

A more naturM name for this would be a reduct ion,  since 
it is used to indicate how to reduce, or parse, a string. 

We start  parsing a sentence by putt ing the first symbol 
± of the sentence on the stack. Then we sequence through 
the productions, comparing the top of the stack with the 
symbols $1, $2, • • • directly to the left of the first bar "]". 
When a match  is found, the matched symbols S1,S~,  • • • 

in the stack are replaced by  the symbols S / ,  $2' . . . .  ( I f  
no replacement is to be made the arrow " -~"  and symbols 
S / ,  S~' do not appear.) The symbol ~ appearing as some 
S~ matches any symbol on the stack. Then, if "*"  appears 
following the second "1" the next input symbol is scanned 
and pushed onto the stack. FinMly we start  comparing 
symbols of the stack again, beginning with the production 
labeled by the name appearing at  the fight of the produc- 
tion (G1 in this case). Any production may  be labeled. 
Earley has writ ten a constructor which produces, from a 
suitable (synthetic) phrase structure grammar,  a recog- 
nizer writ ten in production language. 

The production language program generated from the 
g rammar  in Figure 1 is given in Figure 9. 

Semantics are introduced once the productions have 
been generated by inserting "act ions" of the form E X E C  
i, where i is the number  of some semantic subroutine, 
directly after the second bar  "1" in any line of a production. 

I t  is important  to realize tha t  a production language 
description is a de te rmin i s t i c  description of a language. I t  
is actually a language for writing recognizers which parse 
sentences of a language. This is not the case with the usual 
phrase structure grammar.  

Production language, or a variation of it, has been used 
in a number  of systems. Once one has some practice, it is 
quite a natural,  flexible language to program in. A pro- 
g r immer  can learn to write compilers with it relatively 
easily. No compilers have yet been written using a mechan- 
ically constructed recognizer. The E X E C  actions may  
be inserted in any production, so tha t  in general few 
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alterations will have to be made in the grammar. More 
context can be used by the recognizer, so that a grammar 
is more likely to be accepted by this constructor than by 
the other four. 

We would venture to say that this branch of TWS is 
fairly complete. One can devise only a finite number of 
really different left-right recognizers for parsing sentences 
using limited context. Even the first four recognizers 
listed here differ only in the programming techniques 
used--theoretically they are all (1,1) bounded context in 
the terminology of Section II.C. 

The operator precedence technique is the most well- 
known of the techniques. I t  is often used to recognize 
portions of a language, most frequently arithmetic and 
Boolean expressions, as is done in the IBM 360 (H-level) 
FORTRAN compiler. See JAr 66, Grie 65] for documentation 
of other compilers using this technique. [Gall 67] also 
mentions it. The transition matrix technique (but not its 
constructor) has been used to write several ALaOL coin- 
priers [Grie 65, Sam 60], especially within the ALCOR group, 
as well as NELIAC compilers, under the name CO-NO 
table [Hals 62, Mas 60]. Both of the above techniques 
have undoubtedly been used in many other compilers. 
The production language is used in an ALGOL compiler 
[EvA 64], but it is also a significant part of two compiler- 
compilers [Feld 66, Mond 67] in which a number of other 
compilers have been written [Rov 67, It  66]. Two other 
compiler-compiler projects use this language [Fie 67, 
Grie 67b], and independent variations of it have been used 
by [Che 65] and others. The precedence and extended 
precedence techniques have been used mainly by their 
authors, Wirth [Wir 66a, Wir 66b] and McKeeman 
[McKee 66]. 

In operator precedence, precedence, and extended 
precedence recognizers, each time a handle (or prime 
phrase) is recognized, the productions nmst be searched 
to find the symbol to which the handle should be reduced 
and the semantic routine to be executed. Similarly, when 
using the Floyd-Evans analytic production language, the 
stack may be matched against several possibilities before 
a reduction can be performed. All these methods are there- 
fore slowed down unless some efficient table searching can 
be performed. The transition matrLx technique solves the 
problem by coding a separate subroutine for each possible 
reduction and by using the switching table; the dis- 
advantage here is the amount of space used for the matrix 
and subroutines. 

For the theoretically inclined reader, we now proceed 
to discussions of more generM, powerful, and complicated 
(and therefore less efficient) left-right recognizers. Basic 
references on the theory of formal languages are also given 
at the end of the next section. 

R~F~RENC~S FOI~ II.B 
Operator precedence: Ar 66, Flo 63, Gall 67, Grie 65. 
Precedence and extended precedence: McKee 66, Wir 66a, Wir 

66b, Wir 66c. 
Transition matrices: Grie 65, Grie 67, Hals 62, Mas 60, Sam 60. 
Production language: Che 65, EvA 64, Feld 66, Fie 67, Grie 67b, 

It 66, Mond 67, Roy 67. 

C. F o r m a l  S t u d i e s  o f  S y n t a x  

C.1. BOUNDED CONTEXW GRAMMARS (Eiekel [El 63, 64] 
Floyd [Flo 64a], Irons [Ir 64], Wirth and Weber 
[Wir, 66c] ) 

A grammar is called an (m, n) bounded context grammar 
if and only if the handle is always uniquely determined 
by the m symbols to its left and n symbols to its right. 
During a parse, a left-right recognizer may thus find the 
handle of a sentential form of an (m, n) bounded context 
grammar by considering at each step at most m symbols 
to the left (into the stack) and n terminal symbols to the 
right of a possible handle. The first four types of grammars 
discussed in Section II.B are essentially (1,1) bounded 
context grammars. 

In a sense, to construct a (bottom-up) recognizer for an 
(m, n) bounded context grammar 9 is to construct an 
equivalent context sensitive grammar [Gin 66a, p. 9] 91 from 
9. A context sensitive grammar is a grammar with produc- 
tions of the form x Uy ~ xuy. 

Thus, in such a grammar, a replacement of u by U can 
be performed only if x is to the left and y to the right of u. 
When building the recognizer, context is added to the 
left and right in each production (and thus more produc- 
tions are constructed), until the grammar states ex- 
plicitly and unambiguously in what context each reduc- 
tion can be performed. 

Recognizers for (m, n) bounded context grammars for 
m > 1, n > 1 are likely to make unreasonable demands on 
computer time and storage space. Therefore (m, n) bounded 
context grammars have not been used so far in compilers. 

One of the earlier papers on constructing recognizers 
for (1,1) bounded context grammars was [Ei 63]. The 
first step in the construction algorithm is to insert inter- 
mediate productions to change the length of right parts of 
productions to one or two. Thus the productions 

U1 ~ abcd, U2 ----* abd 

would be changed mechanically to 

U~-----~ ab, U4-*  U3c, U~ -+ U4d, U2 ----~ U3d. 

(Contrast this with the similar technique used in Section 
II.B.4.) Now when the recognizer looks for the handle at 
the top of the stack, the two top stack symbols S~ and 
S~_~ and the incoming terminM symbol Tj. must uniquely 
determine the step to be taken. Thus, for each triple 
($1, $2, T) one and only one of the following conditions 
must hold: 

1. S~$2 is a handle and one reduction U :: = S~$2 may 
be executed. 

2. $2 is a handle and one reduction U ::= $2 may 
be executed. 

3. T must be pushed onto the stack. 
4. S~S~T may not appear as a substring of a sententiM 

form. 
The Ngorithm for producing the triples and the corre- 
sponding actions is given in [Ei 63], along with examples. 
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This ~dgorithm and the recognizers produced have been 
programmed and tested but not used to write compilers. 

There have been three major  papers on general bounded 
context analysis. Each defines "context  bounded" slightly 
differently. The idea behind all of them, though, is the 
same, and we do not discuss the differences here. The paper  
by Yloyd on bounded context [Flo 64a] and the paper  by 
Irons on structural connections [Ir 64] should be read by 
any person interested in delving further into the mysteries 
of bounded context, although neither gives an algorithm 
for actually constructing the recognizer. Eickel 's aim 
[Ei 64] is to describe the recognizer and its construction in 
detail (and his paper  is therefore less readable than the 
other two). The recognizer uses the usual stack. As in 
[Ei 63] the grammar  is first reduced to one in which all 
productions have length 1 or 2. The constructor then 
produces 5-tuples 

(x; S; y, k, U) 

where x, y are strings with length (x) _< m and length 
(y) _< n, S is a symbol, U a nontenninal, and k a posi- 
tive integer. Suppose the stack contains 

S o ' "  S i - iS i  

and let 

TYj+ i  " "  T~+t-1 T~+z " "  T,,, 

be the rest of the input string, where l > 0. The number  
l specifies that  the first 1 symbols of the input string are 
needed as context to the right at this point. The 5-tuples 
are searched until one is found such that  S = S~, 
x i s a t a i l o f S 0 . . .  S ~ _ ~ , a n d y i s a h e a d o f  T j . . .  Tj+l-~. 

The step to be taken depends on the corresponding k 
and U as follows: 

lc action 

0 stop--syntax error 
1 replace handle S~ by U (make a redl~ction U ~ Si) 
2 i ~ i -  l; S i t  U (replace handle S~_l S~ by U) 
3 i f  l = 0 l h e n  1 ~-- 1 else begin i ~-- i + 1; Si ~ T¢; delete 

Tj from input string; l ~ 1 -- 1; e n d  
4 1 s- l -4- 1 (more context needed on the right). 

Note that,  although a g rammar  is (m, n) bounded con- 
text, n symbols to the right are not always necessary. The 
recognizer uses only as much context as is necessary to 
determine the action to be taken; this is the reason for the 
number 1 above. 

Eickel has programmed and tested both the constructor 
and recognizer, but  no compiler has been written using 
this technique. The constructor starts by limiting the 
length of x and y to 1 and producing all possible 5-tuples. 
I f  two (or more) 5-tuples exist with the same x, y and S 
but different lc (or the same k but  different U), then the 
grammar  is not (1,1) bounded context. For such 5-tuples, 
the lengths of x and y are increased, thus adding more 
context (and more 5-tuples), unt, il the conflict is resolved 
or some maximum m, n are reached. 

Wirth and Weber [Wir 66c] have extended the idea of 
precedences between symbols X and Y (see Section 

II .B.2)  to strings x and y. Thus we have x © y, x © y, 
and x @ y where length (x) < m and length (y) _< n. An 
(m, nn) precedence grammar  is of course also (m, n) 
bounded context according to our definition. A precedence 
g rammar  according to Section II .B.2 is a (1,1) precedence 
grammar.  

C.2. D E T E R M I N I S T I C  P U S H D O W N  A U T O M A T A  

(Ginsburg and Greibach [Gin 66b] ) 
A D P D A  is an automata-theoretic formalization of the 

concept of a left-right recognizer working with a stack. 
One has a finite set $ = {$0, " " ,  $,,} of "s ta tes"  
containing a start  state So, a set of inputs (~ (terminal 
symbols),  a set ~ (corresponding to our nonterminal 
symbols) containing a start  symbol Z and a mapping 8; 

8: (states X (nonterminal  symbols) X (input sym- 

bols) ) ~ (states X (strings of nonterminal symbols))  

o r  

8: ( s X ~  X ( a U { A } ) ) ~ ( s x ~ * ) .  

This mapping 8 must  be a function (single valued).  Other 
restrictions are also placed on it to take care of the empty  
symbol A which may  appear anywhere in the input. At  
each step we have a triple 

state stack rest of input  

(where i >_ 1), the initial triple being ($o, Z, T~ . . .  T,,,). 
At each step, with the help of the mapping ($ . ,  U~, Tj) 

($q, U~' • • • U~') where n >_ 0, the triple gets changed 
to 

, • U " U '  ($q Ui"  • i-lU1 ' ' '  n, T j + i ' "  T,,,). 

A string (of inputs) is accepted if the final state S,,, is a 
member  of a set of final states F. 

A language (a set of strings of input symbols derivable 
from some grammar)  is deterministic if it is accepted by 
some DPDA.  Note  that  a deterministic language is de- 
fined by a machine--a D P D A - - a n d  not by certain proper- 
ties of a g rammar  defining the language. Ginsburg and 
Greibach prove some interesting properties of DPDAs  and 
deterministic languages. What  is significant for us here is 
the relation to LR(k)  languages of Knuth  (Section I I .C.3) .  

Note that  one can implement a D P D A  using a transition 
matrix M, where each possible state Sp is represented by 
a row and each terminal T by a column. At each step the 
matrix element M$~.r; then determines a subroutine 
which performs the appropriate mapping depending on the 
U~ at the top of the stack. The transition matrix technique 
is thus fairly general; but  the constructor written by 
dries (Section I I .B.4)  only accepts a subset of the (1,1) 
bounded context grammars.  

C.3. LR(/c) GRAMMARS (Knuth [Knu 65] ) 
A grammar  is LR(/c) if and only if a handle (p. SO) is 

always uniquely determined by the entire string to its 
left and the /c terminal symbols to its right. The corre- 

Volume 11 / Number 2 / February, 1968 Communications of the ACM 89 



sponding language is an LR(k)  language. Thus, when 
parsing a sentence using a stack, the left-right recognizer 
may look at the complete stack (and not just a fixed num- 
ber of symbols in it) and the following k terminal symbols 
of the sentence. This is the most general type of grammar 
for which there exists an efficient left-right bottom-up 
recognizer that  can be mechanically produced from the 
grammar. In  fact, a grammar accepted by any of the other 
constructors discussed is LR(k)  for some It. Thus the 
LR(k)  condition is also the most powerful general test for 
unambiguity that  is now available. 

I (nuth  gives two algorithms for deciding whether or not 
a grammar is LR(k)  for a given k. The second algorithm 
also constructs the recognizer--if the grammar is L R ( k ) - -  
essentially in the form of a DPDA (above).  This may look 
strange at first sight, since there are, in general, an infinite 
number of strings S~, $2, .. • , S~ which may appear in 
the stack and thus an infinite number of strings which 
must be used to make parsing decisions, while a Dt~DA 
requires only the top stack element, a state, and the in- 
coming symbol. 

However, since the number of productions is finite, at 
any step of a parse there are only a finite number of 
possible actions, no mat ter  which symbols S~, $2, - ' .  , 
S~_~ are in the stack. Thus it is only necessary to classify 
the possible strings S~, $2, .. • , S~_x into classes, called 
"s ta tes"  Sv and show that,  if the grammar is LR(k)  for 
some k, one can describe the necessary single-valued 
mapping: 

(S , ,  S~, T~) -~ ($q, S /  . - .  , S , ' ) .  

Of course we have greatly simplified the process here in 
trying to get across the idea; the symbols S~ in the stack 
of the DP DA are not only symbols of the original grammar 
but  may themselves be complicated sets in order to be 
able to determine the necessary single-valued mapping. 

Knuth  also proves by construction that  for each langu- 
age 2 accepted by a DPDA there is an LR(1)  grammar 
which defines ~. Thus any LR(k)  language is also LR(1) ,  
although not with the same grammar. Earley [Ear 67] has 
written a constructor for L R ( k )  grammars, whose output  
is in the form of productions similar to the Floyd-Evans 
productions. 

C.4. RECURSIVE FUNCTIONS OF ]REGULAR EXPRESSIONS 

(Conway [Con 63], TRier  [Tix 67] ) 
Conway discussed a compiler whose syntax is specified 

by a number of transition diagrams, each of which recog- 
nizes strings derivable from a certain nonterminal, such as 
in Figure 10. 

(term): 
( 

(ld" e " "er} ( e ~ r e a s i b n }  

FiG. 10. Two transition diagrams 

At each step of the parse of a sentence, there exists a, 
current node of some current diagram. The action performed 
by the left-right recognizer (working ~xith lhe diagrams 
plus a pushdown stack) is determined as follows: 

(a) If the next input symbol (a terminal) matches the 
name of one of the lines emanating from the current node, 
traverse that  line to the new current node and scan the 
next input symbol. 

(b) If no match as in (a) occurs, and if one line is 
labeled with a nonterminal U, then traverse that  line, 
push the current diagram name and the new current node 
onto the stack, and change the current node to the first 
node of the diagram labeled U. 

(c) If (a) and (b) do not occur and there is an unlabeled 
line, traverse that  line. 

(d) If the current node is an EX IT ,  we have recognized 
a string derivable from the nonterminal described by the 
current diagram. Change the current node (and diagram) 
to the one specified by the top stack element and delete 
that  element from the stack. 

This is a top-down left-right recognizer without backup; 
note the prediction in step (b) that  a string derivable from 
U will be recognized. This method effectively breaks the 
syntax analysis into small, simple parts and saves space, 
since the character set involved in each subroutine is quite 
small. It is clear that each transition diagram represents a 
finite state automaton which is capable of recursively 
calling other finite state automata. 

TLxier independently formalized this concept in his 
thesis. He considers the productions U~ --~ x~ to be regular 
expressions U~ = x¢, where the set operations union ( '4- ), 
product, and closure (*) are used. Thus the productions 

(identifier) --~ (letter) 

(identifier) --~ (identifier) (letter) 

may be written equivalently as 

(identifier) = (letter) + (identifier) (letter) 

o r  

(identifier) = (letter) (letter)*. 

Tixier has rewritten the 120 productions for Euler [Wir 
67c] as 7 functions of the 7 variables, 3 of which we give 
here, with the symbols " ( " ,  " ) "  used as metasymbols to 
bracket set expressions: 

program = block 
block = begin  ((new id A- l a b e l  id);)* (id:)*expr(;(id:)*expr)* 

e n d  
expr = (out + if expr t h e n  expr else --4- id ([expr] + .)*~--)* 

(go to primary + block + catena) 

Tixier's constructor can manipulate the equations 
(productions) of a grammar, if desired, to arrive at the 
smallest number of equations, the main goal being to parse 
as much as possible via efficient finite state automata. 
For a suitable grammar the constructor then builds a 
(modified top-down) recognizer which can parse any 
sentence of the language unambiguously and without back- 
up, in the form of a set of finite state automata (one for 
each equation) calling each other recursively. The main 
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difficulty here is to be able to determine unambiguously 
from the current node and the input symbol if another 
finite state automaton should be called, and if so, which 
one. An accepted grammar, together with its language, is 
called regular context free (RCF ). 

The constructor actually builds an efficient, restricted 
DPDA. Thus RCF languages are LR(1)  languages. 

C.5. SUMMARY 
Figure 11 presents an inclusion tree for the classes of 

grammars accepted by the particular constructors dis- 
cussed in this paper. This tree may be confusing in some 
places. Some metalanguages, such as ]~loyd's production 
language, are powerful, but a particular constructor of a 
recognizer using such a metalanguage may restrict the 
grammars acceptable. If a node has a reference on it, the 
node refers to the language (or constructor) defined in 
that  paper. The following should be noted (see Figure 11 ) : 

(a) Although (1,1) grammars and extended precedence 
grammars both use triples, the advantage for (1,1) gram- 
mars arises from the automatic intermediate reductions 
performed, which essentially allows more context. Of 
course, any constructor could be changed to include these 
intermediate reductions. 

(b) Transition matrix grammars fall somewhere be- 
tween (1,1) and (0,1) bounded context. 

(c) We are making the assumption here that  the opera- 
tor precedence conditions have been augmented to dis- 
allow identical right sides. Otherwise inclusion does not 
hold. The advantage of the matrix technique over operator 
precedence is, as in (a),  the use of automatic intermediate 
reductions. 

(d) Feldman shows [Feld 64] that  each DPDA is equiv- 
alent to some program written in production language. 

Let us for a moment return to the problem of classifying 
recognizers as top-down or bottom-up. Tixier's recognizer 
(Section III .C.4) is definitely top-down; you can see the 
prediction (the goal) being made when he switches to a 
new finite state automaton. Is Knuth 's  constructed 
recognizer for LR(k)  grammars top-down? Some would 
say no. The recognizer just makes reductions using the k 
symbols to the right and the stack symbols to the left as 
context. The concept of LR(k)  itself, together with its 
recognizer, is an extension of the (m, n) bounded context 
recognizers, which are generally bottom-up. Furthermore, 
the extra "states" have been added to the stack just to aid 
in the determination of the reduction to be performed. 
However, others say that  by using these states a predic- 
tion or goal is actually being introduced. In favor of this is 
the fact that  both Tixier's recognizer, which is top-down, 
and Xnuth's  recognizer are both DPDA.  Here we can 
truly say that  these concepts have merged, and a case 
could be made for either. 

We have at tempted to survey a few of the concepts oc- 
curring in the study of syntax related to compiler writing; 
much has been omitted. Mention should be made of Gil- 
bert [Gil 66] who adds to a context sensitive grammar a 
selection function that  indicates (based on the sentential 
form) which production to use (if several possibilities 

phrase structure grammar 

LR(k) grammars and production language 
[Knu 651 (d) 

(m, k) bounded context LR(1) 
[Ei 64] [Knu 651 

On, k) precedence (1, 1) bounded context RCF 
[Wir 66c] [Ei 63] [Tix 66] 

(a) (b) 

/ \ 
extended precedence transition matrices 

[McKee 66] [Grie 67a1 

precedence operator precedence 
[Wir 66c] [Flo 631 

FIG. 11. Inclusion tree 

exist) in making the reduction. Thus with the use of the 
selection function the synthetic grammar can be used as 
an analytic grammar. Gilbert proves several properties of 
these grammars and selection functions and shows that  
one can completely describe the syntax of languages such 
as ALGOL and FORTRA~ " (including comparisons of dec- 
larations and uses of variables). 

We have not surveyed top-down recognizers in detail, 
since they are covered well in [Che 64c] and [Flo 64b]. The 
problem of ambiguity in context free languages has been 
covered only slightly as it relates to TWSs. The automata 
theory field is also related but  has not been mentioned. 

In fact, we have had to omit from the bibliography 
many papers dealing with context free grammars, auto- 
mata  theory, and machines. Many of these, and references 
to almost all the others, can be found in the Journal of the 
Association for Computing Machinery, in Information 
and Control, and in [Gins 66a1. 
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III .  SEMANTICS 

A.  S y n t a x - D i r e c t e d  S y m b o l  P r o c e s s o r s  

The programs discussed in this section are not properly 
called compiler-compilers, although each has been used to 
write compilers. Their  common treatment  of compiler 
writing as a symbol manipulation task makes each of these 
programs both more than and less than a TWS. Most of 
the early TWS efforts were of this type, the most notable 
being [Ir 61]. Since such systems are more general, they 
have been used heavily in the various nontranslator tasks 
described in Section IV.A. In  fact, the discussion of AED 
[Ross 67] is deferred to that  section, because its goals have 
been more general from the outset. 

A.1. T M G  (McClure [McC1 65]) 
The T M G  system was developed at Texas Instruments 

as a tool for writing simple one-pass compilers that  produce 
symbolic output.  The syntax technique is a simple top- 
down scan with backup. However, the embedding of 
semantic rules allows the recognizer to be more efficient by 
eliminating some syntactically possible goals on semantic 
grounds. 

The basic T M G  statement form is a sequence of actions 
separated by spaces. Any action may be preceded by a 
<label}, and it may be followed by a <destination} which is 
taken in ease the action fails. The <actions} can be: inter- 
mediate goals for the syntax recognizer, string computa- 
tions on the input, or built-in statements. These actions 
are all to be performed by the translator in building an 
intermediate tree. The actual ot/tput of code is done by a 
different set of routines, which are discussed below. 

There is a character-based symbol table which is built 
from input strings using the primitives M A R K S  and 
I N S T A L L .  Consider the following example: 

INTEGER: ZERO* MARKS DIGIT DIGIT* INSTALL.  

The action ZERO* scans all leading zeros; then M A R K S  
notes the current value of the input-string pointer. The 
action D I G I T  D I G I T *  scan all characters in the class 
<digit}. The execution of I N S T A L L  causes the string 
starting at the pointer of M A R K S  to be entered into the 
symbol table and a reference to it to be entered in the in- 
termediate tree. The only other information allowed in the 
table is a set of declared F L A G S  (Boolean variables) used 
to describe the attributes of identifiers. 

The built-in routines include conditional arithmetic ex- 
pressions, number conversions, and a few input-output  
functions. There are also some system cells, such am J ,  the 
input pointer, and S Y M N R M ,  the length of the last string 
entered. Output  is also character-oriented, as the following 
example will show: 

LABELFIELD: LABEL = $($P1 / BSS / 0 / / $ ) .  

This statement would be used to process the label in 
some language. The " = "  symbol signMs an output  routine 
which is bounded by "$("  and "$)" .  The body of the out- 

put  statement will form one line of assembly code 

value (P1) BSS O. 

The symbol SP1 is a command to evaluate the first 
construct to the left of the = ,  presumably the symbolic 
name of the label. The / says insert a tab and B S S  and 0 
represent themselves. Finally, the / /  places a carriage 
return in the output. The output  routines operate from 
top to bot tom on the intermediate tree representation of a 
program. Thus a S P n  in an output  routine may refer to a 
subtree and the evaluation of S P n  will then involve a 
recursive call on another output  routine. I t  is also possible 
to pass parameters by value to the inner routine. The paper 
gives several examples of these functions and includes a 
brief discussion of the error recovery capabilities of TMG.  

The T M G  effort was a pilot project and its clumsy syn- 
tax would be easy to fix. I t  has been used to write a number 
of compilers, and a related system, TROL,  has been used by 
Knuth  for teaching compiler writing. The E P L  (Early 
P L / I )  used in MULTICS was written as a two-pass system, 
using two sets of T M G  definitions, to get better  code. The 
T M G  system does not seem to be as coherent am some of 
the systems considered below and would benefit from an- 
other iteration. 

A.2. TH~ M E T A  SYSTE~aS (Schorre, [Sehor 64], 
Schneider and Johnson [Seh 64]) 

The M E T A  systems are the product of the Los Angeles 
S IGPLAN working group on syntax-directed compilers. 
Although the original work was diversified, the current sys- 
tems are generally based on a model known as META-I I ,  
developed by Sehorre [Schor 64]. Within this model the 
parsing and translation processes for a language are all 
stated in a set of BNF-like rules. These rules become reeur- 
sive recognizers with embedded code generators when 
implemented. The rules do not allow left reeursion, using 
instead the prefix iteration operator $. Terminal symbols 
are quoted; system symbols are preceded by " .";  and all 
unmarked symbols are user's nonterminals. Parentheses 
are used to group alternates within right parts. The follow- 
ing rules are used in translating Boolean expressions: 

1. UNION = I N T E R  ('OR' .OUT('BT' *1) UNION .LABEL 
*I].EMPTY) ; 

2. INTER = B P R I M A R Y  ('AND' .OUT('BF' *1) I N T E R  
.LABEL "1 I .EMPTY) ; 

3. B P R I M A R Y  = .ID .OUT('LD' *) I ' ( 'UNION')';  

The last rule defines a procedure for recognizing a 
Boolean primary in an algebraic language. The word 
B P R I M A R  Y followed by " = "  defines the name of the rule, 
while the right part  of the rule is both an algorithm for 
testing an input stream for the occurrence of a union and a 
code generator in ease an identifier ( . ID)  is found. The 
above rules contain examples of the three basic entities 
used in most META compilers. The mention of the name 
of another rule, in this ease U N I O N ,  causes a reeursive 
call on that  recognizer to be invoked. The occurrence of a 
literal string " ("  states that  the input stream is to be tested 
for a left parenthesis. The output  statement . O U T  pro- 
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duces a line of text, where "*" always refers to the last 
item recognized by the primitive nonterminal .ID. 

The first mention of a *1 within a rule (as in Rule 1 
above) causes both the generation of a label and the output 
of that label. Subsequent references within the same rule 
output the same label. That is, when a rule is entered new 
labels may be generated. These labels exist only while the 
rule is active. If a call is made to another rule, the labels 
are pushed onto a stack. Upon return from the called rule, 
the previous labels are restored. The action .LABEL *1 
indicates that the label corresponding to *1 is to be written 
o u t . . E M P T Y  is a primitive nonterminal which has no 
effect on the input but is always satisfied or true. 

For the input stream "(A OR B) AND (C OR D)" the 
following code would be produced where LD, BT, BF are 
mnemonics for Load, Branch True, and Branch False 
respectively. 

LD A 
B T  L1 
LD B 

L1 
BF L2 
LD C 
B T  L3 
LD D 

L3 
L2 

The usefulness of META-II was severely limited by the 
lack of facilities for backup or for reordering the output. 
There have been several attempts to extend the META 
techniques to a complete TWS. META-3 [Schor 64] was 
an attempt to extend the basic META-II concept so that 
ALGOI, 60 could be compiled for a 7090. It  added some 
ability for semantic tests and register manipulation, but 
the additions never proved adequate. META-5 has been 
used in a number of format conversion and source-to- 
source language translations, but has not been used for 
compilers. The most recent development is TREE META, 
a multipass system using complex processing of inter- 
mediate syntax trees. The slowness and inefficiency of 
META compilers is recognized by their authors, but the 
ease of implementation, the boot-strapping capabilities, 
and the large class of languages they can handle are used to 
justify the work that has gone into their development. 

A.3. COGENT (Reynolds [Rey 65]) 
The COGENT system, designed at Argonne National 

Laboratory and implemented on a CDC 3600, draws 
heavily on the ideas of Brooker and Morris (Section 
III.B.3), Irons [Ir 61, May 61], and LISP COGENT is very 
well thought out and is considerably more comprehensive 
than the other systems described in this section. The CO- 
GENT compiler is written completely in its own language. 
By boot-strapping three times, its own compilation speed 
has been increased by a factor of six. 

A program written in COGENT consists of two parts: 
the syntax and a set of processing routines called genera- 
tors. The syntax is given by a synthetic phase structure 

grammar. Almost any context free grammar is acceptable, 
including those with left recursion; only a few restrictions 
are made concerning empty right parts. The recognizer 
which uses the grammar is modified top-down, with alter- 
natives at each step being processed in parallel. A string is 
accepted if the recognizer finds a unique syntax tree for it. 

Syntactic analysis produces a list structure to represent 
the intermediate tree. For example, use of the production 

(term) : : =  (term) + (factor) 

would produce a list element (term) with pointers to the 
subtrees for (term) and (factor). 

One can precede any production by a name of a genera- 
tor (semantic routine), which is then executed when that 
production is used in building the tree. When there is more 
than one possible syntax tree (due to parallel processing of 
alternatives), the execution of these generators is delayed 
and syntax analysis continues until the local ambiguity is 
resolved and only one tree remains. Then all the generators 
are called in the correct order. 

As an example, consider the labeled production: 

processterm / (term) :: = (term) + (factor) 

When a subtree with (term) as the root is completely 
formed, the generator processterm will be called, with the 
subtrees for (term) and (factor) as arguments. Processterm 
may manipulate these subtrees, delete them, produce code 
corresponding to them, and so forth. 

The generator language is based on list processing opera- 
tions and the mechanism of failure. List elements may have 
varying numbers of pointers to other elements. The types 
of list elements include numbers (fixed or floating), genera- 
tor entry pointers, dummy elements, identifier elements, 
and parameter elements. Fixed point numbers may be of 
any magnitude and take up sufficient words to represent 
that magnitude. This feature facilitates symbolic math- 
ematics applications of COGENT. 

In addition to the conventional assignment statements, 
generators may use synthetic and analytic assignment state- 
ments to describe the synthesis and analysis of list struc- 
tures. A synthetic assignment statement has the form 

( identif ier) /= (template), (expression list) 

where a (template), used for pattern matching, looks like a 
production in parentheses with "/" substituted for"  :: = "  
The statement causes the (identifier) to be a copy of the 
(template), in which the ith parameter (nonterminal) is 
replaced by the valve of the ith expression in the (expres- 
sion list). For example, the execution of the synthetic as- 
signment statement 

Z / =  ((term) / (factor)*(factor)), X, Y 

where X has the value ((factor)/ABE) and Y the value 
(@actor)/BED), would assign to Z a copy of ((termS~ABE 
• BED). 

Similarly, analytic assignment statements of the form 

(test expression) = / ( t empla te ) ,  (identifier list) 
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are used to decompose an expression. The (test expression} 
is matched against the (template}. If they match, the 
value corresponding to the ith parameter (nonterminal) of 
the template is assigned to the ith identifier of the (identi- 
fier list). Thus if Z has the value ((term)/ ABE * BED), 
then the statement 

Z = / ((term} / (factor),(factor)),  X, Y 

will give X the value ((factor}/ ABE) and Y the value 
((factor}/BED). 

If (test expression} and (template} do not match, the 
analytic assignment statement fails. Failure is the method 
of branching in COGENT. If no conditional statement 
includes the action that fails, the entire generator fails. 
This failure proceeds up the chain of generator calls until 
some conditional statement is encountered. 

A program in COGENT can use any number of symbol 
tables. The action label $IDENT n specifies that the result 
of that production (which must be a character string) 
should be placed in symbol table n. If it is already there, a 
pointer to the old copy will be returned; i.e. all identifiers 
in any given table have unique character strings. Each 
entry in a table consists of the identifier plus a pointer ele- 
ment, which normally points to the attributes of that 
identifier. 

Output is achieved by calling the routine P U T P  with a 
single parameter--the internal code of a character to be 
placed in the output line. When the line is filled, it 
is written out and a new line started; however, OUTP can 
be called to print out a line before it is completely filled. 
Another primitive generator, S T A N D S C N  (X, PUTP) ,  
will map a list structure X into the string S represented by 
its end nodes. S T A N D S C N  finds the symbols in S and 
passes them one at a time to PUTP.  

COGENT is admittedly experimental and has several 
shortcomings. The structure of the language for generators 
is not as neat as ALGOL has shown languages can be. One 
syntax error in the input is fatal. List processing should be 
generalized to include arbitrary plex-creation, rather than 
just plexes based on the syntax. COGENT has been ap- 
plied to a number of problems in symbolic mathematics. 
Reynolds has suspended work on COGENT pending the 
development of a better theory of data structures, which 
he, among others, is working on (cf. Section IV.C). 

A.4. ETC (Garwick [Gar 64], Gilbert [Gil 66] 
and Pratt [Pra 65]) 

In this section we describe three other efforts, that are best 
described as syntax-directed symbol processors. For vari- 
ous reasons, these systems have not had the impact of 
those discussed above and are presented in less detail. 

The GARGOYLE system [Gar 64] was developed for the 
Control Data 3600 by Jan Garwick at the Norwegian 
Defense Establishment. There are reasonably complete 
descriptions in internal reports, but the published paper 
[Gar 64], which was written first, gives only a vague picture 
of GARGOYLE. 

GARGOYLE is like TMG (Section III.A.1) in many 

ways; the recognizer is top-down with a facility for direct- 
ing the search. All syntactic and semantic statements are 
written in a five-entry tabular form: (label) (else} (next} 
(link} (action). The sequencing rules are quite complex 
(partly because backup is handled implicitly) and are nor- 
mally done by a "steering routine." The backup mecha- 
nism also requires complicated data handling involving 
stacking of some variables and copying of others. All five 
entries are used in multiple ways; e.g. the label may in- 
stead be a code controlling how the line is to be interpreted. 
The following example would be used to process an (assign- 
ment statement). 

(label) (else) (next} (link) (action} 
R ASSIGN 
L V A R  
0 V A R I A B L E  1 
1 N E X T  2 i f  S YMB=:COLEQ t h e n  

VARy----WORD 
2 3 A S S IG N 4 
3 E X P R  4 
4 RE  T URN O U T T E X T  ("STO",  10); 

O U T F I E L D  ( V A R ,  20) ; 

The first line is the header for routine ASSIGN, whose local 
variable, VAR, is declared in the second line. If VARI-  
ABLE finds a (variable} then the next symbol must be 
COLEQ ( " :=" )  or the routine fails. Line 2 is a recursive 
call of ASSIGN for treating multiple left sides; the first 
backup will lead to E X P R  (which will compile the right 
side), and subsequent returns will execute statement 4 once 
for each variable in the multiple assignment. The (action} 
in statement 4 produces text for storing into each succes- 
sive value of VAR. 

The language of the (action} column includes partial 
word operators and a few fixed routines for table searching, 
input-output, etc. The GARGOYLE user is expected to 
embed assembly statements frequently, and the entire 
(action} language appears similar to the high level machine 
language of [Wir 66a]. GARGOYLE has been used by its 
author to help implement a complex language [Gar 66], but 
its wider use will require a somewhat cleaner design and 
considerably better publication. 

Thc TWS of Gilbert and McLellan [Gil 67] is based on 
some syntactic ideas of Gilbert (Section II.C, [Gil 66]) 
and an attempt to revive the UNeOL [Ste 61] concept. 
Source programs are to be translated into a machine- 
independent language, BASE, which in turn can be trans- 
lated into many machine languages. The first translation 
is described in an intermediate language which is a macro 
assembly language having a few fixed data structure con- 
ventions; the second translation is described in a string 
form like that of TMG. Although there are a number of 
good ideas in the paper, they are not significantly different 
from others in this section. Some of the bad ideas, however, 
are uniquely illustrative. 

The UNCOL notion of a machine-oriented but machine- 
independent language has always foundered on the diver- 
sity of languages and computers. Gilbert and McLellan 
attempt to avoid this by Mlowing new operators to be de- 
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fined in BASE and passed blindly to each BAsE-to-machine- 
language translator. This gives the appearance of machine- 
independence but  leaves untouched the basic problem of 
which macros to choose. The authors also make a point of 
the fact tha t  their system is "rigorously based." This 
presumably encouraged them to use the set of strings 
"AmB-AmB-CCC ' '  as the programming language example 
illustrating all aspects of their system. Finally, in a classic 
example of misplaced rigor, they exclude infinite loops 
from their system by not permitt ing loops and go to  state- 
ments. The only reference in this paper  [Gil 67] to other 
TWS literature is [Ir 61]. 

The AMOS system developed by  P ra t t  and Lindsay 
[Pra 65, Pra  66] is a direct application of list-processing 
ideas to TWSs. The source language is translated into an 
intermediate language (I-language) which is interpreted by  
AMOS. The I-language is a simple list processing language 
with some string processing operations and crude arithme- 
tic; e.g. "*ADD* P1, P2, P3"  means "add P1 to P2 and 
put  the result in P3."  The I-language was designed to be 
minimal and to be expanded in macro fashion. The  syntax 
is t reated by a var iant  of production language (Section 
II .B.5)  relying heavily on reeursive calls; the semantics is 
written in I-language. The most interesting feature of 
AMOS is the a t tempt  to provide for the translation of data  
structures as well as programs. AMOS has had some minor 
successes in handling list structures, but  the problem de- 
serves much more attention (ef. Section IV.C). 

R E F E R E N C E S  FOR III.A 
Ab 66, Gar 64, Gar 66, Gil 66, Gil 67, Kirk 65, Ir 61, McC165, :Met 

64, Pra 65, Pra 66, Rey 65, Sch 64, Schm 63, Schor 64. 

B.  C o m p i l e r - C o m p i l e r s  

The distinguishing characteristic of this set of TWSs is 
the a t t empt  to automate  many  of the postsyntactic aspects 
of translator writing. Such systems might bet ter  be called 
compiler-writing systems because they include significant 
programs which are resident at translation and execution 
time, as well as metalanguage processors. The programs in 
this section are more complex than  most  of those discussed 
previously; none has ever been successfully implemented 
by  someone not in contact with a previous effort of the 
same type. The following excerpt from a paper  on FSL 
(Formal Semantic Language) [Feld 66] outlines basic 
philosophy and should serve as an adequate introduction 
to our discussion of compiler-compilers. 

When a compiler for some language, £,  is required, the following 
steps are taken. First the formal syntax of £,  expressed in a syn- 
tactic metalanguage, is fed into the syntax loader. This program 
builds tables which will control the recognition and parsing of pro- 
grams in the language ~2. Then the semantics of ~, written in a se- 
mantic metalanguage, is fed into the semantic loader. This program 
builds another table, this one containing a description of the mean- 
ing of statements in £.  Finally, everything to the left of the 
double line in Figure 12 is discarded, leaving a compiler for ~. 

The resulting compiler is a table-driven translator based on a 
recognizer using a single LIFO stack. Each element in this main 
stack consists of two machine words one for a syntactic construct 
and the other holding a semantic description of that construct. 

SYNTAX OF£ 

SEMANTICS OF 

SYNTAX 
LOADER 

SEMANTIC 
LOADER 

• SOURCE CODE IN .C 

- ~ 
E 

COMPILER 
KERNEL 

MACHINE CODE 

FIG. 12. A compiler-compiler 

When a particular construct is recognized, its semantic word and 
the semantic table determine what actions the translator will take. 

The compiler kernel includes input-output ,  code genera- 
tion routines, and other facilities used by  all translators. 

B.1. FSL AND ITS DESCENDENTS (Feldman [Feld 66]) 
The problem faced in the original FSL effort was the 

development of a language for describing the postsyntactic 
(semantic) processing. An adequate semantic metalan-  
guage should permit  the description of the source language 
to be as natural  as possible. I t  should be readable so tha t  
other people can understand the meaning of the source 
language being defined. I t  should allow a description which 
is sufficiently precise and complete to enable efficient auto- 
matic compilation. Finally, the metalanguage should not 
depend on the characteristics of a particular computer.  

The syntax metalanguage used in FSL is very close to 
the production language discussed in Section II.B.5. A 
s ta tement  in this syntax language m a y  include a command 
" E X E C  n"  which is a call on the semantic s ta tement  
labeled n. The only other interaction between syntax and 
semantics is the pairing of syntactic and semantic descrip- 
tions in the main stack. 

The semantic metalanguage, FSL, was the main focus of 
effort and is discussed in some detail here. The overriding 
consideration in FSL was machine independence as op- 
posed to object code optimization in the T R A N G E N  ef- 
fort  discussed below. The plan was to have the meta-  
language be machine independent, with the machine 
dependent aspects of translation handled by a large set of 
primitives embedded in the compiler kernel. Statements  in 
the metalanguage would be compiled (whence compiler- 
compiler) into machine code made up largely of calls on 
primitive routines. Some examples should serve to illus- 
t rate  this approach. 

Suppose the syntax phase is processing a R E A L  declara- 
tion and calls semantic Routine 1 with the identifier being 
declared in the second position of the stack (LEFT2) .  

1: ENTER[SYMB; LEFT2, (STORLOC I DOUBLE), REAL, 
LEV]; 

STORLOC e- STORLOC -4- 2 

Here a description of the variable is placed in the symbol 
table, S Y M B .  The entries for the variable are its name, a 
tagged address, the word R E A L ,  and the current block 
level. Finally, STORLOC is increased by two, allocating 
two cells to the double-precision variable. 
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When an identifier is scanned in an arithmetic statement, 
semantic Routine 2 is called. 

2: IF NOT LEFT1 IS CONSTANT THEN 
IF SYMB[LEFT1, TYPE] = REAL THEN 

RIGHT1 e-- SYMB[LEFT1, SEMANTICS] 
ELSE FA ULT 1 

In semantic Routine 2, if the identifier (in L E F T 1 )  is a 
constant, the routine terminates. If not, the identifier is a 
variable and must be looked up in the symbol table. The 
table-lookup is accomplished in FSL through a special table 
operand of the form 

(table name) [(operand), (position name)]. 

This instance of a table operand initiates a search of the 
table S Y M B  for an entry (row) whose first column equals 
the contents of LEFT1 .  Then the specified position ( T Y P E )  
of the matched row is selected and compared with the 
string construct R E A L .  If they are the same, the variable 
was declared to be R E A L  and all is well. In this case the  
S E M A N T I C S  (tagged address) of the matched row in 
S Y M B  is assigned as the semantics of the real variable. If 
the variable is not of type R E A L  or is not in the table at 
all, the statement F A U L T  1 will be executed. This causes 
the printing of an error message on the listing of the source 
language program being compiled. 

Finally, suppose the syntax has recognized an addition 
which is to be compiled and calls semantic Routine 3. 

3: RIGHT2 ~ CODE(LEFT4 "b LEFT2) 

The code brackets "CODE (" and ")" specify that the 
statement within them is to be compiled into object code, 
rather than executed during translation. The execution of 
this statement will produce a call on a code generating 
routine which uses the semantic descriptions in the second 
and fourth positions of the stack to compile a code sequence 
for addition. The semantic descriptions include the data 
type, sign, index attributes, and current location of an 
operand; these, along with the state of the translator, are 
enough to produce locally good code. The result of an 
addition is itself an expression, and the syntax is presumed 
to have put the syntactic symbol, E, into the second posi- 
tion of the stack (cf. line T1 -4- 1, Figure 9, p. 87). The 
assignment to R I G H T 2  will associate the semantics of the 
result (e.g. DOUBLE,  in accumulator) with the syntactic 
symbol. The FSL system allows almost all constructs to 
appear inside code brackets (to be done at execution time) 
or outside code brackets (to be done during translation). 

The semantic metalangnage, FSL, allows a compiler 
writer to declare and use a variety of data structures in 
building a translator. Besides the tables and cells men- 
tioned in the examples, there are stacks, masks, and strings. 
The system includes a number of auxiliary routines (e.g. 
format, file manipulation) available at both translation 
and execution time. The Formula ALGOL compiler was 
largely written in FSL, and the description [It 66] of that 
implementation provides a good study of the strengths and 
weaknesses of FSL. 

The weaknesses of FSL can be characterized as the lack 
of several conveniences and a number of basic structural 
defects. The lack of conveniences, such as index variables, 
recursive subroutines, assembly language embedding, and 
debugging aids, are due to its development as a thesis (hit 
and run) project and have been remedied in later systems. 
The structural defects result mainly from the attempt to 
preserve machine independence. 

An FSL system is useful to the extent that the compiler 
writer's needs are met by the facilities of the semantic 
metalangnage. This, in turn, is possible only where there 
are suitable formalizations of the pertinent, concepts. Thus 
all the research problems listed in Section IV.C (e.g. data 
structures, paging, parallelism) are problems in any FSL 
system. One common misconception is that FSL requires 
code to be produced immediately when a construct is recog- 
nized. One is allowed to defer code generation indefinitely, 
but the systems now running do not have particularly good 
facilities for global code optimization or multipass com- 
pilers. 

These problems are being attacked in several current 
FSL-like projects. There are, however, limits to the level 
of code optimization which can be achieved in a machine 
independent way. There is a sense in which any FSL sys- 
tem is predestined to failure: techniques will always be 
used before they are sufficiently well understood to be 
formalized. Such a system can still be very helpful, and the 
search for metalangnage representations should lead to 
careful study of new techniques. In addition, a particular 
implementation will normally include informal techniques 
(e.g. assembly language) for handling constructs not yet 
formalized. 

The only other FSL-like system completed to date is 
VITAL [Mond 67] at the Lincoln Laboratory. VITAL runs 
in a time sharing environment and differs from FSL mainly 
in system features. These, along with a number of nota- 
tional improvements (used in this description), make 
VITAL much easier to use but are of little theoretical 
interest. Among the more significant changes is the execu- 
table syntactic class name which reduces the size of the 
syntax table by about one fourth and increases speed. All 
text is saved in linked blocks of dictionary pointers; this 
facilitates line editing and reduces recompilation time by 
about one half. The combined features of persistent stor- 
age and compile-time execution aid in the writing of incre- 
mental compilers. The user is given considerably more 
flexibility in register allocation but can choose to abrogate 
this responsibility as in the original system. A minor but 
philosophically important change was the addition to the 
production language of a syntactic (action}, TEST, which 
depends on a variable set by the semantics. This violates 
the BNF tradition, but it was found to be necessary for 
some translators and a great convenience in several others. 

The FSL systems have undoubtedly been handicapped 
by being implemented on uncommon machines, the G-20 
and the TX-2. To compensate for this there are now three 
separate implementations for the IBM 360 series in prog- 
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ress. The CABAL group at Carnegie [Fie 67] is designing 
a system for multipass compilers using a semantic language 
which is a minimal extension of ALGOL in the direction of 
FSL. The work under Gries at Stanford [Grie 67b] will also 
be multipass-oriented but will use a special purpose seman- 
tic language. The Lincoln Laboratory effort under J. 
Curry will probably be quite similar to VITAL. All of 
these projects may be considered attempts to combine the 
virtues of FSL with those of TGS, our next subject. 

B.2. TGS (Plaskow and Schuman [Plas 66], 
Cheatham [Che 65]) 

One of the most productive groups in TWS research has 
been the small consulting company, Massachusetts Com- 
puter Associates (COMPASS), now part of Applied Data 
Research. Although their TWSs have undergone many 
changes, the basic world view and goals of their effort have 
remained rather constant. They define compiling as a six- 
step process: lexical analysis, syntactic analysis, interpre- 
tation of the parse, optimization, code selection, and out- 
put. The principal driving force behind their work has 
been run time efficiency, although other considerations 
have played an important role from time to time. The 
current TWS efforts of Computer Associates use a single 
language TRANDIR for all the steps of compilation. TRAN- 
DIR consists essentially of an algebraic section, a pattern 
matching section (cf. Section II.B.5), and a number of 
built-in functions. Other aspects of their efforts are dis- 
cussed in Section II.C.5 which deals with an extendible 
compiler scheme within TGS. 

The first attack on the TWS problem at COMPASS was 
called CGS [War 64] and was quite different from their 
current work. Although they have abandoned this ap- 
proach, we will discuss it briefly here because it seems to 
be rediscovered periodically. The CGS system was based 
on a top-down recognizer which produced a syntax tree to 
be used in further analysis. The input to this phase was 
essentially BNF. The second phase was the generation of 
intermediate code using a tree-matching language called 
GSL. The actual code selection process was written in a 
third language, MDL. This effort was abandoned because 
trees were found to be slow to build and difficult to do 
pattern recognition upon. 

The TGS systems differ from CGS, as well as the other 
systems described in this section, in the use of a single 
language for describing all phases of the compiler. This 
language, TRANDIR, is compiled into an interpretive code 
which is processed by the TRANGEN b~terpreter. If one 
combines the syntax and semantic loaders of Figure 12, the 
FSL model applies quite well to TGS. In fact, there has 
been good communication between these two efforts, and 
they have converged to a marked degree. The communica- 
tion has not, however, been perfect; two concurrent imple- 
mentations of TGS and FSL took place within a few hun- 
dred yards of each other without making contact. 

The TRANDIR language contains a pattern-matching 
subset which is essentially the same as the syntax language 
used in FSL (cf. Section II.B.5). The TGS version is more 

flexible in that it can be used on a variety of stacks and can 
match on properties other than identity of symbols. The 
pattern matching features can be used in various code 
optimization techniques as well as in syntax analysis. 

The remaining features in TRA_NDIR language are quite 
similar to the semantic language in FSL. There is a "sym- 
bol description" (SD) connected with each syntactic con- 
struct which is the analog of the "semantic word" in FSL. 
There are fairly elaborate facilities for declaring tables, 
masks, etc., for use by the translator. These various storage 
methods with the associated operators provide a very 
flexible means of recording and accessing the information 
needed for compiling efficient code. The FSL notion of 
code brackets is replaced in TGS by a series of symbol 
manipulation primitives to help the compiler writer pro- 
duce output code. The operation of a TGS compiler can be 
best described by working through an example fairly com- 
pletely. 

The example will be taken from a compiler for a minia- 
ture algebraic language ~t0 described in [Plas 66]. The 
basic compilation technique chosen is to use a tabular 
intermediate code as is common in COMPASS compilers 
[Che 66]. A typical intermediate code translation of 

would be 

Z , - - - X . Y  

(~) TIMES X Y 
(~) STORE Z (~) 

The intermediate code will be processed by a code selection 
phase which will produce the final output for later as- 
sembly. 

Consider the first TGS statement: 

...VAR AE H EMIT(STORE, COMP(1), COMP(O)); 
EXCISE; TRY(ENDST). 

The left part (up to t h e / / )  of this statement is a pattern 
of type (variable) (expression) which is compared with 
main stack ( S Y M L I S T ) .  If a match is attained the re- 
mainder (action part) of the statement is executed. The 
action E M I T  produces a S T O RE intermediate instruction 
with the operands being the first and zeroth elements of 
the stack as matched. Since there is no resulting semantic 
description (SD), the action E X C I S E  is used to erase the 
two matched elements from the stack. Finally, the action 
T R Y ( E N D S T )  directs TRANGEN to try to match the 
pattern labelled E N D S T .  

A somewhat more complicated routine would be used for 
recognizing a multiplication: 

...VAL $. VAL / /  PHRASE(SYMRES(TIMES,COMP(2), 
COMP (0))); 

AESET; SYNTYP (COMP(O)) ~- AE; TRY(AE1) 

When one understands that " $ . "  denotes the terminal 
symbol " . " ,  the left part of this statement should be clear. 
The action S Y M R E S  is a call on a routine which performs 
an E M I T  of the same parameters and also returns an SD 
as its value. This SD becomes a parameter to P H R A S E  
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which uses it to replace the matched portion of the stack. 
The action labeled A E S E T  causes the syntactic type of the 
new top element to be assigned the value A E .  Finally, the 
statement T R Y ( A E 1 )  leads to further expression process- 
ing. 

These two TGS statements, if executed in reverse order, 
would compile Z ~-- X • Y into intermediate language. In  
the real world, typical statements would involve table 
operations, string commands, conditionals, and other more 
complicated Tat~NDm constructs. There are also fairly 
sophisticated <procedure) features which improve the read- 
ability as well as the writability of translators. 

In  any event, the intermediate code will itself be proc- 
essed by another set of TRANG~N routines called the code 
selectors. These are written in the same form as the syntax 
routines considered above. For example: 

/ /  TIMES INMEM INMEM ... 
LOADMQ (XM+ 1). 

This statement has a pat tern involving a predicate 
I N M E M  (meaning in memory) on stack entries rather 
than symbols to match. (The delimiters " / / "  and ".. ." 
indicate tha t  the pat tern  is to be matched against the inter- 
mediate code stack.) The subroutine L O A D M Q  is called 
with a pointer to the second stack operand as parameter. 
This user-written routine will assemble a L O A D M Q  com- 
mand if necessary and will adjust the SD in the stack to 
reflect the fact that  one operand is now in the M Q  register. 
A similar routine will be used to compile the appropriate 
multiply sequence. The result will be in the accumulator, 
and TRANGEN will eventually match the statement:  

/ /  STORE ** . INAC ... 
IF SIGN (S YMBOL (A CHOLDS ) ) THEN 
EMIT  (CHS) ; 
EMIT (STO, ARG(1)); 
L INE(TEMPS)  = 0; 
ACHOLDS = 0; MQHOLDS = 0; 
TO (STEP). 

The pat tern here contains a "**" which is always matched 
and a "*" ,  meaning indirect reference. I f  the operand in 
the accumulator, which is described by A C H O L D S ,  is 
negative, a "complement" (CHS)  instruction must be 
emitted. The store command is emitted in any case with- 
out any tests on the variable to be replaced. The succeeding 
actions affect the state of the translator, reclaiming the 
temporaries and freeing the AC and MQ registers. Finally 
there is a transfer to the action labeled S T E P  which se- 
quences through the intermediate code. 

The TGS system has been implemented on several com- 
puters and has been used in the construction of a variety of 
compilers. The compiler writers have been professionals 
and have not been constrained to stay within the formal 
system. The use of TGS has been sufficiently valuable to 
COMPASS that  they continue to use it. on commercial 
compilers. More recently [Che 66], Cheatham has 
suggested using a declarative metalanguage £D which is 
meant  to be translated into TRANDIR procedures, presum- 
ably by a (meta-meta) processor. The translation of the 

language £D is based on a mechanical constructor combin- 
ing notions of Wirth and Early (el. Section II .B).  To allow 
for more powerful languages, one can append predicates 
(e.g. type checking) and even arbitrary computations to 
the declarative syntax. Finally, there are rules for out- 
putting intermediate code attached to the syntax rules. 
The declarative language has not been implemented, but  
Cheatham claims that  it has proved useful for the initial 
formulation of Ti~AN~n~ compilers. While this is probably 
true, one would expect that  the translation to procedurM 
form is not, at present, a mechanical process. Further,  the 
sophistication required of an £D user does not seem appre- 
ciably less than that  required by TRA~DIR. 

The main differences between TGS and FSL accurately 
reflect the difference in design goals: TGS Mlows more 
flexibility by requiring more detailed information from the 
compiler writer. The efforts of Gries [Grie 67b], at Stan- 
ford, and Fierst [Fie 66], at Carnegie, are at tempts to have 
the best of both by  allowing simple code bracket state- 
ments as well as multiphase processing. Both  VITAL 
[Mond 67] and the most recent TGS [Plas 66] are interae- 
rive and have sophisticated trace, edit, and debug features. 

B.3. CC (Brooker, Morris, et al. [Brook 67a, b, el) 
The CC (Compiler-Compiler) project started at Man- 

chester University is one of the oldest and most isolated 
TWS efforts. Although the CC system has been running for 
some time and has been used to implement severM alge- 
braic languages [Cou 66, Kerr  67], the published descrip- 
tions are inadequate, and the CC is not generMly under- 
stood. 

The CC effort has concentrated on problems of seman- 
tics; the syntax analysis is top-down with memory and one 
symbol look-ahead (ef. Section II.A). The result of syntax 
analysis is a complete syntax tree which is used by the 
semantic phase. This is, of course, a slow process, and there 
are informal provisions for other techniques. We are follow- 
ing the formal t reatment  here, taking many liberties with 
their notation. 

The input to the syntax phase is similar to B N F  with the 
additions of "?"  which can appear within angle brackets 
(meaning optional) and the repeat operation " . "  (to re- 
place left recursion). The following statements could be 
used to specify the syntax of an assigmnent statement for 
arithmetic sums. 

1. FORMAT [SS] = (variable} ~- (sum} 
2. PHRASE (sum} = (sign?) {term} (terms} 
3. PHRASE (term} = (variable} I (number} [ ((sum}) 
4. P H R A S E  (terms) = (sign} (term} (terms} [ (empty) 

Line 1 is called a format  definition and makes use of the 
auxiliary phrase definitions on Lines 2-4. The S S  specifies 
the class of this format and will be discussed below. Both  
format and phrase definitions are used as "productions" 
by the top-down recognizer. The difference is that ,  when 
an intermediate tree corresponding to a format definition is 
completely formed, an associated format  (semantic) rou- 
tine is called to process it. The format routine associated 
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with Line i would be written as follows: 

5. R O U T I N E  [SS] .~ (variable) ~-- (sum} 
6. Let (sum) = (sign?) (term) (terms) 
7. ACC ~-- (sign?} (term) 
8. Li:  GO TO L2 U N L E S S  (terms) = (sign) (term) (terms) 
9. ACC ~-- ACC (sign} (term) 

10. GO TO L1 
11. L2: S T O R E  ACC I N  (variable) 
12. E N D  

Lines 5 states that  this routine is associated with the 
format of Line 1 and will be called when the syntax has 
matched Line 1 and built the appropriate intermediate 
tree. Line 6 assigns descriptors from the intermediate tree 
as the values of (sign?}, (term} and (terms}. After code to 
load the accumulator is compiled (Line 7), the tree is exa- 
mined to see if the (sum} had more than one (term}. I f  not, 
the routine compiles a store instruction (Line 11) and exits. 
More complicated (sum}s are treated by the loop of Lines 
8, 9, 10. The actual output  of code is implementation 
dependent and is usually done by simple string manipula- 
tion routines. 

There are three main classes of statements used in CC: 
basic (BS), master (MP), and source (SS). The BS sub- 
language parallels the semantic sublanguages of FSL and 
TGS;  it includes code generation, list processing, and 
lexical analysis routines in an algebraic language. These 
BS statements are further divided into precompiled state- 
ments (e.g. Lines 6, 8, 10, 12 above) and translator-specific 
compilations of BS statements (e.g. Line 7, 9, 11) defined 
by FORMAT [BS] statements and their associated RO U- 
TINEs. BS statements can occur only within a format 
routine. 

Statements in the M P  class inch(de the FORMAT, 
PHRASE, and ROUTINE statements themselves (Lines 
l-5) as well as editing and system dump instructions. None 
of these constructs can occur within a format routine. The 
final statements class, SS, contains the source language 
statements themselves. These may be interlaced with BS 
and M P  statements making CC, in effect, a powerful ex- 
tendible compiler in the sense of Section III .C.  Although 
the CC system was originally designed to operate this way, 
actual practice has been somewhat different. One writes 
the definition of, say, FORTRAN aS ~ set of FORMAT [SS] 
and ROUTINE [88] statements and the CC compiles these 
into tables. One then records this updated copy of CC with 
a switch set to have CC accept only SS statements, yielding 
a conventional FORTRAN compiler. When used this way, 
CC can be modeled by Figure 12 with FORMAT and 
PHRASE statements as the syntax and with ROUTINEs 
as the semantics, linked by an intermediate tree rather 
than a stack. Notice that  CC does not have a facility for 
handling descriptors for intermediate symbols as FSL and 
TGS do. Because CC uses a top-down recognizer, con- 
structs are used as they are processed; this eliminates 
intermediate descriptors, but  does force an ALGOL compiler 
to be written as one large ROUTINE. 

The CC group has recently produced reports on the uses 

and performance of their system. These include the first 
a t tempt  to compare a TWS with hand written compilers 
[Brook 67b]. Brooker was able in a year to reduce the space 
requirement by a factor of 1.6 and the time by 1.7 by hand- 
coding the Atlas Autocode compiler. These results are 
hard to interpret without more information, but  they 
suggest tha t  compiler-compilers need not be as extravagant 
in the use of space and time as many people have imagined. 
This is also suggested by the results of Kerr  [Kerr 67]. 

The CC has been successfully embedded in an ALGOL- 
like language Atlas Autocode [Brook 67a]. An adaptation 
of the system called SPG (System Program Generator) is 
currently under development by Morris at Manchester. 
SPG is aimed at the systems programmer who has a knowl- 
edge of its underlying mechanisms. Implementations of the 
CC now exist in Atlas, the KDF-9,  and the G-21, and an 
effort is underway at Carnegie-Mellon on the IBM 360/67. 

REFERENCES FOR III.B 
Design: Brook 60a, 62a, 63, 67b, 67c, Che 64a, 64c, 65, Cou 67, 

Feld 64, 66, 67, Fie 67, Grie 67b, Mond 67, Mor 67, Nor 63, Plas 
66, Ros 64a, War 61, 64. 

Uses: Brook 67a, 67b, Cou 66, It  66, Kerr 67, Nap 67, Rov 67. 

C. Meta-Assemblers and Extendible Compilers 

These forms of TWSs are similar in tha t  they both at- 
tempt  to extend the macro concept to higher level pro- 
gramming languages. The basic idea in a macro processor is 
the direct replacement of certain symbols with their asso- 
ciated pieces of text. Although almost all modern assemblers 
have sophisticated macro features, the best descriptions of 
the idea are in the general papers by Strachey [Str 65] and 
Mooers and Deutsch [Moo 65]. The meta-assembler and 
the extendible compiler are based on two different con- 
ceptions of how to extend macros to high level languages. 
The meta-assembler approach considers the compiler to be 
a special case of the assembler, while the extendible com- 
piler approach adds text  replacement features to standard 
compilers. Both of these approaches are becoming very 
popular; a number of papers which appeared too late to be 
considered here are listed in the references at the end of 
this section. 

C. ] .  GENERAL DISCUSSION AND M E T A P L A N  
(Ferguson [Fer 66]) 

The article by Ferguson is taken from the ACM Pro- 
gramming Language Conference, San Dimas, California, 
1965, and contains a good introduction to meta-assemblers. 
The basic ideas arose from observing that  all assemblers 
have many features in common. By building procedures 
for handling such things as symbol tables, location counters 
and macros, one could speed up the writing of particular 
assemblers. To construct an assembler for a particular 
machine one would specify word size, number representa- 
tions, and the like. Output  for each machine would be 
programmed using format statements and could easily 
include relocation or symbolic debugging information. 
While such a system seems feasible and quite useful for 
writing assemblers, it is not obvious how one would extend 
it to a TWS. 
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The use of a meta-assembler as a TWS is based on the 
previously mentioned assumption that the compiler is a 
special case of the macro assembler. Discussions of this 
assumption sound like a reincarnation of the macro versus 
high level language debate. The macro assembler side is on 
the defensive, is outnumbered, and therefore has been the 
most vehement in argument. The whole situation is further 
complicated by a lack of agreement on what an assembler is 
(cf. discussion following the paper [Fer 66]). An example 
will suffice for our purposes. 

Fergnson describes how a recta-assembler would handle 
the compiler-like statement: 

1F F(A) PLUS 5 EQ G(B) GO TO L. 

He would have IF, PLUS, EQ, and GO TO be defined as 
(prefix) operators using a scheme called many-many 
macro. The many-many macro has features for using and 
updating state information during text replacement. This 
attacks the main problem in the more general use of 
macros--the effective use of global properties (state infor- 
mation) in the assembly process. The many-many macro is 
probably flexible enough to implement any known compiler; 
the real question is whether the many-many macro is a 
good way of doing it. The answer to this depends on the 
mechanisms for recording and using state information, and 
these are not discussed in the paper. 

C.2. PLASMA (Graham and Ingerman [GraM 65]) 
The meta-assembler effort of Graham and Ingerman 

concentrates mainly on the problems of substitution and 
binding. They are much less concerned with syntax than 
Halpern (next discussion), because they assume a syntax- 
directed front end (presumably [Ing 66]) for a compiler 
written in their system. 

The basic input to their meta-assembler is a "line" 
which is a list of lists. The first list is a generalized label 
consisting of a symbol, the number of higher levels at which 
it is active, and the number of lower levels at which it is 
active. The second list contains the operation, and the third 
contains the operands. The input is converted into a tree, 
and substitutions are made on the basis of the tree struc- 
ture. By allowing substitutions by symbolic or numeric 
value, they combine the text replacement with assembly 
functions. 

The authors are continuing their work at RCA, Cherry 
Hill, and will presumably report on it again. Their current 
efforts involve even more elaborate substitution processes. 
They have not, as yet, put forth specific suggestions on how 
their system might be used as the basis for a compiler. 

C.3. XPOP (Halperu [Hal 64, 67c]) 
The XPOP system has been implemented on the IBM 

7090 and is well documented internally [Hal 67c]. At least 
one language, ALTEXT [Star 65], has been implemented in 
the system. A few examples from a program written in 
ALTEXT will illustrate the types of macro calls possible: 

DO THRU LAB1 I = 1  TO T--1 B Y  1 
IF 1 CHAR A T  N A M E S  I IS EQUAL TO N A M E S  / - l - l ,  GO 

TO LAB2 

IF U IS LESS T H A N  8, GO TO PUT 
IF MATCH GO TO (LAB1, LAB2, LAB3), I 
COPY 11 CHAR CARDS 1 TO REJECT 1 

Any statement in this language is a call on a macro 
written in IBM 7090 assembly language; thus the pro- 
grammer may freely intersperse assembly language with 
his high level language statements. The following features 
of XPOP make it possible to define macros which handle 
statements as illustrated above: 

1. Macros are usually recognized by the first word of a 
statement (DO, IF, GO TO), but in some eases the macro 
name may appear elsewhere on the line. 

2. Within each macro definition one can define the punc- 
tuation to be used in processing the rest of the statement as 
parameters of that macro. 

3. Within each macro definition one can define noise 
words (which are ignored) and keywords (which are used in 
determining parameters) for processing the rest of the 
statements as parameters. 

4. I t  is possible to defer the assembly of sections of code 
until a particular label appears. (This is used in generating 
instructions for the DO statement above.) 

5. Instructions within macro definitions may be exe- 
cuted at assembly time, providing for checking of (say) 
global attributes of names and conditional assembly in- 
structions. This provides one with the ability to write 
compilers in assembly language (as usual) except that the 
instructions have to be assembled each time they are to be 
executed. 

6. The system has a large number of useful trace and 
debugging aids. 

XPOP has several disadvantages when viewed as a 
compiler-writing tool. Everything must be written in 
assembly language or in previously defined macros. 
Secondly, there are no facilities for implementing symbol 
tables, etc., to hold attributes of variables, beyond writing 
them explicitly in assembly language. AL~EXT does very 
little checking for correct use of names. Thirdly, while the 
XPOP system has a built-in compiler for arithmetic ex- 
pressions, it compiles either all floating point instructions 
or all fixed point instructions (depending on a switch); no 
type checking is done and no mixed expressions are possi- 
ble. Finally, languages such as ALGOL which have a high 
degree of structure cannot be implemented easily; macro 
calls may not be nested in an easy manner. I t  is safe to say 
that one is never sure whether enough macro features have 
been provided. Addition of a new statement to a language 
may necessitate another macro feature, just as the feature 
Number 4 above was implemented to take care of DO 
statements. 

Halpern states that  he does not intend to replace the 
other compiler-writing tools used for implementing 
ALGOL-like languages. He is interested in processing lan- 
guages whose programs look like English and believes his 
system is good for this. 

Halpern is the most sanguine and vocal of the meta- 
assembler proponents. His work on meta-assemblers is 
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related to his controversial stand on natural language 
programs by his statement that XPOP will allow one to 
implement something "closely approaching" natural lan- 
guage. Halpern's paper [Hal 67b] is an elaborate defense of 
XPOP-like systems. He suggests that the (operator} 
(operand string) notation of macro systems is the canonical 
syntax of programming languages as opposed to natural or 
mathematical languages. Halpern also separates the study 
of programming languages into three parts: functional 
(macros), notational (change punctuation commands, etc.), 
and modal (assembly time executions). 

C.4.  EXTENDIBLE COMPILERS--BAsIC CONCEPTS 
Many attempts (starting with McIlroy [McI1 60]) have 

been made to embed macro features in compiler systems. 
One approach was to retain the macro syntax form but 
add a number of built-in features which are compiler-like. 
The SET system [Ben 64a] included a skeleton compiler 
with input-output, symbol manipulation, table handling, 
and list processing features. These built-in routines were 
combined with translation time operations (action opera- 
tors) in the attempt to build a TWS. A more successful 
approach has been to use the structured syntax of high 
level languages as a basis for extension. 

Many existing compilers (including PL/I [IBM 66]) 
incorporate simple forms of macro expansion, the first 
probably being JOVIAL [Shaw 63]. The most primitive 
form is pure text replacement without parameter substitu- 
tion. For example, in B5500 ALGOL one could define a 
macro with the statement: 

D E F I N E  LOOP 1 = FOR I ~ 1 S T E P  1 U N T I L  N 

and later write statements like 

LOOP 1 N DO A[I] ~ 0 

which would be expanded into 

FOR I ~-- 1 S T E P  1 U N T I L  N DO A [I] ~-- 0. 

The next step is to allow a macro definition with param- 
eters. This facility has been included in the AED-0 com- 
piler [Ross 66], among others. In AED-0 one might define 
a macro with the statement: 

D E F I N E  M A C R O  LOOP (P1, P2) T O B E  
FOR P1 ~-- 1 S T E P  1 U N T I L  P2 DO E N D M A C R O .  

In this case, one could get the same result as above with 
the shorter statement 

LOOP(I ,  N)  A[I] ~-- O. 

These two simple macro forms would form a useful addi- 
tion to any high level language, and one might imagine 
developing mechanisms which parallel more sophisticated 
macro techniques. Although AED-0 does permit arbitrary 
strings as parameters, and nested definitions, features like 
conditional assembly do not seem to have been widely used 
in high level languages. One reason for this is that com- 
pilers normally depend heavily on the structure of the text; 
the next two sections describe the complexities that arise in 
trying to extend compilers with macro techniques. 

Co5o DEFINITIONAL EXTENSIONS (Cheatham [Che 66]) 
The definitional extension of high level languages is the 

latest attack on the TWS problem by the Computer Asso- 
ciates group. This work is best understood in the light of 
their previous TWS work, which is discussed in detail in 
Section III.B.2. 

The paper under discussion shows signs of having been 
hastily written and contains references to several internal 
documents in preparation. This is clearly an early attempt 
along these lines and will be expanded and clarified in sub- 
sequent papers. The extensions to compilers mentioned 
here fall into two broad categories: a descriptive meta- 
language ~D (discussed in Section III.B.2) and a series of 
macro facilities. 

The extensions to languages using macro techniques fall 
into three basic categories: text, syntactic, and computa- 
tional macros. Text macros are assumed to be well under- 
stood and similar to those described above. I t  is in treating 
syntactic macros that Cheatham begins to face seriously 
the problems of adapting macro concepts to compilers. 

There are two kinds of syntactic macros considered 
together; basic features of both are free format and type 
specification for parameters. An example would be 

L E T  N B E  I N T E G E R  
M A C R O  S Q U A R E  N M A T R I X  M E A N S  ' A R R A Y [ i : N ,  

i :N] ' .  

The advantage of free format over the conventional 
(operator), (operand list) format is obvious; the specifica- 
tion of parameter types allows conditional assembly and 
better error detection. The call of this syntactic macro 
would be set off by a special delimiter (e.g. %) and would 
have a detectable termination. The second approach, 
which avoids the use of special delimiters, is to add the 
macro form directly to the syntax tables of the translator. 
The corresponding declaration would be: 

L E T  N B E  I N T E G E R  
S M A C R O  S Q U A R E  N M A T R I X  A S  (attribute) M E A N S  

' A R R A Y [ i : N ,  i :N] '  

where (attribute) is a syntactic type in the definition of 
the underlying language. Both MACROS and SMACROS 
would be implemented by substituting the descriptors 
(cf. Section III.B.2) of the appropriate actual parameters. 
Neither of these schemes presents an implementation 
problem in TRANGEN, but either of them could have drastic 
results if misused. 

In discussing syntactic macros, Cheatham touches upon 
the problem of adding "semantics" to the macro definition. 
This is the analog of the many-many macro and the 
assembly time actions used in meta-assemblers. Cheath- 
am's conclusion that this approach is not feasible should 
be compared with the meta-assembler approach which has 
put the most of its eggs in this basket. His solution is to 
provide a number of primitive operations (e.g. table ex- 
pansions) and to point to the existence of a complete meta- 
language (TRANGEN) behind the extendible language. 

The third type of macro extension is called the computa- 
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tional macro. With this technique the substitutions are 
made in the intermediate code resulting from a declared 
macro. The intermediate code for the macro body is 
produced (with formal parameters) in advance; so this 
technique is restricted to constructs for which the inter- 
mediate code can be compiled independent of context. If 
this condition can be met, the computational macro is a 
useful and efficient tool. A simple computational macro 
might be the following function for a 4 X 4 upper left 
triangular matrix M. 

T A K E  I, J AS  INTEGER 
MAP M(/, J) = (11-I) • 1/2 -4- J - 6 ;  

where T A K E  and M A P  are declarators in the language. 
Since this code is for array accessing, it should not be 
inserted into the source text, and the computational macro 
form is most appropriate. As Cheatham points out, com- 
putational macros have long been used by compiler writers 
to produce accessing code for arrays. The paper includes 
several examples of accessing functions, a subject tha t  
reappears in the discussion of Per]is and Galler's paper in 
the next section. The important  point is tha t  Cheatham 
has provided a procedural way of describing access func- 
tions, while Perlis and Galler t ry  to generate the code from 
nonprocedural descriptions. 

C.6. ALGOL C (Galler and Perlis [Gall 67]) 
This is a very long, difficult, and important  paper by 

two of the outstanding workers in the field of programming 
languages. Although there are many significant aspects of 
the paper, we discuss here only those dealing with extend- 
ible compilers. Other topics are treated in Section IV.C as 
significant first steps in new research areas. 

The  basic idea is, once again, to add macro-like facilities 
to a high level language. For  this purpose they define a 
version of ALGOL [Naur 63b] called ALGOL C which is 
meant  to be well suited to extension. Any extension of 
ALGOL C is called an ALGOL D and a program in any of 
these can be mechanically reduced to an equivalent of 
ALGOL C program. The extensions are accomplished 
through constructs rather like Cheatham's SMACROS 
which add to the syntax tables of the translator. Because 
they want to do the macro processing in very sophisticated 
ways, Perlis and Galler allow redefinitions only in a few 
fixed categories. The base language ALGOL C contains 
many features for handling arrays as well as those more 
directly concerned with extendibility. 

Among the latter are operators for conversion between 
location and value: (a) A unary operator with integer 
result: 

l o c  o f  x 

where x is a (procedure identifier), (variable), or (array 
identifier), loc o f  x is essentially the address of the 
word(s) confabbing the value of x. (b) Two binary opera- 
tors whose left operand is a (type} and whose right oper- 
and is an i n t e g e r  expression, representing the "address" 

of some (procedure), (variable}, or (array): 

(type} ve of x 
(type) pic of x. 

These represent "value contents of" and "procedure identi- 
fier contents of," respectively. Thus 

r e a l  vc  o f  ( loc  o f  x) = x 

if X is a variable of (type) r e a l .  (c) The notions of location 
and value are extended to (procedure}s with the help of an 
application operator ®. The precise syntax changes are 
bound up with the array conventions, but  revised defini- 
tions of (primary) and (function designator) should con- 
vey the intent. 

(primary) :: = (unsigned number) [ (variable) [ (function designa- 
tor) I ((arithmetic expression)) ] loc of (procedure identifier) I 
(type) ve  o f  (arithmetic expression) 

(function designator) : : = (procedure identifier) O (actual param- 
eter part) I (pic of (arithmetic expression)) O (actual parameter 
part) 

Thus one is able to manipulate the names of procedures in 
much the same way as address variables and could, for 
example, have procedure arrays. These additions to ALGOL 
to form ALGOL C constitute only a small part of the extra 
mechanism; most of it is embedded in the various forms of 
ALGOL D. 

All ALGOL D languages will have fairly much the same 
syntax. The common syntax for all ALGOL Ds is the same 
as ALGOL C, except for the replacement of (type), (arith- 
metic expression}, (Boolean expression), and (assignment 
statement}, with a set of rules which enable the definition 
of special forms for these syntactic types. The introduction 
of new definitions occurs as a series of declarations at the 
begimfing of a block. The detailed description of this 
process is quite complicated, and we present only an over- 
view followed by an example. 

The basic intention is to allow the definition of new 
data types and their associated operators. The problems of 
finding symbols for these operators is solved by assuming 
a large alphabet of boldface characters. By  assuming an 
operator precedence grammar (cf. Section II.B.1), one can 
define the precedence of new operators in relation to 
operators of known precedence as in MAD [Ar 66]. The  
remaining problems with operators involve data  types 
and will be deferred for a few sentences. 

New data types are defined in terms of ALGOL C or 
previously defined types by a m e a n s  statement.  This 
may  include formal parameters which, if present, play a 
crucial role in all further processing, e.g. matrix  (u, v) 
m e a n s  a r r a y  [ l : u ,  l : v ] .  

One then combines operator and type information in a 
set of context statements. A context s tatement  describes, 
for an operator, the data  types of its operands and its 
result. I t  also contains a (string) which is (eventually) 
reducible to the appropriate ALGOL C text. The  following 
example of (pseudo) LISP definitions should help to 
clarify these notions. 
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The basic LISP predicates a t o m  and eq  are assumed to 
have been defined as Boolean procedures: 

Boolean procedure a t o m ( x ) ;  l i s t  x;  
a t o m  := cdr x = O; 

Boolean procedure eq (x , y ) ;  l i s t  x , y ;  
eq := car x = car y A a t o m ( x )  /~  a t o m  (y); 

The following definitions are then used to organize lists as 
structures of names. 

(1) l i s t  means integer array [1:2]; 
(2) cons  ~-*; 
(3) car .> cons;  

(4) cdr ~ car; 
(5) of < cons;  
(6) l i s t  a cons  l i s t  b ~ l i s t  Vlist(a,b)V; 

(7) car l i s t  a -~ l i s t  la[1]v; 
(8) cdr l i s t  a -~ l i s t  Va[2]v; 
(9) loe of l i s t  a ~ integer, 

(10) integer a := l i s t  b ----- integer 'a := loe of b'; 

Statement (1) defines the new data type l i s t  as a two- 
element integer array. Statements (2) through (5) state the 
relative precedence of the four LISP operators. Statements 
(6) through (9) define expressions; e.g. (7) defines the c a r  

of a l i s t  " a "  to be the first element of the modeling array 
and specifies tha t  it is to be treated as a l i s t .  Statement  
(10) defines the assignment statement for assigning a list 
to an integer variable. The paper also includes definitions 
of the EVAL function and of various sequencing operators 
over list structures. 

This example does justice neither to LISP nor to the 
Galler-Perlis system. The full design of their system has 
ALGOL C defined by a similar definition set in the outer- 
most block. In each subsequent block the translator builds 
a type table and a context table using the local definition 
set. The  actual processing of local ALGOL D texts is quite 
involved. This arises from the facts tha t  contexts are 
recursive and that  ALGOL C text can be interspersed with 
locally defined text. The discussion in the paper is further 
complicated by a desire to optimize the computation in 
addition to producing ALGOL C code. 

We have deliberately, if not successfully, distorted the 
intent of Galler and Perlis' paper. They  are also concerned 
with arrays and, more particularly, with saving space in 
matrix calculations. I t  would have been preferable on all 
sides for them to have made the separation of issues them- 
selves. As we have mentioned, the paper contains import- 
ant discussions of subjects other than extendible compilers. 
Its contribution to our topic is more theoretical than 
practical. They  show that  very sophisticated macro proc- 
essing is possible and can lead to substantive changes in 
an algebraic language. One would guess, however, tha t  
inefficiency at translation time and sensitivity to program- 
ming errors would seriously restrict its applicability. There 
is, in addition, a general question of how often one would 
want to change a high-level language; this is taken up again 
in Sections IV.C. 
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IV. R E L A T E D  TOPICS AND CONCLUSIONS 

A. Other  Uses  o f  S y n t a x - D i r e c t e d  T e c h n i q u e s  

Very early in the TWS development it was observed 
that  syntax-directed techniques could be used in a wide 
variety of problems. A syntax-directed approach can be 
considered whenever the f o r m  of the input to a program 
contains a significant part  of the c o n t e n t .  Individual 
applications of syntax-directed techniques tend not to get 
written up. The applications presented here are based 
largely on personal knowledge and, though perhaps repre- 
sentative, are certainly not comprehensive. 

The TWSs described in Section I I I  vary  widely in the 
ease with which they are put  to other uses. The syntax- 
directed symbol processors are the most flexible and seem 
to be the most widely applied. One such system, AED 
[Ross 66, 67] was designed from the outset to be a general 
purpose processor. Because of certain peculiarities of 
at t i tude and terminology, the AED project has had little 
effect on other TWS efforts. 

The syntax phase of AED is based on the precedence 
technique similar to those described in Section II.B. By 
incorporating type checking and the ability to add hand- 
coded syntax routines, the AED parser becomes more 
powerful at the cost of violating the underlying theory. 
I t  is, however, the intermediate representation of AED 
statements that  is most interesting. This is based on the 
use of p l e x e s ,  which are data structures whose elements 
each can have many links as well as data. The construction 
and processing of the "modelling plex" are accomplished 
with a set of macro routines. These might include routines 
for code generation, computer graphics or programmed tool 
commands. References [Ross 63, 67] are good introductions 
to the AED system with detailed examples of its use in 
several problem areas. 

The essential features in the AED system are the pre- 
cedence matrix in syntax and the plex manipulations in 
semantics. A somewhat different approach to the syntax- 
directed universe can be developed from the general 
compiler-compiler model discussed in Section III .B.  In  
this scheme the entire semantic mechanism, including the 
choice of data structures, can be different for each applica- 
tion area. In  the VITAL [Mond 67] effort, two basically 
different data structure languages (both written in VITAL) 
are being compared in a syntax-directed graphics package 
[Rob 66] which is itself based on VITAL. 

Most of the other applications of TWSs have been in 
symbol manipulation tasks of one sort or another. Some 
of the first applications [Scho 65] were in symbolic mathe- 
matics. A TWS would be used to help model the structure 
of an expression, perhaps for simplification or differentia- 
tion. The use of TWSs (especially COGENT,  META)  in 
symbolic mathematics is currently widespread and has 
given rise to systems [Cla 66] constructed specifically for 
that  purpose. There have also been a few pure mathema- 
ticians (e.g. [Gro 66]) who have found the syntax-directed 
model useful. 
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The most widespread and least surprising app!ication 
of TWSs is in problems of format conversions. These 
arise in connection with large data files and in translating 
between closely related source languages. Once again, the 
syntax-directed symbol processors of Section III.A have 
been used the most often. These systems have also been of 
some use in such varied tasks as: logic design, translating 
geometric descriptions, simulation, and logging routines. 
There are also a number of applications of TWS tech- 
niques to produce command sequences for special purpose 
devices. For example, a fairly gophisticated TWS [Cas 66] 
was used in translating commands for various components 
of a satellite tracking system. 

In addition to their direct application in many fields, 
the TWSs have inspired work in several others. One active 
area has been the syntactic description of pictures. The 
syntax-directed approach to picture processing seems to be 
increasingly popular [cf. ShaA 67, An 67], but  one early 
worker [Nar 66] appears (in some sections of [Nar 67]) to 
reject this approach. The pattern matching features in- 
corporated in the new list processing languages lAb 66, It  
66] are partially inspired by TWSs, and the related field of 
artificial intelligence has some syntax-directed projects 

underway. 
The field of computational linguistics in both its theoreti- 

cal and practical aspects is closely related to TWS studies. 
The applications here, though fewer than one would ex- 
pect, have been significant. The syntactic theories of 
computational linguistics and TWSs both are based on the 
early work of Chomsky [Chom 63] and share many ideas. 
The implementations of English syntax (especially [Kun 
62]) developed concurrently with top-down TWSs, but the 
natural language efforts have been slow to incorporate the 
efficiency improvements developed in TWS work. In 
applied semantics the DEACON project [Th 66], whose 
approach was quite novel to linguists, can be looked upon 
as a straightforward application of TWS techniques (cf. 
[Nap 67, Col 67]). One can expect to see more interaction 
between these research areas as linguists attempt to test 
semantic theories and TWS workers attempt to cope with 
nonprocedural languages. 

The last, but by no means the least of the applications 
considered here, is to teaching. Several of the TWSs 
described above have been used as the basis for courses 
on translator writing. These have ranged from undergrad- 
uate courses to faculty seminars and have been well 
regarded. Although such courses can be taught without 
machine problems, they are much more successful when 
the students have easy access to the TWSs under discus- 
sion. 
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B. F o r m a l  Studies  o f  S e m a n t i c s  

Computer science owes much to mathematics and is 
beginning to pay off that debt. Both the syntax (Section 
II.C) and semantics of programming languages have in- 
spired formal treatment. In this section we discuss briefly 
the developments most relevant to TWSs and provide an 
entr6e to the literature on the formal semantics of pro- 
gramming languages. 

Any formal study of the semantics of programming 
languages immediately confronts the problem of separating 
syntax from semantics. Programming languages combine 
ideas from logic (where the problem is solved) and natural 
language (where it is no longer taken seriously). In most 
treatments of programming languages, syntax is taken to 
be precisely those aspects of language describable in the 
syntactic metalanguage under discussion. This practice 
has the unpleasant effect of changing the definition of 
syntax with each change in metalanguage. 

Computer scientists trained in logic (e.g. [Tix 67]) would 
like us to adopt the definitions used there: any property of 
a string which can be described in terms of its form is 
syntactic. Thus, whether or not a string is a theorem in 
some calculus is a syntactic, though perhaps undecidable, 
question. This approach has not proved effective for 
natural language and has immediate problems in program- 
ruing languages. For example, are the statements 

X ~ Y/O.O 
Li: go to L1 

syntactically well-formed in ALGOL? Surely, an algorithm 
capable of handling data types could detect these errors, 
and the question is now one of how far to go. I t  is not 
obvious that one could produce a notion of syntax which 
satisfied a logician's tastes and still left well-formedness 
of programs a decidable property. 

The situation is further complicated by the fact that all 
major languages contain statements unparsable by the 
formal syntax alone. A good example is the labelled E N D  

construct in PL / I  ([IBM 66]) and even ALGOL is still not 
free of such constructs [Knu 67]. Thus, in practice, syntax- 
directed compilers must incorporate "semantic" features 
in the syntactic phase. One ingenious approach to the 
separation question is the abstract syntax [McCar 62a] of 
McCarthy. He is mainly concerned with semantics and 
considers (analytic) syntax to be just the set of predicates 
and functions necessary to extract pertinent information 
from the form of a source string. This does not "solve" 
the problem of defining syntax, but it does enable one to 
consider semantics without facing the separation question. 

As usual, formal studies of semantics have lagged be- 
hind work on the syntax of programming languages. By 
far the best general work on this subject is [Ste 66] where 
the discussions, even more than the papers, provide an 
overview of formal semantics. The various formalizations 
that have been presented are all procedural; they are 
either abstract machines or imperative formalisms such as 
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the X-calculus [Chu 51]. This is reasonable to expect, but 
greatly restricts the choice of existing mathematical 
models. 

Since the formalizations are procedural, one might prefer 
the word "effect" to "meaning" in the description of 
programming languages. This is not the place to defend 
the notion of semantics as effect, and we adopt i t  merely 
as a convenient way of looking at things. This view does 
lead one to expect a program to have different effects 
depending on an "environment," and this will prove useful 
in our discussion. It might also lead one to suspect that the 
choice of semantic metalanguage will be influenced by the 
intended lise of a formal description. 

The existing efforts in formal semantics may be sepa- 
rated into those concerned with proofs about programs and 
those interested in elucidating the processing of programs 
by computers. Among the latter, One might include the 
semantic metalanguages described in Section III.B., al- 
though this is not de rigueur. There are, however, slightly 
abstracted translation models (e.g. [Wir 66@ which are 
considered acceptable. In any such model a language can 
have very different effects depending on whether its transla- 
tor is an interpreter or a compiler. This seems reasonable 
to programmers but disturbs mathematical types who 
would prefer to see meaning reside in the algorithm rather 
than in the program. A related set of developments is the 
attempt to define all programming languages by reduction 
to a single high level [Ste 66] or machine-like [Brat 61, 
Ste 61] language. 

The approaches to formalization described above are 
more closely related to TWSs but are far too complex to be 
very useful in proofs. For those who consider proofs to 
be the sole end of formalization (and who are reading this 
paper at all) the preceding paragraph will have been con- 
sidered an anathema. Most mathematically based at- 
tempts at formalization have stressed tractability and have 
almost all been based on existing mathematics. There are 
only a few imperative systems in logic, and each has been 
used in forinalizing some aspect of computer science. Most 
of the work in formal semantics is based on the X-calculus 
of Church [Chu 51] and the combinator calculus of Curry 
[Cur 58]. 

Both of these theories were primarily concerned with 
the role of variables, and their successes in programming 
languages have been largely in that area. The X-expression 
plays a crucial role in LISP and is discussed as a program- 
ming concept in various LISP documents. I t  is also the most 
popular vehicle for attempting to formalize semantics. 
The work of Landin and Strachey [Landi 66] is particu- 
larly interesting because they combined their research 
with the development of an extension of ALGOL 60 called 
CPL [Burs 65, Cou 65]. The applications of X-calculus to 
semantics have been pursued most diligently by Landin. 
In a series of papers he considers relationships between 
programming languages (ALGOL) and an augmented X- 
calculus, called imperative applicative expressions (IAE). 

The declaration and binding of variables in ALGOL is 
modelled quite clearly, and the formalization has helped 
point out some weak spots in ALGOL. The IAE system 
(like pure LISP) is purely functional and must represent 
statements as 0-adic functions with side effects on the 
environment. In fact, much of Landin's description of 
ALGOL can be viewed as a generalization of the "program 
feature" in LISP [McCar 62b]. Thus far these efforts have 
neither achieved the desired descriptive clarity nor main- 
tained the tractability of k-calculus in accordance with 
the original plan. The most conspicuous benefit of this work 
has been CPL [Cou 66], which is an extremely civilized 
language. There is presently an active group at MIT 
wlfieh is pushing this approach as far as it is ever likely to 
go. 

Although he introduced the X-calculus into computer 
science, McCarthy has taken a somewhat different ap- 
proach to formal semantics. His term "theory of computa- 
tion" indicates that he is more concerned with algorithms 
than with algorithmic languages. His approach utilizes a 
state vector, operations upon it, abstract syntax, and 
conditional expressions. Typical state functions are c(x,d) 
-- the contents of symbolic position x in state vector c-- 
and a(x,z,d)--the state resulting from substituting z for x 
in the state vector d. He is then able to get conditional ex- 
pression definitions of machine code-like operations and 
higher level constructs described by the abstract syntax. 
The resulting formalism is fairly tractable and McCarthy 
and his students have been able to push through a number 
of proofs [McCar 67]. Most recently, Painter [Pai 67] was 
able to prove the correctness of a "compiler." 

A more recent and intuitively more satisfying approach 
has been developed by Floyd [Flo 67]. He considers the 
flow chart of a program written in an ordinary (fixed) 
programming language. The basic idea is to attach a 
proposition (applying to the state vector) at each connec- 
tion in the flow chart; the proposition is to hold whenever 
that connection is taken during execution (thought of as 
interpretation). With these propositions and some related 
mechanisms, Floyd establishes techniques for proving 
statements of the form "If the initial state satisfied R 1 then 
the final state will satisfy R2, if reached." Proofs of termi- 
nation are handled by showing that some function of, say, 
the positive integers decreases as the program is executed. 
There are current efforts to automate both the generation 
of propositions and the proofs of correctness for restricted 
languages. 

There have also been several approaches to formaliza- 
tion of semantics which lie between these extremes. One 
approach [Don 67] uses a version of post canonical systems 
[Pos 43] to describe both the syntax (including type- 
matching, etc.) and compilation of programs. The defini- 
tions attained appear reasonable, but it must be seen 
whether they are of any use in compilation or in proofs. 
Another adaption of existing mathematics has been at- 
tempted by van Wijngarten and de Bakker [Bak 65, 67, 
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Wij 66]. They  t ry  to reduce the complexity of the semantic 
model by using a universal machine which can read and 
interpret simple and powerful rules. The rules are used 
cumulatively to define what amounts to a Markov (Mark 
59] algorithm description of the source language. The 
difficulty is tha t  the formalism is so primitive that  the 
description of ALGOL is literally a book [Bak 67] and 
neither proofs nor insight seem likely to result. 

There have also been a number of at tempts to define 
abstract machines to carry out the semantics of program- 
ruing languages. The most ambitious of these is the RASP 
of [Elg 64], but  this work has apparently not been con- 
tinued. An interesting recent paper by [Nar 67] contains a 
formalization which combines many features discussed 
above. Narasimhan defines languages and machines in 
closely related formalisms involving flow charts, functions 
on state variables, declarations, and selection and address- 
ing operators. The approach seems promising, but  there 
are no concrete results yet, and one of his basic assump- 
tions is highly questionable. His requirement tha t  a trans- 
lator be as simple as possible leads Narasimhan to the con- 
clusions that  syntax and recursion are of no value. He also 
states (without references) that  TWS efforts have all failed 
and interest in the field is waning. 

Perhaps our description of the work in formal seman- 
tics has been sufficiently shallow to be misleading. Most of 
these efforts have their comrades and fellow travelers, and 
the development is richer than we suggest; the references 
at the end of this section should cover all major trends 
related to TWSs. The impact of formal semantics, es- 
pecially the proof-oriented kind, has been limited to a few 
isolated insights. No work has had the impact of, e.g., 
Krohn and Rhodes on automata theory. I t  is our conjec- 
ture tha t  this breakthrough is not to be found in existing 
imperative logics; programming languages will have to be 
faced directly as mathematical and natural languages have 
been. Minsky and Paper t  [Min 67] have expressed a similar 
belief: 

Good theories rarely develop outside of the context of well- 
understood real problems, and it is perhaps not surprising that 
work directed sharply toward obtaining an "abstract theory of 
computation," e.g. the mathematical developments in current 
theories of recursive functions, automata, formal linguistics and 
the like, has been disappointing in the extent of its practical 
illumination, despite its often elegant mathematical quality. 
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C. Summary and Research Problems 

The TWSs described in this paper represent the most 
recent developments in a long line of research by many 
outstanding computer scientists. Each category described 
in Section I I I  has its peculiar strengths and weaknesses 
and a preferred problem domain. After summarizing the 

relations between the various categories, we suggest a 
number of fruitful areas for future research. 

The automatic constructors of recognizers, described in 
Section II .B,  are tools which are potentially useful in any 
problem attacked with a syntax-directed approach. By 
automatically producing an efficient recognizer, such 
systems should extend the useful range of syntax-directed 
techniques. The major problem is to find a convenient 
way of embedding semantic definitions in the synthetic 
syntax. A solution to this problem would also produce a 
marked improvement in the capabilities of the syntax- 
directed symbol processors of Section III .A. These TWSs 
all have fairly convenient methods for introducing seman- 
tics, but  all share the use of relatively inefficient recog- 
nizers. The already far-reaching applications of such 
systems could be significantly widened by the development 
of more efficient recognizers. 

The recta-assemblers described in Section III .C.1-3 are 
presently much better  suited to assembler writing than 
compiler writing. They  have, however, introduced several 
significant additions to macro languages which will have a 
long range effect. By extending the facilities of meta- 
assemblers for translation time actions and adding a 
syntax phase, one could make them comparable to the 
syntax-directed processors of Section III .A. 

The compiler-compilers of Section I I I .B  are the high 
point in the evolution of specialized TWSs. Although 
specialization has made them by far the most useful for 
compiler writing it has its a t tendent  costs. The  compiler- 
compilers are harder to implement and are often unsuited 
to tasks appreciably different from compiling. As the 
semantic languages a t tempt  to encompass more sophisti- 
cated programming constructs, one can expect such sys- 
tems to become even more specialized. There is, of course, 
a risk of overspecialization, and some TWS workers feel 
that  a more general syntax-directed processor like COGENT 
(Section III .B.3) will have greater survival value. 

The work on extendible compilers (Section II I.C.4-6) is 
more recent and is difficult to assess accurately, Mthough 
it seems clear tha t  some macro facility should be included 
in any high level language. The more exotic systems may 
be limited in their usefulness. Ideally, one would like to be 
able to extend a language in macro fashion and later in- 
corporate the extensions efficiently in the compiler. The  
CC system (Section III .B.3) has both facilities, and al- 
though it does not solve the problem, it would be a good 
facility for experimenting with solutions. 

None of the TWSs discussed here is a panacea. We have 
at tempted to show that  it is unreasonable to expect one, 
and the results of various at tempts at a universal program- 
ruing system of any kind tend to support this position. 
We do feel that ,  taken as a whole, the TWS efforts have 
solved many of the significant problems in compiler 
writing. There are now enough available techniques to 
satisfy a great variety of possible TWS requirements and 
the outstanding problems are in specific topics. 
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The syntactic aspects of TWSs have received consider- 
able attention and have fewer outstanding questions. Three 
problems that do come to mind are closely related to 
semantics and to one another. One problem is to find a 
satisfactory way of embedding extra syntactic features to 
allow "syntax" to correspond more elosely to one's intui- 
tion [Gil 66, Don 67]. A related issue is the absence of an 
adequate technique for embedding semantics in the rules 
of a synthetic grammar without knowledge of the details of 
the recognizer-constructing program being used. Finally, 
there is the problem of graceful degradation in automatic 
recognizer constructing programs. One would like the 
system to use efficient teehniques wherever possible and 
automatieally move to slower, more general sehemes 
rather than quit when the going gets rough. In addition, 
the problem of automatic recovery from syntax errors 
could use eonsiderab!y more attention [EvA 63, Ir 65]. 

There has been much less work on the postsyntaetie 
aspects of TWSs. Three basically different approaches to 
this "semantics" problem are: first, to provide a general 
purpose list-processing or other symbol manipulation 
capability (eft Section III.A) ; second, to provide a number 
of data structures and built-in routines especially de- 
signed for compiler-writing (el. Section III.B); and third, 
to combine these facilities with code brackets and a ma- 
chine independent speeifieation of output (Section III.B. 1). 
By making use of macros and subroutines, either of the 
first two techniques can look, to the average user, like the 
automated system. From this point of view the key prob- 
lem in semantics is finding general purpose routines for 
handling significant aspects of compiler writing. We feel 
that the TWS approach has been proven feasible and that 
the general problem should now be considered in the 
development stage. There are, to be sure, several kinds of 
programming languages (e.g. simulation [Te 66]) still 
beyond the pale, but each has a few basic concepts that 
need to be studied first. In short, future research in TWSs 
should be directed toward understanding (and eventually, 
automating) the outstanding problems in programming 
languages. 

With this formulation of TWS research, we have, of 
course, provided a guaranteed annual project for everyone. 
A justification for this ean be found in the many contribu- 
tions to programming systems which have resulted from 
considering metaproblems. In the remainder of this section, 
we discuss a number of interesting problems whieh might 
be amenable to a TWS approach and provide an entree into 
the literature for each. The references listed at the end of 
this section for each subject are either very recent, or 
comprehensive, or they have already been used as refer- 
enees in this paper. 

One question of long standing that is still open is the 
formal description of machine languages. A solution here 
could be used as a third input to a TWS, describing the 
target machine. This problem has been attacked, both 
theoretieally and directly, but nothing has eome close to 

being usable by a TWS. The availability of parallel 
processors adds a new level of complexity or, better, a new 
research area. Most of the work on software for parallel 
processors has been eoneerned with particular machines 
and is not within the scope of this paper. There have been 
some significant abstract [Kar 66] and concrete [Shed 67, 
Sto 67] theories which might serve as a foundation for 
research in parallelism. Parallelism in high level languages 
[Dij 65] is also beginning to receive attention. 

Another hoary question concerns a theory of eode selec- 
tion and enhancement (the "optimization" problem). Not 
only has the theory been weak, but there are still only a 
half-dozen or so types of code enhancement in general use 
by compiler writers. The most striking improvements in 
program performance usually eome from restructuring 
the entire approaeh to the problem. This could be called 
optimization in the large, but we discuss it as one aspect of 
nonproeedural programming. The accepted definition of 
"nonproeedural," like that of "semanties," has yet to 
appear. A programming system will be called nonpro- 
eedural to the extent that it makes selections and rear- 
rangements of procedural steps in response to some higher 
order problem statement. 

Nonprocedural programming languages have been dis- 
cussed under many rubries: declarative languages, problem 
oriented languages, questionnaire systems and the like. 
Most of this work is theoretically uninteresting (ef. [You 
65]); one writes a large routine and the user supplies 
parameters. Fairly good nonproeedural systems for limited 
problem areas have been developed in computer graphics, 
relational languages [Roy 67], array processing [Gal 67], 
and numerical analysis [Ri 66]. The analog computer, of 
course, has always been programmed this way, and some 
prom_ising systems [Schl 67] are being developed by extend- 
ing the languages used in hybrid computing. Cheatham 
envisions adding nonproeedural features of a general sort 
to the extendible compiler discussed in Section III.C.5. 
Another approach would be to use the more sophistieated 
syntax forms and transformations developed in natural 
language processing. We have felt for some time that 
TWS efforts shared many interests with natural language 
systems. There have been the so-ealled query languages 
[Corn 66] and, of course, COBOL [Saturn 61], but these 
make only superficial contact with the problem. The 
reeent interest in conversational and nonprocedural pro- 
gramming languages along with the syntax-directed natu- 
ral language systems (ef. Section IV.A) should lead to 
significant interchange of ideas. 

There are several open problems eoneerning the connec- 
tion between TWSs and executive systems. One of the 
major benefits of a TWS is eliminating the effort (often 
more than half the total) of interfacing each compiler to 
the executive. One indication of the past work in this area 
is that the word "executive" has not occurred before this 
paragraph. There have always been small groups inter- 
ested in "environmental" questions for compilers [Leo 66], 
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but they had little effect before the time sharing revolution. 
The (hoped for) availability of large multiaccess time- 
sharing systems gives rise to several additional research 
problems related to TWSs. The main task of any large 
timesharing executive is resource allocation. The resources 
to be allocated include programs, such as compilers, as 
well as various memory and processing units. The research 
problem is to devise a scheme for allowing translators to 
exchange information with the executive so as to produce 
significantly better system performance. The most pressing 
need in current systems is for main memory, and there 
have been several schemes [Bob 67, Coh 67, Roy 67] to 
help reduce swapping time for particular languages. A 
related problem is the optimal (not maximal) use of pure 
procedure in both the TWS [Feld 67] and the resulting 
object code. While an elegant compiler-executive interface 
will be very difficult to achieve, even a theoretically 
uninteresting solution should prove of great practical 
value. 

Two other problems relating to executive systems are 
mentioned briefly here. Control languages should be im- 
proved by adding syntax processing; ideally using the 
same syntax code already in the TWS. A more ambitious 
project would be the application of syntax-directed tech- 
niques to the construction of executive programs them- 
selves. One additional related problem is debugging aids. 
There has been a great deal of work on on-line debugging 
systems [EvT 66], but most of it has been at the assembly 
language level, except for Project MAC. There have been 
some good symbolic dump facilities in particular batch- 
made compilers, but there have not found their way into 
print or into TWSs. There has also been very little effort 
[Ir 65] on the problems of automatic error detection and 
recovery in syntax-directed processors. Once again, even a 
bad system would be of great value to users. 

The final research area discussed here is the study of 
data structures. This field seems to include everything 
from matrix manipulations to file handling and has strong 
interrelationships with areas of computer science. In some 
sense, data structures are the current problem in computer 
science, and it would be presumptuous to try to survey the 
outstanding issues. We mention a few aspects connected 
with TWSs and indicate how data structure considerations 
occur in the other research problems mentioned here. 

One central question in any TWS is the choice of data 
structures built-in at both translation and execution time. 

The survey in Section II describes the translation time 
structures; essentially nothing has been done to provide 
built-in structure operators for execution time. Many 
sophisticated data structure languages have been written 
using TWS (e.g. lab 66, I t  66, Rov 67]), but the structure 
operators have all been hand-coded. There have been 
several recent attempts (e.g. [Ross 66, IBM 66, Wir 66b]) 
to devise a single universal data structure; such a structure 
could easily be incorporated in a TWS. The problem is that 
current proposals all become very inefficient in some area 
where data structures are now applied. The question of 
choosing the right structure for a given algorithm takes 
one far into nonprocedural programming. Similarly, one 
could make major advances in global optimization and 
natural language processing with data structure improve- 
ments. In fact, there are rich connections among all the 
research problems mentioned here and many others as 
well; the TWS problem will, by its nature, always be 
related to severn frontiers of programming research. 

Our brief survey of recent TWS efforts has turned out to 
be an embarrassingly long paper. We have attempted to 
show how a considerable number of bright people, working 
almost in isolation, have brought about a reasonable under- 
standing of many aspects of systems programming. With 
better communication and higher scientific standards, one 
could hope for even more significant advances and more 
rapid application of the ideas developed in research. I t  was 
this hope that led us to write this paper and perhaps led 
you to read it. 
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