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Abstract. LetΘn = (θ1, . . . , θn) andΞn = (ξ1, . . . , ξn) be two lists of n variables and con-
sider the diagonal action of Sn on the exterior algebra ∧{Θn,Ξn} generated by these vari-
ables. Jongwon Kim and Rhoades defined and studied the fermionic diagonal coinvariant
ring FDRn obtained from ∧{Θn,Ξn} by modding out by the Sn-invariants with vanishing
constant term. The author and Rhoades gave a basis for the maximal degree components
of this ring where the action of Sn could be interpreted combinatorially via noncrossing
set partitions. This paper will do similarly for the entire ring, although the combinatorial
interpretation will be limited to the action of Sn−1 ⊂ Sn. The basis will be indexed by a
certain class of noncrossing partitions.
Keywords. Skein relation, coinvariant algebra, noncrossing set partition, cyclic sieving
Mathematics Subject Classifications. 05E10, 05E18, 20C30

1. Introduction

This paper involves an algebraically definedSn-module, and is concerned with modelling theSn

action on this module via combinatorially defined objects. In particular, we will give a basis
indexed by a certain type of noncrossing set partition for which the action of Sn−1 ⊆ Sn has a
nice combinatorial interpretation.

The module in question was introduced by Jongwon Kim and Rhoades [KR20], and is defined
as follows. Let Θn = (θ1, . . . , θn) and Ξn = (ξ1, . . . , ξn) be two sets of n anticommuting
variables, and let

∧{Θn,Ξn} := ∧{θ1, . . . , θn, ξ1, . . . , ξn} (1.1)

be the exterior algebra generated by these symbols over C. The symmetric group Sn acts on
this exterior algebra via a diagonal action given by

w · θi := θw(i) w · ξ′i := ξ′w(i). (1.2)

https://www.combinatorial-theory.org
mailto:jvkim@ucsd.edu
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for any permutation w ∈ Sn and 1 ⩽ i ⩽ n. Let ∧{Θn,Ξn}Sn
+ denote the subspace of Sn-

invariants with vanishing constant term. Then the fermionic diagonal coinvariant ring is de-
fined as

FDRn := ∧{Θn,Ξn}/⟨∧{Θn,Ξn}Sn
+ ⟩. (1.3)

The ring FDRn is a variant of the Garsia–Haiman diagonal coinvariant ring [Hai94], which is
defined analogously but with the anticommuting variables replaced with commuting ones. Sev-
eral other variants involving more sets of variables or mixtures of anticommuting and commut-
ing variables have been studied by other authors [Ber20, BRT20, DIV21, KR20, OZ20, PRR19,
RW20, RW22, Swa21, SW20, Zab19, Zab20].

The ring ∧{Θn,Ξn} has a bigrading given by

(∧{Θn,Ξn})i,j := ∧i{θ1, . . . , θn} ⊗ ∧j{ξ1, . . . , ξn}. (1.4)

The invariant ideal ⟨∧{Θn,Ξn}Sn
+ ⟩ is homogeneous, so FDRn inherits the bigrading. In [KR20],

Kim and Rhoades calculated the frobenius image of FDRn to be given by

Frob(FDRn)i,j = s(n−i,1i) ∗ s(n−j,1j) − s(n−i−1,1i+1) ∗ s(n−j−1,1j+1) (1.5)

where ∗ denotes the Kronecker product of Schur functions. They remark that in the case
when i + j = n − 1, the above shows that the dimension of (FDRn)n−k,k−1 is given by the
Narayana number Nar(n, k). Narayana numbers count noncrossing set partitions of [n] into k
blocks, and in [KR22] a combinatorial basis of (FDRn)n−k,k−1 was given indexed by set par-
titions for which the Sn-action was given by a skein action on noncrossing partitions first de-
scribed by Rhoades in [Rho17].

In this paper we will give a similar result for all bidegrees, although our results will not give
a combinatorial description for the full Sn-action. Instead, we will focus on the subgroup of Sn

consisting of permutations which leave n fixed (which we will abusively refer to as Sn−1). We
will define a basis of (FDRn)i,j indexed by a certain class of noncrossing set partitions defined
in Section 3 for which the action of Sn−1 can be described via combinatorial manipulations of
the indexing partitions and use this basis to give an expression for the Frobenius image

Frob(ResSn
Sn−1

(FDRn)i,j). (1.6)

The rest of the paper is organized as follows. Section 2 will give relevant background infor-
mation on set partitions, exterior algebras, and Sn representation theory. Section 3 will describe
an action of Sn−1 on certain set partitions and map this action into FDRn. Section 4 will show
that a restriction of this map is an isomorphism and use it to obtain a combinatorial basis of
FDRn. Section 5 will use the basis developed to calculate the bigraded Sn-structure of FDRn.
Section 6 will connect this basis to a cyclic sieving result of Thiel and address some avenues of
further inquiry.
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2. Background

2.1. Combinatorics

A noncrossing set partition of [n] is a set partition of [n] in which for any 1 ⩽ a < b < c < d ⩽ n
if a and c are in the same block, and b and d are in the same block, then a, b, c, d are all in the
same block.

An integer partition λ ⊢ n of length k is a sequence of integers (λ1, λ2, . . . , λk) where
λ1 + · · · + λk = n and λ1 ⩾ λ2 ⩾ · · · ⩾ λk ⩾ 1. Dominance order, denoted by µ ⪯ λ, is a
partial order on set partitions defined by µ ⪯ λ if and only if µ1 + · · ·+ µi ⩽ λ1 + · · ·+ λi for
all i, taking µi or λi to be 0 whenever i exceeds the length of µ or λ respectively. The conjugate
of an integer partition λ denoted by λ′.

2.2. Exterior Algebras

As in the introduction, we will use ∧{Θn,Ξn} to denote the exterior algebra generated by
the 2n symbols θ1, . . . , θn, ξ1, . . . , ξn. There is an isomorphism of graded vector spaces (see
e.g. [KR20])

FDRn
∼= ∧{θ1, . . . , θn−1, ξ

′
1, . . . , ξ

′
n−1}/⟨θ1ξ′1 + · · ·+ θn−1ξ

′
n−1⟩ (2.1)

given by

θi → θi 1 ⩽ i ⩽ n− 1

θn → −(θ1 + · · ·+ θn−1)

ξi → ξ′i −
1

n
(ξ′1 + · · ·+ ξ′n−1) 1 ⩽ i ⩽ n− 1

ξn → − 1

n
(ξ′1 + · · ·+ ξ′n−1)

As this paper will focus on the action of Sn−1, we will extensively use this alternate formu-
lation of FDRn, and use ∧{Θn−1,Ξ

′
n−1} to denote ∧{θ1, . . . , θn−1, ξ

′
1, . . . , ξ

′
n−1}. The ring

∧{Θn−1,Ξ
′
n−1} inherits the action of Sn and Sn−1 from FDRn, and the action of Sn−1 simply

permutes indices of variables.
Given subsets S, T ⊆ [n − 1], let θS, ξ′T with S = {s1 < · · · < sa}, T = {t1 < · · · < tb}

denote the monomial
θs1 · · · θsa · ξ′t1 · · · ξ

′
tb

(2.2)

The set {θS · ξ′T : S, T ⊆ [n− 1]} is a basis of ∧{Θn−1,Ξ
′
n−1}. Define an inner product ⟨−,−⟩

on ∧{Θn−1,Ξ
′
n−1} by declaring this basis to be orthonormal.

An exterior algebra ∧{ω1, . . . , ωn} acts on itself via exterior differentiation, denoted by ⊙.
The action ⊙ : ∧{ω1, . . . , ωn} × ∧{ω1, . . . , ωn} → ∧{ω1, . . . , ωn} is defined by

ωi ⊙ (ωs1 · · ·ωsk) =

{
(−1)j−1ωs1 · · · ω̂sj · · ·ωsk i = sj

0 i ̸= sj for all 1 ⩽ j ⩽ k
.
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2.3. Sn-Representation Theory

Irreducible representations of Sn are in one-to-one correspondence with partitions λ ⊢ n.
Given λ ⊢ n let Sλ denote the corresponding Sn-irreducible. The dimension of Sλ is given
by the number of standard Young tableau of shape λ. Any finite dimensional Sn-module V can
be decomposed uniquely as V ∼=

⊕
λ⊢n cλS

λ for some multiplicities cλ. The Frobenius image
of V is the symmetric function given by

Frob V :=
∑
λ⊢n

cλsλ (2.3)

where sλ is the Schur function corresponding to λ.
If V is an Sn-module and W is an Sm-module, their induction product V ◦W is given by

V ◦W := IndSn+m

Sn×Sm
(V ⊗W ) (2.4)

where the action of Sn ×Sm on V ⊗W is given by (σ, σ′) · (v ⊗w) := (σ · v)⊗ (σ′ ·w). We
have

Frob V ◦W = Frob V · Frob W (2.5)

so induction product of modules corresponds to multiplication of Frobenius image.
Given a partition λ = (λ1, λ2, . . . , λk) ⊢ n, let Sλ ⊆ Sn denote the Young subgroup

Sλ := S{1,...,λ1} × S{λ1+1,...,λ1+λ2} × · · · × S{n−λk,...,n}. To any subgroup X ⊆ Sn

we associate two group algebra elements [X]+ and [X]− defined by [X]+ =
∑

w∈X w
and [X]− =

∑
w∈X sign(w)w. We will need the following standard lemma.

Lemma 2.1. Let λ, µ ⊢ n. Then [Sλ]+ kills Sµ unless λ ⪯ µ and [Sλ′ ]− kills Sµ unless µ ⪯ λ.

For a more thorough treatment of this topic, see [Sag91]

2.4. Cyclic Sieving

Cyclic sieving was introduced by Reiner, Stanton and White [RSW04] as a way to express various
related results about the enumeration of fixed points of a cyclic action. If X is a finite set, C is
a cyclic group of order n generated by c acting on X , and P (q) is a polynomial in N[q], then we
say that

Definition 2.2. The triple (X,C, P (q)) exhibits the cyclic sieving phenomenon if for all non-
negative integers d,

|{x ∈ X | cd · x = x}| = P (ζd)

where ζ is a primitive nth root of unity.

The polynomial P (q) is often given in terms of q-analogs. The q-analog of a positive inte-
ger n is denoted [n]q and is defined to be 1 + q + q2 + · · ·+ qn−1. The q-analogs of n!,

(
n
k

)
and

the multinomial coefficient
(

n
k1,k2,...,kl

)
, are denoted and defined as follows:

[n]q! = [n]q[n− 1]q · · · [1]q,
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n
k

]
q

=
[n]q!

[n− k]q![k]q!
,[

n
k1, k2, . . . kl

]
q

=
[n]q!

[k1]q! · · · [kl]q!
.

The fake degree polynomial of a representation is defined by

fd(Sλ) = qb(λ)
[r]q!∏

(i,j∈λ)[h(i, j)]q

where the product is over all cells (i, j) of λ, h(i, j) is its hook length and b(λ) = λ2 + 2λ3 +
3λ4 + · · · and the fake degree of a general representation is the sum of fake degrees of the
irreducibles it contains, with multiplicity.

Cyclic sieving results are often proven via representation theory. In particular Reiner, Stanton
and White [RSW04] realized the following was implied by a result of Springer’s [Spr74].

Theorem 2.3 (Springer, 1974). Let V be a representation of Sn with a basis X which is pre-
served by the long cycle, c. Let P (q) = fd(V ). Then (X, ⟨c⟩, P (q)) exhibits the cyclic sieving
phenomenon.

3. Set partitions and the action of Sn−1

The indexing set for our combinatorial basis will be a certain partially labelled subset Φ(n) of
noncrossing set partitions of [n].

Definition 3.1. Let n, k, x, t be nonnegative integers. We define the following sets of set parti-
tions:

• Let Ψ(n) denote the set of all set partitions of [n] for which all blocks not containing n
are size 1 or size 2, and blocks of size 1 not containing n are labelled with either a θ or a ξ′.

• Let Ψ(n, k) be the set of partitions in Ψ(n) which have exactly k blocks of size 2 not con-
taining n.

• Let Ψ(n, k, x, y) denote the set of partitions in Ψ(n, k) which have exactly x singletons
labelled θ and exactly y singletons labelled ξ′.

• Let Φ(n), Φ(n, k), and Φ(n, k, x, y) be the subsets of Ψ(n), Ψ(n, k), or Ψ(n, k, x, y) re-
spectively which consist only of the those set partitions which are noncrossing.

For the rest of this paper, when we refer to the singleton blocks of a partition π ∈ Ψ(n), we
only refer to those blocks of size 1 that do not contain n, even if the block containing n happens
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to be size 1. Similarly when we refer to the blocks of size two we refer to only the blocks of size
two that do not contain n.

There is a natural action of Sn−1 on Ψ(n), given by simply permuting elements between
blocks and preserving labels of blocks. The sets Ψ(n, k) and Ψ(n, k, x, y) are closed under
this action, but Φ(n) is not, as permuting the elements of a noncrossing permutation may in-
troduce crossings. However, we can define an action of Sn−1 on the linearization CΦ(n) by
mapping CΨ(n) into ∧{Θn−1,Ξ

′
n−1} in such a way that CΦ(n) is Sn−1-invariant and pulling

back the Sn−1-action.
Towards this goal, to each element π ∈ Ψ(n) we will associate an element Gπ of the exterior

algebra ∧{Θn−1,Ξ
′
n−1}. To define Gπ we will make use of a tool we will call block operators.

Let B be a block of a set partition π ∈ Ψ(n), i.e. B is a nonempty subset of [n] that either con-
tains n or is size at most two. Define the block operator τB : ∧{Θn−1,Ξ

′
n−1} → ∧{Θn−1,Ξ

′
n−1}

by

τB(f) =


(
∏

i∈B\{n} θi)⊙ f n ∈ B

ξ′i · (θj ⊙ f) + ξ′j · (θi ⊙ f) n ̸∈ B,B = {i, j}
f B = {iθ}
ξ′i · (θi ⊙ f) B = {i′ξ}

(3.1)

It will be important for what follows to note that block operators corresponding to blocks not
containing n commute.

Lemma 3.2. Let A and B be two nonempty subsets of [n−1] of size at most two. Then τA and τB
commute.

Proof. The lemma reduces to the fact that the family of operators

{ξ′1·, . . . , ξ′n−1·, θ1⊙, . . . , θn−1⊙}

all anticommute, and that each block operator is a degree two polynomial in these.

Block operators also interact nicely with the action of Sn−1.

Lemma 3.3. Let A be a subset of [n− 1] and let σ ∈ Sn−1. Then for any f ∈ ∧{Θn−1,Ξ
′
n−1}

σ · τA(f) = τσ·A(σ ◦ f)

where the action of Sn on subsets is given by σ · {a1, . . . , ak} = {σ(a1), . . . , σ(ak)}.

We can now define Gπ.

Definition 3.4. Let π ∈ Ψ(n) with blocks B1, . . . , Bk and n ∈ Bk. Then

Gπ := τB1 · · · τBk
(θ1θ2 · · · θn−1). (3.2)

We can also give a description of the Gπ not involving block operators as follows.



combinatorial theory 3 (1) (2023), #2 7

Proposition 3.5. Let π ∈ Ψ(n). Take the product of θiξ′i − θjξ
′
j for every size two block {i, j}

of π with i < j in any order (they are homogeneous of degree two and thus commute). For each
singleton block {i} of π, multiply on the right by θi or ξ′i according to its label in increasing
order. Then Gπ is equal to the result multiplied by (−1)inv(π′) where π′ is the word formed by
listing the block containing n in decreasing order, then listing all size two blocks not containing
n increasing within each block and by order of increasing minimal element, then listing all size
one blocks not containing n in increasing order.

For example, if π = 1θ/2, 5/3, 4/6, 8/7ξ′ , then

Gπ = (−1)inv(86253417)(θ2ξ
′
2 − θ5ξ

′
5)(θ3ξ

′
3 − θ4ξ

′
4)θ1ξ

′
7 (3.3)

Proof. By Lemma 3.2 we can assume that all of the block operators corresponding to size two
blocks appear before block operators according to singletons. Applying τBk

and any block op-
erators corresponding to singletons to (θ1θ2 · · · θn−1) removes all θi indexed by elements of Bk

and replaces θi indexed by ξ′-labelled singletons with ξ′i. Note that τ{i,j}θiθj = θiξ
′
i − θjξ

′
j , and

the proof follows.

The Sn−1 action on these Gπ matches the natural Sn−1 action on Ψ(n), up to sign.

Proposition 3.6. Let σ ∈ Sn−1 and π ∈ Ψ(n). Then σ ◦Gπ = sign(σ)Gσ◦π.

Proof. Using the block operator definition of Gπ and Lemma 3.3 we have,

σ ◦Gπ = σ ◦ (τB1 · · · τBk
(θ1θ2 · · · θn−1)) (3.4)

= τσ(B1) · · · τσ(Bk)(σ ◦ (θ1θ2 · · · θn−1)) (3.5)
= τσ(B1) · · · τσ(Bk)(sign(σ)θ1θ2 · · · θn−1) (3.6)
= sign(σ)Gσ◦π (3.7)

The goal of the remainder of this section is to show that span({Gπ | π ∈ Φ(n)}) is Sn−1

invariant. For this end we will need the following relations of block operators.

Lemma 3.7. Let a, b, c, d ∈ [n− 1]. Then

τ{a,b}τ{c,d} + τ{a,c}τ{b,d} + τ{a,d}τ{b,c} = 0 (3.8)

as operators on the ring ∧{Θn−1,Ξ
′
n−1}.

Proof. This is a straightforward calculation from the definition of τ . We have

(τ{a,b}τ{c,d} + τ{a,c}τ{b,d} + τ{a,d}τ{b,c})(f) = ξ′a · (θb ⊙ (ξ′c · (θd ⊙ f) + ξ′d · (θc ⊙ f)))

+ ξ′b · (θa ⊙ (ξ′c · (θd ⊙ f) + ξ′d · (θc ⊙ f)))

+ ξ′a · (θc ⊙ (ξ′b · (θd ⊙ f) + ξ′d · (θb ⊙ f)))

+ ξ′c · (θa ⊙ (ξ′b · (θd ⊙ f) + ξ′d · (θb ⊙ f)))

+ ξ′a · (θd ⊙ (ξ′b · (θc ⊙ f) + ξ′c · (θb ⊙ f)))

+ ξ′d · (θa ⊙ (ξ′b · (θc ⊙ f) + ξ′c · (θb ⊙ f)))
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Distributing and using the anticommutativity of operators ξ′i· and θj⊙, we have

(τ{a,b}τ{c,d} + τ{a,c}τ{b,d} + τ{a,d}τ{b,c})(f) = ξ′a · (θb ⊙ (ξ′c · (θd ⊙ f)))

− ξ′a · (θb ⊙ (θc ⊙ (ξ′d · f)))
− θa ⊙ (ξ′b · (ξ′c · (θd ⊙ f)))

+ θa ⊙ (ξ′b · (θc ⊙ (ξ′d · f)))
− ξa · (ξ′b · (θc ⊙ (θd ⊙ f)))

+ ξ′a · (θb ⊙ (θc ⊙ (ξ′d · f)))
+ θa ⊙ (ξ′b · (ξ′c · (θd ⊙ f)))

− θa ⊙ (θb ⊙ (ξ′c · (ξ′d · f)))
+ ξ′a · (ξ′b · (θc ⊙ (θd ⊙ f)))

− ξ′a · (θb ⊙ (ξ′c · (θd ⊙ f)))

− θa ⊙ (ξ′b · (θc ⊙ (ξ′d · f)))
+ θa ⊙ (θb ⊙ (ξ′c · (ξ′d · f)))

and each term appears twice with opposite signs.

Lemma 3.8. LetA = {a1 < a2} andB ⊂ [n] be two disjoint sets withn ∈ B. Let b1 < · · · < bm
be the elements of b that lie between a1 and a2. Then for any 1 ⩽ i ⩽ m,

τAτB + (−1)i+mτ{a1,bi}τB+a2−bi + (−1)i−1τ{bi,a2}τB+a1−bi = 0 (3.9)

as operators on the ring ∧{Θn−1,Ξ
′
n−1}.

Proof. We begin with the case where all elements of B lie between a1 and a2. Applying the
definition of τ and anticommutativity gives

(τAτB + (−1)i+mτ{a1,bi}τB+a2−bi + (−1)i−1τ{bi,a2}τB+a1−bi)(f)

= ξa1 · θa2 ⊙ θb1 ⊙ · · · ⊙ θbm ⊙ f

+ ξa2 · θa1 ⊙ θb1 ⊙ · · · ⊙ θbm ⊙ f

+ (−1)i+m(−1)i+m−1ξa1 · θa2 ⊙ θb1 ⊙ · · · ⊙ θbm ⊙ f

+ (−1)i+m(−1)m−1ξbi · θa1 ⊙ θa2 ⊙ θb1 ⊙ · · · ⊙ θbi−1
⊙ θbi+1

⊙ · · · ⊙ θbm ⊙ f

+ (−1)i−1(−1)1ξbi · θa1 ⊙ θa2 ⊙ θb1 ⊙ · · · ⊙ θbi−1
⊙ θbi+1

⊙ · · · ⊙ θbm ⊙ f

+ (−1)i−1(−1)iξa2 · θa1 ⊙ θa2 ⊙ θb1 ⊙ · · · ⊙ θbi−1
⊙ θbi+1

⊙ · · · ⊙ θbm ⊙ f

= 0

Signs coming from the statement and signs coming from anticommutativity have been kept sep-
arate for clarity. When B contains elements that do not lie between a1 and a2, all terms of the
above computation will be affected uniformly, so the result holds in that case as well.
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Corollary 3.9. Let A = {a1 < a2} ⊂ [n − 1] and B ⊂ [n] be two disjoint sets with n ∈ B.
Let b1 < b2 < · · · < bm be the elements of B that lie between a1 and a2, and suppose at least
one such element exists. Then

(−1)m+1τAτB+τ{a1,b1}τB+a2−b1+
m−1∑
i=1

τ{bi,bi+1}τB+a1+a2−bi−bi+1
+τ{bm,a2}τB+a1−bm = 0 (3.10)

as operators on the ring ∧{Θn−1,Ξ
′
n−1}.

Proof. Apply Lemma 3.8 with i = 1 to obtain

(−1)m+1τAτB + τ{a1,b1}τB+a2−b1 − (−1)mτ{b1,a2}τB+a1−b1 (3.11)

Inducting on m gives the result.

Example 3.10. Let n = 9 and let π ∈ Ψ(n) be the set partition {1θ/28/3479/56}. Corollary 3.9
lets us write Gπ as a linear combination of G’s for noncrossing set partitions in the following
way. We have

Gπ = τ{1θ}τ{56}τ{28}τ{3479}(θ1θ2 · · · θ8).

By Corollary 3.9 we can rewrite this as

Gπ = τ{1θ}τ{56}(−τ{23}τ{4789} − τ{34}τ{2789} − τ{47}τ{2389} − τ{78}τ{2349})(θ1θ2 · · · θ8).

Distributing, this becomes

Gπ = −G{1θ/23/4789/56} −G{1θ/2789/34/56} −G{1θ/2389/47/56} −G{1θ/2349/56/78}.

We can check that this agrees with Proposition 3.5. Applying it transforms the above into

−(θ2ξ
′
2 − θ8ξ

′
8)(θ5ξ

′
5 − θ6ξ

′
6)θ1 =− (θ2ξ

′
2 − θ3ξ

′
3)(θ5ξ

′
5 − θ6ξ

′
6)θ1

− (θ3ξ
′
3 − θ4ξ

′
4)(θ5ξ

′
5 − θ6ξ

′
6)θ1

− (θ4ξ
′
4 − θ7ξ

′
7)(θ5ξ

′
5 − θ6ξ

′
6)θ1

− (θ7ξ
′
7 − θ8ξ

′
8)(θ5ξ

′
5 − θ6ξ

′
6)θ1

which is true as the right hand side telescopes.

Lemma 3.7, Lemma 3.8, and Corollary 3.9 are most easily understood via pictures, see Fig-
ure 3.1.
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= − −

= ± ±

± = + + +

Figure 3.1: From top to bottom: Lemma 3.7, Lemma 3.8, and Corollary 3.9.

Together these lemmas allow us to demonstrate the Sn−1 invariance via a combinatorial
algorithm.

Corollary 3.11. Let σ ∈ Sn−1 and let π ∈ Φ(n). Then σ · Gπ can be expressed as a linear
combination of {Gπ | π ∈ Φ(n)} via the following algorithm:

1. Apply σ to π, resulting in a set partition π′ not necessarily in Φ(n).

2. If π′ is contains any crossing two element blocks {a, c}, {b, d}, neither of which contain
n, replace π′ with minus the sum of the partitions obtained by replacing {a, c}, {b, d} with
{a, b}, {c, d} and {a, d}, {b, c}. Repeat on each new term of the sum until all terms of the
sum do not contain crossing two element blocks.

3. For each term of the sum obtained in step 2, replace any two element set that crosses the
block containing n as described by Corollary 3.9.

4. Replace each partition π′′ in the sum obtained from step 3 with its corresponding Gπ′′ to
express σ ·Gπ as a linear combination.

Example 3.12. Let n = 8 and let σ ∈ Sn−1 be the cycle (3576). Let π ∈ Φ(n) be the set
partition {23/45/7θ/186}. An example of applying Corollary 3.11 to this situation is given in
Figure 3.2.
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Figure 3.2: Applying Corollary 3.11.

4. A combinatorial basis

We have shown that there is a mapping of Sn−1-modules CΨ(n) → ∧{Θn−1,Ξ
′
n−1}. In this

section we will show that the restriction of this mapping to CΦ(n) is injective and becomes an
isomorphism when composed with the quotient map ∧{Θn−1,Ξ

′
n−1} → FDRn, thereby proving

the following.

Theorem 4.1. The set {[Gπ] | π ∈ Φ(n)} forms a basis for FDRn, where [f ] denotes the
equivalence class in FDRn of f ∈ ∧{Θn−1,Ξ

′
n−1}.

Proof. We begin with a dimension count; Kim and Rhoades [KR20] gave a basis of FDRn

indexed by a set Π(n)>0 of Motzkin-like lattice paths defined as follows.

Definition 4.2. Let Π(n)>0 be the set of all lattice paths which

• Start at (0, 0)

• Take steps (1, 0), (1, 1) or (1,−1)

• Only touch the x-axis at (0, 0)

• Have all (1, 0) steps labelled by θ or ξ′.

The two indexing sets are in bijection.

Lemma 4.3. There is a bijection between Π(n)>0 and Φ(n).

Proof. Given a Motzkin path in Π(n)>0, draw a horizontal line extending to the right of each up
step until it first intersects the path again. Label each step after the first 1 to n−1. Construct a set
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partition by placing every up step in a block with the down step it is connected to if such a down
step exists, or in the block containing n otherwise. Place every horizontal step in a singleton
block with the same label. The process can be reversed, and is therefore a bijection.

The bijection is best described with a picture example as in Figure 4.1.

1
2

3

4

5
6

7

8

θ

1
2θ

3 4

5

6 7

Figure 4.1: An example of Lemma 4.3.

Therefore it suffices to show that {[Gπ] | π ∈ Φ(n)} spans. Since FDRn is defined as a
quotient, it suffices to show that together, the sets

{Gπ | π ∈ Φ(n)}

and
β′ := {m(θ1ξ

′
1 + · · ·+ θn−1ξ

′
n−1) | m a monomial in ∧ {Θn−1,Ξ

′
n−1}}

span
∧{Θn−1,Ξ

′
n−1}.

By Corollary 3.11, the span of {Gπ |π ∈ Φ(n)} is equal to the span of β :={Gπ |π ∈ Ψ(n)},
it also suffices to show spanning for the larger set. Since FDRn has maximal
bidegree i+ j = n− 1, it suffices to show that every monomial of total degree n − 1 or less
lies in the span of β ∪ β′.

To show every monomial lies in the span, we will inductively show that it is possible “re-
place” the (θiξ′i − θjξ

′
j) terms in some Gπ with θiξ

′
i via the following lemma.

Lemma 4.4. Let m, k, p, q be nonnegative integers with 2m + 2k + p + q ⩽ n − 1. Given
a collection of distinct indices I = {a1, . . . , am, b1, . . . , b2k, c1, . . . , cp, d1, . . . , dq} ⊆ [n − 1],
define the element F of ∧{Θn−1,Ξ

′
n−1} by

F := (θa1ξ
′
a1
· · · θamξ′am)(θb1ξ

′
b1
− θb2ξ

′
b2
) · · · (θb2k−1

ξ′b2k−1
− θb2kξ

′
b2k

)θc1 · · · θcpξ′d1 · · · ξ
′
dq .

Thus, I is the set of indices appearing in F . Then F is in the span of β ∪ β′.

Proof. We proceed by induction on m. When m = 0, F is equal up to sign to Gπ for
some π ∈ Ψ(n).
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Let m > 0 and assume the result holds for m− 1. We have

(n− |I|)(θa1ξ′a1 · · · θamξ
′
am)F

′

= (θa1ξ
′
a1
· · · θam−1ξ

′
am−1

)

 ∑
i ̸∈I−{am}

θiξ
′
i −

∑
i ̸∈I

(θiξ
′
i − θamξ

′
am)

F ′

= (θa1ξ
′
a1
· · · θam−1ξ

′
am−1

)

 ∑
i ̸∈I−{am}

θiξ
′
i

F ′ −
∑
i ̸∈I

(θa1ξ
′
a1
· · · θam−1ξ

′
am−1

)(θiξ
′
i − θmξ

′
m)F

′

= (θa1ξ
′
a1
· · · θam−1ξ

′
am−1

)

 ∑
i∈[n−1]

θiξ
′
i

F ′ −
∑
i ̸∈I

(θa1ξ
′
a1
· · · θam−1ξ

′
am−1

)(θiξ
′
i − θmξ

′
m)F

′

(4.1)

where F ′ = (θb1ξ
′
b1
− θb2ξ

′
b2
) · · · (θb2k−1

ξ′b2k−1
− θb2kξ

′
b2k

)θc1 · · · θcpξ′d1 · · · ξ
′
dq

.
The first equality holds since∑

i ̸∈I−{am}

θiξ
′
i −

∑
i ̸∈I

(θiξ
′
i − θamξ

′
am) = (n− |I|)θamξ′am .

The second equality distributes the sum and the third equality holds because terms in the sum∑
i∈[n−1]

θiξ
′
i

corresponding to i ∈ I−{am} will contribute 0 due to θi, ξ′i, or θiξ′i− θjξ
′
j appearing elsewhere

in the product, as (θiξ′i + θjξ
′
j)(θiξ

′
i − θjξ

′
j) = 0 for any i, j.

Then the first term

(θa1ξ
′
a1
· · · θam−1ξ

′
am−1

)

 ∑
i∈[n−1]

θiξ
′
i

F ′

lies in the span of β′ while the second term∑
i ̸∈I

(θa1ξ
′
a1
· · · θam−1ξ

′
am−1

)(θiξ
′
i − θmξ

′
m)F

′

is in the span of β ∪ β′ by the inductive hypothesis. The result follows.

Taking k = 0 in Lemma 4.4 gives any monomial of total degree at most n − 1, so we have
shown that together the sets

{Gπ | π ∈ Ψ(n)}
and

{m(θ1ξ
′
1 + · · ·+ θn−1ξ

′
n−1) | m a monomial in ∧ {Θn−1,Ξ

′
n−1}}

span
∧{Θn−1,Ξ

′
n−1},

as desired.



14 Jesse Kim

Example 4.5. To provide an example of the inductive process by which Lemma 4.4 demonstrates
spanning, let n = 5 and consider the monomial

θ1ξ
′
1θ2ξ

′
2

Let δ = θ1ξ
′
1 + θ2ξ

′
2 + θ3ξ

′
3 + θ4ξ

′
4. We have the following calculation

θ1ξ
′
1θ2ξ

′
2θ6 =

1

3
θ1ξ

′
1((θ2ξ

′
2 − θ3ξ

′
3) + (θ2ξ

′
2 − θ4ξ

′
4) + +(θ2ξ

′
2 + θ3ξ

′
3 + θ4ξ

′
4))

=
1

3
θ1ξ

′
1(θ2ξ

′
2 − θ3ξ

′
3)

+
1

3
θ1ξ

′
1(θ2ξ

′
2 − θ4ξ

′
4)

+
1

3
θ1ξ

′
1(θ2ξ

′
2 + θ3ξ

′
3 + θ4ξ

′
4)

=
1

6
(θ1ξ

′
1 − θ4ξ

′
4)(θ2ξ

′
2 − θ3ξ

′
3) +

1

6
(θ1ξ

′
1 + θ4ξ

′
4)(θ2ξ

′
2 − θ3ξ

′
3)

+
1

6
(θ1ξ

′
1 − θ3ξ

′
3)(θ2ξ

′
2 − θ4ξ

′
4) +

1

6
(θ1ξ

′
1 + θ3ξ

′
3)(θ2ξ

′
2 − θ4ξ

′
4)

+
1

3
θ1ξ

′
1(θ2ξ

′
2 + θ3ξ

′
3 + θ4ξ

′
4)

=
1

6
G{14/23} +

1

6
(θ2ξ

′
2 − θ3ξ

′
3)δ +

1

6
G{13/24} +

1

6
(θ2ξ

′
2 − θ4ξ

′
4)δ +

1

3
θ1ξ

′
1δ

This demonstrates that the monomial θ1ξ′1θ2ξ′2 is indeed in the span of the Gπ and multiples
of δ.

5. Sn−1 module structure

In this section we will describe the Frobenius image of each bigraded piece of FDRn as an Sn−1

module. Consider the family of subspaces:

V (n, k, x, y) := span{[Gπ] | π ∈ Φ(n, k, x, y)} ⊆ FDRn (5.1)

These subspaces are in fact submodules of ResSn
Sn−1

(FDRn), since they are closed under the
action of Sn−1. To see this, note that no step of the algorithm described in Corollary 3.11
replaces a set partition with one with a different number of size two blocks, ξ′-labelled elements,
or θ-labelled elements. Since Φ(n) = ⊕k,x,yΦ(n, k, x, y) the subspaces V (n, k, x, y) make up
all of FDRn:

Proposition 5.1. The i, j-graded piece of FDRn is a direct sum of V (n, k, x, y):

(FDRn)i,j =
⊕
k,x,y
k+x=i
k+y=j

V (n, k, x, y)
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Proof. From the definition of Gπ it is clear that if π ∈ Φ(n, k, x, y) then Gπ has bidegree
(k + x, k + y). The result follows.

To determine the structure of these modules we begin with V (n, k, 0, 0). We first need a
lemma.

Lemma 5.2. There exists a bijection from Φ(n, k, 0, 0) to SY T (n−k−1, k), the set of standard
Young tableau of shape λ = (n− k − 1, k).

Proof. Define a function g : Φ(n, k, 0, 0) →
(
[n−1]
[k]

)
by

g(π) = {i ∈ [n− 1] | i is in a block of size 2, and is the larger element in its block.} (5.2)

For example, g(14/23/78/569) = {3, 4, 8}. Then g is injective, it is possible to recover the
preimage of a set S under g by starting with the smallest i element of S, if g(π) = S, then for π
to satisfy the noncrossing condition, {i − 1, i} must be a block of π. Then the next smallest
element of S must be paired with the largest element smaller than it that is not already paired,
and so on. This algorithm will produce a unique preimage iff S satisfies the condition that for
any k ∈ [n− 1], |S ∩ [k]| ⩽ k/2. Define another function h : SY T (n− k − 1, k) →

(
[n−1]

k

)
by

h(T ) = {i ∈ [n− 1] | i is in the second row of T} (5.3)

Then h is also injective, and S ∈ h(SY T (n− k− 1, k)) iff S satisfies the condition that for any
k ∈ [n− 1], |S ∩ [k]| ⩽ k/2. So the image of h and g are the same and the result follows.

Proposition 5.3. We have that V (n, k, 0, 0) ∼=Sn−1 S
(n−k−1,k).

Proof. Let λ = (n−k−1, k). By Theorem 4.1 and Lemma 5.2, the dimensions of the modules
agree, so by Lemma 2.1 it suffices to show that [Sλ]+ does not kill V (n, k, 0, 0), but [Sµ]+ does
kill V (n, k, 0, 0) for all partitions µ ≻ λ.

We begin by showing that [Sλ]+ does not kill V (n, k, 0, 0). Let π0 ∈ Φ(n, k, 0, 0) be the
partition whose blocks are

{n− 1, n− 2k}, {n− 2, n− 2k + 1}, . . . , {n− k, n− k − 1}, {1, 2, 3, . . . , n− 2k − 1, n}.

By Proposition 3.5 we have

[Sλ]+Gπ0 = ±
∑
σ∈Sλ

σ · (θn−1ξ
′
n−1 − θn−2kξ

′
n−2k) · · · (θn−kξ

′
n−k − θn−k−1ξ

′
n−k−1) (5.4)

Consider the coefficient of θn−1ξ
′
n−1 · · · θn−kξ

′
n−k in the above expression. Since σ ∈ Sλ,

σ permutes elements in {n− 1, . . . , n− k} among themselves, so the only contribution to this
coefficient comes from

σ · (θn−1ξ
′
n−1 · · · θn−kξ

′
n−k).

But this does not depend on σ since degree two monomials commute. Therefore every term in
the sum in equation (5.4) contributes the same sign to the coefficient of θn−1ξ

′
n−1 · · · θn−kξ

′
n−k

and therefore V (n, k, 0, 0) is not killed by [Sλ]+.
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Now let µ be any partition of n − 1 such that λ ≻ µ, i.e. µ = (n − m,m − 1) for
any m ⩽ k. Let π ∈ Φ(n, k, 0, 0). Since m − 1 < k, there must be at least two elements
of i and j of [n−m] in the same block in π. Then the transposition (i, j) acts on Gπ via multi-
plication by −1, so (1 + (i, j))Gπ = 0. But [Sλ]+ = A(1 + (i, j)) for some symmteric group
algebra element A, so indeed [Sλ]+Gπ = 0, and the result follows.

We can use V (n, k, 0, 0) to determine the structure of V (n, k, x, y) for any x, y.

Proposition 5.4. We have that

V (n, k, x, y) ∼=Sn−1 Ind
Sn−1

Sn−x−y−1⊗Sx⊗Sy
S(n−x−y−k−1,k) ⊗ signSx

⊗ signSy
.

Proof. We can represent an element π of Φ(n, k, x, y) by the triple (X, Y, π′), where X is the
set of singletons labelled by θ, Y is the set of singletons labelled by ξ′, and π′ is the set partition
obtained by removing all singletons from π and decrementing indices. Let G(X,Y,π′) denote Gπ

for the corresponding π. The action of a transposition (i, j) on G(X,Y,π′) is then given by

(i, j) ◦G(X,Y,π′) =


−G(X,Y,π′) {i, j} ⊂ X or {i, j} ⊂ Y

G(X,Y,(i,j)◦π′) {i, j} ⊂ (X ∪ Y )c

G(i,j)◦X,(i,j)◦Y,π′ otherwise
(5.5)

The proposition follows from the definition of induced representation.

Corollary 5.5. The Frobenius image of V (n, k, x, y) is given by s(n−x−y−k−1,k)s(1x)s(1y). The
Frobenius image of (FDRn)i,j is ∑

k,x,y
k+x=i
k+y=j

s(n−x−y−k−1,k)s(1x)s(1y)

Proof. This follows directly from Proposition 5.4, Proposition 5.1, and equation (2.5).

Corollary 5.6. The bigraded Frobenius image of ResSn
Sn−1

(FDRn) is given by

grFrob(ResSn
Sn−1

(FDRn); q, t) = (1− qt)
∞∏
i=1

(1 + xiqz)(1 + xitz)

(1− xiz)(1− xiqtz)

∣∣∣∣
zn−1

where the operator (· · · ) |zn−1 extracts the coefficient of zn−1.

By Proposition 5.5 we have

grFrob(ResSn
Sn−1

(FDRn); q, t) =
∑
i

∑
j

∑
k,x,y
k+x=i
k+y=j

s(n−x−y−k−1,k)s(1x)s(1y)q
itj. (5.6)
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Applying Jacobi–Trudi [Sag91] to the s(n−x−y−k−1,k) terms on the right gives∑
i,j,k,x,y
k+x=i
k+y=j

s(n−x−y−k−1,k)s(1x)s(1y)q
itj =

∑
i,j,k,x,y
k+x=i
k+y=j

(hn−x−y−k−1hk − hn−x−y−khk−1)exeyq
itj (5.7)

and reindexing sums gives∑
i,j,k,x,y
k+x=i
k+y=j

hn−x−y−k−1hkexeyq
itj =

∑
k

hkq
ktkzk

∑
x

exq
xzx

∑
y

eyq
yzy

∑
m

hmz
m

∣∣∣∣
zn−1

(5.8)

and ∑
i,j,k,x,y
k+x=i
k+y=j

hn−x−y−khk−1exeyq
itj =

∑
k

hkq
k+1tk+1zk

∑
x

exq
xzx

∑
y

eyq
yzy

∑
m

hmz
m

∣∣∣∣
zn−1

(5.9)
from which the result follows.

6. Maximal bidegrees, cyclic sieving and further directions

Let Xn denote the subset of Φ(n) corresponding to bidegrees (i, j) where i+j = n−1, in other
words,

Xn =
⋃

2k+x+y=n−1

Φ(n, k, x, y). (6.1)

This set consists of noncrossing set partitions set partitions of [n] in which n is in a block
by itself, all other blocks are size 1 or 2, and singleton blocks other than n are labelled by θ
or ξ′. The set {Gπ | π ∈ Xn} is invariant (up to sign changes) under the action of the cy-
cle (1, 2, . . . , n− 1), since n is in a block by itself and rotating all elements except n cannot intro-
duce any new crossings. We therefore have the setup for a cyclic sieving result using Springer’s
theorem of regular elements (Theorem 2.3).

Theorem 6.1. The triple (Xn, Cn−1, q
(n2)fd(FDRn)i+j=n−1) exhibits the cyclic sieving pheno-

menon where Cn−1 is the cyclic group generated by (1, 2, . . . , n− 1).

Proof. This follows directly from Theorem 2.3.

Thiel [Thi16] studied a version of this cyclic action in which rotation does not introduce a
sign change, while in our setup it introduces a sign when n is odd. Thiel proved the following
cyclic sieving.

Theorem 6.2 (Thiel, 2016). The triple (Xn, Cn−1, Cn(q)) exhibits cyclic sieving, where Cn−1 is
the cyclic group generated by (1, 2, . . . , n− 1) and Cn(q) is the MacMahon q-Catalan number,
defined by

Cn(q) :=
1

[n+ 1]q

[
2n
q

]
q

.
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Thiel proved his result via direct computation of Cn(q) and enumeration of fixed points
instead of using representation theory, so one might wonder if our basis could give an alternate
algebraic proof of his result. The expression for Frobenius image given in Corollary 5.5 allows
for the computation of the fake degree as

fd((FDRn)i+j=n−1) =
∑
k,x,y

2k+x+y=n−1

[
n− 1
2k, x, y

]
q

Ck(q)q
k+(x2)+(

y
2) (6.2)

Combining the two cyclic sieving results it must follow that q(
n
2)fd((FDRn)i+j=n−1) is equivalent

to Cn(q) modulo qn−1 − 1. We have had difficulty in determining this equivalence directly,
however, so we propose the following problem:

Problem 6.3. Is there a direct computational proof that q(
n
2)fd((FDRn)i+j=n−1) and Cn(q) are

equivalent modulo qn − 1?

Such a proof would complete an alternative representation theoretic proof of Thiel’s result.
In [KR22] a similar combinatorial model for the maximal bidegree components of FDRn

was developed, with a basis indexed by all noncrossing set partitions. The action of Sn on that
basis could be understood in terms of Skein-like relations described by Rhoades [Rho17]. Pa-
trias, Pechenik, and Striker [PPS22] independently discovered an alternate algebraic/geometric
model for the irreducible submodule of this action generated by singleton-free noncrossing set
partitions as the coordinate ring of a certain algebraic variety. They associated to each par-
tition a polynomial in this coordinate ring defined in terms of matrix minors, and showed that
these polynomials satisfied the Skein relations described in [Rho17]. This suggests the following
problem:

Problem 6.4. Can our basis for S(n−k−1,k) be realized as a set of polynomials, similarly to the
methods of Patrias, Pechenik, and Striker [PPS22]?

One reason for thinking an analogous model might exist is that the relation of block opera-
tors described in Lemma 3.7 also appears in the maximal bidegree model and corresponds to a
certain identity of two-by-two matrix minors in the work of Patrias, Pechenik and Striker. Mim-
icking their construction would therefore give a model for the submodule generated by partitions
in Φ(n) for which the block containing n is at most size two, but we have as yet been unable to
discover a treatment of larger blocks satisfying our other relations.
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