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Key Points: 14 

● Landslide thickness can vary by tens of meters within a single landslide 15 

● The largest landslide complexes get larger by increasing area rather than increasing 16 
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● Landslide strength is scale-dependent, such that large landslides tend to be weaker than 18 

small landslides 19 
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Abstract 26 

 The hazardous impact and erosive potential of slow-moving landslides depends on 27 

landslide properties including velocity, size, and frequency of occurrence. However, constraints 28 

on size, in particular, subsurface geometry, are lacking because these types of landslides rarely 29 

fully evacuate material to create measurable hillslope scars. Here we use pixel offset tracking 30 

with data from the NASA/JPL Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) 31 

to measure the three-dimensional surface deformation of 134 slow-moving landslides in the 32 

northern California Coast Ranges. We apply volume conservation to infer the actively deforming 33 

thickness, volume, geometric scaling, and frictional strength of each landslide. These landslides 34 

move at average rates between ~0.1–3 m/yr and have areas of ~6.1 x 103–2.35 x 106 m2, inferred 35 

mean thicknesses of ~1.1–25 m, and volumes of ~7.01 x 103–9.75 x 106 m3. The best-fit volume-36 

area geometric scaling exponent is γ ~ 1.2–1.5, indicating that these landslides fall between 37 

typical soil and bedrock landslide scaling. A rollover in the scaling relationship suggests that the 38 

largest landslide complexes in our dataset become large primarily by increasing in area rather 39 

than thickness. In addition, the slow-moving landslides display scale-dependent frictional 40 

strength, such that large landslide tend to be weaker than small landslides. This decrease in 41 

frictional strength with landslide size is likely because larger landslides are composed of higher 42 

proportions of weak material. Our work shows how state-of-the-art remote sensing techniques 43 

can be used to better understand landslide processes and quantify their contribution to landscape 44 

evolution and hazards to human safety.  45 

1 Introduction 46 

Landslides are a major natural hazard and are often the dominant process that erodes 47 

mountainous landscapes (Korup et al., 2007; Larsen et al., 2010; Mackey & Roering, 2011; 48 
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Simoni et al., 2013). Both their hazardous impact and erosive potential depend on landslide 49 

properties including the velocity, size, and frequency of occurrence. Measuring these landslide 50 

properties is challenging because landslides exhibit a wide range of velocities (mm/yr to m/s), 51 

spatial areas (100 - 108 m2), and volumes (10-1 - 1010 m3), and can occur in large numbers 52 

(hundreds to tens of thousands) over broad spatiotemporal scales (Cruden & Varnes, 1996; 53 

Hungr et al., 2014; Lacroix, Handwerger, et al., 2020; Larsen et al., 2010). Importantly, the 54 

landslide failure style also impacts our ability to measure landslide properties, such as thickness 55 

and volume, which can strongly influence runout and erosion rate (e.g., Korup et al., 2007; 56 

Larsen et al., 2010; Legros, 2002). Some landslides create clear and identifiable scars and 57 

deposits by evacuating material from the hillslope, making it possible to directly measure 58 

landslide properties from field data, digital elevation models (DEMs), and remote sensing 59 

observations (e.g., Bessette-Kirton et al., 2018; Warrick et al., 2019; Wartman et al., 2016). 60 

However, for landslides that move slowly for years or centuries (Lacroix, Handwerger et al., 61 

2020; Mackey et al., 2009; Rutter & Green, 2011), referred to as slow-moving landslides, and do 62 

not create hillslope scars, it is difficult to constrain their thickness and volume because data are 63 

usually limited to isolated point measurements from boreholes (Schulz et al., 2018; Simoni et al., 64 

2013; Travelletti & Malet, 2012), which do not capture the spatial variability exhibited by these 65 

landslides. It is therefore advantageous to develop and apply tools and methods that can be used 66 

to construct large inventories of slow-moving landslides and quantify their surface and 67 

subsurface properties.  68 

Modern remote sensing tools, such as synthetic aperture radar (SAR), optical imagery, 69 

and lidar, provide high-resolution measurements of topography and ground surface deformation 70 

that can be used to identify and monitor landslides with millimeter- to centimeter-scale accuracy 71 
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at spatial resolutions of a few centimeters to hundreds of meters. Recent work using pixel offset 72 

tracking and SAR interferometry with these data has quantified the two-dimensional (2D) and 73 

three-dimensional (3D) surface deformation of slow-moving landslides (Aryal et al., 2015; 74 

Booth et al., 2020; Hu et al., 2020; Lacroix, Dehecq et al., 2020; Stumpf et al., 2017; Travelletti 75 

et al., 2014). These studies, along with numerous ground-based investigations (e.g., Iverson & 76 

Major, 1987; Malet et al., 2002; Schulz et al., 2017), have shown that slow-moving landslides 77 

exhibit non-uniform spatial and temporal kinematic patterns. In addition, high-resolution 3D 78 

surface deformation measurements can be used to infer the thickness and subsurface geometry of 79 

the actively moving part of the landslide. Previous studies (Aryal et al., 2015; Booth et al., 2020; 80 

Booth, Lamb, et al., 2013; Delbridge et al., 2016; Hu et al., 2020) have suggested that active 81 

landslide thickness can vary by tens of meters within a single landslide, and the slip surfaces 82 

have an irregular and bumpy morphology that differs considerably from commonly assumed, 83 

idealized geometric forms, such as semicircles, ellipsoids, and log spirals (see a detailed review 84 

paper by Michel et al., 2020). These large changes in thickness within a single landslide mass 85 

have important implications for estimating volume and sediment flux, designing field 86 

instrumentation and landslide mitigation strategies, and determining the stresses that control 87 

landslide kinematics. Although techniques that invert surface observations for subsurface 88 

characteristics are becoming more common, most studies have focused on individual landslides 89 

occurring under different and site-specific environmental conditions, making it difficult to 90 

identify more generic geometric scaling relations for slow-moving landslides.  91 

In this study, we use data from the NASA/JPL Uninhabited Aerial Vehicle Synthetic 92 

Aperture Radar (UAVSAR) to construct an inventory of 134 active slow-moving landslides in a 93 

~ 1621 km2 area of the northern California Coast Ranges between 2016 and 2019 (Figure 1). 94 
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These landslides occur in the Eel River catchment, a region well known for its slow-moving 95 

landslides, and are driven by high seasonal rainfall (Bennett, Roering, et al., 2016; Booth, 96 

Roering, et al., 2013; Handwerger et al., 2013, 2015; Handwerger, Fielding, et al., 2019; 97 

Handwerger, Huang, et al., 2019; Kelsey, 1978; Mackey et al., 2009; Mackey & Roering, 2011; 98 

Roering et al., 2009, 2015; Schulz et al., 2018). The landslides are underlain by the Central Belt 99 

Franciscan mélange, a mechanically weak and pervasively sheared bedrock with an argillaceous 100 

matrix that surrounds blocks of stronger rock types, including sandstone, chert and greenstone 101 

(Jayko et al., 1989; Jennings et al., 1977; McLaughlin et al., 1982, 2000). We measure the 3D 102 

surface deformation and geometry of each landslide, and use these data in a volume conservation 103 

framework to invert for their active thickness, volume, and strength. We derive new geometric 104 

scaling relations for slow-moving landslides and make comparisons with a worldwide inventory 105 

of soil and bedrock landslides. Our work is the first to use volume conservation methods to 106 

invert for the thickness of a large inventory of landslides, and this approach could be applied to 107 

other groups of slow-moving landslides around the world. Our work also shows how state-of-108 

the-art remote sensing techniques can be used to better understand landslide processes and 109 

quantify their contribution to landscape evolution.  110 

 111 

 112 

 113 

 114 

 115 

 116 

 117 
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Figure 1. Map of our northern California Coast Ranges study site. Black polygons outline the 

active landslides analyzed in this study. Elevation (m) shown by green to white color gradient. 

Black boxes show the left-looking UAVSAR swaths and corresponding track numbers with 

airplanes showing flight direction. Red arrow shows the location of a U.S. Geological Survey 

(USGS) landslide field site. Blue lines show major rivers and some tributaries in landslide 

areas. Inset shows a map of California with a star corresponding to the study site. 

 118 

2 Materials and Methods 119 

2.1 UAVSAR Data and Processing  120 

 We use SAR data acquired by the NASA/JPL UAVSAR airborne system for our 121 

landslide investigation. UAVSAR has a left-looking radar attached to a NASA Gulfstream III 122 

airplane that operates with a L-band wavelength (~23.8 cm) and a swath width of ~20 km. The 123 

NASA Gulfstream III autopilot flies at 13 km above sea level and repeats the flight lines within a 124 

five-meter radius tube, so the spatial baselines are always short and have no impact on 125 
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deformation measurements. UAVSAR data have a pixel spacing of 1.67 m in the range direction 126 

(measured along the line-of-sight, LOS) and 0.6 m in the azimuth direction (measured along the 127 

UAVSAR flight direction). We designed the UAVSAR data collection for the northern 128 

California Coast Ranges site specifically to monitor a large quantity of slow-moving landslides 129 

that were initially identified by several previous studies (e.g., Bennett, Miller, et al., 2016; 130 

Handwerger et al., 2015; Kelsey, 1978; Mackey & Roering, 2011; Roering et al., 2009). Some of 131 

these UAVSAR data were used in a recent study by Handwerger, Fielding, et al. (2019) to 132 

analyze changes in landslide activity due to extreme rainfall. We collected data on 4 partially 133 

overlapping flight paths to increase data redundancy and to provide between 4 and 8 independent 134 

deformation measurements (Figure 1). There were 12 data acquisitions at our field site between 135 

April 2016 and May 2019. The time between data acquisitions ranges between 47 and 237 days, 136 

with a mean of 104 days (Table S1). UAVSAR Single-Look Complex (SLC) data are freely 137 

available at https://uavsar.jpl.nasa.gov/. 138 

We perform pixel offset tracking on the coregistered UAVSAR stack SLC data using the 139 

Ampcor module, which is part of the JPL InSAR Scientific Computing Environment (ISCE) 140 

version 2 software package (Rosen et al., 2012). Pixel offset tracking (sometimes referred to as 141 

subpixel correlation) uses cross-correlation between SAR amplitude images to quantify image 142 

offsets (i.e., displacement) due to ground surface motion in two dimensions; 1) the range or look 143 

direction, and 2) the azimuth or along-track direction (e.g., Fialko et al., 2001; Fielding et al., 144 

2020; Pathier et al., 2006). We use the terms range/look direction and azimuth/along-track 145 

direction, interchangeably. Pixel tracking has a precision up to ~1/10 of the pixel size, which 146 

corresponds to ~6 cm in the along-track direction and ~17 cm in the range direction for a pair of 147 

UAVSAR images. Although this technique is less precise than conventional InSAR, it does not 148 
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involve phase unwrapping and thus is better suited for measuring the decimeter- to meter-scale 149 

displacements commonly displayed by many slow-moving landslides (Lacroix, Handwerger, et 150 

al., 2020). To account for the differences in the range and along-track pixel size, we use a cross-151 

correlation window length of 128 pixels with a skip size of 32 pixels (distance between matching 152 

window calculations) in the along-track direction and a cross-correlation window width of 64 153 

pixels with a skip size of 16 pixels in the range direction, resulting in a window size of 77 m by 154 

107 m. This cross-correlation window size was found to provide the best landslide deformation 155 

signal from UAVSAR pixel offset tracking by Handwerger, Fielding et al. (2019). We geocode 156 

the pixel offset measurements to a 0.4 arcsecond (~12 m) pixel using the TanDEM-X DEM 157 

provided by the German Aerospace Center (DLR). We process all possible combinations of pixel 158 

offset tracking pairs, which results in 66 pixel offset tracking maps on each track (264 in total) 159 

with single pair time spans ranging from 47 to 1148 days (Table S1). We exclude 35 poor-160 

quality pixel offset tracking maps from our analysis that included a large number of pixels with 161 

physically incorrect displacements (e.g., upslope motion or unusually large values) and 162 

significant noise that obscured the landslide signals. We found these poor-quality data tend to 163 

result from long duration pairs that exceed ~2 years, which are subject to numerous changes in 164 

the ground surface (e.g., vegetation changes, anthropogenic changes) that can deteriorate the 165 

cross-correlation result (Table S1). We convert all of the displacement offset maps to velocities 166 

and then take the temporal average of the 31 remaining pixel offset velocity maps to make a 167 

mean velocity map for our thickness inversions. 168 

 169 

2.2 Three-dimensional Ground Surface Deformation 170 
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To solve for 3D deformation from SAR requires at least three independent measurements 171 

of surface deformation. Each UAVSAR flight path provides two independent measurements of 172 

surface motion from pixel offset tracking (i.e., along-track and range). Therefore, using pixel 173 

offset tracking velocity maps, data from at least two flights is required for 3D inversions. 174 

Because UAVSAR acquires data on four different flight paths in our field area (Figure 1), we 175 

have a maximum of eight deformation measurements in the central region of our field area where 176 

all four flight paths overlap and a maximum of two deformation measurements in the northern 177 

and southern extents where only two flight paths overlap. Thus, we are always able to achieve an 178 

overdetermined 3D inversion.  179 

Each deformation measurement from pixel tracking is composed of the true displacement 180 

vector projected onto the along-track or range direction of the UAVSAR. We use a least-squares 181 

inversion to isolate the east, north, and vertical components of deformation defined in the form   182 

d = Gm,     183 

⎣
⎢
⎢
⎢
⎡
𝑣!"#$
𝑣%&'$
⋮
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=

⎣
⎢
⎢
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⎥
⎥
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4
𝑣*+
𝑣",
𝑣-.

5 ,      (1) 184 

where vrng,M is the range (or look direction) velocity, vazi,M is the azimuth (or along-track 185 

direction) velocity, M is the flight path number (minimum of two needed for pixel offset 186 

tracking), ξ is the UAVSAR heading direction (i.e., along track direction) with counterclockwise 187 

as positive, θ is the UAVSAR look angle, and vew, vns, vud are the east-west, north-south, and 188 

vertical components of velocity, respectively.  189 

The overdetermination of the 3D inversion allows us to constrain the uncertainty from the 190 

inversion (e.g., Delbridge et al., 2016). To constrain the inversion uncertainty, we repeat the 3D 191 
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inversion multiple times using different combinations of vrng and vazi. For instance, for landslides 192 

with eight deformation measurements (i.e., four range and four azimuth measurements), we 193 

perform the 3D inversion 198 times using between three and eight deformation measurements. 194 

We then take the mean and standard deviation of all of the inversions and use these values as the 195 

3D velocities and inversion uncertainty, respectively. We further constrain the uncertainty in our 196 

velocity measurements by examining the apparent deformation rate of stable hillslopes. To 197 

reduce noise and error (i.e., unrealistically large displacements), we apply velocity thresholds 198 

and mask out pixels with apparent velocities > 50 m/yr, which is much faster than the typical 199 

velocity range displayed by the northern California Coast Ranges landslides (Bennett, Roering, 200 

et al., 2016; Handwerger, Fielding, et al., 2019; Roering et al., 2015). We also mask out pixels 201 

that have mean velocities less than their inversion uncertainty and use nearest neighbor 202 

interpolation with a five pixel maximum radius to fill in these masked pixels.  203 

 204 

2.3 Landslide Thickness Inversion 205 

We use 3D surface velocity measurements from pixel offset tracking to infer the 206 

thickness, volume, and shear zone geometry of the active parts of each landslide using a 207 

conservation of volume approach. We apply the method originally described by Booth, Lamb, et 208 

al., (2013) and more recently by Booth et al. (2020), which assumes that during our ~3 year 209 

study period, the measured surface velocity is representative of the depth-averaged velocity, the 210 

sliding surface does not change in time, there is minimal direct erosion or deposition of the 211 

landslide surface, and the landslide material density is uniform and constant. While landslides 212 

may violate these assumptions in general, they are reasonable for our study area for the following 213 

reasons: (1) at the Two Towers landslide, a U.S. Geological Survey (USGS) instrumented 214 
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landslide in our study site (Schulz et al., 2018), the measured surface velocity was approximately 215 

equal to the depth-averaged velocity, and a narrow shear zone was identified (Figure S1); (2) the 216 

landslides were continuously active with fixed spatial boundaries over the time periods that 3D 217 

displacements were measured, suggesting movement on the same slip surface; (3) minor 218 

amounts of direct surface erosion or deposition were likely confined to gully systems on the 219 

landslides’ surfaces, which occupy a small percentage of the landslides’ surface area (~1%) and 220 

therefore have a minimal effect on the inversion; and (4) dilation/compaction or 221 

shrinking/swelling that would cause changes in density is likely on the order of centimeters or 222 

less (Booth et al., 2020; Delbridge et al., 2016; Iverson, 2005; Schulz et al., 2018), which is 223 

typically small compared to surface velocity gradients, thus having limited influence of the 224 

measured 3D surface velocity. Therefore, for a landslide of constant density with no erosion or 225 

deposition, conservation of volume implies that  226 

𝑣-. = −∇ ⋅ (𝑢:ℎ) + 𝑢,-!/ ⋅ ∇𝑧,-!/,             (2) 227 

where vud is the vertical component of the 3D landslide surface velocity vector, h is the active 228 

landslide thickness, usurf is the vector of horizontal components of landslide surface velocity, 𝑢: is 229 

the depth-averaged vector of horizontal components of landslide velocity, and zsurf is the surface 230 

elevation measured from the ~12 m TanDEM-X DEM. The first term on the right-hand side of 231 

equation 2 is the contribution of flux divergence to the vertical component of the surface 232 

velocity, and the second term is the contribution due to advection of the sloped land surface. 233 

Because UAVSAR measures the velocity of the ground surface, usurf, we assume that 234 

𝑢: = 𝑓𝑢,-!/, where f is a constant that characterizes the thickness of the shear zone at the base of 235 

the landslide relative to the total landslide thickness. We constrain f using borehole inclinometer 236 

data from two boreholes at the USGS field station on the Two Towers landslide (supporting 237 
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information and Figure S1). Unfortunately, the Two Towers landslide is not detectable with pixel 238 

tracking from UAVSAR data because the landslide is small (250 m long and 40 m wide) and 239 

moving too slowly (maximum speed ~6 cm/yr) (Schulz et al., 2018). Using these data, we find 240 

that f ~ 0.96, which indicates that the landslide moves along a narrow shear zone with the 241 

material above translating essentially as a rigid block. For simplicity, we assume that f = 1 and 242 

that the landslides move as a rigid block. Other studies in California (e.g., Keefer & Johnson, 243 

1983, Swanston et al., 1995) and around the world (e.g., van Asch & van Genuchten, 1990; 244 

Simoni et al., 2013) have also found that similar type slow-moving landslides move as a rigid 245 

plug above a narrow shear zone such that f ~1 is a reasonable approximation, however more 246 

ground-based investigations are required to better constrain the f parameter for multiple 247 

landslides. Although f generically represents the ratio of depth-averaged to surface velocity, it 248 

can be related to specific rheologies if desired (Booth, Lamb, et al., 2013; Delbridge et al., 2016) 249 

and we discuss the implications of different f values in Section 4.2.  250 

Incorporating f into equation 2 gives  251 

𝑣-. = −∇ ⋅ @𝑓𝑢,-!/ℎA + 𝑢,-!/ ⋅ ∇𝑧,-!/, (3) 252 

which is a statement of conservation of volume in a Lagrangian reference frame (Booth et al., 253 

2020; Delbridge et al., 2016). We discretize equation 3 using centered finite differences, 254 

rearrange it as a system of linear equations, and then solve for thickness by minimizing the value 255 

of  256 

|𝑋ℎ − 𝑏|0 + α0|∇0ℎ|0,   (4) 257 

subject to non-negative constraints,  258 

where X is a diagonally dominant matrix that contains the depth-averaged horizontal velocity 259 

data, b is a vector defined as 𝑢,-!/ ⋅ ∇𝑧,-!/ − 𝑣-., and α is a damping parameter to regularize 260 
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the ill-posed inverse problem. Since both the matrix X and the vector b contain data with 261 

uncertainties, and the damping parameter necessarily introduces bias, estimating total uncertainty 262 

of the resulting thickness model is not straightforward. However, we make a minimum estimate 263 

following standard techniques from inverse theory, which reflects uncertainty in b only 264 

(supporting information). We explore a wide range of α from 10-3 to 101 and determine the best 265 

level of regularization using the Generalized Cross-Validation method (supporting information 266 

and Figure S2). We resample our ~12 m pixel spacing grid to square 10 m x 10 m pixel and 267 

perform the thickness inversion in the MATLAB software package using the CVX program, a 268 

package for specifying and solving convex programs (Grant & Boyd, 2014). For the largest 269 

landslide in our inventory (i.e., Boulder Creek landslide complex) we had to downsample the 270 

grid to a 20 m x 20 m pixel due to computational limitations. The inferred thickness values 271 

represent the best solution that does not violate conservation of volume and assumes that the 272 

surface velocity is equal to the depth-averaged velocity.  273 

It is important to further emphasize that the thickness inversions are only relevant to the 274 

active parts of landslides such that there needs to be detectable surface deformation to invert for 275 

the landslide thickness. Specifically, the values of b (equation 4) need to differ from background 276 

values on known stable ground to infer non-zero thicknesses. Landslides or areas and kinematic 277 

zones within landslides that are not moving are therefore considered to have zero depth. 278 

Landslide thickness in this study therefore specifically means the “active thickness” during our 279 

study period.  280 

    281 

2.4 Landslide Inventory and Geometric Scaling 282 
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To select landslides for 3D surface velocity and thickness inversions, we assemble a new 283 

inventory of active landslides in our ~1621 km2 study area in the northern California Coast 284 

Ranges that includes only those landslides that show a significant deformation signal using the 285 

pixel offset tracking method. This limits our analysis to the faster-moving landslides that exhibit 286 

rates of decimeters to meters per year. Our landslide inventory was guided by a number of pre-287 

existing landslide inventories for the northern California Coast Ranges (Bennett, Miller, et al., 288 

2016; Handwerger, Fielding, et al., 2019; Kelsey, 1978; Mackey & Roering, 2011). We map the 289 

landslide boundaries in QGIS using the 3D velocity maps, hillshade maps constructed from 1 m 290 

pixel spacing lidar provided by OpenTopography (Roering, 2012), the ~12 m pixel spacing 291 

TanDEM-X DEM, and Google Earth imagery. Because slow-moving landslides display non-292 

uniform spatial kinematic zones and complex kinematic histories (e.g., Nereson & Finnegan, 293 

2019; Schulz et al., 2017; Stumpf et al., 2017), there are often differences between the landslide 294 

boundaries mapped with kinematic data and those mapped based on geomorphic interpretation of 295 

hillshades or aerial photos. These differences in mapping are especially important for our 296 

thickness inversions because including the parts of landslides that are not currently moving can 297 

cause the thickness inversion to produce unreliable results. Therefore, we use the temporally 298 

averaged landslide velocity and only map areas of each landslide that are moving during our 299 

study period. For larger landslides with multiple kinematic zones, we perform separate thickness 300 

inversions for any isolated, faster-moving areas of the landslide, as well as for the entire 301 

landslide complex as a whole. If results had substantially different spatial patterns of thickness, 302 

we adopt the more reliable results for the smaller isolated landslides. We use QGIS to quantify 303 

the spatial metrics of each landslide, including length, average width (defined as area divided by 304 
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length), area, and slope angle. We also report the mean, median, 75th percentile, and maximum 305 

horizontal velocity, 3D velocity magnitude, and 3D inversion velocity errors for each landslide.  306 

We then derive empirical geometric scaling relations for landslide thickness (h) and 307 

volume V from the measured landslide area A. Geometric scaling relations are commonly used to 308 

quantify erosion rates of large inventories of landslides and are important for understanding 309 

landslide mechanics (e.g., Bunn et al., 2020a; Guzzetti et al., 2009; Larsen et al., 2010; Milledge 310 

et al., 2014). Larsen et al. (2010) showed that these scaling relations hold over 9 orders of 311 

magnitude in area and 12 orders of magnitude in volume. Landslide scaling relations take the 312 

form of a power function where 313 

 V = cVAγ and h = chAζ,  (5a and 5b)  314 

where γ and ζ are scaling exponents and cV and ch are the intercepts. We constrain the 315 

coefficients of these power functions by log-transforming our data and finding the best-fit 316 

parameters with 95% confidence intervals using a linear least square inversion in MATLAB.  317 

 318 

2.5 Frictional Strength 319 

We estimate the frictional strength of each landslide by following the 3D Simplified 320 

Janbu method (Bunn et al., 2020b; Hungr, 1987; Hungr et al., 1989; Leshchinsky, 2019). This 321 

method assumes that the vertical intercolumn shear forces are negligible. Each landslide is 322 

discretized into 3D columns with a surface area Sbasal and total weight W. The basal surface area 323 

is defined by  324 

𝑆1%,%2 = 𝛥𝑥𝛥𝑦 ($4567! 8" 567! 8#)$/!

:;58" :;58#
, (6) 325 
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where ∆x and ∆y are the grid spacing in the x and y direction, respectively, βx is the local dip 326 

angle perpendicular to the direction of motion and βy is the local dip in the direction of motion. 327 

The normal force N at the base of each column is defined by  328 

𝑁 = <4=>&'(') sin 8#/CDE>&'(') tanH sin 8#/C

cos K*L$D
sin.# tan1
2 cos5*

M
,   (7) 329 

where p is the mean pore pressure acting at the base of each column, C is the cohesion, ϕ is the 330 

residual friction angle, F is the factor of safety, and ∆z is the local dip angle defined in terms of 331 

the motion-parallel and motion-perpendicular dips by  332 

 cos Δ& = LM
$

$DNO7! 8"DD NO7! 8#
N.  (8) 333 

Finally, F is defined by 334 

𝐹 = ∑=>&'(') :;5 Q#D(R4E>&'(')) NO7H :;5Q#
∑R :;5S* NO7 Q#

,   (9) 335 

where the summation is over all columns. The numerator is the resisting force, with the term in 336 

the parentheses defining the effective normal force, and tanϕ is the friction coefficient, and the 337 

denominator is the shear force. We assume that cohesion is negligible since these landslides are 338 

moving, some of which have been moving for decades (Mackey and Roering, 2011). We set F = 339 

1 (i.e., balanced forces at failure) and solve for friction angle under both dry and fully saturated 340 

(hydrostatic conditions) end members to produce a minimum and maximum estimate. Table S2 341 

shows the dry and wet landslide density values used for our calculations. Recent work by Bunn 342 

et al., (2020b) used a similar approach to infer the strength of several hundred landslides in 343 

Oregon, USA. 344 

 345 

3 Results         346 

3.1 Landslide Inventory and 3D Velocity 347 
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We identified 134 active landslides in our northern California Coast Ranges field site 348 

(Figure 1), 19 of which were unmapped by previous studies (Bennett, Miller, et al., 2016; 349 

Handwerger, Fielding, et al., 2019; Mackey & Roering, 2011). These landslides have average 350 

widths from 66 to 556 m, lengths from 68 to 4727 m, areas from 7.8 x 103 to 2.63 x 106 m2, and 351 

mean slope angles from 10 to 29 degrees (Table S3). Each landslide exhibited a non-uniform 352 

spatial velocity pattern (see examples in Figure 2). The spatial kinematic patterns remain fixed 353 

during our study period and are similar to those mapped in previous studies (see Bennett, 354 

Roering, et al., 2016; Handwerger, Fielding, et al., 2019; Mackey & Roering, 2011). The 355 

maximum 3D velocity magnitude of the individual landslides, calculated as v3D = 356 

(vns2+vew2+vud2)1/2, ranged from 0.198 to 8.58 m/yr. The average 3D velocity magnitude of the 357 

individual landslides ranged from 0.123 to 2.11 m/yr. The landslide motion was always primarily 358 

in the downslope direction (see example in Figures 2e and 2f), but at different locations we do 359 

measure areas of both uplift and subsidence within a single landslide (see example in Figure 2d). 360 

We note that local surface uplift occurs when the vertical component of the velocity vector dips 361 

less steeply than the topographic surface at a given point. As a result, the vertical velocity is 362 

often still negative even in areas where the topographic surface is locally being uplifted, and only 363 

when the vertical motion is upwards relative to horizontal do we observe positive vertical 364 

velocities. The mean 3D velocity uncertainty from the 3D inversion (equation 1) for the 365 

individual landslides ranged from 0.0179 to 1.91 m/yr. We report the full uncertainty statistics 366 

for each individual landslide in Table S3. The 3D velocity magnitude uncertainty from 367 

examining the apparent velocity of stable hillslopes was ≤ 0.1 m/yr.  368 

We classified the slow-moving landslides into three subgroups based on their geometry 369 

and kinematic patterns (Table S3). Figure 2 shows three example landslides which we define as 370 
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slumps, earthflows, and landslide complexes. The landslide complex shown in Figure 2 is the 371 

largest landslide in our dataset and is also known as the Boulder Creek landslide in several other 372 

studies (e.g., Bennett, Miller, et al., 2016; Bennett, Roering, et al., 2016; Handwerger et al., 373 

2015, 2015; Handwerger, Fielding, et al., 2019; Handwerger, Huang, et al., 2019; Mackey & 374 

Roering, 2011; Roering et al., 2009). We defined slumps as landslides with lower length/width 375 

aspect ratios (median = 1.57 ± 1.00, ±1 standard deviation), a strong signal of positive vertical 376 

velocity components in the toe and negative vertical velocity components in the source area, and 377 

one primary kinematic zone (Figure 2a). We defined earthflows as those with medium aspect 378 

ratios (median = 3.56 ± 1.88, ±1 standard deviation), one primary kinematic zone, and small 379 

magnitude, but mostly negative, vertical velocity components (Figure 2b). And we defined 380 

landslide complexes as those with higher aspect ratios (median = 5.13 ± 2.34, ±1 standard 381 

deviation), that are composed of multiple kinematic zones or even multiple landslides that 382 

coalesce into a single landslide mass (Figure 2c). Landslide complexes are relatively common in 383 

areas with slow-moving landslides (e.g., Cerovski-Darriau & Roering, 2016; Keefer & Johnson, 384 

1983; Simoni et al., 2013). 33% of our inventory were classified as slumps, 31% as earthflows, 385 

and 36% as landslide complexes. The mean 3D velocity magnitude was 0.585, 0.606, and 0.670 386 

m/yr for slumps, earthflows, and landslide complexes, respectively.  387 

 388 

 389 
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Figure 2. 3D velocity maps for example slump, earthflow, and landslide complex. (a–c) 

Horizontal velocity maps. Black arrows show horizontal vectors. Black circle shows latitude 

and longitude coordinates. (d–f) Horizontal velocity inversion uncertainty maps. (g–i) Vertical 

velocity maps for the three landslides. (j–l) Vertical velocity inversion uncertainty maps. 

Negative values correspond to vertically downward motion. Thick blue lines show the 

approximate location of the river channel at the toe of each landslide with dark blue arrows 

showing water flow direction. 
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3.2 Thickness, Volume, and Geometric Scaling Relations 390 

The non-uniform kinematic patterns exhibited by these landslides are also reflected in 391 

their inferred subsurface geometry (Figure 3). We find that the thickness of each landslide varies 392 

spatially and can vary by tens of meters within the landslide boundaries. The slip surfaces are 393 

generally concave-up, but are rough and irregular in places, especially for landslide complexes. 394 

The mean active thickness of the individual landslides ranged from 0.4 to 22.4 m, and the 395 

maximum active thickness ranged from 2.25 to 89.6 m. The mean, median, minimum, maximum, 396 

and standard deviation active thickness for each landslide are reported in Table S3.  397 

We calculated the minimum thickness uncertainty from uncertainties in the data in vector 398 

b following standard inverse theory for a sample of seven landslides representing the variety of 399 

style, size, and shape found in the study population (supporting information). We found that 400 

minimum thickness uncertainty increased with landslide size (Figure S3), ranging from ±1.5 to 401 

±3.8 m from the smallest to largest landslide sampled. To reduce computation time, we estimated 402 

the minimum thickness uncertainty for each landslide using a power function (Figure S3d) and 403 

propagated these uncertainties into the landslide volume calculations (Table S3). 404 

Next we describe our thickness inversion results for the three example types of landslides 405 

shown in Figure 2. We note again that these landslides represent their subgroups to first order. 406 

The example slump has one primary deep zone and the slip surface has a concave-up profile 407 

(Figure 3a). The slope of the slip surface deviates from the ground surface and is steeper near the 408 

headscarp and gentler near the toe. Some areas within the head of the landslide are inferred to 409 

have no active thickness because the values of b (equation 4) are slightly negative near the 410 

headscarp (Figure S4). For b to be negative, the divergence of the horizontal landslide flux (first 411 

term on the right-hand side of equation 3) must also be negative, which requires the landside 412 
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thickness to decrease in the direction of movement. This is not physically possible because the 413 

landslide thickness is by definition zero at the headscarp, so an inferred thickness of zero 414 

minimizes the misfit there.  415 

The example earthflow generally has a concave-up slip surface with some irregular 416 

bumps (Figure 3b). The slip surface more closely mimics the ground surface in the main 417 

transport zone, however there are some low thickness zones near the headscarp and landslide 418 

margins that result from negative b values (Figure S4). Lastly, the example landslide complex 419 

(Boulder Creek landslide complex) has several different active zones, each with an alternating 420 

concave-up and convex-up slip surface profile (Figure 3c). The landslide slip surface is rough 421 

and irregular over the length of the entire landslide, but each deep zone generally corresponds to 422 

the different kinematic units that comprise the landslide complex (Figure 2c). This large 423 

landslide has several areas that do not have a resolvable active thickness. These patches with low 424 

active thickness result from low velocity zones (i.e., the landslide toe) and the same 425 

characteristics of the velocity field described for the example slump and earthflow (Figures S4). 426 

Patches with negative b values must have negative flux divergence, which tends to force the 427 

inferred thickness to decrease in the direction of movement at those locations.   428 

Landslide zones with approximately zero inferred thickness should correspond to parts of 429 

landslides that are not currently active, however, as shown in Figure 3, we also observed low 430 

thickness zones in areas with detectable landslide motion. These low thickness areas in our 431 

inversions are likely a consequence of issues related to our landslide mapping, noisy velocity or 432 

slope data, or violations of the conservation of volume assumptions (e.g., non-uniform landslide 433 

density), and are better interpreted as zones where thickness is undefined, rather than where 434 

thickness is low. Because it is not possible to independently identify the exact cause of the 435 
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negative b values that result in low thickness zones with our dataset, we exclude these low 436 

thickness zones (< 0.1 m) from our analyses since the thickness is not determined there. We 437 

selected this threshold because it characterizes the typical thin soil depth in the Central Belt 438 

Franciscan mélange (Hahm et al., 2019). We find these areas typically correspond to regions 439 

near the landslide margins for slumps and earthflows, but are scattered throughout the body of 440 

larger landslide complexes, downflow from regions with negative b values (Figure 3). After 441 

excluding the low thickness zones, the mean active thickness of the individual landslides ranged 442 

from 1.06 to 25.4 m, which, as expected, is higher than the mean thickness range including the 443 

low thickness zones (0.4 to 22.4 m). For the remainder of the paper, we will report landslide 444 

metrics with these low thickness zones excluded and will report metrics including the low 445 

thickness zones in Table S3. 446 
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Figure 3. Landslide thickness inversions for example slump, earthflow, and landslide 

complex. (a–c) Landslide thickness maps. Thin orange lines show 5-meter thickness contours. 

Red dashed line shows profiles plotted in (d–i). Black dots show latitude and longitude 

coordinates. Thick blue lines show rivers and thin blue lines show deep channels incised into 

the landslide body. (d–f) Ground surface and slip surface elevation profiles. Dashed orange 

rectangle in (e) shows location of landslide headscarp in Figure S5. In subplot (f) the results of 

thickness inversion are vertically exaggerated by a factor of 10 relative to the elevation profile. 

(g–i) Landslide thickness and 3D velocity magnitude profiles. Hachures (a–c) and (g–i) 

identify areas with insufficient data to resolve thickness. 

 447 

Although we do not have borehole data to confirm our thickness estimates, we used the 448 

topography to verify the inferred slip surface elevation in several cases. Figure S5 shows the 449 

example earthflow has a clear headscarp that can be used to trace the sliding surface underneath 450 

the ground surface. The extension of the headscarp slip surface under the landslide provides 451 

confirmation that the inversion is approximating the slip surface elevation correctly. Figure S6 452 

shows another slow-moving landslide that has filled into a pre-existing valley. Transects across 453 

this landslide show the ground surface of the filled-in valley and that the slip surface has the 454 

shape of the pre-existing valley, providing additional confirmation that our inversions are 455 

approximating the slip surfaces correctly. In addition, we compared our thickness inversions to 456 

thickness estimates from lidar. Mackey and Roering (2011) used lidar to measure the toe height 457 

at the channel interface for dozens of landslides in the Eel River catchment, which is assumed to 458 

be minimum thickness estimates at those locations. Of those landslides, 10 (including slumps, 459 

earthflows, and complexes) can be used to make comparisons with our dataset. We found overall 460 
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good agreement between the landslides toe thickness estimated from lidar and from our 461 

inversions (Figure 4). 462 

 

Figure 4. Landslide toe thickness estimates from lidar compared to inverted toe thickness 

estimates. (a) Colored symbols show inverted thickness compared to lidar estimates for 10 

slumps, earthflows, and landslide complexes. We calculated the inverted toe thickness from 

profiles extracted across the toes and show the mean and standard deviation with error bars. 

Black line shows 1-to-1 line. (b) Two example landslide thickness maps draped on a lidar 

hillshade. Labels 1 and 2 correspond to the data points shown in (a). Hachures show zones 

with insufficient data to resolve thickness. Blue line shows the river channel. Red dashed line 

shows the profile line used to calculate toe thickness from the inversion. Toe thickness from 

Mackey and Roering (2011) is shown by the colored circles with black outline. 

 463 

Using our thickness inversions for each landslide, we estimate that the individual 464 

landslide volumes range from 7.012 x 103 to 9.747 x 106 m3 (Figure 5 and Table S3). Figure 5 465 

also shows the distribution of mean thickness, area, and volume for each landslide type. Slumps 466 

are the smallest landslide type with a median thickness of 5.49 ± 2.99 m (±1 standard deviation), 467 
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median area of 2.71 ± 2.05 x 104 m2, and median volume of 1.53 ± 1.88 x 105 m3. Earthflows are 468 

medium sized with an inventory median thickness of 6.99 ± 5.33 m, median area of 4.99 ± 3.26 x 469 

104 m2, and median volume of 2.87 ± 5.36 x 105 m3. And landslide complexes are the largest 470 

landslides, with a median thickness of 8.05 ± 4.34 m, median area of 1.58 ± 3.46 x 105 m2, and 471 

median volume of 1.22 ± 2.19 x 106 m3.  472 

We fit a power function to the volume-area to characterize the geometric scaling relations 473 

(equation 5a) for these slow-moving landslides. We also compared our inventory to a worldwide 474 

inventory of soil, undifferentiated, and bedrock landslides compiled by Larsen et al. (2010). We 475 

find that the slow-moving landslides in the northern California Coast Ranges are larger in both 476 

area and volume than most soil landslides, but smaller than the largest bedrock landslides around 477 

the world (Figure 5). The best fit volume-area power function exponent (with 95% confidence) 478 

for our inventory was γ = 1.306 (1.213, 1.399) (Figure 5). We observed an apparent break in the 479 

slope of the volume-area relation for the largest landslides in our inventory with area > 105 m2. 480 

To further investigate this break in slope, we also fit volume-area scaling as a function of 481 

landslide type and find that the break in slope is primarily associated with the landslide 482 

complexes. By fitting a power function to each landslide type, we find slumps γS = 1.493 (1.224, 483 

1.762), earthflows γEf = 1.535 (1.273, 1.796), and complexes γC = 1.172 (0.9858, 1.357). 484 

Although these parameters are not statistically distinct at the 95% confidence level, the fact that 485 

γS and γEf overlap more with each other than with γC supports the argument that the break in slope 486 

is likely related to landslide type. We report all of the geometric scaling parameters in Table S4.  487 

In addition, we calculated the thickness-area scaling relations using the mean thickness 488 

(equation 5b) to represent each landslide (Figure 5). We compared these scaling relations to 489 

point based estimates (lidar) and measurements (boreholes) of landslide thickness for slow-490 
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moving landslides in the northern California Coast Ranges (Mackey and Roering, 2011) and the 491 

Reno River catchment, Apennines, Italy (Simoni et al., 2013). The best fit thickness-area power 492 

function exponent (with 95% confidence) for the inventory ζ = 0.3058 (0.2129, 0.3987), 493 

indicating a weak increase in mean thickness with area for the inventory as a whole. We also fit 494 

thickness-area scaling as a function of landslide type and find slumps ζS = 0.4926 (0.2236, 495 

0.7615), earthflows ζEf = 0.5348 (0.2734, 0.7963), and for landslide complexes ζC = 0.1716 (-496 

0.0142, 0.3573). Therefore, landslide thickness significantly increases with area for slumps and 497 

earthflows (p-value = 0.0002 and 0.0006, respectively), but does not significantly vary with area 498 

for landslide complexes (p-value = 0.0694).   499 
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Figure 5. Landslide thickness, volume, and area geometric scaling relations. (a) Volume-area 

relations for our inventory and a worldwide inventory of soil, undifferentiated, and bedrock 

landslides (Larsen et al. 2010). (b) Volume-area relations for slumps, earthflows, and landslide 

complexes. (a, b) Thin diagonal black lines show volume-area for various constant mean 

thicknesses. (c) Thickness-area relations for our inventory (mean thickness), the worldwide 

inventory (Larsen et al., 2010), and slow-moving landslides in the northern California Coast 

Ranges (Mackey and Roering, 2011) and the Apennine mountains, Italy (Simoni et al., 2013). 

(d) Landslide thickness-area relations by landslide type. Orange circles in (b, d) correspond to 

the Boulder Creek landslide complex split into 5 smaller landslides (see Figure S7). Error bars 

show estimated minimum uncertainty estimates (supporting information). Red dashed vertical 

line shows an apparent break in scaling for the largest landslide complexes in our dataset. 

Histograms of landslide thickness, area, and volume show the size distributions for each 

landslide type. All fit parameter values are in Table S4. 

 500 

3.3 Frictional Strength 501 

Using equation 9, we back-calculated the landslide friction angle ϕ under dry and 502 

saturated conditions end members assuming nil cohesion. Additional landslide properties used in 503 

computations are listed in Table S2. The inferred friction angle ranged from ~6.8° to ~28° for 504 

dry conditions and ~13° to ~54° for saturated conditions (Table S3). Our inferred friction angles 505 

encompass friction angle values measured in the laboratory for Franciscan mélange rocks and 506 

landslide material (Figure 6). We also analyzed the friction angle as a function of landslide size 507 

and mean slope angle (Figure 6). We found a weak decreasing power-function relationship with 508 

increasing size and a linear increasing relationship with mean slope angle. The negative trend 509 
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with length indicates that the largest landslides are weaker, on average, than smaller landslides, 510 

while the positive trend with mean slope angle indicates that landslides with gentle slopes are 511 

weaker on average. Figure 6 also shows that the weakest landslides are the large landslide 512 

complexes that have relatively gentle slope angles while slumps are the strongest and steepest 513 

landslides in our inventory.  514 

 

Figure 6. Inferred friction angle for dry and saturated end-members. Friction angle compared 

to mean hillslope angle (a) and landslide length (b). Solid line lines in (a,b) correspond to best-

fit linear and power function curves. For dry conditions, best-fit parameters (with 95% 

confidence) k1 = 1.009 (0.8586, 1.158), k2 =-0.7137 (-3.279, 1.852), k3 = 57.1 (39.66, 74.55), 

and r = -0.2069 (-0.2582, -0.1556). For wet conditions, k1 = 1.935 (1.649, 2.22), k2 = -1.816 (-

6.699, 3.067), k3 = 108.4 (74.81, 142), and r = -0.2076 (-0.2597, -0.1555). (c) Estimated 

probability density function for the full inventory. Black arrows and colored symbols show 

lab-based and back-calculated friction angle values for the Franciscan mélange hosted Oak 

Ridge (Nereson et al., 2018), Two Towers (Schulz et al., 2018), and Minor Creek landslides 

(Iverson & Major, 1987; Iverson 2000) and the Calaveras Dam, which is founded on 
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Franciscan mélange (Roadifer et al., 2009). The Calaveras Dam samples are plotted for two 

different block-in-matrix proportions, which are reported as percentages.  

 515 

4 Discussion 516 

4.1 Landslide Kinematics  517 

Our 3D UAVSAR velocity measurements reveal 134 active slow-moving landslides in 518 

the northern California Coast Ranges moving at average rates from cm/yr to m/yr between 2016 519 

and 2019. The 3D velocity data confirm that the motion of these landslides is generally in the 520 

downslope direction. Many of the landslides had relatively low vertical velocities compared to 521 

their horizontal velocities that are due to the gradual slope angle (inventory mean ~ 17°) 522 

exhibited by these slow-moving landslides. However, we did observe segments with vertical 523 

uplift that tended to be at the landslide toe due to the concave-up slip surface geometry, and the 524 

tendency for longitudinal shortening in the direction of motion to occur at the toe. It is possible 525 

that a component of uplift of landslide surfaces could also result from dilation or swelling 526 

(volumetric expansion), but the magnitude is small, likely on the order of a few centimeters at 527 

most (Booth et al., 2020; Delbridge et al., 2016; Iverson, 2005; Schulz et al., 2018). Including 528 

volume changes such as this in the thickness inversion may help reduce uncertainty and improve 529 

our results, especially in the zones of low thickness found in many of the landslides, but the 530 

amount of dilation or compaction occurring throughout an entire landslide and its variation is 531 

generally unknown.  532 

Our findings agree with previous work in this region that shows that these landslides 533 

exhibit slow, spatially non-uniform downslope motion. Several of the landslides in our study 534 

area (e.g., Boulder Creek) have been moving in this manner since at least 1944 (Bennett, 535 



manuscript submitted to JGR: Earth Surface 

 

30 
 

Roering, et al., 2016; Mackey & Roering, 2011). Our findings also show that pixel offset 536 

tracking with very high resolution UAVSAR data is well-suited for monitoring landslides 537 

moving at rates > 10 cm/yr. Some satellites acquire very high resolution SAR with Spotlight 538 

modes, including the German TerraSAR-X and Italian COSMO-SkyMed that could provide 539 

similar measurements (e.g., Madson et al., 2019), however these data are not open-access. 540 

Lastly, we note that there are likely active landslides or landslide zones moving below the 541 

precision of our pixel offset tracking technique (< 10 cm/yr) and therefore cannot be observed 542 

with our approach. Landslides in our inventory that contain very slow-moving zones may result 543 

in unreliable thickness estimates. 544 

 545 

4.2 Landslide Geometry  546 

Our study is the first (to our knowledge) to apply the conservation of volume approach to  547 

invert for the thickness of multiple landslides in a given region. Previous work (Booth et al., 548 

2020; Booth, Lamb, et al., 2013; Delbridge et al., 2016) has used the same approach to analyze 549 

individual landslides, but these landslides occur in different regions and environmental 550 

conditions. Like these previous studies, however, we found that the active landslide thickness is 551 

variable and that the slip surfaces are rough and irregular in places. The non-uniform thickness 552 

and velocity of each landslide results in a non-uniform sediment flux, which has implications for 553 

understanding sediment motion along hillslopes (Booth et al., 2020; Guerriero et al., 2017). The 554 

shape of the slip surface likely also impacts the landslide kinematics and groundwater flow (Coe 555 

et al., 2009; Guerriero et al., 2014; Iverson & Major, 1987; Keefer & Johnson, 1983). Slip 556 

surfaces that are bumpy and rough may create additional resisting stresses that act to prevent 557 

runaway acceleration and permit long periods of slow landslide motion (Baum & Johnson, 1993; 558 
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Booth et al., 2018; Leshchinsky, 2019). Investigation of tectonic faults and glaciers also shows 559 

that slip surface roughness is an important parameter that controls frictional strength (Brodsky et 560 

al., 2016; Fang & Dunham, 2013; Meyer et al., 2018). 561 

For our thickness inversions we assumed that the depth-averaged velocity was equal to 562 

the surface velocity (i.e.,  f = 1) for all landslides. This block on slope approximation was made 563 

to simplify our regional scale analyses. Yet the borehole data from the Two Towers landslide 564 

shows that f ~ 0.96. While changing f uniformly for each landslide does not alter the spatial 565 

pattern of thickness or scaling exponents, it does impact the magnitude of the thickness and 566 

therefore the volume. Setting f = 0.96 would cause a 4% increase in the inferred thickness and 567 

volume of each landslide (h ~ 1/f) (Table S3). More work is needed to better constrain the depth-568 

averaged velocity for individual landslides in our field area, particularly to see if f differs with 569 

landslide type. Nonetheless, our findings indicate that most of the sliding surfaces are deep-570 

seated (mean thickness for inventory ~ 7.2 m) and thus are expected to lie within the 571 

unweathered Central Belt Franciscan mélange bedrock (Hahm et al., 2019). Therefore, the slow-572 

moving landslides in the northern California Coast Ranges can be classified as bedrock 573 

landslides.  574 

Using our landslide inventory, we developed new volume-area and thickness-area 575 

geometric scaling relations for slow-moving landslides. Geometric scaling relations are 576 

particularly useful for slow-moving landslides because these landslides rarely (if ever) evacuate 577 

hillslopes, or create clear scars or deposits that can be easily measured. As a result, most 578 

measurements of landslide thickness come from isolated boreholes, which are logistically 579 

challenging and expensive to install, and are difficult to extrapolate over an entire landslide. Our 580 

results provide best-fit volume-area power function exponents (γ ~ 1.2 – 1.5) that are comparable 581 
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to power function exponents for bedrock and soil landslides (Guzzetti et al., 2009; Larsen et al., 582 

2010; Bunn et al., 2020a). Recent work by Bunn et al. (2020a) found that deep-seated bedrock 583 

landslides in Oregon, USA had γbedrock ~1.4 – 1.6. Analysis of a worldwide landslide inventory 584 

by Larsen et al (2010) showed that soil landslides had a γsoil ~ 1.1 – 1.3, while bedrock landslides 585 

had γbedrock ~ 1.3 – 1.6.  586 

In addition, our best-fit thickness-area scaling power exponents (ζ ~ 0. 17 – 0.53) are also 587 

comparable (with a wide range) to previously published values for deep-seated landslides (Figure 588 

4c). Bunn et al. (2020a) found ζ ~ 0.41 – 0.58 for deep-seated bedrock landslides. Simoni et al. 589 

(2013) reported ζ = 0.44 from borehole inclinometer data from 23 slow-moving landslides in the 590 

Apennine Mountains, Italy. Handwerger et al. (2013) reported ζ = 0.29 derived from lidar-based 591 

estimates of landslide toe thickness from 69 landslides in the Eel River catchment, several of 592 

which are also analyzed in this study (e.g., Figure 4). Importantly, neither Simoni et al. (2013) or 593 

Handwerger et al. (2013) used large inventories (> 100) or spatially extensive measurements of 594 

landslide thickness, which are especially important for slow-moving landslides with variable 595 

thicknesses. Therefore, our new scaling relationships provide the most appropriate values for 596 

deep-seated slow-moving landslides, like earthflows, and could be used to help estimate 597 

sediment flux and landslide stresses in similar areas around the world. Yet, we note that the large 598 

range of scaling exponents suggests that scaling relations should be used with caution. Applying 599 

an incorrect scaling exponent to estimate volume for landslides with unknown thickness can lead 600 

to large errors in volume calculations (Larsen et al., 2010). 601 

Our findings show that the slow-moving landslides located in the northern California 602 

Coast Ranges have geometric scaling exponents that lie in between the soil and bedrock type 603 

landslides. However, examining the best-fit power function exponents by landslide type suggests 604 
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that slumps and earthflows display close to self-similar scaling (γself-similar =1.5), which is 605 

characteristic of bedrock landslides, while landslide complexes display scaling that is 606 

characteristic of soil landslides. Figure 5b shows that the landslide complexes with the largest 607 

areas display a scaling that tends to follow a constant mean thickness. We propose that landslide 608 

complexes have scaling relations that are close to soil landslides because: 1) the mean landslide 609 

thickness is limited by a strong layer in the mélange (and thus are similar to soil landslides that 610 

are limited by the soil thickness), or 2) that landslide complexes are an amalgamation of multiple 611 

smaller and shallower landslides. The second explanation provides a reason for why large 612 

landslide complexes tend to have multiple kinematic units (e.g., Aryal et al., 2012; Hu et al., 613 

2020) and further emphasizes the importance of having detailed landslide maps, especially when 614 

applying geometric scaling relations (e.g., Marc and Hovius, 2015).  615 

 616 

4.3. Thickness Inversion Challenges  617 

The inferred thickness of many of the slow-moving landslides, in particular the landslide 618 

complexes, can be highly variable with deeper active zones and thinner or zero thickness areas 619 

that are not currently moving (Figure 3). In addition, some patches with an inferred thickness of 620 

zero occurred in areas where b < 0, such that a negative divergence was required to match the 621 

observations (Figure S4). These negative b values typically arose when the product of the 622 

horizontal velocity and the topographic gradient was more negative than the vertical component 623 

of the surface velocity vector (equations 3 and 4). This situation could result from artifacts in the 624 

velocity or topographic data or from actual physical processes occurring in the landslide that 625 

would tend to increase the magnitude of the horizontal velocity, increase the magnitude of the 626 

topographic gradient, or decrease the magnitude of the vertical velocity relative to their true 627 
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values, assuming conservation of volume. In particular, one plausible physical mechanism that 628 

would decrease the magnitude of vud relative to that of 𝑢,-!/ or ∇𝑧,-!/ is dilation of landslide 629 

material as it deforms. That increase in volume would cause an additional positive vertical 630 

component to vud. Although we cannot determine whether errors in the velocity and topographic 631 

data, or actual physical mechanisms are responsible for the low inferred thickness zones, we find 632 

dilation a plausible explanation, especially near landslide headscarps, or in other zones of 633 

extension, indicating macro-scale decreases in density.  634 

Additionally, it is important to note that the irregular thickness patterns observed in some 635 

landslides may not align with inferred thickness based on geomorphic or structural 636 

interpretations. This discrepancy is likely related to the long-lasting geomorphic imprint that 637 

slow-moving landslides have made on the landscape. Landslide surface morphology may last for 638 

decades or longer after a landslide completely stops moving (e.g., Booth et al., 2017), which can 639 

make it challenging to infer the active landslide thickness without kinematic data. Although our 640 

approach is useful for identifying the currently active portions of landslides and inferring their 641 

thickness based on volume conservation (with assumptions), it does not allow us to infer the 642 

subsurface geometry of the often larger inactive landslide body. As a result, we emphasize the 643 

need for more comparisons between ground- and remote sensing-based investigation of landslide 644 

geometry. In particular, direct comparison between numerous ground-based measurements from 645 

boreholes and structural mapping are needed to widely test the results of our remote sensing 646 

approach. Nonetheless, we find our thickness inversions are producing reasonable estimates of 647 

landslide thickness in the cases we were able to test (Figures 4, S5, and S6). 648 

 649 

4.4 The Boulder Creek Landslide Complex 650 
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We found that the inferred active thickness for the Boulder Creek landslide complex was 651 

particularly irregular and challenging to explain based on a priori assumptions of landslide 652 

geometry. While we expect areas that are not currently active to thin, and even have zero 653 

thickness in places (e.g., parts of the landslide toe), the active transport zone on Boulder Creek 654 

also contains thin and thick patches (Figures 3c, 3f, and 3i). One possible explanation for this 655 

variability is related to patches of local density changes (e.g., dilation) that could result in 656 

negative b values. In addition to these potential artifacts, another possible cause of these low 657 

thickness zones is related to the large channel network incised into the landslide (Figure 3). In 658 

some places the channel reaches depths of 15-20 meters (Figure S8). Since the thickness is 659 

measured as the vertical distance from the ground surface to the inferred basal sliding surface, 660 

the predicted thickness is expected to be low in places surrounding the channel if the channel 661 

depth is similar to the landslide thickness. Our findings indicate that the channel has incised to 662 

depths that approach the predicted sliding surface in several places (Figure S8). However, the 663 

channel has not incised deeper than the landslide base because we find the channel is moving 664 

with similar velocity to the surrounding regions (Figure 2c). 665 

The distinct kinematic zones within Boulder Creek landslide complex also indicate that 666 

smaller, faster, and possibly shallower features are superimposed on a larger, slower, and 667 

possibly deeper-seated failure (Figure 2c). If multiple failure planes are indeed present, that 668 

would violate the assumption of a constant f throughout the landslide and cause unreliable 669 

thickness estimates. Specifically, the surface velocity would be much greater than the depth-670 

averaged velocity (i.e., f would be much smaller) within the superimposed landslide. This would 671 

systematically cause the inferred thickness to be too large near the headscarp of the 672 

superimposed landslide and too shallow near its toe, since the divergence of the surface velocity 673 
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field would be much greater than the divergence of the depth-averaged velocity field at those 674 

locations. To further explore the hypothesis that the Boulder Creek landslide complex is 675 

composed of multiple smaller landslides, we delineated Boulder Creek into 5 smaller sub-676 

landslides and performed a thickness inversion for each sub-landslide (Figure S7). While the 677 

thickness patterns are similar to the thickness inversion for the full landslide complex, the 678 

magnitude of the inferred thickness differs in some places, and the area of each landslide is 679 

smaller, which places them into the space mostly populated by earthflows on the thickness-area 680 

and volume-area plots (orange circles in Figures 5b and 5d). Some of these differences in the 681 

magnitude of the thickness estimate are due to differences in the pixel resolution of the sub-682 

landslides (10 m pixel) and the full landslide (20 m pixel). Nonetheless, mapping landslide 683 

complexes as one large landslide results in a lower mean thickness relative to the landslide area 684 

which affects the geometric scaling relations. While more investigation is warranted, our 685 

thickness inversions have caused us to reevaluate how we think about large landslide complexes.   686 

 687 

4.5 Landslide Strength  688 

Our back-analysis of landslide strength suggests that there is a weak decreasing 689 

relationship between landslide size and strength and an increasing relationship between mean 690 

slope angle and strength (Figure 6; Figure S9). The increasing relationship between mean slope 691 

angle and friction angle was expected because steeper landslides must be stronger to maintain 692 

force balance (equation 9). The decreasing relationship between landslide size and friction angle 693 

is notable and intriguing.  We hypothesize that larger landslides are weaker than smaller 694 

landslides because of strength heterogeneity in the Franciscan mélange bedrock and the 695 

increased likelihood of incorporating weak material within larger volumes. Laboratory 696 
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measurements of the strength of the Franciscan mélange rocks have shown that the proportion of 697 

the blocks hosted in the argillaceous matrix controls the overall rock strength (Roadifer et al., 698 

2009) (Figure 6). This implies that larger landslides may have a decreased proportion of blocks, 699 

which are not uniformly distributed, and are therefore controlled by the weak argillaceous 700 

matrix.  701 

Scale-dependent strength has also been observed along other landslides and faults. 702 

Brodsky et al. (2016) suggested that faults are weaker at large spatial scales because they 703 

encompass larger weak zones. A recent study by Bunn et al., (2020b) found that the inferred 704 

shear strength of landslides decreases with increasing landslide size. They proposed that smaller 705 

landslides were stronger because they occur in cemented cohesive materials and larger landslides 706 

were in a residual state. Although we assumed nil cohesion to back-calculate the residual 707 

frictional strength of the active landslides, it is likely that cohesion is important in controlling the 708 

initial landslide failure due to the high-clay content of the Central Belt Franciscan mélange (e.g., 709 

Milledge et al., 2014). 710 

Our inferred friction angles also depend on wetness conditions. Due to the high seasonal 711 

rainfall in the northern California Coast Ranges, these slow-moving landslides are typically 712 

saturated (or nearly saturated) during the wet season and partially saturated or dry during the dry 713 

season (Hahm et al., 2019; Iverson & Major, 1987; Schulz et al., 2018). Direct comparison with 714 

friction angle values measured in the laboratory and back-calculated for Franciscan mélange 715 

rocks and landslide materials provides some insight into our findings. For saturated conditions 716 

we find that the inferred friction angles for medium to large earthflows and landslide complexes 717 

overlap the measured friction values from the Two Towers earthflow (Schulz et al., 2018), Minor 718 

Creek earthflow (Iverson and Major, 1987), and Oakridge landslide complex (Nereson et al., 719 
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2018). The majority of the smaller slumps have saturated friction angles that are significantly 720 

higher than these three landslides. The saturated friction values for smaller slumps, earthflows, 721 

and landslide complexes have more overlap with measured rock friction values that depend on 722 

the block-in-matrix proportion (Roadifer et al., 2009). Interestingly, the dry friction angles for all 723 

landslide types have more overlap with lab-based friction measurements for the landslides. Yet, 724 

it is unlikely that most of these landslides, especially the larger landslides, become completely 725 

dry. Instead, the true landslide-scale friction angle values likely lie somewhere between our 726 

inferred values for saturated and dry conditions.  727 

We suggest that some of these differences between lab-based and inferred friction angles 728 

may be attributed to commonly observed differences in laboratory- and field-scale measurements 729 

that are often related to large scale spatial heterogeneity in the field (e.g., Marone, 1998; Van 730 

Asch et al., 2007). In addition, our assumption of nil cohesion can partially explain the higher 731 

friction values for saturated conditions (Bunn et al., 2020b). The additional strength imparted by 732 

cohesion would act to reduce the inferred friction angle values to maintain equilibrium (equation 733 

9). We assumed nil cohesion because the landslides have moved significantly over the study 734 

period (and likely much longer), but it is likely that cohesion is important for the clay-rich 735 

landslide material and future work needs to better account for temporal changes in cohesion, 736 

which may be especially important for landslides that completely stop moving during dry 737 

periods. While the large spread of inferred friction values makes it difficult to identify a single 738 

representative value for slow-moving landslides in the northern California Coast Ranges, our 739 

results further highlight the heterogeneous nature of the Central Belt Franciscan mélange 740 

lithologic unit. Similar to the recent findings of Bunn et al., (2020b), our findings also suggest 741 

that landslide type, mean slope angle, and wetness conditions may provide some first-order 742 
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information on relative landslide strength at the regional scale. Furthermore, our findings have 743 

implications for understanding landscape evolution and agree with previous work that shows that 744 

over geomorphic timescales, we generally expect to find steeper hillslopes where hillslope 745 

materials are stronger (e.g., Korup et al., 2007; Roering et al., 2015). More work is needed to 746 

understand our findings in the context of landscape evolution because the currently active 747 

landslides are just the most recent snapshot of the landscape, and the slopes they occur on have 748 

probably been shaped by numerous previous generations of similar landslides (e.g., Mackey and 749 

Roering, 2011; Roering et al., 2015). 750 

 751 

4.6 What Controls the Size of Slow-moving Landslides?  752 

Landslide size is set by the landslide mechanical properties, slope geometry, and 753 

environmental conditions. For most landslides, the maximum size is typically limited to the 754 

maximum hillslope size, such that the landslide length does not exceed the hillslope length. The 755 

landslide thickness is typically set by the location of a weak layer beneath the ground surface, or 756 

at a depth where there are changes in strength and permeability, such as the soil to bedrock 757 

transition or the bottom of the critical zone (i.e., the zone that extends from the ground surface 758 

down to unweathered bedrock) (Booth, Roering, et al., 2013; Larsen et al., 2010; Milledge et al., 759 

2014). Using a 3D slope stability model for shallow soil landslides that accounts for the forces 760 

acting on the landslide basal slip surface, lateral margins, and passive/active wedges at the 761 

toe/head, Milledge et al. (2014) found that the critical area and depth that can fail as a landslide 762 

depends on the topography, pore-water pressure, and landslide material properties, including 763 

density, cohesion, and friction angle. We note that their modeled landslides have less complex 764 

geometries than the landslides in our inventory. In their model the pore-water pressure plays a 765 
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fundamental role in determining the critical landslide size and failure depth, such that higher 766 

pore-water pressures decrease the critical size required for failure. Large landslides therefore 767 

occur when high pore pressures are reached over a correspondingly large spatial area. At our 768 

northern California Coast Range study site, the relatively thin, but laterally extensive critical 769 

zone that is often saturated during the wet season (Hahm et al., 2019), may promote laterally 770 

extensive landslides by elevating the water table height simultaneously over large areas.  771 

Milledge et al. (2014)’s model also predicts that landslide thickness should increase as 772 

the square root of the landslide area and that the failure depth sets the minimum landslide area. 773 

Our best-fit thickness-area scaling exponents for slumps and earthflows are close to a square root 774 

scaling (exponents ~0.5 with large 95th confidence intervals). Our results also suggest that the 775 

landslide thickness controls the minimum area, but does not bound its maximum size. Instead, 776 

slow-moving landslides can continue to grow in area by becoming a landslide complex 777 

consisting of multiple, connected, sub-landslides without becoming significantly deeper on 778 

average. Large landslide complexes can occupy multiple hillslopes, and fill valleys and 779 

catchments such that their size may exceed the typical hillslope size, in contrast to landslides that 780 

fully evacuate their hillslopes (e.g., Jeandet et al., 2019). Thus, it seems that the catchment size 781 

sets the maximum area for slow-moving landslides. Our thickness inversion results also indicate 782 

that large landslides are weaker than small landslides. This finding may indicate that large 783 

landslides become large by incorporating weak material. It is possible that the largest landslides 784 

grow over time and take decades to develop (e.g., Mackey & Roering, 2011). As many of our 785 

landslide complexes seem to be composed of several smaller sub-landslides or kinematic zones, 786 

it is possible that these features have connected through time as slip surfaces propagate along the 787 

slope. 788 
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 789 

5 Conclusions         790 

 We measured the 3D surface velocity of more than one hundred slow-moving landslides 791 

in the northern California Coast Ranges with data from the NASA/JPL UAVSAR. We used 792 

volume conservation techniques to infer the active thickness, volume, and strength of each 793 

landslide. The thickness of each landslide is variable and can vary by tens of meters sometimes 794 

resulting in an irregular slip surface geometry. Volume-area geometric scaling relations suggest 795 

that these landslides have similarities to both soil and bedrock landslides around the world. 796 

Although their failure planes are likely hosted in unweathered bedrock, their thickness seems to 797 

be limited, producing a scaling similar to soil landslides for the largest landslide complexes. The 798 

inferred residual friction angles are also scale-dependent, like faults, such that large landslides 799 

complexes tend to be weaker than small landslides such as slumps. This decrease in inferred 800 

friction angle with landslide size is likely because larger landslides are composed of larger 801 

proportions of weak material. Our study represents the first to use the conservation of volume 802 

approach for numerous landslides occurring under the same environmental conditions. Our 803 

results provide key insights into the subsurface geometry and strength that control the behavior 804 

of slow-moving landslides. Our work shows how state-of-the-art remote sensing techniques can 805 

be used to better understand landslide processes for hazards and to quantify their contribution to 806 

landscape evolution.  807 
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