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Abstract

Background: Vocal learning in songbirds has emerged as a powerful model for sensorimotor learning. Neurobehavioral
studies of Bengalese finch (Lonchura striata domestica) song, naturally more variable and plastic than songs of other finch
species, have demonstrated the importance of behavioral variability for initial learning, maintenance, and plasticity of
vocalizations. However, the molecular and genetic underpinnings of this variability and the learning it supports are poorly
understood. Findings: To establish a platform for the molecular analysis of behavioral variability and plasticity, we
generated an initial draft assembly of the Bengalese finch genome from a single male animal to 151× coverage and an N50
of 3.0 MB. Furthermore, we developed an initial set of gene models using RNA-seq data from 8 samples that comprise liver,
muscle, cerebellum, brainstem/midbrain, and forebrain tissue from juvenile and adult Bengalese finches of both sexes.
Conclusions: We provide a draft Bengalese finch genome and gene annotation to facilitate the study of the
molecular-genetic influences on behavioral variability and the process of vocal learning. These data will directly support
many avenues for the identification of genes involved in learning, including differential expression analysis, comparative
genomic analysis (through comparison to existing avian genome assemblies), and derivation of genetic maps for linkage
analysis. Bengalese finch gene models and sequences will be essential for subsequent manipulation (molecular or genetic)
of genes and gene products, enabling novel mechanistic investigations into the role of variability in learned behavior.

Keywords: genome assembly; systems neuroscience; molecular neuroscience; neural plasticity; birdsong; Bengalese finch

Introduction

Many motor skills, from walking and talking to the swing of a
baseball bat, have the capacity for high degrees of both stabil-
ity and flexibility between renditions. This capacity allows or-
ganisms to both reliably perform well-learned behaviors and to
adapt behaviors in settings that present new environmental in-

formation. Regulation of this balance is a fundamental aspect
of neural function, and its disruption may underlie neurological
diseases characterized by excessive motor rigidity or variability,
such as Parkinson’s and Huntington’s diseases [1,2]. Hence, un-
derstanding the neural mechanisms that mediate maintenance
and adaptive modification of motor skills is critical to under-
standing the basis of both normal and pathological behavior.
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Figure 1: An adult male Bengalese finch (Lonchura striata domestica).

The songs of songbirds are complex vocal motor skills
and provide a powerful framework through which to under-
stand the neural mechanisms that regulate motor skill learning,
maintenance, and plasticity [3–5]. As with motor skills in hu-
mans, birdsong is learned and must be practiced to maintain
performance. In particular, birdsong learning follows a similar
developmental trajectory to human speech learning: song is ini-
tially acquired during an early critical period followed by a pe-
riod of practice and then relatively invariant song production
throughout adulthood [6]. Adult song relies on auditory feed-
back both to maintain song at a stable set point and to support
adaptive change in response to environmental perturbations.
Importantly, song production and learning is subserved by an
anatomically discrete and functionally dedicated set of brain nu-
clei, which allows targeted characterization of electrophysiolog-
ical and molecular properties of those nuclei that can be related
back to song production, learning, and plasticity.

Relative to the songs of other commonly studied songbirds,
the song of the Bengalese finch has several experimentally use-
ful features that facilitate the study of behavioral variability
in both learning and maintenance of complex behaviors. Ben-
galese finches (Fig. 1) exhibit substantial rendition-to-rendition
variability in both the ordering and phonological attributes of
their song elements [7]. This natural variation acts as a substrate
for error-corrective and reinforcement learning [8–12] and has
facilitated the analysis of how fluctuations in central nervous
system activity lead to behavioral variation [13–15]. Further-
more, Bengalese finch song is more sensitive to auditory feed-
back and operant training paradigms than the songs of other
songbird species. Complete loss of auditory feedback results in
an increase in song sequence variability and rapid degradation
of its spectral content [16,17]. Experiments using subtler distor-
tions of auditory feedback indicate that Bengalese finches make
corrections to adaptively adjust their song to minimize errors
[9,18]. These studies, facilitated by behavior specific to the Ben-
galese finch, have provided insight into the neural mechanisms
that drive variability and how that variability facilitates learn-
ing. However, studies of themolecularmechanisms that support
this variability have been precluded by the absence of a genome
assembly.

Beyond facilitating molecular studies of learning, this
genome assembly is the first of a species in the genus Lonchura,
which comprises approximately 37 species variously called mu-
nias or mannikins. Recent constructions of the Estrildid clade
indicate that the Lonchura genus is monophyletic (with the ex-
ceptions of the African [L. cantans] and Indian [L. malabarica] sil-
verbills) and radiated approximately 6 million years ago (MYA)

[19–21]. The zebra finch (Taenopygia guttata), another commonly
used model for vocal learning, shared a most recent common
ancestor with the white-rumped munia approximately 9 MYA.
The assembly provided here presents an opportunity for further
comparative genomicwork aswell asmolecular genetic analysis
in a previously poorly studied genus.

The Bengalese finch is a domesticated variant of the white-
rumped munia (Lonchura striata), an Estrildid finch that is in-
digenous to Southeast Asia including India, Myanmar, Thailand,
Malaysia, and South China [22]. The birds are socially gregarious
and live in large colonies that forage through open grasslands
and urban backyards. The first well-documented case of domes-
tication of the white-rumpedmunia is thought to have occurred
approximately 250 years ago at the request of a Japanese feudal
lord. Since then, the species has been selectively bred for tame-
ness and reproductive efficiency [23]. Today, Bengalese finches
(also known as Society finches) are widely kept as household
pets. Interestingly, although there is no clear evidence that the
Bengalese finch was bred for certain song characteristics, com-
parisons of the songs of the ancestral white-rumped munia and
the Bengalese finch indicate that domestication has resulted in
increased song complexity and a broader capacity to learn the
songs of both the wild and domesticated variants [24,25]. Do-
mestication has also led to laboratory populations that exhibit
substantial interindividual variation in both plumage and song
characteristics. The addition of a genome sequence for a do-
mesticated species opens opportunities for comparative anal-
ysis into the impact of domestication on the genome.

Several songbird genome assemblies have been generated
in recent years, including genomes for the zebra finch [26], ca-
nary [27], and American crow [28], opening up songbirds to
genome-wide molecular analysis. However, the unique song
features of Bengalese finches provide a system ideally suited
to address specific questions regarding the molecular proper-
ties of the song system that facilitate or constrain song vari-
ability and the ability to respond to altered environmental
conditions.

To lay the groundwork formolecular studies in the Bengalese
finch, we generated a high-coverage draft genome assembly and
constructed an initial set of gene annotations. This assembly has
coverage and scaffolding length that are on the upper ends of the
distribution of assemblies in the Avian Phylogenomics Project
[28] and has a comparable number of gene models (Fig. 2).

Reuse potential

We expect that this resource will be used by other researchers
for differential expression analysis, functional genomics, and
comparative genomic analysis (through comparison to exist-
ing avian genomes), with a specific application to character-
izing the differences between the genomes of the Bengalese
finch and its ancestral species that contribute to differences
in their songs [23]. The assembly can also be used as a
reference for low-coverage sequencing and marker typing
experiments that examine how genetic variation within a labo-
ratory population contributes to heritable variation in song. Ad-
ditionally, these gene models and sequences will be essential
for manipulation (molecular or genetic) of genes and gene prod-
ucts, a prerequisite for developing models for molecular mech-
anisms. Moreover, this is the first large-scale genome assembly
of a member of the Lonchura genus and will aid in further re-
constructions of Estrildid phylogeny and in songbird evolution
generally.
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Figure 2: Comparison of Bengalese finch and Avian Phylogenomics Project assemblies. The distributions of sequencing depths (A), scaffold N50 (B), and number of

annotated genes (C) are shown for the assemblies in the Avian Phylogenomics Project as of 14 September 2017. Vertical red line indicates the corresponding statistics
for the Bengalese finch assembly and annotation described here.

Materials and Methods
Animals

All birds were raised in our breeding colony at the Univer-
sity of California–San Francisco (UCSF). Experiments were con-
ducted in accordance with National Institutes of Health and
UCSF policies governing animal use and welfare (protocol num-
ber AN170723-01A).

Genomic DNA library construction

Bloodwas collected froma single Bengalese finch adultmale and
purified using the DNeasy Blood & Tissue Kit (Qiagen).

We prepared 2 sets of libraries for genome assembly: one
set with small insert size libraries and a second with larger in-
sert sizemate-pair libraries. First, small insert size libraries with
2 sizes were constructed. Two samples of 2.2 μg of genomic
DNA were sonicated using a Covaris M220, 130 μL microTUBE,
and presets for a target size of 200 bp (peak incident power 50
W, duty factor 20%, cycles per burst 200, treatment time 160
s). Samples were then purified using Sample Purification Beads
(Illumina). Librarieswere prepared from this sonicated gDNAus-
ing the TruSeq DNA PCR-Free LT Library Preparation Kit (Illu-
mina). Briefly, samples were end repaired using End Repair Mix
2, then bead purified. Samples were then size selected using a
BluePippin 2% agarose, dye-free, external marker gel (Sage Bio-
sciences) set for 200 and 220 bp tight selection. Samples were
then a-tailed, adapter ligated, and purified as indicated in the
manufacturer’s protocol.

Next, mate-pair libraries were constructed using the Nextera
Mate-Pair Library Preparation Kit (Illumina) with 3, 5, and 9 kb
insert sizes. Next, 4 μg purified genomic DNA was tagmented as
recommended in the manufacturer’s protocol, then purified us-
ing the Genomic DNA Clean and Concentrator Kit (Zymo). The
protocol was continued through strand displacement and size
selected using BluePippin 0.75% agarose, dye-free gels (broad se-
lection at 2000–4000 bp, 4000–6000 bp, and 8000–10,000 bp, re-
spectively). After selection, the protocol was continued through
final polymerase chain reaction amplification.

RNA collection and library construction

All tissues were dissected out, then minced and homogenized
on ice. RNA was extracted using standard TRIzol extraction;
2 μg total RNA was DNase-treated using 2U rDNase I (Ambion)

at 37◦C for 25minutes. DNase-treated total RNAwas purified us-
ing RNA Clean and Concentrator 25 (Zymo), then 120 ng of this
sample was prepared for sequencing using the Encore Complete
DR RNA-seq Library System (NuGEN) according to the manufac-
turer’s protocol. Table 1 provides tissue information including
sex and ages of the animals.

Sequencing

Small insert, mate-pair, and total RNA libraries were sequenced
on 8 lanes of an Illumina HiSeq 2500 using V4 chemistry at
Elim Biopharm (Hayward, California). Libraries were sequenced
paired end to 125 cycles. Sequencing statistics are found in
Table 1.

Genome assembly

Sequencing data was assembled at the University of California–
Davis Genome Center using ALLPATHS-LG (ALLPATHS-LG,
RRID:SCR 010742) [29]. Prior to assembly, reads were trimmed
for TruSeq (fragment libraries) or TruSeq and Nextera (jump-
ing libraries) adapters using Trim Galore! [30], a wrapper for Cu-
tAdapt [31] and FastQC (FastQC, RRID:SCR 014583) [32]. TruSeq
adaptor trimming was performed using: trim galore –quality
20 -a AGATCGGAAGAG -a2 AGATCGGAAGAG –stringency 1. Nex-
tera adaptor trimming was performed using: trim galore –
quality 20 -a CTGTCTCTTATA -a2 CTGTCTCTTATA –stringency 1.
ALLPATHS-LG was then run using standard parameters. Statis-
tics for the resulting assembly are provided in Table 2.

Repeat masking

The genome assembly was first masked for simple repeats and,
using specific repeat models, generated using RepeatMasker
open-4.0.5 [33] with -lib flag set using custom families gener-
ated using RepeatModeler open-1.0.8 [34]. Approximately 7.5%
of the genome was classified as repetitive, comprising 80 Mbase
of DNA. More detailed repeat element statistics can be found in
Table 3.

Transcript assembly and gene annotation

RNA library sequencing reads were first trimmed for TruSeq
adapters using Trim Galore! (as above). Reads were aligned
to the genome assembly using STAR v2.4.0h [35] set to
remove noncanonical intron motifs (–outSAMstrandField

https://scicrunch.org/resolver/RRID:SCR_010742
https://scicrunch.org/resolver/RRID:SCR_014583
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Table 1: Descriptions of libraries used for genome assembly and gene annotation.

Genomic libraries

Library Insert size (expected) Insert size (measured) Reads (M) Sequence (Gbases) Coverage (x)

Fragment 1 200 202 403 50 42
Fragment 2 220 226 412 51 43
Jumping 1 3000 3300 753 60 50
Jumping 2 5000 5300 149 12 10
Jumping 3 9000 9000 100 7 6
Totals 1817 180 151

RNA libraries
Tissue Sex Age (days post hatch) Reads (M) Sequence (Gbases)
Cerebellum male 360 153 19
Forebrain female 194 179 22
Forebrain male 147 159 20
Forebrain female 55 266 33
Forebrain male 55 160 20
Liver female 217 148 18
Midbrain/brainstem male 360 182 23
Breast muscle female 217 193 24
Totals 1439 180

Table 2: Statistics of draft genome assembly

ALLPATHS-LG output

Number of contigs 37 187
Number of contigs per Mb 35.1
Number of scaffolds 3016
Total contig length 1 027 319 005
Total scaffold length, with gap 1 058 688 097
N50 scaffold size in kb, with gaps 2953
Number of scaffolds per Mb 2.85
Median size of gaps in scaffolds 270
% of bases in captured gaps 2.94

Assemblathon statistics
Total scaffold length as percentage of assumed
genome size

88.30%

% of estimated genome that is useful (>= 25 kb) 87.60%
Longest scaffold 15 662 897
Shortest scaffold 887
Number of scaffolds > 1K nt 2987 (99.0%)
Number of scaffolds > 10K nt 1254 (41.6%)
Number of scaffolds > 100K nt 719 (23.8%)
Number of scaffolds > 1M nt 297 (9.8%)
Number of scaffolds > 10M nt 3 (0.1%)
Mean scaffold size 351 516
Median scaffold size 5349
N50 scaffold length 2 953 339
L50 scaffold count 103
NG50 scaffold length 2 494 006
LG50 scaffold count 129
N50 scaffold—NG50 scaffold length difference 459 333
Scaffold %A 28.31
Scaffold %C 20.13
Scaffold %G 20.09
Scaffold %T 28.24
Scaffold %N 2.94
Percentage of assembly in scaffolded contigs 99.60%
Percentage of assembly in unscaffolded contigs 0.40%
Average number of contigs per scaffold 10.5
Average length of break (>25 Ns) between contigs in
scaffold

1082

Table 3: Repeat elements in the genome assembly identified by
RepeatMasker

Class N
Total length
(Mbases)

Percent of
genome

DNA 3460 0.31 0.03
LINE 118 051 32.03 3.03
Low complexity 46 755 2.66 0.25
LTR 66 142 25.51 2.41
Satellite 3822 2.01 0.19
Simple repeat 242 428 11.94 1.13
SINE 2163 0.15 0.01
Unknown 14 079 4.91 0.46
Total 496 900 79.52 7.52

intronMotif –outSAMattributes NH HI AS nM XS –
outFilterIntronMotifs RemoveNoncanonical, otherwise default
parameters), then assembled into transcripts using Cufflinks
v2.2.1 (Cufflinks, RRID:SCR 014597) [36] (-j .5 –min-frags-per-
transfrag 50 –max-intron-length 1 000 000, otherwise default
parameters).

Gene annotation was performed using the MAKER2 pipeline
[37] (Fig. 3). The following sources of evidence were used:
Cufflinks transcript assembly described above; a collection of
UniProt protein sequences from human, mouse, chicken, and
zebra finch (each downloaded March 2, 2017); and Zebra finch
EST collection (taeGut2) downloaded from UCSC the University
of California, Santa Cruz Genome Browser (on 11 January 2015).

A random subset of gene models from the first MAKER2 run
(n = 3859) was used to train Augustus v2.5.5 (Augustus: Gene
Prediction, RRID:SCR 008417) [38], and the MAKER2 pipeline was
rerun using these models to improve annotation. Next, 3′ un-
translated regions (UTRs) were added by intersecting these gene
models with Cufflinks generated transcripts. MAKER2 gener-
ated 17268 gene models that were filtered by AED scores be-
low 0.5 (a measure of model support) to yield 15 313 models.
All models were then manually curated as follows using Apollo
v2.0.4 (Apollo, RRID:SCR 001936) [39]. Where possible, we cor-
rected MAKER models that merged 2 genes, incorrectly split

https://scicrunch.org/resolver/RRID:SCR_014597
https://scicrunch.org/resolver/RRID:SCR_008417
https://scicrunch.org/resolver/RRID:SCR_001936
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Figure 3: Flowchart of genome assembly and annotation. Experimental and computational approach used for genome assembly and gene annotation.

genes, or contained noncanonical splice junctions to eliminate
frame shifts or truncated open reading frames and to bestmatch
aligned protein sequences. The 3′ UTR positions were manu-
ally refined by selecting from the longest 3′ UTR in the Cufflinks
assembled transcripts without allowing overlaps between UTRs
and adjacent genes on the same strand. These criteria were used
to better facilitate read-gene assignment in 3′ RNA-sequencing
experiments. The most well-represented 5′ UTRs were selected
from the Cufflinks assembled transcripts. This curation yielded
a set of 15 322 genes (the increase in gene number occurred due
to splitting of some incorrectly merged genes and inclusion of
well-supported genes from the Cufflinks transcript models that
had been excluded by MAKER). Open reading frame sequences
were aligned to the Uniprot-SwissProt protein database (down-
loaded 20March 2015) using BLASTP [40] (default parameters ex-
cept -max target seqs 1), which yielded 14449 genes with a pro-
tein assignment with an e-value less than 10−10.

BUSCO (BUSCO, RRID:SCR 015008) [41], which detects near-
universal single-copy orthologs to assay genome completeness,
yielded 86% complete (n = 2621), 4% fragmented (n = 122), and
9% missing (n = 280) vertebrate genes (total n = 3023).

A comparison of this assembly and annotation with the as-
semblies in the Avian Phylogenomics Project can be found in
Fig. 2. The full assembly and annotation were submitted to Na-
tional Center for Biotechnology Information (NCBI) using cus-
tom scripts, GAG [42], Annie [43], and NCBI tbl2asn.

Availability of supporting data

This Whole Genome Shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession MUZQ00000000. The
version described in this paper is version MUZQ01000000.

Supporting data, including transcriptome data, annotations,
BUSCO results, and scripts are available via the GigaScience
repository GigaDB [44].
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