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Abstract.—Online phylogenetic inference methods add sequentially arriving sequences to an inferred phylogeny without
the need to recompute the entire tree from scratch. Some online method implementations exist already, but there remains
concern that additional sequences may change the topological relationship among the original set of taxa. We call such a
change in tree topology a lack of stability for the inferred tree. In this article, we analyze the stability of single taxon addition
in a Maximum Likelihood framework across 1000 empirical datasets. We find that instability occurs in almost 90% of our
examples, although observed topological differences do not always reach significance under the approximately unbiased
(AU) test. Changes in tree topology after addition of a taxon rarely occur close to its attachment location, and are more
frequently observed in more distant tree locations carrying low bootstrap support. To investigate whether instability is
predictable, we hypothesize sources of instability and design summary statistics addressing these hypotheses. Using these
summary statistics as input features for machine learning under random forests, we are able to predict instability and can
identify the most influential features. In summary, it does not appear that a strict insertion‑only online inference method
will deliver globally optimal trees, although relaxing insertion strictness by allowing for a small number of final tree re‑
arrangements or accepting slightly suboptimal solutions appears feasible. [Maximum Likelihood; online phylogenetics;
phylogenetic stability; taxon addition.]

New sequence data are added to public databases at a
high frequency. Adding new sequences to an already
inferred phylogeny could reveal the relationship of this
new taxon to the already analyzed taxa and could also
be helpful in clarifying evolutionary relationships in
the already existing phylogeny (Pollock et al. 2002). As
new sequences get sampled over time, datasets keep
growing in size. This requires methods to analyze new
data while utilizing information received from previ‑
ously analyzed data, for example, for automated species
delimitation (Zhang et al. 2013). One approach to han‑
dle these scenarios is to develop “online” phylogenetic
algorithms in which one can update an existing phy‑
logenetic inference with additional sequences without
running the analysis from scratch.

There has been considerable interest in and devel‑
opment of online methods for phylogenetics. Online
methods are already available for Bayesian software
packages BEAST and BEAST2 that employ Markov
chain Monte Carlo (MCMC) sampling, and decrease
MCMC chain convergence time but still require con‑
tinued sampling after insertion of sequences (Gill
et al. 2020; Bouckaert et al. 2022). An alternative for
online Bayesian inference is sequential Monte Carlo

methods (Dinh et al. 2018; Fourment et al. 2018), which
hold promise to be more efficient than MCMC while
being similarly accurate if path degeneracy issues are
resolved (Fourment et al. 2018; Truszkowski et al. 2023).
For maximum parsimony inference, online algorithms
update the tree to optimize the parsimony score af‑
ter inserting taxa in an already inferred tree (Ye et al.
2022). This strategy of re‑optimization after insertion
performs well for viral datasets. The resulting trees are
comparable with Maximum Likelihood methods that
compute trees from scratch while needing much less
computational time (Kramer et al. 2023). The strategy
of sequentially adding sequences to a tree and then up‑
dating it has been used to scale up Maximum Likeli‑
hood inference (Izquierdo‑Carrasco et al. 2014; De Maio
et al. 2023), and shows good performance for viral
datasets (De Maio et al. 2023).

However, there has neither been a broad empirical
study of how trees change when a taxon is added to a
data set nor has there been work researching the fac‑
tors determining whether such change happens. We call
an inference “stable” upon taxon addition if the tree in‑
ferred on the alignment including the new taxon, con‑
tains the tree inferred for the alignment without the
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sequence of this taxon. As a similar concept to insta‑
bility, “rogue taxa” have been studied in the literature,
which are taxa that have an influence on the inferred
tree in that they increase uncertainty in the inferred
tree by lowering bootstrap support (Baurain et al. 2007;
Trautwein et al. 2011). This concept of instability is dif‑
ferent from the type of instability that we are interested
in, which is the change of tree topology upon taxon ad‑
dition. Although updating trees after the addition of
new taxa is the central principle of most existing on‑
line algorithms, there has not been extensive research
in assessing whether these updates are always required,
and if they are, whether updates might only be needed
in specific regions of a tree. Predicting instability in an
efficient manner benefits the development of online al‑
gorithms, as predictions could be used to decide if a tree
needs updating upon taxon addition.

This article aims to investigate the stability of taxon
addition for Maximum Likelihood tree inference on em‑
pirical data. We analyze instability in a range of empir‑
ical datasets to establish whether instability as found in
some cases in the literature (Mariadassou et al. 2012;
Denton and Goolsby 2018; Bouckaert et al. 2022) oc‑
curs frequently or only in isolated cases. Our datasets
comprise diverse sequence alignments containing gene
sequences for a variety of species and have previously
been used to study the performance of Bayesian phy‑
logenetic inference (Harrington et al. 2021). Though we
cover a variety of alignments with different properties,
other types of data, for example, viral datasets, might
show different behavior.

With our stability analysis, we aim to understand the
following questions about stability:

• How frequent is instability in a large collection of
empirical data sets?

• When instability is present, is the fully optimized
tree significantly better according to statistical cri‑
teria?

• When instability is present, how far do changes
propagate across the tree?

• Can we efficiently predict instability “ahead of
time” via classification/regression using a battery
of summary statistics?

To address these questions, we build a pipeline for ana‑
lyzing empirical data to determine whether it is possible
to predict stability. This pipeline is not designed for gen‑
eral use to predict the stability of a dataset, but rather to
assess whether it is possible to predict stability at all.

We find that instability occurs frequently in our data
examples, but is often not significant. When instability
occurs, the changes in tree topology are usually not lo‑
cal to the insertion location of the new taxon. Instead, we
often see instability in regions of low bootstrap support.
Random forest regression and classification are capa‑
ble of predicting stability for the datasets and summary
statistics we consider with high correlation (𝑅2 = 0.98)
and discrimination (Area Under the Receiver Operating

Characteristic = 0.93), revealing that insertion loca‑
tions in regions of high uncertainty and non‑tree‑like
evolution of the added taxon are the main drivers of
instability.

METHODS

Measuring Stability
A tree inference on an alignment is stable for the

addition of a taxon 𝑠 if the tree inferred on the align‑
ment without taxon 𝑠 is contained in the tree inferred
on the full alignment containing the sequence of taxon
𝑠 (Fig. 1). In this article, we consider unrooted binary
trees.

Taxon Influence Index.—We used the taxon influence in‑
dex (TII) (Mariadassou et al. 2012) to measure insta‑
bility. Let the “full tree” 𝑇∗ be the tree inferred on an
alignment 𝒜 and let 𝒜 − 𝑠 be this alignment with the
sequence of taxon 𝑠 removed. Then TII(𝑠) is defined as
the distance between the “inferred tree” 𝑇∗

𝑠 , which is the
tree inferred on 𝒜 − 𝑠, and the “pruned tree” 𝑇𝑠, which
results from pruning taxon 𝑠 from 𝑇∗. All these trees are
unrooted. We used the Robinson‑Foulds (Robinson and
Foulds 1981) (RF) distance to compute the TII:

TII(𝑠) = 𝑑RF(𝑇𝑠, 𝑇∗
𝑠 ).

If the tree topologies of the 2 trees coincide, that is,
their RF distance is 0, we say that the inference is stable,
otherwise it is unstable. To generate a large dataset, we
calculated the TII for every taxon of every alignment we
included in our analysis. To normalize the TII, we di‑
vided it by 2(𝑛 − 3), which is the maximum possible RF
distance between any two trees on 𝑛 leaves.

Locations of Instability.—We wished to measure how far
from the location at which the additional taxon is at‑
tached changes have propagated, which we quantified
with a metric we call the “disruption radius.” The dis‑
ruption radius is the maximum distance between the
attachment location of the added taxon 𝑠 in the full tree
𝑇∗ and any edge of 𝑇∗ that is not present in 𝑇∗

𝑠 . Here,
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FIGURE 1. Determining whether an inference is stable for the ad‑
dition of taxon 𝑠 by comparing inferred tree 𝑇∗

𝑠 and pruned tree 𝑇𝑠.
When 𝑇∗

𝑠 and 𝑇𝑠 are different, we say that the tree 𝑇∗
𝑠 is unstable to the

addition of 𝑠.
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we used the topological distance, that is, the number of
nodes between the edge incident to 𝑠 and its most dis‑
tant edge that is present in 𝑇∗ but not in 𝑇∗

𝑠 . Because the
inferred tree 𝑇∗

𝑠 does not contain taxon 𝑠, we considered
an edge of the full tree 𝑇∗ to be present in the inferred
tree 𝑇∗

𝑠 if removing 𝑠 from the split induced by this edge
gives a split that is induced by an edge in 𝑇∗

𝑠 . If the in‑
ferred tree 𝑇∗

𝑠 is identical to the pruned tree 𝑇𝑠, no edges
differ between these trees and the disruption radius is 0,
as is TII(𝑠). We normalized the disruption radius by di‑
viding by the maximum distance of any internal edge to
the edge incident to 𝑠 in 𝑇∗.

We were also interested in the relationship between
bootstrap support and unstable edges and hypothesized
that instability is more likely to occur in areas of low
bootstrap support. Therefore, we computed the average
distance of edges that are in the inferred tree but not
the pruned tree to their closest low bootstrap support
(< 70%) edge. For this, we used the normalized topo‑
logical distance, which is the number of nodes between
these edges, divided by the maximum distance of the
given edge to any internal edge.

Testing Significance of Instability.—To determine whether
observed instability in the form of non‑zero TII is sig‑
nificant, we performed the AU test (Shimodaira 2002).
The AU test takes as input a list of trees, and for each
tree tests the null hypothesis that this tree is equally
good or better than all other trees in the input set. It uses
bootstrapping to compute for each bootstrap sample the
distribution of differences in log likelihood between the
maximum likelihood tree and all other given trees. The
bootstrap samples are used as a null distribution to com‑
pute a P value, and the null hypothesis is rejected if the
P value is less than 0.05. We applied the AU test to every
pair of the inferred tree 𝑇∗

𝑠 and pruned tree 𝑇𝑠 with dif‑
fering topologies (i.e. TII ≠ 0) and interpreted instability
as “significant” if the AU test rejected the pruned tree by
returning a P value of less than 0.05. As an alternative to
the AU test we also tried using the SH‑test (Shimodaira
and Hasegawa 1999), which gave very similar results, so
we decided to only use AU test P values for our analysis.

Data
We analyzed datasets (Harrington et al. 2020a,b) that

have previously been used in a large‑scale study in‑
vestigating the performance of MCMC methods for
Bayesian inference (Harrington et al. 2021). This collec‑
tion stems from 3 sources: (i) amniotes data containing
gene sequences with small numbers of taxa (less than
50) (Brown and Thomson 2017); (ii) mtDNA sequences
of all 13 protein‑coding mitochondrial genes of a vari‑
ety of tetrapod species giving us alignments containing
between 20 and 575 sequences (Richards et al. 2018);
(iii) datasets assembled by Harrington et al. (2021) from
the PhyLoTA database (Sanderson et al. 2008), which
contain nucleotide alignments with up to 250 sequences
curated from GenBank with diverse taxon compositions

and sizes. These datasets are available on DRYAD: https:
//doi.org/10.5061/dryad.63xsj3v9x. The computational
cost of our analysis was substantial since we computed
𝑛 + 1 trees with 1000 bootstrap replicates for each align‑
ment with 𝑛 sequences: one full tree and for each of the
𝑛 taxa in the alignment, one inferred tree. We, there‑
fore, took a subset of 1000 alignments from the collec‑
tion of datasets described above. To get this subset, we
binned all alignments into bins according to quantiles of
the number of sequences (15 bins) and number of sites
(10 bins) and uniformly drew datasets from each bin to
cover alignments of different sizes in our analysis. Be‑
cause Maximum Likelihood inference is not identifiable
with duplicate sequences, we deleted exact duplicates
from alignments before our analyses.

We used Pythia (Haag et al. 2022) to assess the dif‑
ficulty of Maximum Likelihood inference on the full
alignment. Pythia uses a random forest to predict, given
an alignment, whether a Maximum Likelihood infer‑
ence is “easy” (best score 0.0), that is, multiple Maxi‑
mum Likelihood inferences run on the same alignment
are likely to converge on the same tree, or “hard” (worst
score 1.0), that is, we observe a rugged tree space for this
dataset. The difficulty scores of our data vary from 0 to
0.86 with a mean difficulty score of all alignments of 0.56
(Supplementary Fig. S1).

Inferring Phylogenies
To compute stability measures, we first needed to ob‑

tain full trees 𝑇∗ and inferred trees 𝑇∗
𝑠 , learned from

the alignment with taxon 𝑠 deleted, for each taxon 𝑠
in the full alignment. We inferred Maximum Likeli‑
hood trees using IQ‑TREE 2.2.5 (Minh et al. 2020). Be‑
cause the choice of substitution model can influence
TII values (Mariadassou et al. 2012), we used Mod‑
elFinder (Kalyaanamoorthy et al. 2017) as implemented
in IQ‑TREE to determine the best substitution model
and parameters for the full alignment and used the
same model parameters for inferring trees 𝑇∗

𝑠 for all 𝑠.
Bootstrap support values were computed using ultra‑
fast bootstrap (UFBoot2) (Hoang et al. 2018) with 1000
replicates.

Workflow
On top of analyzing the extent to which instability

occurs in empirical data, we also wanted to investi‑
gate causes of instability and see if it is possible to ef‑
ficiently predict from an alignment and inferred tree
whether an inference is stable for a given additional
taxon. We, therefore, created a workflow (Fig. 2) to per‑
form a stability analysis and stability prediction for our
1000 empirical datasets.

Starting with an alignment 𝒜, we inferred the full
tree 𝑇∗ for this alignment and for each taxon 𝑠𝑖 cre‑
ated an alignment 𝒜 − 𝑠𝑖 that contains all sequences
of the full alignment except for 𝑠𝑖. For each alignment
𝒜 − 𝑠𝑖 we then computed the inferred tree 𝑇∗

𝑠𝑖
and also

https://doi.org/10.5061/dryad.63xsj3v9x
https://doi.org/10.5061/dryad.63xsj3v9x
https://doi.org/10.5061/dryad.63xsj3v9x
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FIGURE 2. Workflow for modeling stability. We compute stability measures as described in Figure 1 and separately compute summary
statistics to predict stability (without using the full tree for alignment 𝒜) using random forests.

pruned 𝑠𝑖 from the full tree to receive the pruned tree
𝑇𝑠𝑖

. With 𝑇∗, 𝑇∗
𝑠𝑖
, and 𝑇𝑠𝑖

we computed stability mea‑
sures TII and disruption radius, as well as the distance of
unstable edges to low bootstrap support edges (details
in “Measuring Stability” section). To determine whether
instability is significant, we performed the AU test (Shi‑
modaira 2002) on 𝑇𝑠𝑖

and 𝑇∗
𝑠𝑖
, following Powell and

Battistuzzi (2022).
We also hypothesized causes of instability and com‑

puted summary statistics as input features for random
forest classification and regression to predict our sta‑
bility measures (“Classification and Regression to Pre‑
dict Instability” section). These summary statistics were
computed using properties of the full alignment 𝒜 and
inferred trees 𝑇∗

𝑠𝑖
. In addition, we found the best possi‑

ble insertion location of taxon 𝑠𝑖 in the inferred tree 𝑇∗
𝑠𝑖

and used properties of the resulting tree 𝑇+
𝑠𝑖

to compute
summary statistics.

The entire workflow was implemented using Snake‑
make (Moelder et al. 2021) with coding support from
ChatGPT (OpenAI 2024) and is available at https:
//github.com/matsengrp/phylostability. We used IQ‑
TREE 2.2.5 (Minh et al. 2020) for phylogenetic tree in‑
ference, PyPythia (Haag et al. 2022) for computing diffi‑
culty scores, CONSEL (Shimodaira and Hasegawa 2001)
for significance testing, epa‑ng (Barbera et al. 2019)
for taxon placement, BioPython (Cock et al. 2009), and
ete3 (Huerta‑Cepas et al. 2016) for extracting summary
statistics, scikit‑learn (Pedregosa et al. 2011), and Op‑
tuna (Akiba et al. 2019) for random forests and hyperpa‑
rameter optimization, and seaborn (Waskom 2021) and
Matplotlib (Hunter 2007) for plotting.

Summary Statistics
We used features based on summary statistics to pre‑

dict whether the inferred tree 𝑇∗
𝑠 is different from the

pruned tree 𝑇𝑠, namely regression and classification ran‑
dom forests predicting our measures of stability. These
summary statistics were calculated from the inferred
tree and sequence alignment and were designed to be

computed efficiently, in particular without requiring
computing the full tree. Of course, if one is willing to
compute the full tree as part of a stability calculation,
this is a direct assay of stability rather than a prediction.

Some of our summary statistics use properties of
high‑quality insertion locations of the taxon 𝑠 in the in‑
ferred tree 𝑇∗

𝑠 . We used epa‑ng (Barbera et al. 2019),
an evolutionary placement algorithm using a Maximum
Likelihood approach to place sequences on a reference
tree, to identify these insertion locations. Epa‑ng re‑
turns a list of high‑quality insertion locations (see de‑
tails in “Spread of High‑Quality Insertion Locations.—”
section), the best of which we refer to as the best insertion
location, giving us a tree 𝑇+

𝑠 that includes the taxon 𝑠.

Spread of High‑Quality Insertion Locations.—If there are
multiple high‑quality insertion locations for a taxon 𝑠
in the inferred tree, it seems likely that adding the se‑
quence of 𝑠 to the inference draws these insertion lo‑
cations closer together, especially when they are dis‑
tant in the inferred tree. Epa‑ng computes the likeli‑
hood weight ratio (LWR) of attaching the taxon 𝑠 on
an edge 𝑙𝑖, which is formally defined as LWR(𝑙𝑖) =
ℒ(𝐷|𝑇∗

𝑠 , 𝑙𝑖)/∑𝑗 ℒ(𝐷|𝑇∗
𝑠 , 𝑙𝑗), where ℒ is the likelihood, 𝐷

is the full alignment, and 𝑙𝑗 are edges in the inferred
tree 𝑇∗

𝑠 . It returns a list of edges sorted by decreasing
LWR until the sum of LWR values exceeds 0.99. We con‑
sidered all edges in this list to be high‑quality insertion
locations.

To investigate whether the distance between high‑
quality insertion locations influences stability, we com‑
puted the mean and standard deviation (SD) of topo‑
logical distances between the best insertion edges and
used them as summary statistics (insertion distances
mean/SD). These distances were normalized by divid‑
ing by the maximum distance of any two edges in the
inferred tree 𝑇∗

𝑠 . If there was an insertion location with
LWR greater than 0.99, epa‑ng returns only this one
location, and we set the distance between the best lo‑
cations to be zero. We also used the LWR of the best
insertion edge itself (LWR) as well as the number of

https://github.com/matsengrp/phylostability
https://github.com/matsengrp/phylostability
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high‑quality insertion locations (#insertion locations) as
summary statistics, as it seemed likely that high un‑
certainty in the placement of a taxon indicates higher
instability.

We also wondered if particularly short branches
around the best insertion location, which could indi‑
cate uncertainty in how clades in this region of the tree
should be resolved, lead to higher instability. To ad‑
dress this question, we adopted the length of the branch
𝑏 on which the additional taxon is inserted in 𝑇∗

𝑠 (in‑
sertion branch length) as a summary statistic. Upon in‑
sertion of 𝑠, 𝑏 is split into two branches. We added the
ratio of the length of the shorter of these two branches
to the length of 𝑏 (normalized distance to nearest node) as
summary statistics.

We were also curious to see if taxa that are only dis‑
tantly related to the taxa in the inferred tree lead to
higher instability, as adding those might result in long
branch attraction (Bergsten 2005). We, therefore, added
the length of the pendant branch connecting 𝑠 with its
parent in 𝑇+

𝑠 (pendant length) as a summary statistic.
All branch lengths mentioned in this section were nor‑
malized by dividing by the average branch length of
𝑇+

𝑠 .

Distance to Low Bootstrap Support Regions.—We hypothe‑
sized that instability is more likely to occur when a taxon
is inserted in a region of low bootstrap support in a tree.
It seemed likely that especially in regions of high un‑
certainty, a taxon addition adds a phylogenetic signal
and, therefore, influences the shape of the tree. To ana‑
lyze whether this hypothesis is true, we considered the
distance of the best insertion location to its closest low
bootstrap support edge, normalized by the maximum
distance of any edge to the insertion location (distance to
low bootstrap edge) as a summary statistic. We identified
an edge as having low bootstrap support if its bootstrap
support was less than 70%.

Uncertainties in the Tree.—To assess the difficulty of the
inference on the full alignment as described in “Data”
section, we computed Pythia difficulty scores on the
full alignment and added them as predictors (pythia dif‑
ficulty) to our random forests. In addition, we added
the mean and standard deviation of all bootstrap sup‑
port values of the inferred tree as input features for our
random forests (bootstrap mean/SD).

Pairwise Sequence Distances to New Taxon.—If the se‑
quences in the inferred tree have evolved in a tree‑like
manner, but the sequence of the added taxon has not,
Balanced Minimum Evolution trees can show instabil‑
ity (Cueto and Matsen 2011). We were interested to see
if similar behavior can be observed for Maximum Likeli‑
hood inference. Therefore, we computed for every taxon
in the tree the ratio of sequence distance to patristic
distance (sum of branch lengths) to the added taxon 𝑠
in 𝑇+

𝑠 . The mean and standard deviation of these val‑
ues are used as summary statistics for predicting the

TII (distance ratio mean/SD). Our intuition was that high
standard deviations of distance ratios indicate that the
added sequence does not fit well into the inferred tree
and did not evolve very tree‑like, potentially resulting
in instability.

We, in addition, wanted to focus on the difference of
the evolution of the added taxon and the taxon with
sequence most similar to the added taxon. If both taxa
showed similar relationships to the remaining taxa, we
expected the added taxon to fit well into the tree, result‑
ing in stability. We, therefore, computed mean and stan‑
dard deviation of taxon_ratio/closest_taxon_ratio (ratio
diff closest sequencemean/SD), where taxon_ratio is the ra‑
tio of sequence to patristic distance of the added taxon
and closest_taxon_ratio is this ratio for the taxon with
sequence most similar to that of the added taxon.

We observed in some cases that adding a taxon re‑
sulted in moving a subtree away from the insertion lo‑
cation of this taxon in 𝑇∗

𝑠 to a different position in the
tree and designed a summary statistic to capture this.
Let 𝐶 and 𝐶′ be sister clades in the inferred tree so that
the best insertion location of 𝑠 is on the branch connect‑
ing the parent of 𝐶 and 𝐶′ with the root of 𝐶. Let 𝑎𝑠 be
the average pairwise distance of the added taxon to all
taxa in 𝐶′ and 𝑎𝐶 the average pairwise distance of taxa
of 𝐶 to 𝐶′ in terms of sequence distance. We used 𝑎𝑠/𝑎𝐶
as a summary statistic for predicting TII (dist diff inser‑
tion sibling). The further this value is from one, the more
we expect the added taxon to change the local structure
of the tree, increasing instability.

Whenever we required sequence distances in our
computations, we used the sequence distances corrected
by the substitution model chosen by ModelFinder when
performing a model search with IQ‑TREE on the full
alignment.

Depth of Insertion Location in Inferred Tree.—We hypoth‑
esized that a taxon inserted close to a leaf has a lower
risk of leading to instability than a taxon inserted deep
in the tree. To investigate whether this was true, we mea‑
sured the insertion height as the patristic (sum of branch
lengths) distance from the best insertion location of the
added taxon 𝑠 in 𝑇+

𝑠 to the nearest taxon that is not 𝑠. This
value was used as a summary statistic (insertion height)
after normalizing by dividing by the maximum possible
distance between any two leaves divided by two.

TIIs of Distance Based InferenceMethods.—Distance‑based
inference methods are computationally less expensive
than Maximum Likelihood approaches, and we won‑
dered whether different inference methods on the same
data are similarly stable or unstable. We, therefore, com‑
puted Neighbor Joining (NJ) trees (Saitou and Nei 1987)
on the sequence distance matrices corrected according
to the substitution model chosen by ModelFinder. As we
have done for Maximum Likelihood trees, we computed
TII values for all taxa in all NJ trees and used normal‑
ized NJ TII values as features for predicting the stability
of Maximum Likelihood trees (NJ TII).
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Classification and Regression to Predict Instability
We extracted summary statistics for each taxon of

every alignment and used these as features to train
random forests to predict and classify stability. We
performed 200 trials of hyperparameter optimization,
setting the following ranges for parameters for all
random forests we trained: number of decision trees
in [10, 1000], maximum depth of a decision tree in
[10, 1000] (sampled from the log domain), fraction of
minimum number of samples per split in [0.00001, 1]
(sampled from the log domain), fraction of minimum
number of samples required to be a leaf node in
[0.00001, 1] (sampled from the log domain), and max‑
imum number of features considered for the best split
either √num_samples or log2(num_samples). For re‑
gression, hyperparameter optimization tested criteria
for measuring the quality of a split in {squared error, ab‑
solute error, Friedman MSE, poisson}, for classification
the criterion was chosen from {gini, log loss, entropy}.
Our data were split into a training set (60%), validation
set (20%), and test set (20%). Hyperparameter optimiza‑
tion was done for the validation set, and the test set was
used for evaluation.

We trained 2 random forest classifiers. For a given
combination of inferred tree and full sequence align‑
ment, the input to these classifiers was the collection of
summary statistics described in “Summary Statistics”
section. Each classifier predicted whether a taxon addi‑
tion was in 1 of 2 instability classes. For the first clas‑
sifier, these classes were determined by whether the TII
was 0 or not. The second classifier predicted whether we
observe “significant instability,” which we define as a
taxon having a non‑zero TII and the corresponding in‑
ferred tree producing a significant outcome of the AU
test (P value less than 0.05). Since the TII is 0 if and only
if the disruption radius is 0, we did not train another
classifier for disruption radius classification.

For training a random forest classifier it is important
to have similar numbers of training samples in each
class, as otherwise a predictor that always predicts the
outcome to be in the larger class can perform very well
without actually learning anything from the input data.
In our dataset, we did, however, observe more non‑
zero than zero TII values, so we needed to balance the
training set and testing set. For the test set, we ran‑
domly subsampled the non‑zero TII class to get 2 classes
of equal size. We decided to split the training set for
the random forests into batches so that each batch con‑
tained all samples from the TII zero class and the same
number of samples from the TII non‑zero class. The
samples from the larger class were drawn without re‑
placement so that no sample of this class was used in
more than one random forest. This resulted in training
7 random forests for the classifier predicting TII. Af‑
ter training, we evaluated each classifier on the test set
and averaged probabilities over all classifiers to com‑
pute the receiver operating characteristic (ROC) curve.
As there were roughly as many significantly unstable

taxa as there were taxa that were not significantly un‑
stable, we did not need to balance the datasets for ran‑
dom forest training to predict significant instability. We
also evaluated feature importances (permutation im‑
portance (Breiman 2001)) as computed by scikit‑learn,
which assesses how much the model performance de‑
creases when shuffling the values of a feature across
the columns of the testing dataset. Feature importances
were averaged across all classifiers and final predictions
were generated using majority voting, that is, the final
prediction was the class that has been predicted by the
majority of classifiers.

In addition, we performed 2 random forest regres‑
sions to predict (normalized) TII and disruption ra‑
dius. As for the classifiers, the input features were
the summary statistics presented in “Summary Statis‑
tics” section. Because we observed that feature impor‑
tances for Pythia difficulty were very high and, there‑
fore, potentially absorbed the importance of other fea‑
tures, making it harder to determine which of the re‑
maining features were good predictors, we addition‑
ally trained all types of random forests without Pythia
difficulty scores. This lead to random forests with ex‑
tremely high feature importance for bootstrap mean
and standard deviation, so we also removed these 2
summary statistics to get better insights into feature
importances.

RESULTS

Instability Is Abundant
Instability frequently occurs in our datasets in the

form of TII values greater than 0 (Fig. 3). Only 7707
out of a total of 67, 709 taxa (11.38%) show stability (TII
zero), that is, the addition of these taxa to the alignment
results in a tree containing the tree topology of the tree
inferred on the smaller alignment. The number of times
we observe a given TII value declines with increasing
TII, but we do observe (normalized) TII values of up to
0.96.

FIGURE 3. Observed normalized TII values
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Instability Is Not Always Significant
AU test results show a significant difference between

pruned and inferred trees for 48.46% of all taxa (Fig. 4),
even though TII values show that instability occurs in
88.62% of our data. For 40.16% of all taxa, we observe
non‑significant instability, that is, non‑zero TII but non‑
significant difference between pruned and inferred trees
according to the AU test. This means that out of all un‑
stable taxa, 54.68% are considered significantly unstable
by the AU test, whereas the difference between inferred
and pruned trees of the remaining 45.32% of unstable
taxa is not significant.

Instability Occurs in Low Bootstrap Regions, Not at Taxon
Attachment

We often observe high disruption radii, suggesting
that if instability occurs, there are often changes in the
tree that are distant from the attachment of the added
taxon (Fig. 5. For about half of all taxa (51.83%), we see a
normalized disruption radius greater than 0.8. This indi‑
cates that locations of instability are generally not local
to the attachment location. As a general trend, we ob‑
served that there are more high disruption radius taxa
for large trees than for trees with fewer taxa.

We observe small distances of unstable edges to low
bootstrap edges (Fig. 5, which suggests that instability
almost always occurs in regions of low bootstrap sup‑
port. Though there are cases where the average normal‑
ized distance between unstable edges and low bootstrap
support edges is at 0.95, for 80% of our taxa this average
normalized distance is less than 0.21.

Instability Is Predictable
Random forests for TII classification, which predict

TII = 0 (stable) versus TII ≠ 0 (unstable), show good
discrimination. The ROC curve (Supplementary Fig. S2)
of our test set has an area under the curve of 0.94. Ran‑
dom forest regression trained to predict normalized TII
performs very well with an 𝑅2 score of 0.98 (Fig. 6).

We use feature importance to evaluate which of
our summary statistics have the biggest influence on

FIGURE 4. Fraction of stable (TII = 0) and unstable (TII ≠ 0) taxa
together with the significance of AU test (color online)

whether the random forest predicts stability or insta‑
bility. Pythia difficulty has the highest importance for
regression and classification, followed by the distance
between high‑quality insertion locations as determined
by epa‑ng (Fig. 7, left panel). We were interested in see‑
ing whether the Pythia difficulty scores absorbed the
importance of other features. After training a random
forest without difficulty scores as predictors, bootstrap
mean and standard deviation received much higher fea‑
ture importance than all other features, so we trained
a random forest without Pythia difficulty and mean
and standard deviation of bootstrap support. Excluding
these summary statistics slightly worsens the quality of
predictions, with the area under the ROC curve for TII
classification dropping to 0.86 (Supplementary Fig. S2)
and the 𝑅2 score dropping to 0.94 (Supplementary Fig.
S3).

Removing bootstrap values of the inferred trees and
difficulty scores of the full alignment as predictors re‑
sults in a classifier that gives the highest importance to
the distance of the insertion location to its closest low
bootstrap support edge (Fig. 7, right panel). This sug‑
gests that the proximity of insertion locations to regions
of uncertainty influences how much a tree changes
when a taxon is added to the inference. The mean nor‑
malized distance of insertion locations to low bootstrap
support edge for unstable taxa is 0.13, whereas it is
0.26 for stable taxa, indicating that insertion locations in
regions of high uncertainty in a tree lead to instability.

From the regression, we also observe high importance
for the distance of the insertion location to its closest
low bootstrap support edge as well as for likelihood
weight ratio and the standard deviation of the ratios
of sequence to patristic distance of the added taxon to
all taxa in the inferred tree (Fig. 7). This supports the
hypothesis that insertion locations close to regions of
high uncertainty in the tree influence instability, as does
the existence of multiple high‑quality placement loca‑
tions (LWR) and the addition of a taxon evolving in a
non‑tree‑like manner (distance ratio SD).

Disruption radius regression results show a high cor‑
relation with an 𝑅2 score of 0.94 (Supplementary Fig.
S4). Feature importances show that Pythia difficulty and
distances between high‑quality insertion locations have
the biggest influence on stability predictions (Supple‑
mentary Fig. S5, left panel). Removing bootstrap sup‑
port values and Pythia difficulty for disruption radius
predictions resulted in a slightly worse predictor with
an 𝑅2 score of 0.9 (Supplementary Fig. S4), and insertion
height and distance of the insertion location to the near‑
est low bootstrap support edge had the highest feature
importance (Supplementary Fig. S5, right panel).

The random forest classifier predicting significant in‑
stability, that is, whether the P value of the AU test is
less than 0.05 and the TII is non‑zero, performs slightly
worse than our other predictors with an area under the
ROC curve of 0.86 (Supplementary Fig. S6). Feature im‑
portances show the high importance of the length of the
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FIGURE 5. Observed locations of instability.

a b

FIGURE 6. Regression results for random forest predictions of TII including mean and standard deviation of bootstrap support values of
inferred tree as features. Both plots display predicted versus actual normalized TII values but in B), a log10 scale is used.

pendant edge leading to the added taxon when placed
in the inferred tree (Supplementary Fig. S7). Removing
bootstrap support values for predicting significant in‑
stability resulted in the same observations and led to a
very similar 𝑅2 score of 0.83 and a similar pattern of fea‑
ture importances. This shows that for our data different
features are of high importance when predicting signif‑
icant instability compared to predicting just instability
(TII ≠ 0). Re‑training our models reliably showed the
same patterns of feature importances, suggesting that
the most influential features for the two predictors do
in fact differ.

DISCUSSION
In this article, we performed a stability analysis in‑

vestigating how much a phylogenetic tree topology
changes when new sequences are added to an inference.
Our results showed frequent instability, with 88.62%
of taxa having a non‑zero TII and disruption radius.
The AU test revealed that this difference between in‑
ferred and pruned trees is not always significant. This

suggests that inserting a taxon at the best position in
an already inferred tree often gives trees that are of
similar quality to the tree inferred on the full align‑
ment. High Pythia difficulty scores support this, as
they indicate that there are multiple high‑quality trees
for the full alignment. While we focused on the ad‑
dition of a single taxon, future work could include
adding multiple taxa to an inference and analyzing
how many taxa can be added before the tree changes
significantly. That the choice of substitution model
used for inference influences the TII value (Mariadas‑
sou et al. 2012) also needs to be taken into account
when developing online methods for phylogenetic
inference.

If instability occurred, it was often not local to the at‑
tachment location of the added taxon, which we saw
as more than 50% of taxa in our datasets had a nor‑
malized disruption radius greater than 0.8. We ob‑
served that unstable edges were often close to edges
with low bootstrap support. This observation, together
with our Pythia difficulty and AU test results, suggests
that changes in trees upon taxon addition can be the

https://doi.org/10.5061/dryad.63xsj3v9x
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FIGURE 7. Feature importance of random forest predictions of TII including mean and standard deviation of bootstrap values and Pythia
difficulty as input features on the left and excluding them on the right. For each pair of bars, the top bar shows feature importances for TII
classification (TII zero vs. non‑zero) and the bottom bar shows feature importances for TII regression. The higher its feature importance, the
more influence a feature has on the final prediction. Feature importances sum up to one for each random forest.

result of multiple trees being similarly good according
to the Maximum Likelihood criterion. If this is the case,
the addition of a taxon can change the topology of the
backbone tree to a tree topology that also has a high
likelihood.

Using random forest regression and classification, we
could reliably predict instability. We found that inser‑
tion locations in low bootstrap support regions and
Pythia difficulty scores were good predictors for in‑
stability. For TII random forest regression we also ob‑
served that uncertainties in the placement of the added
taxon in the inferred tree with epa‑ng are influential
predictors of instability. The random forest classifier
trained to predict significant instability, that is, non‑
zero TII and AU test P value less than 0.05, performed
marginally worse than TII classification. A reason for
this worse performance of predictions of significant in‑
stability could be that the random forests also need to
capture uncertainties in the inferred tree, making pre‑
dictions more complex. Feature importances were dif‑
ferent for significant instability compared to instabil‑
ity, suggesting that these 2 cases may have different
causes.

We additionally found that adding the mean and stan‑
dard deviation of bootstrap values of the inferred tree
as well as Pythia difficulty scores resulted in better pre‑
dictions. These features also received high importance
in most random forests. This again shows that uncer‑
tainties in inferred trees are a major driver of instability.
Only for predictions of significant instability, bootstrap
and difficulty have similar importance to most other fea‑
tures. These measures of uncertainty performed well

at predicting the extent to which we observe instabil‑
ity in our random forest regressions, but they are less
good at predicting whether instability is significant or
not.

For our analysis, we used empirical datasets, as we
wanted to see the effect that taxon additions have in
real‑world examples, where online algorithms would
actually be used. There are, however, many differ‑
ent parameter regimes in phylogenetics, and in our
study we focused on gene tree inference using Max‑
imum Likelihood methods. Viral datasets like SARS‑
CoV‑2, for example, are usually densely sampled and
may behave differently. In addition, different infer‑
ence methods may show differences in stability. We
could observe the low feature importance of the Neigh‑
bor Joining TII for Maximum Likelihood TII in our
random forests, indicating that Neighbor Joining in‑
stability does not necessarily imply Maximum Like‑
lihood instability. It seems likely that stability for
Bayesian inference behaves more similar to Maximum
Likelihood inference, as Bayesian inferences incorpo‑
rate the likelihood. Further studies are however nec‑
essary to confirm this, which in particular would
involve developing a way to compare 2 posterior
distributions of trees: before and after taxon addi‑
tion.

Our approach to computing stability measures for
every taxon of an alignment has previously been pro‑
posed by Powell and Battistuzzi (2022), where the au‑
thors suggest analyzing the effect of taxon sampling on
phylogenetic inference. We extended this idea by train‑
ing random forests to predict stability and applied our
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framework to empirical data and could thereby identify
causes for instability.

It has previously been suggested that instability
might be local to the attachment location of the added
taxon (Truszkowski et al. 2023). We observed the op‑
posite. In our analysis, instability often occurred distant
from the attachment location, but close to regions of low
bootstrap support. This behavior might not generalize
to all settings, as it might depend on data and inference
method.

The idea of instability being local to the insertion loca‑
tion has been used for some online inference methods,
where trees are first updated around the insertion lo‑
cation before global updates are performed (Bouckaert
et al. 2022). Other methods perform updates throughout
the tree (Ye et al. 2022) without focusing on specific re‑
gions of the tree. Our results suggest that an alternative,
potentially more efficient approach, is to update the tree
after insertion in regions of high uncertainty. As our re‑
sults are limited to Maximum Likelihood inference on
gene trees, it remains to be tested whether this would
lead to better performance of online inference methods
in general.

In summary, our study showed that we can predict
instability from our summary statistics. However, with
an area under the ROC curve of 0.94 for our TII clas‑
sifier, the predictions were not correct for all taxon ad‑
ditions, suggesting that more work would be needed if
this framework was to be used as a basis for online algo‑
rithms. It seems feasible that a pipeline of placing taxa in
a tree, efficiently predicting stability, and updating the
tree after placement based on those predictions, could
result in an efficient and accurate online algorithm for
phylogenetic inference.
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