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Abstract of the Dissertation

Collective Dynamics and Coherent Diagnostics

of Microbunched Relativistic Electron Beams

by

Agostino Marinelli

Doctor of Philosophy in Physics

University of California, Los Angeles, 2012

Professor James B. Rosenzweig, Chair

The x-ray free-electron laser has established itself as the brightest available source

of x-rays, extending the coherence and brilliance properties of conventional atomic

lasers down to the sub-Angstrom level. The high-brightness electron beams that

are used to drive the free-electron laser process, undergo a number of collective

instabilities that can generate complex phase-space structures and induce the

emission of coherent radiation, an effect that is generally termed microbunching

instability.

The main subject of this dissertation is the collective evolution of beam mi-

crobunching under the effect of longitudinal space-charge forces. We develop

a three-dimensional kinetic theory of space-charge effects leading to collective

suppression and amplification of beam microbunching. This model gives, for

the first time, a fully self-consistent description of the space-charge instability,

with the inclusion of three-dimensional and thermal effects. After establishing

a self-consistent theoretical foundation for space-charge effects, we present two

experiments related to the space-charge instability. The generation of broad-

band coherent undulator radiation with a longitudinal space-charge amplifier is
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demonstrated experimentally for the first time. This experiment extends the

capabilities of free-electron laser facilities by allowing the generation of coherent

broadband radiation pulses, thus accessing regimes of operation currently unavail-

able for fourth generation light sources. Finally a coherent diffraction imaging

technique for the reconstruction of beam microbunching is designed and experi-

mentally tested. This technique is based on the application of an oversampling

phase-retrieval method to the far-field coherent transition radiation emitted by a

microbunched electron beam and has applications in the diagnostic of compressed

electron beams and free-electron lasers.

While the microbunching instability is generally regarded as a detrimental

effect, this work shows that the coherent effects associated with the induced

microbunching can be optimized and used to our advantage for the development

of new coherent radiation sources and advanced beam diagnostics.
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CHAPTER 1

Introduction

1.1 The x-ray free-electron laser

Since their invention in the 1950s, lasers have risen to prominence as one of the

fundamental tools for science and technology. The unique intensity and coherence

properties of laser light, along with the great flexibility in temporal and spacial

pulse shaping, have made lasers powerful instruments for science in a wide va-

riety of fields, ranging from ultra-fast imaging to inertial fusion. Extending the

spectral range of lasers to x-rays has long been a dream for scientists, since the

wavelength associated to x-rays (on the Angstrom level) allows imaging at the

characteristic spatial scale of atomic and molecular structures. However, apply-

ing the techniques of atomic lasers to x-rays has so far proven extremely difficult

due to the challenges of generating a population inversion in the inner atomic

shells associated with sub-nanometer wavelengths.

The generation of coherent x-rays has recently been achieved with free-electron

lasers (FELs) [3]. The physics of free-electron lasers is different with respect to

atomic lasers, in which coherent radiation is emitted and amplified due to the

population inversion of discrete energy levels in a medium. Instead, in an FEL,

the coherent radiation is emitted by relativistic electrons traveling in a periodic

magnetic field and undergoing an unstable interaction process with the radiation

itself. Despite the radically different physics associated with the generation of
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photons, the radiation pulses generated by an FEL share the same properties as

conventional lasers, i.e. transverse coherence, high peak power (on the order of

10 GW), short pulse duration (on the order of 10 fsec) and narrow bandwidth

(typically ∆λ/λ ' 10−4 to 10−3).

Compared to other sources of x-rays for scientific research, most prominently

synchrotrons, the x-ray FEL has a larger peak brilliance by 10 orders of magni-

tude, representing a ground-breaking advance for x-ray science. The high peak

brightness of x-ray FEL pulses, combined with their short duration, allows single-

shot coherent diffraction-imaging down to the Angstrom level, and enables an en-

tirely new set of revolutionary imaging experiments. In practice, the x-ray FEL

allows the imaging of samples that are either too sensitive to radiation damage

(thanks to the short pulse duration that allows collection of a diffraction pattern

before the sample is destroyed) or that are impossible to be grown into large

crystals (thanks to the high peak power that allows the single-shot imaging of

nano-crystals flowing in a gas-jet [2], see Fig. 1.1). Recent experiments at the

LCLS include the imaging of protein nano-crystals and viruses [1] (see Fig. 1.1).

Furthermore, the short pulse duration will allow future time-resolved investiga-

tion of atomic processes down to the femtosecond level, i.e. on the characteristic

time-scale of the electron orbit around the nucleus. Other applications of the

FEL are the study of matter at high energy density [5] and atomic physics [6]. A

review of the physics and history of x-ray FELs can be found in Ref. [7]
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Figure 1.1: Image of the mimivirus reconstructed from an x-ray diffraction pat-
tern at the LCLS [1] (left image) and injection scheme for nanocrystalline samples
for single-shot imaging at x-ray FEL facilities [2].

1.2 High Brightness Relativistic Electron Beams for Free-

Electron Laser Applications

Relativistic electron beams play an increasingly important role in science. In

advanced applications such as high gain free-electron lasers, plasma wakefield

accelerators or linear particle colliders the brightness of the beam, defined as the

density in six-dimensional phase-space, is a key feature.

Some examples of high-brightness electron beam facilities are the the Linac

Coherent Light Source electron injector at the Stanford Linear Accelerator Center

(see e.g.[3]) or the Pegasus Laboratory of the University of California, Los Angeles

(see [8]). In these facilities, a high intensity laser excites a photo-cathode gener-

ating an intense electron bunch which is then accelerated to relativistic energies

by a series of radio-frequency cavities. The high-density in phase-space can be

converted into high volume density by longitudinal compression and strong trans-

verse focusing, thus enabling applications that require the excitation of intense
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electro-magnetic fields. An extensive review on the physics of high brightness

injectors can be found in

This dissertation is mainly devoted to the study of instabilities in free-electron

laser drive beams. To understand the connection of our work with x-ray free-

electron lasers we give a brief introduction to the physics of free-electron lasers.

In a free-electron laser, an intense relativistic electron beam propagates in a

periodic system of permanent magnets called an undulator. The undulator excites

a transverse oscillating motion which causes the beam to emit radiation. The

interaction between the beam itself and the collective radiation field generated

by the electrons gives rise to an unstable response, with an exponential growth

of the field intensity as a function of time.

The period of the undulator is typically a few centimeters long but the emitted

radiation is doppler-shifted by the relativistic electrons, with a resulting radiation

wavelength of :

λr = λw
1 +K2

2γ2
(1.1)

where γ is the beam energy in units of mc2 and K = eB0

mckw
is the undulator

parameter, with e and m being respectively the electron charge and mass, B0 the

peak undulator field and kw = 2π/λw being the undulator wave-number. The

scaling of the radiation wavelength with energy (∝ 1/γ2) makes the free-electron

laser an attractive option for the generation of coherent x-ray pulses.

The radiation power at the emission wavelength λr grows exponentially as a

function of time as [9]:

P = P0e
ct/Lg (1.2)

where the FEL power gain-length is given by Lg = λw/2
√

3πρ, with the Pierce

parameter being defined as: ρ = (Kωp/4ckw)2/3. The beam plasma frequency is
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Figure 1.2: Radiation Power for the Linac Coherent Light Source as a function
of the position in the undulator [3].

given by ωp =
√
n0e2/mγ3ε0, with n0 being the beam volume density. Typical

values for the Pierce parameters in operating FEL facilities are on the order of

ρ ' 10−4/10−3.

Note that the FEL gain-length scales proportionally to γ/n
1/3
0 , which means

that high beam density (thus high beam brighness) is required for efficient FEL

operation (i.e short gain-length) at high beam energy.

In addition to the high density, the electron beam needs to satisfy other re-

quirements on the energy-spread and transverse emittance. The FEL physical

process is based on a resonant interaction between electrons and radiation in

which the velocity of the electrons is matched to the radiation frequency so that

the radiation slips forward with respect to the particles by one radiation wave-
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length per undulator period. For an efficient FEL interaction, all the electrons

have to be close to the resonant velocity to guarantee the velocity spread in the

beam does not disrupt the resonant interaction.

Energy-spread and transverse emittance generate a longitudinal velocity-spread

that can compromise the FEL process. From the kinetic theory of free-electron

laser it can be shown that the requirements on the beam quality are given by

(see e.g. Ref [10]):

σγ/γ � ρ (1.3)

and:

krεLg/βf � 1. (1.4)

where σγ is the energy spread of the particles in units of mc2, ε is the transverse

emittance, defined as the beam density in transverse phase-space, kr = 2π/λr

and βf being the beta-function of the electron beam.

From the above scaling laws it follows that high density, low emittance and

low energy-spread (i.e. high brightness) are critical features for free-electron laser

operation at short wavelengths. The generation and transport of high-quality

electron beams is key in the successful operation of x-ray FELs.

1.3 The Microbunching Instability and the Longitudinal

Space-Charge Amplifier

Due to their high brightness (and thus high-density) the electron beams that

drive the FEL instability undergo a number of collective instabilities that can

parasitically amplify shot-noise and generate an undesired density modulation

(or microbunching) in the electron beam [11]. These instabilities can degrade the
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performance of the FEL and cause the emission of coherent radiation in diag-

nostic stations, making the imaging and diagnostics of high-brightness electron

beams extremely challenging. This type of process is usually referred to as mi-

crobunching instability and it is caused by the coupling of collective interactions,

like space-charge or coherent synchrotron radiation, to longitudinal motion in dis-

persive systems (for example, magnetic chicanes). The microbunching instability

has been the subject of intense research in the past few years and it represents the

main subject of this dissertation. The mitigation and control of this instability

has proven to be a critical issue in the operation of x-ray free-electron laser [12].

Furthermore, the understanding of the collective effects associated with this in-

stability has led to new important concepts, such as the longitudinal space-charge

amplifier [13] and the suppression of shot-noise in FEL beams [14, 15, 16].

The longitudinal space-charge amplifier (LSCA) has recently been proposed

to extend the capability of x-ray FEL facilities to generate broad-band coherent

radiation pulses [13]. In fact, while the narrow-bandwidth is generally regarded

as an attractive feature of the FEL, it ultimately limits the capability of FELs to

generate ultra-short radiation pulses with duration below the cooperation length.

The LSCA exploits the longitudinal space-charge induced microbunching in-

stability to generate and amplify strong density perturbations in the electron

beam at short wavelengths. The instability is caused by the longitudinal space-

charge interaction coupled to longitudinal motion in magnetic chicanes. While

the microbunching instability is generally regarded as a detrimental effect, in an

LSCA this process is optimized and controlled to induce the emission of coherent

radiation in a downstream undulator. To achieve saturation , several amplifica-

tion stages are cascaded, each composed of a focusing channel and a magnetic

chicane (see Fig. 1.3).
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Figure 1.3: Schematics of a longitudinal space-charge amplifier: longitudinal
space-charge, in combination with dispersive transport in magnetic chicanes, am-
plifies microbunching in the electron beam. The microbunched electron beam
emits coherent radiation in a downstream undulator.

Since the longitudinal space-charge instability is a broad-band effect (i.e. it

amplifies microbunching on a broad range of wavelengths), the coherent emission

can happen on a broad spectral bandwidth, depending on the emission character-

istics of the undulator. For typical high-brightness beam parameters, an LSCA

can emit coherent radiation with power comparable to an FEL operating at the

same central wavelength, with a bandwidth of ∆λ/λ ' 20% 30%. This feature

enables the generation of few-optical cycle radiation pulses, ranging down to the

atto-second level [17]. Note that the recent ground-breaking development of few-

optical cycle coherent radiation pulses [18], enables the generation of soft x-ray

attosecond pulses with an LSCA either with direct seeding at 30 nm or with laser

compression of electron beams in an enhanced-SASE configuration [19]. Note also

that under certain optimized conditions (which will be discussed later in this dis-

sertation), an LSCA seeded from shot-noise can generate transversely coherent

radiation pulses, a property shared with the FEL.

In addition to its unique spectral properties, the LSCA is more robust than

the FEL to non-ideal beam conditions and it has been proposed as an effective

way to generate coherent radiation with advanced particle accelerators such as
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laser-wakefield and plasma-wakefield accelerators, which haven’t met the beam

quality requirements for FEL operation [13].

1.4 Outline and Scope of this Dissertation

The main subject of this dissertation is the collective evolution of beam mi-

crobunching and the coherent diagnostics of microbunching in high-brightness

electron beams.

While the theory of longitudinal space-charge interactions has been the sub-

ject of intense research in the FEL community [20, 21, 22, 23], a fully self-

consistent theory had yet to be developed, leaving the role of emittance and

energy-spread in the physics of the space-charge instability unexplained. Since

the control of space-charge effects has a number of important applications for

the improvement of x-ray free-electron lasers, this subject needed a more rigor-

ous theoretical foundation. For this reason we give, for the first time, a fully

kinetic and self-consistent description of this process in six-dimensional phase-

space. This analysis enables the study of transverse and longitudinal thermal

effects, which strongly influence the formation of microbunching. In particular,

transverse thermal effects influence the spatial distribution of the microbunching

generated from shot-noise. This, in turn, determines the transverse coherence

properties of a LSCA and affects the diagnostics of electron bunches with co-

herent transition radiation. Longitudinal thermal effects can suppress the gain

at short wavelengths, thus limiting the operation of an LSCA in the VUV/soft

x-ray spectral region. This theoretical model gives deep insight into the physics

of longitudinal space-charge effects and represents a useful tool for the optimiza-

tion of space-charge based experiments, such as the LSCA and the shot-noise

suppression schemes proposed by Gover [14] and Ratner [15].
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In addition to a fully consistent theory, the LSCA was also missing an ex-

perimental confirmation. In fact, while coherent radiation induced by the mi-

crobunching instability had been previously observed at several FEL injectors

[24, 25, 26, 27], the optimization and control of the instability for the generation of

transversely coherent radiation pulses had not been demonstrated experimentally.

For this reason, we performed a proof of principle demonstration of this scheme

at the NLCTA test accelerator at SLAC. We turned the three-chicane setup of

the ECHO experiment into a cascaded space-charge amplifier and demonstrated

the generation of single-mode coherent undulator radiation from the space-charge

instability. This experiment paves the way for the generation of broad-band co-

herent radiation at FEL user facilities and represents a significant advancement

in the fields of high-brightness beams and coherent light sources.

The last subject tackled in this dissertation is the coherent diagnostics of

beam microbunching. We designed and experimentally demonstrated a tech-

nique for reconstruction of the spatial distribution of beam microbunching. This

experiment is the first of its kind. In fact, all previous work on the subject was

primarily focused on the characterization of the coherent radiation emitted by

microbunched electron beams rather than the structural determination of the mi-

crobunching from the coherent radiation itself. We performed a seeded coherent

transition radiation experiment at the NLCTA using the ECHO seeding beamline

and used an oversampling phase-retrieval technique for the reconstruction of the

laser induced microbunching. This type of technique has several applications as

an advanced diagnostics for FELs and for the imaging of compressed electron

beams that are affected by the microbunching instability.

The following is a detailed outline of this dissertation. In the next chapter

we discuss the basic mathematical tools for the description of collective effects
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and coherent radiation process in relativistic electron beams. From the simple

introductory analysis of the space-charge instability discussed in chapter 2, it will

be clear that this type of collective process is strictly related to the physics of

relativistic longitudinal plasma oscillations. With this idea in mind, in chapters

3 and 4 we develop a fully kinetic model of the evolution of space-charge waves

in a relativistic electron beam. In particular, in chapter 3 we describe the theory

of space-charge waves in the context of an eigenvalue-eigenmode problem. In

this approach we construct a set of self-consistent solutions to the system of

Vlasov-Poisson equations in the form of propagating longitudinal space-charge

waves. Our analysis includes the effects of longitudinal thermal motion induced

by energy-spread and transverse emittance, transverse motion due to betatron

focusing, and three-dimensional effects due to the finite transverse size of the

electron beam.

The plasma eigenmodes of the beam are used in chapter 4 as an expansion

basis for an arbitrary initial perturbation in six-dimensional phase-space. The

mode decomposition of the initial perturbation is performed by exploiting the

bi-orthogonality property of the plasma eigemodes and their set of adjoint eigen-

modes. The bi-orthogonal mode expansion of the initial value represents the

solution to an initial value problem and describes the evolution of an arbitrary

initial perturbation in six-dimensional phase-space under the effect of longitudinal

space-charge forces.

The mathematical formalism developed in chapters 3 and 4 is employed in

chapter 5 to give a fully kinetic description of the microbunching instability in-

duced by longitudinal space-charge forces. This analysis allows the study of new

phenomena, such as the effect of the emittance-induced Landau damping on the

microbunching amplification process and the suppression of higher-order modes
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induced by transverse focusing.

The modal analysis derived in the first three chapters is impractical in the

case of a fully degenerate beam (i.e. a transversely laminar beam with a radius

that is significantly larger than the microbunching wavelength as seen in the

rest frame). In this case a great number of eigenmodes should be included to

correctly describe the space-charge fields of the beam. To address this problem, in

chapter 6 we derive a quasi three-dimensional theory of the space-charge induced

microbunching instability. In this approach the electron beam is approximated as

an unmagnetized relativistic uniform plasma and the evolution of microbunching

is described in terms of plane-waves.

In chapter 7 we apply the theoretical concepts developed in the first part

of the dissertation to a space-charge amplification experiment. We report the

first experimental demonstration of the longitudinal space-charge amplifier at the

NLCTA. The experiment demonstrates cascaded amplification of microbunching

through three LSCA stages starting from shot-noise, and the subsequent emission

of transversely and longitudinally coherent radiation in a magnetic undulator.

In chapter 8 we describe an advanced diagnostic technique for the recon-

struction of the transverse dependence of beam microbunching and report on its

experimental demonstration at the NLCTA. We give a brief description of the

oversampling phase-retrieval method and describe its application to the recon-

struction of beam microbunching from the far-field pattern of coherent optical

transition radiation. Finally, we show experimental results which confirm the

use of this technique as an advanced imaging method for microbunched electron

beams.

The last chapter summarizes the most relevant findings, puts them in context

and suggests future research directions.
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CHAPTER 2

Introduction to the Collective Theory of Beams

and Coherent Radiation Processes

In this chapter we discuss the basic mathematical tools for the description of

collective beam dynamics in phase-space. We will refer to this subject as the

kinetic theory of particle beams. Starting from the Klimontovich equation, we

will derive the Vlasov equation and discuss its coupling to the equations that

describe the collective electromagnetic fields. We will then show the application

of these concepts to the simple case of the microbunching instability in the one-

dimensional limit. Finally, in the last section we briefly discuss coherent radiation

processes from relativistic electrons and their connection to beam microbunching.

2.1 The Klimontovich Equation

A relativistic particle beam is a collection of interacting point-like masses. A

collection of N particles in six-dimensional phase-space can be modeled by the

Klimontovich distribution:

K( ~X, t) =
∑
n

δ
(
~X − ~Xn(t)

)
, (2.1)

where ~Xn(t) = (~xn(t), ~pn(t)) is the vector representing the six-dimensional phase-

space coordinate of the nth particle. K can be interpreted as a beam density
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distribution in phase-space, i.e. the quantity dN = K( ~X, t)d6 ~X is the number of

particles contained in the infinitesimal phase-space volume d6 ~X at the time t.

By using the simple relationship ∂tf (x− a(t)) = −ȧ∂xf (x− a(t)) we obtain

that:

∂tK + ~̇x∂~xK + ~̇p∂~pK = 0, (2.2)

where ~̇x and ~̇p are evaluated at the phase-space position (~x, ~p) using the equations

of motion of the system. For example, if (~x, ~p) are a set of canonical variables,

then the equations of motion can be derived by a Hamiltonian

~̇x = ∇~pH(~x, ~p) (2.3)

~̇p = −∇~xH(~x, ~p). (2.4)

In general, it is not required that the phase-space coordinates be a set of

canonical variables, as long as the time derivative of the phase-space vector is

a direct function of the phase-space position, i.e. ~̇x = ~Dx(~x, ~p), ~̇p = ~Dp(~x, ~p).

In fact, in this dissertation we will often use the following phase-space vector

(~x, ~β⊥, γ), where ~x is the position vector, ~β⊥ is the transverse velocity normalized

to the speed of light and γ is the kinetic energy in units of mc2. These are not a

set of canonical variables, nevertheless the Klimontovich equation, as well as the

Vlasov and Boltzmann equations that follow from it, still apply.

2.2 The ensemble average of the Klimontovich equation:

the Boltzmann and Vlasov equations

The Klimontovich equation is of little practical value, since its solution is equiva-

lent to the solution of the coupled equations of motion for each of the N particles
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in the beam (i.e. 6N coupled differential equations!). In fact, despite the appar-

ent simplicity of Eq. 2.4, the term ~̇p contains the contribution to the local force

from each of the N particles in the beam, in addition to any externally applied

force. A complete solution to this problem is not only impossible to pursue ana-

lytically (although it could be done numerically with highly parallelized particle

tracking codes) but also of little help in understanding the underlying physics.

In this dissertation we are concerned with certain averaged quantities, which can

be derived from the statistically averaged particle distribution function.

Consider the initial value of the Klimontovich distribution K0 = K( ~X, 0) to

be randomly distributed according to a given distribution function ft=0, i.e. the

ensemble averaged number of particles in an elementary phase-space volume be

such that < dN >=< K( ~X, 0)d6 ~X >= ft=0d
6 ~X. We are interested in deriving an

evolution equation for the statistically averaged distribution function f( ~X, t) =<

K( ~X, t) > at times t > 0. To do so, we give the following definitions:

K = f + δf (2.5)

~̇p =< ~̇p > +δ~̇p, (2.6)

where <> indicates the ensemble average, i.e. an average over all possible real-

izations of the initial distribution with the prescription that < K( ~X, 0)d6 ~X >=

ft=0d
6 ~X. By definition, the ensemble averages of the fluctuating terms vanish, i.e.

< δf >= 0 and < δ~̇p >= 0. However, the cross-term < δfδ~̇p > is, in general, non

vanishing. Note also that there is no fluctuation of the ~̇x term since the instanta-

neous velocity of a particle is only dependent on its position in phase-space (i.e.

at any given time, the particle velocity does not depend on the position of the

other particles, as opposed to the force, which is determined by the interaction

with all the particles in the ensemble). By substituting the definitions in Eq. 2.6
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into Eq.2.2, we obtain the following result:

ḟ + ~̇x∂~xf+ < ~̇p > ∂~pf = − < δ~̇p∂~pδf > . (2.7)

This is the Boltzmann equation, and represents the evolution equation for a

collisional collection of particles. The term on right-hand side of the equation is

conventionally referred to as the collision operator and accounts for the change in

the distribution function due to particle to particle collisions, whereas the < ~̇p >

term contains the contribution coming from the collective forces of the beam

and any externally applied force. Leaving aside the discussion on the collision

operator, which is not of direct interest in this dissertation, we now focus on the

case in which collisions are negligible. In the limit of a collision-less ensemble of

particles, we can neglect the right-hand side of Eq. 2.7 and we obtain the Vlasov

equation:

ḟ + ~̇x∂~xf+ < ~̇p > ∂~pf = 0. (2.8)

The Vlasov equation (as well as the Klimontovich equation), is formally equiv-

alent to the evolution equation of an incompressible fluid in phase-space. Note

that from the Vlasov, not only it follows that the particles are conserved, which

would be expressed by a more general continuity equation of the type:

∂tf +∇ ~X( ~̇Xf) (2.9)

but also that the phase-space distribution function computed along a particle

trajectory is constant. This can be understood by noting that the left-hand side

of the equation contains the total time derivative of the distribution function

along the particle trajectories df/dt|traj. = 0. One consequence of this is that,

given the initial distribution function f( ~X, t = 0), the distribution function at
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any given time is given by f( ~X0( ~X, t), t = 0), where ~X0( ~X, t) is an operator that

reverts the trajectory of a particle in ~X at the time t to its starting phase-space

position. To clarify this point, let’s consider a set of relativistic non-interacting

particles traveling in a uniform focusing channel. We choose the following phase-

space variables: ~X = (~x⊥, z, ~v⊥, vz), where ~x⊥, z are the spatial coordinates and

~v⊥, vz are the transverse and longitudinal velocity. The equations of motion of

the particles are:

~̇x⊥ = ~v⊥ (2.10)

~̇v⊥ = −ω2
β~x⊥ (2.11)

ż = vz (2.12)

v̇z = 0, (2.13)

where ωβ is the oscillation frequency of the focusing channel1. The Vlasov equa-

tion for this system reads:

ḟ + ~̇x⊥∂~x⊥f + vz∂zf − ω2
β~x⊥∂~v⊥f = 0. (2.14)

The particle trajectories are given by:

~x⊥ = ~x⊥,0 cosωβt+
~v⊥,0
ωβ

sinωβt (2.15)

~v⊥ = ~v⊥,0 cosωβt− ωβ~x⊥,0 sinωβt (2.16)

z = z0 + vz,0t (2.17)

vz = vz,0, (2.18)

1Note that Eq.2.13 is only true when averaged over an oscillation period. This approximation
is reasonable for highly directional particles in which the transverse momentum is much smaller
than the longitudinal one, as is the case of interest for relativistic particle beams.
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which can be easily inverted as:

~x⊥,0 = ~x⊥ cosωβt− ~v⊥
ωβ

sinωβt (2.19)

~v⊥,0 = ~v⊥ cosωβt+ ωβ~x⊥ sinωβt (2.20)

z0 = z − vzt (2.21)

vz,0 = vz. (2.22)

If the initial distribution function is given by f( ~X, 0) = g(x⊥,0, z0, β⊥,0, vz,0), then

the distribution function at any given time is given by:

f( ~X, t) = g(~x⊥ cosωβt−
~v⊥
ωβ

sinωβt, z− vzt, ~v⊥ cosωβt+ωβ~v⊥ sinωβt, vz), (2.23)

which can be easily verified by direct substitution of this solution into Eq. 2.14

Note also that, in general, if the system has some constants of the motion, any

distribution function that only depends on any of these constants is stationary.

For example, in the case we have just discussed, any function of the two quantities

ω2
β~x

2
⊥ + ~v2

⊥, vz is a stationary distribution.

For systems of interacting particles, the explicit inversion of the equations

of motion for each single particle is, in general, not possible. In this case the

Vlasov equation has to be solved directly, coupled to the equations that describe

the the collective interaction. We use the phase-space vector (~x, ~p), where ~x is

the position vector and ~p = γm~v is the mechanical momentum vector, where

γ = 1/
√

1− ~v2/c2 is the Lorentz factor, m is the particle mass and c is the speed

of light. The Vlasov equation, is given by:

ḟ + ~̇x∂~xf + (~Fext + ~Fcoll)∂~pf = 0, (2.24)
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where ~Fext is an externally applied force and the collective force ~Fcoll = e( ~E +

~v× ~B) is given by computing the ensemble averaged electric and magnetic fields

generated by the particles. Note that in the case of electromagnetic interactions,

since the Maxwell equations are linear, the collective part of < ~̇p > can be

obtained by computing the electromagnetic fields generated by the average charge

distribution ρ = q
∫
fd3~p and by the average current distribution ~j = q

∫
~vfd3~p,

where ~v = ~pc/
√
m2c2 + ~p2 gives the velocity of the particles in terms of the

phase-space momentum coordinates ~p and q is the particle charge. The resulting

equations are:

~∇ · ~E = ε0q
∫
fd3~p (2.25)

~∇× ~E = −∂tB (2.26)

~∇ · ~B = 0 (2.27)

~∇× ~B = µ0q
∫
~v(~p)fd3~p+ 1

c2
∂t ~E, (2.28)

where ε0 and µ0 are, respectively, the vacuum permittivity and the vacuum mag-

netic permeability. Equations 2.24 and 2.28, represent a system of non-linear

coupled partial differential equations which cannot be solved analytically, in gen-

eral. These equations are generally termed the Vlasov-Maxwell system. This set

of equations fully describes the collective evolution of a set of interacting particles,

such as an intense relativistic electron beam. In the remainder of the dissertation

we will discuss the applications of the collective theory of beams that we have

introduced here as applied to the physics of longitudinal space-charge interaction

and the collective evolution of beam microbunching.

19



2.3 Beam Microbunching

A periodic density perturbation in a particle beam is denominated beam mi-

crobunching. The beam microbunching is described by the so-called bunching

factor, defined as the Fourier transform of the beam’s longitudinal profile nor-

malized to the number of particles:

b =
1

N

∑
n

e−ikzn (2.29)

where N is the number of particles in the beam and zn is the longitudinal position

of the nth particle in the beam. The bunching factor is minimum and equal to

b = 0 if the electrons are uniformly distributed along the z-axis and it is maximum

and equal to b = 1 if the electrons are periodically distributed in packets much

smaller than the wavelength λ = 2π/k and separated by a wavelength. Figure

2.1 shows three examples of beams with a finite microbunching.

Note that if the particles are randomly distributed in z, the density has ran-

dom fluctuations that are normally identified as shot-noise fluctuations. Shot-

noise generates a random bunching factor that has a zero statistical average but

a finite root-mean square value. This can be seen by noting that the phase-factor

associated with each electron e−ikzzn averages out to zero if the position of the

electron is a stochastic variable with a uniform distribution. The absolute value

squared of the bunching factor, instead, can be expressed as:

|b|2 =
1

N2

∑
n,m

e−ik(zn−zm) =
1

N
+

1

N2

∑
n 6=m

e−ik(zn−zm). (2.30)

The second term in equation 2.30 averages to zero, leaving a finite value for the

average shot-noise power of |b|2 = 1
N

.
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Figure 2.1: Examples of beams with finite different values of the bunching factor:
b = 0 (top figure), b= 0.1 (middle figure) and b=1 (bottom figure).
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Beam microbunching is a key feature in the emission of radiation from elec-

tron beams. To understand the role of microbunching in cooperative emission

processes we examine a simplified scenario in which each electron emits a plane

wave of the form: En = Eei(k(z−zn)−ωt). The field emitted by the entire elec-

tron bunch is then given by the superposition of the fields from each individual

electron:

Eb =
∑
n

Eei(k(z−zn)−ωt) = NbEei(kz−ωt) (2.31)

It follows that the emitted radiation power is proportional to P ∝ |b|2N2. If the

beam has a finite density modulation, the radiated power is proportional to the

number of particles squared. Such radiative process is denominated cooperative

emission or coherent emission. If the beam microbunching is only due to shot-

noise, then the radiation power scales proportionally to the number of particles

and the emission process is defined as spontaneous emission. This is a general

property of radiation emitted from relativistic electrons that holds for any type

of emission process like transition radiation or undulator radiation. This point

will be discussed more rigorously later in this chapter.

Beam microbunching can be generated by inducing an energy modulation

in the particle beam and let the particles travel through a beamline element

with a finite longitudinal dispersion, like for example, a magnetic chicane. To

understand this consider a beam with a Gaussian energy spread and a uniform

volume density, which can be described by the following longitudinal phase-space

distribution: f(z0, η0) = nλ
e
−
η2
0

2σ2
η√

2πση
. If we introduce an energy modulation the
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longitudinal phase-space coordinates become:

z′ = z0

η′ = ∆ sin(kzz0) + η0.

(2.32)

The effect of longitudinal dispersion can be modeled with the following coor-

dinate transformation z′′ → z′+R56η
′. Figure 2.2 shows the scheme of a magnetic

chicane. Four dipole magnets bend the electrons on an off-axis trajectory, whose

length is dependent on the particle energy. For a simple four dipole chicane we

have R56 = 2
3
Lmagθ

2 + 2Ldθ
2, where θ is the bending angle, Lmag is the length of

the dipole magnets and Ld is the separation length between the first and second

magnet and the third and fourth ones.

The bunching factor after the magnetic chicane is given by:

b(k) =

∫
dz0dη0f(z0, η0)e−ik(z0+R56(η0+∆ sin(kzz0))). (2.33)

The z-integral selects the harmonics of the energy modulation, giving a discrete

microbunching spectrum at the harmonics of kz:

b(nkz) = Jn(nkzR56∆)e−
(nkzσηR56)2

2 , (2.34)

where Jn is the nth order Bessel function of the first kind.

Figure 2.3 shows the longitudinal phase-space and the x-z trace space for a

beam with an energy modulation ∆ = 4 × 10−4 and a relative energy-spread of

ση = 1× 10−4 for several values of the longitudinal dispersion R56. Note that the

microbunching is maximized when the longitudinal phase-space is vertical (third
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Figure 2.2: Schematics of a magnetic chicane. The bending angle is correlated to
energy, introducing a correlation between the time of arrival and particle energy.

case in Fig.2.3) and it diminishes for bigger values of R56 due to the overbunch-

ing of the particles. Note that for small values of the longitudinal dispersion

we have b1 ' 1
2
kzR56∆e−

(nkzσηR56)2

2 and the bunching factor is proportional to

the amplitude of the density modulation. We refer to the latter case as linear

microbunching regime.

2.4 The Microbunching Instability

In the previous section we have defined the concept of beam microbunching and

discussed how a density modulation can arise from an energy modulation com-

bined with the effect of longitudinal dispersion. This mechanism is general and

independent of the type of physical effect that generates the energy modulation.

An energy modulation in the electron beam, could be generated by a great num-

ber of physical effects, such as the interaction of the electrons with a laser pulse in

a magnetic undulator or by collective beam interactions. The topic of interest for
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Figure 2.3: Longitudinal phase-space (left column) and x-z trace space (right
column) for a beam with an energy modulation for different values of the longi-
tudinal dispersion R56.
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Figure 2.4: Example of a microbunching instability process. An electron beam
with randomly distributed electrons develops a broadband energy modulation as
a consequence of collective interactions. Longitudinal dispersion transforms the
energy modulation into microbunching.

this dissertation is the microbunching instability, in which the energy modulation

that generates the microbunching, is induced by collective fields [11].

The mechanism of the microbunching instability can be explained as follows:

a beam with a finite microbunching at some spatial frequency k excites a col-

lective electro-magnetic field (like, for example, a periodic Coulomb field or an

electromagnetic wave). The interaction of the electrons in the beam with the

collective fields, in turn, generates an energy modulation at the frequency k. The

longitudinal dispersion induced by certain systems of permanent magnets (typi-
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cally a magnetic chicane) transforms the induced energy modulation into density

modulation, generating a bunching factor higher than the starting value2. This

instability can start up from noise (which has a white microbunching spectrum)

and generate beams with significant perturbations to the density and energy pro-

files. Figure 2.4 shows a schematic of this process, in which a beam with a pure

random longitudinal distribution develops a density modulation as a consequence

of the collective longitudinal space-charge interaction followed by a finite R56. In

general, systems with significant longitudinal dispersion, like magnetic chicanes,

are used in cases in which strong beam compression is needed to enhance the

beam current. This is particularly true for x-ray free-electron laser injectors, in

which one or two magnetic compression devices are typically employed to gener-

ate a high-density beam for an efficient FEL process. In this case, the shot-noise

enhancement due to the microbunching instability can pose serious limitations to

the beam quality and needs to be understood in order to optimize the operation

of short wavelength FELs.

Some of the most important detrimental effects caused by the microbunching

instability are:

1) the emission of coherent radiation at beam diagnostic stations, which affects

beam diagnostic techniques based on the emission of incoherent radiation (i.e.

optical transition radiation screens).

2) The increase of the beam energy-spread and the generation of perturbations

in the beam energy and density profile. These can both lower the gain of the

free-electron laser and broaden its bandwidth when an external seed is used to

start-up the FEL interaction.

2Note that this type of process is the basis of the FEL interaction, in which the exponen-
tial amplification of the radiation is accompanied by an exponential growth of the bunching
factor at the resonant wavelength λr due to the interaction between electrons and radiation in
combination with the finite dispersion of the magnetic undulator
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3) Increase of the beam emittance in beamline systems with a finite x-z cou-

pling (e.g. the central plane of a magnetic chicane).

Microbunching instabilities can be generated by different types of electromag-

netic interactions like wake-fields in accelerating structures, coherent synchrotron

radiation fields [28, 29] in systems of bending magnets or longitudinal space-

charge fields [20, 21, 30]. The latter case is the main subject of this dissertation.

In the remainder of this chapter we derive a simplified theory of the microbunch-

ing instabiltiy for a general electro-magnetic interaction. We will then describe a

one-dimensional model of the space-charge instability and illustrate its connection

to the physics of plasma oscillations.

2.5 One-Dimensional Model of the Microbunching Insta-

bility

In this section we give a brief one-dimensional description of the microbunching

instability. We assume a parallel, quasi mono-energetic beam of central energy

γmc2. For a one-dimensional system, the electron beam can be described by a

distribution function in longitudinal phase-space f(z, η), where z is the longi-

tudinal position along the electron beam and η = δγ/γ is the relative energy

deviation. The meaning of f is that dN = f(z, η)dzdη is the number of particles

in the unit phase-space area dzdη.

Neglecting binary interactions, the time evolution of the distribution function

f is described by the Vlasov equation:

∂f

∂τ
+ ż

∂f

∂z
+ η̇

∂f

∂η
= 0 (2.35)
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where ż and η̇ are, respectively, the time derivatives of the longitudinal position

and relative energy deviation. For a relativistic beam, neglecting the transverse

emittance, the longitudinal velocity in the beam coordinate system is given by

ż ' η
γ2 .

Since we are interested in the evolution of small perturbations of the distri-

bution function, the distribution function f can be expanded to first order in

perturbation theory: f = f0 + f1e
ikzz, where f0 = n0

e
− η2

2σ2
η√

2πση
is a stationary dis-

tribution function, with n0 being the beam volume density and ση the relative

energy-spread, and f1 � f0 is a periodic perturbation. Due to the effect of

some collective field generated by the perturbation f1e
ikzz, the electrons receive

an energy kick with a periodic dependence in z: η̇ = Z(kz, f1)eikzz. Substituting

this form for the collective interaction term and neglecting the second order term

Z ∂f1

∂η
, the Vlasov equation reduces to:

∂f1

∂τ
+ ikz żf1 + Z(kz, f1)

∂f0

∂η
= 0. (2.36)

For a cold beam, i.e. for kzτcση
γ2 � 1, where τc is the interaction time, the

second term in the linearized Vlasov equation can be neglected and we get:

f1 = f1,0 − τcZ(kz)
∂f0

∂η
(2.37)

where f1,0 is the initial value of the perturbation. After the interaction, the beam

goes through a magnetic chicane with a finite longitudinal dispersion R56. The

effect of the chicane is that of shifting the longitudinal position of each electron

by an amount proportional to the energy deviation z → z + ηR56. The effect

of this transformation on the phase-space perturbation is that of introducing a

phase-shift proportional to the longitudinal displacement: f1 → f1e
−ikzηR56 . The
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bunching factor b =
∫
dηf1/N is then given by:

b = b0 − ikzτcR56Z(kz, f1)n0e
−(kzσηR56)2

(2.38)

where b0 =
∫
dηf1,0/N is the initial bunching factor.

For the example of the longitudinal space-charge interaction the energy kick

is given by η̇ = eEz
γmc2

= e2

ikzε0γmc2

∫
f1,0dη and the density modulation due to the

microbunching instability is given by:

b = b0 − b0γ
2R56τc

ω2
p

c2
e−(kzσηR56)2/2, (2.39)

where ω2
p = e2n0/ε0mγ

3

Just to get an idea of the orders of magnitude involved in this problem,

consider the example of the LCLS beam at 135 MeV [21]. The beam goes through

a tight waist for a length of τc = 2m right before the injection in the main

accelerator through a dog-leg chicane with R56 = −5mm. The beam parameters

at this point in the beamline yield: ωp
c
' 2π/20m, γ ' 270, and ση ' 2 × 10−5.

The resulting gain at λ = 2π/kz = 800nm is roughly b/b0 ' −80.

Note that the uncorrelated energy-spread appears in the exponential damping

factor in Eq. 2.38. This means that energy-spread can significantly damp the

microbunching amplification. This effect is employed in advanced FEL injectors,

in which the energy-spread of the electron beam is increased with an external

laser to limit the effect of the microbunching instability [3].

This model lacks self-consistency since it has been assumed that η̇ is indepen-

dent of time, whereas the collective fields are affected by the time evolution of the

distribution function. In the next section we will give a more accurate description

of this process, including the self-consistent evolution of the distribution function
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during the beam interaction.

2.6 Self-Consistent Model of the Space-Charge Instability

and its Connection to the Physics of Plasma Oscilla-

tions

In this section we discuss a self-consistent model of the microbunching instability

induced by longitudinal space-charge forces. In the self-consistent approach, we

will not assume that η̇ is constant but we will compute it from the space-charge

fields generated by the distribution function as it evolves in time. The linearized

Vlasov equation for this system is:

∂f1

∂τ
+

η

γ2

∂f1

∂z
+

eEz
γmc2

∂f0

∂η
= 0. (2.40)

Ez is the longitudinal electric field which can be computed by solving the one-

dimensional Poisson equation:

∂

∂z
Ez = − e

ε0

∫
f1dη. (2.41)

It is convenient to solve equations (2.40) and (2.41) using the Laplace-Fourier

transforms, defined as:

f̂1 =

∫
f1e
−ikzdz (2.42)

˜̂
f1 =

∫ ∞
0

f̂1e
iω
c
τdτ. (2.43)
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With these definitions, the Fourier-Laplace transforms of Eqs.(2.40,2.41) yield:

− iω
c

˜̂
f1 − f̂1

∣∣∣
τ=0

+
ikη

γ2

˜̂
f1 +

e

γmc2
n0

˜̂
Ez
∂fv
∂p

= 0 (2.44)

and

˜̂
Ez = − i

k

e

ε0

∫
˜̂
f1dη. (2.45)

After some algebraic manipulation, it can be shown that the phase-space pertur-

bation f1 can be expressed as:

˜̂
f1 =

1

−iω
c

+ ikη
γ2

(
f̂1

∣∣∣
τ=0
− 1

εp

ω2
p

c2

∂fv
∂η

γ2

ik

∫ f̂1

∣∣∣
τ=0

−iω
c

+ ik η
′

γ2

dη′
)

(2.46)

where εp is the beam’s plasma dielectric function given by:

εp = 1 +
ω2
p

c2

γ2

ik

∫ ∂fv
∂η

−iω
c

+ ikη
γ2

dη. (2.47)

The Laplace transform in Eq. 2.46 can be inverted using the residue theorem.

By doing so, we only consider the poles corresponding to the zeros of the plasma

dielectric function, since these poles are associated with the collective response

of the electrons. The equation εp = 0, whose solutions are the collective poles of

the system, is defined as the dispersion relation.

For the moment we will be concerned with the cold beam limit, i.e. the limit

for kz/kD = kzcση/ωpγ
2 << 1, where kD is defined as the Debye wave-number.

This condition means that the longitudinal displacement in a plasma-period of

a particle with a relative energy deviation η = ση is much smaller than the

wavelength λ.

In the cold beam limit, the plasma dielectric function can be computed in
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closed form and yields:

εp = 1−
ω2
p

ω2
(2.48)

which has the following zeros ω± = ±ωp. With this result, the Laplace transform

can be inverted, resulting in the following expression for the time evolution of the

phase-space perturbation:

f̂1 =
∑
±

e−i
ω±τ
c

−iω±
c

+ ikη
γ2

(
− 1

dεp
dω
|ω±

ω2
p

c2

∂fv
∂η

γ2

ik

∫ f̂1

∣∣∣
τ=0

−iω±
c

+ ik η
′

γ2

dη′
)
. (2.49)

By multiplying Eq.(2.49) by the phase-factor e−ikzηR56 , which is introduced by

the longitudinal dispersion, and integrating by parts in η we obtain the following

value for the final microbunching:

bR56 =
(
b0 cos

ωpτc
c
− b0γ

2R56
ωp
c

sin
ωpτc
c

)
e−

(kzσηR56)2

2 . (2.50)

Equation 2.50 has an interesting physical interpretation. The bunching factor in

the drift evolves, according to the plasma oscillation mechanism, as b = b0 cos ωpτ

c
.

Note that the self-consistent gain formula depends on the time derivative of the

bunching factor at the drift exit. Neglecting the effect of energy spread the

bunching factor after the chicane is: bR56 = b(τc) + γ2R56db/dτ |τ=τc . It follows

that the gain mechanism can be interpreted as a fraction of plasma oscillation of

duration τc followed by a space-charge free drift of length3 γ2R56, during which

the microbunching evolves ballistically (see Fig. 2.5). The same interpretation

holds for a finite energy spread, with the inclusion of the phase-mixing term

e−
(kzR56ση)2

2 .

From this simplified one-dimensional model, it is clear that the physics of the

3Note that since the R56 of a drift space of length L is given by R56 = L/γ2, the equivalent
drift-length of a dispersive section is analogously defined Leq = γ2R56.
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Figure 2.5: Physical interpretation of the space-charge induced microbunching
instability: the microbunching evolution consists of a plasma oscillation followed
by a free-drift in which the bunching factor evolves ballistically following the time
derivative of the oscillation at the exit of the interaction zone.

space-charge microbunching instability is closely related to that of relativistic

longitudinal plasma oscillations. The extension of this one-dimensional model to

a full three-dimensional kinetic model will require a more general approach, with

the inclusion of three-dimensional effects in the field equation (i.e. a full 3-D

Poisson equations with a transverse Laplacian) and longitudinal and transverse

electron motion with a thermal velocity spread. This generalized 3-D treatment

will be the subject of the following chapters. We also want to note that the

term microbunching instability might be confusing in the context of plasma os-

cillations, that are a stable process with and exponential damping induced by

thermal effects. The microbunching amplification does not arise from the collec-

tive interaction alone, but from the combination of the collective interaction with

the longitudinal dispersion in a magnetic chicane.
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2.7 Radiation Processes from Relativistic Electrons

In this section we will discuss the emission of electromagnetic radiation from

relativistic electrons. We will focus on two radiation processes that are relevant

to this work: undulator radiation and transition radiation. These processes will

be a key part of the experiments discussed in this dissertation both as part

of advanced beam diagnostics and as radiators for the generation of coherent

photons.

It is well known that an accelerating particle emits energy in the form of elec-

tromagnetic radiation. The differential energy-spectrum dI/dωdΩ is defined as

the energy radiated per unit solid angle dΩ and unit frequency dω. In this dis-

sertation we will be mostly concerned with coherent emission from a collection of

particles. To compute the coherent radiation differential spectrum one must first

compute the differential spectrum from a single particle and then sum the contri-

butions from each individual particle with the correct phase. The computation

of the radiation properties from a given process is particularly convenient in the

so-called far-field zone. The far-field zone is defined by the condition L > λγ2,

where L is the distance between the observation point and the radiator, λ is the

wavelength of interest and γ is the Lorentz factor of the particle. In the far-field

zone, the differential spectrum only depends on the observation angle and it’s

independent of the distance L. Under these conditions it can be shown (see [31])

that the single-particle differential spectrum is given by:

dI

dωdΩ
=

e2ω2

16π3ε0c2
|
∫ +∞

−∞
n̂× (n̂× ~β) exp

(
iω(t− n̂ · ~r(t)

c
)

)
dt|2, (2.51)

where n̂ is the unit vector that identifies the observation angle of the radiation,

~r(t) is the particle position at the time t and ~β = d~r
cdt

. is the particle’s velocity.
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Figure 2.6: Schematics of the transition radiation process.

In the following sub-sections we will discuss the computation of the differential

spectrum for some of the cases of interest in this work.

2.7.1 Transition Radiation

Transition radiation is emitted when a particle crosses an interface between two

different media. The case of interest in this dissertation is the interface between

vacuum and a conducting medium. Consider the following physical scenario: a

particle travels in vacuum at a constant velocity ~β = ẑβ (see Fig. 2.6) in the

z direction in the presence of an infinite conducting medium that occupies the

region z < 0. The effect of the conductive wall can be taken into account by

introducing an image charge of opposite sign that travels with the same velocity

but in the opposite direction. . At the time t = 0 the particle hits a perfectly

conducting wall and both the particle and the image particle are ”annihilated”.

The fields from the two charges have to be added coherently and the differential
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spectrum is given by:

dI

dωdΩ
=

e2ω2

4π2c2

∣∣∣∣β sin θ

∫ 0

−∞
exp

(
iωt(1− β cos θ)

)
+ exp

(
iωt(1 + β cos θ)

)
dt

∣∣∣∣2 .
(2.52)

The time integral in Eq. 2.52 can be computed explicitly and yields [32]:

dI

dωdΩ
=

e2

4π3ε0c2

β2 sin2 θ

(1− β2 cos2 θ)2
. (2.53)

For a relativistic electron γ =
√

1
1−β2 � 1 and Eq. 2.53 can be simplified as:

dI

dωdΩ
=

e2

4π3ε0c2

γ2θ2

(1 + γ2θ2)2
. (2.54)

The transition radiation differential spectrum is equal to 0 on axis, has a peak

at θ = 1/γ and rolls off as 1/θ2 for large angles. Due to its slow roll-off at

large angles, the transition radiation angular spectrum has strong high-frequency

components which result in high spatial resolution (on the order of the wave-

length) in the near-field [33]. For this reason, incoherent transition radiation is

commonly used as a high-resolution beam profile monitor (see e.g. [34]). Also,

transition radiation is a rather simple and inexpensive way to extract coherent

radiation from a particle beam [35] and it is often used for the coherent diagnostic

of microbunched beams [36].

2.7.2 Undulator Radiation

An undulator is a periodic array of dipole magnets that are arranged with alter-

nating polarity. The periodic magnetic field excites transverse periodic oscilla-

tions in the trajectory of an electron traveling across the undulator. We will here

discuss the case of a circularly polarized undulator, also called helical undulator.
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Figure 2.7: Schematics of the undulator radiation process, illustrating the an-
gle-frequency correlation.

The field of a helical undulator can be expressed as:

~B = B0x̂ cos(kwz) cosh(kwx) +B0ŷ sin(kwz) cosh(kwy), (2.55)

where B0 is the field amplitude, kw = 2π/λw is the undulator frequency and x̂, ŷ

are the unit vectors in the transverse plane. For a relativistic electron traveling

in the z direction, the trajectories in the undulator are given by:

~β⊥ = −K
γ

(x̂ cos kwz + ŷ sin kwz)

~r⊥ =
K

kwγ
(x̂ sin kwz − ŷ cos kwz) ,

(2.56)

where K = eB0/kwmc is the undulator parameter. Note that the electron tra-

jectory is a helix with a helicity that is opposite to that of the magnetic fields.

Due to the periodicity of the electron motion, the radiation will be emitted

around a discrete set of resonant frequencies. While the emission frequencies

could be computed by substituting the electron trajectories in Eq. 2.51, it is more

instructive to give an intuitive picture of how the discrete undulator radiation

38



frequencies arise. With reference to Fig. 2.7, consider an electron traveling

in a periodic trajectory in the transverse plane. The wave-fronts emitted at

each oscillation period interfere coherently only if they are emitted with a phase-

difference that is a multiple of 2π. For a given observation angle, such condition

is achieved only at a discrete set of wavelengths:

λ = λw(1/βz − cos θ)/n ' λw
1 +K2 + γ2θ2

2nγ2
. (2.57)

where n is a positive integer. The emission wavelengths correspond to the har-

monics undulator wavelength doppler-shifted twice: to the beam’s rest frame and

back to the laboratory frame (hence the factor 1/γ2
z = (1 +K2)/γ2). This means

that the undulator radiation can be seen as a scattering process of a virtual

photon field.

The differential spectrum is [37]:

dI

dωdΩ
=

e2ω2K2

4π3ε0cω2
0γ

2

∞∑
n=1

(
J ′2n (x) + (

γθ

K
− n

x
)2

)
J2
n(x)

sin2
(
Nπ( ω

ω1
− n)

)
( ω
ω1
− n)2

.

(2.58)

where N is the number of undulator periods, ω0 = kw/c, ω1 = 2γ2ω0/1 +K2 and

x = Kωθ/γω0. For each angle, the frequency bandwidth is δω/ω ' 1/N (which

can be rather narrow for a large number of periods), while the integrated spectrum

has a broad frequency bandwidth due to the angle/frequency correlation. Note

that, unlike transition radiation, undulator radiation has a non-zero emission on

axis.

39



2.7.3 Radiation from a Collection of Particles: Coherent vs. Incoher-

ent Emission

When computing the differential spectrum for a bunch of particles, one needs to

sum the contributions from each particle coherently. The position of each particle

in the bunch can be expressed as ~rj = ~rb(t) + ~xj, where it was assumed that the

relative positions of the particles (identified by the vectors ~xj) are frozen during

the emission process. The differential spectrum for the entire bunch is then given

by:

dI

dωdΩ
=

e2ω2

16π3ε0c2

∣∣∣∣∣∑
j

∫ +∞

−∞
n̂× (n̂× ~β) exp

(
iω

(
t− n̂ · (~rb(t) + ~xj)

c

))
dt

∣∣∣∣∣
2

.

(2.59)

The term exp(−iω n̂~xj
c

) can be factored out from the time integral, leaving the

following expression for the differential spectrum:

dI

dωdΩ
= N2 |B(n̂, ω)|2 dI

dωdΩ
|sp, (2.60)

where B(n̂, ω) = 1
N

∑
j exp(−iω

n̂~xj
c

) is defined as the beam’s form factor. In

the remainder of the dissertation we will express the form factor as a function

of the wave-vector ~k = n̂ω/c. With the latter notation, it is clear that the

form factor B is the three-dimensional Fourier transform of the beam’s charge

distribution normalized to the number of particles. B is the three-dimensional

extension of the bunching factor b defined in Subsection 2.3. The form factor

B has a maximum absolute value of 1, which is realized when the particles are

arranged periodically in thin microbunches oriented along the direction of ~k. For

a finite value of the form factor, the emission scales as I ∝ N2 and it said to be

coherent or superradiant. Following the same line of reasoning as Subsection 2.3
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(in particular the derivation of Eq.2.30 ), if the particles position are randomly

distributed, then the form factor has a vanishing statistical average but a non-

vanishing average power: < |B|2random >= 1/N . In the latter case the emitted

energy scales like I ∝ N and it is defined incoherent or spontaneous emission.
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CHAPTER 3

Six-Dimensional Theory of Space-Charge Waves

in a Thermal Relativistic Electron Beam:

Eigenvalue/Eigenmode Analysis

The subject of this chapter is the eigenvalue problem of longitudinal plasma oscil-

lations in six-dimensional phase space. The aim of this analysis is that of finding

self-consistent solutions to the set of Vlasov-Poisson equations that describe the

dynamics of a relativistic electron beam under the combined effects of longitu-

dinal space-charge forces and transverse focusing. This analysis represents the

basis of our theory of collective longitudinal space-charge effects since it provides

a basis of propagating eigenmodes which will be employed in the following chap-

ters to describe collective beam effects such as microbunching amplification or

suppression.

As mentioned in the previous chapters, the theory of plasma oscillations in

non-relativistic plasmas is well established and dates back to the seminal work of

Landau [38] and Jackson [4]. The problem of plasma oscillations in the context of

high brightness electron beams has been treated previously with one-dimensional

[14] and three-dimensional theoretical models [22] in the cold, laminar beam

approximation. In a recent experiment [39], relativistic plasma oscillations in

high-brightness electron beams were directly observed at the Pegasus laboratory

of UCLA.
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In this chapter we study the plasma oscillation eigenvalue problem for a ther-

mal non-laminar electron beam in three dimensions, i.e., with the inclusion, for

the first time, of the effects of finite emittance, transverse focusing, energy spread

and edge effects due to the finite size of the beam. Our analysis is based on

the formalism developed by Kim, Yu, Xie et al. (see [40, 10, 41]) for the three-

dimensional free-electron laser dispersion relation. This approach has been highly

successful in describing three-dimensional and kinetic effects in free-electron lasers

and its extension to the study of plasma oscillations will provide a special insight

into the physics of this problem and, at the same time, be an efficient tool for a

quantitative description of the phenomena involved.

The primary focus of this chapter is the study of propagating space-charge

eigenmodes. We find solutions to the electric field equations in the form of waves

that propagate in the forward or backward z-direction with a given complex fre-

quency ω and a characteristic transverse structure Ez(~x). We reduce the system

of equations describing the motion of the electrons under the effect of collec-

tive longitudinal space-charge forces, to an integro-differential equation, which

we denote the dispersion relation. The complex frequency ω and the spatial de-

pendence Ez(~x), deduced by solving the dispersion relation, define the eigenvalue

and field eigenmode of the oscillation.

This analysis has been published in [42]. In this dissertation we will give a

more detailed explanation of the mathematics involved.

This chapter is organized as follows: in section 3.1 we derive the dispersion

equation for the plasma eigenmodes and define the dimensionless scaling param-

eters and variables that describe the problem; in section 3.2 we show how our

three-dimensional approach reduces to a one-dimensional (1-D) problem when

finite beam effects and transverse focusing are negligible and the well known
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1-dimensional dispersion relation for a thermal plasma is derived in the limit

for negligible emittance; in section 3.3 a variational approximation for the dis-

persion relation is derived and employed to find closed form expressions for the

plasma oscillation frequency for a cold beam, as well as numerical solutions for

a warm beam describing the Landau damping due to the longitudinal thermal

motion induced by energy-spread and emittance; in chapter 3.4 the dispersion

relation is expressed in the spatial frequency domain by means of a transverse

two-dimensional Fourier transform and show how the effect of plasma-betatron

beat-waves arises from this form of the equation; finally in section 3.5 we com-

pute numerical solutions to the exact dispersion relation using a discretization

method.

3.1 Three-dimensional dispersion relation with energy spread,

emittance and betatron focusing

In this section the dispersion relation for the plasma oscillation modes is derived.

We assume a coasting, non-accelerating relativistic beam, which propagates in

a uniform focusing channel. The electron beam is described by a distribution

function in six-dimensional phase space f(~x, ~β⊥, z, η, τ), where ~x is the transverse

position, ~β⊥ is the transverse velocity normalized to the speed of light, η is the

relative energy deviation with respect to the central beam energy γmc2, z is

the longitudinal position along the electron beam relative to a reference particle

traveling at βz =
√

1− 1/γ2 and τ = ct.

The evolution of the six-dimensional distribution function is governed by the
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Vlasov equation:

∂τf + ~β⊥ · ~∇~xf + ~̇β⊥ · ~∇~β⊥
f + ż∂zf + η̇∂ηf = 0. (3.1)

The Vlasov equation describes the phase-space evolution of a collisionless plasma.

As discussed in chapter 2, the Vlasov equation can be derived from first princi-

ples and can be interpreted as the evolution equation of an incompressible fluid

in six-dimensional phase-space. The obvious physical interpretation is that the

time evolution of an electron beam is such that the overall phase-space volume

occupied by the particles is a constant of the motion. Another way of stating this

concept is that the distribution function f computed along the particle phase-

space trajectories is constant in time. It follows that for a set of constants of the

motion (c1, c2, ...cn) any function of the type f(c1, c2, ...cn) is a stationary solution

to the Vlasov equation.

We expand the distribution function to first order in perturbation theory:

f = f0 + f1e
ikzz, where f0 is a stationary solution to the Vlasov equation and

|f1| << |f0|. We also assume that the electron beam is matched to the focusing

channel. The unperturbed trajectories of the electrons are:

~x = ~x0 cos kβτ +
~β⊥0

kβ
sin kβτ

~β⊥ = −kβ~x0 sin kβτ + ~β⊥0 cos kβτ

η = η0

z = z0 −
∫ τ

0

~β2
⊥
2
dτ ′ + τ

(
η

γ2

)
(3.2)

where (~x0, ~β⊥0, z0, η0) is the phase space position at τ = 0 and ckβ is the betatron

frequency of the focusing channel. Since η and ~x2 +
~β2
⊥
k2
β

are constants of the
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motion, it follows that any function of the type f0(~x2 +
~β2
⊥
k2
β
, η) is a stationary

solution to the Vlasov equation.

With these underlying assumptions, expanding Eq.(3.1) to first order we ob-

tain the linearized Vlasov equation for the system:

∂τf1 + ~β⊥ · ~∇~xf1 − k2
β~x · ~∇~β⊥

f1 + ikz żf1 +
eEz
γmc2

∂ηf0 = 0 (3.3)

where ż = η/γ2 − (k2
β~x

2 + ~β2
⊥)/4 and, for the sake of simplicity, the ~β2

⊥/2 term

in the longitudinal velocity ż has been replaced with its average over a betatron

period. Equation 3.3 can be rewritten in a form that is both more simple and

physically more intuitive:

D

Dτ
f1(~x+, ~β+) + ikz żf1(~x+, ~β+) = −eEz(~x+)

γmc2
∂ηf0 (3.4)

where ~x+(τ) = ~x0 cos kβτ +
~β⊥0

kβ
sin kβτ , ~β+(τ) = −kβ ~x0 sin kβτ + ~β⊥0 cos kβτ and

D
Dτ

is the total derivative computed along the unperturbed trajectories (~x+, ~β+).In

this form, the linearized Vlasov equation has a simple physical interpretation: if

we turn off the longitudinal space-charge field, the evolution of the perturbed

distribution is ballistic and it’s just given by the initial phase-space perturbation

transported along the 0-th order particle trajectories

f1 = f1,0

(
~x cos kβτ −

~β⊥
kβ

sin kβτ , kβ~x sin kβτ + ~β⊥ cos kβτ
)
e−ikz żτ , where f1,0 is

the the phase-space perturbation at τ = 0. If we include a finite space-charge

field Ez, the distribution function f1 receives an energy kick that is proportional

to the electric field at the local position in phase-space, which corresponds to the

right hand side of Eq. 3.4.

Since we are looking for steady-state solutions to the space-charge wave prob-

lem, we can assume that the interaction between the electron beam and the space-
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charge field takes place from τ = −∞. With this above assumption, Eq.(3.3) can

be solved as:

f1 = − e

γmc2

∫ 0

−∞
eikz żτ

′
Ez(~x cos kβτ

′ +
~β⊥
kβ

sin kβτ
′, τ ′ + τ)∂ηf0dτ

′. (3.5)

The longitudinal space-charge field Ez can be derived by solving Poisson’s

equation in the beam’s rest frame, where self-magnetic fields can be neglected

[43, 30]:

(∇2
⊥ −

k2
z

γ2
)

Ez
− ikz

γ

= − e

γε0

∫
f1e

ikzzdηd2~β⊥. (3.6)

Assuming that Ez = Ez(~x)eikzz−i
ωτ
c and substituting Eq.(3.5) into Eq.(3.6),

we obtain the following integral equation for the plasma oscillation modes:

(∇2
⊥−

k2
z

γ2
)Ez = − ikze

2

γ3mc2ε0

∫ ∫ 0

−∞
eikz żτ−i

ωτ
c Ez(~x cos kβτ+

~β⊥
kβ

sin kβτ)∂ηf0dτdηd
2~β⊥.

(3.7)

Note that, so far, no assumption has been made on the explicit form of f0 and

Eq.(3.7) applies to any stationary distribution. In what follows we will assume the

following form for the zeroth order distribution: f0 = n0e
− ~x2

2σ2
x
−

~β2
⊥

2σ2
xk

2
β

− η2

2σ2
η /(2π)3/2σ2

xk
2
βση

where n0 is the beam volume density on axis and σx is the root mean square size

of the matched charge distribution.

Performing the integral in dη by parts one obtains:

(∇2
⊥ −

k2
z

γ2
)Ez =−

k2
zω

2
p

γ2c2

∫ ∫ 0

−∞
τe
− (kzσητ)2

2γ4 −ikz
k2
β~x

2+~β2
⊥

4
τ−iωτ

c

× Ez(~x cos kβτ +
~β⊥
kβ

sin kβτ)f0⊥dτd
2~β⊥

(3.8)
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where ω2
p = n0e

2/γ3mε0 is the relativistic beam plasma frequency and f0⊥ =

e
− ~x2

2σ2
x
−

~β2
⊥

2σ2
xk

2
β /2πσ2

xk
2
β. Equation (3.8) is an eigenvalue integral equation which has

to be solved in ω and Ez(~x), its solutions are the eigenvalues and eigenmodes of

the plasma oscillation problem. The resulting electric field Ez = Ez(~x)eikzz−i
ωτ
c

describes a wave that propagates in the longitudinal direction (either backwards

or forward depending on the relative signs of ω and kz) with a fixed transverse

profile.

3.1.1 Universally scaled dispersion equation

The dispersion relation in Eq.(3.8) can be expressed in terms of four dimensionless

scaling parameters. We give the following definitions:

D = kzσx/γ is the 3-D parameter, which accounts for edge effects due to the

finite size of the beam. To understand intuititively how edge effects affect the

plasma dynamics, we recall that the single-particle longitudinal electric field, in

the frequency domain, can be expressed as: Esp(~x) = −ikze
2πγ2ε0

K0

(
kz |~x|
γ

)
. The single

particle field tends to zero exponentially as a function of k|~x|/γ for k|~x|/γ > 1.

For D >> 1, then, edge effects can be neglected since the electrons in the center

of the beam are not affected by the field generated by those at the edges, whereas

for D << 1 the system is dominated by edge effects;

Kγ = kzcση/ωpγ
2 is the energy spread parameter and corresponds to the ratio

of the longitudinal wave-number kz to the Debye wave-number associated with

energy spread. This parameter can be interpreted as the ratio of the longitudinal

thermal displacement in a plasma period to the wavelength 2π/k. If Kγ << 1

thermal motion due to energy spread is negligible on the time-scale of a plasma

oscillation and the effects of energy spread can be neglected;
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Kε = kzc(kβσx)
2/2ωp is the emittance parameter and it corresponds to the

ratio of kz to the Debye wave-number associated with emittance. Kε has a similar

physical meaning as Kγ, with longitudinal thermal motion being induced by

transverse emittance instead of energy spread;

Kβ = kβc/ωp is the focusing parameter. If Kβ << 1 transverse motion due

to focusing is negligible on the time-scale of a plasma oscillation and the electron

dynamics can be considered transversely laminar, we will thus refer to this limit

as the laminar beam limit. In the opposite limit (Kβ >> 1) particles perform

several betatron oscillations in a plasma period and transverse motion cannot be

neglected, we will denote this condition the high betatron frequency limit.

Finally the mode oscillation frequency is normalized to the plasma frequency

as Ω = ω/ωp. The resulting universally scaled dispersion relation is then:

(
1

D2
∇2
⊥ − 1

)
Ez =−

∫ ∫ 0

−∞
Te−

(KγT )2

2
−

( ~X2+~B2)iKεT
2

−iΩT

× Ez( ~X cosKβT + ~B sinKβT )F0⊥dTd
2 ~B

(3.9)

where F0⊥ = (kβσx)
2f0⊥ and we have introduced the following scaled variables:

T = ωpτ

c
, ~X = ~x/σx, ~B = ~β⊥/kβσx.

Finally by changing the integration variable in the d2 ~B integral to ~X ′ =

~B sinKβT + ~X cosKβT , we get:

(
1

D2
∇2
⊥ − 1

)
Ez = −

∫
Ez( ~X

′)Π( ~X, ~X ′)d2 ~X ′ (3.10)

with:

Π( ~X, ~X ′) =

∫ 0

−∞

Te−
(KγT )2

2
−iΩT e

−( ~X2+ ~X′2−2 ~X· ~X′ cosKβT) (1+iKεT )

2 sin2 KβT

2π sin2KβT
dT. (3.11)
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Solution of Eq.(3.11) gives the eigenmode Ez and the scaled oscillation frequency

Ω in terms of the four scaling paramters D,Kβ, Kγ and Kε. In the following

sections we will find solutions to the dispersion relation and derive some of its

relevant limiting forms.

3.2 The one-dimensional limit: transverse mode degener-

acy and degeneracy breaking

A particularly important limiting form of the dispersion relation is found in the 1-

dimensional (1-D) limit, i.e. the limit for D →∞ and Kβ → 0. Mathematically,

this limit is obtained by using the following identity:

limKβ→0
1

2π sin2 KβT
e
−

( ~X2+ ~X′2−2 ~X· ~X′ cosKβT)(1+iKεT )

2 sin2 KβT = 1
1+iKεT

δ( ~X ′ − ~X) and by noting

that, for D →∞ the transverse Laplacian in Eq.(3.10) is negligible. In the one-

dimensional (1-D) limit , all the modes are degenerate (i.e. they all have the

same eigenvalue) and the dispersion relation reduces to:

1−
∫ 0

−∞

T

1 + iKεT
e−

(KγT )2

2
−iΩTdT = 0. (3.12)

Finally, taking Kε → 0, Eq.(3.12) reduces to the well-known one-dimensional

dispersion relation for a thermal plasma derived in [4]:

1− 1

2K2
γ

Z ′
(

Ω√
2Kγ

)
= 0 (3.13)

where Z ′ is the complex derivative of the plasma dispersion function [4] defined

as Z(ζ) = 2ie−ζ
2 ∫ iζ
−∞ e

−x2
dx (see the derivation in the Appendix). For Kγ = 0,

Eq.(3.13) has two solutions Ω = ±1 (or ω = ±ωp) which are the one-dimensional

oscillation frequencies for a cold relativistic plasma.
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Mode degeneracy in the one-dimensional limit can be explained by examining

the system in its rest frame. In the rest frame, for D >> 1 (or kσx
γ
>> 1) the

wavelength is much smaller than the transverse size of the beam. In this case,

if the transverse motion is laminar, the beam can be considered as a uniform

infinite plasma, in which different regions of the transverse plane evolve inde-

pendently, thus allowing plasma oscillations with an arbitrary transverse profile.

Mode degeneracy is broken when the electric field phase information is trans-

ferred across the beam’s transverse distribution and the electrons at the center

of the beam are affected by those at the edges. This can happen either by geo-

metrical or kinetic effects. Namely if D >> 1 does not apply, the single particle

electric field establishes a transverse correlation across the whole beam (see the

discussion on the D parameter in section 3.1.1), whereas if Kβ << 1 does not

apply the phase information is carried by the electron betatron motion across the

transverse plane.

Degeneracy breaking of the plasma eigenmodes induced by transverse focus-

ing is an important new result of our kinetic analysis with respect to previous

models based on the laminar beam approximation. This effect has experimental

relevance since mode degeneracy in the 1-D limit has immediate applications in

shot-noise reduction experiments. Noise reduction can be achieved on a broad

angular spectrum only if all the modes have the same oscillation frequency and,

thus, reach the one-quarter plasma oscillation point at the same time (note that

shot-noise will couple to several transverse modes due to its broad angular dis-

tribution).This can only be obtained in the D >> 1 limit for Kβ << 1. If this is

not the case, shot-noise reduction may be obtained only on one transverse mode,

which can still be of interest in applications such as seeded free-electron lasers, in

which the main contribution from shot-noise comes from the fundamental trans-

verse mode.
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3.3 Variational Solution for the Fundamental Mode

A good approximation for the eigenvalues of the plasma oscillation dispersion

relation can be obtained with a variational method. The variational method for

the fundamental mode can be implemented by projecting the dispersion equation

in Eqs.(3.10,3.11) on a pure gaussian mode Ez = e−w|
~X|21 and imposing the

condition that the eigenvalue be stationary as a function of w: dΩ/dw = 0[41, 10].

This procedure is equivalent to approximating the fundamental plasma eigenmode

with a gaussian shaped mode and finding the value of w for which the gaussian

best approximates the exact mode.

This results in two coupled equations that need to be solved for Ω and w:

1

4w
+

1

2D2
=

∫ 0

−∞

Te−
(KγT )2

2
−iΩT

(1 + iKεT )2 + 4w(1 + iKεT ) + 4w2 sin2KβT
dT (3.14)

1

4w2
=

∫ 0

−∞

4(1 + iKεT ) + 8w sin2KβT(
(1 + iKεT )2 + 4w(1 + iKεT ) + 4w2 sin2KβT

)2Te
− (KγT )2

2
−iΩTdT.

(3.15)

Simultaneous solutions of Eqs. (3.14,3.15) provide an approximate solution to

the eigenvalue problem of Eqs.(3.10, 3.11) in terms of the dimensionless scaling

parameters.

1The choice of a Gaussian distribution allows the analytical computation of the spatial and
velocity integrals, thus giving simple solutions for the integro-differential dispersion relation.
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3.3.1 Variational solutions in the cold beam limit

The cold beam limit is identified by the conditions of vanishing energy spread

(Kγ << 1) and vanishing emittance (Kε << 1). The laminar beam limit is

identified by the condition Kβ << 1, in which the transverse position of the

electrons can be considered fixed for the relevant time scale. In the cold, laminar

beam limit the time integrals in Eqs. (3.14, 3.15) can be solved analytically and

yield:
1

4w
+

1

2D2
=

1

1 + 4w

1

Ω2
(3.16)

1

4w2
=

4

(1 + 4w)2

1

Ω2
(3.17)

which have the following solutions:

Ω = ±
√

2D

1 +
√

2D
(3.18)

with w = D/2
√

2. This result can be identified as the fundamental mode plasma

frequency reduction factor in the variational approximation and accounts for edge

effects due to the finite size of the beam. Note that in the D >> 1 limit we recover

the 1-D oscillation frequency whereas for D << 1 the oscillation frequency is

significantly reduced. This effect is due to the suppression of longitudinal fields

caused by the geometry of the electron beam in its rest frame. In the D << 1

limit (or kzσx/γ << 1), the transverse size of the beam is smaller than the

wavelength in the rest frame and the collective longitudinal electric field (which

is Lorentz-invariant) is strongly reduced.

Another relevant limit, from the experimental point of view, is the high be-

tatron frequency limit for a cold beam, i.e. the limit for Kβ >> 1, Kγ << 1 and
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Kε << 1 (the condition on Kβ can actually be relaxed, as we will see in Section

3.4: in most practical cases the high betatron frequency condition can be iden-

tified as Kβ > 1). In many experiments related to high frequency space-charge

phenomena, in fact, the beta-function is very small to enhance the collective

response of the electrons (thus fulfilling the high betatron frequency condition)

but the brightness of the electron beam is high enough that the low emittance

approximation is still valid. The case in which the latter condition is not verified

will be discussed in the next subsection.

For Kβ >> 1, the sin2KβT term in the time integral in Eqs. (3.14,3.15) can

be substituted with its average value. With this approximation the time integral

can be solved analytically and the two resulting variational equations are:

1

4w
+

1

2D2
=

1

1 + 4w + 2w2

1

Ω2
(3.19)

1

4w2
=

4 + 4w

(1 + 4w + 2w2)2

1

Ω2
. (3.20)

For D >> 1, Eqs. (3.19,3.20) yeld: Ω ≈ ±
√

1
1+ 1√

2

≈ ±0.765 and w ≈ 1√
2
. In the

opposite limit (D << 1) we have Ω ≈ ±
√

2D(1−
√

2D) and w ≈ D
2
√

2
(1− D

4
√

2
).

Note that for D << 1 the eigenvalues in the laminar beam limit and in the

high betatron frequency limit agree to second order in D. This can be understood

by noting that, for D << 1, the transverse profile of the electric field extends well

beyond the transverse beam distribution. In this case, the field can be considered

uniform within the electron beam and betatron motion makes little difference

since an electron oscillating transversely samples no field variation across the

transverse plane. For D >> 1, instead, the collective response is reduced for

Kβ >> 1 with respect to the laminar beam limit (Kβ << 1). This can be
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explained as follows: in the cold, laminar beam limit, for D >> 1, we found that

the fundamental plasma eigenmode tends to be confined close to the center of

the beam (w = D/2 >> 1); betatron motion in the Kβ >> 1 limit, however,

tends to spread out transversely the perturbed charge distribution, reducing the

intensity of the space-charge field. The resulting steady state situation is that of

a mode with a transverse size comparable to the beam size (w = 1/
√

2) and a

weaker collective response from the electrons. The following heuristic formula is

valid within 5% of the numerical solution for D > 0.01:

Ω =

√
2D

e−αD + βD
(3.21)

with β =
√

2/0.763 and α = β −
√

2. Note that this formula approaches asymp-

totically the exact solution in both the D � 1 and D � 1 limits.

3.3.2 Energy-spread and emittance effects: the Landau damping con-

stant

In the case of a beam with finite emittance (Kε 6= 0) and/or finite energy spread

(Kγ 6= 0), the collective response is exponentially damped due to the longitudinal

thermal motion of the electrons, i.e. the oscillation frequency Ω has a finite

negative imaginary part. This collisionless damping process is usually denoted

Landau damping. The variational equations, in this case, have to be solved

numerically. Figure 3.1 shows the oscillation frequency and the Landau damping

constant, defined as −={Ω}, as a function of Kε and Kγ for D =
√

2 and Kβ >>

1. Note that the response is radically different depending on the sign of Kε.

For positive Kε, which corresponds to a forward propagating wave, the damping

constant has a very weak dependence on the emittance parameter whereas for

Kε < 0, corresponding to a backward propagating wave, it grows rapidly, reaching

55



values of order 1 for Kε ' −0.5. This feature is quite general and does not depend

on one particular choice of D or Kβ.

The physical explanation of this anisotropy is the following: the electron lon-

gitudinal velocity shift due to emittance is always negative, or, in other words, the

spread in longitudinal velocity in the beam is larger for negative velocities than

for positive velocities, where negative and positive velocities are defined relatively

to the reference particle traveling at βz =
√

1− 1/γ2. Since Landau damping

becomes important when the phase velocity of the plasma wave is comparable to

the thermal velocity spread, waves that propagate in the forward direction (again,

relatively to the reference particle) are less attenuated than waves that propagate

in the backward direction. One consequence of this is that a sinusoidal density

perturbation in z (which contains both a positive and a negative wavenumber kz)

gives rise to a stationary plasma wave for small values of Kε and to a forward

propagating plasma wave for |Kε| ' 1.

Emittance induced Landau damping can be an important parasitic effect in

space-charge based experiments. In fact, in these scenarios, it is generally desir-

able to focus the beam to a tight spot in order to increase the beam density and

enhance the collective response of the electrons (namely to increase the plasma

oscillation frequency). However, in a non-accelerating beam, the geometrical

emittance ε = kβσ
2
x = σxσβ is a constant of the motion. This means that increas-

ing the beam density comes at the cost of increasing the longitudinal velocity

spread due to emittance, thus inducing Landau damping (since Kε ∝ ε2/σx). It

follows that, for a given beam emittance, the beam density has an optimum value

for achieving the strongest plasma response, which is ultimately determined by

the emittance parameter Kε. Beam optimization for space-charge based experi-

ments is currently under intense investigation and the application of the present
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theory to this topic will be the subject of a subsequent publication.

3.4 The exact dispersion relation in the spatial frequency

domain: limiting forms and physical interpretation

The plasma oscillation eigenmodes can be found, in principle, by solving Eq.(3.10)

for Ω and Ez. In the previous section we have found approximate solutions to the

dispersion equation using a variational approach. To find solutions to the exact

dispersion relation, however, it is more convenient to write Eq.(3.10) in a different

form, which is more fit for a numerical solution with a discretization method.

For this purpose we first expand the electric field in a series of azimuthal modes,

i.e. we find solutions in the form Ez = Em(R)eimφ, where R and φ represent the

position in the transverse plane in polar coordinates. Finally we perform a Hankel

transform of the resulting expression, defined as Hm(F ) =
∫∞

0
F (R)Jm(QR)RdR,

where Jm is the m-th order Bessel function of the first kind. The details of the

derivation are contained in the Appendix, the resulting dispersion relation is:

Êm(Q) =

∫ ∞
0

Tm(Q,Q′)Êm(Q′)Q′dQ′ (3.22)

where the integration kernel Tm is:

Tm(Q,Q′) =
1

1 + Q2

D2

∫ 0

−∞

T

(1 + iKεT )2
Im

(
QQ′ cosKβT

1 + iKεT

)
e−

(KγT )2

2
−iΩT− Q2+Q′2

2(1+iKεT )dT

(3.23)

where Im is the m-th order modified Bessel function of the first kind. The so-

lutions to Eq.(3.22) provide the eigenvalue Ω and the eigenmode Êm in the fre-

quency domain. The eigenmode in the space domain can be recovered by inverting
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the Hankel transform as: Em(R) =
∫∞

0
Êm(Q)Jm(QR)QdQ.

To explain some important physical aspects of the problem we derive the

limiting forms of Eq.(3.22) in the case of a cold beam (Kγ << 1, Kε << 1) for

both the laminar beam (Kβ << 1) and the high betatron frequency (Kβ >> 1)

limits.

For the laminar beam limit Kβ << 1 the dispersion relation reduces to:

Êm,r(Q) =
1

Ω2(1 + Q2

D2 )

∫ ∞
0

Im (QQ′) e−
Q2+Q′2

2 Êm,r(Q
′)Q′dQ′. (3.24)

Note that for a given eigenmode Êm(Q) there are two associated eigenvalues

±Ω which means that the general response in this limit is that of a stationary

oscillation.

In the case of a cold beam in the high betatron frequency limit Kβ >> 1,

it is convenient to perform a Fourier expansion of the integration kernel in the

betatron phase KβT . The resulting integration kernel is:

Tm(Q,Q′) =
e−

Q2+Q′2
2(

1 + Q2

D2

)∑
n

Im+n
2

(
QQ′

2

)
Im−n

2

(
QQ′

2

)
1

(Ω− nKβ)2
(3.25)

where the sum is performed over all even/odd integers n for an even/odd az-

imuthal number m (see the derivation in the Appendix).

Note that each term in the summation in Eq.(3.25) is associated to a harmonic

of the betatron frequency nKβ. In particular, for an even/odd value of m, the

dispersion relation couples to all even/odd harmonics of Kβ and the integration

kernel Tm is strongly peaked around Ω ≈ nKβ irrespective of its dependence

on (Q,Q′). This has an interesting physical interpretation: as the beam goes
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Figure 3.2: Ballistic evolution of a helical charge density perturbation correspond-
ing to an m = 1 transverse mode.
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through half a betatron oscillation period, the transverse positions of all the

electrons are mirrored in x and y across the z-axis. For a charge perturbation

of the form ∝ eimφ, mirroring the positions of all the electrons results in a new

charge perturbation with the same radial and azimuthal dependence multiplied

by a factor eimπ. This means that the density perturbation replicates itself every

half betatron oscillation period, unchanged for evenm and with a negative sign for

odd m (see Fig. 3.2 for a visual example of this effect). It follows that, under the

effect of transverse focusing, the evolution of an even/odd m mode is periodic and

composed of even/odd harmonics of the betatron frequency Kβ. Recall that in

our linear analysis, the particle’s response to the collective field is computed as a

small perturbation to the zeroth order trajectories. Since the zeroth order motion

of the electrons drives an oscillation of the field at the even/odd harmonics of Kβ

(for an even/odd value of m), it follows that only these harmonics will couple to

an even/odd m plasma eigenmode through the dispersion relation.

Since the integration kernel in Eq.(3.25) is highly peaked around the harmon-

ics of the betatron frequency, we will look for solutions in the form Ω = hKβ +δΩ

with δΩ << Kβ, where h is either an even integer (for even m) or an odd in-

teger (for odd m). With this ansatz, we neglect all the terms corresponding to

harmonics different than h and the dispersion relation is further simplified:

Êm,h,r(Q) =
1

δΩ2
(

1 + Q2

D2

) ∫ +∞

0

e−
Q2+Q′2

2 Im+h
2

(
QQ′

2

)
Im−h

2

(
QQ′

2

)

× Êm,h,r(Q′)Q′dQ′.

(3.26)

In this case, for the same eigenfunction, the corresponding oscillation fre-

quencies are: Ω = ±(hKβ ± δΩ). For h = 0 the plasma oscillation frequency
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contains the collective response of the electrons averaged over the betatron mo-

tion. For h 6= 0, instead, this set of solutions corresponds to a beatwave, with

a fast betatron oscillation modulated by the slow collective response described

by the eigenvalue δΩ and we will denote it Plasma-Betatron Beatwave (PBW).

Figure 3.3 shows a schematic representation of the evolution of a PBW mode.

Mathematically, the beat happens between the two eigenfrequencies of the

system hKβ ± δΩ which, for Kβ >> 1, differ by a small value 2δΩ. Physically

this effect can be explained as follows: consider for simplicity an odd m mode.

The ballistic evolution (i.e. with no collective fields) of the mode is periodic and

composed of odd harmonics of the betatron oscillation frequency. In the Kβ >> 1

limit, the time-scale associated with the plasma oscillation is much larger than

the betatron oscillation period and the exchange between energy and density

modulation, which causes the plasma oscillation, happens in several betatron

periods. Since betatron motion drives a fast oscillation of the electric field at the

odd harmonics of the betatron frequency and the plasma oscillation has a time

scale that is larger than the betatron period, the mode evolution is composed

of the fast ballistic evolution driven by betatron motion (at the characteristic

frequency hKβ), modulated in time by the slow collective plasma oscillation (with

frequency δΩ). The same argument can be used for even m modes for harmonics

of the betatron frequency different than zero.

It is very important to emphasize that, in the Kβ >> 1 limit, the collective

physics is contained in the reduced eigenvalue δΩ. We will thus denote δΩ the

effective plasma frequency. The eigenfrequency Ω = hKβ +δΩ, instead, describes

the combined effects of zeroth order motion and collective response. In light of

this, it is convenient to classify the modes differently in the two limits of laminar

motion and high betatron frequency. In the first case, Kβ << 1, the modes are
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denoted as Em,r where m is the azimuthal number and r is the radial number,

with the modes ordered in r by decreasing oscillation frequency Ω (i.e. the lowest

order mode is the one with the highest space-charge oscillation frequency). In the

Kβ >> 1 case, instead, the modes are naturally identified by their relationship to

the discrete harmonic of the betatron oscillation frequency. The modes are then

denoted Em,h,r where h is the associated harmonic number and the modes are

ordered in the radial index r by decreasing δΩ. The fundamental mode discussed

in Section 3.3, for example, is identified as the E0,0 mode for Kβ << 1 or the

E0,0,0 mode for Kβ >> 1. Note that for even m modes, h = 0 is a valid harmonic

number whereas for odd m, the lowest possible harmonic number is h = 1, which

means that in the Kβ >> 1 limit odd m modes only exist in the form of PBWs.

Finally we observe that, by comparing Eq.(3.26) and Eq.(3.25), follows that

the condition under which the high betatron frequency limit is approached can

be relaxed. For a given value of δΩ, the condition for having a PBW is that

δΩ2 << 4K2
β which, in many cases, holds even for values of Kβ of order 1.

3.5 Eigenvalues and eigenmodes of the exact dispersion

relation

In this section we find numerical solutions to the exact dispersion relation to give

a quantitative description of the effects described in the previous section. We will

be concerned with the cold beam limit (Kγ << 1, Kε << 1). In this limit, the

two parameters of interest are the 3-D parameter D and the normalized betatron

frequency Kβ, we will thus explore the behavior of the plasma oscillation as a

function of D in the two important cases of laminar motion Kβ << 1 and high

betatron frequency Kβ >> 1.
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Eq.(3.22) can be solved numerically by discretizing Q and Q′. Upon dis-

cretization, the integral equation becomes a matrix equation[10]:

Mq,q′(Ω)Êq′ = 0. (3.27)

Eq.(3.27) has non-trivial solutions only if det(Mq,q′(Ω)) = 0. The zeroes of the de-

terminant and the matrix eigenvectors represent the eigenvalue/eigenmode pairs

for the plasma oscillation modes.

Figure 3.4 shows the solutions to the exact dispersion relation for the cold

beam case in the laminar beam limit and the high betatron frequency limit as a

function of D for the fundamental m = 0 mode, compared to solutions from the

variational approach (shown as dashed lines). The solutions to the exact disper-

sion relation confirm, with a good approximation, the results from the variational
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method: in the laminar beam case, the oscillation frequency approaches the 1-D

limit Ω = ±1 as D →∞, whereas, for Kβ >> 1 the oscillation frequency reaches

a smaller value Ω ' ±0.756 due to the effect of betatron motion. As D decreases

the oscillation frequency decreases monotonically, asymptotically approaching 0

as D → 0 in both cases.

Figure 3.5 shows the mode profile for the fundamental m = 0 mode for several

values of the 3-D parameter. For D = 0.1 the mode profile extends well beyond

the beam distribution, while for D = 10 it is confined within the beam. This can

be understood by considering the field distribution as a convolution between the

perturbed charged distribution (which is typically confined within the beam) and

the single particle longitudinal electric field. Since for D << 1 the single particle

field extends well beyond the 0-th order charge distribution (see the discussion

on the D parameter in Section 3.1.1), its convolution with the perturbed charge

distribution has a transverse profile which is significantly broader than the beam

size. Figure 3.5 also shows the transverse profile of three higher order radial

modes for D = 1 and Kβ >> 1.

Finally, we illustrate the effect of betatron oscillations on the higher order

modes. Fig. 3.6 shows the effective oscillation frequency for the lowest order

m = 1 and m = 2 modes in both the laminar beam limit (Kβ << 1) and the

high betatron frequency limit (Kβ >> 1) as a function of the 3-D parameter D.

Note that in the D >> 1 limit, for Kβ << 1, all the eigenvalues tend to the one-

dimensional limit Ω = 1, as predicted in section 3.1 by taking the one-dimensional

limit of the dispersion relation. For Kβ >> 1, instead, transverse focusing breaks

the degeneracy of the different azimuthal modes for D >> 1. Also, comparing

the solutions for the laminar beam to the ones for the high betatron frequency

limit, we conclude that the suppression of the collective response due to betatron
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motion is much stronger for the higher order modes compared to the fundamental

m = 0 mode (compare Figs. 3.4 and 3.6). Also, suppression of the higher order

modes due to transverse focusing happens over a broad range of values of D,

including the limit for D << 1, in which the fundamental mode is unaffected by

transverse motion. Figure 3.6 also shows the effective oscillation frequency δΩ for

the third, fifth and seventh harmonics of the betatron frequency Kβ for m = 1,

indicating that the collective response is slower for higher harmonics.

This has strong implications from the experimental point of view. Space-

charge based amplifiers [13] can benefit from the suppression of higher order

modes in terms of increased transverse coherence when starting from shot-noise.

In addition to that, the strong separation in oscillation frequency of the different

eigenmodes could be used as a tool for selective microbunching amplification. In

fact, since microbunching amplification is maximized when the beam drifts for

one-quarter plasma oscillation, optimum amplification happens at different points

along the beamline for different transverse modes. This effect could be used, for

example, as a low noise preamplifier in a High Gain High Mode Generation free-

electron laser scheme for the production of orbital angular momentum modes[44].

3.6 Conclusions

In this chapter we have studied the properties of longitudinal plasma waves in a

thermal relativistic electron beam. This analysis addresses an eigenmode/eigenvalue

problem and provides a set of propagating space-charge modes and their associ-

ated oscillation frequencies.

We have derived a three-dimensional dispersion relation for the longitudinal

plasma oscillation modes. The dispersion relation can be expressed in terms of
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four dimensionless scaling parameters and includes the effects of energy spread,

finite emittance and betatron motion as well as edge effects due to the finite size

of the beam.

The dispersion relation has been solved for a broad range of values of the

dimensionless scaling parameters using both a variational approach and a dis-

cretization method. The results have been used to describe several novel physical

effects.

We have studied geometrical effects for the fundamental mode as well as for

few higher order modes, showing how the plasma oscillation frequency is reduced

with respect to the one-dimensional limit when the 3-D parameter D = kσx/γ is

of order 1 or smaller.

We demonstrate how the longitudinal velocity spread due to emittance induces

an anisotropy between forward and backward propagating plasma waves, with a

stronger Landau damping of backward propagating modes with respect to the

forward propagating ones.

The effects of transverse focusing are also of great importance. We show how

betatron motion breaks the degeneracy of the plasma modes in the infinite beam

limit (kσx/γ >> 1) introducing a phase correlation of the electric field across the

whole transverse plane, an effect that has practical consequences for shot-noise

reduction schemes. Transverse focusing, coupled to the transverse structure of

the plasma eigen-modes, also gives rise to a beatwave between plasma and beta-

tron oscillations. This effect is denoted Plasma-Betatron Beatwave and consists

of a fast oscillation of the electric field driven by betatron oscillations, superim-

posed to the slow collective response of the electrons. Finally, betatron oscilla-

tions are shown to suppress the collective response of the beam, an effect that is

particularly noticeable for higher order modes, with important consequences for
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space-charge based amplifiers.

3.A Mathematical derivations and useful formulas

In this appendix we derive some of the formulas discussed in the text.

3.A.1 Relationship to the plasma dispersion function

We start by casting the following relationship, which should clarify the connection

of our approach to some of the previous literature:

∫ 0

−∞
Te−iΩT−

K2T2

2 dT = i
d

dΩ

∫ 0

−∞
e−iΩT−

K2T2

2 dT =
1

2K2
Z ′
(

Ω√
2K

)
(3.28)

where Z ′ is the complex derivative of the plasma dispersion function Z. The

plasma dispersion function can be defined in two equivalent ways:

Z(ζ) =
1√
π

∫
c̃

dx
e−x

2

x− ζ
= 2ie−ζ

2

∫ iζ

−∞
e−x

2

dx (3.29)

where c̃ stands for the Landau contour which runs in the complex plane from

−∞ to +∞ and below the singularity at x = ζ. The equivalence between the

two formulas is derived in [4]. For |ζ| >> 1 we have Z ′(ζ) ≈ 1/ζ2. It follows that

for Kγ << 1 the time integral in Eq.(3.28) reduces to:

∫ 0

−∞
Te−iΩT−

K2T2

2 dT ≈ 1

Ω2
(3.30)

3.A.2 Azimuthal mode expansion and Hankel transform

To derive Eq.(3.22) we start by performing the azimuthal mode expansion of the

dispersion relation. Using the relation eζcos(φ) =
∑∞

m=−∞ Im(ζ)eimφ we get:
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(
d

D2RdR
(R

d

dR
)− m2

D2R2
− 1

)
Em = −

∫ ∞
0

Em(R′)Gm(R,R′)R′dR′ (3.31)

with:

Gm(R,R′) =

∫ 0

−∞
e−

(KγT )2

2
−iΩT e

−
(R2+R′2)(1+iKεT )

2 sin2 KβT Im

(
RR′(1 + iKεT ) cosKβT

2 sin2KβT

)
T

sin2KβT
dT.

(3.32)

Finally, the Hankel transform of Eq.(3.31) can be performed using the follow-

ing formulas:
∫∞

0
xe−αx

2
Iν(βx)Jν(γx)dx = 1

2α
e
β2−γ2

4α Jν(
βγ
2α

) and
∫∞

0
xe−αx

2
Jν(βx)Jν(γx)dx =

1
2α
e−

β2+γ2

4α Iν(
βγ
2α

).

3.A.3 Limiting forms of the dispersion relation

Eq.(3.24), which represents the limiting form of Eq.(3.22) for a cold, laminar

beam can be obtained by setting Kβ → 0 and Kε → 0 and using Eq.(3.28) to

compute the integral in T :

Êm,r(Q) =
Z ′( Ω√

2Kγ
)

2K2
γ(1 + Q2

D2 )

∫ ∞
0

Im (QQ′) e−
Q2+Q′2

2 Êm,r(Q
′)Q′dQ′ (3.33)

and finally using Eq.(3.30) to take the limit for Kγ → 0.

Eq.(3.25) can be derived by using the formula
∫ π/2

0
Iµ+ν(2a cosx)cos[(µ− ν)x]dx =

π
2
Iµ(a)Iν(a). We obtain the following Fourier expansion:
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Im(QQ′ cosKβT ) =
+∞∑

n=−∞

e+2inKβT Im
2

+n

(
QQ′

2

)
Im

2
−n

(
QQ′

2

)
(3.34)

for even m and:

Im(QQ′ cosKβT ) =
+∞∑

n=−∞

e+i(2n+1)KβT Im+1
2

+n

(
QQ′

2

)
Im−1

2
−n

(
QQ′

2

)
(3.35)

for odd m.

The resulting integration kernel is:

Tm(Q,Q′) =
e−

Q2+Q′2
2

2K2
γ

(
1 + Q2

D2

) +∞∑
n=−∞

Im
2

+n

(
QQ′

2

)
Im

2
−n

(
QQ′

2

)
Z ′
(

Ω− 2nKβ√
2Kγ

)
(3.36)

for even m and:

Tm(Q,Q′) =
e−

Q2+Q′2
2

2K2
γ

(
1 + Q2

D2

) +∞∑
n=−∞

Im+1
2

+n

(
QQ′

2

)
Im−1

2
−n

(
QQ′

2

)
Z ′
(

Ω− (2n+ 1)Kβ√
2Kγ

)
(3.37)

for odd m. Eqs. (3.36,3.37) reduce to (3.25) for Kγ → 0.
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CHAPTER 4

Initial value problem of space-charge waves in

six-dimensional phase-space

In chapter 3, the propagation of plasma waves in a relativistic electron beam

was tackled in the context of and eigenvalue problem. While the solution to

the eigenvalue problem provides a set of steady-state solutions to the coupled

Vlasov/Poisson equations, the self-consistent evolution of an arbitrary initial

phase-space perturbation under the effects of longitudinal space-charge forces

is yet to be addressed. The latter problem is defined as the initial value problem

(IVP) of space-charge waves and this chapter is devoted to its solution.

The IVP of longitudinal plasma oscillations in high brightness electron beams

was previously solved in [22] for the case of a cold laminar beam whereas the

effects of transverse and longitudinal velocity spread were discussed in [30] with

a quasi-three-dimensional approach. In both cases the analysis was based on the

Laplace transform method. However, when transverse betatron oscillations and

finite beam emittance are included, the coupling of the plasma eigenmodes to the

initial perturbation is challenging and the methods based on the Laplace/Fourier

transforms become highly impractical. In this chapter, the IVP is solved by

means of a bi-orthogonal mode expansion in six-dimensional phase space. Our

analysis follows the approach of Kim [40], Xie [45] and Huang [46] for the grand

initial value problem of free electron lasers in three-dimensions.We develop a gen-
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eral formalism for the solution of the plasma oscillation problem in terms of the

eigenmodes of a Schrödinger-like equation in six-dimensional phase space. The

difficulty of the problem lies in the non-orthogonality of the plasma eigenmodes.

The IVP is solved by projecting the initial value onto the plasma eigenmodes

with the aid of the property of bi-orthogonality with respect to the set of ad-

joint eigenmodes, a method which is generally referred to as Van Kampen mode

expansion.

The chapter is organized as follows: in section 4.1 we develop the general

formalism for the IVP in terms of phase-space eigenmodes. In section 4.2 we find

explicit analytic solutions for the coupling of an initial coherent perturbation to

the dominant fundamental plasma eigenmodes which we use to describe the time

evolution of a coherent density modulation. In section 4.3 we discuss the coupling

of the fundamental mode to shot-noise. Finally we discuss the application of this

model to an experimental scenario and the implications of our theory for shot-

noise reduction experiments.

This analysis was published in Ref. [47].

4.1 General formulation of the initial value problem

In this section we derive a general solution for the IVP of plasma oscillations.

We work under the same assumptions as chapter 3: we assume a coasting, non-

accelerating electron beam of energy γmc2, matched to a uniform focusing channel

of betatron frequency kβ/c. The electron beam is described in the six-dimensional

phase-space by a distribution function f(~x, ~β⊥, z, η, τ) where ~x is the transverse

position with respect to the propagation axis, ~β⊥ is the transverse velocity nor-

malized to the speed of light, η = δγ
γ

is the relative energy deviation, z is the
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longitudinal position along the beam and τ = ct where t is the time variable

and c is the speed of light. The distribution function is expanded to first order

in perturbation theory: f = f0 + f1e
ikzz where f0 is a stationary distribution

function and |f1| � f0. We assume the following form for the 0-th order dis-

tribution function f0 = n0e
− ~x2

2σ2
x
−

~β2
⊥

2σ2
xk

2
β

− η2

2σ2
η /(2π)3/2σ2

xk
2
βση where n0 is the beam

volume density on axis and σx is the root mean square (RMS) size of the matched

charge distribution. The perturbed distribution function evolves according to the

linearized Vlasov equation coupled to the Poisson equation:

∂τf1 + ~β⊥ · ~∇~xf1 − k2
β~x · ~∇~β⊥

f1 + ikz żf1 +
eEz
γmc2

∂ηf0 = 0 (4.1)

(∇2
⊥ −

k2
z

γ2
)

Ez
− ikz

γ

= − e

γε0

∫
f1e

ikzzdηd2~β⊥ (4.2)

where ż = η/γ2 − (k2
β~x

2 + ~β2
⊥)/4.

The initial value problem of plasma oscillations can be addressed by casting

the system of equations that describe the plasma eigenvalue problem in the form

of a Schrödinger-like equation:

∂τf1 = L(f1) (4.3)

where L is a linear operator defined as:

L(f1) = −( ~β⊥ · ~∇~xf1 − k2
β~x · ~∇~β⊥

f1 + ikz żf1 +
eẼz(f1)

γmc2
∂ηf0). (4.4)

and Ẽz(f1) is a linear operator which acts on f1 to give the implicit solution to
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Eqn. (4.2) via the Green’s function method:

Ẽz(f1) =

∫
dηd2~β⊥d

2~x′f1(~x′, ~β⊥, η, τ)Esp(~x− ~x′) (4.5)

with Esp(~x) = −ikze
2πγ2ε0

K0

(
kz |~x|
γ

)
being the single particle longitudinal electric field

in the longitudinal frequency domain (see, for example [31]).

The eigenvalues and eigenfunctions of the L operator represent a set of so-

lutions to the system of Vlasov-Maxwell’s equations for the plasma oscillation

problem. Namely, if L(f̂n) = −iωn
c
f̂n, then f̂ne

−iωnτ
c is a solution to the plasma

oscillation problem. The eigenmode of L associated with an eigenvalue ωn is:

f̂n = − e

γmc2
∂ηf0

∫ 0

−∞
e−i

ωnτ
c

+ikz żτEn (~x+(τ)) dτ (4.6)

where ~x+(τ) = ~x cos kβτ+
~β⊥
kβ

sin kβτ and En, ωn are the solutions to the eigenvalue

equation derived in chapter 3:

(∇2
⊥ −

k2
z

γ2
)En = −

k2
zω

2
p

γ2c2

∫ ∫ 0

−∞
τe
− (kzσητ)2

2γ4 −ikz
k2
β~x

2+~β2
⊥

4
τ−iωnτ

c En(~x+(τ))f0⊥dτd
2~β⊥

(4.7)

with f0⊥ = e
− ~x2

2σ2
x
−

~β2
⊥

2σ2
xk

2
β /2πσ2

xk
2
β and ω2

p = n0e2

ε0γ3m
being the one-dimensional plasma

oscillation frequency. We will denote f̂n(~x, ~β⊥, η) the phase-space eigenmodes and

En(~x) the field eigenmodes.

The initial value problem can be addressed by decomposing the initial per-

turbation f1,0 in a sum of eigenmodes of L. For this purpose it is useful to define

a scalar product in 5-dimensional phase space as:

〈g, f〉 =

∫
dηd2~β⊥d

2~xf(~x, ~β⊥, η, τ)g(~x, ~β⊥, η, τ). (4.8)
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With the above definitions, we can define an adjoint operator L† associated

with L as the operator that fulfills the following condition:

〈g, L(f)〉 = 〈L†(g), f〉. (4.9)

Using elementary properties of the convolution operator, it is possible to show

that L† is given by:

L†(f1) = −(−~β⊥ · ~∇~xf1 + k2
β~x · ~∇~β⊥

f1 + ikz żf1 +
eẼz(f1∂ηf0)

γmc2
). (4.10)

The L operator is not self-adjoint, as a result its eigenvectors are not mutually

orthogonal. However, it is a general property that the eigenvectors of a linear

operator are mutually orthogonal to the eigenvectors of its adjoint operator. In

our case we have: 〈f̂ †m, f̂n〉 = 〈f̂ †n, f̂n〉δn,m. It follows that, given an initial per-

turbation of the distribution function f1,0, assuming that f̂n is a complete set of

eigenmodes 1, we have:

f1(τ) =
∑
n

f̂ne
−iωnτ

c
〈f̂ †n, f1,0〉
〈f̂ †n, f̂n〉

. (4.11)

Eq. (4.11) describes the time evolution of a given initial perturbation f1,0 in phase

space under the effect of collective longitudinal space-charge forces. Note that

for a cold beam, one field eigenmode can correspond to several eigenvalues [42].

For example, in the laminar beam limit there are two eigenvalues ω± = ±ω for

each field eigenmode E. In this case, the phase-space eigenmodes corresponding

1The completeness of this type of eigenmodes has not been demonstrated. However, it can
be demonstrated from basic principles that a bi-orthogonal expansion minimizes the distance of
the expanded solution to the real solution. We believe that this type of mode expansion gives
an accurate description of collective effects but it misses some features due to single-particle
poles, which become important in the evolution of shot-noise fluctuuations for warm beams.
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to each eigenvalue

f̂± = − e

γmc2
∂ηf0

∫ 0

−∞
e−i

ω±τ
c

+ikz żτE (~x+(τ)) dτ (4.12)

are to be considered as distinct eigenmodes of the L operator and have to be

accounted for individually in the eigenmode expansion of Eq.(4.11)

We now find explicit expressions for f̂ †n in terms of the LSC eigenmodes.

Multiplying by ∂ηf0 both sides of Eq. 4.10 we obtain that the eigenvalues of L†

correspond to those of L and that the eigenmodes are given by:

f̂ †n = − e

γmc2

∫ 0

−∞
e−i

ωnτ
c

+ikz żτE†n (~x−(τ)) dτ, (4.13)

where ~x−(τ) = ~x cos kβτ −
~β⊥
kβ

sin kβτ and E†n is a solution to the field dispersion

relation in Eq.(3.8), corresponding to the eigenvalue ωn. If ωn is a non-degenerate

eigenvalue then E†n = En, as is the case for modes with radial symmetry. Modes

with with azimuthal dependence of the type Ez(~x) = Rm,r(|~x|)eimφ (where φ is

the azimuthal angle in the transverse plane) are degenerate since the mode with

opposite azimuthal dependence (Ez(~x) = Rm,r(|~x|)e−imφ) is also a solution to the

field dispersion relation associated with the same eigenvalue. In this case the

bi-orthogonality property is fulfilled by choosing: En = Rm,r(|~x|)eimφ ↔ E†n =

Rm,r(|~x|)e−imφ.

In what follows we will use the dimensionless variables and scaling param-

eters defined in [42]. We give the following definitions: T = ωpτ

c
, ~X = ~x/σx,

~B = ~β⊥/kβσx. We define the following independent dimensionless scaling pa-

rameters: D = kzσx/γ is the 3-D parameter and accounts for edge effects due to

the finite size of the beam; Kγ = kzcση/ωpγ
2 is the energy spread parameter and

corresponds to the ratio of the longitudinal wave-number kz to the Debye wave-
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number associated with energy spread; Kε = kzc(kβσx)
2/2ωp is the emittance

parameter and it corresponds to the ratio of kz to the Debye wave-number asso-

ciated with emittance; Kβ = kβc/ωp is the focusing parameter. Finally the mode

oscillation frequency is normalized to the one-dimensional plasma frequency as

Ω = ω/ωp.

4.2 Time evolution of a coherent density modulation

Equation (4.11), combined with Eqs. (4.6,4.13), formally solves the IVP of plasma

oscillations. However, to develop an intuition on the physical processes involved,

it is useful to study the evolution of some specific forms of the initial perturbation.

In particular we will study the evolution of the fundamental mode starting

from a coherent density modulation. In what follows we will make use of the

dominant pole approximation, i.e., we will only retain the two solutions to the

dispersion equation with the lowest Landau damping constant f̂±, Ω±. The

notation ± refers to the sign of the real part of the eigenvalue, corresponding

to a forward or backward propagating wave depending on the sign of kz (in

particular, for positive kz, Ω+ corresponds to the forward propagating mode

while Ω− corresponds to the backward one). As was shown in [42], emittance

induces an anisotropy between f±, with the forward propagating mode having a

smaller damping constant.

With the above definitions and assumptions, the fundamental mode phase-

space perturbation generated by an initial perturbation f1,0 is given by:

f1(T ) = f̂+
〈f̂ †+, f1,0〉
〈f̂ †+, f̂+〉

e−iΩ+T + f̂−
〈f̂ †−, f1,0〉
〈f̂ †−, f̂−〉

e−iΩ−T . (4.14)
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In [42], an approximate variational method for the plasma oscillation eigen-

value problem was developed. In the variational approach, the fundamental mode

is approximated with a pure gaussian mode Ez = e−w
~X2

. The eigenvalue Ω and

the variational parameter w are then computed by projecting the dispersion rela-

tion (3.8) on the gaussian mode and imposing the condition that the eigenvalue

be stationary as a function of w, i.e. dΩ
dw

= 0. Note that, in general, the field

eigenmodes corresponding to the forward and backward propagating waves are

different (except for the case of a cold beam, as discussed in section 4.1). Conse-

quently the variational condition has to be applied separately for the two modes:

dΩ±
dw±

= 0

The normalization coefficient for the fundamental mode can be computed

explicitly in the variational approximation. With this simple form for the electric

field the normalization coefficient 〈f̂ †±, f̂±〉 can be expressed, in dimensionless

units, as (see the derivation in the Appendix)):

〈f̂ †±, f̂±〉 =
iknλc

3

γ2ω3
p

∫ 0

−∞
dT

T 2e−iΩ±T−
(KγT )2

2

(1 + iKεT )2 + 4w±(1 + iKεT ) + 4w2
± sin2KβT

(4.15)

where nλ = n02πσ2
x is the average linear beam density and we have omitted the

factor −e/γmc2 from f̂± and f̂ †±, since it appears in both the numerator and the

denominator of all the terms in Eq.(4.14).

To find a closed form expression for the coupling coefficient 〈f̂ †±, f1,0〉, one has

to make some assumptions on the initial phase space perturbation. In this section

we will discuss the case of a coherent density modulation, which can be generated,

for example, through the interaction of the electrons with a resonant external

radiation source in an undulator or by illuminating a photo-cathode with a laser
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pulse with an amplitude modulation [39]. For a coherent density modulation we

have: f1,0 = ρ̃(~x)f0(~x, ~β⊥, η). We will also assume that the input bunching factor

has a gaussian shape: ρ̃ = ñ0

nλ
(1 + 2ν)e−ν

~X2
, where ñ0 =

∫
dηd2~β⊥d

2~xf1,0 is the

amplitude of the initial density perturbation and ν = σ2
x/σ

2
b with σb equal to

the RMS transverse size of the charge perturbation ρ̃. The resulting coupling

coefficient is:

〈f̂ †±, f1,0〉 = ñ0(1+2ν)
c

ωp

∫ 0

−∞
dT

e−iΩ±T−
(KγT )2

2

(1 + iKεT )2 + 2(w± + ν)(1 + iKεT ) + 4w±ν sin2KβT
.

(4.16)

Equations (4.15) and (4.16), solve the initial value problem for the fundamen-

tal mode in the variational approximation, starting from a transversely gaussian

density perturbation. To quantitatively describe the evolution of the plasma

eigenmode we define the density modulation corresponding to the fundamental

mode as:

ñ =

∫
dηd2~β⊥d

2~xf1. (4.17)

Note that, up to a factor 1
nλ

this definition is equivalent to that of the bunching

factor commonly used in free-electron laser theory. Following this definition and

using the results in Eqs.(4.15,4.16), the time evolution of the fundamental mode

longitudinal density modulation, starting from a coherent seed, is given by:

ñ = −ikznλc
2

γ2ω2
p

(
e−iΩ+T

〈f̂ †+, f1,0〉
〈f̂ †+, f̂+〉

∫ 0

−∞
dT ′

T ′e−iΩ+T ′−
(KγT

′)2

2

(1 + iKεT ′)2 + 2w+(1 + iKεT ′)

+e−iΩ−T
〈f̂ †−, f̂1,0〉
〈f̂ †−, f̂−〉

∫ 0

−∞
dT ′

T ′e−iΩ−T
′− (KγT

′)2

2

(1 + iKεT ′)2 + 2w−(1 + iKεT ′)

) (4.18)

In the cold beam limit (Kγ � 1, Kε � 1) we have Ω± = ±Ω, w± = w,
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={Ω} = 0 and ={w} = 0 and Eq. (4.18) reduces to:

ñ = ñ0Γ cos ΩT (4.19)

where ñ0 is the initial value of the density perturbation and the geometrical

coupling factor is Γ = 1+2ν
1+2(w+ν)

1+4w
1+2w

for Kβ � 1 and Γ = (1+2ν)(1+4w+2w2)
(1+2(w+ν)+2wν)(1+2w)

for

Kβ � 1.

Note that Eq.(4.18) only contains the response of the electrons coupled to

the fundamental mode. A more realistic description of the system should take

into account several transverse modes. For many applications, however, we are

mostly concerned with the evolution of the fundamental mode since it is the one

with the strongest collective response from the electrons.

Figure 4.1 shows the geometrical coupling coefficient Γ as a function of D and

ν for both the laminar beam limit (Kβ � 1) and the high betatron frequency limit

(Kβ � 1). Note how Γ 6= 1, which means that this type of initial perturbation

excites several higher order radial modes other than the fundamental one.

4.3 Plasma dynamics of shot-noise

In a relativistic electron beam, the intrinsic discreteness of the particle distribu-

tion gives rise to a density perturbation commonly referred to as shot-noise. The

density modulation induced by shot-noise can be expressed as:

ñsn =
1

L

∑
j

e−ikzzj (4.20)

where zj is the longitudinal position of the j-th electron and the sum is performed

over the N particles in the region 0 < z < L. If the electrons are randomly
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Figure 4.1: Geometrical coupling coefficient for a coherent gaussian density per-
turbation Γ for the laminar beam limit (upper plot) and the high betatron fre-
quency limit (bottom plot) as a function of D and ν.
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distributed the statistical average of ñsn vanishes but the absolute value squared

has a non vanishing average value |ñsn|2 = nλ
L

which we denote as average shot-

noise power.

Density perturbations due to shot-noise excite fluctuations in the LSC fields

which, in turn, can give rise to collective plasma oscillations. It is then important

to compute the coupling of shot-noise to the plasma eigenmodes in order to study

the evolution of shot-noise microbunching under the effect of LSC self-fields. Note

that, by construction, our analysis only includes the coupling to the collective

space-charge modes. As shown by Kim et al., when thermal motion due to the

finite energy spread of the electrons is significant (namely a non-negligible value

of Kγ), single-particle effects can suppress the plasma behavior of shot-noise.

We will thus limit our shot-noise analysis to small values of the energy spread

parameter.

In the case of coupling to shot-noise the IVP must be treated statistically.

Namely, the coupling coefficients 〈f †±, f1,0〉 have to be modified to take into ac-

count density fluctuations due to the intrinsic discrete nature of the six-dimensional

particle distribution. Expressing the initial particle distribution as a sum of δ-

functions in six-dimensional phase space we get:

〈f̂ †±, f1,0〉 =
1

L

∑
j

e−ikzzj
∫ 0

−∞
e−i

ω±τ
c

+ikz żjτE± (~xj−(τ)) dτ (4.21)

where (~xj, ~β⊥j, zj, ηj) is the position in phase-space of the j-th particle and

~xj−(τ) = ~xj cos kβτ −
~β⊥,j
kβ

sin kβτ . The sum is performed over the N particles

in the region 0 < z < L. For an uncorrelated initial distribution, in which the

initial phase-space perturbation is only due to shot-noise, the statistical aver-

age of the coupling coefficient vanishes but its average absolute value squared is
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different than zero. We shall thus compute the average microbunching power as:

|ñ|2 =e2={Ω+}T |c+|2|〈f̂ †+, f1,0〉|2 + e2={Ω−}T |c−|2|〈f̂ †−, f1,0〉|2

+ 2<
{
e−i(Ω+−Ω∗−)T c+c

∗
−〈f

†
+, f1,0〉〈f †−, f1,0〉∗

} (4.22)

with:

c± = −ωp
c

∫ 0

−∞ dT
′T ′ e−iΩ±T

′−
(KγT

′)2
2

(1+iKεT ′)2+4w±(1+iKεT ′)∫ 0

−∞ dT
′ T ′2e−iΩ±T

′−
(KγT ′)2

2

(1+iKεT ′)2+4w±(1+iKεT ′)+4w2
± sin2 KβT ′

(4.23)

It can be shown that the statistically averaged coupling coefficients are given

by (see the derivation in the appendix):

|〈f̂ †±, f1,0〉|2 =
n2
λc

2

Nω2
p

∫ 0

−∞
dT ′

e−iΩ±T
′ − e−iΩ∗±T ′

−i(Ω± − Ω∗±)

e−
K2
γT
′2

2

(1 + iKεT ′)2 + 4<{w±}(1 + iKεT ′) + 4|w±|2 sin2KβT ′
,

(4.24)

while the cross-term 〈f †+, f1,0〉〈f †−, f1,0〉∗ can be computed as:

〈f̂ †+, f1,0〉〈f̂ †−, f1,0〉∗ =
n2
λc

2

Nω2
p

∫ 0

−∞
dT ′

e−iΩ+T ′ − e−iΩ∗−T ′

−i(Ω+ − Ω∗−)

e−
K2
γT
′2

2

(1 + iKεT ′)2 + 2(w+ + w∗−)(1 + iKεT ′) + 4w+w∗− sin2KβT ′
.

(4.25)

We recall that in the cold beam limit (Kγ � 1, Kε � 1) we have Ω± = ±Ω,

w± = w, ={Ω} = 0 and ={w} = 0. In this limit Eq.(4.22) reduces to:

|ñ|2 = |ñsn|2Γ2
sn cos2 ΩT (4.26)

where the shot noise geometrical coupling coefficient is Γ2
sn = 1+4w

(1+2w)2 for Kβ � 1

and Γ2
sn = 1+4w+2w2

(1+2w)2 for Kβ � 1. Note that Γsn < 1, which means that the
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density modulation associated with the fundamental mode at T = 0 is smaller

than the shot-noise density perturbation |ñsn|2. This inconsistency arises because

shot-noise couples to a great number of plasma eigenmodes while here we are

only considering the fundamental one. As mentioned before, in many practical

cases we are mostly concerned with the dominant mode since it is the one with

the strongest response from the beam. For example, for shot-noise suppression

experiments, we are interested in studying the evolution of the fundamental mode

since it is the mode that mostly contributes to the noise contamination of seeded

free-electron lasers.

Figure 4.2 shows the shot-noise geometrical coupling coefficient Γsn as a func-

tion of D. Note that, for D � 1 the coupling coefficient tends to one, which indi-

cates that in this limit excitation of higher order radial modes from shot-noise is

strongly suppressed. In the opposite limit (D � 1), for Kβ � 1 the fundamental

mode is strongly coupled to shot-noise whereas, for Kβ � 1, the coupling coeffi-

cient decreases monotonically as 1√
2D

. The latter condition (D � 1, Kβ � 1) is

identified as the one-dimensional limit, in which the plasma eigenmodes are fully

degenerate [42]. In this limit, our three-dimensional modal description should

take into account a great number of radial modes and a one-dimensional or quasi-

three dimensional theory (as the one found in [30]) would be more suited for the

description of the IVP.

Note that the different behavior of Γsn for large values of D in the two opposite

limits of laminar motion (Kβ � 1) and high betatron frequency (Kβ � 1) is a

direct consequence of the degeneracy breaking induced by transverse focusing,

which was discussed in [42].

86



10
−1

10
0

10
1

10
−1

10
0

D

Γ
s
n

 

 

K
β
 >>1

K
β
 <<1

Figure 4.2: Shot noise geometrical coupling coefficient as a function of the 3-D pa-
rameter for the laminar beam limit (blue curve) and the high betatron frequency
limit (red curve)
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4.4 Numerical Examples

In this section we describe some specific application of the theory described in this

chapter. We will refer to the following beam parameters, roughly corresponding

to the compressed mode of operation of the Next Linear Collider Test Accelerator

(NLCTA):

• beam energy: Eb = 120MeV ;

• beam current: Ib = 350A;

• normalized transverse emittance: ε = 3mm×mrad;

• slice energy spread: ση = 5× 10−5 .

We will study the evolution of an initial coherent density perturbation under

the effect of longitudinal space-charge forces to show how three-dimensional and

thermal effects affect the plasma dynamic of the beam.

Note that for a non-accelerating beam the transverse emittance is a conserved

quantity. The transverse beam size is related to the normalized emittance as:

σx =
√

βf ε

γ
where the β function is defined as βf = 1/kβ. In space-charge based

experiments (such as microbunching reduction or amplification) it is generally

desirable to increase the intensity of the longitudinal space-charge forces by in-

creasing the density of the beam (namely by matching the beam to a small value

of βf ). However, for a given transverse emittance, we have: Kε ∝ 1/σx ∝ 1/β
1/2
f

which means that increasing the collective response by strongly focusing the beam

comes at the expense of increasing the longitudinal velocity spread due to emit-

tance, which leads to damping of the microbunching structure. Figure 4.3 shows

the time evolution of the fundamental mode excited by an initial coherent den-

sity perturbation at a wavelength of λ = 2π/kz = 800nm. The initial density
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Figure 4.3: Time evolution of a coherent density modulation for the NLCTA
beam parameters and βf = 6m (blue line) and βf = 0.3m (red line)
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perturbation is given by: f1,0 = b0f0, with b0 � 1 (corresponding to ν = 0 with

reference to section 4.2) for several values of the beta function. As expected the

microbunching plasma dynamic is faster for stronger focusing. For small values

of the beta function, emittance induced Landau damping becomes important,

exponentially suppressing the backward propagating mode.

Note that the bunching factor in Fig.4.3 does not go to zero after a quarter

of plasma period since the backward and forward modes have different frequen-

cies and different coupling coefficients. This effect is particularly noticeable for

smaller values of βf (which correspond to higher values of the emittance param-

eter Kε). This can be an important limitation in noise reduction schemes, where

the shot-noise microbunching of an electron beam is suppressed by letting the

beam perform a quarter plasma oscillation [14]

To better understand this effect we study the effect of emittance on the am-

plitude of the shot-noise bunching factor after one quarter plasma period. Fig.4.4

shows the amplitude of the first minimum of the shot-noise microbunching

√
|ñ|2

as a function of βf for several values of the beam emittance. Ideally, for a cold

beam, the shot-noise bunching factor is suppressed after one quarter plasma oscil-

lation. However when emittance is included, the first minimum of the shot-noise

amplitude is different than zero and its amplitude increases with decreasing βf

(i.e. increasing Kε). This limits the amount of suppression achievable in a noise-

suppression experiment. A similar effect can be caused by energy spread, as

discussed by Kim.
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4.5 Conclusions

In this chapter we have analyzed the initial value problem of longitudinal plasma

oscillations for a thermal relativistic electron beam. Our analysis is based on an

eigenmode expansion of the initial perturbation in six-dimensional phase-space

and includes the effects of energy-spread, finite emittance, betatron motion and

edge effects due to the finite size of the beam. The eigenmode expansion relies

on the solutions of the plasma oscillation eigenvalue problem discussed in [42]

and takes advantage of the bi-othogonality property of the phase-space plasma

eigenmodes and their set of adjoint eigenmodes.

We have derived a general formalism for the IVP which describes the evolution

of an arbitrary initial perturbation under the effect of longitudinal space-charge

forces for a beam matched to a focusing channel. Later on we have derived

closed form expressions for the evolution of the fundamental plasma eigen-mode

starting from a coherent density perturbation as well as from density fluctuations

due to shot-noise. Explicit solutions for the coupling coefficient of the initial

perturbation to the fundamental mode have been derived in the cold beam limit

and used to describe how three-dimensional effects and betatron motion affect

the physics of this problem .

Finally, the mathematical formalism of the IVP, and its implementation for

the fundamental mode have been used to describe the time evolution of beam

microbunching for a specific example corresponding the the NLCTA beam pa-

rameters.

92



4.A Derivation of the normalization coefficients for a co-

herent density modulation

In this section we derive some of the expressions reported in section 4.2. Following

the definitions given in Section 4.1, the normalization coefficient for a transversely

Gaussian field can be expressed as:

〈f †±, f±〉 =
iknλc

3

γ2ω3
p

∫ 0

−∞
dT

∫ 0

−∞
dT ′

∫
d2 ~Bd2 ~XF0,⊥Ez

(
X+(T )

)
Ez
(
X−(T ′)

)
(T + T ′)e−iΩ±(T+T ′)− (Kγ (T+T ′))2

2
− ( ~X2+~B2)iKε(T+T ′)

2

(4.27)

where Ω± and f± are, respectively, the two dominant roots (with positive/negative

real part) of the dispersion relation and the two associated eigenfunctions in the

variational approximation, nλ = n02πσ2
x is the average linear beam density and

we have omitted the inessential factor −e/γmc2 from both f± and f †±.

The d2 ~Xd2 ~B integral yields:

〈f †±, f±〉 = −iknλc
3

γ2ω3
p

∫ 0

−∞
dT

∫ 0

−∞
dT ′(T + T ′)e−iΩ±(T+T ′)− (Kγ (T+T ′))2

2

1

(1 + iKε(T + T ′))2 + 4w±(1 + iKε(T + T ′)) + 4w2
± sin2Kβ(T + T ′)

(4.28)

By performing the change of variables T + T ′ = T ′′ and integrating by parts in

dT we finally obtain

〈f †±, f±〉 =
iknλc

3

γ2ω3
p

∫ 0

−∞
dT

T 2e−iΩ±T−
(KγT )2

2

(1 + iKεT )2 + 4w±(1 + iKεT ) + 4w2
± sin2KβT

(4.29)
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4.B Derivation of the statistically averaged coupling co-

efficients of shot-noise to the fundamental plasma

eigen-mode

By taking the absolute value squared of Eq.(4.21), recalling that eikz(zj−zl) = δj,l,

we have:

|〈f †±, f1,0〉|2 =

∫
d2~β⊥d

2~x

∫ 0

−∞
dτ

∫ 0

−∞
dτ ′f0E± (~x+(τ))E∗z (~x−(τ)) ei(

ω±
c

+kz ż)τ−i(
ω∗±
c

+kz ż)τ ′ .

(4.30)

Performing the integral in d2~β⊥d
2~x we have, in dimensionless units:

|〈f †±, f1,0〉|2 =
n2
λc

2

Nω2
p

∫ 0

−∞
dT

∫ 0

−∞
dT ′e−i(Ω±T−Ω∗±T

′)−
K2
γ (T−T ′)2

2

1

(1 + iKε(T − T ′))2 + 4<{w±}(1 + iKε(T − T ′)) + 4|w±|2 sin2Kβ(T − T ′)
.

(4.31)

Finally, performing the change of variables T −T ′ = T ′′ and integrating by parts

we obtain the final result shown in section 4.3:

|〈f †±, f1,0〉|2 =
n2
λc

2

Nω2
p

∫ 0

−∞
dT ′

e−iΩ±T
′ − e−iΩ∗±T ′

−i(Ω± − Ω∗±)

e−
K2
γT
′2

2

(1 + iKεT ′)2 + 4<{w±}(1 + iKεT ′) + 4|w±|2 sin2KβT ′
.

(4.32)

Similarly we can compute the cross-term in Eq.(4.22) as:

〈f †+, f1,0〉〈f †−, f1,0〉∗ =
n2
λc

2

Nω2
p

∫ 0

−∞
dT

∫ 0

−∞
dT ′e−i(Ω+T−Ω∗−T

′)−
K2
γ (T−T ′)2

2

1

(1 + iKε(T − T ′))2 + 2(w+ + w∗−)(1 + iKε(T − T ′)) + 4w+w∗− sin2Kβ(T − T ′)
(4.33)
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which reduces to:

〈f †+, f1,0〉〈f †−, f1,0〉∗ =
n2
λc

2

Nω2
p

∫ 0

−∞
dT ′

e−iΩ+T ′ − e−iΩ∗−T ′

−i(Ω+ − Ω∗−)

e−
K2
γT
′2

2

(1 + iKεT ′)2 + 2(w+ + w∗−)(1 + iKεT ′) + 4w+w∗− sin2KβT ′
.

(4.34)
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CHAPTER 5

Three Dimensional Kinetic Theory of the

Longitudinal Space-Charge Amplifier

In the previous chapters, the self-consistent evolution of small perturbations in

six-dimensional phase-space was analyzed in the context of an initial value prob-

lem based on a bi-orthogonal eigenmode expansion in six-dimensional phase-

space. This analysis allows to study the effects of transverse betatron motion

and longitudinal velocity spread on the beam space-charge waves and it’s the

basis for a self-consistent kinetic analysis of space-charge induced microbunching

amplification.

Space-charge based microbunching amplification is a two-step process (see

Fig. 5.1): an electron beam with a small density modulation travels through a

drift space or a focusing channel and the longitudinal space-charge field generates

an energy modulation. After the drift, a magnetic chicane or any transport

element with a significant longitudinal dispersion, shifts the longitudinal position

of the particles proportionally to their energy, thus transforming the accumulated

energy modulation into a density modulation. For a high quality beam (low

energy spread and emittance) the final amplitude of the density modulation can

be much higher than the initial value, resulting in a significant amplification of

the bunching factor.

This effect is usually referred to as microbunching instability and it can
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strongly affect the operation of high gain free-electron laser compromising the

beam quality and interfering with beam diagnostic instruments. Recently, the

longitudinal space-charge microbunching instability has been proposed as a broad-

band amplifier for advanced free-electron laser seeding schemes [13].

In this chapter we use the results from chapters 3 and 4 to give a self-consistent

theoretical description of this process, with the inclusion of the kinetic effects

described in the previous chapters (betatron motion, energy-spread and finite

emittance). This chapter is organized as follows: in section 5.1 we describe

the use of the formalism for the 6-dimensional initial value problem to describe

the microbunching amplification induced by space-charge; in 5.2 we find explicit

expressions for the microbunching gain associated with the fundamental plasma

eigenmode starting from a coherent density modulation; in 5.3 we use the present

formalism to analyze the amplification of shot-noise microbunching coupled to

the fundamental mode; finally we show the application of this analysis to the

optimization of a microbunching amplification experiment at the NLCTA test

facility.

5.1 Six-dimensional model of space-charge microbunching

In this section we derive a general formulation for the microbunching induced

by LSC starting from an arbitrary perturbation in six-dimensional phase-space.

Throughout this chapter we will refer to the physical scenario described in fig.5.1.

An electron beam with an initial perturbation in phase-space travels through a

focusing channel, where the LSC field induces an energy modulation in the beam.

After the focusing channel, a magnetic chicane introduces longitudinal dispersion,

transforming the energy modulation into density modulation.
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The self-consistent evolution of six-dimensional phase space under the effect

of LSC can be described using the formalism developed in chapters 3, 4. We

assume a coasting, non-accelerating electron beam of energy γmc2 matched to a

uniform focusing channel. The electron beam is described by a six-dimensional

phase-space distribution function f(~x, ~β, z, η, τ) where ~x is the transverse position

with respect to the propagation axis, ~β is the transverse velocity normalized to

the speed of light, η = δγ
γ

is the relative energy deviation, z is the longitudinal

position along the beam and τ = ct, where t is the time variable and c is the

speed of light. The distribution function is expanded to first order in perturbation

theory f = f0 + f1e
ikzz where f0 is a stationary distribution function and |f1| �

f0. We assume a gaussian stationary distribution function of the type:f0 =

n0e
− ~x2

2σ2
x
−

~β2
⊥

2σ2
xk

2
β

− η2

2σ2
η /(2π)3/2σ2

xk
2
βση.

The perturbed phase-space distribution f1 evolves under the effect of LSC

forces starting from an initial value f1,0. The evolution of the phase-space per-

turbation can be expressed in terms of the plasma eigen-modes of the beam. We

define the LSC field eigenmodes En and eigenvalues ωn as the solutions to the

following eigenvalue equation:

(∇2
⊥ −

k2
z

γ2
)En = −

k2
zω

2
p

γ2c2

∫ ∫ 0

−∞
τe−

(kzσητ)2

2
−ikz

k2
β~x

2+~β2
⊥

4
τ−iωnτ

c En(~x+(τ))f0⊥dτd
2~β⊥.

(5.1)

where f0⊥ = e
− ~x2

2σ2
x
−

~β2
⊥

2σ2
xk

2
β /2πσ2

xk
2
β, ~x±(τ) = ~x cos kβτ±

~β
kβ

sin kβτ and ω2
p = n0e2

ε0γ3m
is

the one-dimensional plasma oscillation frequency. The field eigenmodes represent

a set of propagating solutions to the system of coupled Poisson/Vlasov equation.

The phase-space eigenmodes of the beam associated with the field eigenmodes

are

f̂n = − e

γmc2
∂ηf0

∫ 0

−∞
e−i

ωnτ
c

+ikz żτEn (~x+(τ)) dτ, (5.2)
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with ż = η/γ2 − (k2
β~x

2 + ~β2)/4 and ~x±(τ) = ~x cos kβτ ±
~β
kβ

sin kβτ . The adjoint

phase-space eigenmodes are

f̂ †n = − e

γmc2

∫ 0

−∞
e−i

ωnτ
c

+ikz żτE†n (~x−(τ)) dτ, (5.3)

where, for a general field eigenmode of the type En(~x) = Rm,r(|~x|)eimφ (where φ

is the polar angle in the transverse plane) the adjoint field eigenmode is given by

the following relation En = Rm,r(|~x|)eimφ ↔ E†n = Rm,r(|~x|)e−imφ.

The phase-space eigenmodes represent a set of propagating solutions to the

system of coupled Maxwell/Vlasov equations described in [42] and in chapter

3. These solutions can be employed as a representation basis for the perturbed

phase-space distribution starting from the initial perturbation f1,0. The evolution

of the phase-space perturbation in the focusing channel is then computed by using

the bi-orthogonality property of the phase-space eigenmodes with respect to the

set of adjoint eigenmodes:

f1(τ) =
∑
n

f̂ne
−iωnτ

c
〈f̂ †n, f1,0〉
〈f̂ †n, f̂n〉

. (5.4)

where < a, b >=
∫
dηd2~βd2~xa(~x, ~β, η, τ)b(~x, ~β, η, τ) is the five-dimensional scalar

product.

Equation (5.4) solves our problem up to the entrance of the magnetic chicane.

To complete the analysis we have to describe the effect of longitudinal dispersion

in the magnetic chicane. The magnetic chicane introduces the following coor-

dinate transformation z → z + R56η. The effect of this transformation on the

phase-space perturbation is that of introducing a phase-shift proportional to the

energy deviation as: f1 → f1e
−ikηR56 . It follows that the density modulation after
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Figure 5.1: Schematic representation of a longitudinal space-charge amplifier.

a focusing channel of length Ld and magnetic chicane dispersion R56 is given by:

ñR56 =
∑
n

〈f̂ †n, f1,0〉
〈f̂ †n, f̂n〉

∫
dηd2~βd2~xf̂ne

−ikηR56−i
ωnLd
c . (5.5)

Equation (5.5) describes the density modulation induced by LSC starting from

an arbitrary perturbation f1,0. In the following sections we will find explicit

closed-form expressions for some of the cases of interest to illustrate the physical

processes involved in the LSC gain mechanism.

In what follows, we will use the dimensionless scaling parameters and variables

introduced in chapter 3.

5.2 Microbunching gain for the fundamental plasma eigen-

mode

In this section we will compute the microbunching gain in Eq.(5.5) for the funda-

mental plasma eigenmode. For the sake of simplicity we will use the variational

solutions to the plasma eigenmode problem that were derived in [42]. In the vari-

ational approximation, the electric field is approximated with a gaussian mode

Ez = e−w|
~X|2 . The plasma eigenvalue Ω and the variational parameter w are
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computed by projecting the field dispersion equation (3.8) on the gaussian mode

and imposing the condition dΩ
dw

= 0. We will also work in the dominant pole

approximation, and we will keep the two roots of the dispersion relation with the

lowest Landau damping constant. The two roots are identified as Ω± and are

associated with the phase space eigenmodes f̂± and the field eigenmodes with

variational paramters w±. The notation ± refers to the sign of the real part

of the eigenvalue, corresponding to a forward or backward propagating space-

charge wave depending on the sign of kz. Note that the propagation properties

of the forward and backward modes are different due to the anisotropy induced

by transverse emittance. In particular the backward propagating mode has a

stronger emittance induced damping. With the above notation and assumptions

the density modulation amplitude after longitudinal dispersion is given by:

ñ ' ikzR56nλe
−
K2
φ

2

(
e−iΩ+T

〈f̂ †+, f1,0〉
〈f̂ †+, f̂+〉

∫ 0

−∞
dT ′

e−i(Ω++iKγKφ)T ′− (KγT
′)2

2

(1 + iKεT ′)2 + 2w+(1 + iKεT ′)

+e−iΩ−T
〈f̂ †−, f1,0〉
〈f̂ †−, f̂−〉

∫ 0

−∞
dT ′

e−i(Ω−+iKγKφ)T ′− (KγT
′)2

2

(1 + iKεT ′)2 + 2w−(1 + iKεT ′)

)
(5.6)

with Kφ = kσηR56. Note that in Eq. (5.6) we have only kept the term pro-

portional to R56, which accounts for the microbunching enhancement due to

longitudinal rearrangement.

In chapter 4, explicit expressions for the coupling and normalization coeffi-

cients were found for the fundamental mode in the variational approximation. In

dimensionless units we have:

〈f̂ †±, f̂±〉 =
iknλc

3

γ2ω3
p

∫ 0

−∞
dT

T 2e−iΩ±T−
(KγT )2

2

(1 + iKεT )2 + 4w±(1 + iKεT ) + 4w2
± sin2KβT

(5.7)

where nλ = n02πσ2
x is the average linear beam density and we have omitted the
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inessential factor −e/γmc2 from both f̂± and f̂ †±.

To find a closed form expression for the coupling coefficient 〈f̂ †±, f1,0〉, one has

to make some assumptions on the initial phase space perturbation. In this section

we will discuss the case of a coherent density modulation with the following

type of perturbation: f1,0 = ρ̃(~x)f0(~x, ~β, η). We will also assume that the input

bunching factor has a gaussian shape: ρ̃ = ñ0

nλ
(1 + 2ν)e−ν

~X2
. The resulting

coupling coefficient is for this type of initial perturbation was computed in chapter

4:

〈f̂ †±, f1,0〉 = ñ0(1+2ν)
c

ωp

∫ 0

−∞
dT

e−iΩ±T−
(KγT )2

2

(1 + iKεT )2 + 2(w± + ν)(1 + iKεT ) + 4w±ν sin2KβT
.

(5.8)

In the cold beam limit (Kγ � 1, Kε � 1) Eqs.(5.6,4.15,4.16) reduce to:

ñ = −ñ0
ωp
c
γ2R56e

−
K2
φ

2 ΓΩ+ sin Ω+T, (5.9)

where the geometrical coupling coefficient is given by: Γ = (1+2ν)(1+4w)
(1+2w)(1+2(w+ν))

for

Kβ � 1 and Γ = (1+2ν)(1+4w+2w2)
(1+2(w+ν)+2wν)(1+2w)

for Kβ � 1. Note that, up to a factor Γ,

this formula is equivalent to the one derived in [30], revealing the same under-

lying physical process. The gain mechanism induced by the longitudinal space-

charge corresponds to a fraction of plasma oscillation of duration tsc followed

by a space-charge-free drift of length Leq = γ2R56. The resulting microbunch-

ing gain can be interprepeted as the time-derivative of the density modulation

dñ/dt = −Γω sinωtsc times the crossing time of the space-charge free drift. Fi-

nally, the phase mixing effect due to the finite energy spread introduces the term

e−K
2
φ/2. Note that even for Kγ � 1 energy spread can have a significant effect due

to the phase mixing term. In other words, energy spread can have a negligible

effect on the plasma oscillation but it can become important in the longitudinal
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rearrangement process.

5.3 Shot-noise amplification

In the case of coupling to shot-noise the problem of microbunching gain must

be treated statistically. Namely, the coupling coefficients 〈f †±, f1,0〉 have to be

modified to take into account density fluctuations due to the intrinsic discrete

nature of the six-dimensional particle distribution. Expressing the initial particle

distribution as a sum of δ-functions in six-dimensional phase space we get 4:

〈f †±, f1,0〉 =
1

L

∑
j

e−ikzzj
∫ 0

−∞
e−i

ω±τ
c

+ikz żjτE± (~xj−(τ)) dτ (5.10)

where (~xj, ~βj, zj, ηj) is the position in phase-space of the j-th particle and ~xj−(τ) =

~xj cos kβτ −
~β⊥,j
kβ

sin kβτ . The sum is performed over the N particles in the region

0 < z < L. For an uncorrelated initial distribution the average density modula-

tion vanishes but the average absolute value squared is different than zero. We

shall thus compute the averaged microbunching power as:

|ñ|2 = e2ΩI+T |g+|2|〈f †+, f1,0〉|2+e2ΩI−T |g−|2|〈f †−, f1,0〉|2+2<
{
e−i(Ω+−Ω∗−)Tg+g

∗
−〈f

†
+, f1,0〉〈f †−, f1,0〉∗

}
(5.11)

with:

g± =
ω2
pγ

2R56

c2
e−

K2
φ

2

∫ 0

−∞ dT
′ e−i(Ω±+iKγKφ)T ′−

(KγT
′)2

2

(1+iKεT ′)2+4w(1+iKεT ′)∫ 0

−∞ dT
′ T ′2e−iΩ±T

′−
(KγT ′)2

2

(1+iKεT ′)2+4w(1+iKεT ′)+4w2 sin2KβT ′

(5.12)

By taking the absolute value squared of Eq.(4.21), recalling that eikz(zj−zl) =
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δj,l, and using the results from chapter 4:

|〈f̂ †±, f1,0〉|2 =
n2
λc

2

Nω2
p

∫ 0

−∞
dT ′

e−iΩ±T
′ − e−iΩ∗±T ′

−i(Ω± − Ω∗±)

e−
K2
γT
′2

2

(1 + iKεT ′)2 + 4<{w±}(1 + iKεT ′) + 4|w±|2 sin2KβT ′
,

(5.13)

and

〈f̂ †+, f1,0〉〈f̂ †−, f1,0〉∗ =
n2
λc

2

Nω2
p

∫ 0

−∞
dT ′

e−iΩ+T ′ − e−iΩ∗−T ′

−i(Ω+ − Ω∗−)

e−
K2
γT
′2

2

(1 + iKεT ′)2 + 2(w+ + w∗−)(1 + iKεT ′) + 4w+w∗− sin2KβT ′
.

(5.14)

In the cold beam limit (Kγ � 1, Kε � 1) we have Ω− → −Ω+ and ={Ω±} →

0. In this limit Eq.(5.11) reduces to:

|ñ|2 = |ñsn|2
(

Γsn
ωp
c
γ2R56e

−
K2
φ

2 Ω+ sin Ω+T
)2

(5.15)

where the shot noise geometrical coupling coefficient was defined in chapter 4 as:

Γ2
sn = 1+4w

(1+2w)2 for Kβ � 1 and Γ2
sn = 1+4w+2w2

(1+2w)2 for Kβ � 1, while |ñsn|2 = nλ
L

is

the average shot-noise power.

5.4 Cold beam spectrum

In this section we will show some applications of our self-consistent analysis. We

will consider the example of the Next Linear Collider Test Accelerator (NLCTA)

at SLAC. We will assume the following beam parameters:

• beam energy: Eb = 120MeV ;
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• beam current: Ib = 200A;

• normalized transverse emittance: ε = 3mm×mrad;

• slice energy spread: ση = 5× 10−5 .

In this sub-section we study the amplification spectrum for the NLCTA beam

in the cold beam limit. In this limit, we neglect the longitudinal velocity spread

induced by emittance and we use the closed-form expression in Eq. (5.9). Since

the coupling coefficient Γ depends on the details of the initial distribution of the

beam microbunching, and it is typically of order ' 1 for many cases of interest,

we will neglect it.

Figure 5.2 shows the microbunching power gain g = |ñR56/ñ0|2 for a transverse

beam size of σx = 50µm and a drift length of Ld = 0.5, Ld = 1 and Ld = 1.5

respectively. The longitudinal dispersion is chosen to optimize the gain at λ =

800nm for the assumed energy spread of ση = 5× 10−5, i.e. R56 = 1/kση

The gain is maximum around λ ' 1µm and it rolls off as e−(kR56ση)2
at short

wavelengths due to the phase-mixing induced by energy-spread. At long wave-

lengths the gain decays due to transverse edge effects, which make the plasma

frequency tend to zero as D → 0. Using the variational solution the mode oscilla-

tion frequency scales as ω ∝ 1/λ, giving a scaling for the gain of g ∝ 1/λ4 for an

interaction length much shorter than a quarter plasma period and g ∝ 1/λ2 for

an interaction length close to a quarter plasma period. Note that the accuracy of

the variational solution based on a Gaussian mode decreases for very small values

of D (below 0.01), where the decay to 0 is slower than ∝ D (see e.g. the thin

beam limit in Ref. [48]). However the previous discussion remains valid since

variational solution is accurate within 10% for D > 0.01.
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Figure 5.2: Amplification spectrum for the NLCTA beam paramters, with
σx = 50µm and several values of the drift length.
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5.5 Optimization of a short-wavelength longitudinal space-

charge amplifier

The longitudinal space-charge amplifier has been proposed as a source of broad-

band radiation in the VUV / soft x-ray region. While the amplification of optical

microbunching induced by space-charge happens spontaneously in x-ray FEL

beamlines and has been observed at several facilites, the use of a longitudinal

space-charge amplifier at short wavelenghts poses several challenges due to the

effects of longitudinal thermal motion. These effects lead to Landau damping

of the microbunching structure during the space-charge interaction [42], leading

to suppression of the microbunching gain. At short wavelengths and high beam

energies, the main contribution to thermal motion comes from emittance, since

the longitudinal velocity-spread induced emittance scales like σβz ∝ ε2g ∝ 1/γ2,

where εg is the beam’s geometrical emittance (as opposed to the energy-spread

term which scales as σβz ∝ 1/γ3).

The optimization of a space-charge amplifier at short wavelengths, has to

include the effects of emittance by balancing two competing effects. On one hand,

by strongly focusing the beam the space-charge fields are enhanced and the gain

tends to increase. On the other hand, strong focusing enhances the longitudinal

velocity-spread due to transverse emittance, which tends to suppress the collective

response of the electrons. The gain is then maximized when the two effects

balance each other or, if the beam is cold enough, when the plasma oscillation

mechanism makes the space-charge fields vanish after one-quarter plasma period.

Note that the same effect happens in x-ray high-gain free-electron lasers (see

for example [10]), in which the beam focusing channel is designed to minimize the

gain-length by balancing high-density and emittance-induced velocity spread.
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Figure 5.3: Microbunching power gain as a function of the beam βf function
for the 30nm longitudinal space-charge amplifier as derived from the cold beam
(black line) and warm beam (red line) models.

To illustrate this point, we will discuss the example of a LSCA at λ = 30nm.

We assume the following beam parameters:

• beam energy: Eb = 1GeV ;

• beam current: Ib = 1500A;

• normalized transverse emittance: ε = 1mm×mrad;

• slice energy spread: ση = 1× 10−4 .

Figure 5.3 shows the microbunching power gain after Ld = 5m, as a function

of the beam beta-function βf = 1/kβ for both the cold beam and the warm beam
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theory. The longitudinal dispersion is chosen to optimize the gain at 30nm. In

the cold beam model the gain increases with decreasing βf until it reaches a

maximum corresponding to the point in which the drift-length is equal to one-

quarter plasma period. If we include the effects of emittance, however, the gain

reaches a lower maximum value. For this value of the focusing function, we have

Kε ' 0.5. For smaller values of the beta-function, the gain is suppressed due to

the Landau damping induced by transverse emittance.

5.5.1 Higher order modes

In sections 3.4 and 3.5 we described the propagation features of higher-order

plasma eigenmodes. It was found that, when the betatron frequency is larger

than the beam plasma-frequency, the oscillation frequency of the higher-order

plasma eigenmodes is significantly reduced with respect to the fundamental mode.

This can have a significant impact on the transverse shape of the microbunched

distribution.

In this section we will compare the gain mechanism for the fundamental mode

and for the lowest orderm = 1 transverse mode (the E1,1,0 eigenmode) in the high-

betatron frequency limit. We will not give the explicit details of the mathematical

derivation but we will state some of the most important results.

The lowest order m = 1 eigenvalues are: Ω±,± = ±Kβ ± δΩ. It can be shown

that the coupling and normalization coefficients have the same value for the the

four associated phase-space eigenmodes f̂1,±,±. It follows that the microbunching

gain for the lowest-order m = 1 mode is given by:

ñR56/1,1,0 = −ñ0e
− (kzσηR56)2

2 Γ1,1,0
ωpδΩ

c
γ2R56 cosKβT sin δΩT , (5.16)
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where Γ1,1,0 is a coupling coefficient of order ∼ 1.

The term cosKβT accounts for the ballistic evolution of the beam pertur-

bation under the effect of transverse focusing, while the term sin δΩT describes

the collective response of the electron beam. Note that, up to the geometrical

coupling coefficients Γ, the ratio of the power gain for the fundamental mode and

the higher order mode scales as (Ω0,0,0 sin Ω1,0T/δΩ1,1,0 sin δΩ1,1,0T )2. Note also

that, for the high betatron frequency limit δΩ1,1,0 < 0.6Ω0,0,0 for any wavelength.

This has interesting consequences for the transverse coherence properties of the

longitudinal space-charge amplifier.

For Ω1,0ωpLd � π/2, the ratio of the gain for the two modes scales as

g0,0,0/g1,1,0 ∝ (Ω0,0,0/δΩ1,1,0)4 and the amplification of the higher order mode

is strongly suppressed with respect to the fundamental mode. In this case, the

effect of betatron motion is that of increasing the transverse coherence of the

microbunching by suppressing the gain on the high-order modes. This effect will

be particularly noticeable when starting from shot-noise, which couples strongly

to a great number of transverse modes.

In cases in which Ω1,0ωpLd ' π the plasma frequency reduction induced by

betatron motion can be employed to selectively amplify higher order modes. In

this case, in fact, the gain of the fundamental mode is null, while the high order

mode undergoes a significant amplification. As mentioned in Section 3.5, this

effect could be employed in an advanced FEL seeding scheme for the generation

of light with orbital angular momentum [44]
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5.6 Conclusions

In this chapter we have developed a three-dimensional kinetic model of the lon-

gitudinal space-charge microbunching instability. Our analysis is based on the

modal decomposition of the phase-space perturbation developed in chapters 3

and 4. We derive a general formalism for the microbunching induced by longi-

tudinal space-charge for a beam with finite emittance, energy spread, betatron

motion and finite transverse size.

The general formalism is employed to find closed form expressions for the

microbunching gain for the fundamental plasma eigenmode starting from both a

coherent density modulation or shot-noise.

Finally we employed our model to describe a specific experimental scenario

corresponding to the compressed NLCTA electron beam. We derive a closed form

solution for the microbunching gain in the case of a cold beam which we use to

describe the spectral properties of the LSCA. We show how emittance can sup-

press the microbunching for strong beam focusing, an effect which is due to the

emittance induced Landau damping of the space-charge oscillations. We show

how our theoretical model can be employed for the design and optimization of a

space-charge experiment, again with the example of the NLCTA beamline. Fi-

nally we briefly discuss the effect of betatron motion on the amplification of higher

order transverse modes and its impact on the transverse coherence properties of

a LSCA.

111



CHAPTER 6

Quasi-Three-Dimensional Analysis of

Space-Charge Induced Optical Microbunching

In the previous sections, we have derived an analysis of longitudinal space-charge

interactions based on a modal expansion in six-dimensional phase-space. In the

1-D limit, in which the plasma eigenmodes are totally degenerate, the modal

expansion is highly impractical since many transverse modes need to be included

to describe the transverse distribution of the beam microbunching. In this case,

it is more convenient to give a local description of the process in a so-called

quasi three-dimensional model. The the analysis contained in this chapter was

published in [30].

In the high-frequency regime, the transverse beam size fulfills the condition

σx � γλ/2π, where σx is the root mean square transverse size of the electron

beam, λ is the wavelength of interest and the Lorentz factor γ is the energy

of the electron beam normalized to mc2. In this limit, the Fourier components

of the electric field generated by an uncorrelated electron distribution have a

transverse correlation area which is much smaller than the electron beam section

[20]. Under these conditions, the collective physics of the electron beam can

be treated in analogy to an unbounded uniform plasma. In this context, it is

useful to work in the spatial frequency domain in three-dimensions and define
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the bunching factor with an angular dependence [21]:

B =
1

N

N∑
n=1

e−ik(zn+sin θ(xn cosφ+yn sinφ)) (6.1)

where N is the number of particles in the electron bunch, θ and φ are, respectively,

the polar and azimuthal angles relative to the beam propagation axis z, zn is the

longitudinal position along the bunch of the n-th particle and xn and yn are the

transverse positions. With this definition, the bunching factor is effectively the

three-dimensional Fourier transform of the electron density and accounts for any

transverse structure in the micro-bunched beam.

A detailed computation of the angular distribution of the micro-bunching is of

fundamental importance since the angular spectra of the radiation processes used

to experimentally diagnose this effect, such as coherent optical transition radia-

tion, are extremely sensitive to the transverse structure of the micro-bunched dis-

tribution. With the assumption of transverse laminar motion, the micro-bunching

geometry matches that of the longitudinal space-charge fields, yielding an angu-

lar width for the micro-bunching gain of θc = 1/γ [21]. Emittance effects in

space-charge interactions, however, significantly modify the transverse structure

of the micro-bunching pattern, and a kinetic treatment of the interaction be-

tween electrons and space-charge fields is needed to fully understand the physics

of longitudinal space-charge-induced micro-bunching in this limit.

In this chapter, we show that in the high frequency limit, with the assumption

that longitudinal motion is quasi-laminar, the problem of space-charge interac-

tions leading to micro-bunching growth becomes formally equivalent to that of

one-dimensional plasma oscillations in a warm electron plasma. The theory of

such electrostatic oscillations in thermal plasmas has been discussed in two sem-
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inal papers by Landau [38] and Jackson [4]; our present work represents a new

application of these venerated techniques of mathematical physics in a radically

different context than the one considered in the original papers. We show that

transverse emittance induces strong Landau damping at high transverse spatial

frequencies, significantly narrowing the angular width of the micro-bunching gain

with respect to the characteristic angular width of the space-charge fields. Finally

we compare the results of our analysis and those of high resolution molecular dy-

namics simulations, capable of investigating spatial features in the fields below

the mean inter-particle distance.

6.1 Longitudinal Space-Charge Induced Micro-bunching

in the High-Frequency Limit

In this section we derive the equations that describe the formation of micro-

bunching starting from shot-noise through the effect of collective longitudinal

space-charge forces. We base this analysis on the Vlasov equation, a kinetic

approach that is appropriate for a warm plasma in which the number of beam

electrons acting collectively to produce the electric and magnetic fields is much

larger than unity. This is true when the condition n0γ
2λ3 >> 1 applies, where

n0 is the electron density and λ is the wavelength of interest. This condition

is equivalent to requiring that the wavelength of interest, as seen in the beam’s

rest frame γλ, is much bigger than the rest frame mean inter-particle distance

(γ/n0)1/3. Obviously this approach precludes the possibility of describing beam

crystallisation processes, which require an analysis of particle to particle corre-

lations on the scale of the mean inter-particle distance in the beam’s reference

frame. Such analysis is the subject of current investigation and we will not discuss

it here.
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To aid in analysis and to compare to previous theoretical work, we assume a

coasting (non-accelerating) beam with constant current. We also limit ourselves

to the high-frequency limit of space-charge interactions (σx >> γλ/2π). In the

high-frequency limit, edge effects due to the finite transverse size of the beam can

be neglected and the 0-th order charge density can be considered constant over

the characteristic transverse scale of the problem.

Consistent with the current theoretical and experimental understanding of

the process, we model the formation of micro-bunching as follows: the electron

beam initially undergoes an external-force-free drift and space-charge generates

an energy modulation starting from shot-noise. After the drift the electrons go

through a series of optical elements which rearrange their longitudinal and trans-

verse phase space coordinates according to a given transfer matrix Rij. The

electron beam particle distribution is described by a six-dimensional distribution

function f(~x⊥, z, ~β⊥, η, τ). Where ~x⊥ is the transverse position, z is the longi-

tudinal position in the beam coordinate system, ~β⊥ is the transverse velocity

normalized to the speed of light, η = ∆γ/γ is the relative energy deviation and

τ = ct where c is the speed of light and t is the time, measured from the beginning

of the interaction. The distribution function is normalized to the total number

of particles N .

We expand the distribution function to first order in perturbation theory:

f = f0 + f1, with |f1| << |f0|. In the high-frequency limit we can specify the

following form for the 0-th order distribution function: f0 = n0fv(~β⊥, η), where n0

is the local average particle density. For simplicity we assume that fv is isotropic

in transverse velocity. Also, for simplicity, we will assume that n0 is independent

of time. This assumption is reasonable if the interaction happens close to a

waist and the maximum distance from the waist is significantly shorter than
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the minimum β-function. If the waist is at the center of the drift the following

condition has to apply: Ld < σx,0/σβ,0, where Ld is the length of the drift and

σx,0 and σβ,0 are, respectively, the root mean square (RMS) transverse size of

the beam and the transverse velocity spread (normalized to c) at the waist. If

this condition does not apply, a possible solution is that of defining an equivalent

drift length [21], shorter than the actual drift length, over which the beam density

can be considered constant. In this chapter we will not be concerned with this

problem and we will assume that the condition Ld < σx,0/σβ,0 is verified, leaving

a detailed study of the effect of density variation for future investigation.

The collective beam dynamics in the drift are described by the Vlasov equa-

tion, coupled to the Maxwell equations. In the coasting beam case, we may derive

the fields from the scalar potential computed in the beam rest frame. With these

underlying assumptions the linearized Vlasov equation for the electrons in the

drift reads:

∂f1

∂τ
+ ~β⊥ · ∇⊥f1 +

η

γ2

∂f1

∂z
+

Fz
γmc2

n0
∂fv
∂η

+
~F⊥

γmc2
· n0

∂fv

∂~β
= 0 (6.2)

where the approximation dz
dτ
≈ p/γ2, valid for relativistic electrons has been used.

Fz and ~F⊥ are respectively the longitudinal and transverse forces generated by

the collective electric and magnetic fields of the electrons and can be computed

solving Poisson’s equation in the beam rest frame, where self-magnetic fields are

negligible: [
∇⊥2 +

1

γ2

∂2

∂z2

]
φ =

e

γε0

∫
f1dηd

2~β. (6.3)

Longitudinal forces are Lorentz invariant while transverse forces transform as

F⊥ → F⊥/γ going from the beam rest frame to the laboratory frame, we then

have: Fz = e
γ
∂φ
∂z

and ~F⊥ = e
γ
∇⊥φ.
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It is convenient to solve equations (6.2) and (6.3) in the Laplace-Fourier do-

main. We give the following definitions:

f̂1 =

∫
f1e
−i(kzz+~k⊥·~x)dzd2~x (6.4)

˜̂
f1 =

∫ ∞
0

f̂1e
−sτdτ (6.5)

and similarly for Fz and ~F⊥. Since the system is isotropic in the transverse

dimension we can set ~k⊥ = x̂kx without loss of generality. We also work in the

paraxial approximation and set kz = k and kx = θk. With the above definitions,

the Laplace-Fourier transform of equations (6.2) and (6.3) yields:

s
˜̂
f1 − f̂1

∣∣∣
τ=0

+ i(kθβx + k
η

γ2
)

˜̂
f1

+
1

γmc2
n0

(
˜̂
Fz
∂fv
∂η

+
˜̂
Fx
∂fv
∂βx

)
= 0

(6.6)

˜̂
Fz = − i

k

e2

ε0

1

1 + (γθ)2

∫
˜̂
f1dηd

2~β (6.7)

˜̂
Fx = θ

˜̂
Fz (6.8)

where f̂1

∣∣∣
τ=0

is the spatial Fourier transform of the initial value of f1.

From Eqs. 6.6 and 6.8 we can express
˜̂
f1 in terms of

˜̂
Fz:

˜̂
f1 =

1

s+ ik(θβx + η
γ2 )

(
f̂1

∣∣∣
τ=0
− n0

γmc2

˜̂
Fz

(
∂fv
∂η

+ θ
∂fv
∂βx

))
. (6.9)

Inserting Eq. (6.9) into (6.6), recalling that
˜̂
Fz does not depend on p and ~β,

we have:
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˜̂
Fz = − i

k

e2

ε0εp

1

1 + (γθ)2

∫ f̂1

∣∣∣
τ=0

sj + ik
(
θβx + η

γ2

)dηd2~β. (6.10)

where εp is the beam’s plasma dielectric function defined as:

εp = 1 +
ω2
p

c2(1 + (γθ)2)

γ2

ik

∫ ∂fv
∂η

+ θ ∂fv
∂βx

s+ ik
(
θβx + η

γ2

)dηd2~β (6.11)

with ω2
p = e2n0

ε0mγ3 being the relativistic beam plasma frequency.

Inserting Eq. (6.10) back into Eq. (6.9), after some algebraic manipulation,

we obtain the following expression for the first order distribution function:

˜̂
f1 =

1

s+ ik(θβx + η
γ2 )

(
f̂1

∣∣∣
τ=0
− 1

εp

ω2
p

c2(1 + (γθ)2)

(
∂fv
∂η

+ θ
∂fv
∂βx

)
γ2

ik

∫ f̂1

∣∣∣
τ=0

s+ ik(θβ′x + η′

γ2 )
dη′d2~β′

)
(6.12)

In what follows it will be understood that all the above integrals are analyti-

cally continued in the complex variable s to the half-plane <[s] < 0.

In performing the inverse Laplace transform we will only consider the zeros of

the plasma dielectric function since these are the poles that describe the collective

response of the electrons. Also, for the moment, we will only retain the R56 matrix

element in the transport matrix describing the optical elements after the drift. A

more general treatment applicable to arbitrary linear phase space transformations

is included in the appendix.

The bunching factor in the frequency domain is defined as the Fourier trans-

form of the density perturbation normalized to the number of particles, i.e.:

B(kz, ~k⊥) =
1

N

∫
f1e
−i(kzz+~k⊥·~x)dzd2~xdηd2~β. (6.13)
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In order to arrive at the final prediction for the bunching factor, after the space-

charge forces have modulated the particle energy distribution, we must account

for the effect of longitudinal dispersion due to systems of bending elements (e.g.

magnetic chicanes). The effect of the longitudinal dispersion, modeled through

the R56 matrix element, is that of shifting each particle’s longitudinal position by

an amount proportional to its energy deviation, i.e. z → z + ηR56. The effect of

this transformation on the spatial Fourier components of the distribution function

is that of introducing a phase shift proportional to the spatial rearrangement:

f̂1 → f̂1e
−ikηR56 .

It follows that the bunching factor after the particles’ rearrangement following

the drift, can be expressed as:

B = − 1

N

∑
j

esjLd
1

∂εp
∂s

∣∣∣
s=sj

ω2
p

c2(1 + (γθ)2)

γ2

ik

∫ e−ikηR56(∂fv
∂η

+ θ ∂fv
∂βx

)

sj + ik
(
θβx + η

γ2

) dηd2~β

∫ f̂1

∣∣∣
τ=0

sj + ik
(
θβx + η

γ2

)dηd2~β

(6.14)

where Ld is the length of the drift and the sum is performed over all the zeros sj

of the plasma dielectric function.

Integrating the first integral on the right-hand side of Eq. (6.14) by parts

in η, and retaining only the term proportional to R56, that accounts for the

micro-bunching enhancement due to the longitudinal rearrangement, we obtain:

BR56 = − 1

N

∑
j

esjLd
1

∂εp
∂s

∣∣∣
s=sj

ω2
pR56γ

2

c2(1 + (γθ)2)

∫
e−ikηR56fv

sj + ik
(
θβx + η

γ2

)dηd2~β

∫ f̂1

∣∣∣
τ=0

sj + ik
(
θβx + η

γ2

)dηd2~β.

(6.15)

119



Finally, if the initial value of the perturbation f1 results from shot-noise, repre-

senting the individual particle positions in terms of δ-functions, we may write the

final integral in Eq. 6.15 as:

∫ f̂1

∣∣∣
τ=0

s+ ik
(
θβx + η

γ2

)dηd2~β =
N∑
n=1

e−i(kzn+kθxn)

s+ ik
(
θβx,n + ηn

γ2

)
∣∣∣∣∣∣
τ=0

(6.16)

where the particle positions are assumed random.

6.2 The Laminar and Quasi-Laminar beam cases

Before proceeding to discuss the general case of interest in this chapter, that of

a transversely warm beam, we first examine analytically the limiting cases in

which transverse thermal effects play a small role. To that end, in this section we

derive a closed form expression for the micro-bunching in two simplified cases:

the laminar and quasi-laminar beam.

In the laminar beam approximation, where to lowest order particles are fixed

in beam-frame position with respect to each other, we may write fv = δ(η)δ2(~β).

In this case the plasma dielectric function can be easily computed analytically:

εp = 1 +
ω2
p

c2

1

s2
. (6.17)

The zeros of εp are s± = ±iωp/c. Inserting s± in equation (6.15) we get:

BR56 =−B0γ
2R56

ωp
c(1 + (γθ)2)

sin
(ωp
c
Ld

)
≈ −b0

(
(γωp)

2

c2(1 + (γθ)2)

)
R56Ld

(6.18)
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where B0 = 1
N

∑N
n=1 e

−i(kzn+kθxn)
∣∣∣ τ=0, with zn and xn being randomly distributed,

is the shot-noise bunching factor and we have made the approximation ωpLd/c <<

1.

To describe the quasi-laminar beam approximation, we assume the following

form of velocity distribution: fv = 1
(2π)3/2σ2

βση
e
− η2

2σ2
η
− ~β2

2σ2
β with kση/γ

2 << ωp/c and

kθσβ << ωp/c. These assumptions mean that the electron displacement due to

thermal motion in a plasma period (τp = 2π/ωp) is much smaller than the wave-

length λ = 2π/k longitudinally and λ/θ transversely. Since the plasma oscillation

period sets the time scale for space-charge effects, thermal effects become negligi-

ble when the thermal displacement in a plasma period is smaller than the length

scale of the problem.

With this assumption, the plasma dielectric function is approximately equal

to that found in the cold beam case and the bunching factor is given by:

BR56 =−B0

(
γ2ωpR56 sin ωpLd

c

c(1 + (γθ)2)

)
e−

(kσηR56)2

2

≈ −B0

(
(γωp)

2

c2(1 + (γθ)2)

)
R56Lde

− (kσηR56)2

2 .

(6.19)

Finally, the micro-bunching gain is defined as the ratio of the statistical av-

erages of the absolute values squared of the final to original bunching factor

g = < |BR56|2 >/< |B0|2 > = N < |BR56|2 > and it is equal to:

g =

(
γ2ωpR56 sin ωpLd

c

c(1 + (γθ)2)

)2

e−(kσηR56)2

≈
((γωp

c

)2 1

1 + (γθ)2
R56Ld

)2

e−(kσηR56)2

.

(6.20)

In both the laminar and quasi-laminar beam approximations, the electron thermal
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motion can be considered frozen on the scale of a plasma period. Thus, the

micro-bunched distribution is transversely correlated on the same scale as the

longitudinal Fourier components of the electric field generated by shot noise:

γλ/2π (with λ = 2π/k equal to the wavelength of interest). This results in a

cut-off angle of θc = 1/γ in the micro-bunching gain.

Note that the same result (up to a geometric factor due to the assumptions

on the 0-th order charge density) has been obtained previously in [21].

6.3 The transversely warm beam case

In this section we treat the case that is most often found in experimental sce-

narios of interest: that of a beam that is transversely warm but longitudinally

quasi-laminar, i.e. we keep the assumption kση/γ
2 � ωp/c but we make no as-

sumptions on σβ. Since space-charge forces naturally yield an angular cut-off of

1/γ, transverse temperature effects will be important only if kσβ > γωp/c, which

is applicable for many relevant experimental situations.

By performing a double integration by parts (in η and in βx) in the term

proportional to ∂fv
∂η

in (6.11), and performing the integration in dη and dβy, the

plasma dielectric function can be expressed as:

εp = 1 +
ω2
p

c2

1

ikθ

∫
c̃

∂fv
∂βx

s+ ik (θβx)
dβx. (6.21)

In the case of a warm beam, the analyticity of εp as a function of the complex

variable s has to be enforced by deforming the integration path in (6.21) so that

it runs in the complex plane below the singularity at βx = −s/ikθ as shown in

figure 6.1 (the resulting integration path is usually referred to as Landau contour

[38] and we will denote it c̃).

122



Figure 6.1: Landau contour in the complex βx plane. The deformation of the
integration path makes the plasma dielectric function analytical as a function of
s.

The zeros of the plasma dielectric function, in this case, cannot be expressed

in closed form. It is then useful to express equation (6.21) in dimensionless form.

We give the following definitions: kD = ωp/cσβ is the Debye wave-number, which

we employ to normalize the transverse wave-number as K = kθ/kD; the Laplace

variable s is normalized to the plasma frequency as Ω = −cs/iωp; finally, we

normalize the transverse velocity to the thermal velocity spread: B = βx/σβ,

F = 1
(2π)1/2 e

−B
2

2 . Note that the Debye wavelength λD = 2π/kD is the transverse

thermal displacement in a plasma period and is the fundamental parameter that

describes thermal effects in warm plasmas. The resulting scaled beam plasma

dielectric function is then

εp = 1− 1

K2

∫
c̃

∂F
∂B

B − Ω
K

dB. (6.22)

Note that the plasma dielectric function, as a function of Ω, depends only on

one external dimensionless parameter K. Since longitudinal thermal effects have

been neglected and the system is azimuthally symmetric, this three-dimensional
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problem reduces formally to that of one-dimensional plasma oscillations discussed

in [4].

The zeros Ωj of (6.22) can be found numerically [4] and are, in general, com-

plex. The imaginary part of the scaled frequency Ωj is always negative, resulting

in an exponential decay of the micro-bunching as a function of the drift length

(this collisionless damping process due to thermal motion is usually denoted Lan-

dau damping). Also, if ΩR−iΩI is a solution (with ΩR,ΩI positive real numbers),

then −ΩR − iΩI is also a solution [4]. We will thus denote as Ω± the two dom-

inant roots of the dielectric function (i.e. the roots with the smallest damping

constant).

To develop an intuition on the physical processes involved, we examine Figure

6.2 which shows the real and imaginary parts of the dominant root Ω+ (see

also [4]). The imaginary part of −Ω+ is a growing function of K. For small

values of K the damping constant −={Ω+} is small and can be neglected for

drifts that are significantly shorter than a plasma wavelength, as is usual in most

experimental situations. However, for K > 1 the damping term is significantly

bigger than 1, resulting in a strong suppression of the micro-bunching gain at

angles bigger than kD/k. Equivalently, one could state that a transversely warm

electron beam is unable to develop transverse structures on a scale that is smaller

than λD = 2πcσβ/ωp under the effect of longitudinal space-charge forces.

To find the actual angular dependence of the micro-bunching gain we must

compute the square of the absolute value of (6.15) and perform a statistical

average. It can be shown that equation (6.15), with the above approximations,
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Figure 6.2: Real part (red line) and imaginary part (blue line) of the roots of
the plasma dielectric function for a transversely warm beam, as a function of the
scaled wave-number K [4].
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can be simplified to:

BR56 =− i ωp
c(1 + (γθ)2)

γ2R56e
− (kσηR56)2

2

1

N

∑
j

e−iΩj
ωp
c
Ld

K

1− Ω2
j

1+K2

N∑
n=1

e−i(kzn+kθxn)

Bn − Ωj
K

. (6.23)

Taking the statistical average of the absolute value squared of (6.23), recalling

that < e−ik(zn−zm)−ikθ(xn−xm) >= δn,m (where δn,m is the Kronecker delta), from

the definition of micro-bunching gain we obtain:

g =

(
ωp

c(1 + (γθ)2)
γ2R56

)2

e−(kσηR56)2

∫
dBF (B)

∑
j

e−iΩj
ωp
c
Ld

K

1− Ω2
j

1+K2

1

B − Ωj
K


∑

j′

e−iΩj′
ωp
c
Ld

K

1−
Ω2
j′

1+K2

1

B − Ωj′

K

∗ .
(6.24)

In the dominant pole approximation, we keep only the two dominant roots in

the summation in (6.24). In this case, expression (6.24) can be simplified to:

g = 2

(
ωp

c(1 + (γθ)2)
γ2R56

)2

e−(kσηR56)2

( ∣∣∣∣∣∣Ke
−iΩ+

ωp
c
Ld

1− Ω2
+

1+K2

∣∣∣∣∣∣
2∣∣∣∣K2(1 +K2)

Ω2
+

∣∣∣∣−√2πK
<{e−

Ω2
+

2K2 }
={Ω+}


−<


Ke−iΩ+

ωp
c
Ld

1− Ω2
+

1+K2

2K2(1 +K2)

Ω2
+

−
√

2πK
e−

Ω2
+

2K2

Ω+


)
.

(6.25)

Note that the quasi-laminar beam case corresponds to |K| << 1. It can be shown

that in this limit Ω+ ≈ 1 + 3
2
K2− i

√
π
8
e−

1+3K2

2K2 /K3 [38, 4]. With this asymptotic

expression, equation (6.25) reduces to (6.20).
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6.4 Numerical Examples

As an example, we display a numerical evaluation of the angular dependence of

the gain for the following beam parameters, corresponding to a typical electron

beam produced by an RF photo-injector. We assume a uniform beam with a

current of I = 40 A and an RMS envelope size of σx = 85 µm and an energy of

135 MeV (γ = 270). The length of the drift is Ld = 4 m.

Figure 6.3 shows the angular dependence of the micro-bunching gain for sev-

eral values of σβ for a wavelength of λ = 0.5 µm. We can see that for reasonable

values of the emittance, transverse Landau damping can have an important role

in the formation of micro-bunching, significantly reducing the angular width of

the gain with respect to the laminar beam case. Note that, for the 1mm−mrad

case we have Ld ≈ 2σx,0/σβ,0 and the results of the theory, in this case, are not

accurate and should be interpreted with care.

6.5 Molecular Dynamics Simulations

Numerical modeling of space-charge induced optical micro-bunching at optical

and sub-optical wavelengths is a challenging task since it requires high resolution

and a great number of macro-particles. Ideally, to correctly reproduce shot-

noise statistics in the electron distribution, each particle in the simulation should

correspond to a particle in the beam. Also, resolution well below the optical

spectrum is required to correctly compute the collective fields generated by the

electrons.

Recently, the use of large computer clusters with parallel codes has allowed

simulations with unprecedented resolution in the computation of self-fields, reach-

ing down to the few µm level [49]. However, the resolution needed for optical
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Figure 6.3: Angular dependence of micro-bunching gain for different values of σβ
corresponding to a normalized emittance of ε = 0 (gray line), ε = 0.1 mm-mrad
(red line), ε = 0.5 mm-mrad (blue line) and ε = 1 mm-mrad (black line).

and sub-optical micro-bunching represents a serious challenge even for highly

parallelized codes.

To model high-frequency space-charge phenomena with a low computational

cost, we have created a code which computes the electron dynamics with peri-

odic boundary conditions in all three dimensions. Periodicity allows to limit the

simulation window to a small fraction of the beam (few µm in the longitudinal

dimension and several tens to few hundreds of µm transversely depending on the

energy) thus reaching the resolution required (few nm to few tens of nm longi-

tudinally). Also, due to the periodic boundary conditions, the code works in the

high-frequency limit (see figure 6.4) since edge-effects due to the finite size of the

beam cannot be included. This limits the use of the code to very high-frequency
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Figure 6.4: Longitudinal Fourier transform of the electric field (in arbitrary units)
generated by an uncorrelated electron distribution for γ = 270 and λ = 0.5µm,
illustrating the features of the high-frequency limit of space-charge fields.

phenomena.

The code has the capability of including external fields (accelerating and fo-

cusing) and internal fields. The high frequency components of the collective fields

are computed solving Poisson’s equation in the beam rest frame with discrete

Fourier transform (DFT) methods.

We have performed simulations for the model assumed in section 6.1 with

no acceleration but only a free drift with subsequent rearrangement through

longitudinal dispersion. The beam parameters are those described in section 6.4.

Figure 6.5 shows the x-z trace space after longitudinal dispersion for two

simulations with and without the effect of emittance. Note that in the zero

emittance simulation, the position and size of the micro-bunches varies randomly

with the transverse position, resulting in a broad angular width of the micro-

129



Figure 6.5: x-z trace space after a drift and longitudinal dispersion without
emittance (upper plot) and with 1 mm-mrad emittance (lower plot) showing the
effect of Landau damping on the transverse structure of micro-bunching.
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Figure 6.6: Theoretical results (solid lines) versus numerical simulations (dashed
lines) for different values of σβ corresponding to a normalized emittance of ε = 0
(gray line), ε = 0.1 mm-mrad (red line) and ε = 1 mm-mrad (black line). The
results of the simulations are averaged over 50 independent runs

bunching pattern.

Figure 6.6 shows a comparison between the results of the theoretical model

and the numerical simulations. The two are in good agreement, validating the

theoretical analysis described earlier.

6.6 Conclusions

In this chapter we discussed a kinetic analytical description of space-charge in-

duced optical micro-bunching based on the beam plasma dielectric function.

The theory developed is fully three-dimensional and accounts for the angu-

lar dependence of the micro-bunching in the high-frequency limit. The kinetic

approach allows for the inclusion of transverse thermal motion due to finite trans-
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verse emittance.

With the approximation that longitudinal motion is quasi-laminar, which

holds for typical high brightness electron beam parameters, the problem can be

treated with the same mathematical methods used to describe one-dimensional

plasma oscillations in thermal plasmas, as discussed in the work from Landau and

Jackson [38, 4]. In particular, the effect of Landau damping of transverse modes

due to finite emittance has been discussed and found to be of great importance

when typical values of emittance and beam plasma frequency are considered, sig-

nificantly reducing the angular width of the micro-bunching gain with respect to

the natural width θc = 1/γ of longitudinal space-charge fields.

With the further assumption of transverse quasi-laminar motion, the results

of our theory agree with those derived in previous papers on the same subject

[21].

Finally the results of our analysis have been compared to those generated by

high resolution molecular dynamics simulations with periodic boundary condi-

tions. The analytical and numerical results are found to be in good agreement,

validating the theoretical analysis derived in this chapter.

6.A Derivation of the closed form expression for the micro-

bunching gain

With the assumption of longitudinal quasi-laminar motion, equation (6.15) can be

simplified taking advantage of the analytical properties of the plasma dispersion

function, defined as Z(ζ) = 1√
π

∫
c̃
dB e−B

2

B−ζ . The plasma dispersion function is

analytical in ζ in the whole complex plane and can be shown to have the following
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properties [4]:

Z(ζ) = 2ie−ζ
2

∫ iζ

−∞
e−x

2

dx (6.26)

Z ′(ζ) = −2− 2ζZ(ζ) (6.27)

where Z ′ is the complex derivative of Z and erfc(ζ) is the complex valued com-

plementary error function.

Integrating by part the plasma dielectric function, we obtain:

εp = 1− 1

2K2
Z ′
(

Ω√
2K

)
. (6.28)

Using equations (6.27) and (6.28) we can express the plasma dielectric function

and all its derivatives at the zeros of the plasma dielectric function. In particular

we have:

Z|εp=0 = −1 +K2

Ω
K
√

2 (6.29)

Z ′|εp=0 = 2K2 (6.30)

Z ′′|εp=0 = 2
√

2K

(
1 +K2

Ω
− Ω

)
. (6.31)

Finally we express the integrals in 6.15 as a function of Z and its derivatives,

with the approximation of longitudinal quasi-laminarity:

∫
e−ikpR56fv

sj + ik
(
θβx + p

γ2

)dpd2~β ≈ ce−
(kσηR56)2

2

iKωp
√

2
Z

(
Ωj√
2K

)
(6.32)

∂εp
∂s
|s=sj ≈

c

i2
√

2K3ωp
Z ′′
(

Ωj√
2K

)
. (6.33)
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Equation 6.15 follows immediately substituting equations (6.29) and (6.31)

into equations (6.32) and (6.33).

The same method can be applied to derive equation (6.25). By computing the

partial fractions expansion of the integrand in equation (6.24) we can reduce it

to a sum of Z functions. Equation (6.25) then follows easily using the symmetry

properties of Z:

Z(−ζ) = −Z(ζ) + 2i
√
πe−ζ

2

(6.34)

Z(ζ∗) = Z∗(ζ) + 2i
√
πe−ζ

2

. (6.35)

6.B Micro-bunching gain with transverse matrix elements

The model developed in the previous sections can be easily generalized to in-

cluded transverse transport matrix elements. Note that the inclusion of carte-

sian matrix elements breaks the azimuthal symmetry of the problem even if

the transverse velocity distribution is isotropic. It is then necessary to set-

up the problem in a more general way. We adopt the following convention:

~k = kẑ + kθ cos(φ)x̂+ kθ sin(φ)ŷ. We also define β‖ and β⊥ the parallel and per-

pendicular components of transverse velocity with respect to ~k⊥. Finally we define

k̃x = k(θ cos(φ)R11 + R51), k̃y = k(θ sin(φ)R33 + R53), Rx = θ cos(φ)R12 + R52

and Ry = θ sin(φ)R34 +R54. With these definitions, the derivation of the micro-

bunching gain is similar to that of the previous sections with a few differences:

kθ is now replaced by
√
k̃2
x + k̃2

y and the integral
∫ e−ikpR56 ∂fv

∂p

sj+ik
(
θβx+ p

γ2

)dpd2~β is replaced
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by
∫ e−ikpR56−ikRxβx−ikRyβy ∂fv

∂p

sj+i
(√

k̃2
x+k̃2

yβ‖+
p

γ2

) dpd2~β. The final result is given by:

g = 2

 ω̃p

c(1 + γ2(
k̃2
x+k̃2

y

k2 ))
γ2R56

2

e−(kσηR56)2−k2(R2
x+R2

y)σ2
β

( ∣∣∣∣∣∣KZ( Ω+√
2K

+
ik(Rx cos(φ)+Ry sin(φ))σβ√

2
)e−iΩ+

ω̃p
c
Ld

(1+K2)
Ω+

− Ω+

∣∣∣∣∣∣
2∣∣∣∣K2(1 +K2)

Ω2
+

∣∣∣∣−√2πK
<{e−

Ω2

2K2 }
={Ω}


−<


KZ( Ω+√

2K
+

ik(Rx cos(φ)+Ry sin(φ))σβ√
2

)e−iΩ+
ω̃p
c
Ld

(1+K2)
Ω+

− Ω+

2K2(1 +K2)

Ω2
+

−
√

2πK
e−

Ω2
+

2K2

Ω+


)

(6.36)

with the following substitution: K = cσβ

√
k̃2
x + k̃2

y/ωp. Z is the called plasma

dispersion function defined in appendix 6.A.
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CHAPTER 7

Experimental Demonstration of a Cascaded

Longitudinal Space-Charge Amplifier

The analysis discussed in chapters 3,4, 5 and 6 provides a strong theoretical

background for the space-charge induced microbunching instability and for the

Longitudinal Space-Charge Amplifier (LSCA).

Space-charge induced microbunching is a robust effect that happens over a

broad frequency bandwidth. At short wavelengths, the spectral properties of

this amplification mechanism are determined by thermal effects, with a cut-off

caused by the phase mixing induced by energy spread, which results in the fast

decaying term e−(kσηR56)2
). At long wavelengths, instead, the amplification is

suppressed by edge effects due to the finite size of the beam, which slow down

the space-charge dynamics of the electrons when D = kzσx/γ < 1. In an LSCA,

the microbunching induced by the space-charge instability is optimized and em-

ployed in a downstream undulator for the emission of coherent radiation. As

was discussed in the introductory chapters, since the space-charge insability has

a broad amplification bandwidth, the LSCA can deliver intense broad-band ra-

diation pulses, accessing operating regimes that are beyond the capabilities of

currently operating free-electron lasers.

In this chapter we present the first experimental demonstration of a longitudi-

nal space-charge amplifier at optical wavelengths. The experiment has been car-
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ried out at the Next Linear Collider Test Accelerator at SLAC. Our experimental

setup employs the three-chicane Echo bemline [50, 51], which is customarily used

for the generation of high-harmonic seeded microbunching via the echo mecha-

nism. In our experiment, operating with a strongly compressed electron beam,

we turn the NLCTA echo-beamline into a cascaded 3-stage LSCA, leading to

strong amplification of shot-noise microbunching for the emission of broad-band

coherent undulator radiation.

While the generation of coherent radiation induced by the microbunching

instability was observed in the past in several FEL injectors, the optimization and

control of the gain process demonstrated here are two crucial novelties, that pave

the way for the generation of broad-band coherent pulses at fourth generation

light sources. The most striking features of our experiment are the temporal and

longitudinal coherence properties of the radiation pulses. We demonstrate the

generation of radiation pulses with a single transverse mode and single spectral

spike, which are indication of fully coherent photons. Both these features are

related to the strong electron beam compression along the amplifier, leading to

up-shifting of the microbunching frequency from the far-infrared to the optical

scale and to the generation of a short microbunching structure.

7.1 The Next Linear Collider Test Accelerator

In this section we describe the experimental facility where the LSCA experiment

was performed. The Next Linear Collider Test Accelerator (NLCTA) is a test

facility located in the SLAC Accelerator Laboratory. The NLCTA is a mixed x-

band/s-band accelerator which operates at energies up to 120 MeV. The beamline

setup for the LSCA experiment is illustrated in Fig. 7.1 The electrons bunches

are generated by radio-frequency (RF) gun, which is composed of a laser excited
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Figure 7.1: Overview of the NLCTA beamline for the LSCA experiment.

photocathode and a 5MeV s-band accelerating RF cavity. After the generation

in the RF gun, the electrons are accelerated to energies of up to E1 = 60MeV by

the first x-band accelerating cavity, referred to as station 0 (st0). After st0, the

beam goes through a large magnetic chicane with tunable dispersion (chicane -1).

Chicane -1 can be bypassed sending the beam through a straight drift section.

The beam is then accelerated up to a final energy Emax < 125MeV by a second

x-band structure (st1).

The photoinjector delivers low emittance bunches (ε ' 1.1µm) with a charge

ranging from few pC to ' 100pC. The duration of the uncompressed bunches is

Tb ' 1psec. Figure 7.2 shows a picture of the RF gun and of st1.

The space-charge amplifier setup is composed of three-magnetic chicanes, sep-

arated by drift-spaces, with an undulator after the last magnetic chicane. The

three-magnetic chicanes (labeled chicane 0,1,2) have tunable dispersion, with a

range 0.5mm < R56 < 10mm at 80 MeVs. The lower limit is set by three optical

mirrors that are used, in the echo experiment, to inject and eject the two seed

lasers, while the upper limit is set by the size of the vacuum pipe. The flexibility

in the choice of the longitudinal dispersion is a key element to the experiment,

since it allows to study several different modes of operation , as well as to give a

direct demonstration of cascaded space-charge amplification.

The radiator is a helical undulator with 10 periods of length λu = 1.9cm and

an undulator parameter K = 0.58.
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Figure 7.2: The NLCTA RF gun (left image) and the x-band accelerating struc-
ture st1 (right image).

The drift space between chicanes 1 and 2 is occupied by a 77 period radio-

frequency undulator. The RF undulator was not used as the final radiator but

only as a diagnostic for the microbunching. Unless otherwise noted, the RF

undulator can be considered as a free-drift space for the scope of this experiment.

7.2 Space-charge gain in the compressed mode of opera-

tion at the NLCTA

The NLCTA injector generates electron bunches with currents of up to a few

tens of Amperes. To achieve microbunching gain, longitudinal compression is

required. At the NLCTA the electron beam is compressed inducing an energy

chirp by accelerating off-crest in either of the accelerating sections. For reasons

that will be explained later, we decided to bypass chicane -1 and compress in the

last three-chicanes. This means that the compression mechanism happens during
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Figure 7.3: Chicane 2 (left image) and the helical undulator (right image).

the amplification process, which has important consequences for the coherence

properties of the space-charge amplifier. In this section we will describe the

chicane compression mechanism and its effect on microbunching gain.

7.2.1 Linear compression

In the idealized case of a linear energy-chirp and linear transport through the

magnetic chicane, given a z-energy correlation h = dη/dz, the beam is compressed

by the compression factor C = 1/1− hR56,tot, where R56,tot is the cumulative R56

of the transport beamline. When hR56,tot ' 1, energy-spread effects become

dominant, limiting the maximum compression factor achievable. For a gaussian

uncorrelated energy distribution with uncorrelated relative energy-spread ση the

shortest RMS beam length attainable with linear compression is R56,totση. Fig.

7.4 shows a schematic representation of this idealized compression scheme.

An energy chirp can have a strong effect on the microbunching dynamics. If

the beam has a periodic phase-space perturbation at the wavelength λ = 2π/kz,

the wavelength is shifted by the compression mechanism to λ → λ/C (see Fig

7.4). The microbunching gain is also affected by compression and the power-gain
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Figure 7.4: Schematics of the linear bunch compression mechanism.

formula for a beam with a linear chirp has to be modified as follows:

g =

(
γ2R56CΩ

ωp
c

sin(Ω
ωp
c
Ld)e

− (CkzσηR56)2

2

)2

, (7.1)

where, for simplicity, we have assumed the cold-beam limit and we have omitted

the coupling coefficient Γ. The eigenvalue Ω has to be computed using the beam

parameters before compression and the uncompressed wavelength kz. Note that

for a given final wavelength kfin = Ckz, it is convenient to operate at strong

compression, since the gain depends quadratically on the compression factor C.

In the case of the three-stage amplifier discussed here the compression process

happens gradually along the amplifier. For a given energy chirp, the total R56 is

limited by the condition that the beam be not overbunched hR56,tot < 1. The way

the total R56 is distributed along the three amplification stages has important

consequences on the amplification mechanism. In general it is convenient to

work with decreasing values of dispersion, i.e. the first chicane should have the
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strongest dispersion and the last one should have the smallest. This point can

be understood by considering that concentrating the larger part of the total

dispersion at the first stage generates a high current that can be exploited to

increase gain in the last two stages.

Operating a longitudinal space-charge amplifier with a chirped beam has im-

portant consequences on the transverse structure of the microbunching and, thus,

on the transverse coherence of the radiation pulse emitted in the radiator. As

discussed in the previous chapters, the space-charge eigenmodes of a laminar

beam are fully degenerate for large values of the 3-D parameter D = kzσx/γ, i.e.

for short wavelengths. As a consequence of the full degeneracy, the transverse

distribution of microbunching in this limit is composed of several uncorrelated

speckles. This type of microbunching would radiate a transversely incoherent

mode in the radiator. This effect limits the operation of an un-chirped LSCA to

wavelengths λ > σx/2πγ. For the typical operating condition of the NLCTA, this

would limit the operation of the LSCA to far-infrared wavelengths. This problem

can be overcome by operating the LSCA with an energy-chirped beam. In fact,

due to beam compression, the optical microbunching generated at the last stage

corresponds to the long wavelength microbunching generated at the first stage

and frequency up-shifted by the compression mechanism in the second and third

chicanes. As a result, the microbunching is transversely coherent and the beam

radiates a single transverse mode in the undulator. A similar mechanism was

proposed in [17] in the context of the generation of attosecond pulses in the soft

x-ray region by laser-compression of UV microbunching.
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Figure 7.5: Simulated phase-space for the non-linear compression scheme at the
NLCTA (first figure) and corresponding current distribution (second figure). The
third figure shows the bunching factor as a function of wavelength while the fourth
image shows the corresponding undulator radiation spectrum.
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7.2.2 Non-linear compression

The linear model of beam compression that we described earlier is only accu-

rate for very short beams with a small energy-spread. In more realistic cases,

non-linear effects associated with a quadratic energy dependence induced by the

accelerating fields, and to motion in the magnetic chicane should be taken into

account. The first effect can be understood by looking at the z-dependence of

the accelerating field Erf = E0cos (krf (zl − ct)) (where zl is the longitudinal co-

ordinate along the accelerator), which generates a z-energy correlation of the

type:

δγ = +∆γ cos((krfz + φACC) , (7.2)

where δγ is the energy gain of a particle traveling in the accelerating station, z is

the longitudinal position along the electron bunch and φACC is the accelerating

phase of a reference particle at z = 0. This gives a non-linear energy-chirp: γ =

γ0+hz+h2z
2, where h = −krf∆γ sin(φACC)/γav and h2 = −k2

rf∆γ cos(φACC)/γav,

where γav is the mean energy at the exit of the accelerating station normalized

to mc2.

Non-linear effects in chicane transport can be modeled with the T566 and

U5666 elements. The longitudinal coordinate change introduced by the magnetic

chicane can be expressed, to third-order in energy deviation, as:

z = z0 +R56η + T566η
2 + U5666η

3, (7.3)

where η = (γ−γ0)/γ is the usual relative energy deviation variable. For a simple

four-magnet chicane we have: T566 = −R563/2, U5666 = 2R56.

The combined effects of the non-linear energy-chirp and non-linear longitudi-

nal transport generates a triangular current distribution after compression with
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a sharp spike in the head of the beam (see Fig.7.5). While the spike itself has

a very large energy-spread it still gives a large contribution to the amplification

process, due to its high peak current. Since the high-gain region of the beam has

a length on the order of the slippage length in the final undulator, a spectrum

with few spectral spikes is expected.

Figure 7.5 shows a diagram of current as a function of longitudinal position

and the associated longitudinal phase-space for the electron beam after chicane 2

from a 1-D simulation model. The simulation was performed with the approach

described in [17], where the effect of the longitudinal space-charge fields in each

drift space is described in terms of a beam impedance averaged over the drift

length. The simulation contains 3-D effects due to the finite beam size and energy-

spread effects in chicane transport. This approximate modeling gives an intuition

about the effect of the non-linear compression scheme on the gain mechanism and

on the spectral properties of the emitted radiation.

7.3 Experimental results

In this section we present the results of the LSCA experiment. The goal of the

experiment was to give a demonstration of the most important features of the

LSCA mechanism:

-high-gain (of several orders of magnitude);

-broad spectral bandwidth;

-transverse coherence;

-cascading.

The diagnostic setup for the coherent undulator radiation is shown in Fig. 7.6:

a near and a far-field camera are used to characterize the transverse structure of
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Figure 7.6: Diagnostic setup for the LSCA: a near and a far-field camera are used
to characterize the transverse structure of the radiation, while the spectrometer
camera is used for spectral measurements. A photodiode is setup to measure
absolute gain.

the radiation, while the spectrometer camera is used for spectral measurements.

A photodiode is setup to measure absolute gain. A system of mirror flippers was

used to switch from one diagnostic device to the other.

In the experiment the chicane setup was held fixed and compression was

scanned by varying the accelerating phase of station 1. In general this method

perturbs the orbit and transport of the electrons, since the focusing properties of

the RF accelerating fields are dependent on the accelerating phase. In this case,

however, this problem was not important since a significant amplification was

only observed in a narrow window of phase values (see, for example, Fig, 7.9).

This allowed us to tune the beam transport at an accelerating phase close to the

optimum phase (roughly 10 degrees away from maximum compression) avoiding

the effects of coherent transition radiation on the beam diagnostics. After the

machine tuning was completed, a small variation in phase allowed us to observe

coherent radiation with a negligible effect on the beam transport.
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Figure 7.7: True-color far-field radiation pattern from the compressed electron
beam radiating through a 77-period radio-frequency undulator. The strong an-
gular dependece and the broad frequency content of the radiation wavelength,
extending all the way from violet to red, illustrates the broad-band nature of the
space-charge instability.

Note that, while the final undulator selects a broad but finite emission band-

width, the LSCA generates microbunching over a larger bandwidth, ranging down

to sub-optical wavelengths. Figure 7.7 shows a real-color far-field image of co-

herent undulator radiation from the RF undulator. Due to the large number of

periods Nw,RF = 78, the emission bandwidth for each angle is rather narrow, giv-

ing a sharp frequency/angle correlation. Figure 7.7 gives a striking demonstration

of the broadband feature of the LSCA microbunching amplification mechanism.

The experiment was performed operating at different values of charge. The

most significant results were obtained in the range of Q ' 8÷ 12pC. The initial
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Figure 7.8: Microbunching power gain as a function of wavelength for the NLCTA
beam parameters in the single-spike regime, from the linear theory. The overall
compression factor is C = 15.

root mean square (RMS) beam length was roughly σz = c×1psec. The transverse

beam size was measured to be respectively σx,1 ' 160µm and σx,2 ' 150µm in

the drift spaces after chicane-0 and chicane-1. For the first amplification stage,

we estimate that most of the gain happens in the last 10 meters before chicane-0,

where the average beam-size is σx,0 ' 250µm. Note that the electron beam is

not axisymmetric: the x and y rms widths are different and there are strong x-y

correlations. The numbers reported are an estimate of the size of an axisym-

metric electron beam that has the same transverse area as the measured beam.

For the measured beam size before chicane-0, the microbunching is transversely

coherent if starting from wavelengths on the order of λin ' 10µm, which requires

a compression factor of C ' 15 for single transverse mode operation
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7.3.1 Single-spike regime

The best results in terms of gain were observed with the following chicane setup:

R56,0 = 4mm, R56,1 = 2.5mm, R56,2 = 1.5mm and a beam energy of Eb =

72.5MeV at full compression. Figure 7.8 shows the microbunching gain spectrum

for this configuration for an overall compression factor of C = 15. The gain

peaks in the optical spectral region for the idealize linear gain model. Figure

7.9 shows the integrated signal on the near-field camera as a function of the

accelerating phase for this chicane configuration. Significant gain with respect

to spontaneous radiation is obtained over a phase range of about 10 degrees. To

get an accurate measurement of the absolute integrated intensity gain, we used a

high dynamic range photodiode detector. The average gain in integrated intensity

with respect to spontaneous emission, measured at Q = 12pC, is Imax/Iinc ' 600

with peaks up to 1000. Note that the angular width of the coherent radiation

is narrower than the incoherent. Furthermore, as discussed in section 7.2.2, only

a fraction of the electron bunch contributes to the coherent emission, while the

entire electron bunch contributes to incoherent emission. This means that the

local microbunching power gain, in the region of high microbunching, is higher

than the intensity gain. By comparing the coherent and incoherent far-field

distributions, we measure a larger angular width for the incoherent radiation by

a factor 2.2. Furthermore, from the numerical simulations discussed in section

7.2.2, we estimate that the current peak that drives the microbunching process has

contains roughly 20% of the bunch charge. It follows that the local microbunching

power can be estimated to be four orders of magnitude above the shot-noise level.

Figure 7.10 shows the coherent undulator radiation spectrometer image for the

highest gain phase and for intermediate gain. A spectrometer image corresponds

to a two-dimensional correlation plot of intensity as a function of wavelength and

149



20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Accelerating Phase ST1 (degrees)

In
te

g
ra

te
d

 I
n

te
n

si
ty

 

 

Figure 7.9: Integrated signal on the far-field camera as a function of accelerat-
ing phase in station 1. The emitted radiation energy increases with increasing
compression reaching an optimum for maximum compression. For phases larger
than ' 30 deg the beam is overcompressed, giving a fast decay of the coherent
emission with accelerating phase.

vertical angle θy = ky/kz. The intermediate gain configuration corresponds to a

weaker current compression than the peak gain. For this value of compression, the

spectrum exhibits a spiky structure, due to the fact that the slippage length in the

undulator is shorter than the fraction of the beam that contributes to coherent

emission. Note also that for moderate compression the coherent field exhibits

speckles in the transverse dimension (see the θy dependence of the intensity). In

the optimal compression case, instead, the spectrometer shows a single spectral

spike and a single transverse mode. As the result of strong compression, the

microbunched fraction of the beam is shorter than the slippage length, resulting

in the single spike spectrum. The transverse single mode, instead, is due to the

wavelength shift of the transversely uniform far-infrared microbunching to optical

wavelengths. The on-axis FWHM bandwidth is ∆λ/λ ' 10%, corresponding to
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Figure 7.10: Spectrometer image (upper imgaes), on-axis spectrum (middle im-
ages) and integrated spectrum (lower images) from a fully compressed image
(right images) and for moderate compression (left images). The figure shows
the transition from a spiky regime to the single spike regime, in which slippage
of the radiation over the compressed electron bunch generates a single spectral
mode. Note also how a single smooth transverse mode is achieved as the result
of compression. The FWHM bandwidth on axis is ∆λ ' 65nm.

the on-axis emission bandwidth of the undulator. The integrated spectrum has

a wider bandwidth ∆λ/λ ' 14% since the off-axis emission happens at longer

wavelengths than on-axis emission.

Figure 7.11 shows a single-shot far-field image of coherent undulator radiation.

As inferred from the spectrometer image, the far-field transverse distribution ex-

hibits a single mode structure. As mentioned above, this results from the effect

of wavelength compression from the far-infrared to optical wavelengths, which

transfers the transverse coherence properties of the long-wavelength microbunch-

ing to the optical spectrum.
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Figure 7.11: Far-field undulator radiation image at maximum compression. This
image shows the transverse structure of the emitted radiation for the configura-
tion yielding the highest radiated energy. The image shows a single transverse
mode, which is the result of compression of far-infrared microbunching to optical
wavelengths.

7.3.2 Multi-spike regime

To better characterize the LSCA mechanism, we performed an experiment with a

chicane setup yielding an overall larger total R56 compared to the case discussed

in the previous sub-section. The chicane configuration is R56,0 = 5mm, R56,1 =

5mm, R56,2 = 4mm.

In this regime, the length of the current spike that contributes to gain is larger

than in the previous case, which causes the undulator slippage length to cover

only a fraction of the microbunched part of the electron beam. Furthermore, this

high R56 configuration favors gain at long wavelengths, resulting in an overall shift
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Figure 7.12: Spectrometer image (upper images), on-axis spectrum (middle im-
ages) and integrated spectrum (lower images) from a fully compressed image
(right images) and for moderate compression (left images). In this high R56

configuration, the spectrum is spiky even in the case of highest compression.

of the coherent emission towards the infrared spectral region. The absolute gain

measurement in this regime yields an overall gain of a factor 5 smaller than the

previously discussed case (an average of Imax/Iinc ' 120 with peaks of 200), this

decrease in intensity, however, is mostly due to the narrow angular distribution

(see Fig. 7.13) which yields a lower angle-integrated signal.

7.4 Demonstration of Cascaded Gain

While high gain was demonstrated with the gain measurements described in the

previous section, cascading requires a separate discussion. In fact, the observa-

tion of high-gain through a system of three chicanes does not guarantee that the

gain process is multiplicative along the three stages. Moreover, the observation of

increased microbunching from one chicane to another does not prove multiplica-
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Figure 7.13: Far-field image for the spiky spectrum case. The far-field still ex-
hibits a clean single-mode structure due to strong compression.

tive gain. In fact, the three chicanes might be converting the energy modulation

generated before chicane-0 into microbunching, gradually along the beamline,

which would result in an additive gain process rather than a multiplicative one.

Cascaded amplification can be proved by changing the relative values of the

individual R56s but keeping the sum constant. In this case, if the gain process

is additive instead of multiplicative, varying the relative values of the dispersion

does not change the final gain, whereas in the case of cascaded gain it would

significantly affect it. Figure 7.14 shows the integrated signal on the near-field

camera for four different chicane configurations yielding the same total R56. The

figure shows a comparison with the theoretical prediction for the microbunching

gain, with the assumption of linear compression and with the measured beam

parameters. The last three configurations can be obtained from the original one

(4mm− 3mm− 2mm) by switching the R56 of two chicanes piecewise. The mea-

surements were performed adjusting the beamline so that the beamsize between
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the three chicanes would remain roughly constant. This was accomplished by

compensating the change in vertical focusing due to the chicane magnets with

the magnetic quadrupoles. The plot shows a variation of the intensity with dif-

ferent chicane configurations, which is an indication of cascaded gain. Note that,

even though the product of the three R56 is constant the gain is still expected

to change since the compression factor C at each chicane changes for each con-

figuration. We also note that the configuration with decreasing R56 shows the

highest intensity gain, in good agreement with our theoretical model.

The last data shows some disagreement with the theory, which predicts a

smaller gain than observed. This is likely due to non-linear compression, which is

not included in the theoretical model. In the growing R56 configuration, in fact,

most of the compression happens in the last chicane. This means that the mi-

crobunching is not confined to the leading current peak and it is more uniformly

distributed along the electron bunch than in the decreasing R56 configuration. In

this case, a larger fraction of the bunch contributes to the coherent emission com-

pared to the previous cases, an effect that compensates the lower microbunching

gain.

7.5 Conclusions

In this chapter we have discussed the first experimental demonstration of a cas-

caded longitudinal space-charge amplifier. Coherent radiation induced by the

microbunching instability was demonstrated in the past in several experiments,

in the context of transition radiation diagnostics for FEL drive beams. The dif-

ference with respect to previous experiments is that, in our case, the instability

was controlled and optimized to generate intense and transversely coherent un-

dulator radiation pulses. This provides a proof of principle demonstration for the
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Figure 7.14: Integrated camera intensity for four different chicane configurations
R56,0 − R56,1 − R56,2 (measured in mm), yielding the same total R56. The max-
imum intensity is achieved for decreasing R56 (first data point). The red dotted
curve shows the theoretical prediction, based on the assumption of linear com-
pression, normalized to the first experimental point. Changing the partition of
the longitudinal dispersion keeping the sum constant changes the intensity gain,
which is a signature of cascaded microbunching gain over the three chicanes.

generation of broad-band coherent radiation at fourth generation light sources.

In particular, the experiment has demonstrated high-intensity, broadband

coherent undulator radiation pulses from an electron beam modulated by the

longitudinal space-charge instability. The regime of strong compression due

to chirped beam operation, results in coherent radiation pulses with a single

transverse mode, consistently with our theoretical understanding of the amplfi-

cation/compression process. Due to the short duration of the electron bunch, a

single spectral mode has been observed under conditions of strong compression.

Finally, cascading between the three chicanes has been proved by scanning
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the relative values of the three R56s and keeping the total compression constant

(i.e. keeping the same total R56). Cascading is a crucial feature of the LSCA

which will enable, in the future, high gain at sub-optical wavelengths.
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CHAPTER 8

Single shot reconstruction of beam

microbunching by phase-retrieval of optical

transition radiation images

The generation, compression and transport of such high-density, cold relativis-

tic electron beams in FEL injectors poses several challenges, especially due to

beam collective instabilities that develop during acceleration and transport, that

amplify the beam’s shot-noise-derived microbunching. As discussed in the in-

troductory part of this dissertation, this effect generates strong perturbations in

the beam’s longitudinal phase-space, which serve to reduce the efficiency of the

FEL process in the downstream undulator [48, 12] and induce the emission of

coherent radiation in beam diagnostic stations [24, 27, 52, 53]. While the effect

of the microbunching instability on the FEL performance can be mitigated using

a laser heater, this does not suppress the emission of coherent optical transition

radiation (COTR) to a manageable level [12] making the use of beam profile

monitors impractical for compressed electron beams.

In this chapter we discuss a method for the reconstruction of the transverse

spatial structure of beam microbunching from a single-shot, far-field coherent op-

tical transition radiation (COTR) image, and report on the experimental demon-

stration of this technique at the Next Linear Collider Test Accelerator (NLCTA),

located at the SLAC National Accelerator Center. The technique proposed is gen-

158



eral and can be applied to any type of microbunching, such as the microbunching

generated by the FEL interaction or by the microbunching instability [21, 30] or

to a helical microbunching structure used to drive the emission of orbital angular

momentum modes in FELs [54, 44]. In particular, in this chapter we will focus on

the specific case of microbunching generated by the interaction of the beam with

an external laser pulse in a magnetic undulator, henceforth referred to as laser in-

duced microbunching (LIM). This specific case is particularly convenient, since it

allows the benchmarking of our technique using and incoherent optical transition

radiation (OTR) image, thus allowing a proof of principle demonstration of this

technique. The reconstruction of LIM is also of importance for the diagnostics of

compressed electron beams, such as the ones used to drive high-gain x-ray FELs.

As mentioned above, the diagnosis of these beams is severely compromised by the

emission of COTR, which makes it impossible to directly measure the transverse

profile of the beam with a simple near field OTR image. Recently several meth-

ods have been proposed to avoid this problem, by using fluorescent screens that

emit in the UV spectral region [55], or combining a scintillation screen with a

gated optical camera [56]. However, phosphorescent-screen-based measurements

are are affected by beam surface-field-driven image blooming [57], which limits

the resolution of these imaging techniques. The reconstruction of LIM, that is

demonstrated in this chapter, allows the reconstruction of compressed beams even

in the presence of the microbunching instability. In fact if the beam microbunch-

ing has a uniform transverse distribution (as is the case of LIM from a laser pulse

that is transversely larger than the electron beam) the transverse distribution

of the microbunching provides a direct map of the beam density distribution,

extending the applicability of commonly used diagnostic techniques based on

(incoherent) OTR to beams that are strongly affected by collective instabilities

through use of the dominant coherent signal. This overall approach has also been
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proposed in a related context of reconstructing the beam’s longitudinal profile,

in a scheme known as an optical replica synthesizer, or ORS [58]. In contrast, we

will refer to the transverse reconstruction technique introduced in this chapter as

the transverse optical replica (TOR).

8.1 Reconstruction Method

The emission of coherent radiation from a relativistic electron beam requires the

formation of a density modulation on the scale of the radiation wavelength. This

type of density modulation, generally termed beam microbunching, is commonly

quantified by the bunching factor, defined as the Fourier transform of the beam

longitudinal density profile normalized to the number of particles:

b(k) =
1

N

∫
dxdydz ρ(x, y, z)e−ikz =

1

N

∑
n

e−ikzn (8.1)

where z is the longitudinal position along the beam axis, x, y are the transverse

positions, ρ(x, y, z) is the three-dimensional beam density distribution, N is the

number of electrons in the beam and zn is the longitudinal position of the nth elec-

tron. The bunching factor is nearly equal to 0 for a beam with a uniform density

profile, with a small component due to shot-noise. On the other hand approaches

unity (b(k) = 1) if the electrons are arranged in z into periodic structures smaller

than the relevant period wavelength, λ = 2π/k.

For a beam with microbunching above the shot-noise level, the radiated power

from a given emission process (e.g. transition radiation or undulator radiation)

scales proportionally with |b(k)|2N2; in the case of randomly distributed electrons

in which the emission is incoherent, the bunching factor scales as 1/N1/2 and the

total radiated power scales proportionally to N .
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While the one-dimensional bunching factor b captures the basic features of

cooperative radiation processes, in many cases it is more useful to keep track

of the transverse distribution of the density modulation and give a generalized

three-dimensional definition of the bunching factor as the longitudinal Fourier

transform of the three-dimensional beam volume density:

b(x, y, k) =
1

N

∫
dzρ(x, y, z)e−ikz. (8.2)

The goal of our experiment is that of reconstructing the spatial dependence

of b(x, y, kz) from a single-shot, far field COTR image. The far field COTR

differential power spectrum emitted by a microbunched beam is given by

dP

dωdΩ
=

dP

dωdΩ
|spN2|B(kx, ky, kz)|2, (8.3)

where dP
dωdΩ

= e2

4cε0π3
β2 sin2 θ

(1−β2 cos2 θ)2 indicates the single particle differential spectrum,

e is the electron charge, c is the speed of light, ε0 is the vacuum permittivity

and β is the beam velocity normalized to the speed of light. The polar angle is

related to kx, ky, kz by cos θ =

√
k2
x+k2

y√
k2
x+k2

y+k2
z

. The form factor B is defined as the

three-dimensional Fourier transform of the beam’s charge density distribution:

B(kx, ky, kz) =
1

N

∫
dxdydz ρ(x, y, z)e−ikxx−ikyy−ikzz. (8.4)

Note that b(x, y, kz) and B(kx, ky, kz) are a two-dimensional Fourier transform

pair, i.e.

B(kx, ky, kz) =

∫
dxdy b(x, y, kz)e

−ikxx−ikyy. (8.5)

From the above definitions, it follows that, from a single shot, far-field COTR

image one can measure the amplitude of B. The spatial dependence of the beam
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microbunching can, in principle, be recovered by an inverse discrete Fourier trans-

form (DFT). However, to invert the DFT one needs information about the com-

plex phase of B, which cannot be inferred directly from the far-field image. How-

ever, it has been understood in recent years that the phase of a two-dimensional

signal can be recovered by means of an iterative phase-retrieval algorithm, pro-

vided that |B(kx, ky, kz)| is sampled with high enough resolution in the frequency

domain. The condition that needs to be satisfied is dk < π/L where dk is the

resolution in the transverse frequency domain and L is the characteristic size

of the beam in the space-domain. In practice, L is the size of a finite support

in x, y that fully contains the signal. This condition is often referred to as the

oversampling condition.

Iterative phase-retrieval algorithms (see e.g. [59, 60] ) are now used in a

great number of advanced applications, such as coherent diffraction imaging of

non-crystalline samples [61]. Figure 8.1 shows a schematic of the algorithm.

The retrieval algorithm starts by applying a random phase to the signal in the

frequency domain (or reciprocal space). An inverse fast Fourier transform (IFFT)

is then applied to obtain a trial signal in the spatial domain. At this point a given

set of constraints (discussed below) is applied in the spatial-domain and a fast

Fourier transform (FFT) is performed. Finally, one substitutes the amplitude in

the frequency domain with the measured amplitude while keeping the phase from

the FFT.This process is repeated for several iterations (typically a few hundreds

to thousands) until the amplitude of the final FFT is equal to the measured

amplitude within a small tolerance.

The constraints applied in the spatial domain depend on the type of measure-

ment performed but usually include a support constraint, i.e. the signal in x, y

is constrained to be equal to zero outside of a given finite support. The size of
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the finite support depends on the oversampling ratio of the measured amplitude

in frequency domain [59]. Furthermore, if the beam microbunching is real and

positive in the spatial-domain, a positivity constraint can be applied by keeping

just the real part of the spatial-domain signal and setting to zero all the data

points that have a negative value. This kind of constraint increases the speed of

the reconstruction algorithm and ensures the uniqueness of the solution [59]. The

latter constraint can be applied in the case of LIM, which is the case of interest

for this chapter. This can be understood by noting that a seed laser with a flat

transverse profile generates a density distribution of the type

ρund = ρ(x, y, z)

(
1 + 2

∑
n

an cos(nkzz)

)
, (8.6)

where an = Jn(nkzδηR56)e−k
2
zσ

2
ηR

2
56 , Jn is nth order Bessel function of the first

kind, δη is the amplitude of the laser-induced energy modulation normalized to

the beam energy, ση is the relative energy-spread and R56 is the longitudinal

dispersion of the bunching magnetic chicane. The resulting microbunching dis-

tribution is given by b(x, y, kz) = a1

N

∫
dzρ(x, y, z) which is an everywhere positive

function that represents the transverse profile of the beam.

8.2 Experimental demonstration

To test this reconstruction method, we have performed a seeded COTR experi-

ment at the NLCTA. The schematic layout of the experiment is shown in Fig.8.2.

The experimental setup corresponds to the first part of the ECHO beamline

[50, 51]. An electron beam of energy E = 120 MeV is sent through an undulator,

copropagating together with a resonant laser of wavelength λ = 800 nm. The

resonant interaction generates an energy modulation in the electron beam which
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FFT

Figure 8.1: Schematics of a phase-retrieval algorithm.

is then transformed into density modulation by a subsequent magnetic chicane.

The electron beam is then sent through a metal foil, causing the emission of a

COTR pulse that is collected by a CCD camera focused to infinity. Figure 8.3

shows a picture of the seeding beamline.

The imaging system is composed of two CCD cameras (see Fig. 8.4). The

first camera is focused to infinity to collect the far-field coherent image. A second

camera is focused on the metal foil to collect a near field image of the incoherent

OTR that is used to benchmark the reconstruction. The diagnostic switches from

one camera to the other by means of a mirror flipper. Note that the seed laser

leaks through the chicane mirror (see Fig. 8.2) and affects the measurement.

A simple solution to this problem is that of slightly off-setting the emission fre-

quency of COTR by introducing a small linear energy chirp in the electron beam

and using an optical filter to select the shifted emission wavelength.
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Figure 8.2: Layout of the experimental setup.

The seed laser has a transverse size that is significantly larger than the electron

beam, giving a nearly transversely uniform electric field that interacts with the

beam electrons. Under these conditions, the microbunching is, to an excellent

approximation, a replica of the transverse shape of the electron beam. Since

in the experiment we worked with an uncompressed beam which is not notably

affected by the microbunching instability, the measurement can be benchmarked

by comparison with a near-field incoherent OTR image obtained without the

LIM applied. Figure 8.5 shows a far-field COTR image and the inferred beam

form factor. Note that, since the COTR single particle differential intensity is

zero on axis, the beam form factor cannot be measured for kx ' 0, ky ' 0. The

amplitude of B close to the axis is then reconstructed by the retrieval algorithm

simply keeping the amplitude and phase of the IFFT near the axis as the last

step of each iteration. This issue is analogously found in coherent diffraction

imaging experiments, where the near axis diffraction pattern is dominated by the

direct beam (see e.g. Ref. [61]) and it is commonly referred to as the missing

center problem. Figure 8.6 shows the reconstructed phase of B and the resulting

transverse dependence of the beam microbunching b(x, y, kz).

The NLCTA photoinjector-derived beam possesses small shot-to-shot fluctu-
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Figure 8.3: Photograph of the seeding beamline.

ations of the beam transverse shape, which gives some slight variations in the

comparison beam profiles, thus allowing a less than exact benchmarking of this

measurement. Nevertheless, there are many repeatable features of the beam pro-

file that bear comparison. Figures 8.7 and 8.9 show a comparison between sev-

eral reconstructed bunches and near-field OTR images for two different beamline

configurations, yielding two significantly different beam profiles. The incoher-

ent OTR images show some fluctuations in the beam shape. However, as noted

above, the characteristic size and shape of the beam consistently reproduced in

the reconstructed microbunching images. Finally, Fig. 8.8 shows a reconstructed
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Figure 8.4: Photograph of the diagnostic system.

microbunching and the corresponding OTR image with a comparison of the x

and y projected profiles. We note that the near-field OTR images are calibrated

by taking an image of the OTR screen fiducials, while the far-field COTR images

are calibrated with an incoherent far-field OTR measurement, which has a peak

at
√
k2
x + k2

y = kz/γ. The two calibrations are consistent, as shown in Fig. 8.7.

This indicates that the method can be used quantitatively to image compressed

beams when near-field OTR imaging is impossible.

Indeed, both incoherent and coherent OTR-based diagnostics methods may

be undesirable due to their destructive nature. In this regard, the technique

described and demonstrated in this chapter would be greatly enhanced by the use

of non-destructive coherent undulator radiation, as proposed in the original ORS
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Figure 8.5: Raw far-field COTR image (left image) and inferred amplitude of the
beam’s form factor (right image).

scheme. This scenario would evade the problem of zero emission on axis, which

limits the amount of information gathered with COTR near the kx ' 0, ky '

0 far-field region. A further refinement to the method employed here would

involve the simultaneous use of near- and far-field COTR images, which would

greatly improve microbunching reconstruction by imposing a more stringent set

of constraints for the phase-retrieval algorithm.

8.3 Conclusions

In this chapter we have introduced, and experimentally tested, a technique for

the single-shot reconstruction of the transverse shape of beam microbunching for

a relativistic electron beam. This technique is based on far-field COTR imaging

and on the application of a phase-retrieval algorithm. The technique is general

and could be applied to the case of arbitrary microbunching structures. We have

demonstrated this method in the case of uniform microbunching generated by

resonant interaction of the electrons with an external laser pulse in an undulator.
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This case is of great relevance to x-ray free-electron lasers since it extends the

customary beam profile monitor techniques based on OTR to compressed beams,

even in the presence of coherent light emission induced by the microbunching

instability. Further, we note that by combining this measurement to those dis-

cussed in [58], one may obtain a 3D replica of the beam distribution. Finally,

in the absence of externally imposed microbunching, the method promises to

be a keen tool in unfolding the details of transverse spatial distribution of the

collective instability-induced microbunching itself.
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Figure 8.6: Reconstructed phase in the frequency domain (upper left image)
and reconstructed microbunching in the space-domain (bottom left image). For
comparison an incoherent OTR image is shown in the bottom right image. The
upper right image shows the x-profile of the electron beam from the reconstruction
and from the incoherent OTR.
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Figure 8.7: Reconstructed microbunching (left images) and near field OTR image
(right images) for several independent shots.
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Figure 8.9: Reconstructed microbunching (left images) and near field OTR image
(right images) for several independent shots.
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CHAPTER 9

General Conclusions

9.1 Concluding Remarks

The main topic of this dissertation has been the space-charge microbunching

instability. Experimental evidence for this effect in free-electron laser (FEL) in-

jectors was found at several facilities, where the induced microbunching causes

the emission of coherent transition radiation. The microbunching instability is

usually regarded as a parasitic effect since the induced microbunching strongly

disturbs the beam diagnostics in particle accelerators and generates perturbations

in the beam phase-space which compromise the efficiency of the FEL. Recently,

however, the space-charge microbunching instability has been proposed as a co-

herent microbunching amplifier for advanced free-electron laser seeding schemes,

a configuration that is now referred to as Longitudinal Space-Charge Amplifier

(LSCA).

The physics of this instability is rather complex and is strictly related to that

of relativistic plasma oscillations. Previous theoretical work on this subject relied

on the ”frozen beam” approximation, in which the electrons do not move with

respect to each other during the collective interaction. While this simple two-step

cold-beam theory captures the basic features of the microbunching instability, un-

derstanding thermal motion due to emittance and betatron motion, and the effect

of beam plasma oscillations induced by the self-consistent response of the beam,
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is very important for the design and optimization of advanced microbunching

experiments, such as shot-noise suppression or coherent microbunching amplifi-

cation.

Our theoretical approach is based on a kinetic theory of space-charge waves

in six-dimensional phase-space and consists of three different steps:

1) finding the propagating eigenmodes of space-charge waves in six-dimensional

phase-space;

2) using the self-consistent eigenmodes as an expansion basis for an arbitrary

initial phase-space perturbation to (i.e. solving the initial value problem)

3) using the general formalism derived in the first two steps to describe the

collective evolution and amplification of beam microbunching.

In chapter 2 we described the propagating eigenmodes of the space-charge

fields. We derived a dispersion relation for the plasma eigenmodes and expressed

it in terms of four dimensionless scaling parameters. The dispersion relation was

solved for a broad range of the scaling parameters and used to describe several

properties of the beam plasma oscillations. In chapter 3 we studied the coupling

of these modes to an arbitrary initial perturbation of the six-dimensional phase-

space distribution. These two chapters provided a theoretical description of the

self-consistent evolution of a phase-space perturbation under the effect of space-

charge, which was used in chapter 4 to model the amplification of microbunching

due to the combined effects of space-charge interactions and longitudinal dis-

persion in bending magnets. Finally, in chapter 5 we developed a quasi-three

dimensional model for the microbunching instability of a transversely large beam

with no transverse focusing, a case in which the modal analysis described in the

previous chapters fails due to the degeneracy of the plasma eigenmodes.

One of the most important features of this theoretical model is the study of
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transverse motion due to emittance. This effect is very important since it ulti-

mately determines the transverse distribution of the beam microbunching. We

demonstrated how transverse motion can increase the transverse coherence of

the amplification process, strongly suppressing the amplification of higher order

modes. In particular, when the beam travels in a focusing channel, transverse mo-

tion gives rise to plasma-betatron beat-waves for higher order transverse modes,

with a fast oscillation of the microbunching due to the betatron oscillations, su-

perimposed on the slow collective response of the electrons. In this case, the

amplification of complex transverse structures is suppressed due to the slower

plasma response with respect to the laminar beam approximation.

Another important effect due to transverse emittance is the longitudinal veloc-

ity spread induced by transverse motion. This is a second order effect, since the

longitudinal velocity deviation of a particle due to its finite betatron amplitude

is given by żε = −(kβ~x
2 + ~β2

⊥)/4. Since the velocity deviation due to emittance is

always negative, this effect induces an anisotropy in the plasma response of the

beam, causing strong Landau damping of the space-charge waves that propagate

in the negative z-direction (relative to the electron beam). The Landau damping

due to emittance is a critically important effect which ultimately determines the

optimal focusing for a space-charge experiment. We used our theory to describe

emittance effects in both shot-noise suppression and microbunching amplifica-

tion experiments. We showed how the optimal design of such experiments has to

balance the field enhancement due to strong transverse focusing and the longitu-

dinal velocity spread due to emittance which dominates the behavior of strongly

focused beams. Finally, the reduction of the plasma oscillation frequency due to

the finite size of the beam was determined to be a critical effect, suppressing the

microbunching amplification at long wavelengths.
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In the one-dimensional limit (i.e. the limit for a large quasi-laminar electron

beam), total mode degeneracy makes the use of the bi-orthogonal mode expansion

highly impractical. For this specific case, we developed a quasi three-dimensional

model in which the electron beam is modeled as a uniform unmagnetized plasma

and the evolution of beam microbunching is analyzed in terms of plane plasma

waves. Our model shows how transverse motion due to emittance induces strong

Landau damping of high k⊥ components of optical microbunching, reducing the

angular width of the gain induced by space-charge. As a general rule, the char-

acteristic transverse coherence length of the microbunching is given by γλ, or by

the Debye length λD whichever is larger. This effect is critical for the coherent

optical transition radiation diagnostics of the microbunching instability, since it

determines the angular distribution of the coherent signal.

After establishing a strong theoretical background for the space-charge in-

stability, we performed a proof of principle experimental demonstration of the

longitudinal space-charge amplifier (LSCA). In an LSCA, the longitudinal space-

charge microbunching instability is employed to generate a strong modulation in

the electron beam, which is then used to generate coherent radiation in an undula-

tor. The experiment was performed at the NLCTA test facility and demonstrated

the key features of a LSCA: broadband (∆λ/λ ' 15%), high-gain (up to three or-

ders of magnitude over spontaneous emission), cascaded amplification and single

transverse mode operation. A single transverse mode is obtained as the result of

strong compression, which shifts the transversely coherent microbunching gener-

ated at long wavelenghts to the optical spectral region. Strong compression also

results in a single spectral spike in cases in which the slippage length in the radi-

ator is shorter than the microbunched portion of the electron bunch. Cascaded

amplification was proved by varying the R56 partition along the amplification

beamline and keeping the total compression factor constant. This experiment
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proves the feasibility of broad-band coherent radiation sources at free-electron

laser user facilities and opens new possibilities for the free-electron laser user

community.

Finally, we developed and demonstrated experimentally a coherent diffraction

imaging technique for the reconstruction of beam microbunching. This technique

relies on far-field imaging of coherent transition radiation pulses and on the ap-

plication of an iterative phase-retrieval algorithm. The technique is general and

could be applied to any type of microbunching. We have successfully tested this

method with laser-induced optical microbunching at the NLCTA test facility. As

mentionedin chapter 8, this experiment has a wide number of applications in the

diagnostics of compressed electron beams in free-electron laser injectors or as a

diagnostic for advanced free-electron laser experiments.

9.2 Future Directions of Investigation

The physics of longitudinal space-charge effects has raised significant interest in

the free-electron laser community and the broader field of particle accelerators.

The experimental demonstration of the LSCA accomplished in this PhD disser-

tation opens new lines of research in advanced FEL seeding schemes. The next

generation of experiments will have to demonstrate the emission of ultra-short

pulses with a LSCA seeded by an ultra-fast external laser and the extension of

the LSCA to VUV and soft x-ray wavelengths.

While the LSCA holds great promise as a source of coherent broad-band ra-

diation, I believe that alternative amplification mechanisms need to be pursued

to improve the operation of broad-band coherent amplifiers at short wavelengths

(specifically the nanometer level and sub-nanometer level). I am currently in-
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vestigating the two-stream amplifier (2SA) as an alternative to the LSCA, with

a number of collaborators. The 2SA shares the same conceptual layout as an

LSCA: a collective instability is used to generate microbunching (starting from

shot-noise or an external seed), which is then employed in an undulator for the

emission of coherent photons. However, unlike the LSCA, in this case the am-

plification mechanism consists of the unstable response of an electron beam with

two distinct energy levels. This type of instability is driven by longitudinal space-

charge but it does not require a magnetic chicane since the microbunching grows

exponentially as a function of time. The three-dimensional theory of this effect,

based on the same formalism developed in this dissertation, is currently being

investigated and future experiments at the NLCTA are in the planning stages.

The coherent imaging technique developed in this dissertation is also being

expanded to measure more general forms of microbunching. In fact, extending

this method to cases where the microbunching has large phase variations in the

transverse plane presents several challenges. This is the case of the space-charge

induced microbunching for a degenerate beam, or the helical microbunching that

drives orbital angular momentum modes in an FEL. A more robust reconstruction

method can be achieved with simultaneous near and far-field imaging of coherent

transition radiation. With this approach, a stronger constraint can be applied to

the signal in the space-domain, ensuring convergence of the phase-reconstruction

algorithm even for cases in which sign constraints cannot be imposed.

The lines of research opened by this dissertation will generate new and exciting

science in the near future, and will contribute to the development of ultra-fast

radiation sources aiming to reach the attosecond level at the next generation of

light sources.
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