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Abstract

Design and Analysis of Cluster Randomized Trials
with Application to HIV Prevention and Treatment

by
Laura Balzer
Doctor of Philosophy in Biostatistics
University of California, Berkeley
Professor Mark Van Der Laan, Co-chair

Professor Maya Petersen, Co-chair

This dissertation is focused on the development of the optimal design and analysis for
cluster randomized trials. Specifically, we tackle three common questions: whether or not
to pair-match clusters, which causal parameter best captures the intervention effect, and
how to select the adjustment set for the analysis. We begin by introducing a formal frame-
work for causal inference in Chapter 1. Throughout, the Sustainable East Africa Research
in Community Health (SEARCH) trial serves as the motivating example (NCT01864603).
SEARCH is an ongoing community randomized trial to evaluate the impact of immediate
and streamlined antiretroviral therapy on HIV incidence in rural East Africa.

In Chapter 2, we consider pair-matching, an intuitive design strategy to protect study
validity and to potentially increase power in randomized trials. In a common design, can-
didate units are identified, and their baseline characteristics are used to create the best n/2
matched pairs. Within the resulting pairs, the intervention is randomized, and the outcomes
are measured at the end of follow-up. We consider this design to be adaptive, because the
construction of the matched pairs depends on the baseline covariates of all candidate units.
As a consequence, the observed data cannot be considered as n/2 independent, identically
distributed (i.i.d.) pairs of units, as common practice assumes. Instead, the observed data
consist of n dependent units. Chapter 2 explores the consequences of adaptive pair-matching
in randomized trials for estimation of the conditional average treatment effect (CATE): the
intervention effect, given the measured covariates of the n study units. We contrast the
unadjusted estimator with TMLE and show substantial efficiency gains from matching and
further gains with adjustment.

In Chapter 3, we compare three causal parameters: the population, conditional and
sample average treatment effects. Using a structural causal model, we explicitly define each
parameter, discuss interpretation, and formally examine identifiability. To the best of our
knowledge, Chapter 3 is the first to propose using TMLE for estimation and inference of
the sample effect. In most settings, the sample parameter will be estimated more efficiently



than the conditional parameter, which will, in turn, be estimated more efficiently than the
population parameter. Finite sample simulations illustrate the potential gains in precision
and power from selecting the sample effect as the target of inference.

Finally in Chapter 4, we discuss adjustment for measured covariates during the analysis
to reduce variance and increase power in randomized trials. To avoid misleading inference,
the analysis plan must be pre-specified. However, it is often unclear a priori which baseline
covariates (if any) should be included in the analysis. In the SEARCH trial, for example,
there are 16 matched pairs of communities and many potential adjustment variables, includ-
ing region, HIV prevalence, male circumcision coverage and measures of community-level
viral load. In Chapter 4, we propose a rigorous procedure to data-adaptively select the
adjustment set, which maximizes the efficiency of the analysis. Specifically, we use cross-
validation to select from a pre-specified library the candidate TMLE that minimizes the
estimated variance. For further gains in precision, we also propose a collaborative procedure
for estimating the known exposure mechanism. Our small sample simulations demonstrate
the promise of the methodology to maximize study power, while maintaining nominal con-
fidence interval coverage. Our procedure is tailored to the scientific question (sample vs.
population treatment effect) and study design (pair-matched or not) and alleviates many of
the common concerns.
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Chapter 1

Introduction: A Roadmap for Causal
Inference

This chapter introduces the methods, as well as their limitations, to learn causal relationships
from data. Consider, for example, the following questions:

1. What proportion of patients taking drug X suffered adverse side effects?

2. Which patients taking drug X are more likely to suffer adverse side effects?

3. Would the risk of adverse effects be lower if all patients took drug X instead of drug
Y?

The first question is purely descriptive; the second can be characterized as a prediction
problem, while the last is causal. Causal inference is distinct from statistical inference
in that it seeks to make conclusions about the world under changed conditions [1]. In
the third example, our goal is to make inferences about how the distribution of patient
outcomes would differ if all patients had taken drug X vs. if the same patients, over the same
time frame and under the same conditions, had taken drug Y. Purely statistical analyses
are sometimes endowed with causal interpretations. Furthermore, many of our non-causal
questions have causal elements. For example, Geng et al. [2] sought to assess whether
sex was an independent predictor of mortality among patients initiating drug therapy (i.e.
describe a non-causal association) but in the absence of loss to follow up (i.e. a change to
the existing conditions).

In this chapter, we review a formal framework for causal inference to (1) state the scientific
question, (2) express our causal knowledge and limits of that knowledge, (3) specify the
causal parameter, (4) specify the observed data and their link to the causal model, (5) assess
identifiability of our causal parameter as some function of the observed data distribution,
(6) estimate the corresponding statistical parameter, and (7) interpret our results [3-5].
As illustrated in Figure 1.1, there are many sources of association between two variables,
including direct effects, indirect effects, measured confounding, unmeasured confounding and
selection bias [6]. Methods to delineate causation from correlation are perhaps more pressing
now than ever [7, §].



CHAPTER 1. INTRODUCTION: A ROADMAP FOR CAUSAL INFERENCE 2

(d) ()

Figure 1.1: Some of the sources of dependence between an exposure A and an outcome Y :
(a) the exposure A directly affects the outcome Y; (b) the exposure A directly affects the
outcome Y as well as indirectly affects it through the mediator Z; (c) the exposure A has
no effect on the outcome Y, but an association is induced by a measured common cause
W, (d) the exposure A has no effect on the outcome Y, but an association is induced by
an unmeasured common cause U; (e) the exposure A has no effect on the outcome Y, but
an association is induced by only examining data among those not censored C; (f) all these
sources of dependence are present. Please note this not an exhaustive list.

1.1 The Scientific Question

The first step in the causal “roadmap” is to specify the scientific objective. As a running
example, we will consider the timing of antiretroviral therapy (ART) initiation and its im-
pact on outcomes among HIV+ individuals. Early ART initiation has been been shown
to improve patient outcomes as well as reduce transmission between discordant couples [9—
11]. Suppose we want to learn the effect of immediate ART initiation (i.e. irrespective of
CD4+ T cell count) on mortality. Large consortiums, such as the International epidemiologic
Databases to Evaluate AIDS (IeDEA) and Sustainable East Africa Research in Community
Health (SEARCH), are providing unprecedented quantities of data to answer this and other
questions [12, 13].

To sharply frame our scientific aim, we need to further specify the system, including the
target population (e.g. patients and context), the exposure (e.g. criteria and timing), and the
outcome. As a second try, consider our goal as learning the impact of initiating ART within
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one month of diagnosis on five-year all-cause mortality among adults, recently diagnosed
with HIV in Sub-Saharan Africa. This might seem like an insurmountable task, and it may
seem safer to frame our question in terms of an association. Indeed, there seems to be a
tendency to shy away from causal language when stating the scientific objective. However,
we are not fundamentally interested in the correlation between early ART initiation and
mortality among HIV+ adults. Instead, we want to isolate the effect of interest from the
spurious sources of dependence (e.g. confounding, selection bias, informative censoring) as
shown in Figure 1.1. The framework, discussed in this chapter, provides a pathway from
our scientific aim to estimation of a statistical parameter that best approximates our causal
effect, while keeping any assumptions transparent.

1.2 The Causal Model

The second step of the roadmap is to specify our causal model. Causal inference is distinct
from statistics in that it requires something more than a sample from the observed data
distribution. In particular, causal inference requires specification of background knowledge,
and causal models provide a rigorous language for expressing this knowledge and its limits. In
this chapter, we introduce structural causal models [14] to formally represent which variables
potentially affect one another, the roles of unmeasured factors, and the functional form
of those relationships. Structural causal models unify causal graphs [15, 16], structural
equations [17, 18] and counterfactuals. We also briefly introduce the Neyman-Rubin potential
outcomes framework [19-21] and discuss its relation to the structural causal model.

Consider again our running example. Let W denote the set of baseline covariates, in-
cluding socio-demographics, clinical measurements and social constructs. The exposure A
is an indicator, equalling 1 if the patient initiated ART within one month of diagnosis and
equalling 0 otherwise (i.e. initiation took longer than one month). Finally, the outcome Y is
an indicator that the patient did not survive five years of follow up. These factors have scien-
tific meaning to the question and comprise the set of endogenous variables: X = {W, A, Y}.
They can be measurable (e.g. age and sex) or unmeasurable and are affected by other
variables in the model.

Each endogenous variable is associated with a set of background factors U = (U, Ua, Uy)
with some joint distribution P;. These represent all the unmeasured factors, affecting other
variables in the model but not included in X. For example, Uy could include unknown
clinic-level factors, influencing whether or not a patient initiates early ART. Likewise, Uy
may include a patient’s genetic risk profile. Furthermore, there might be shared unmeasured
causes between the endogenous variables. For example, socio-economic status may impact
both whether a patient initiates early ART as well as his/her five-year mortality.

Each endogenous variable is also associated with a structural equation. These functions
help encode our causal knowledge. Suppose, for example, we believe that the set of baseline
covariates possibly impact whether a patient initiates early ART, and that both the covariates
and exposure may affect subsequent morality. Then we write each endogenous variable as a
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deterministic function of its “parents”, variables that may impact its value:

W = fw(Uw)
A= fa(W,Usa)
Y = fy(W, A, Uy) (1.1)

These functions F' = {fw, fa, fy } are left unspecified (non-parametric). For example, the
third equation fy encodes that the covariates W and the exposure A may have influenced
the value taken by the outcome Y. We have not, however, restricted their relationships: A
and any member of W may interact on an additive (or any other) scale to affect Y and the
impacts of A and W on Y may be nonlinear.

The structural causal model, denoted M7 | is defined by all possible distributions of Py
and all possible sets of functions F', which are compatible with our assumptions (if any). For
the above example, there is some true joint distribution Py of health care access, personal
preferences for ART use, socio-economic factors, etc. Randomly sampling a patient from
the population corresponds to drawing a particular realization u from FPp. Likewise, there
are some true structural equations Fy that would deterministically generate the endogenous
variables X = z if given input U = u. For a given distribution Py and set of functions F,
the structural causal model M7 describes the following data generating process for (U, X):

Drawing the background factors U from some joint probability distribution Py,
Generating the baseline covariates W as some deterministic function fy of Uy,
Generating the exposure A as some deterministic function f4 of covariates W and Uy,
Generating the outcome Y as some deterministic function fy of covariates W, the
exposure A and Uy.

W=

Thus, the model M7 is the collection of all possible probability distributions Py x for the
exogenous and endogenous variables (U, X). The true joint distribution is an element of the
causal model: Py xo € M7 . The structural causal model is also sometimes also called a
non-parametric structural equation model (NPSEM) [14, 16].

In other settings, we may have more in-depth knowledge about the data generating
process. This knowledge is generally encoded in two ways. First, excluding a variable
from the parent set of X; encodes that this variable does not directly impact the value X;
takes. These assumptions are known as exclusion restrictions. Second, restricting the set
of allowed distributions for Py encodes that some variables do not have any unmeasured
common causes. These assumptions are known as independence assumptions. Suppose, for
example, that patients were randomized R to early ART initiation, but adherence A was
imperfect. Then the treatment assignment R would only be determined by chance (e.g. a
coin flip) and not influenced by baseline covariates W. The unmeasured factors determining
treatment assignment would be independent from all other unmeasured factors:

UR uin (UW7 UA) UY)
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This is an independence assumption that restricts the allowed distribution of background
factors Py. Furthermore, suppose that randomization R only affects the mortality Y through
its effect on adherence A. The resulting structural equations are then

W = fw(Uw)

R = fr(Ug)

A= fa(W,R,Uy)

Y = fy (W, A, Uy) (1.2)

We have made two exclusion restrictions: (1) the baseline covariates W do not influence
randomization R, and (2) randomization R has no direct effect on the outcome Y. The
structural causal model is then defined by all probability distributions for U that are com-
patible with our independence assumptions and all sets of functions F' = (fw, fr, fa, fy)
that are compatible with our exclusion restrictions.

A causal graph can be drawn from the structural causal model [14]. Each endogenous
variable (node) is connected to its parents and background error term with a directed ar-
row. The potential dependence between the background factors are encoded by the inclusion
of a node representing any unmeasured common cause. Exclusion restrictions are encoded
by absence of a directed arrow. Likewise, independence assumptions are encoded with the
absence of a node representing an unmeasured common cause. The corresponding causal
graphs for the two examples are given in Figure 1.2.

1.3 The Target Causal Quantity

The structural causal model M7 describes not only the system as it currently exists but also
as it would exist under changed conditions. The structural equations are autonomous; an
intervention on one equation does not affect the remaining ones. Therefore, we can modify a
function and see how changes are transmitted through the system. For example, modifying
the treatment decision does not change the effect of the treatment on the outcome. Thereby,
we can make a targeted modification to represent our intervention of interest. In our running
example (Eq. 1.1 and Figure 1.2a), a self-selected group of patients initiated early ART. To
answer our scientific question, we need to modify how this exposure variable was generated.
Specifically, we can intervene to start all patients on ART within one month of testing HIV+
(i.e. deterministically set A = 1), and we can intervene to delay all patients from starting
ART until one month after testing HIV+ (i.e. deterministically set A = 0):

W = fw(Uw) W = fw(Uw)
Yi=fy(W,1,Uy) Yo = fyr(W,0,Uy)
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Figure 1.2: Directed acyclic graphs representing the structural causal model for our study
(Eq. 1.1) and for the hypothetical randomized trial (Eq. 1.2): (a) This graph only encodes
the time-ordering between baseline covariates W, the exposure A and the outcome Y. A sin-
gle node U represents the unmeasured common causes of the endogenous variables. (b) This
graph encodes the randomization R of some treatment with incomplete adherence A. There
are two exclusion restrictions: the baseline covariates W do not impact the randomization R,
and the randomization R has no direct effect on the outcome Y. There is also an indepen-
dence assumption: the unmeasured factors contributing to randomization are independent of
the unmeasured factors, contributing to the other variables.

Alternative exposure mechanisms include dynamic interventions [22-25], which are respon-
sive to patient characteristics, and stochastic interventions® [26], which are non-deterministic.
The counterfactual outcome Y, is then the outcome a patient would have had, if possibly
contrary to fact, he or she had received exposure level A = a. More formally, Y, = Y, (u)
is defined as the solution to the equation fy under an intervention to set A = a (with
input U = w). Thereby Y,(U) is a post-intervention random variable, whose probability
distribution is induced by the set of structural equations F' and the joint distribution of the
background factors Py. In other words, the structural causal model M7 is also a model on
the distribution of counterfactuals. In the Neyman-Rubin causal framework, these quantities
are known as potential outcomes and are assumed to exist for all units under the treatment
levels of interest [19-21, 27]. For this example, the “full data” would consist of baseline
covariates and the outcomes under all possible exposures: X7 = (I/V, (Yo = a € {0, 1}))
The structural causal model M7 also serves as a model for the set of possible full data
distributions, each corresponding to a different intervention on the endogenous variables.
The distribution of these counterfactuals (potential outcomes) can then be used to define

'For simplicity, we have been considering the time scale to be in months. Depending our scientific
question and the data resolution, we might be interested in shorter or longer intervals. If our time interval
were days, then an intervention to start by day 30 (i.e. within one month) is actually stochastic intervention.
Alternatively, we could consider an intervention to initiate therapy on each day or not. For further discussion
of longitudinal treatment regimes, see Appendix A.
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the target causal parameter. Consider, for example, the average treatment effect:
U (Pyx) = Eux (Y1) — Eux(Y0)

where the subscript (U, X') denotes the expectation over the distribution P x (which implies
the distribution of the counterfactual random variables (Y7, Yy)). In words, W7 (Py x) is the
difference in the expected counterfactual outcome if everyone in the population were exposed
and the expected counterfactual outcome if everyone in the population were not exposed.
Formally, U7 is a mapping from a distribution Py x in the causal model M” to the real num-
ber line. For our example, U7 (Py x) is the difference in the counterfactual risk of mortality
if all patients immediately initiated ART and if all patients delayed ART initiation. For a
binary outcome, this causal quantity corresponds the causal risk difference. We could also
specify this contrast on the relative scale, within a certain strata of the population (e.g. those
with baseline CD4 counts above 350 cells/mm?), for the actual study units (i.e. the sam-
ple average treatment effect [19]), or for some other population (i.e. transportability [28-30]).

Marginal structural models provide an alternative way to define our target parameter
[31]. They are a summary measure of how the counterfactual outcome changes as a function
of the exposure and possibly pre-treatment covariates. Consider, for example, the impact
of reducing the time (in months) between HIV diagnosis and treatment initiation. The
intervention variable A would then be continuous. (An alternative approach would be to treat
the exposure as a time-dependent binary variable as discussed in Appendix A.) To generate
the relevant counterfactual outcomes?, we would repeatedly intervene on the structural causal
model to set A = a for all levels of a in the exposure set of interest A = {1,2,3,...}. If
we knew the true shape of the relationship between the expected counterfactual outcome
Ey x(Y,) and the treatment level a, we could summarize it with a parametric model [31],
such as the following

logit By x (Ya)] = m(a|B)
with m(a|ﬁ) = By + Pra

where logit(z) = log(xz/(1 — x)). This model assumes that the counterfactual mortality risk
is a function linear on the logistic scale of time to treatment initiation a. This marginal
structural model restricts the set of possible counterfactual distributions and thereby places
an assumption on our causal model M7

In many cases, we do not have sufficient information to confidently specify a parametric
model for this dose-response curve. Instead, we can use a working marginal structural model
as a summary of the causal relationship of interest [32]. The target causal parameter is then
the projection of the true causal curve onto a working model. Consider for example

B(Py,x|m) = argming Ey x [Z —log [m(aw)ya(l _ m(a|ﬁ))(1_Ya)]
acA

2 Under the Neyman-Rubin framework, we would assume the existence of the potential outcomes Y for
all exposures a € A.
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where our projection is the negative log-likehood loss function. Intuitively, we can think
of this projection as summarizing the full data (i.e. all counterfactuals) with a parametric
regression curve. As usual, the quality of the summary depends on the underlying causal
curve and the question of interest.

1.4 The Observed Data and their Link to the Causal
Model

Thus far, we have not specified the data that will be or have been collected in our study.
Instead, we have discussed endogenous variables X (observable and possibly unobservable),
background factors U (unobservable), and set of counterfactuals (Y, : a € A). In this step,
we specify the observed data, their link to the causal model and the resulting statistical
model.

Suppose we have a simple random sample of n patients from our target population. On
each patient, we measure some baseline covariates W, including sex, age and CD4 count,
the exposure A (whether or not the patient initiates ART within one month of diagnosis),
and the outcome Y as the patient’s five-year mortality. Then the observed data for a given
patient are O = (W, A,Y"), which have some true, but unknown distribution 7. We assume
that the observed data are generated by sampling n times from a distribution compatible
with (contained in) the structural causal model. Recall the structural causal model provides
a description of the data generating system under existing conditions as well as under specific
interventions. The distribution of the background factors Py and the structural equations
F identify the distribution of the endogenous variables X as well as the distribution of the
observed data O. The observed data O are a subset of (U, X). Suppose, for example, we
observe all the endogenous nodes (i.e. O = X). Then we have

P(O=0)=) Pyx(X=alU=u)Py(U=u)=> X (u)=2)Py(U = u)

u

where the summation generalizes to an integral for continuous valued variables. This frame-
work naturally accommodates more complicated links, such as case-control sampling and
matched sampling [33, 34].

Thereby, the structural causal model M7, which is the set of possible distributions for
(U, X), implies our statistical model M, which is the set of possible distributions for the
observed data O. The true distribution of the observed data F, is implied by the true
distribution Py xo of (U, X) and is an element of the statistical model: P, € M. The
causal model may, but often does not, place any restrictions on the statistical model. For
example, the causal model, describing the data generating process for our observational
study (Figure 1.2a), implies a non-parametric statistical model. There are no restrictions on
the possible observed data distributions. In contrast, the causal model, corresponding to the
randomized trial (Figure 1.2b), will only generate distributions where the randomization R is
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independent of the baseline covariates W. This is a testable assumption and implies a semg-
parametric statistical model. We refer the reader to Pearl [14, 15] for further discussion of a
graphical criteria to evaluate independence between two variables as implied by a structural
causal model or its corresponding directed acyclic graph.

Suppose that instead of specifying a structural causal model, we chose to follow the
Neyman-Rubin framework. Specifically, we assumed the existence of the potential outcomes
Y, :a € Ain Step 3. To relate these potential outcomes to the observed data, we need
the stable unit treatment value assumption (SUTVA) [35]. First, the potential outcomes
for one unit must not be impacted by the treatment assignment of another unit (i.e. no
interference)®. Secondly, there must not be multiple versions of the treatment A = a. With
this assumption, we can map the potential outcomes to the observed outcomes:

Y, =AY1+(1—A)Yo

For unit i, we only get to see the outcome Y;, corresponding to his or her observed exposure
A;. As a result, causal inference can be treated as a missing data problem.

1.5 Assessment of Identifiability

In Step 3, we specified our scientific question as a causal parameter U7 (P x), a function
of the distribution of counterfactuals (potential outcomes). In Step 4, we specified the
observed data O and the statistical model M. In this step, we establish whether our causal
parameter can be written as some function of the observed data distribution. More formally,
for each Py x compatible with the structural causal model M7, we want to establish the
equivalence between the causal parameter W7 (Py x) and the statistical parameter W(P). If
so, we state that the causal parameter is identified. If not, we explicitly state the additional
assumptions needed to make inferences about the causal parameter using the observed data
distribution. We keep these convenience-based assumptions separate from our knowledge-
based assumptions, reflected in the structural causal model M7

Consider a simplified example, where we want to learn the five-year mortality risk if,
possibly contrary to fact, all HIV+ adults initiated ART within one month of diagnosis:
Py x(Yr = 1). Suppose we have not collected any baseline covariates; thereby, the observed
data are simply O = (A,Y). Then the causal parameter will only equal the observed
mortality risk among exposed if the only source of association is due to the effect of interest:

PY=ylA=1)=FPxM1=ylA=1)
= Pyx (Y1 =vy)

3The structural causal model, given in Eq. 1.1, implicitly assumes independence between study units.
Recent work relaxing this assumption and considering a network of interacting units is given in van der Laan
[36].
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The first equality is by the definition of counterfactuals and then second holds if the coun-
terfactual outcome Y, is independent of the exposure A. In the absence of measured base-
line covariates, the outcome is only a function of the exposure and its background factors:
Y = fy(A,Uy). Once we intervene to set A = a, then the counterfactual outcome is only
a function of its error: Y,(U) = fy(a,Uy). If the unmeasured factors contributing to the
outcome Uy are independent of those contributing the exposure Uy, then the randomiza-
tion assumption holds Y, 1 A, and the counterfactual risk Py x(Y; = 1) is identified as
the observed risk among those exposed P(Y = 1|A = 1). The randomization assumption
is equivalent to stating that there are no unmeasured confounders of the exposure-outcome
relation. Intuitively, this assumption holds by design a randomized trial.

In most observational settings, the assumption of no common (measured or unmeasured)
causes of the exposure and the outcome will not hold. We can weaken the randomization
assumption by conditioning on a set of measured baseline covariates: Y, 1 A|W. The
adjustment set W needs to block all spurious sources of association without creating any
new sources of dependence or blocking any of the effect of A on Y. Asillustrated in Figure 1.3,
the back-door criterion can aid the evaluation of the randomization assumption [14]. A set of
variables W satisfies the back-door criterion for the relationship of (A, Y) if (1) no node in W
is a descendant of A and (2) W blocks all back-door paths from A to Y, where “back-door”
refers to a path with an arrow into A. The rationale for condition 1 is to avoid blocking
the path of interest or introducing spurious associations (i.e. conditioning on a collider).
The rationale for condition 2 is to block any remaining spurious sources of association. For
the basic structure (Figure 1.3), the randomization assumption will hold if the following
independence assumptions are true

UA_J.LUyaHdUA_J.LUWoIUy_J.LUW

There must not be any unmeasured common causes of the exposure and the outcome, and of
the exposure and covariates or of the outcome and covariates. As illustrated in Figure 1.4,
this graphical criteria can aid in the selection of an appropriate adjustment set.

When the randomization assumption holds, we can identify the distribution of counter-
factuals within strata of covariates. Specifically, we have that for each Py x € M”

Pux(Yo=ylW =w) = Pyx(Yo=ylA=a,W =w)
=PY =ylA=a,W=uw)

where the distribution P of the observed data is implied by Py x. This gives us the G-
computation identifiability result [27] for the true distributions Py x o and Fy:

Eyxo(Ya) =Y Eo(Y[A=a,W =w)Py(W = w)

where the summation generalizes to an integral for continuous covariates. Likewise, we can
identify the difference in the expected counterfactual outcomes (i.e. the average treatment
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Figure 1.3: Considering the back-door criterion for the basic structure: For all the graphs,
the exposure A and the outcome Y do not share an unmeasured common cause. (a) The
covariates W are not sufficient to block all back-door paths. Conditioning on the covariates
W blocks the path Y — W — A. However, conditioning on W (a collider of U and U*)
opens a new path: Y — U* — U — A. (b) The covariates W and the outcome Y also do not
share an unmeasured common cause. The covariates W are sufficient to block all back-door
paths. (c) The exposure A and the covariates W also do not share an unmeasured common
cause. The covariates W are sufficient to block all back-door paths. (d) All the unmeasured

background factors are independent. The covariates W are sufficient to block all back-door
paths.

effect) in terms of the difference in the conditional mean outcomes, averaged (standardized)
with respect to the covariate distribution:

Eyxo(Yi=Yy) =Y [Eo(Y[A= LW =w) = B(Y[A =0, = w)] Bo(W = w)
‘Iff(;;,x,o) — 4
(Po)

Identifiability also relies on having sufficient support in the data. The G-computation
formula requires that the conditional mean Ey(Y|A = a,W = w) is well-defined for all
possible values of w and levels of a of interest. In a non-parametric statistical model, each
exposure of interest must occur with some positive probability for each possible covariate
strata:

min Fy(A = a|W = w) > 0, for all w for which Py(W =w) >0

acA

This condition is known as the positivity assumption and as the experimental treatment
assignment assumption.

Suppose, for example, that the randomization assumption held conditionally on a single
binary baseline covariate. Then our statistical estimand could be rewritten as

U(P) = [Eo(YIA=1,W =1) - E(Y[A=0,W = 1)| R(W = 1)
+ [Eo(Y[A=1,W =0) — Eg(Y|]A=0,W =0)] P,(W = 0)
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Figure 1.4: Considering the back-door criterion: (a) The set of covariates W2 are sufficient
to block the back-door path from'Y — W2 — A. Further adjustment for W1 is unnec-
essary and potentially harmful. (b) The randomization assumption holds conditionally on
0. Adjusting for W (i.e. conditioning on a collider of U and U*) open a back-door path
and induces a spurious association between A and Y. (c¢) The randomization assumption
holds conditionally on (W, L). The covariates L are needed to block the back-door path from
Y - L —-U — A, even though L occurs temporally after the exposure A.

As an extreme, suppose that in the population, there are zero exposed patients with this
covariate: Py(A = 1|WW = 1) = 0. Then there would be no information about outcomes under
the exposure for this subpopulation. To identify the treatment effect, we could consider a
different target parameter (e.g. the effect among those with W = 0) or consider additional
modeling assumptions (e.g. the effect is the same among those with W =1 and W = 0).
Both options are a bit dissatisfying and other approaches may be taken [37]. The risk of
violating the positivity assumption is exacerbated with higher dimensional data (i.e. as the
number of covariates or their levels grow).

In many cases, our initial assumptions, encoded in the structural causal model M7,
are not sufficient to identify the causal effect ¥/ (Py x). Indeed, for our running example
(Figure 1.2a), the set of baseline covariates are not sufficient to block the back-door paths
from the outcome to the exposure. The question then becomes how to proceed? Possible
options include giving up, gathering more data, or continuing to estimation while clearly
acknowledging the lack of identifiability during the interpretation step. To facilitate the third
option, we can use M”* to denote the structural causal model augmented with additional
convenience-based assumptions needed for identifiability. This gives us a way to proceed,
while separating our real knowledge M7 from our wished identifiability assumptions M**.

Overall, identifiability assumptions and the resulting estimands are specific to the causal
parameter U7 (Py x). We are focusing on a point treatment effect (i.e. distribution of coun-
terfactuals under interventions on a single node or variable). Different identifiability results
are needed for interventions on more than one node (e.g. longitudinal treatment effects and
direct effects) and interventions responding to patient characteristics (e.g. dynamic regimes).
Furthermore, a given causal parameter may have more than one identifiability result (e.g.
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instrumental variables and the front door criterion). See, for example, Pearl [14].

1.6 Estimation and Inference

In the previous step, we defined the parameter of interest as a mapping from the statistical
model to the parameter space: ¥ : M — R. In other words, the statistical parameter is
a function, whose input is any distribution P compatible with the statistical model and
whose output is a real number. The parameter mapping applied to the true observed data
distribution Py is called the estimand and denoted W(F,). Recall we have n independent,
identically distributed (i.i.d.) copies of the random variable O = (W, A,Y’). The empirical
distribution P, corresponds to putting a weight 1/n on each copy of O;. An estimator is a
function, whose input is the observed data (a realization of P,) and output a value in the
parameter space.

In this chapter, we consider substitution estimators based on the G-Computation identi-
fiability result [27]:

U(PRy) = Ey[Eo(YIA=1,W) — Ey(Y|A=0,W)] (1.3)
A simple substitution estimator for W(F) can be implemented as follows.

1. Estimate of the conditional expectation of the outcome, given the exposure and co-
variates, denoted E(Y|A, W).

2. Use this estimate to generate the predicted outcomes for each unit, setting A = 1 and
A=0.

3. Take the sample average of the difference in these predicted outcomes:

A

1 o - R
W(P) == B(YilAi = 1,W) = B(Y;|4i = 0,W))
=1

The last step corresponds with estimating the marginal covariate distribution Py(W') with
the sample proportion: = 3 I(W; = w).

There are many options available for estimating the conditional expectation Ey(Y|A, W).
Often, parametric models are used to relate the conditional mean outcome to the possible
predictor variables and the exposure. Suppose, for example, we knew that the conditional ex-
pectation of a continuous outcome could be described by the following parametric regression

model:
Eo(Y[A,W) = o + 1A+ BoW 1+ BsW2 + B AW + B A"W2

where W = {W1, W2} denotes the set of covariates, needed for identifiability. Then this
knowledge should have been encoded in our structural causal model M7 with implied restric-
tions on our statistical model M. (In other words, we avoid introducing new assumptions
during the analysis.) The coefficients in this regression model could be estimated with maxi-
mum likelihood or with ordinary least squares regression. The estimate Bl does not, however,
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provide an estimate of the G-computation identifiability result. The exact interpretation of
Bl depends on which variables and which interactions are included in the parametric model.
To obtain an estimate of W(Fy), we need to average the predicted outcomes with respect to
the distribution of covariates:

1 -
W(P) == B(Y|A=1,W;) = E(Y|A=0,W)
i=1

I~ ,5 & .
= Z (B1+ BaW 1 + BsW2;)
=1

As a second example, suppose we knew that the conditional risk of a binary outcome
could be described by the following parametric model:

logit[Eg(Y|A,W)] = Bo 4+ B1A + BoW 1+ ...+ B1oW9

where W = {W1,... W9} denotes the set of covariates, needed for identifiability. Then
the estimate Bl would provide an estimate of the logarithm of the conditional odds ratio.
An estimate of the G-computation identifiability result is given by averaging the expected
outcomes under the exposure A = 1 and the control A = 0:

n

TETIEES ) (RS S M
n ‘= 14+ exp_(60+51+62W11+---+ﬁ10W91) 14+ exp—(ﬁo+,32W11+---+ﬂ10W9z)

In most cases, our background knowledge is inadequate to describe the conditional ex-
pectation Ey(Y|A, W) with such parametric models. Indeed, with high dimensional data,
the sheer number of potential covariates will likely make it impossible to correctly spec-
ify the functional form. If the assumed parametric model is incorrect, the point estimates
will often be biased and inference misleading. In other words, the structural causal model
M7 | representing our knowledge of the underlying data generating process, often implies a
non-parametric statistical model M. Our estimation approach should respect the statistical
model.

To avoid unsubstantiated assumptions about functional form, it is sometimes possible
to estimate Ey(Y|A, W) with the empirical mean in each exposure-covariate strata. Unfor-
tunately, even when all covariates are discrete valued, non-parametric maximum likelihood
estimators quickly become ill-defined due to the curse of dimensionality; the number of
possible exposure-covariate combinations far exceed the number of observations.

Various regression model selection routines can help alleviate these problems. For exam-
ple, stepwise regression will add and subtract variables in hopes of minimizing the Akaike
information criterion (AIC) or the Bayesian information criterion (BIC). Other data-adaptive
methods, based on cross-validation, involve splitting the data into training and validation
sets. Each possible algorithm (e.g. various parametric models or semiparametric methods)
is then fit on the training set and its performance assessed on the validation set. The mea-
sure of performance can be defined by a loss function, such as the L2-squared error or the
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negative log-likelihood. Super learner, for example, uses cross-validation to select the candi-
date algorithm with the best performance or to build the optimal (convex) combination of
estimates from candidate algorithms [38, 39]. A point estimate could then be obtained by
averaging the difference in predicted outcomes for each unit under the exposure and under
the control.

While these data-adaptive methods avoid betting on one a prior: specified parametric
regression model and are amenable to semiparametric algorithms, there is no reliable way
to obtain statistical inference for parameters, such as the G-Computation estimand W(5).
Treating the final algorithm as if it were pre-specified ignores the selection process. Fur-
thermore, the selected algorithm was tailored to maximize/minimize some criterion with
regards to the conditional expectation Fy(Y |A, W) and will, in general, not provide the best
bias-variance tradeoff for estimating the statistical parameter W(Fp). Indeed, estimating the
conditional mean outcome Y in every strata of (A, W) is a much more ambitious task than
estimating one number (the difference in conditional means, averaged with respect to the
covariate distribution). Thus without an additional step, the resulting estimator will be
overly biased relative to its standard error, preventing accurate inference.

Targeted maximum likelihood estimation (TMLE) provides a way forward [3, 40]. TMLE
is a general algorithm for the construction of double robust, semiparametric, efficient, substi-
tution estimators. TMLE allows for data-adaptive estimation while obtaining valid statistical
inference. For the G-computation estimand, the TMLE algorithm uses information in the
estimated exposure mechanism P(A|W) to update the initial estimator of the conditional
mean FEy(Y|A,W). The targeted estimates are then substituted into the parameter map-
ping. The updating step achieves a targeted bias reduction for the parameter of interest
U(F,) and serves to solve the efficient score equation. As a result, TMLE is a double robust
estimator; it will be consistent for W(F,) if either the conditional expectation Ey(Y|A, W)
or the exposure mechanism Py(A|W) is estimated consistently. When both functions are
consistently estimated at a fast enough rate, the TMLE will be efficient in that it achieves
the lowest asymptotic variance among a large class of estimators. These asymptotic prop-
erties typically translate into lower bias and variance in finite samples. The advantages of
TMLE have been repeatedly demonstrated in both simulation studies and applied analyses
(e.g. [37, 41-43]). The procedure is available with standard software such as the tmle and
1tmle packages in R [44-46].

Thus far, we have discussed obtaining a point estimate from a simple or targeted sub-
stitution estimator. To create confidence intervals and test hypotheses, we also need to
quantify uncertainty. A simple substitution estimator based a correctly specified parametric
model is asymptotically linear, and its variance can be approximated by the variance of its
influence curve, divided by sample size n. It is worth emphasizing that our estimand ¥ (F,)
often does not correspond to a single coefficient, and therefore we usually cannot read off the
reported standard error from common software. Under reasonable conditions, the TMLE is
also asymptotically linear, and inference can be based on an estimate of its influence curve.
Further discussion of influence curve-based inference is given in subsequent chapters.

Overall, we focused on substitution estimators (simple and targeted) of the G-computation
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identifiability result [27]. The simple substitution estimator only requires an estimate of the
marginal distribution of baseline covariates Py(WW) and the conditional expectation of the
outcome, given the exposure and covariates Ey(Y'|A, W). TMLE also requires an estimate of
the exposure mechanism Py(A|W). There are many other algorithms available for estimation
of U(Fy). A popular class of estimators rely only on estimation of the exposure mechanism
[22, 47-51]. Inverse probability of treatment weighting (IPTW) estimators, for example,
control for measured confounders by up-weighting exposure-covariate groups that are under-
represented and down-weighting exposure-covariate groups that are over-represented (rela-
tive to what would be seen were the exposure randomized). Its double robust counterpart,
augmented-IPTW, shares many of the same properties as TMLE [52-55]. A key distinction
is that [IPTW and augmented-IPTW are solutions to estimating equations and thereby re-
spond differently in the face of challenges due to strong confounding and rare outcomes [37,
56]. Throughout, we maintain that estimators should respect the knowledge encoded in the
statistical model and not introduce new assumptions. An estimator should be selected for
analysis based on its performance (e.g. bias, variance, robustness) as opposed to convenience
or habit.

1.7 Interpretation of the Results

The last step of the roadmap is interpreting the results. In our running example, the iden-
tifiability assumptions did not hold. Nonetheless, the statistical estimand (Eq. 1.3) always
has a statistical interpretation as the difference in the expected outcome, given the exposure
and covariates in the adjustment set, and the expected outcome, given the control and co-
variates in the adjustment set, standardized with respect to the covariate distribution in the
population. For our example, ¥(F,) can be interpreted as the marginal risk difference: the
difference in the mortality risk among patients with early vs. delayed ART initiation but
the same values of the measured covariates (e.g. baseline CD4 count, age and sex), averaged
with respect to the distribution of these covariates. This estimand can be considered as the
best approximation to the causal quantity of interest, given the limitations in the observed
data. If the identifiability assumptions hold, our estimate would be endowed with a causal
interpretation: a summary of how the distribution of the data would change under a spe-
cific intervention. For our example, the causal interpretation would be the difference in the
five-year counterfactual mortality risk if all patients initiated early ART vs. if all patients
delayed ART initiation. Further interpretation in terms of the impact of a “real world”
intervention or in terms of a randomized trial requires additional assumptions.

1.8 Discussion

In this chapter, we introduced a formal framework for causal inference [3, 4]. Our running
example was to estimate the effect of early ART initiation (within one month of diagnosis) on
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the five-year mortality risk among HIV+ adults in Sub-Saharan Africa. Our structural causal
model M7 only reflected the causal-ordering of our variables; we did not make any exclusion
restrictions, independence assumptions or functional form assumptions. Counterfactuals
were generated by deterministically intervening on the data generating system, described
by the structural causal model, to set A = 1 (i.e. early initiation) and also to set A = 0
(i.e. delayed initiation). We focused on the average treatment effect for this static exposure.
The observed data O = (W, A,Y') were assumed to be generated by sampling n independent
times from a probability distribution compatible with the structural causal model M7, which
implied a non-parametric statistical model M. Although our identifiability assumptions did
not hold, we still defined a statistical estimand W (P,) as a best approximation of our wished
for causal quantity. We briefly discussed a simple (parametric) substitution estimator and
a targeted substitution estimator (TMLE), which allows for data-adaptive estimation while
obtaining valid inference. Since our needed identifiability assumptions were not met, we
interpreted our estimate as the marginal difference in the mortality risk, given early ART
initiation and the measured covariates, and the mortality risk, given delayed ART initiation
and the measured covariates, standardized with respect to the covariate distribution.

This framework is easily extended to more complicated data structures. Consider, for ex-
ample, the following scientific questions, corresponding to interventions on multiple exposure
nodes and to alternate counterfactual treatment assignment mechanisms:

o Longitudinal treatment effects [31, 55, 57-69]: How does cumulative time until ART
initiation affect mortality among recently diagnosed HIV+ adults? What is the effect
of routine HIV RNA viral load monitoring, as compared to routine CD4+ T cell count
monitoring, on mortality among patients initiating early ART? What would be impact
of early ART initiation on the five-year mortality if there were no losses to follow up?

e Dynamic regimes (individualized treatment rules) [22-25, 60, 70-72]: How would mor-
tality of have differed if HIV+ adults initiated ART based on HIV RNA viral loads as
opposed to CD4+ T cell counts?

e Direct and indirect effects [73-76]: What is the direct effect of early ART initiation on
five-year mortality that is not mediated through changes in HIV RNA viral load?

e Stochastic interventions (non-deterministic interventions) [26]: What would be the five-
year mortality if the distribution of time until ART initiation shifted towards shorter
wait times? What is the impact of early ART initiation on five-year mortality if HIV
RNA viral load, the intermediate, remained at the value it would have been in the
absence of the exposure (i.e. the natural direct effect [77-79])?

Overall, access to unprecedented amounts of data does not undo the age-old adage: “cor-
relation is not causation”. Indeed, there are numerous sources of association (dependence)
between two variables: direct effects, indirect effects, measured confounding, unmeasured
confounding and selection bias. The methods, introduced here, allow researchers to move
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from saying drug X is associated with an adverse side effect to saying (under the necessary
and transparently stated assumptions) an adverse side effect is caused by drug X. Even if
the needed identifiability assumptions are not expected to hold, this framework helps us to
estimate a statistical parameter, coming as close to the wished causal parameter. In other
words, this framework ensures that the scientific question is driving the analysis and not the
other way around.
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Chapter 2

Adaptive Pair-matching in
Randomized Trials with Unbiased and
Efficient Effect Estimation

Pair-matching helps balance treatment groups with respect to important determinants of
the outcome at baseline [80, 81]. In observational studies, matching can help control for
confounding. In randomized trials, there is no confounding; the probability of receiving the
intervention or the control is a known constant. Nonetheless, covariate imbalance is com-
mon in small trials, and data sparsity may limit our ability to adjust for these characteristics
during the analysis. Thereby, matching is sometimes implemented in randomized trials to
protect study credibility. For example, the “face validity” [82] of a randomized trial for
violence prevention could be compromised if neighborhoods with highest baseline violence
were all randomized, by chance, to the control level of the intervention. Matching is also
implemented to improve study power. By decreasing variation in the outcome within pairs,
matching may, but is not guaranteed to, increase study efficiency. The conflicting recom-
mendations on pair-matching have inspired a heated debate in the literature for over sixty
years [82-96].

Much of the work in the design and the analysis of pair-matched trials has assumed
that the observed data consist of n/2 independent and identically distributed (i.i.d.) units
(e.g. [82, 96-100]). Such a data structure could arise by randomly sampling n/2 matched
pairs from some target population of pre-existing matched units. Often, however, there
may be substantial logistical or financial barriers to practical implementation of this design.
Alternatively, this data structure could arise by (i) sampling a unit from an infinite target
population, (ii) measuring its baseline covariates, (iii) repeatedly sampling units until the
baseline covariates of the second were sufficiently close to the first, (iv) randomizing the
intervention within the matched pair, (v) measuring the outcomes, and (vi) repeating this
process n/2 times. This pair-matching scheme may also be impractical and is likely to be
resource intensive. Theoretically, this design also yields less information for estimating the
(population) average treatment effect than a design randomly pairing two sampled units
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[101].

A different pair-matching scheme was implemented in the Sustainable East Africa Re-
search in Community Health (SEARCH) trial (NCT01864603) [13, 102]. SEARCH is a
multinational, multidisciplinary consortium to evaluate the health, economic and educa-
tional impacts of a community-based strategy for immediate and streamlined antiretroviral
therapy (ART) for all HIV-positive persons. In the trial, 54 candidate communities were
identified from rural Uganda and Kenya. These clusters satisfied the study’s inclusion crite-
ria, which included community size, health care infrastructure and sufficient distance from
other potential study units. Thirty-two communities were then pair-matched within region
and on baseline predictors of HIV transmission and health care delivery. The intervention
has been randomized within the resulting 16 matched pairs and the 5-year cumulative inci-
dence of HIV will be measured at the conclusion of the trial. We consider this design to be
adaptive, because partitioning of the study communities into matched pairs was a function
of the baseline covariates of all candidates. Thereby, the observed data do not consist of
n = 32 i.i.d. random variables or of n/2 = 16 i.i.d. paired random variables. Instead, the
observed data consist of n dependent units. For examples of other types of adaptive designs,
see [103-106].

To the best of our understanding, adaptive pair-matching has been implemented in sev-
eral other cluster randomized trials. Examples include the Mwanza trial to prevent HIV
[107], the PRISM trial to prevent postpartum depression [108], and the SPACE study to
promote physical activity [109]. The process of selecting n/2 pairs based on the covariates
of n candidates is also known in other literature as “nonbipartite matching” [93, 110] and
has motivated the development of “optimal multivariate matching” algorithms to pair units
based on several covariates simultaneously [111-114]. Previously, van der Laan et al. [115]
explored the consequences of adaptive pair-matching for estimation of the population aver-
age treatment effect. This chapter explores the consequences of adaptive pair-matching for
estimation of the average treatment effect, conditional on the measured baseline covariates
of the n study units. For brevity, we will refer to this causal parameter as the conditional
average treatment effect (CATE). This parameter was initially proposed in Abadie and Im-
bens [116], can be interpreted as the intervention effect, given the measured covariates of the
sample at hand, and often leads to more precise estimators [95, 117, 118].

Adjustment for baseline covariates during the analysis can help control for chance im-
balances in important determinants of the outcome and can also increase study efficiency
(e.g. [119-125]). Nonetheless, the recommendations on whether and how to adjust in pair-
matched trials have been conflicting (e.g. [82, 94-96, 100, 126, 127]). The intervention
effect can be estimated with the average of the differences in the outcomes within matched
pairs. Alternatively, one could take a multi-step approach of first fitting a regression model
with terms for the pairs and covariates (but not the intervention) and then contrasting the
observed versus predicted outcomes within matched pairs [96, 107, 128]. In all cases, the
estimation approach should be tailored to the parameter of interest (i.e population vs. con-
ditional average treatment effect). To the best of our knowledge, this is the first work to
propose targeted minimum loss-based estimation (TMLE) for the CATE in a randomized
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trial. Without risking bias due to regression model misspecification [122, 124, 125], TMLE
allows for further adjustment for baseline characteristics (beyond that attained by matching
alone) and thereby can provide an efficient estimate of the intervention effect.

The remainder of the chapter is outlined as follows. We first describe the adaptive design
and the resulting data structure. Second, we motivate the use of the CATE as the causal
parameter of interest. Third, we discuss two estimators of the corresponding statistical pa-
rameter: the unadjusted difference in outcomes within matched pairs and targeted minimum
loss-based estimation (TMLE). The latter estimator allows for further adjustment of impor-
tant baseline covariates, beyond that attained with matching, and is thereby more powerful
under reasonable scenarios. We also provide asymptotically conservative variance estimators
and finite sample simulations. We conclude with some practical recommendations. While
the SEARCH trial serves as the motivating example, our conclusions are applicable to other
randomized trials and also general to other study outcomes beyond incidence. Moreover, we
focus on data at the level of the experimental unit (i.e. the unit of randomization). Thereby,
our results are applicable to both individually randomized trials as well as cluster random-
ized trials. Detailed proofs are given in the Appendix B. This chapter was reproduced with
permission from Balzer et al. [129].

2.1 The Estimation Problem

The SEARCH consortium will estimate the impact of immediate antiretroviral therapy
(ART), initiated at all CD4+ T cell counts and delivered by a streamlined care system,
on the 5-year cumulative incidence of HIV [13]. The trial began enrolling communities in
2013, and data collection is ongoing. In communities randomized to the intervention, all
individuals testing positive for HIV will be immediately eligible for ART with streamlined
delivery, which includes enhanced services for initiation, linkage and retention in care. In
communities randomized to the control, all individuals testing positive for HIV will be offered
ART according to in-country guidelines, which are primarily based on CD4+ T cell counts.
HIV incidence, as well as other health, economic and educational outcomes, will be measured
among approximately 320,000 individuals, followed longitudinally for the 5 years of the trial.
The SEARCH study aims to understand the impact this community-based “test-and-treat”
program on both HIV-positive individuals and their greater communities [9, 10, 130-135].
For the purposes of understanding the adaptive design, we focus on the cluster-level data.
Let N denote the number of candidate communities considered for inclusion in the study,
n denote the number of communities selected for the SEARCH trial, and n/2 denote the
number of matched pairs. Let W represent the pre-intervention community-level covariates,
which include region, proximity to trucking routes, occupational mix and baseline population
HIV RNA levels [136]. A subset of these baseline covariates were used to select the n/2 best
matched pairs of communities from the N possible candidates. Within the resulting pairs,
the intervention was randomized. The treatment variable A is a binary indicator, equalling
one if the community was assigned to the intervention (all individuals testing positive for
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HIV are immediately offered ART with streamlined care delivery) and equalling zero if the
community was assigned to the control (all individuals testing positive for HIV are offered
ART according to in-country guidelines). Finally, the outcome Y is the 5-year cumulative
incidence of HIV, which will be measured through longitudinal follow-up. Thereby, the data
structure for a SEARCH community is O = (W, A,Y).

The adaptive design has important implications for estimation and inference [115]. Mainly,
the partitioning of the sample into n/2 pairs is a function of the baseline covariates of all N
candidates. Adaptive pair-matching results in n dependent copies of O. Nonetheless, given
the covariates of all candidate communities W = (W, ..., Wy), the observed data can be
represented as n/2 conditionally independent random variables:

0; = (01, 052) = (Wj1, Aj1, Yjn), (Wjz, Aja, Vo))

where the index j = 1,...,n/2 denotes the partitioning of the candidates {1,..., N} into
matched pairs according to similarity on their baseline covariates W¥. Throughout the
subscripts j1 and 72 denote the first and second communities within matched pair j. We
place no assumptions on the joint distribution of covariates Py(W?¥), where subscript 0
denotes the true but unknown distribution. The treatment assignment mechanism is known;
with probability 0.5, the first unit is randomized to the intervention and the second to the
control:

Po(Aj1 =1,A5 =0 W) = By(Aj1 = 0,Aja =1 | WY) = 0.5

Study communities are assumed to be causally independent (i.e. no contamination or
spillover effects). In other words, we assume that the baseline covariates and interven-
tion assignment of one community do not affect the outcome of another study community.
Recent work, relaxing these assumptions and considering a network of interacting units, is
elaborated in van der Laan [36]. Under these assumptions, the conditional distribution of
the observed data, given the baseline covariates of the candidate units, factorizes as

n/2
Po(Ory 0, Oy | Wh, ... W) = H {PO(Ajh Ajo | WY Py(Yya | Ajr, Win) Po(Yja | Aja, Wj2)}
=1
n/2

= 0-5H {Po(Y}l | Aj1, Wi) Po(Yie | Ajo, Wj2)}
j=1
:PO(OD'"’O?"L ’ Wla"'awn) :POTL(OH‘WTL)

Throughout, P} denotes the true conditional distribution of the observed data, given the
baseline covariates of the n study units W™ = (Wy,... , W,,). There are no other restrictions
on the set of possible observed data distributions, and the resulting statistical model M is
semiparametric.
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2.2 The Conditional Average Treatment Effect
(CATE)

The goal of the SEARCH trial is to estimate the effect of a strategy for immediate and
streamlined ART for all HIV diagnosed persons on the 5-year cumulative HIV incidence
in rural East African communities. A common target of inference is the population aver-
age treatment effect E[Y (1)] — E[Y(0)] or its relative counterpart E[Y (1)]/E[Y (0)], where
Y (a) denotes the counterfactual cumulative incidence under treatment level A = a. This
causal parameter is the difference in the expected outcomes if all communities (in some
hypothetical target population) were to receive the intervention and if all communities (in
some hypothetical target population) were to receive the control.

An alternative estimand involves conditioning on the measured baseline covariates of the
study communities [95, 116-118]:

o = 3 B - v

where Y;(a) denotes the counterfactual cumulative incidence under treatment level A = a for
unit ¢. This parameter is the difference in the expected counterfactual outcomes, treating
the baseline covariates of the study communities as fixed. As a result, the parameter is
data-adaptive; its value changes with the sample of study units. Nonetheless, 1 can be
interpreted as the intervention effect, given the covariates the sample units. Greater gen-
eralizability is up to the reader and not implicitly assumed in the parameter specification.
Furthermore, by obviating estimation of the covariate distribution, estimators of the condi-
tional parameter will also often be more precise than those of the population parameter [95,
116-118].

2.3 Estimation

Since the intervention is randomized within matched pairs, the causal parameter is readily
identifiable from the conditional distribution of the observed data. The statistical estimand
is

1 n
BE) = 13 (Bl A = 119 — Bofild = 0.0
=1

_ % 21: {@0(1, W) — Gol0. m-)]

where Qq(A, W) denotes the conditional mean outcome, given the intervention A and covari-
ates W. In other words, the target parameter is the average difference in the strata-specific
expected HIV incidence under the intervention and control for the n study communities.
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This estimand is still random through the vector of covariates W" = (Wy,...,W,). The
true value ¥ depends on the sample of n units.
An intuitive estimator of vy is the average difference in outcomes within matched pairs:

n/2

A 1
wunadj = TL_/2 Z (}/]1 - 3/]2)

J=1

where the observations within matched pair 7 have been ordered such that the first corre-
sponds to the intervention, A;; = 1, and the second the control, Ajo = 0. This estima-
tor is equivalent to taking the difference in the average outcomes among intervention units
Qn(1) = E,(Y|A = 1) and the average outcomes among control units Q,,(0) = E,(Y |4 = 0).
Since the intervention is randomized, the unadjusted estimator is unbiased for the parame-
ter of interest, given the vector of covariates W™. (See Appendix B.1 for the accompanying
proof.) When the measured covariates are predictive of the outcome, this simple difference-in-
means estimator tends to be inefficient as it fails to adjust for measured covariates. Despite
recent advances in matching algorithms [93, 113, 114], there is likely to be some residual
imbalance on pre-intervention determinants of the outcome within matched pairs. Further-
more, even if we succeeded in matching well on all available characteristics, there might be
additional baseline covariates that are predictive of the outcome, but were unavailable during
the matching process. In the SEARCH trial, for example, baseline population HIV RNA
levels are thought to be a major driver of incidence but were unavailable during matching.

An alternative approach is to use TMLE, which can provide an unbiased and efficient
estimate of the intervention effect. A TMLE for W(F}') is given by the following substitution
estimator: |

uty = ; {Qi(l, Wi) = @0, W;)

where Q7 (A, W) denotes a targeted estimate of the conditional mean function Ey(Y|A, W).
In general, this targeting step is used to achieve the optimal bias-variance trade-off for the
parameter of interest and to solve the efficient score equation [40]. We refer the reader to
van der Laan and Rose [3] for a detailed discussion and worked examples of TMLE. In an
adaptive pair-matched trial, a TMLE for W(F}') can be implemented as follows.

1. Estimate the conditional mean function Qq(A, W) by regressing the outcome Y on the
treatment A and covariates W, while ignoring the dependence in the data.

e For a binary outcome or a bounded continuous outcome, the negative log likeli-
hood is a valid loss function and provides stability in the context of sparsity [137].
Specifically, the boundedness property of the logistic function guarantees the pre-
dicted outcomes are within the appropriate range (e.g. [0,1] for a proportion).

e For a continuous outcome, initial estimation of the conditional mean Qq(A, W)
can also be based on linear regression, which can yield more power than non-linear
(logistic) regression in randomized trials. In particular, Rubin and van der Laan
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[122] detail the use of least squares regression to optimize the fit of Qo(A, W) to
achieve the lowest possible variance.

e Initial estimation can also be based on an a priori specified data-adaptive method,
such as Super Learner [39]. In all cases, there is no risk of bias due to model
misspecification [122, 124, 125].

2. If the initial regression model included an intercept and a main term for the exposure,
the estimator of the conditional mean outcome @, (A, W) is already targeted. Skip to
step 3. Otherwise, update the initial estimator as follows.

e If logistic regression was used for initial estimation, then the following fluctuation
sub-model is appropriate:

logit [QH(A, W)(e)] = logit [QH(A, W)] +eH(A),

(I(A=1) I(A=0)
where H(A) = (PD(A =1) Py(A= 0))

and € is the univariate parameter. If linear regression was used, then the following
fluctuation sub-model is appropriate:

Qu(A, W)(€) = Qu(A, W) + eH(A)

with € and H(A) are defined as above. In practice, run logistic (linear) regression
of the outcome Y on the covariate H(A), using the initial estimate as offset. Then
plug the estimated coefficient €, into the fluctuation model to yield the targeted
estimates Q* (A, W) = Q,(A, W)(e,).

3. Take the sample average of the differences in the expected outcomes:

l/zadj = ! Z [QZ<1=W) - Q:L(()?m)

n <
=1

where Q7 (1, W;) denotes the expected outcome for unit i under the intervention and
Q7 (0,W;) denotes the expected outcome for unit i under the control. It is worth
emphasizing that empirical mean, here, is part of target parameter mapping; we are not
estimating the covariate distribution as would be required for the population average

treatment effect.

In practice, many cluster randomized trials have a limited number of (conditionally)
independent units. For example, there are only 16 conditionally independent pairs in the
SEARCH trial. As a result, the number of parameters in the regression model for Qo(A, W)
can quickly approach the number of observations. Therefore, the curse of dimensionality can
prevent adjustment for all the measured covariates W or the inclusion of multiple interaction
terms. Nonetheless, it is often possible to adjust for a single or few covariates and obtain
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efficiency gains without risk [124, 125]. Furthermore, when the regression model for Qg (A, W)
includes an intercept and the exposure A as a main term, the initial estimator is already
targeted. Thus, we can obtain an unbiased and more efficient estimator in two steps: estimate
Qo(A, W) with main terms linear or logistic regression, and take the sample average of the
differences in the expected outcomes under the treatment and control.

2.4 Statistical Inference

As established in Appendix B.2, both the unadjusted estimator and the TMLE are asymp-
totically linear and normally distributed. Briefly, an estimator is asymptotically linear if
the difference between the estimator and the estimand behaves (in first order) as an em-
pirical mean of a function, known as the influence curve, of the unit data [3]. Then the
limit distribution of the standardized estimator is normal with mean 0 and variance given
by the variance of its influence curve. With an estimate of the influence curve and thereby
an estimate of the variance, the standard normal distribution can be used for confidence
interval construction and hypothesis testing in large studies. For trials with limited num-
bers of (conditionally) independent units, the Student’s t-distribution with n/2-1 degrees of
freedom is an appropriate alternative to the standard normal distribution. Randomization
inference, in contrast, may not be appropriate, as it is testing a different null hypothesis of
a constant treatment effect (e.g. Y;(0) = Y;(1) Vi) [138, 139]. The causal and statistical
estimands, considered here, are in terms of a sample average effect over the study units.

The influence curve for the TMLE of W(F}') in a trial with adaptive pair-matching is the
following function of the paired data (proof in Appendix B.2):

1C(0;) = D*(0;) — Eo[D*(0;)|W"]
D'(0) = ;{03 + D0}

2
D*(0;) = (H(;l;(:z)l) _ I[(gz(;l)o)) (Y = Q(A;, W)

where Q(A, W) denotes the limit of the targeted estimator of the conditional mean function
Qo(A, W) and where the marginal probability of being assigned the treatment or the control
is known: Py(A) = 0.5. Through the conditional expectation of D*(0;), given the vector of
covariates W™, the influence curve relies on the true but unknown conditional mean outcome

Qo(A, W)

Ey [D*(Oj){W"} = %{(Qo(l,w/ﬂ) - Q(1, le)) - (Qo(oa W) = Q(0, le))

+(Qo(1, W2) = Q(1, Wjs)) — (Qo(0, Wjs) — Q(0, Wﬂ))}
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This term captures deviations between the true and estimated mean outcomes for obser-
vations within a matched pair. The influence curve for the unadjusted estimator ﬂunadj
is analogous, but with Q(A, W) replaced with the limit of the treatment-specific mean
Qn(A) = E,(Y|A). For either estimator, there is no contribution from the covariate dis-
tribution, which is considered fixed.

The asymptotic variance of the unadjusted estimator or the TMLE is then given by the
variance of its influence curve, divided by n/2. Improved estimation of the conditional mean
outcome Qy(A, W) leads to more precise estimators of intervention effect W(F}!). Specifically,
if this conditional mean is consistently estimated (i.e. if Q(A, W) = Qo(A, W)), then the
term, involving deviations between the true and estimated means, is zero, and the estimator
of U(PR}) is asymptotically efficient. In other words, the estimator’s influence curve equals
the efficient influence curve, and the estimator has lowest possible variance among a large
class of estimators [3]. Otherwise, the estimator is still be unbiased, but does not achieve
the efficiency bound. When the baseline covariates W impact the outcome, the targeted
estimator of the conditional mean outcome Q*(A, W) is expected to be closer to the true
mean Qu(A, W) than the unadjusted estimator Q,,(A). As a result, the asymptotic variance
of the TMLE @/;adj is often smaller than that of the unadjusted estimator @Z}umdj. Thus, for
both individual and cluster randomized trials, TMLE is often a more efficient estimator of
the CATE than the unadjusted estimator.

Consistent estimation of the influence curve and thereby the asymptotic variance rely
on consistent estimation of this conditional mean Qu(A, W), which might be particularly
challenging when n is small, as common in cluster randomized trials. Nonetheless, we can
conservatively approximate the influence curve of the unadjusted estimator @@umdj or the
TMLE @&adj by the difference in residuals within matched pairs (proof in Appendix B.2):

[bunadj(éj) = (Y;l - Qn(l)) - (YEQ - Qn(O))
ICagi(05) = (Vi — Qi(1, W) — (Yia — Q4(0, Wya))

respectively. Again, Q,,(A) denotes an unadjusted estimate of the treatment-specific mean,
Q: (A, W) denotes a targeted estimate of the conditional mean outcome, and observations in
matched pair j have been ordered such that the first corresponds to intervention (A;; = 1)
and the second to the control (A;2 = 0). An asymptotically conservative variance estimator
is then given by the sample variance of the estimated influence curve, divided by n/2. For
Qz}unadj, this is equivalent to the sample variance of the within pair differences, divided by
n/2, and is commonly recommended for pair-matched randomized trials [96] even though
it is known to be conservative if the conditional parameter is the target of inference [95,
116-118]. To obtain a less conservative variance estimator for ﬂunadj, Abadie and Imbens
[118] proposed a matching estimator, involving the variance of pairs-of-pairs with similar
covariates. Our approach to reduce the true variance of the estimator and obtain a less
conservative variance estimate is through adjustment with TMLE. In most practical settings,
the sum of squared adjusted residuals is smaller than the sum of squared unadjusted residuals.
Thereby, the estimated variance of the TMLE is often smaller than the estimated variance of
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the unadjusted algorithm. In summary, this implies that covariate adjustment with TMLE
results in a more precise estimator (i.e. smaller true variance) and a less conservative variance
estimator.

We also briefly note that a randomized trial with adaptive pair-matching will often be
more efficient for estimation of the CATE than a randomized trial without matching. The de-
signs will only have the same efficiency bound if the conditional mean outcome is consistently
estimated (i.e. Q(A, W) = Qo(A,W)). In practice, we expect there to be some deviations
between the true and estimated means. If these deviations are positively correlated within
matched pairs, the asymptotic variance of the TMLE will be smaller in the adaptive trial
than in the completely randomized trial. In finite samples, we also expect there to be an
efficiency gain from adaptive pair-matching. Mainly, if we succeed in matching pairs on pre-
dictive covariates, then the sample covariance of the residuals within matched pairs will be
positive and the adaptive design will yield more power. We refer the reader to Appendix B.3
for further details and associated proofs.

2.5 Simulation Study

We present the following set of simulations to demonstrate (1) implementation of the above
estimators, (2) the potential gain in efficiency with adaptive pair-matching, and (3) the
further gain with adjustment during the analysis due to having a more precise estimator and
a less conservative variance estimator. These simulations are not intended to represent the
full complexities of a cluster randomized trial. (To be clear, these simulations were not the
ones used when developing the design and analysis of the SEARCH trial.) Nonetheless, they
explore some of the challenges faced, such as rare outcomes, the inability to match on all
baseline covariates, and limited numbers of conditionally independent units. All simulations
were done in R v3.0.1 [46].

Data Generating Process & Estimators

For n = 32 units, three baseline covariates W = (W1, W2, W3) were independently drawn
from a normal distribution with mean 0 and standard deviation 1. A fourth covariate Z was
generated as a function of these baseline covariates and random noise Uy:

Z = expit] —0.25+0.5"W1+ W2+ 2"W3+ 0.5'Uz] /4

where the expit function is the inverse of the logit function and U, was drawn independently
from a normal with mean 0 and standard deviation 1. To imitate adaptive pair-matching,
the nonbipartite matching algorithm (nbpMatching v1.3.6 [111]) was applied to the set of
n covariates W™ = (Wy,...,W,) with W, = (W1;,W2,,W3;). Within the resulting 16
matched pairs, the exposure A was randomized. As before, A is binary indicator, equaling 1
if the unit was randomized to the intervention and 0 otherwise. Finally, the outcome Y was
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generated as
Y = expit[By + 0.5W1 4 0.5W2+ 0.5 W3 + 7*Z — A+ 0.25°A*Z] /15 + Uy

where random noise Uy was drawn independently from a uniform distribution with minimum
0 and maximum 0.025. Dividing by 15 was done to scale the outcome Y, representing a
proportion, to be within plausible ranges for the cumulative incidence of HIV. The term [,
was set to either -2 or 0.5 to examine the performance of the estimators when the outcome was
rare (“Simulation A”) or more common (“Simulation B”). To simulate the null scenario,
the treatment was randomly assigned within pairs but the outcomes generated as if all
communities received the control (A = 0). For comparison, we also simulated equivalent
data for a non-matched randomized trial with balanced allocation of the treatment.

Over 5000 data sets, we examined the performance of the unadjusted estimator and
TMLE. For the latter, we compared linear to logistic main terms regression with various
adjustment sets. Linear regression can result in more efficient estimation, by minimizing
the empirical variance of the influence curve [122]. With rare outcomes, however, logistic
regression can provide stability, by guaranteeing the predicted outcomes respect the model
bounds (i.e. are in [0,1]). Therefore, we expected the TMLE with logistic regression to
result in better performance when the outcome was rare (Simulation A) and the TMLE
with linear regression to result in better performance when the outcome was more common
(Simulation B). In terms of adjustment sets, we compared regression models with main
terms for the exposure A and the covariate Z as well as regression models with main terms
for the exposure A, the matching covariates W and the remaining covariate Z. Recall Z
was an important determinant of the outcome but not used in matching. We expected
that the fully adjusted estimator (TMLE with main terms for (A, W, Z)) would suffer from
over-fitting. Since main terms regression models were used, the fluctuation step of the
TMLE algorithm did not provide an update. In all cases, there was no risk of bias due to
regression model misspecification [124, 125]. Inference was based on the sample variance of
the estimated influence curve and the Student’s t-distribution with 15 degrees of freedom.
The corresponding TMLE implementation and proof of statistical inference for the non-
matched randomized trial are given in Appendix B.3.

Results

Recall the true value of the statistical estimand depends on the n = 32 communities in the
sample. Table 2.1 shows the minimum, mean and maximum value of the intervention effect 1
over the 5,000 simulated data sets. For comparison, the table also gives the corresponding
summaries of the exposure-specific effects: ¢o(a) = L3°"  Eo(Y[4; = a,W;, Z;). This
estimand is the sample average of the conditional mean outcome, setting the exposure A =
a and given the covariates (W,Z). For Simulation A, representing a rare outcome, the
average values of the effect under the exposure vy(1) and the control y(0) were 0.024

and 0.032, respectively. The corresponding mean value of the intervention effect vy was
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Yo(1) 1o (0) o = o(1) — 10(0)
min mean max min mean max min mean max

Simulation A | 0.018 0.024 0.031 | 0.023 0.032 0.043 | -0.012 -0.009 -0.005
Simulation B | 0.038 0.050 0.061 | 0.050 0.061 0.069 | -0.013 -0.011 -0.007

Table 2.1: Summary of the true value of the exposure-specific effects o(a) = 1/n) ", Ey(Y; |
A; = a,W;, Z;) and the target parameter 1y over 5,000 simulations of n = 32 communities.
The rows indicate the setting with Simulation A corresponding to a rare outcome and Sim-
ulation B corresponding to a more common outcome. Recall the true value is dependent on
the sample.

-0.009, translating to 26.41% reduction in the incidence of the outcome (on average). For
Simulation B, representing a more common outcome, the average values of the conditional
effect under the exposure 1y(1) and the control ¢y(0) were 0.05 and 0.061, respectively. The
corresponding average value of the target parameter vy, was -0.011, translating to a 17.90%
reduction in the incidence of the outcome (on average).

For Simulation A, Table 2.2 illustrates the performance of the estimators over 5,000
simulated data sets. All estimators were unbiased. As expected, there was an efficiency gain
with matching. The standard deviation (square root of the variance of the point estimates)
of the unadjusted estimator was 1.58 times higher without matching than with matching.
Likewise, the attained power (proportion of simulated trials where the null hypothesis was
correctly rejected) jumped from 34% to 64% with matching. As expected, adaptive pair-
matching on the three covariates W reduced variability in the outcomes within matched
pairs. The coefficient of variation, measuring of the variability in outcomes between units
in the absence of the intervention, was k = 0.53, while the matched-pair coefficient of
variation, measuring of the variability in outcomes within matched pairs in the absence of
the intervention, was k,, = 0.29 [96].

There was also an efficiency gain from adjustment. For the non-matched design, the
standard deviation of the unadjusted estimator was 1.58 times higher than the standard
deviation of the TMLE, using linear regression to adjust for Z. The corresponding power
increased from 34% to 72%. For the adaptive design, the standard deviation of the un-
adjusted estimator was 1.13 times higher than the standard deviation of the TMLE, using
linear regression to adjust for Z. The corresponding attained power increased from 64% to
74%. For both designs, there was a further precision gain by using logistic regression to
adjust for Z. Under sparsity, logistic regression can be more stable than linear regression
and is guaranteed to yield parameter estimates within the appropriate range (i.e. [0,1] for
proportions) [137]. While there was some power gain from adjusting for all four covariates
(W, Z), there was also a risk in over-fitting the regression model and under-estimating the
variance. Recall the variance estimators in Section 2.3 are asymptotically conservative, and
the simulations represent finite samples. Indeed, with a main terms regression model for
the conditional mean outcome, there were 5 parameters with only 16 conditionally indepen-
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Bias Std. Dev. Std. Error t-stat CI Cov. Power
Simulation A No Matching
Unadj. -0.00011 0.0054 0.0053  -1.6 96 34
TMLE linear for Z -0.00008 0.0034 0.0032  -2.7 94 72
TMLE logit for Z -0.00008 0.0033 0.0030  -2.9 94 78
TMLE linear for (W, Z) | -0.00011 0.0033 0.0027  -3.2 91 82
TMLE logit for (W, Z) | -0.00013 0.0031 0.0024  -3.6 90 88
Adaptive Pair-Matching
Unadj. -0.00004 0.0034 0.0035  -2.5 96 64
TMLE linear for 7 -0.00004 0.0030 0.0030  -2.9 96 74
TMLE logit for Z -0.00006 0.0030 0.0028  -3.2 94 80
TMLE linear for (W, Z) | -0.00004 0.0030 0.0029  -3.1 95 79
TMLE logit for (W, Z) | -0.00008 0.0029 0.0026  -3.5 93 84
Simulation B No Matching
Unadj. -0.00007 0.0063 0.0062  -1.8 95 38
TMLE linear for 7 -0.00009 0.0035 0.0033  -34 94 88
TMLE logit for Z -0.00013 0.0037 0.0036  -3.1 95 84
TMLE linear for (W, Z) | -0.00015 0.0032 0.0026  -4.2 91 96
TMLE logit for (W, Z) | -0.00037 0.0036 0.0031  -3.7 91 91
Adaptive Pair-Matching
Unadj. -0.00007 0.0036 0.0036  -3.1 96 80
TMLE linear for 7 -0.00008 0.0030 0.0030  -3.8 96 92
TMLE logit for Z -0.00011 0.0031 0.0033  -34 97 89
TMLE linear for (W, Z) | -0.00010 0.0029 0.0028  -4.1 95 95
TMLE logit for (W, Z) | -0.00023 0.0031 0.0032  -3.6 96 90

Table 2.2: For Simulation A (rare outcome) and Simulation B (more common outcome),
summary of the estimator performance over 5,000 simulations of n = 32 communities. The
rows indicate the estimator and the columns the performance metric: bias as the average
deviation between the point estimate and sample-specific true value; standard deviation as
the square root of the variance of the point estimates; standard error as the average stan-
dard error estimate based on the influence curve; t-statistic as the average value of the test
statistic (point estimate divided by standard error estimate); confidence interval coverage as
the proportion of intervals containing the true parameter value (in %), and power as the
proportion of studies correctly rejecting the null hypothesis (in %).

dent units. As a result, the confidence interval coverage (proportion of studies containing the
true parameter value) was less than the nominal rate of 95% for the fully adjusted estimator.
Likewise, the type I error rate (proportion of studies falsely rejecting the null hypothesis) was
greater than o = 0.05 for the fully adjusted estimator, as shown in Table 1 of Appendix B.4.
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Conversely, for both the unadjusted estimator and the TMLE only adjusting for Z, there
was good confidence interval coverage and control of type I error rates. Indeed, there was
some evidence of over-coverage of confidence intervals and conservative Type I error rates
for the unadjusted estimator in both designs, as predicted by theory.

The results for Simulation B, representing a more common outcome, are also given in
Table 2.2 and largely echoed the above findings. Because the exposure was randomized, all
estimators were unbiased. As before, there was a substantial efficiency gain with matching.
Adaptive matching on the three covariates W = (W1, W2, W3) reduced variability in the
outcomes within pairs. The coefficient of variation was k = 0.27, while the matched-pair
coefficient of variation was k,, = 0.14. Again, there was also a substantial precision gain
from adjustment. With a more common outcome, however, there was a greater gain in
power from adjusting for Z with linear regression than logistic regression for both designs.
Here, minimizing the sum of squared residuals helped to minimize the empirical variance
of the influence curve and thereby maximize the empirical efficiency [122]. With the fully
adjusted estimator, again there was some risk of over-fitting and inference was optimistic. In
contrast, for both the unadjusted estimator and the TMLE adjusting only for Z, there was
good confidence interval coverage as well as Type I error control (Table 1 of Appendix B.4).
In summary, our finite sample simulations support our theoretical results: adaptive pair-
matching yields more power than complete randomization, and further efficiency gains can
be attained through adjustment during the analysis.

2.6 Discussion

To our knowledge, this is the first work to study and articulate the consequences of adaptive
pair-matching for estimation of the average treatment effect, given the baseline covariates
of the n study units. This work was motivated by SEARCH trial, which aims to estimate
the effect of immediate ART, delivered in a streamlined fashion, on the five-year cumulative
incidence of HIV. The decision to pair-match communities in the trial was motivated by a
desire to protect study credibility and by the potential to increase study power. Through
careful definition of the data generating experiment, we recognized that the design would
not yield n/2 i.i.d. paired units, as current practice assumes. Instead, by constructing the
matched pairs as a function of the baseline covariates of all candidate communities, the
adaptive design results in n dependent units and n/2 conditionally independent units, given
the baseline covariates of the study communities.

To the best of our understanding, adaptive pair-matching is a common design and has
been implemented in other cluster randomized trials (e.g. [107-109]). In practice, adaptive
pair-matching (a.k.a. “nonbipartite matching”) can be carried out with standard software.
For example, the nbpMatching package [111] in R and the corresponding web application will
generate the set of optimal matched pairs as function of a user-supplied matrix of covariates
[113, 114]. These tools allow the user to weight covariates differently (e.g. on importance or
relevance to the outcome) and to specify the maximum number of matches - choices, which
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should be driven by subject matter knowledge as well as resource constraints.

We focused on estimation of the CATE. By obviating estimation of the covariate distribu-
tion, estimators of the conditional parameter will often be less variable than estimators of the
population parameter [95, 116-118]. We contrasted the unadjusted estimator with TMLE
adjusting for baseline covariates. We provided a step-by-step implementation of the latter
estimator and detailed proofs of inference. Both estimators can be implemented ignoring the
dependence in the data and with standard software, such as the tmle [44] and ltmle [45]
packages in R. Asymptotically conservative inference can obtained with the sample variance
of the pairwise differences in residuals, divided by n/2. When the baseline covariates are
predictive of the outcome, the unadjusted estimator will be less efficient than the TMLE.
Furthermore, the estimated variance of the TMLE will often be less conservative than that
of the unadjusted estimator.

Finite sample simulations were used to evaluate estimator performance and verify our
theoretical results. Since the intervention was randomized, all estimators were unbiased [122,
124, 125]. There was an efficiency gain with matching and a further gain with adjustment.
When the outcome was quite rare, adjusting for a single baseline covariate with logistic
regression yielded more power than adjustment with linear regression. When the outcome
was more common, the converse was observed. While the variance estimators are asymp-
totically conservative, there was some risk of over-adjusting in small trials. Indeed, with
only 16 (conditionally) independent units, adjusting for all 4 baseline covariates resulted in
under-coverage of the confidence intervals and higher than nominal Type I error rates.

Previously, Imai et al. [94] suggested, “randomization by cluster without prior construc-
tion of matched pairs, when pairing is feasible, is an exercise in self-destruction.” Our work
also suggests that asymptotically and in finite samples, a randomized trial with adaptive
pair-matching will often be more efficient for estimation of the CATE than its completely
randomized counterpart. The trials will only have the same efficiency bound when the con-
ditional mean outcome, given the exposure and covariates, is consistently estimated. In
practice, we expect there to be some deviations between the true and estimated means.
When these deviations are positively correlated within matched pairs, the design with adap-
tive pair-matching will be more efficient (Appendix B.3). In finite samples, pair-matching
will also often result in a positive covariance of the residuals (deviations between the observed
and predicted outcomes) within matched pairs and thereby smaller finite sample variance.

Overall, adaptive pair-matching is an intuitive strategy to group candidate units on sim-
ilarity in their baseline covariates. Pair-matching will protect study credibility. Combining
subject matter knowledge with modern matching algorithms (e.g. nbpMatching [111]) is
likely to result in studies, where pair-matching substantially improves study power. We
recommend specifying the intervention effect in terms of the conditional parameter, which
considers the covariate distribution as fixed and obviates its estimation, resulting in less
variable estimators. We also recommend adjusting for baseline variables as the data allow.
Simulations, such as those presented here, can help inform the practitioner as to the opti-
mal adjustment set. Future work will involve the use of cross-validation to data-adaptively
select for the adjustment set. We also plan to formally study the asymptotic and finite sam-
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ple properties of analysis approaches based on covariate-adjusted residuals for estimation
and inference of the CATE [96, 107, 128]. We will also investigate the impact of adaptive
stratification on estimation and inference for both the population and conditional average
treatment effect. While our work was motivated by a cluster randomized trial with the out-
come of cumulative incidence, the results are generally applicable to other trials with binary
or continuous outcomes.
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Chapter 3

Targeted Estimation and Inference for
the Sample Average Treatment Effect

In many studies, the goal is to estimate the impact of an exposure on the outcome of interest.
Often the target causal parameter is the population average treatment effect (PATE): the
expected difference in the counterfactual outcomes if all members of some population were
exposed and if all members of that population were unexposed. If there are no unmeasured
confounders and there is sufficient variability in the exposure assignment (i.e. if the ran-
domization and positivity assumptions hold), then we can identify the causal parameter as
a function of the observed data distribution [27, 48]. The resulting statistical parameter can
be estimated with a variety of algorithms.

Alternate causal parameters, receiving less attention, include the sample average treat-
ment effect (SATE) and the conditional average treatment effect (CATE). The sample effect
is the average difference in the counterfactual outcomes for the n study units [19]. In other
words, the SATE is the intervention effect for the sample at hand. The conditional effect
is the average difference in the expected counterfactual outcomes, treating the measured
baseline covariates of the study units as fixed [116]. In other words, the CATE is the in-
tervention effect, averaging out the unmeasured factors contributing to the counterfactual
outcomes but conditional on the measured factors contributing to the counterfactual out-
comes. As detailed below, the exact interpretation and the variability of the CATE depend
on the conditioning set (i.e. on the set of measured covariates). Briefly, the CATE will be
constant across repeated studies if the measured covariates (e.g. region) are constant and
will change across repeated studies if the measured covariates (e.g. HIV prevalence) are
not constant. In contrast, the SATE changes with each new selection or sample of units.
The sample effect will only equal the conditional effect if all factors impacting the outcome
are measured. Another key difference between the three parameters is in the variance of
common estimators. As shown by Imbens [117] and elaborated here, an efficient estimator
of the sample parameter is often more precise than the same estimator of the conditional
parameter, which is, in turn, often more precise than the same estimator of the population
parameter.
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To the best of our knowledge, this is the first work to propose using targeted maximum
likelihood estimation (TMLE) for the SATE. TMLE is a general algorithm for constructing
double robust, semiparametric efficient, substitution estimators [3, 40]. Even though the
SATE is not identified, we prove that the TMLE, presented here, is an asymptotically linear
estimator of the SATE and provide a conservative approximation of its influence curve. Our
results generalize the variance derivations of Imbens [117] to allow misspecification of the
outcome regression (i.e. the conditional mean outcome, given the exposure and covariates)
and estimation of the propensity score (i.e. the conditional probability of the receiving
the exposure, given the covariates). Simulations are used to evaluate the finite sample
performance of our point estimator and proposed variance estimator. The simulations also
serve to highlight the differences between the three causal parameters and the potential gains
in power from selecting the sample effect as the target of inference. We begin by reviewing the
structural causal model of Pearl [16] and motivate our discussion with the Sustainable East
Africa Research in Community Health (SEARCH) trial for HIV prevention and treatment
(NCT01864603) [13]. This chapter was reproduced with permission from Balzer et al. [140].

3.1 Causal Model and Causal Parameters

SEARCH is an ongoing cluster randomized trial to evaluate the effect of a community-based
strategy for HIV prevention and treatment in rural East Africa. In intervention communities,
all individuals testing HIV+ are immediately eligible for antiretroviral therapy (ART) with
streamlined delivery, including enhanced services for initiation, linkage, and retention in
care. In control communities, all individuals testing HIV+ are offered ART according to
in-country guidelines, largely based on CD4+ T cell counts. The study hypothesis is that
ART initiation at any CD4 count and with streamlined delivery will reduce the five-year
cumulative HIV incidence. The primary outcome as well as other health, educational and
economic outcomes will be measured among approximately 320,000 individuals, enrolled in
the study. For the purposes of discussion, we focus on the community-level data. Thereby,
our results are equally applicable to clustered and non-clustered data structures.

Consider the following data generating process for a randomized trial with two arms.
First, the study units are selected. While some trials obtain a simple random sample from
a well-defined population, in many other studies the selection of units is more systematic.
In the SEARCH trial, for example, 32 communities were selected from Western Uganda
(Mbarara region), Eastern Uganda (Tororo region) and the Southern Nyanza Province in
Kenya. These communities satisfied the study’s inclusion criteria, including community size,
health care infrastructure and accessibility by a maintained transportation route. Next, the
baseline covariates W are measured. Throughout we use “baseline” to refer to covariates
measured prior to implementation of the intervention. For the SEARCH trial, these include
region, occupational mix, migration index, male circumcision coverage and measures of HIV
prevalence.

Next, the intervention is randomized to the study units. Balanced allocation of the
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intervention can be guaranteed by randomly assigning the intervention to n/2 units and the
control to remaining units or by randomizing within matched pairs. In the SEARCH trial,
for example, communities were first matched on baseline covariates and then the intervention
randomized within the resulting 16 matched pairs [129]. For ease of exposition, we present
the causal model for the simple scenario, where the intervention is completely randomized,
but our results are general. Let A be a binary variable, reflecting the assigned level of
the intervention. For the SEARCH trial, A equals one if the community was assigned to
the treatment (all individuals testing positive for HIV are immediately offered ART with
streamlined care) and equals zero if the community was assigned to the control (all individuals
testing positive for HIV are offered ART according to in-country guidelines). At the end of
followup, the outcome Y is measured. For the SEARCH trial, Y is the five-year cumulative
incidence of HIV and will be measured through longitudinal follow-up. The observed data
for a given study unit are then
0= (WAY)

We observe n independent, identically distributed (i.i.d.) copies of O with distribution P.
We note that for estimation and inference of the sample and conditional effects, we can
weaken the i.i.d. assumption. In particular, we do not need any assumptions on the joint
distribution of covariates Py(W1, ..., W,,). For further details, see Balzer et al. [129].

This data generating process can be described by the following structural causal model
(SCM) [14, 16]. Each component of the observed data is assumed to be a deterministic
function of its parents (variables that may influence its value) and unobservable background
factors:

W = fw(Uw)
A=T(Us < 0.5)
Y = fy(W, A, Uy)

Let X = (W, A,Y) denote the set of endogenous factors and U = (U, Uy, Uy) denote
the set of the background factors with joint distribution Py. By design, the random error
determining the intervention assignment U, is independent from the unmeasured factors
contributing the baseline covariates Uy, and the outcome Uy:

Ua 1L (Uw,Uy)

Specifically, Uy is independently drawn from a Uniform(0,1). The causal model M* provides
the set of allowed distributions for (U, X) and implies the statistical model M for the set of
possible distributions of the observed data O. The true joint distribution of the background
and endogenous factors Py x o is an element of M’ and the true distribution of the observed
data Py is an element of M. In a randomized trial, the statistical model is semiparametric.
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Through interventions on the SCM, we can generate the counterfactual outcome Y (a),
which is the outcome if possibly contrary-to-fact the unit was assigned A = a:

W = fw(Uw)
A=ua

Y(a) = fy(W,a,Uy)

The distribution of the counterfactuals can then be used to define the causal parameter of
interest. Often, the target of inference is the population average treatment effect (PATE):

U (Pyx) = Eyx[Y (1) — Y(0)]

where the subscript (U, X) denotes the expectation over the distribution Py x (which implies
the distribution of the counterfactual outcomes). This causal parameter is the expected
difference in the counterfactual outcomes for underlying target population from which the
units were sampled. For the SEARCH trial, U7 (Py x) is the difference in the expected
counterfactual cumulative incidence of HIV if possibly contrary-to-fact all communities in
some hypothetical target population implemented the test-and-treat strategy, and expected
counterfactual cumulative incidence of HIV if possibly contrary-to-fact all communities in
that hypothetical target population continued with the standard of care. From the SCM, we
see that the expectation is over the measured factors W and unmeasured factors Uy, which
determine the counterfactual outcomes for the population. In other words, the true value of
WP (Py x) does not depend on the sampled values of W or Uy

An alternative causal estimand is the sample average treatment effect (SATE), which
was first proposed in Neyman [19]:

S(Pyx) = ZY

This is simply the intervention effect for the study units. For the SEARCH trial, ¥S(Py x)
is the average difference in the counterfactual cumulative incidence of HIV under the test-
and-treat strategy and under the standard of care for the n = 32 study communities. The
parameter is data-adaptive; its value changes with each new selection or sample of units. The
SATE remains interpretable if the study units were systematically selected and is responsive
to variation in the intervention effect by measurable and unmeasurable factors (i.e {W, Uy }).

An intermediate between the population and sample parameters is the conditional average
treatment effect (CATE), which was first proposed in Abadie and Imbens [116]:

“(Pux) = ZEUX — Y;(0)|[ W1, ..., W,]

_ EZEUX [Yi(1) - Yi(0)| W]
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where the second equality holds under our assumption that study units are causally indepen-
dent (i.e. the baseline covariates and intervention assignment of one unit do not affect the
outcome of another unit). This parameter is the difference in the expected counterfactual
outcomes, treating the measured covariates of the study units as fixed. For the SEARCH
trial, W¢(Py x) is interpreted as the average difference in the expected counterfactual cumu-
lative incidence of HIV under the test-and-treat strategy and under the standard of care,
given the measured covariates of the n = 32 study communities. From the SCM, we see
that the expectation is over the unmeasured factors Uy that determine the counterfactual
outcomes.

The exact interpretation, the true value and the variability of the CATE depend on
the conditioning set. As an extreme example, suppose that in the SEARCH trial the only
measured covariate were region. Then we would interpret W¢(Py x) as the treatment effect,
given the regional distribution of communities. If the regional distribution were set by
design (e.g. 10 communities in Eastern Uganda, 10 communities in Western Uganda and 12
communities in Kenya), then we would obtain the same value of the CATE over repeated
studies. In other words, we would be averaging out all the other factors contributing to HIV
incidence. Now suppose the set of measured covariates included both region (set by design)
and baseline HIV prevalence (varying from community to community). Then we would
interpret the CATE as the treatment effect, given the regional distribution and baseline
prevalence of the study communities. Over repeated studies, the value of the CATE would
change due the differences in the sampled values of baseline prevalence.

3.2 Identifiability

To identify the above causal effects, we must write them as some function of the observed
data distribution. Under the randomization and positivity assumptions, we can identify the
mean counterfactual outcome within strata of covariates [27, 48]:

EU,X,O [Y(CLMW} = EU,X,O [Y(CL>|A = a, W} = Eo [Y|A = a, W}

where the subscript 0 denotes the expectation over the true distribution. (Recall Py x ¢ is the
true joint distribution of the background and endogenous factors and Fj is the true distribu-
tion of the observed data.) Briefly, the randomization assumption states that the counterfac-
tual outcome is independent of the exposure, given the measured covariates: A 1L Y (a)|W.
This is equivalent to the no unmeasured confounders assumption [48]. The positivity as-
sumption states that there is sufficient variability in the exposure assignment within strata
of covariates. Both assumptions hold by design in a randomized trial. As a well known
result, the PATE WP (P x ) is easily identified as

UP(Py) = Eo|Eo(Y|A=1,W) - Ey(Y|A=0,W)

= Eo[Qo(1, W) = Qo(0, W)]
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where Qo(A, W) = Ey(Y|A, W) denotes the conditional mean outcome, given the exposure
and covariates. This statistical estimand is also called the G-computation identifiability
result [27]. For the SEARCH trial, ¥}’ (F) is the difference in expected cumulative incidence
of HIV, given the treatment and measured covariates, and the expected cumulative incidence
of HIV, given the control and measured covariates, averaged (standardized) with respect to
the covariate distribution in the population. As with the causal parameter, there is one true
value UJ'(Py) = v} for the population. In a randomized trial, conditioning on the covariates
W is not needed for identifiability, but can provide efficiency gains during estimation (e.g.
[119-121, 123, 124]).
Analogously, we can identify the CATE W¢(Py x ) as

n

1
UG(Po) = — 3 [Eo(YilAi = 1,W3) = Eo(¥i[ A; = 0,;)]

= = [Qo(1, W3) = Qo(0,W5)] (3.1)

This statistical estimand is the difference in the conditional expectation of the outcome, given
the intervention and measured covariates, evaluated at the treatment vs. control level of the
intervention, but now averaged over the sampled values of the measured covariates. For
the SEARCH study, W§(F,) is the sample average of the difference in expected cumulative
incidence of HIV, given the treatment and measured covariates, and the expected cumula-
tive incidence of HIV, given the control and measured covariates. As with the CATE, the
interpretation, the true value and the variability of W§(F) depend on both the conditioning
set and the sample.

Unlike the other two causal parameters, the SATE is non-identifiable. We cannot write
the causal parameter as a function of the observed data distribution. This point has not
received much attention. Instead, researchers have largely focused on the lack of identifia-
bility of the variance of standard estimators [19, 117, 126, 141]. To elaborate, let us use the
structural causal model M* to rewrite the SATE in terms of the CATE:

S(Pux) = ZY
— Hny(Wi, 1, Uy,) — fy(W;,0,Uy,)
_ %;Eax [Yi(1) = Y(0)|W;, Uy,]

The second equality is from the definition of counterfactuals as interventions on the causal
model. The final equality is the CATE, given the measured baseline covariates as well as
the unmeasured factors. If we had access to all pre-intervention covariates impacting the
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outcome (i.e. {W,Uy}), then we could apply the results for estimation and inference for the
conditional parameter, as detailed in Balzer et al. [129]. In reality, we only measure a subset
of these covariates (i.e. W) and only this subset is available for estimation and inference.
Nonetheless, we show below that the TMLE is asymptotically linear for the SATE and the
corresponding variance estimator is asymptotically conservative.

3.3 Estimation and Inference

There are many well-established algorithms for estimation of the population parameter
UP(P,). For example, matching and inverse weighting estimators rely on knowledge or
estimation of the propensity score, which is the conditional probability of being exposed,
given the measured covariates Py(A = 1|W) (e.g. [22, 47-49]). Simple substitution estima-
tors rely on estimation of the outcome regression, which is the conditional mean outcome
given the exposure and covariates Qo(A4, W) = Eo(Y|A, W) (e.g. [27, 142, 143]). A third
class of estimators requires estimation of both the propensity score and the outcome regres-
sion. This class includes augmented inverse probability of treatment weighting (AIPTW)
(e.g. [31, 52, 53, 55]) and TMLE (e.g. [3, 40]). These estimators are double robust in that
they will be consistent if either the propensity score or the outcome regression is consistently
estimated. If both functions are consistently estimated at a fast enough rate and there is
sufficient variability in the propensity score, these estimators are also asymptotically efficient
in that they attain the lowest possible variance among a large class of regular, asymptotically
linear estimators. An important distinction between AIPTW and TMLE is that the former
is based on solving an estimating equation, while the latter is a substitution estimator, pro-
viding stability in the context of sparsity [56, 137]. We focus our discussion on TMLE in a
randomized trial and provide generalizations to an observational setting in Appendix C.3.

For the Population Parameter

For the population estimand, a TMLE can be implemented with the following steps. First,
we obtain an initial estimate of the outcome regression Qg(A, W). This function can be
estimated with maximum likelihood or with an a priori specified data-adaptive procedure,
such as Super Learner [39]. In a randomized trial, the propensity score go(1|W) = Py(A =
1|W) is known and does not need to be estimated. In the two-armed trial, for example,
we have go(1|W) = go(1) = 0.5. Estimation of the propensity score, however, can improve
efficiency by capturing chance imbalances in the covariate distribution between treatment
groups (e.g. [55, 124]). We could, for example, obtain an estimator g,(1/7/) by running
logistic regression of the intervention A on the measured covariates W.

Next, we target the initial estimator of the outcome regression @, (A, W). This targeting
step uses information in the propensity score to obtain the optimal bias-variance tradeoff for
the parameter of interest and to solve the efficient score equation. It is accomplished by run-
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ning logistic regression! of the outcome Y on the covariate H, (A, W) = (;ﬁé‘:‘,})) — gH,Eé)\:v?/))>

with the logit(x) = log{z/(1 — z)} of the initial estimator Q, (A, W) as offset. The esti-
mated coefficient €, is then plugged into the fluctuation model to yield targeted updates of
the outcome regression under the treatment and under the control:

Qr (1, W) = expit llogit [Qn(1,W)] + e, Hy(1, W)}
Q= (0, W) = expit {logit [Qn(0,W)] + €,H,(0, W)}

where expit is the inverse of the logit function and where the * denotes the targeted estimator.
In a randomized trial, if the propensity score is treated as known (i.e. not estimated) and the
regression model used for initial estimation of Qu(A, W) contains an intercept and a main
term for the exposure, then this targeting step will not yield an update and can be skipped
[124, 125]. Lastly, the targeted estimates are substituted into the parameter mapping:

VP = 3 |Q3L W) - Q0.

i=1

where P, denotes the empirical distribution, placing mass 1/n on each observation O;. The
sample mean is the nonparametric maximum likelihood estimator of the marginal distribu-
tion of baseline covariates.

Under regularity conditions, the TMLE is a consistent and asymptotically linear estima-
tor of the population parameter [40]:

W, (Py) — WF (Py) = ZD?’@go 0:) + op(1/v/)

with influence curve

D”(Q, 90)(0) = Dy(Q, 90)(0) + Dw(Q, 90)(O)
Dr(@(0) = (=l ) (v - qraw)
W(Q790)<O> = Q(lv W) - Q( ’ ) - wO

where Q(A, W) denotes the limit of the TMLE Q* (A, W) and we are assuming the propensity
score is known or consistently estimated, as will always be true when A is randomized.
The first term of the influence curve Dy is the weighted residuals (i.e. weighted deviations
between the observed outcome and the limit of the predicted outcome). The second term Dy,

1As detailed in Gruber and van der Laan [137], the same procedure can be applied to a bounded
continuous outcome and adds robustness in the context of sparsity.
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is deviation between the limit of the estimated strata-specific association and the marginal
association.

The standardized estimator is asymptotically normal with variance given by the vari-
ance of its influence curve, divided by sample size n. Under consistent estimation of the
outcome regression (i.e. when Q(A, W) = Qo(A,W)), the TMLE will be asymptotically
efficient and achieve the lowest possible variance among a large class of estimators [144].
In other words, its influence curve equals the efficient influence curve. Thereby, improved
estimation of conditional mean outcome leads to more precise estimators of the population
effect. In a randomized trial, adjusting for measured baseline covariates with TMLE can lead
to substantial efficiency gains without risk of bias due to regression model misspecification
[124, 125]. In finite samples, the variance of the TMLE is well-approximated by the sample
variance of the estimated influence curve, divided by sample size. The algorithm is available
in the tmle [44] and 1tmle [45] packages in R [46].

For the Conditional Parameter

The TMLE for the population parameter W)'(P,) also serves as an estimator of the condi-
tional parameter W§(Fy). The steps are analogous with one important exception. In the final
step of substituting in the targeted estimates, the empirical mean is now considered part of
the parameter mapping (Eq. 3.1) and not an estimator of the covariate distribution, which
is considered fixed. As a result, there is no contribution to the variance from the covariate
distribution. Thereby, estimators of the conditional parameter are often more efficient than
those of the population parameter [95, 117, 118, 129].

The TMLE is also a consistent and asymptotically linear estimator of the conditional
parameter [129]:

U, (P) = VG (R) = ZDC Q, 90)(0:) + op(1//n)

with influence curve given by

DY(Q. 90)(0) = Dy (@, 90)(0) — Eo[ Dy (Q. 90)(0)|W]

where W = (W7y,..., W,,) denotes the vector of baseline covariates for the study units. The
influence curve of the TMLE for W§(P)) depends on the true conditional mean outcome
Qo(A,W). In particular, the conditional expectation of the Dy component, given the vector
of baseline covariates, equals the deviation between the true mean and the limit of the
estimated mean:

Ey[Dy (Q. 90)(O)|[W] = [Qo(1, W) = Q(1,W)] — [Qo(0, W) — Q(0,W)]

Under consistent estimation of the outcome regression (i.e. when Q(A, W) = Qo(A, W)),
this term is zero and the TMLE for U§(F) efficient. In this setting, the TMLE for the
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conditional estimand will often have a smaller asymptotic variance than the same TMLE for
the population estimand:

o>F = VaT[Dy(Qo, 90)(0)] + VCU“[DW(QO, go)(O)]
0*¢ = Var[Dy(Qo, 90)(O)]

They will only have the same efficiency bound when there is no variability in the treatment
effect across strata of covariates (i.e. when Var[Qo(1, W) — Qo(0, W) — ¢J] = 0). In many
settings, there will be effect modification, and focusing on estimation of the conditional
parameter will yield more precision and power.

In practice, there are likely to be deviations between the true outcome regression and the
limit of our estimator. Nonetheless, we can conservatively approximate the influence curve
of the TMLE for the conditional estimand ¥§(P,) as

o Do (o (M=) TA=0Y o
2801 = Prat0) = (i oy ) 05~ @) 02

[129]. Thereby, we obtain an asymptotically conservative variance estimator with the sample
variance of the weighted residuals, divided by sample size n. As estimation of the outcome
regression improves, the deviations between the true and estimated means are reduced and
we get closer to approaching the efficiency bound ¢?¢. Thereby, in a randomized trial,
adjusting for baseline covariates, predictive of the outcome, can substantially improve power
by reducing variability in the estimator and resulting in a less conservative variance estimator
[129].

For the Sample Parameter

For a randomized trial, Neyman [19] proposed estimating the SATE WS(Py x) with the
unadjusted estimator, which is the difference in the average outcomes among the treated
units and the average outcomes among the control units:

Z?:l ]I(Ai - 1)}/; Z?:l ]I(Ai - O)Y;
Z?:l H<Ai = 1) N Z;L:l H(Ai = 0)

In this setting, the difference-in-means estimator will be unbiased for the SATE, conditional
on the vector of counterfactual outcomes Y(a) = {Y;(a) : ¢ =1,...,n, a =0,1}. However,
its variance remains unidentifiable as it relies on the correlation of the counterfactual out-
comes {Y;(1),Y;(0)} [19]. Imbens [117] later generalized this work for an efficient estimator
(i.e. a regular, asymptotically linear estimator, whose influence curve equals the efficient
influence curve) in an observational setting. In particular, he showed that an efficient esti-
mator for the population parameter was unbiased for the sample parameter, conditional on
the vector of baseline covariates W and the set of counterfactual outcomes Y (a). Further
he expressed the variance of an efficient estimator of the SATE in terms of the variance of

\Ijn,unadj (Pn) =
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the the same estimator of the PATE minus the variance of the unit-specific treatment effects
across the population. We now extend these results to the TMLE when the estimator of
Qo(A, W) converges to a possibly misspecified limit and suggest an alternate method for
variance estimation.

The TMLE for the population and conditional parameters (¥} (Py) and W§(F)) is also
a consistent and asymptotically linear estimator of the SATE:

¥, (P) = W (Pix) = 5 3" DS (Quao)(Us Xi) + 02 (1/V)

with influence curve

D3(Q, 90)(U, X) = D
DY (U, X) =Y (1)

The proof is given in Appendix C.1. Recall U = (U, Uy, Uy) denotes the set of background
factors and X = (W, A,Y) denotes the endogenous factors in our SCM. In words, the
influence curve of the TMLE for the sample parameter DS is given by the influence curve
for TMLE of the conditional parameter D¢ minus a non-identifiable piece, which captures
the deviations between the unit-specific treatment effect and expected effect within covariate
strata:

790)(0) - DF(U’X)
—Y(0) = [Qo(1, W) — Qo(0, W)]

= Y;(1) = Y;(0) — [Eux.o(Yi(1)[W;) — Ey,x0(Y:(0)|W;)]
= V(1) = Y;(0) — Ey.xo[Yi(1) — Y:(0)|Wi]

In the last line, the expectation is over the unmeasured factors Uy that determine the
counterfactual outcomes.

The standardized estimator of the SATE is asymptotically normal with mean zero and
variance

Var[D®(U, X)] = Var[D(0O)] + Var[D" (U, X)| — 2Cov[D(0), D* (U, X)]
= Var[D(0)] — Var[D" (U, X)]

The proof is given in Appendix C.2. Since the variance of the D component must be greater
than or equal to zero, the asymptotic variance of the TMLE as an estimator of the sample
parameter will be less than or equal to the asymptotic variance of the same estimator of the
conditional parameter. They will only have the same precision when there is no variability
in the treatment effect within strata of covariates W. In many settings, however, there will
be heterogeneity, and TMLE for the SATE will be more precise and powerful.

Along the same lines, we can conservatively approximate the influence curve of the TMLE
for SATE by ignoring the non-identifiable piece D¥'. Specifically, we obtain a conservative
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variance estimator with the sample variance of the estimated D¢ component (Eq. 3.2), di-
vided by sample size n. This variance estimator is easy to implement as the relevant pieces
are known or already estimated. As a result, this may provide an attractive alternative to
the matching estimator of the variance, proposed by Abadie and Imbens [116] and discussed
in Imbens [117]. We note that the bootstrap is inappropriate as the parameter changes with
each sample.

3.4 Simulation Study

We present the following simulation study to (1) further illustrate the differences between the
causal parameters, (2) demonstrate implementation of the TMLE, and (3) understand the
impact of the parameter specification on the estimator’s true variance, on variance estimation
and on attained power. We focus on a randomized trial to illustrate the potential gains in
efficiency with adjustment during the analysis. All simulations were carried out in R v3.1.0
[46).

Data generating process and estimators

Consider the following data generating process for unit ¢ = {1,...,n}. First, we gener-
ated the background error Uy, by drawing from a standard normal distribution. Then we
generated three baseline covariates W = (W1, W2, W3) by drawing independently from a
standard normal distribution. The exposure A; was randomized such that the treatment
allocation was balanced overall. Recall A; is a binary indicator, equaling 1 if the unit is
randomized to the treatment and 0 if the unit is randomized to the control. The outcome
Y; was generated as

We also generated the counterfactual outcomes Y;(a) by intervening to set A; = a. For
sample sizes n = {50, 70,100}, this data generating process was repeated 2,500 times. For
each sample, the SATE was calculated as the average difference in the counterfactual out-
comes, and the CATE was calculated as the average difference in the expected counterfactual
outcomes, given the baseline covariates for the study units. (The conditional expectation
Ey x[Yi(a)|W;] was approximated by fixing (a, W;) and averaging the counterfactual out-
comes over 75,000 units.) The PATE was calculated by averaging the difference in the
counterfactual outcomes over a population of 500, 000 units.

We compared the performance of the unadjusted estimator to the TMLE with two meth-
ods for initial estimation of the outcome regression Qu(A,W). Specifically, we estimated
Qo(A, W) with logistic regression, including as main terms the exposure A, the covariate
W1 and an interaction A*W1. We also estimated Qo(A, W) with Super Learner, an optimal
machine-learning approach [39]. In particular, we used 10-fold cross-validation to create the
best convex combination of algorithm-specific estimates from the following library: logistic
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regression with main terms for the exposure A and a single covariate, logistic regression with
main terms for the exposure A, a single covariate and their interaction, as well as stepwise
logistic regression with and without interactions. The unadjusted estimator can be consid-
ered as a special case of the TMLE, where Q,,(4, W) = Q,,(A). Inference was based on the
estimated influence curve. We constructed Wald-type 95% confidence intervals and tested
the null hypothesis of no effect.

Simulation Results

Table 3.1 gives a summary of the parameter values across 2,500 samples. Recall the true
values of the SATE and CATE depend on the units included in the study. The sample
effect ranged from -1.04% to 6.69%; the conditional effect ranged from -0.12% to 5.46%,
while the population effect was constant at 2.73%. By averaging out the unmeasured fac-
tors contributing to the counterfactual outcomes Uy, the CATE was less variable than the
SATE. Likewise, by averaging out the measured and unmeasured factors contributing to the
counterfactual outcomes (W, Uy ) across the population, the PATE is less variable than the
CATE. As expected, the variability in the SATE and CATE decrease with increasing sample
size.

SATE CATE
min mean max var | min mean max var
n=>50 |-1.04 273 581 1.03E-2|-0.12 2.74 5.46 7.29E-3
n="70 [-0.34 271 6.69 T7.06E-3| 0.29 271 5.34 4.94E-3
n =100 0.21 272 549 4.77E-3 | 046 2.72 511 3.53E-3

Table 3.1: Summary of the causal parameters over 2,500 simulations of size n =
{50,70,100}. All values are in percent. The true value of the PATE was 2.73%.

Table 3.2 illustrates the performance of the estimators over the 2,500 simulated data
sets. Specifically, we give the bias as the average deviation between the point estimate and
(sample-specific) true value, the standard deviation o as the square root of the variance
of estimator relative to its target, and the average standard error estimate &, based on
the influence curve. We also show the “true” power, which is the proportion of times the
false null hypothesis would be rejected if the estimator’s variance o were known, and the
attained power, which is the proportion of times the false null hypothesis was rejected when
the variance was estimated. The 95% confidence interval coverage is also included.

Since the exposure was randomized, all estimators are unbiased. There was no risk of bias
due to misspecification the regression model for Qo(A, W) (e.g. [124, 125]). As expected, the
variance of the estimators decreased and thereby the “true” power increased with increasing
sample size and with adjustment (e.g. [119-121]). For example, the true power of the
unadjusted estimator for the SATE was 57% with n = 50, 69% with n = 70 and 80% with
n = 100. After adjusting for a single covariate with TMLE, the true power for the SATE
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increased to 78% with n = 50, 89% with n = 70, and 96% with n = 100. There were minimal
differences in the variance and true power of the TMLE using logistic regression for initial
estimation of the outcome regression and TMLE using Super Learner for initial estimation.

For all sample sizes and algorithms, the impact of the target parameter specification
on precision and true power was notable. As predicted by theory, the variance was lowest
and thereby true power highest for the SATE. Consider, for example, the TMLE using
logistic regression and a sample of 50 units. The standard deviation o of this estimator
of the population effect was 29% higher than the standard deviation of this estimator of
the conditional effect and 53% higher than the standard deviation of this estimator of the
sample effect. Furthermore, if we knew the variance of this estimator, then we would have
78% power to detect the sample effect, 71% power to detect the conditional effect and only
55% power to detect the population effect.

In practice, however, we must estimate the variance. When our target of inference is
the SATE or the CATE, the sample variance of weighted residuals (Eq. 3.2), divided by
sample size n, provides an asymptotically conservative variance estimator. When our target
of inference is the PATE, we must also account for estimation of the covariate distribution.
In the finite sample simulations, the impact of having a conservative variance estimator
on inference for SATE was considerable. In all settings, the standard deviation was over-
estimated: 6 > o. As a result, the attained power was less than the true power and
the confidence interval coverage was conservative (i.e. greater than the nominal rate of
95%). Likewise, when the CATE was the target of inference, the standard deviation was
conservatively approximated and thereby the attained power was less than the true power.
For both the sample and conditional effects, the TMLE using Super Learner was able to
obtain a more precise fit of Qo(A, W) and thereby a less conservative variance estimator. As
a result, this TMLE was able to achieve the most power. We note that the attained power is
the same for the SATE and CATE, because we used the same point and variance estimator
for both parameters.

Despite the conservative variance estimator, the TMLE for the SATE or CATE achieved
higher power than the TMLE for the PATE at all sample sizes. With 50 units, for example,
the attained power for the TMLE with Super Learner was 66% for the sample/conditional
effect and only 57% for the population effect. Notably, the attained power was the same
for the unadjusted estimator of the 3 parameters. The attained power of the unadjusted
estimator did not vary, because the estimated Dy, component of influence curve and thereby
its variance were zero:

QTL(l) - Qn(o) - \Ijn,unadj (Pn> =0
where Q,,(A) denotes the treatment-specific mean. Thus, using the unadjusted estimator

sacrificed any potential gains in attained power by specifying the SATE or the CATE as the
target of inference.
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Variability Power CI
Bias o o True Att. Cover.
SATE
n =50  Unadj 1.1E-4 1.3E-2 16E-2 0.57 0.41 0.98
TMLE 7.7E-4 88E-3 1.2E-2 0.78 0.63 0.99
TMLE+SL | 5.3E-4 88E-3 1.1E-2 0.78 0.66 0.98
‘n=70 Unadj | 2.7E-4 1.1E-2 1.4E-2 069 052 099
TMLE 6.4E-4 7.2E-3 1.0E-2 089 0.75 0.99
TMLE+SL | 45E-4 72E-3 9.7E-3 0.88 0.78 0.99
n =100 Unadj | 3.5E-5 9.0E-3 1.1E-2 0.80 0.66 0.98
TMLE 2.7E-4 59E-3 &8.7E-3 096 0.87 0.99
TMLE+SL | 1.4E-4 6.0E-3 82E-3 0.95 0.89 0.99
CATE
n =50  Unadj 3.3E-5 1.4E-2 1.6E-2 0.51 0.41 0.97
TMLE 6.9E-4 1.1E-2 1.2E-2 0.71 0.63 0.97
TMLE+SL | 45E-4 10E-2 1.1E-2 0.71 0.66 0.95
‘n=70 Unadj | 2.0E-4 12E-2 14E-2 062 052 097
TMLE 5.8E-4 8.7E-3 1.0E-2 0.83 0.75 0.97
TMLE+SL | 3.9E-4 8.7E-3 9.7E-3 0.82 0.78 0.96
‘n=100 Unadj | 82E-6 9.7E-3 1.1E-2 0.76 0.66 0.97
TMLE 2.4E-4 T7.0E-3 87E-3 0.93 0.87 0.98
TMLE+SL | 1.1E-4 7.1E-3 82E-3 0.93 0.89 0.97
PATE
n =50  Unadj 9.5E-5 1.6E-2 1.6E-2 040 0.41 0.94
TMLE 75E-4 14E-2 13E-2 0.55 0.58 0.94
TMLE+SL | 5.1E-4 14E-2 1.3E-2 0.54 057 0.93
"n=70 Unadj  |-81E-6 1.4E-2 1.4E-2 052 052 094
TMLE 3.7E-4 1.1E-2 1.1E-2 0.69 0.70 0.94
TMLE+SL | 1.8E-4 1.1E-2 1.1E-2 0.68 0.69 0.94
‘n=100 Unadj  |[-1.3E-4 1.1E-2 1.1E-2 067 066 095
TMLE 9.8E-5 9.0E-3 9.2E-3 0.8 0.85 0.95
TMLE+SL | -28E-5 9.1E-3 9.3E-3 0.84 0.83 0.95

Table 3.2: Summary of estimator performance over 2,500 simulations. The rows denote the
sample sizes and the estimator: unadjusted, TMLE with logistic regression and TMLE with
Super Learner (“TMLE+SL”). Bias is the average deviation between the point estimate and
(sample-specific) true value; o is the square root of the variance of the estimator, and & is
the average standard error estimate, based on the influence curve. The true power (“Power
True”) is the proportion of times the false null hypothesis would be rejected if the estimator’s
variance o were known, while the attained power (“Power Att.”) is the proportion of times
the false null hypothesis was rejected when estimating the variance. The confidence interval
coverage (“CI Cover.”) is the proportion the 95% CI that contained the true parameter value.
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3.5 Discussion

To our knowledge, this is the first work to propose using TMLE for estimation and inference
of the SATE. Despite lack of identifiability, we proved that the TMLE was an asymptotically
linear estimator of the SATE. If there is heterogeneity in the intervention effect within strata
of covariates, the sample parameter will be estimated with more precision than the condi-
tional parameter. Furthermore, if there is heterogeneity in the intervention effect across
strata of covariates, the sample and conditional parameters will be estimated with more
precision than the population parameter. In practice, we can estimate the variance of the
TMLE for the SATE with the sample variance of the weighted residuals, divided by sample
size. This is an intuitive variance estimator and straightforward to implement. In an obser-
vational setting, the TMLE will provide at least as much precision and power to detect the
impact of a non-randomized exposure on the study units than in the overall population. Our
conclusions should also extend to a trial with adaptive pair-matching [129]. Formal study is
warranted and an area of future work, but we hypothesize that a trial targeting the sample
effect and implementing adaptive pair-matching will be more efficient than a trial targeting
the sample effect and not implementing pair-matching.

Finite sample simulations highlighted the differences between the causal parameters and
the impact of the target parameter specification on the estimator’s variance and attained
power. We also compared the unadjusted estimator (i.e. difference-in-means estimator) to
the TMLE with various methods for initial estimation of Qo(A, W). As predicted by theory,
all estimators were unbiased and adjustment lead to greater power. An estimator of the
SATE was less variable than the same estimator of the CATE, which was less variable the
same estimator of the PATE. While the differences in the true power (the proportion of times
the false null hypothesis would be rejected if we knew the estimator’s variance) were substan-
tial, the difference in the attained power were attenuated due to the conservative variance
estimator. Greater differences in the attained power were seen with a more aggressive fit
of conditional mean outcome. As estimation of Qy(A, W) improves, the TMLE becomes
a more precise estimator (i.e. smaller true variance) and the variance estimator becomes
less conservative. In small trials (e.g. n < 30) such as early phase clinical trials or cluster
randomized trials, obtaining a precise estimate of Qy(A, W) is likely to be challenging. In
practice, many baseline covariates are predictive of the outcome, but adjusting for too many
covariates can result in over-fitting. Future work will investigate the use of cross-validation
to data-adaptively select the optimal adjustment set in trials with limited sample sizes.

Overall, we believe the SATE is an under-utilized causal parameter. It is simply the
intervention effect for the study units. The SATE avoids assumptions about representative
sampling (e.g. a simple random sample) from some target population. Furthermore, the
SATE is responsive to heterogeneity in the treatment effect and avoids assumptions that the
observed impact is generalizable to other contexts [145, 146]. These generalizations can be
made with the formal methods for transportability [30] and do not have to be assumed during
the parameter specification. To obtain a point estimate, the implementation of the TMLE
is identical to that of the conditional and population estimands. To obtain conservative
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inference, we only need to take the sample variance of the weighted residuals, divided by
sample size. Thereby, estimation and inference for the SATE does not require any extra work
and is likely to give us more power to detect the impact of the exposure on the outcome.
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Chapter 4

Adaptive Pre-specification in

Randomized Trials With and Without
Pair-Matching

The objective of a randomized trial is to evaluate the effect of an intervention on the outcome
of interest. In this setting, the difference in the average outcomes among the treated units and
the average outcomes among the control units provides a simple and unbiased estimate of the
intervention effect. Adjusting for measured covariates during the analysis can substantially
reduce the estimator’s variance and thereby increase study power (e.g. [119-121, 123, 124]).
Nonetheless, the recommendations on adjustment in randomized trials have been conflicting
[96, 147-150]. The advice seems to depend on the study design, the unit of randomization,
the application, and the sample size. As a result, many researchers are left wondering how
to adjust for baseline covariates, if at all.

Consider a trial, where the treatment is randomly allocated to n/2 units and the remain-
ing units are assigned to the control. There is a rich literature on locally efficient estimation
in this setting (e.g. [122-124, 151, 152].) For example, parametric regression can be used to
obtain an unbiased and more precise estimate of the intervention effect. Briefly, the outcome
is regressed on the exposure and covariates according to a working model. Following Rosen-
blum and van der Laan [125], we use “working” to emphasize that the regression function
need not be and often is not correctly specified. This working model can include interaction
terms and can be linear or non-linear. The estimated coefficients are then used to obtain the
predicted outcomes for all units under the treatment and the control. The difference or ratio
in the average of the predicted outcomes provides an estimate of the intervention effect.

For continuous outcomes and linear working models without interaction terms, this pro-
cedure is known as analysis of covariance (ANCOVA), and the coefficient for the exposure
is equal to the estimate of the intervention effect. For binary outcomes, Moore and van der
Laan [124] detailed the potential gains in precision from adjustment via logistic regression
for estimating the treatment effect on the absolute or relative scale (i.e. risk difference, risk
ratio or odds ratio). Furthermore, the authors showed that parametric maximum likelihood
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estimation (MLE) was equivalent to targeted maximum likelihood estimation (TMLE) in
this setting [3, 40]. As a result, the asymptotic properties of the TMLE, including double
robustness and asymptotic linearity, hold even if the working model for outcome regres-
sion is misspecified. Furthermore, this approach is locally efficient in that the TMLE will
achieve the lowest possible variance among a large class of estimators if the working model
is correctly specified. Rosenblum and van der Laan [125] expanded these results for a large
class of general linear models. Indeed, the parametric MLE and TMLE can be considered
special cases of the double robust estimators of Scharfstein et al. [153] and semiparametric
approaches of Tsiatis et al. [123] and Zhang et al. [151]. For a recent and detailed review of
these estimation approaches, we refer the reader to Colantuoni and Rosenblum [154].

Now consider a pair-matched trial, where the intervention is randomly allocated within
the n/2 matched pairs. The proposed estimation strategies have been more limited in this
setting. Indeed, the perceived “analytical limitations” of pair-matched trials have led some
researchers to shy away from this design [82, 95, 150]. As with a completely randomized trial,
the unadjusted difference in treatment-specific means provides an unbiased but inefficient
estimate of the intervention effect. To include covariates in the analysis and to potentially
increase power, Hayes and Moulton [96] suggested regressing the outcome on the covariates
(but not on the exposure) and then contrasting the observed versus predicted outcomes
within matched pairs. Alternatively, TMLE can provide an unbiased and locally efficient
approach in pair-matched trials [115, 129]. Specifically, the algorithm can be implemented as
if the trial were completely randomized: (1) fit a working model for the mean outcome, given
the exposure and covariates, (2) obtain predicted outcomes for all units under the treatment
and control, and (3) contrast the average of the predicted outcomes on the relevant scale.
Inference, however, must respect the pair-matching scheme [115, 129].

A common challenge to the both designs is the selection of the covariates for inclusion in
the analysis. Many variables are measured prior to implementation of the intervention, and
it is difficult to a priori specify an appropriate working model. For a completely randomized
trial, covariate adjustment will lead to gains in precision if (i) the covariates are predictive
of the outcome and (ii) the covariates are imbalanced between treatment groups (e.g. [155]).
Balance is guaranteed as sample size goes to infinity, but rarely seen in practice. Analogously,
in a pair-matched trial, covariate adjustment will improve precision if there is an imbalance
on predictive covariates after matching.

Limited sample sizes pose an additional challenge to covariate selection. A recent review
of randomized clinical trials reported that the median number of participants was 58 with
an interquartile range of 27-161 [156]. Likewise, a recent review of cluster randomized trials
reported that the median number of units was 31 with an interquartile range of 13-60 [157].
In small trials, adjusting for too many covariates can lead to overfitting and inflated Type
I error rates (e.g. [129, 152, 155]). Finally, ad hoc selection of the adjustment set leads to
concerns that researchers will go on a “fishing expedition” to find the covariates resulting in
most power and again risking inflation of the Type I error rate (e.g. [123, 147, 158]).

In sum, covariate adjustment in randomized trials can provide meaningful improvements
in precision and thereby statistical power. To preserve inference, the working model, includ-
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ing the adjustment variables, must be specified a priori. In practice, sample size often limits
the size of the adjustment set, and best set is unclear before the trial’s conclusion. This
results in an important challenge: the need to learn from the data to realize precision gains,
but doing so in pre-specified and rigorous way to maintain valid statistical inference.

In this paper, we apply the principle of empirical efficiency mazimization to data-
adaptively select from a pre-specified library the candidate TMLE, which minimizes variance
and thereby maximizes the precision of the analysis [122, 159]. We contribute to the existing
methodology by modifying this strategy for pair-matched trials. To our knowledge, such a
data-adaptive procedure has not been proposed or implemented for this study design. We
further contribute to the literature by collaboratively estimating the exposure mechanism
for additional gains in precision [160, 161]. We also generalize the results for estimation
and inference of both the population and sample average treatment effects [140]. Our finite
sample simulations demonstrate the practical performance with limited numbers of indepen-
dent units, as is common in early phase clinical trials and in cluster randomized trials. As a
motivating example, we discuss the Sustainable East Africa Research in Community Health
(SEARCH) study, an ongoing cluster randomized trial for HIV prevention and treatment
(NCT01864603) [13].

4.1 Motivating Example and Causal Parameters

SEARCH is a community randomized trial to estimate the effect of immediate and stream-
lined antiretroviral therapy (ART) on HIV incidence as well as other health, economic and
educational outcomes. The trial is being conducted in 32 rural communities in Uganda and
Kenya. Extensive baseline characteristics were collected through ethnographic mapping and
community-wide censuses. Examples include region, occupational mix, measures of mobility,
HIV prevalence and community-level HIV RNA viral load. A subset of these characteris-
tics was used to create the 16 best matched pairs of communities [129]. The intervention
was randomized within matched pairs. In treatment communities, HIV testing is expanded,
and all individuals testing HIV+ are immediately eligible for ART with enhanced services
for initiation, linkage and retention in care. In control communities, all individuals testing
HIV+ are eligible for ART, according to in-country guidelines. The primary outcome is the
five-year cumulative incidence of HIV and will be measured through longitudinal follow-up.
The observed data for a given SEARCH community can be denoted

O =(W,AY)

where W represents the vector of baseline covariates, A represents the intervention assign-
ment, and Y denotes the outcome. Specifically, A is a binary indicator, equalling one if the
community was randomized to the treatment and zero if the community was randomized to
the control.

In this paper, we consider estimation and inference for the population average treatment
effect (PATE) and the sample average treatment effect (SATE). Let Y (a) denote the out-
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come if possibly contrary-to-fact the unit were assigned intervention-level A = a. The causal
parameters are a function of the distribution Py of the full data, comprised of the baseline
covariates and the counterfactual outcomes of interest: X = (W,Y(1),Y(0)) [19, 20]. Specif-
ically, the PATE is the expected difference in the counterfactual outcomes if all members of
the population were assigned the intervention and if all members of that population were
assigned the control:

UP(Py) = Bx[Y (1) - Y(0)] (4.)

where the expectation is over the full data distribution Py. There is one true value of ”( Py)
for the target population. For the SEARCH trial, the PATE is the expected difference
in the counterfactual cumulative incidence of HIV if all communities in the hypothetical
target population implemented the test-and-treat strategy and the counterfactual cumulative
incidence of HIV if all communities in that target population maintained the standard of
care.

The sample parameter is the average difference in the counterfactual outcomes for the
study units [19]:

W(Py) = - 37 V(1) - Yi(0)] (42)

=1

were Y;(a) denotes the outcome if possibly contrary-to-fact unit ¢ were assigned intervention-
level A = a. The SATE is data-adaptive; its true value depends on the n units in the
sample. The SATE is easily interpretable, responsive to heterogeneity in the intervention
effect, and arguably the most relevant when the study units are not representative of a greater
population. For the SEARCH trial, the SATE is the average difference in the counterfactual
cumulative incidence of HIV under the test-and-treat strategy and under the standard of
care for the 32 study communities.

4.2 Targeted Estimation in a Randomized Trial
Without Matching

In this section, we ignore the pair-matching scheme in the SEARCH trial and assume the ob-
served data consist of n independent, identically distribution (i.i.d.) copies of O = (W, A,}Y)
with some true, but unknown distribution F,, which factorizes as

Po(0) = B(W)Po(AW)By(Y A, W).

We do not make any assumptions about the common covariate distribution Py(W') or about
the common conditional distribution of the outcome, given the intervention and covariates
Py(Y|A,W). By design, the intervention A is randomized with probability 0.5. Therefore,
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the exposure mechanism is known: Py(A = 1|WW) = go(1|W) = 0.5. The statistical model
M, describing the set of possible observed data distributions, is semiparametric.

Since the intervention is randomized, we can easily identify the population effect U (Py)
(Eq. 4.1) from the observed data distribution. Our statistical estimand is the difference in
the expected outcome, given the treatment and covariates, and the expected outcome, given
the control and covariates, averaged (standardized) with respect to the covariate distribution
in the population [27]:

U(PRy) = Eo[Eo(Y|A=1,W) — Ey(Y|A=0,W)]
= Ey [QO(L W) - QO(Ov W)}

where Qo(A, W) = Eo(Y|A, W) denotes the conditional mean outcome, given the expo-
sure and covariates. As discussed in the introduction, there are many algorithms available
for unbiased and locally efficient estimation of this statistical parameter in a randomized
trial (e.g. [122-124, 151, 152]). Throughout, our focus is on TMLE, a general methodology
for the construction of double robust, semiparametric efficient substitution estimators [3, 40].

A TMLE for population effect also serves as a consistent and asymptotically linear es-
timator of the sample effect U (Py) (Eq. 4.2) [140]. The estimator can be implemented in
three steps.

Step 1. Initial estimation: Estimate the expected outcome, given the exposure and co-
variates Qo(A, W) = Eo(Y|A,W). We could use a pre-specified parametric working
model (as discussed above) or a more data-adaptive approach (as discussed below).

Step 2. Targeting: Update the initial estimator Q,,(A4, W).

i. Calculate the “clever” covariate based on the known or estimated exposure mech-
anism g, (A|W) = P,(A|W):

(I(A=1) (A= 0))
) = (50 = o

ii. If the outcome is continuous and unbounded, run linear regression of the outcome
Y on the covariate H,(A, W) with the initial estimator as offset. Plug in the
estimated coefficient ¢, to yield the targeted update: Q*(A, W) = Q,(A, W) +
enHn (A, W).

iii. If the outcome is binary or bounded in [0, 1]}, run logistic regression of the outcome
Y on the covariate H,(A, W) with the logit(x) = log{z/(1 — )} of the initial
estimator Q,,(A, W) as offset. Plug in the estimated coefficient ¢, to yield the
targeted update: Q;;(A, W) = expit{logit[Q, (A, W)|+e,H, (A, W)}, where expit
is the inverse-logit.

'Tn greater generality, the logistic fluctuation can also be used for a continuous outcome that is bounded
in [a,b] by first applying the following transformation to the outcome: Y* = (Y — a)/(b — a). For further
details, see Gruber and van der Laan [137].
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Step 3. Parameter estimation: Obtain the predicted outcomes for all observations under
the treatment Q7 (1, W) and control Q;(0,W). Average the difference in predicted

outcomes:
n

V(@) = -3 (@01, W) — @50,
i=1

If the initial estimator for Qq(A, W) is based on a working regression model with an inter-
cept and a main term for the exposure and if the exposure mechanism is treated as known,
then the updating step can be skipped [125]. Further precision, however, can be attained
by using a data-adaptive algorithm for initial estimation of Qy(A, W) and by estimating the
exposure mechanism go(A|W) [55].

Under regularity conditions, the standardized estimator converges to a normal distri-
bution with mean 0 and variance given by the variance of its influence curve, divided by
sample size n. The influence curve for the TMLE of the population parameter (PATE) can

be estimated from the observed data distribution by

p o (HA=1) TA=0) . A
P Qu)1O) = <g_n<1|w> gf<0|w>> - G4, w)
FQLL W)~ Q40 W) Wy () (43)

[3]. The influence curve for the TMLE of the sample parameter (SATE) can be conservatively
estimated from the observed data distribution by

I(A=1) I(A=0)

S ~% _ B A
D2 )0 = (i o)) O = @) (4.4

[140]. For the SATE, there is no variance contribution from the covariate distribution, which
is considered fixed. Asymptotically, the SATE will often be estimated with more precision
than the PATE [19, 117]. However, as shown by Balzer et al. [140] and in the simula-
tions that follow, the gains in precision from specifying the SATE as the target of inference
can be attenuated in small trials, because this influence curve-based variance estimator is
conservative.

Adaptive Pre-specified Approach for Step 1. Initial Estimation

Consider again the SEARCH trial for HIV prevention and treatment. Recall that the out-
come Y is the five-year cumulative incidence of HIV and bounded between 0 and 1. Suppose
that we want to use logistic regression for initial estimation of the expected outcome, given
the exposure and measured covariates Qq(A, W). It is unclear a priori which covariates
should be included in the working model and in what form. For example, baseline HIV
prevalence is a known predictor of the outcome and may be imbalanced between the treat-
ment and control groups. Likewise, there might be substantial heterogeneity in the treatment
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effect by region and allowing for an interaction between region and the intervention may re-
duce the variance of the TMLE. Including all the covariates and the relevant interactions
in the working model is likely to result in overfitting and misleading inference. To facilitate
selection between candidate initial estimators and thereby candidate TMLEs, we propose
the following cross-validation selector.

First, we propose a library of candidate working models for initial estimation of the
conditional mean outcome Qo(A, W). This library should be pre-specified in the protocol or
the analysis plan. A possible library could consist of the following logistic regression working
models:

logit[Q (A, W, B)] = By + 51 A
logit[Q" (A, W, B)] = Bo + B1A + W1
logit[Q (A, W, 8)] = Bo + SrA + B W2 + B3A x W2

where, for example, W1 denotes baseline prevalence and W2 denotes region. Of course, there
are many more candidate algorithms, and we are considering this simple set for pedagogic
purposes. We also note that the first working model corresponds to the unadjusted estimator.
Second, we need to pre-specify a loss function to measure the performance of candidate
estimators. Following the principle of empirical efficiency maximization [159], we propose
using the variance of the estimated influence curve of the TMLE for the parameter of interest.
Specifically, if the target of inference is the population effect, our loss function is

£7>(Q) = Var |:D171><907 Q)] )
and if the target of inference is the sample effect, our loss function is
£5(Q) = Var [D;f(go, Q)}

For SATE, this corresponds to the L2 squared error loss function £5(Q) = (Y —Q(A, VV))2

Next, we need to pre-specify our cross-validation scheme, used to generate an estimate
of the expected loss (i.e. the “risk”) for each of the candidate estimators. For generality, we
present V-fold cross-validation, where the data are randomly split into V' partitions, called
“folds”, of size =~ n/V. To respect the limited sample sizes common in early phase clinical
trials and in cluster randomized trials, leave-one-out cross-validation may be appropriate.
Leave-one-out cross-validation corresponds with V' = n-fold cross-validation, where each fold
corresponds to one observation. The cross-validation procedure for initial estimation of the
conditional mean Qy(A, W) can be implemented as follows.

i. For each fold v = {1,...,V} in turn,

a. Set the observation(s) in fold v to be the validation set and the remaining obser-
vations to be the training set.
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b. Fit each algorithm using only data in the training set. For the above library, we
would run logistic regression of the outcome Y on the exposure A and covariates W,
according to the working model. Denote the initial regression fits as Qq(f)(A, W),
QY (A, W) and Q%C)(A, W), respectively.

c. For each algorithm, use the estimated fit to predict the outcome(s) for the obser-
vation(s) in the validation set under the treatment and the control. For the first
algorithm, for example, we would have Qf{l)(l, W;,) and Qﬁ;”(o, W;,) for observation
Oy, in the validation set.

ii. For each algorithm, estimate the risk with the sample variance of the cross-validated
estimate of the influence curve. If the target of inference is the PATE, our risk estimates
would be

CV-risk™® = Var, [DF (g, Q)]
CV-risk™® = Var, [D? (g0, QV)]
CV-risk™© = Var, [DF (go, Q)]
where Var, denotes the sample variance and we are treating the exposure mechanism

as known: go(A|W) = 0.5. If instead the target of inference is SATE, our risk estimates
would be

CVorisk$@ = Var, [Df (9o, nga))}
CV-risk®® = Var, [DS (g0, Q)]
CV-risk® = Var, [D . (90, "

iii. Select the algorithm with the smallest cross-validated risk.

The selected working model is then used for initial estimation of Qy(A, W) in Step 1
of the TMLE algorithm. Since our library was limited to parametric working models and
the exposure mechanism was treated as known, the updating step can be skipped. In other
words, the chosen estimator was already targeted Q,(A, W) = Q*(A, W) and can be used
for Step 3 parameter estimation.

4.3 Targeted Estimation in a Randomized Trial With
Matching

Recall the pair-matching scheme briefly described in Section 4.1 for the SEARCH trial.
First, the potential study units were selected. Then baseline covariates, such as region,
occupational mix and measures of migration, were collected. A matching algorithm was
applied to the baseline covariates of candidate units to create the best 16 matched pairs. The
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intervention was randomized within the resulting pairs, and the outcome will be measured
with longitudinal follow-up. This pair-matching scheme is considered to be adaptive, because
the resulting matched pairs are a function of the baseline covariates of all the candidate
units [115, 129]. This design has also been called “nonbipartite matching” and “optimal
multivariate matching” [93, 112, 113].

The adaptive design creates a dependence in the data. Since the construction of the
matched pairs is a function of the baseline covariates of all n study units, the observed data
do not consist of n/2 i.i.d. paired observations, as current practice sometimes assumes (e.g.
(82, 96, 97, 100]). Instead, we have n dependent copies of O = (W, A,Y). Nonetheless,
there is a lot of conditional independence in the data. Mainly, once we consider the baseline
covariates of the study units as fixed, then we recover n/2 conditionally independent units:

0;j = (0j1,052) = (Wj1, Aj1, Yin), Wiz, Aja, Yi2))

where the index j = 1,...,n/2 denotes the partitioning of the candidate units {1,...n} into
matched pairs according to similarity in their baseline covariates (W1, ..., W,,). Throughout
subscripts 71 and 72 index the observations within matched pair j. The conditional dis-
tribution of the observed data, given the baseline covariates of the study units, factorizes
as

n/2
Po(Or,...,0n|Wh, .. W) = T Po(Aji, AW, ..., W) Po(Yin | Aji, Win) Po(Yial Aja, Wia)
j=1
n/2

=0.5 H FPo(Yju|Aji, Wii) Po(Yja| Aja, Wia)
j=1

where the second line follows from randomization of the intervention within matched pairs.
For estimation and inference of the PATE, we need to assume that each community’s base-
line covariates W; are independently drawn from some common distribution Py(W). For
estimation and inference of the SATE, this assumption on the covariate distribution can be
weakened. (See the Appendix D.1 for further details.)

Despite the dependence in the data, a TMLE for the population effect (PATE) can be
implemented as if the sample were n i.i.d. units [115]. In Step 1, we obtain an initial es-
timator of Q¢(A, W) with an a priori-specified parametric working model or with a more
data-adaptive method. In Step 2, we target the initial estimator Q,(A, W) by using in-
formation in the known or estimated exposure mechanism. Finally in Step 3, we obtain
the predicted outcomes for all observations under the treatment Q7 (1, W) and the control
Q:(0,W), and then take the sample average of the difference in these predicted outcomes.
Furthermore, the variance of the TMLE can be estimated by treating the sample as n i.i.d.
units. In other words, inference can be based on the sample variance of the estimated influ-
ence curve in the non-matched trial D? (Eq. 4.3), divided by n [115]. This variance estimator
ignores any gains in precision from pair-matching and will be conservative under reasonable
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assumptions. A less conservative variance estimator can be obtained by accounting for the
potential correlations of the residuals within matched pairs:

n/2
P(@)(0;) = ni/z Z (Vi — Qn(Aj, W) (Y2 — @5 (Aja, W) (4.5)

[115]. An estimate of the asymptotic variance of the TMLE is then given by the sample
variance of D? minus 2p,, all divided by n.

In a pair-matched trial, a TMLE for the population effect is also a consistent and asymp-
totically linear estimator of the sample effect. The proof is given in Appendix D.1. Fur-
thermore, the influence curve for the TMLE of the SATE can be conservatively estimated
by

N )k e 1 )k )k
where DS (g,, Q%) (O) is the estimated influence curve for observation O in the non-matched
trial (Eq. 4.4). The proof is given in Appendix D.2. Inference can be based on the sample
variance of the estimated (paired) influence curve DS, divided by n/2. If we order observa-
tions within matched pairs such that first corresponds to the intervention (A;; = 1) and the
second to the control (A;, = 0) and treat the exposure mechanism as known go(A|W) = 0.5,
we have B - B B

Dy (90, @:)(05) = (Yj = Qi (1L, W) — (Y2 — Q1(0,Wj2))
In this setting, the sample variance of the pairwise differences in residuals, divided by n/2,
provides a conservative variance estimator.

Adaptive Pre-specified Approach for Step 1. Initial Estimation

By balancing intervention groups with respect to baseline determinants of the outcome,
pair-matching increases the efficiency of the study (e.g. [94, 115, 129]). Nonetheless, residual
imbalance on the baseline predictors often remains, and adjusting for these covariates during
the analysis can further increase efficiency. In the SEARCH trial, for example, the matched
pairs were created before baseline HIV prevalence was measured. As a result, there is likely
to be variation across pairs in baseline prevalence, which is a known driver of HIV incidence.
Adjusting for baseline prevalence during the analysis is likely to reduce the variance of the
TMLE and result in a less conservative variance estimator. Unfortunately, it is unclear a
priori whether adjusting for prevalence will yield more power than than adjusting for other
baseline covariates, such as male circumcision prevalence or measures of community-level
HIV RNA viral load. With only 16 (conditionally) independent units, we are limited as to
the size of the adjustment set. Adjusting for too many covariates can result in over-fitting.
As before, we want to data-adaptively select the candidate TMLE (i.e. working regression
model), which maximizes the empirical efficiency.
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The data-adaptive procedure for Step 1 initial estimation of conditional mean outcome
Qo(A, W), outlined in Sec. 4.2 for a non-matched trial, can be modified for a pair-matched
trial. As before, we need to pre-specify our library of candidate estimators, our measure
of performance and the cross-validation scheme. We can use the same library of candidate
working models for initial estimation of the conditional mean outcome Qq(A, W). For the loss
function, however, we want to use the estimated variance of the TMLE under pair-matching.
To elaborate, consider the loss function for the SATE in a non-matched trial. Minimizing the
sum of squared residuals (i.e. minimizing the variance of DS (Eq. 4.4)) targets the conditional
mean outcome Qq(A, W). As a result, the algorithm could select a working model adjusting
for a covariate that is highly predictive of the outcome but on which we matched perfectly.
In the SEARCH trial, for example, communities were paired within region, because HIV
incidence is expected to be highly heterogeneous across regions. Therefore, minimizing the
empirical variance of DS might lead to the selection of the candidate TMLE with main
terms for the intervention and region. This selection would not improve the precision of the
analysis over the unadjusted algorithm. Instead, we want to select the TMLE minimizing
the conservative estimator of the variance in the pair-matched design. Thereby, our loss
functions for the PATE and SATE are

LP(Q) = Var[DF (g0, Q) — 2pa(Q)]
L£3(Q) = Var[D; (g, Q)]

respectively. Finally, the pair should be treated as the unit of (conditional) independence in
the cross-validation scheme. In other words, when the data are split into V-folds, the pairing
should be preserved. In small trials, leave-one-pair-out cross-validation may be appropriate.
With these modifications, we can implement the cross-validation scheme, outlined in Sec. 4.2,
to data-adaptively select the candidate working model, which minimizes the estimated vari-
ance of the TMLE in a pair-matched trial.

4.4 Collaborative Estimation of the Exposure
Mechanism

Even though the intervention A is randomized with balanced allocation, estimating the
known exposure mechanism go(A|W) can increase the precision of the analysis [55]. As
before, we want to respect the study design (i.e. pair-matched or not) as well as adjust
for a covariate only if its inclusion improves the empirical efficiency. For example, we may
not want to include a covariate that is imbalanced between the intervention groups (i.e.
predictive of A) but not predictive of the outcome. Likewise, if a given covariate (e.g. W1)
was included in the working model for Qy(A, W), further adjusting for this covariate when
estimating the exposure mechanism may not increase precision. To this end, we propose to
incorporate the Collaborative-TMLE (C-TMLE) approach into our algorithm [160, 161].
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Adaptive Pre-specified Approach for Step 2. Targeting

First, we propose a library of candidate estimators of the exposure mechanism go(A|W).
As before, this library should be pre-specified in the protocol or analysis plan. A possible
library could consist of the following logistic regression working models:

logit[g'™ (W, B8)] = Bo
logit[g® (W, B)] = Bo + BiW1
logit[g‘ (W, B)] = Bo + B2

where, for example, W1 is baseline prevalence and W2 is region. Each algorithm would yield
a different update to a given initial estimator of the conditional mean outcome Q, (A, W),
selected by the data-adaptive procedure for Step 1 (Sec. 4.2 and 4.3). In other words, each
candidate estimator of go(A|W) results in a different targeted estimator Q¥ (A, W). We also
note that the first working model corresponds to the unadjusted estimator.

To choose between candidate algorithms, we need to pre-specify a loss function. As before,
we propose using the estimated variance of the TMLE, appropriate for the scientific question
(i.e. population or sample effect) and study design (i.e. pair-matched or not). Finally, we
need to pre-specify our cross-validation scheme, used to obtain an honest measure of risk and
to reduce the potential for over-fitting. As before, we present V-fold cross-validation, where
the data are partitioned into V folds of size &~ n/V. If matching was used, the partitioning
should preserve the pairs. The cross-validation selector for collaborative estimation of the
exposure mechanism can be implemented as follows.

i. For each fold v = {1,...,V} in turn,

a. Set the observation(s) in fold v to be the validation set and the remaining observations
to be the training set.

b. Using only data in the training set, fit each algorithm for estimating the exposure
mechanism. For the above library, we would run logistic regression of the exposure A
on the covariates W accordmg to the workm% model. Denote the estimated exposure
mechanisms as g\ (A|W), g (A|W) and ¢\ (A|W), respectively.

c. For each algorithm, use the estimated fit of the exposure mechanism to target the
initial estimator @, (A, W), also fit with the training set.

d. For each algorithm, obtain targeted predictions of the outcome(s) for the observa-
tion(s) in the validation set under the treatment and the control. For the first algo-
rithm, for example, we would have Q%a)’*(l, W) and Q&f‘)v*(o, W) for observation Oy,
in the validation set.

ii. For each algorithm, estimate the risk with the cross-validated variance estimator, ap-
propriate for the target parameter and study design.

iii. Select the algorithm with the smallest cross-validated risk.
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The chosen estimator is then used for targeting in Step 2 of the TMLE algorithm.

4.5 Obtaining Inference

In summary, we have proposed the following data-adaptive TMLE to maximize the precision
and power of a randomized trial.

Step 1. Initial estimation of the conditional mean outcome with the working model
Qn(A, W), which was data-adaptively selected to maximize the empirical efficiency of
the analysis (Sec. 4.2 for a non-matched trial and Sec. 4.3 for a matched trial).

Step 2. Targeting the initial estimator using the estimated exposure mechanism
gn(A|W), which was data-adaptively selected to further maximize the empirical ef-
ficiency of the analysis (Sec. 4.4).

Step 3. Obtaining a point estimate by averaging the difference in the targeted predicted
outcomes: "
V(@) = -3 (@51 W) — @0, W)]
i=1
We now need a variance estimator that accounts for this selection process. For this, we pro-
pose using a cross-validated variance estimator. As before, the data are split into validation
and training sets, respecting the unit of (conditional) independence. The selected TMLE is
fit using the data in the training set and used to estimate the influence curve? for the obser-
vation(s) in the validation set. The step-by-step instructions are given in the Appendix D.3.
The sample variance of the cross-validated estimate of the influence curve can then be used
for hypothesis testing and the construction of Wald-type confidence intervals. For trials
with a limited number of independent units, the Student’s ¢-distribution is an appropriate
alternative to the standard normal distribution.

4.6 Simulation Study

We present the following simulation studies to demonstrate (1) implementation of the pro-
posed methodology, (2) the potential gains in precision and power from data-adaptive es-
timation of the conditional mean outcome, (3) the additional gains in precision and power
from collaborative estimation of the exposure mechanism, and (4) maintenance of nominal
confidence interval coverage. All simulations were conducted in R v3.1.2 [46].

2 For the TMLE of the population effect in a matched trial, we also need a cross-validated estimate of
the correction term p, (Eq. 4.5.) This term is a function of the residuals, which can be estimated for each
pair in the validation set based on targeted estimator Q* (A4, W), fit with the training set.
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Study 1
For each unit ¢ = {1,...,n}, we generated the nine baseline covariates by drawing from a

multivariate normal with mean 0 and variance 1. The correlation between the first three
covariates {WW1, W2 W3} and between the second three covariates {W4, W5, W6} was 0.5,
while the correlation between the remaining covariates {W7, W8, W9} was 0. The expo-
sure A was randomized such that the treatment allocation was balanced overall. For the
non-matched trial, we randomly assigned the intervention to n/2 units and the control to
the remaining n/2 units. For the pair-matched trial, we used the non-bipartite matching
algorithm nbpMatch to pair units on covariates {W1,... W6} [111]. The exposure A was
randomized within the resulting matched pairs. Recall A is a binary indicator, equalling 1
if the unit was assigned the treatment and 0 if the unit was assigned the control. For each
unit, the outcome Y was then generated as

Y =04A+025(W14+ W2+ W4+ W5+ Uy) + 0.25A(W1 + Uy)

where Uy was drawn from a standard normal. We also generated the counterfactual outcomes
Y (1) and Y'(0) by intervening to set A = a. To reflect the limited sample sizes common
in early phase clinical trials and in cluster randomized trials, we selected a sample size of
n = 40. This resulted in n/2 = 20 conditionally independent units in the pair-matched trial.

For each study design (non-matched or matched), this data generating process was re-
peated 2,500 times. Recall that the sample effect U (Py) (Eq. 4.2) is data-adaptive param-
eter; its value changes with each new selection of units. Thereby, for each repetition, the
SATE was calculated as the sample average of the difference in the counterfactual outcomes.
The SATE ranged from 0.23 to 0.60 with a mean of 0.40. In contrast, the population effect
U”(Px) (Eq. 4.1) is constant and was calculated by averaging the difference in the coun-
terfactual outcomes over a population of 900,000 units. The true value of the PATE was
0.40.

We compared the performance of the unadjusted estimator to TMLE with various ap-
proaches to covariate adjustment. Specifically, we implemented the TMLE algorithm, where
the initial estimation of the conditional mean outcome Qy(A, W) was based on a linear work-
ing model with main terms for the intervention A and irrelevant covariate W9 and where the
exposure mechanism was treated as known: go(A|WW) = 0.5. This approach was equivalent to
standard maximum likelihood estimation (MLE) and represented the unfortunate scenario
where the researcher pre-specified adjustment for a covariate that was not predictive of the
outcome.

We also implemented a TMLE with the data-adaptive approach for Step 1 initial es-
timation of the conditional mean outcome (Sec. 4.2 and 4.3). Our library consisted of 10
working linear regression models, each with an intercept, a main term for the exposure A
and a main term for one baseline covariate: {0, W1,... W9}, where () corresponds to the
unadjusted estimator. Our loss function was the estimated variance of the TMLE, appro-
priate for the target parameter and study design. We chose the candidate working model
with the lowest estimated risk, based on leave-one-out cross-validation for the non-matched
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trial and leave-one-pair-out cross-validation for the matched trial. We also implemented
Collaborative-TMLE (C-TMLE), which couples the data-adaptive approach for Step 1 ini-
tial estimation of the conditional mean outcome (Sec. 4.2 and 4.3) with the data-adaptive
approach for Step 2 targeting (Sec. 4.4). For the latter, our library of candidates to esti-
mate the exposure mechanism consisted of 10 working logistic regression models, each with
an intercept and a main term for one baseline covariate: {(), W1,... ,W9}. The same loss
function and cross-validation scheme were used for C-TMLE.

For the unadjusted estimator and the MLE, inference was based on the estimated in-
fluence curve. For the data-adaptive TMLESs, inference was based on the cross-validated
estimate of the influence curve (Sec. 4.5). We assumed the standardized estimator followed
the Student’s ¢-distribution with n — 2 = 38 degrees of freedom for the non-matched trial
and with n/2 — 1 = 19 degrees of freedom for the matched trial.

Results

Table 4.1 illustrates the performance of the estimators over the 2,500 simulated data sets.
Specifically, we show the mean squared error (MSE), the relative MSE (rMSE), the average
standard error estimate &, the attained power and the 95% confidence interval coverage.
As expected, matching improved efficiency. The MSE of the unadjusted estimator, for
example, was approximately 2 times larger in the non-matched trial than in the pair-matched
trial. Furthermore, for the pair-matched trial, targeting the sample effect, as opposed to the
population effect, resulted in substantial gains in attained power: 38% with the unadjusted
estimator for the PATE and 53% with the same estimator for the SATE. For the non-matched
trial, targeting the sample parameter increased efficiency, but did not directly translate into
increased power due to the conservative variance estimator for the SATE.

In all scenarios, the TMLE with data-adaptive selection of the initial estimator of Qo (A, W)
improved precision over the unadjusted estimator and the MLE. Collaborative estimation of
the exposure mechanism go(A|W) led to further gains in precision. Consider, for example,
estimation of the PATE in a trial without matching. The MSE of the unadjusted estimator
was 1.44 times larger than the TMLE and 1.51 times larger than the C-TMLE. The attained
power was 36%, 51% and 52%, respectively. Furthermore, the precision of the MLE, ad-
justing for the irrelevant covariate W9, was worse than the estimators in all scenarios. This
demonstrates the potential peril of relying on one pre-specified adjustment variable. As a
second example, consider the attained power to detect that the SATE was different from zero
in the pair-matched trial. We would have 53% power with the unadjusted estimator and
54% power with the MLE, adjusting for the irrelevant covariate W9. By incorporating the
cross-validation selector for initial estimation of Qo(A, W), the TMLE achieved 68% power.
By further incorporating collaborative estimation of the exposure mechanism go(A|W), the
C-TMLE achieved 70% power. Overall, the greatest efficiency was achieved with C-TMLE
for the SATE in the pair-matched trial. Indeed, the MSE of the unadjusted estimator for the
population parameter in the trial without matching was nearly 3 times larger than the MSE
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PATE SATE
MSE* rMSE’ 6° Pow? Cov¢ | MSE® rMSE’ 4° Pow? Cov
Non-Matched Trial
Unadj. | 6.3E-2  1.00 025 036 095|60BE2  1.05 025 036 0.95
MLE 6.6E-2 096 025 037 094|63E2 100 025 037 095
TMLE | 44E-2 144 020 051 094 42B2 152 020 049 0.95
C-TMLE | 42E-2 151 020 052 0.95|39E2  1.63 020 050 0.96
Matched Trial
Unadj. |3.3E-2 193 022 038 099 |3.0E2 211 018 053 0.97
MLE 34E-2  1.84 022 038 098 |32E2 199 018 054 0.96
TMLE | 25E-2 253 018 056 098 24BE-2 263 0.16 0.68 0.95
C-TMLE | 24E-2 266 0.8 0.58 0.98|23E2 278 015 070 0.95

“Mean squared error: the bias (average deviation between the point estimate and sample-specific
true value) - squared plus the variance

bRelative MSE: the MSE of the unadjusted estimator for the PATE in a non-matched trial relative
to (divided by) the MSE of another estimator

¢Average standard error estimate, based on the estimated influence curve

4 Attained power: proportion of times the false null hypothesis was rejected

¢Confidence interval (CI) coverage: proportion of times the true value was contained in the 95% CI

Table 4.1: Summary of estimator performance for Simulation 1. The rows denote the study
design and the estimator: unadjusted, MLE adjusting for W9, TMLE with data-adaptive
selection of the initial estimator, and Collaborative-TMLE (C-TMLE) with data-adaptive
selection of the initial estimator paired with data-adaptive estimation of the exposure mech-
anism.

of the C-TMLE for the sample effect in the pair-matched trial. Throughout the confidence
interval coverage was maintained near or above the nominal rate of 95%.

Further insight into the efficiency gains with the proposed TMLE and C-TMLE is pro-
vided by Table 4.2, which shows the proportion of times a working model was selected for
initial estimation of the conditional mean outcome and for collaborative estimation of the
exposure mechanism. When targeting the PATE, the selection for Qq(A, W) was similar with
and without pair-matching. This was not surprising, because our measure of performance
(i.e. the loss function) was the estimated variance of the TMLE, and the variance estimator
in a pair-matched trial is given by the estimated variance in the non-matched trial minus a
correction term p,, which was close to 0. When targeting the SATE, however, the selection
procedure was more optimized to the study design. For example, the working model with
main terms for the intervention and W1 was selected in 57% of the studies without matching
and in only 38% of the studies with matching. Instead, working models adjusting for other
predictive covariates were selected more frequently. Furthermore, the collaborative proce-
dure for estimation of the exposure mechanism was able to identify settings where the no
adjustment would yield the greatest gains in efficiency. Specifically, the unadjusted estimator
gn(A|W) = 0.5 was selected in nearly 80% of the studies without matching and in less than
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Working model for initial estimation of Qo(A, W)

Adjustment variable @ W1 W2 W3 W4 W5 W6 W7 W8 W9
PATE non-matched 0 57 19 1 11 11 1 0 0 0
matched 0 54 20 1 12 12 1 0 0 0

SATE non-matched 0 57 19 1 11 11 1 0 0 0
matched 0 38 21 5 15 15 3 0 1 1

Working model for estimation of go(A|W)
Adjustment variable @ W1 W2 W3 W4 W5 W6 W7 W8 W9
PATE non-matched 79 2 3 2 3 3 2 2 2 2

matched 29 9 10 9 9 9 8 5 6 6
SATE non-matched 77 2 3 2 3 4 2 2 3 2
matched 16 10 11 10 11 10 10 7 7 7

Table 4.2: For Simulation 1, the proportion of times a covariate was selected in the work-
ing linear regression model for initial estimation of Qo(A, W) and in the working logistic
regression model for collaborative estimation of the exposure mechanism go(A|W).

30% of the studies with matching.

Study 2

For the second simulation study, we increased the complexity of the data-generating process
and reduced the sample size to n = 30. As before, we generated nine baseline covariates
from a multivariate normal with mean 0, variance 1 and the same correlation structure. We
also generated a binary variable R, equalling 1 with probability 0.5 and equalling -1 with
probability 0.5. The final covariate Z was generated as a function of these baseline covariates
and random noise Ugy:

Z =R x expit(W1+ W4+ WT7+0.5Uy)

where the expit is the inverse of the logit function and Uy was drawn independently from a
standard normal. As before, the intervention A was randomized with balanced allocation.
For a non-matched trial, the treatment was randomly assigned to n/2 units and the control
to the remaining n/2 units. For the pair-matched trial, we used the non-bipartite matching
algorithm nbpMatch to explore two matching sets [111]. In the first, units were matched
on R, a baseline covariate strongly impacting Z. In the second, units were matched on
{R,W2,W5,W8}. The intervention A was randomized within the matched pairs. For each
unit, the outcome Y was then generated as

Y = expit[0.75A + 0.5(W2 + W5 + W8) + 1.5Z + 0.25Uy + 0.75A(W?2 — W5) + 0.5AZ] /7.5

where Uy was drawn from a standard normal. The outcome is now a continuous variable
bounded in [0, 1] (e.g. a proportion). We also generated the counterfactual outcomes Y (1)
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correlation 0.5  correlation 0.5 correlation 0
R W1 W2 W3 W4 W5 W6 W7 W8 W9 Z
Parents of covariate Z v v v v
Parents of the outcome Y | v/ v v v v
Matching set 1 v
Matching set 2 v v v v

Table 4.3: For Simulation 2, the relationships between baseline covariates and the outcome
as well as the adaptive pair-matching schemes.

and Y (0) by intervening to set A = a. For each study design, this data generating process
was repeated 2,500 times. The SATE and PATE were calculated as before. The SATE
ranged from 0.25% to 3.1% with a mean of 1.6%. The true value of the PATE was 1.6%.
Table 4.3 depicts the relationship between the baseline covariates and the outcome as well
as the adaptive pair-matching schemes.

We compared the same algorithms: the unadjusted estimator, the MLE adjusting for the
irrelevant covariate W9, the TMLE with data-adaptive initial estimation of the conditional
mean outcome, and the C-TMLE pairing data-adaptive initial estimation of the conditional
mean outcome with data-adaptive targeting. Our library for initial estimation of the con-
ditional mean outcome Qu(A, W) consisted of 12 working logistic regression models, each
with an intercept and a main term for the exposure A and a main term for one candidate
adjustment variable {0, R,W1,..., W9, Z}. Our library for collaborative estimation of the
exposure mechanism go(A|W) included 12 working logistic regression models, each with an
intercept and a main term for one candidate adjustment variable: {@, R, W1,... , W9, Z}.
We used the same measure of performance and cross-validation scheme. As before, inference
was based on the estimated influence curve for the unadjusted estimator and the MLE and on
the cross-validated estimate of the influence curve for the data-adaptive TMLEs (Sec. 4.5).
We assumed the standardized estimator followed the Student’s t-distribution with n—2 = 28
degrees of freedom for the non-matched trial and with n/2 — 1 = 14 degrees of freedom for
the matched trial.

Results

The results for the second simulation study are given in Table 4.4 and largely echoed the
above findings. Pair-matching, even on a single covariate (i.e. matching set 1), improved
the precision of the analysis. Targeting the sample effect instead of the population effect
further improved efficiency. Allowing for data-adaptive selection of the working model for
initial estimation of Qy(A, W) yielded even greater precision, and the most efficient analysis
was with C-TMLE. Indeed, the MSE of the unadjusted estimator for the PATE in the non-
matched trial was nearly 5 times higher than the MSE of the C-TMLE when matching on
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predictive covariates (i.e. matching set 2). This resulted in over 30% more power to detect
the intervention effect.

PATE SATE
MSE® rMSE’ ¢ Pow? Cov¢ | MSE® rMSE’ 4° Pow? Cov
Non-Matched
Unadj. 1.7E-4 1.00 0.013 0.21 094 | 1.5E4 1.16 0.013 0.21 0.96
MLE 1.8E-4 097 0.013 0.23 0.94 | 1.5E-4 1.12 0.013 0.23 0.95
TMLE 1.1E-4 1.54 0.010 0.33 0.93 | 9.0E-5 1.92 0.010 0.31 0.96
C-TMLE | 1.1E-4 1.57 0.010 0.34 0.93 | 8.6E-5 1.99 0.010 0.32 0.97
Matching Set 1
Unadj. 1.2E-4 1.43 0.012 0.21 0.96 | 9.9E-5 1.74 0.011 0.28 0.97
MLE 1.3E-4 1.34 0.011 0.23 0.96 | 1.1E4 1.63 0.011 0.29 0.96
TMLE 9.9E-5 1.74 0.009 0.33 0.95| 7.5E-5 2.30 0.009 0.38 0.96
C-TMLE | 9.6E-5 1.79 0.009 0.36 0.94 | 7.5E-5 231 0.008 043 0.95
Matching Set 2
Unadj. 6.4E-5 270 0.011 0.18 0.99 | 4.5E-5 3.85 0.009 0.36 0.99
MLE 7.1E-5 243 0.011  0.21 0.99 | 5.2E-5 3.28 0.009 0.37 0.99
TMLE 5.1E-5 3.39 0.009 0.31 0.99 | 3.5E-5 4.86 0.008 0.46 0.98
C-TMLE | 5.1E-5 3.35 0.009 035 0.98 | 3.6E-5 4.78 0.007 0.52 0.98

“Mean squared error: the bias (average deviation between the point estimate and sample-specific
true value) - squared plus the variance

bRelative MSE: the MSE of the unadjusted estimator for the PATE in a non-matched trial relative
to (divided by) the MSE of another estimator

¢Average standard error estimate, based on the estimated influence curve

@ Attained power: proportion of times the false null hypothesis was rejected

¢Confidence interval (CI) coverage: proportion of times the true value was contained in the 95% CI

Table 4.4: Summary of estimator performance for Simulation 2. The rows denote the study
design and the estimator: unadjusted, MLE adjusting for W9, TMLE with data-adaptive
selection of the initial estimator, and Collaborative-TMLE (C-TMLE) with data-adaptive
selection of the initial estimator paired with data-adaptive estimation of the exposure mech-
anism.

For these simulations, there was a notable impact of parameter specification on estimator
performance. We first focus on the estimation of the PATE and then on estimation of the
SATE. When the population effect was the target of inference, the gains in attained power
from pair-matching were attenuated despite the gains in MSE. This was likely due to the
slight underestimation of the standard error in the non-matched trial and overestimation
in the pair-matched trial. Indeed, the confidence interval coverage in the non-matched
trial was less than nominal (93-94%), while the coverage when matching well (i.e. set 2)
approached 100%. For this set of simulations, the correction factor p, (Eq. 4.5) used in
variance estimation for the pair-matched design was approximately 0. As a result, the
variance estimator in the pair-matched trial was quite conservative, and the cross-validation
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selection scheme was more optimized for the non-matched trial. The latter point is evidenced
by Table 4.5, which shows the proportion of times a candidate working model was selected.
The logistic regression model adjusting for R was selected for initial estimation of Qo(A, W)
in 10% of the studies without matching and in 8% of the studies when matching well on R
(i.e. set 1). Furthermore, when matching on several covariates (i.e. set 2), the selection of
working models for Qo(A, W) was very similar to the selection in the non-matched trial.

Selected in the working model for initial estimation of Qo(A, W)

Adjustment variable ¢ R W1 W2 W3 W4 W5 W6 W7 W8 W9 Z
PATE non-matched 0 10 0 16 1 0 0 0 0 3 0 70
matched setl 0 8 1 30 1 0 0 0 0 4 0 56
matched set2 0 8 0 16 1 0 0 0 0 2 0 72

SATE non-matched 0 11 1 18 1 0 0 0 0 3 0 67
matched setl 0 2 3 55 3 1 1 1 1 11 1 21
matched set2 0 6 2 30 3 2 1 2 1 7 2 44

Selected in the working model for estimation of go(A|W)
Adjustment variable (¢ R W1 W2 W3 W4 W5 W6 W7 W8 W9 Z

PATE non-matched 79 2 2 2 2 1 1 1 2 3 2 2
matched setl 37 9 5 6 5 4 3 3 5 5 5 13
matched set2 25 10 4 9 6 5 9 5 4 8 4 11

SATE non-matched 78 2 2 3 2 1 1 1 2 3 2 2
matched setl 25 9 5 7 6 6 5 5 6 7 6 11
matched set2 13 10 6 12 6 5 9 6 6 10 5 11

Table 4.5: For Simulation 2, the proportion of times a covariate was selected in the work-
ing logistic regression model for initial estimation of Qo(A, W) and in the working logistic
regression model for collaborative estimation of the exposure mechanism go(A|W).

In contrast, when estimating the SATE, smaller MSE directly translated to greater at-
tained power, while maintaining nominal, if not conservative, confidence interval coverage.
For example, the attained power of the TMLE was 31% in the non-matched trial, 38% when
matching on a single covariate and 46% when matching on several covariates. Likewise,
the attained power of the C-TMLE was 32% in the non-matched trial, 43% in the trial
pair-matching on a single covariate and 52% in trial matching on several covariates. From
Table 4.5, we see that the working model adjusting for R was selected for initial estimation
of Qo(A, W) in 11% of the studies without matching and only in 2% of the studies when
matching well on R (i.e. set 1). In the latter, more weight was given to other predictive
baseline covariates, such as W2 and W8.
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4.7 Discussion

This paper builds on the rich history of covariate adjustment in randomized trials (e.g. [119-
121, 123, 151, 152, 154, 155, 162]). In particular, Rubin and van der Laan [122] proposed
the principle of empirical efficiency mazximization as a strategy to select the estimator of
Qo(A, W) that minimized the empirical variance of the estimated efficient influence curve.
Their procedure, however, relied on solving a weighted nonlinear least squares problem. Our
approach only requires researchers to take the sample variance of the estimated influence
curve. More recently, van der Laan and Gruber [160] proposed collaborative estimation of
the exposure mechanism to achieve the greatest bias reduction in the targeting step of TMLE
in a observational study. In randomized trials, there is no risk of bias from regression model
misspecification (e.g. [125]). Thereby, the collaborative approach, implemented here, serves
only to increase precision by estimating the known exposure mechanism. To our knowledge,
this is the first research into C-TMLE in a randomized trial setting. Most recently, van
der Laan [159] suggested selection of the candidate (C-)TMLE based on minimizing the
estimated variance of its influence curve. Our paper generalizes this scheme for estimation
and inference of both the population and sample average treatment effects in randomized
trials with and without pair-matching.

Our simulations illustrate the performance of the proposed procedure in realistically-
sized (i.e. small) trials. In particular, with only 15 (conditionally) independent units, our
procedure was able to identify the optimal working model for initial estimation of Qq(A, W)
from a library of 12 candidates as well as for collaborative estimation of go(A|W) from a
library of 12 candidates, while maintaining close to nominal confidence interval coverage.
The simulations also indicated the most efficient approach was estimating the sample effect
with C-TMLE in pair-matched trial. Indeed, this approach was nearly 5 more efficient
than targeting the population effect with the unadjusted estimator in the non-matched trial.
Thereby, our procedure dispels the common concerns of “analytical limitations” to pair-
matched trials (e.g. [82, 95, 150]).

There are several areas of future work. First, our library of candidate estimators was
limited to simple parametric working models. This choice was made for pedagogic purpose
and to avoid over-fitting in small trials. In larger trials, we can expand the library to include
working models with multiple adjustment variables and interactions as well as selection
procedures (e.g. stepwise regression) and semiparametric algorithms. Future work will
involve simulations to evaluate the methodology in larger trials. The application to matched
triplets, as opposed to matched pairs, should be straightforward. However, the impact of
adaptive stratification on estimation and inference merits additional consideration. Finally,
we focused on two causal parameters: the population and sample average treatment effects.
TMLE is a general methodology for the construction of double robust, semiparametric,
efficient substitution estimators for a wide range of parameters. Our proposed strategy for
covariate selection should extend to other causal parameters, such as the conditional average
treatment effect, the average treatment effect among the treated, and the natural direct
effect.
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Overall, we proposed a general strategy to increase power in randomized trials. Specif-
ically, we used cross-validation to select the candidate TMLE that optimized the efficiency
of the analysis. Since the step-by-step algorithm (including the library definition) was pre-
specified, there was no risk of bias or misleading inference from ad hoc analytic decisions.
In other words, we have proposed a black box procedure to data-adaptively select the most
powerful analysis. Furthermore, including the unadjusted estimator as a candidate obviates
the need for guidelines on whether or not to adjust (e.g. [154, 155]). Finally, our procedure
is tailored to the scientific question (population vs. sample effect) and study design (with
or without pair-matching). Decisions about whether to adjust and how to adjust are made
with a rigorous and principled approach, removing some of the “human art” from statistics.
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Appendix A

Technical Appendix for Chapter 1

In the Introduction (Chapter 1), we focused on causal parameters corresponding to a static
intervention on a single node. In this Appendix, we step through the causal roadmap for an
example of a longitudinal effect, corresponding to a multiple time point intervention.

Step 1 - Specify the scientific question: What is the effect of delayed ART initiation on
patient outcomes? As before, we want to be specific about the target population: recently
diagnosed HIV+ adults in Sub-Saharan Africa. We also need to be clear about the definition
and timing of the exposures. For simplicity, let us assume the patients have monthly clinic
visits and therefore could initiate ART or not each month. (This framework could easily be
extended to shorter or longer time intervals.) Suppose the outcome is viral suppression after
12 months of follow up.

Step 2 - Specify the causal model: Let baseline (t = 0) be the time the patient is diagnosed
with HIV. Let L(0) represent the vector of baseline covariates, including socio-demographics,
clinical measurements and social constructs. Likewise, let L(t) represent the vector of time-
updated covariates (e.g. clinical measurements). Let A(t) be an indicator that the patient
initiated ART at time ¢. For example, A(0) = 1 represents starting ART on the same day as
diagnosis (i.e. month 0), while A(1) = 1 represents initiation at the first month clinic visit.
Finally, let Y be an indicator that the patient had undetectable HIV RNA viral load at the
end of follow up. For simplicity, let us consider only three time points and assume complete
follow up. Our structural causal model M7, only reflecting the causal-ordering, is given by

- Endogenous nodes: X = (L(0), A(0), L(1), A(1),Y)

- Exogenous nodes: U = (Ury, Uar), U1y, Uaqry, Uy) with some true joint distribution
Pyo. We place no assumptions on set of possible distributions for U. (During the
identifiability step, we will need to make some independence assumptions. However,
we want to keep our true knowledge, as specified by structural causal model M7,
separate from the additional assumptions needed for identifiability.)
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Figure A.1: Directed acyclic graph corresponding to the longitudinal effect (a) when we make
no independence assumptions on background factors and (b) when we assume the background
factors are all independent. L(0) denotes baseline covariates; A(0) denotes whether the
patient initiated ART att = 0; L(1) denotes time-updated covariates; A(1) denotes whether
the patient initiated ART at t =1, and Y denotes undetectable viral load.

- Structural equations:

- We have not made any exclusion restrictions or independence assumptions. The cor-
responding directed acyclic graph is given in Figure A.la.

Step 3 - Specify the target causal quantity. Let Y,(0)q1) denote the counterfactual outcome
(viral suppression) if a patient, possibly contrary to fact, had treatment history (a(0), a(1)).
Counterfactuals are generated by intervening on the structural causal model:

L(0) = fro)(Uro))
A(0) = a(0)
L(1) = fr)(L(0), a(0), Ur))
A1) =a(1)
)

For the two binary exposures (initiate or not at time t), the set of possible exposure com-
binations are A = {10,01,00}. For example, Yy corresponds to preventing ART initiation
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at month 0 and starting ART at the one month clinic visit. Suppose our goal is to contrast
expected counterfactual outcome if, possibly contrary to fact, all patients immediately initi-
ated ART with the expected counterfactual outcome if, possibly contrary to fact, all patient
delayed ART initiation until one month after diagnosis:

U7 (Pyxo) = Evxo(Yio — Yo)

Step 4 - Specify the observed data and their link to the causal model. The observed data
consist of n i.i.d. copies of

O = (L(0), A(0), L(1), A(1),Y) ~ P,

We assume the observed data were generated by sampling n independent times from a data
generating process compatible with M7, The resulting statistical model M, describing the
possible observed data distributions, is non-parametric.

Step 5 - Assessment of identifiability. For the purposes of discussion, suppose that the
unmeasured factors U = (UL o), Ua(o), ULy, Uaq), Uy) are all independent (Figure A.1b).
Even if this assumption held, there is not one set of covariates that simultaneously satisfy
the back-door criterion for all intervention nodes. The baseline covariates L(0) alone fail,
because there is an unblocked back-door path from Y through L(1) to A(1). In other
words, the effect of initiation at one month A(1) on the outcome Y is confounded by time-
updated covariates L(1). The baseline and time-updated covariates (L(0), (1)) jointly fail,
because we are losing (blocking) the effect of early ART initiation A(0) on the outcome Y
that goes through the covariates L(1). This challenge is generally known as time-dependent
confounding [27, 31, 50]: time-varying covariates confound the effect of future exposures on
the outcome, but are affected by past exposures.

To identify the effects of longitudinal interventions, we consider the problem sequentially.
For each A(k) in sequence, we ask if its effect on Y can be identified by conditioning on some
subset of the observed past. This leads to the sequential randomization assumption [27]:

Ya(0)aq) AL A(O)’L(O) and Yy(0)a(1) AL A(1)|(L(O), A(0), L(1))

In words, we assume the counterfactual outcome Yy (yq(1) is independent from the interven-
tion A(k) at time k, given the observed past. With the sequential randomization assumption
as well a longitudinal version of the positivity assumption, the expectation of the counter-
factual outcome, indexed by multiple interventions, can be identified by the longitudinal
G-Computation formula [27]:

Euxo(Yawun) = 3 | EBo(YIA0) = (1) L(1) = (1), A) = a(0), L(O) = 10)

lo,l1

x Py(L(1) = 1(1)|A(0) = a(0), L(0) = 1(0)) x Py(L(0) = 1(0)) | = ()
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Now we are averaging with respect to the appropriate distribution of covariates and thereby
capturing the effect of both exposures (a(1),a(0)) on the outcome Y through the covariates

(L(0), L(1)).

Step 6 - Estimation and Inference: As with single time-point interventions, there are a
variety of methods to estimate statistical parameters, corresponding under the necessary
assumptions to longitudinal causal effects. Examples include longitudinal IPTW, “para-

metric G-computation” (maximum likelihood estimation of the longitudinal G-computation
formula) and TMLE [31, 55, 57-69].

Step 7 - Interpretation of the Results: As with the single time-point setting, the strength of
our interpretations depend on rigorous evaluation of the needed assumptions. Even when

the identifiability assumptions do not hold, we always have a statistical interpretation of
U (F).
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Appendix B

Technical Appendix for Chapter 2

B.1 The unadjusted estimator is unbiased

Recall the unadjusted estimator is the average difference in the outcomes within matched
pairs:

n/2
- 1
wunadj = n_/2 ; [Ajly}‘l - (1 - Ajl)Y}l + Aj2Y}'2 - (1 - Aj2)Y}2]

If observations within matched pairs have been ordered such that the first corresponds to
treatment and the second to the control, the estimator can be expressed #2 Zyi 21 (Y1 —Y).
Given the vector of covariates W = (W7, ..., W,,), the unadjusted estimator is unbiased for
the statistical estimand:
n/2
7 n 1 n n
EO [wunadj ‘ W j| :n_/2 Z |:E0[Aj1Y31 ‘ W ] - EO[<1 - Ajl)Y}l | W ]

j=1
T BlApYs | W — Eo[(1— Ap)Yy | Wﬂ]

n/2
Y [Qoa, W) Eo( Ay | W) — Qo(0, W) Eo((1 — Ayy) | W)
Q{1 W) Eo( Ay | 77) — Qo(0, W) Eo((1 — Ay) | W”)}
1 M2 _ _ _
> [Qo(l, Win) = Qo(0, Wja2) + Qo(1, Wj2) — Qo (0, Wm}

" n/2 2

Z%Z@O(LWJ — Qo(0,W;) = W(Py).

Thus, &umdj is an unbiased estimator of ¥(PFy'), conditional on W™,
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B.2 Statistical inference for the TMLE

In this subsection, we establish that the proposed TMLE is an asymptotically linear estimator
of the conditional average treatment effect (CATE) in an adaptive pair-matched trial, where
n/2 matched pairs are created as a function of baseline covariates of n candidate units. We
then consider the adaptive design, where n/2 matched pairs are created as function of the
baseline covariates of N > n candidate units and the remaining (N — n) units discarded.
The latter adaptive design is a generalization of the first and the derived theorems are
applicable. The theoretical results also apply to the unadjusted estimator zﬂumdj, which can
be considered a special case.

Let B} denote the conditional distribution of O™ = (O,...,0,), given the vector of
covariates W = (Wy,...,W,). The statistical estimand is a function of this conditional
distribution:

:%EZQQMQ—QMN%%
=1

where Qo(A, W) = Ey(Y|A, W) denotes the conditional expectation of the outcome, given
the exposure A and the covariates W. The TMLE for W(F}') is defined by following plug-in
estimator:

ZQ (1,W;) — Qx(0,W;),

where Q* (A, W) denotes targeted estimates of the conditional mean function Qo(A, W). Let
1 denote the true parameter value and v} denote the estimate.
Let us define the following function of O = (W, A,Y'):

o C/I(A=1) I(A=0)
D (Qago)(O):< 90(14) - QO(A)

where the marginal probability of receiving the intervention or the control is go(A) = FPy(A) =
0.5 in a randomized trial with two arms. By construction, TMLE solves D*(Q, g0)(O) at the
targeted update Q):

) (v = Q(a,w)),

D*(Q;,, 90) = ZD (@ 90)(0i) =

where P, denotes the empirical distribution, placing mass (1/n) on each O;, i =1,... n.
It is of interest to note that this equality can be rewritten as

n/2 n/2

n/QZ{Q (1, Wi1) — Qr(0,Wja) } /QZ{ — Y},

where observations in pair j have again been ordered such that the first corresponds to the
intervention Aj; = 1 and the second to the control Aj, = 0. Thus, the TMLE has the
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interesting property that if it is used to predict the counterfactual effect Y (1) — Y (0) for
each pair 7, then the average of these j-specific effects equals the unadjusted estimator.

Let P} f = E[f(O™) | W"] denote the conditional expectation of a function f of the data
O", given the covariate vector W™. For all Q(A, W), we have

Therefore, the statistical estimand \II(P(}‘) minus the TMLE ¥(Q?) can be written as the
empirical mean of the above conditional expectation:

V(R - W(Q;) = §jP" (@5 0).
Combining the latter equality with P,D*(Q7, go) = 0 yields
(i~ i) = P D Qo) — P @i}
=23 {p @) - B @ |
-

We can re-write this equality in terms of the empirical distribution P, >, which puts mass
1/(n/2) on each paired data point O; = (01, Oj2):

(6, — o) = np{D%Q;mﬂ—f?DWQng}
n/2

i%;{@wM)PW@m%

where D*(Q%, 90)(0;) = %{D*(Qi,go)(Oﬂ) + D*(Q:LQO)(OJ‘?)}

Now let F be a set of multivariate real valued functions so that Q7 (A, W) is an element
of F with probability 1. Define the process (Z,(Q) : Q € F) by

n/2
Zn(

LS (r0mo)-nran)

Conditional on the covariate vector W™ = (Wy,..., W,,), Z, ) is a sum of n/2 independent
mean zero random variables D*(Q, go)(0;) =Py D*(Q, go), j = 1,...,n/2. Below we establish
asymptotic equicontinuity of (Z,(Q) : Q € F) so that Z,(Q) — Z,(Q) — 0 in probability.
Then, we can conclude that

V200 — o) =

n/2

{D* Q. 90)(0;) — Py D*(Q, go)} +op(1).
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Since the main term on the right-hand side, conditional on W™, is a sum of independent
mean zero random variables, we can apply the central limit theorem for sums of independent
random variables.

Let us define the following function of the paired data O; = (O;1, Oja):

ICJ’(QQO,QO) (Q 90)( ) P”D*(Q 90),

where the notation recognizes that PrD*(Q, go) also depends on the true conditional mean
Qo(A, W) = Eo(Y|A, W). We assume that

n/2

1 _ _
Yo = lim — ZPSL]CJ‘(Q,QO,%)Q
—1

n—00 n/2

exists as a limit. Then, we have shown /n/2(¢)} —1g) =4 N(0,%).

To establish the asymptotic equicontinuity result, we use a few fundamental building
blocks. Let Fy = {f1 — fo: f1, f2 € F}. Let 02(f) = P2 Z,(f)? be the conditional variance.
Note that Z,(f)/on(f) is a sum of n/2 independent mean zero bounded random variables
and the variance of this sum equals 1. Bernstein’s inequality states that P(| >, Y; |> z) <

2 exp < R /3), where v > VAR > ; Y;. Thus, by Bernstein’s inequality, conditional on

P (% > x) < 2exp (—%%) < K exp(—Cz?),

for a universal K and C. This implies || Z,(f)/on(f) |4 < (1 + K/C)%5, where for a given
convex function ¢ with ¢(0) =0, || X ||y=inf{C > 0: EY(] X | /C) < 1} is the so called
Orlics norm, and 5(z) = exp(z?) — 1. Thus || Z,(f) || < Cio,(f) for f € F This result
allows us to apply Theorem 2.2.4 in van der Vaart and Wellner [163]: for each § > 0 and
n > 0, we now have

W™ we have

n
H S(l;)p<5 | Zn(f) \H@S K {/0 gbg_l(N(e,on,]:d)de + 5¢2_1(N2(7770m]_-d))7 } ) (B'l)

where N (€, 0, Fy) is the number of balls of size € w.r.t. norm || f ||= o,(f) to cover F.
Convergence of a sequence of random variables to zero with respect to s-orlics norm
implies convergence in expectation to zero and thereby convergence of that sequence of
random variables to zero in probability. Let §,, be a sequence converging to zero, and let 7,
also converge to zero but slowly enough so that the term 8,15 ' (N?(n,, on, F?)) converges

to zero as n — oo. By assumption, foa" Yy (N (e, 0,, F)de converges to zero. Thus,

on—0

lim { / G (N (e, 00, F >de+anw;1<N2<nn,amfd>>}:o.



APPENDIX B. TECHNICAL APPENDIX FOR CHAPTER 2 95

This proves that

E( sup | Z.(f) |) — 0.

{fion(f)<bn}

Thus, if 0,,(Q% — Q) — 0 in probability, then Z,(Q* — Q) — 0 in probability. This proves
the following theorem.

Theorem 1. Consider the TMLE V(Q?) of the statistical estimand

V(P =1/nd>" {Qo(1,W;) — Qo(0,W;)}. Let PQf represent the conditional expectation
of a function f of O", given the vector of covariates W". This conditional expectation, Fy f,
18 thus still random through W™. Let F be a set of multivariate real valued functions so that
Q* is an element of F with probability 1. Define

n

n/2

Zn( ZIO , Qo, 90)

where
ICJ(Q) Qo,go) = D*(QQO)(OJ) - PSLD*(QQO)
D*(Q, 90)(0;) = %{D*(QQO)(OM + D*(Q,QO)(O]Q)}

D*(@. gu)(O1) — (Hﬁ};)” - Hﬁ@f)) (Y — QA W),

where go(A) = Py(A) is known. We make the following assumptions.

Uniform bound: Assume supgersupg | D*(Q,g0) |< M < oo, where the second supre-
mum is over a set that contains the support of each O;.

Convergence of variances: Assume that for a specified {02(Q) : Q € F}, for any Q € F,
n/2 Z"/Q PrIC;(Q,Qo,90)* — 02(Q) a.s (i.e, for almost every (W™ n > 1)).
Convergence of 7 to some limit: For any Q,,Q, € F, we define

n/2

02 (Q1 — Q) = ;QZP”{[C (Q1, Qo, 90) — IC; (Qm@o»go)} )

where we note that the right-hand side indeed only depends on Q1,Qy through its dif-
ference Q1 — Q.
Assume that for a particular Q* € F, 02(Q* — Q*) — 0 in probability as n — oco.
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Entropy condition: Let F¢ = {fi — fo : fi1,f2» € F}. Let N(¢,0,, F%) be the covering
number of the class F¢ w.r.t norm/dzsszmzlamty | f 1= on(f). Assume that the class
F satisfies
on

lim Vlog N(e, 0, Fd)de = 0
n—0 Jg

Asymptotic equicontinuity of process: Then,
Z.(Q%) — Z,(Q*) converges to zero in probability, as n — oo.

First order linear approximation: As a consequence,

V2005 — o) = Za(Q) + op(1).

Asymptotic normality: In addition, Z,(Q") converges to N(0,03(Q")), so that
V1 /20 — o) converges in distribution to N(0,03(Q*)).

The asymptotic variance o3(Q*) equals the limit of

n/2

1 2
Ton =7, /QZP”{IO Qon,go)}

If Y; is d-dimensional outcome, then the application of the above theorem to each com-
ponent of ¥ yields the desired asymptotic linearity for the d-dimensional 1) and thereby
the asymptotic normality as well.

Conservative variance estimation

The above result suggests the following estimator of the asymptotic variance of the stan-
dardized TMLE:

n/2

S R}Q > {fcj@:;, Qn,npaQO)(Oj)}2

where Qn,np is a consistent estimator of Qy. Unfortunately, such a variance estimator relies
upon consistent estimation of the conditional mean function o, which is particular concern-
ing when n is small. However, we will now show that one can obtain a conservative variance
estimate, which does not rely on a consistent estimator of the conditional mean function Q.
The asymptotic variance of the standardized estimator y/n/2(¢% — 1) can be expressed

as
n/2

2
Yo = lim — ZP” Oj(Q*7Q0a90):|

n—o00 n/Q

n/2 -

= lim ZP" D*(Q", go)]z— {PO"D*(Q*,go)} :

n—oo n/
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The latter term is zero when Q*(A, W) = Qo(A, W):
Py D*(Q", g0) :%{Qo(l, Wj1) = Qo(0, Win) — (Q*(1, Wjr) — Q*(0, Wj1))
+ QL Wiz) = Qul0. W) — (@ (1W,0) — @°0.1;2) |

Thus, the true variance X is always less than or equal to an upper bound Y, where

n/2

2
S¢ = lim — ZP&‘{D*(Q*,%)}

Again, if the conditional mean is consistently estimated Q*(A4, W) = Qo(A, W), X¢ = .
We can consistently estimate the upper bound X with

n/2

D {D*(Q;,go><0j>}2

Jj=1

Recall

D*(Q.0)(0) ~3{ D" (@.an)(0p) + D*(@.00)O)
1 (IAn=1) I(A4;: =0) A _
P {( go(Aj1) go(4j1) ) (Vi1 = QA W)
I(App=1) (A5 =0) . A
+ ( (A do(Asa) ) (Yo Q(A]27W]2)):|

Ordering the observations within pairs, such that index j1 corresponds to the unit random-
ized to the intervention (A;; = 1) and j2 corresponds to the unit randomized to the control
(Ajo = 0), it follows that

D*(Q790>(O]) = }/}1 - Q(L le) - (}/;2 - Q(O’ M/JQ))’

allowing us to represent the conservative variance estimator X* as the difference in residuals
within matched pairs:

. 1 n/2 - 2
Xt = n_/2 Z {}/}1 - QZ(L le) - (3/}2 - Q:L(()? VV]2))} :

=1
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Generalization to N > n candidate units

Now consider the common adaptive design, where first N candidate units are selected, the
best n/2 matched pairs selected as a function of the covariate vector

WN = (Wy,...,W,,...,Wy), and the remaining N — n units discarded. In the SEARCH
trial, for example, 16 matched pairs were formed as a function of the baseline covariates of
54 candidate communities. As a result of this adaptive design, the treatment assignment
mechanism depends on the N candidate communities. Nonetheless, in a randomized trial,
the conditional likelihood of the observed data factorizes as

Po(Or, ..., Op|Wh, ..., W) = Hgo(Ajh Ap|Wh, ... ;W) Po(Yi1|Aj, Wir) Po(Yia| Aja, Wia)

J=1

= 0.5 [ Po(Yirl Aju, Win) Po(Yial Aja, Wia)
j=1

:PQ(Ol,,On|W1,,Wn):P(;l(On“/Vn)

Therefore, given the baseline covariates of the n study units W™ = (Wy,... W,,), we still
have n/2 conditionally independent observations. Furthermore, recall that the statistical
estimand corresponds to the average treatment effect, conditional on the baseline covariates
of the n study units:

WOR) = = D0 Qo1 W) = Qo(0, W)

Since we condition on W™ = (W7, ..., W, ) in the target parameter and corresponding TMLE,
the actual distribution that generated these n covariates is not important. Recall we make
no assumptions about the joint distribution of Py(WW"). We only need to assume that
the conditional variance still converges. As a result, we can apply the same TMLE and
asymptotics. As detailed in van der Laan et al. [115], this is a much different result than
when the target parameter is the marginal (population) average treatment effect. In the
latter case, the so-called adaptive missingness has important implications for estimation and
inference to a target population of units.

B.3 Comparison with a non-matched trial (i.e. a
completely randomized trial)

In this section, we consider estimation and inference for the conditional average treatment
effect (CATE) in a trial, where the intervention is completely randomized. We consider
implementation of the TMLE and the corresponding asymptotics. We conclude with an
efficiency comparison between a trial within adaptive pair-matching and a trial without
pair-matching.
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TMLE for the CATE in a non-matched trial

Let Q,(A,W) be an initial estimator of Qu(A, W), which can be obtained by regressing
the outcome Y; on exposure A; and covariates W;, ¢ = 1,...,n. For a binary or bounded
continuous outcome, the negative log-likelihood is a valid loss function:

—L(Q)(0) =Y 1og Q(A, W) + (1 - Y)log(1 — Q(A, W)
Now consider the logistic fluctuation submodel:

logit [Qn (A, W)(€)] = logit [Qn(A W)| + eH(A)

C(I(A=1) I(A=0)
where H(A)—( qw(A) go(A) )

In a randomized trial with two arms, the probability of receiving the intervention or control
is go(A = a) = Py(A = a) = 0.5. Let ¢, be the minimizer of the empirical mean of the loss
function:

= argmmP L(Qn(A, W)( ZL Qn(A, W) (€))(0:)

The TMLE of the conditional mean outcome QO_(A, W) is defined by plugging in the esti-
mated coefficient ¢, into the fluctuation model QF (A, W) = Q,(A, W)(e,). The TMLE of
U(PY) is defined as the corresponding plug-in estimator:

As before, initial estimation of the conditional mean function Qy(A, W) can also be based
on least squares regression and targeting achieved with the following fluctuation submodel:

Qu(A, W)(€) = Qu(A, W) + eH(A)

Recall the definition of D*(Q, go)(O) as the following function of the observed data O =
(W, AY):

7 I(A=1) I(A=0)

(@.90)(0) 90(A) 90(A)

where the probability of receiving the intervention or the control is go(A) = FPy(A) = 0.5 in
a randomized trial. By construction, TMLE solves D*(Q, go)(O) at the targeted update Q:

) o=@,

P,D*(Q}, g0) = ZD* Q, 90)(05) =
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where P, denotes the empirical distribution, placing mass (1/n) on each O;, i = 1,...,n.

For all Q(A, W), we also have

where Py'f = E[f(O™)|W"] denotes the conditional expectation of the function f of the
data O", given the covariate vector W™. Therefore, the statistical estimand W(Fg') minus
the TMLE ¥(Q}) can be written as the empirical mean of the above conditional expectation:

(ry) - (@) = Z Py D" (@, 90)-
Combining the latter equality with P, D*(Q%, go) = 0 yields
Vi = = 75> Z {0@(0) - B @}

Recall F is the set of multivariate real-valued functions such that Q% (A, W) is an element
of F with probability 1. Define the process (Z,(Q) : Q € F) by

\/—Z{ (Q, 90)( )P€D*(Q,go)},

Conditional on the covariate vector W™ = (Wy,..., W), Z,(Q) is a sum of n independent
mean zero random variables D*(Q, 90)(0;) — PrD*(Q, g0), i =1,...,n. Below we establish
asymptotic equicontinuity of (Z,(Q) : Q € F) so that Z,(Q%) — ( 2) — 0 in probability.
Then, we can conclude that

vV, — o) = \/— Z { (Q,90)(0:) — gD*(QQo)} +op(1).

Since the main term on the right-hand side, conditional on W™, is a sum of independent
mean zero random variables, we can apply the central limit theorem for sums of independent
random variables.

For a completely randomized trial, let us define the following function of the unit data
O; = (Wi, A, Yy):

1Ci(Q, Qo, 90) = D*(Q, 90)(0i) — P D*(Q, g0),

where the notation recognizes that P D*(Q, go) also depends on the true conditional mean
Qo(A, W) = Ey(Y|A,W). We assume that

Yo = lim ~ ZP"]C’ (@, Qo, 90)°

n—oo N,
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exists as a limit. Then, we have shown /n(} — o) =4 N(0, ).

To establish the asymptotic equicontinuity result, we use a few fundamental building
blocks. Let Fy = {f1 — fo: f1, f2 € F}. Let 02(f) = P2 Z,(f)? be the conditional variance.
Note that Z,(f)/on(f) is a sum of n independent mean zero bounded random variables and
the variance of this sum equals 1. Bernstein’s inequality states that P(| >, Y; [> z) <

2exp <_%v+xT21/3)’ where v > VAR > ; Y;. Thus, by Bernstein’s inequality, conditional on

W™, we have

P (% > :c) < 2exp (‘%%}\;/3) < K exp(—Ca?),

for a universal K and C. This implies || Z,(f)/on(f) |lp.< (1 + K/C)%®, where for a given
convex function ¢ with ¢(0) =0, || X ||y=inf{C > 0: EY(| X | /C) < 1} is the so called
Orlics norm, and 15(z) = exp(2?) — 1. Thus || Z,(f) || < Cio.(f) for f € F This result
allows us to apply Theorem 2.2.4 in van der Vaart and Wellner [163]: for each § > 0 and
n > 0, we now have

"
I s 1 2,(4) s {[ et on et o o s} B2
where N (e, 0, Fy) is the number of balls of size € w.r.t. norm || f ||= o,(f) to cover Fy.
Convergence of a sequence of random variables to zero with respect to s-orlics norm
implies convergence in expectation to zero and thereby convergence of that sequence of
random variables to zero in probability. Let §,, be a sequence converging to zero, and let 7,
also converge to zero but slowly enough so that the term 8,15 ' (N?(n,,0,, F%)) converges

to zero as n — 0o. By assumption, foé" Yy ' (N (e, 0, F4)de converges to zero. Thus,

On—0

On
lim {/ ¢21(N(e,an,fd)de+5n¢21(N2(nn,an,fd))} =0.
0

This proves that

E| sup  [Z(f)]]) —0.
{f:an(f)§5n}

Thus, if 0,,(Q% — Q) — 0 in probability, then Z,(Q* — Q) — 0 in probability. This proves
the following theorem.

Theorem 2. Consider the TMLE V(Q}) for the statistical estimand

V(P =1/n>" {Qo(1, W) — Qo(0, W)} defined above for a trial without pair-matching
(i.e. a trial with complete randomization). Let P} f represents a conditional expectation of
a function f of O™, given W™. This conditional expectation is thus still random through
Wn. Let F be a set of multivariate real valued functions so that Q% is an element of F with
probability 1. Define

7,(Q) = % S I1CHQ, Qoy o).
=1
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where

IC@'(Q?QO;QO) =D ( )( ) OnD*(QagO)

D*(Quan)(0) = () HE O v - ga ),

We make the following assumptions.

Uniform bound: Assume supgersupg | D*(Q,g0) |< M < oo, where the second supre-
mum s over a set that contains the support of each O;.

Convergence of variances: Assumeithat for a specified {o3(Q) : Q € F}, for any Q € F,
izzzl PMCH(Q,Qo, 90)* — 02(Q) a.s (i.e, for almost every (W™, n > 1)).

Convergence of Q* to some limit: For any Q,,Q, € F, we define
o2 (Q1 — ZP"{IO Q1, Qo 90) — Cz'(Q%Qo,QO)}Q,

where we note that the right-hand side indeed only depends on Q1, Qo through its dif-
ference Q1 — Q5.
Assume that for a particular Q* € F, o2(Q% — Q*) — 0 in probability as n — oc.

Entropy condition: Let F¢ = {f; — fo : fi,fo € F}. Let N(e,0,,F?) be the covering
number of the class F¢ w.r.t norm/dzsszmzlamty | £ ll=on(f). Assume that the class
F satisfies

Jim / Vlog N(e, 0, Fd)de = 0

Asymptotic equicontinuity of process: Then,
Zn(QF) — Z,(Q*) converges to zero in probability, as n — oo.

n

First order linear approximation: As a consequence,
Vi, — o) = Z,(Q") + op(1).
Asymptotic normality: In addition, Z,(Q*) converges to N(0,02(Q*)), so that
Vn(wk —ahy) converges in distribution to N(0,02(Q%)).

The asymptotic variance o2(Q*) equals the limit of
1 & 2
2 n Ak )
=— P IC;(QF, Qo, . B.3
Ton = 121 o{ (@, Qo go)} (B.3)
If Y; is a d-dimensional outcome, then application of the above theorem to each compo-

nent of ¢ yields the desired asymptotic linearity for the d-dimensional ¢} and thereby the
asymptotic normality as well.
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Conservative variance estimation

As before, we can obtain a conservative variance estimator, which does not rely on a consis-
tent estimator of the conditional mean function Q)o(A, W). The asymptotic variance of the
standardized estimator in the design with complete randomization can be expressed as

Yo = lim — an{D*Q go} — {Py'D(Q", 90}

n—oo N
The latter term is zero when Q*(A, W) = Qo(A, W):

Thus, the true variance X is always less than or equal to an upper bound X, where

= lim — ZP"{D (Q*, go}

n—oo N,

We can consistently estimate the upper bound Xj with

where we have used that the treatment assignment mechanism go(A) = Fy(A) = 0.5 in a
randomized trial.

Comparison of asymptotic variances of the TMLEs in a trial
without pair-matching (i.e. complete/independent randomization)
and a trial with pair-matching

The above two theorems give us the following approximations for the TMLEs 1}, ; under
independent randomization and ¢y, ,, under adaptive pair-matching:

VA — o) = \Fz{ (@.90)(0,) — P&D*(@,g())}wu)

n/2

) {D )(0;) - P(?D*(Q,go)} T op(1)
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where

D*(Q,90)(0;) = %{D*(Qag())(Ojl) + D*(QQO)(OJ'Q)}

o (A4 =1) I(A;=0)
D*(Q,90)(0:) = ( go(A)  go(A))

The corresponding asymptotic variances are

) (Vi — Q(A, ).

n

2
os = i 30 R|D(@uo?| - [P0 (Q)

=1
n/2 9
n *(()* 2 n Mk )k
ZOM_nh—{Ic}OTL/2ZPO |:D (Q ’go) 1 - |:P0D (Q 790)1 )

respectively. Expanding out the squared terms and simplifying, the asymptotic variance of
the standardized estimator in the independent design is

n

S

=1

+2E, {(Y; — Qo(0, Wz))2

= = = = 2
Likewise, the asymptotic variance of the standardized estimator in the adaptive design is

n

1 f
Yo = lim 7 Z {2EO {(Y; — Qo(1, m))Q

=1

Ai == 1, Wn‘|

2

+2E) {(Y; — Qo(0, 7))

A= o,W”}
T [Qo(1,W2) — QUL W) + Qo(0, W) — Q0. Wi)}z} o
= 0.5X%0,7 — po

where pq is the following pairwise product

n/2

= i 5 {101 W) = QUL IV, + Qul0. 1) — QLW x
j=1

[Qo(1, Wia) — Q(1, Wja) + Qu(0, Wja) — Q(0, Wis)] }
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The proof is omitted here, but readily available upon request from the authors.

Thus, the asymptotic variance of the TMLE in the independent design is 3¢ ;/n whereas
the asymptotic variance of the TMLE in the adaptive design is ¥o/(n/2) = Xo1/n —
2po/n. When we match well on measured and unmeasured factors, the product of the
deviations between the true conditional means and the estimated means within matched
pairs is expected to be positive:

po =0

Under this condition, the adaptive design will be more efficient than the completely ran-
domized trial. As an example, consider the unadjusted estimator and suppose we match
perfectly on W, which is predictive of the outcome. Then the relevant term is

[Qo(1, 1) = Qu(1) + Qo(0,7W;) — Qu(0)]” > 0

If we consistently estimate Qo(A, W), then the cross-term py is zero and the efficiency bound
of the two designs is the same:

Youm/(n/2) =%or/n

In finite samples, we also expect there to be an efficiency gain from pair-matching. Com-
paring the proposed variance estimators, we have

n/2 - 2
S, = ni/zz (Y — Q1L W) — (Yo — QZ(QWﬂ))}
n/2

N HL/QZ (Vi = Qa1 Wi)* + (Vi2 — Qa(0, W)

j=1 L

—2(Yj1 — Qi (1, Win)) (Y2 — Q;,(0, Wﬂ))}

R 4 &

=N (- QL W)+ (Ve — Q5(1, W)

Then, the difference is

Su 3 2 L
I M % A%
— - — = — Y — 1L, W) (Yo — 0, W;
n n/2 (n/2)2 Z ( Jl Qn( ]1))( J Qn( ]2))
7j=1
If we succeed in matching pairs on predictive covariates W, then the sample covariance of
residuals within matched pairs will be positive. Under this condition (expected to hold in
practice), adaptive pair-matching will yield more precise estimates in finite samples.
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B.4 Simulation results under the null

The following table gives the simulation results when there is no effect. The null scenario was
simulated by randomly assigning the intervention, but generating the outcomes under the
control (A = 0). Recall Simulation A represents a rare outcome and Simulation B represents
a more common outcome.
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Bias Std. Dev. Std. Error t-stat CI Cov. «

Simulation A No Matching

Unadj. 0.00015 0.0061 0.0060 0.0 95 5
TMLE linear for Z 0.00001 0.0033 0.0032 0.0 94 6
TMLE logit for Z 0.00003 0.0032 0.0030 0.0 94 6
TMLE linear for (W, Z) | 0.00003 0.0030 0.0026 0.0 91 9
TMLE logit for (W, Z) | 0.00005 0.0029 0.0024 0.0 90 10

Adaptive Pair-Matching

Unadj. 0.00002 0.0034 0.0034 0.0 9% 4
TMLE linear for Z 0.00005 0.0028 0.0028 0.0 95 5
TMLE logit for Z 0.00005 0.0027 0.0027 0.0 9 5
TMLE linear for (W, Z) | 0.00005 0.0027 0.0026 0.0 94 6
TMLE logit for (W, Z) | 0.00005 0.0027 0.0025 0.0 94 6
Simulation B No Matching

Unadj. 0.00017 0.0058 0.0057 0.0 95 5
TMLE linear for Z 0.00006 0.0035 0.0033 0.0 94 6
TMLE logit for Z 0.00007 0.0036 0.0035 0.0 94 6
TMLE linear for (W, Z) | 0.00007 0.0031 0.0027 0.0 91 9
TMLE logit for (W, Z) | 0.00007 0.0035 0.0030 0.0 91 9

Adaptive Pair-Matching

Unadj. 0.00002 0.0034 0.0033 0.0 95 5
TMLE linear for Z 0.00006 0.0029 0.0028 0.0 9 5
TMLE logit for Z 0.00005 0.0030 0.0029 0.0 9 5
TMLE linear for (W, Z) | 0.00004 0.0028 0.0026 0.0 94 6
TMLE logit for (W, Z) | 0.00004 0.0030 0.0028 0.0 94 6

Table B.1: For Simulation A (rare outcome) and Simulation B (more common outcome) with
no treatment effect, summary of the estimator performance over 5,000 simulations of n = 32
communities. The rows indicate the estimator and the columns the performance metric: bias
as the average deviation between the point estimate and sample-specific true value; standard
deviation as the square root of the variance of the point estimates; standard error as the
average standard error estimate based on the influence curve; t-statistic as the average value
of the test statistic (point estimate divided by standard error estimate); confidence interval
coverage as the proportion of intervals containing the true parameter value (in %), and the
type I error («) as the proportion of studies falsely rejecting the null hypothesis (in %)
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Appendix C

Technical Appendix for Chapter 3

C.1 The TMLE is an asymptotically linear estimator
of the SATE

Consider the statistical parameter corresponding to the population average treatment effect
(PATE):

WE(Py) = Bo[Bo(Y |4 = 1,W) — Ey(Y[A = 0,W)]
=k [QU(L W) - QO(Ov W)}

where Qo(A, W) = Ey(Y|A, W) denotes the conditional expectation of the outcome, given
the exposure and covariates. The TMLE for W]’ (F) is defined by the following substitution

estimator:
n

V(P = 3 (@01 W) — @30, W)
i=1
where P, denotes the empirical distribution, putting mass 1/n on each O; = (W;, A;,Y;) and
Q: (A, W) denotes the targeted estimator.
Suppose the exposure mechanism, denoted go(A|W) = Py(A|W), is known as in a ran-
domized trial. Under the following regularity conditions, the TMLE of W['(F) is asymptot-
ically linear [40]:

U, (P) — Vg (Po) = ZDP Q, 90)(0:) + op(1/+/n)

with influence curve
_ B I[(A=1) I(A=0)
D@00 = (LT3 ~ oo

where Q(A, W) denotes the limit of the TMLE Q¥ (A, W). Specifically, we assume the
positivity assumption holds: for some 6 > 0, 6 < go(1|W) < 1 — 4. We also assume that

) (Y = QA W) + QL) — Q0. W) — (R



APPENDIX C. TECHNICAL APPENDIX FOR CHAPTER 3 109

Py [DP(Qz, 90) — DP(Q,gO)}2 — 0 in probability and that D?(Q?, go) is in the Py-Donsker
class with probability tending to 1. Here we used notation Pyf = [ f(0)dPy(0) for some
function f.

Theorem 3. Suppose we have n i.i.d. observations of random variable O = (W, A,Y) ~
Py, where W denotes the baseline covariates, A denotes the exposure, and Y denotes the
outcome. Consider the sample average treatment effect (SATE) WS (Pyx) == >°"  Yi(1) —
Yi(0), where Py x denote the joint distribution of the background factors U = (Uw, Uy, Uy)
and exogenous factors X = (W, AY). Under the above regularity conditions, the TMLE
U, (Py) =250 Qr(1,Wy) — Qi(0,W;) is an asymptotically linear estimator of the SATE:

U, (P,) — US(Pyx) = ZDS Ui, Xi) + op(1/v/n)

with influence curve

DS(U,X) = D°(Q, go)(O) — D" (U, X)
c C(I(A=1) I(A=0) - A -
DY(U,X) =Y (1) = Y(0) = [Qo(1, W) — Qo(0,W)]

where QW) = Q(1, W) — Q(0, W) denotes the difference in the treatment-specific means.

We note that D€ is the influence curve of the TMLE for the conditional estimand
US(Py) = 2570 Qo(1, Wy) — Qo(0, W), which corresponds to the conditional average treat-
ment effect (CATE) under the necessary causal assumptions [129]. The remaining non-
identifiable piece Dis difference between the unit-specific effect and the effect within strata
of covariates.

Proof. Let Qo(W) = Qo(1,W) — Qo(0,W) denote the true difference in treatment-specific
means. We can write the deviation between the TMLE W, (P,) for the population estimand



APPENDIX C. TECHNICAL APPENDIX FOR CHAPTER 3 110

U2 (Py) and the SATE as

U, (P,) — ¥S(Pyx)
=V (P) g (Po) — [ (Pux) — Vg (P)]

_ - ZDP — [V (Pyx) — U5 (Py)] + op(1/v/n)

== Z D”(0;) - {; D Yi(1) = Yi(0) = Qo(Wi) + Qo(Wy) \113’<P0)}

Fon(1/vA
- (M) A (- o) + Quv) - ¥ ()

=1
n

53 v - Qul) + @4 — 6B + o1V

B S awmw o

n

- [0 =0 ol +ort

1 n
:-E DC(0;) — D¥ (U, X;) + op(1/+/n)
n
where the influence curve of the TMLE for the conditional estimand W§(F) is

= A= A= _ _ _
DQun)(0) = (i)~ o) (¥ = QUAI) = [Qu(¥) = Q)]

and where
DF(U, X) =Y (1) = Y(0) = Qo(1, W) — Qo(0, W)

Thus, we have shown the TMLE is an asymptotically linear estimator of the SATE:
1 n
V|V, (P,) — \IJS(PU,X)} = Z D3(U;, X;) + op(1/v/n)
i=1

with influence curve

D%(U,X) = D°(0) — D(U, X)
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C.2 Variance and variance estimation for the TMLE
of the SATE

Theorem 4. The standardized TMLE for the SATE is asymptotically normal:

V|0 (P,) — U8 (Pyy)| 2 N(0,0>5)

with 0*° = Var|D] + Var[D"] — 2Cov[ D, D]
= Var[D*] — Var[D"]

Proof. The covariance term is

Cov[D¢,D*]
= Ey x| D x

= Buxo [{ <90 1|W ;O?OTME;) (V= QW) = (@) - Q(W))}
x {Y(1) = Y(0) = Qo(W >}}

_ (=1 TA=0\ . _vi0)
—EU,X,O{(QO(HW) o) (= @A) < (Y () = Y0 - QY

~ By [{@(W) SO} X (Y(1) - Y(0) - @(W)}]

Under the randomization assumption, the D¥ component has conditional mean zero, given
the baseline covariates W:

Euxo[Y (1) = Y(0) = Qo(W)|W] = Eyrx oY (D[W] = EurxoY (0)]] — Qo(W)
— By(Y]A = LW) = By(Y|A = 0,IW) = Qo(W) =

Therefore, the second term is zero.
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For the first term, we have

MA=1) [A=0)\, - ) o
Busa | () = ) (v = QU x [Y () - Y(0) - Qo7

- [(A=1) IA=0)\,. - ] -
= Euxpo { (90(1|W) 40 (0[I7) ) (Y = QA W) + Qo(A, W) — Qo(A, W)

x [Y(1) = Y(0) — Qo(W)]

. A=D1 TA=0Y 0 o 4w vl v
- B 5 T o) (= Qo) x [Y(1) = Y(0) - Qo]
D

=1 TA=0 o i o)« v v ()G
ool ()~ o) ) () = Q1) x V(0 =¥(0) - )|

It follow that this equals:

I(A=1) ~ -
U,X,0 {W (Y(l) - Qo(l»W)) X [Y(l) - Y(0) — Qo(Wﬂ}

| —

1(A=0) . YT — VO

~ ooy (V0= Qu0.1) % [V () Y0 Q)]
A=) —

B S (QulL W) = QUL ¢ [Y() = Y(0) = QulW)]|
I(A = 0) ]

~ Birxo | o (Qu0.19) = Q0)) x [Y(1) = Y(0) - Qo)

Under the randomization assumption, we have

I(A=a)
E{%ww>

Therefore, the sum of first two terms reduce to the variance of the D¥ component:

Y(l),Y(O),W] =1

%[ww—Y@—@mmbqu—Y@—@mmﬂ=Eﬁym—ym—@mmf

The sum of last two terms equals zero, using that the conditional mean of D component,
given W equals zero. Therefore, we have that the covariance term equals the variance of the
non-identifiable component DF':

2Cov[D¢, D¥] = 2Var[D*]
Thus, the asymptotic variance of the standardized estimator for the SATE is
25 = Var[D®] — Var[D¥]
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25 is always less than or equal to Var[D¢]. We can estimate

The asymptotic variance o
the upper bound as

0721’8 =Var, [Dg]

where Var, is the sample variance and D is the (conservative) estimate of the influence
curve for the TMLE for the conditional parameter:

Crmy ]I(Aizl)_]l(Ai:()) A4 T
200 = (i~ iy ) 0~ G4

C.3 GGeneralization to allow for estimation of the
exposure mechanism

Thus far, we have focused on a randomized trial. In an observational setting, TMLE can
be implemented in an analogous manner. In the first step, we estimate both the outcome
regression Qo(A, W) and the propensity score go(1|W). Again, we could use parametric
regression or data-adaptive algorithms. In the targeting step, we run logistic regression of
the outcome Y on the estimated covariate H, (A, W) with the logit of the initial estimator
Qn(A, W) as offset. We then plug-in the estimated coefficient ¢, to obtain the targeted
estimates Q7 (1, W) and Q7 (0,W). The targeted estimates are then substituted into the
parameter mapping.

In an observational setting, TMLE also exhibits desirable asymptotic properties. TMLE
is double robust: if either the outcome regression Qo(A, W) or the propensity score go(1|W)
are consistently estimated, we will have a consistent estimate of the parameter of interest.
If both functions are consistently estimated at a fast enough rate and the positivity assump-
tion holds, then the TMLE will be asymptotically efficient. As before, the TMLE for the
sample parameter will be at least as precise as the TMLE for the conditional parameter,
which will be at least as precise as the TMLE for the population parameter. Furthermore, if
the outcome regression is not consistently estimated but the propensity score is consistently
estimated with maximum likelihood, then D" (Q, go) provides an asymptotically conserva-
tive approximation of the influence curve for the TMLE of the population estimand U7’ (P)
[55]. Likewise, under these conditions, D(Q, go) provides an asymptotically conservative
approximation of the influence curve for the TMLE of the conditional estimand ¥§(P) and
thereby SATE.

More formally, suppose our target of inference is the population estimand ¥’ (P) and the
exposure mechanism is consistently estimated with maximum likelihood: g,(A|W). Then
the TMLE is asymptotically linear with influence curve given by the influence curve at the
possibly misspecified limit Q(A, W) minus its projection on the tangent space T, of the
model for go(A|W) [55]:

DP9(Q, 90) = D(Q..90) ~ [T [D”(@. o)1)
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This projection is a function of (A, W) with conditional mean zero, given W. Analogously,
when we target the conditional estimand WS(P,), the influence curve of the TMLE is

‘Dcyn (Qa gO) = DC(Q? gO) - H [DC(Q’ 90) |Tg]
and when we target the SATE W¥(Py x), the influence curve of the TMLE is

DS?gn(Q)QO) = Dagn (Q:gO) - DF

The proof is analogous to the above and thus omitted.
The standardized estimator of the SATE then is asymptotically normal with mean 0 and
variance given by the variance of influence curve:

o259 = Var[D9] + Var[D¥] — 2Cov[ D9, D]

The covariance of the projection [T [D(Q, go) ‘Tg} and DY is zero. (If we take the expectation
given (A, W), then the projection term is constant and the D term is zero.) Thus, the
asymptotic variance of standardized estimator (when the exposure mechanism is estimated
according to a correctly specified model) is

02590 = Var[D9] — Var[D"]

We will to have a conservative variance estimator by ignoring the projection term and the
non-identifiable piece DF'.



115

Appendix D

Technical Appendix for Chapter 4

D.1 The TMLE is an asymptotically linear estimator
of the SATE in an adaptive pair-matched trial

In this Appendix we first review the asymptotic linearity results of Balzer et al. [129] for
estimation and inference of the the statistical parameter corresponding to the conditional
average treatment effect (CATE) [116]:

n

WE(R) = - 37 (@1, W) — Quf0, )]

i=1

We then provide a theorem showing that the TMLE for the SATE is asymptotically normal
in a trial with adaptive pair-matching, which results in n/2 conditionally independent copies

of O; = (0j1,052) = (Wj1, Aj1, Yir), Wia, Aja, Yj2)).

As discussed in Balzer et al. [129], the TMLE for conditional estimand W§(P,) is defined
by the following substitution estimator:

n

(P = = 37 Q41 W) — Q4 (0,W)

n -
=1

where QF (A, W) denotes the targeted estimator. Under the following assumptions, the
TMLE for ¥§(F,) is asymptotically linear:

n/2

1 Z DC(Qv QO)QO)(Oj) —+ OP(nfl/Q)

U (Pa) = WG(Ro) = )2 <
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with influence curve

(Q QOago - |:DC Q QOagO jl) +DC(Q7Q07QO)<OJQ>:|

1

2

( I(A; =0)
9o(A;)

_ [(Qo(l, W) — Q(1, W) — (Qo(0,W:) — Q(0, Wi>)}

D(Q, Qo, 90)(O ) (Vi — Q(A;, W)

where Q(A, W) denotes the limit of the targeted estimator of the conditional mean function
Qo(A, W) and where the marginal probability of being assigned the treatment or the control
is known: go(A) = Py(A) = 0.5 [129]. Specifically, we assume

e Uniform bound: Assume SUPge F SUPo | < go(zA—l)) _ H;?(i:(;)) (y; _ Q(Ai, W) |< M < oo

where F is the set of multivariate real valued functions so that Q7 is an element of
F with probability 1 and where the second supremum is over a set that contains the
support of each O;.

o Convergence of variances: Assume that for a specified {02¢(Q) : Q € F}, for any
Q € F, /2 Z"/z PrDC(Q, Qo, g0)* — 0*¢(Q) a.s (i.e., for almost every (W™, n > 1)).
Throughout F}'f = Ey[f|W™] denotes the conditional expectation of a function f of
O™ = (O, ... ,On), given the vector of baseline covariates W" = (Wy,...,W,). We
will relax this assumption below.

° Convergence of Q* to some limit: For any Qi, Qs € F, we define

o2(Q1 — Qo) = n/2 Z”/Q P DC(Q1,Qo, 90) — D¢(Q2,Qo,90)}>. Assume that for a
particular Q € F, 02(QF — Q) — 0 in probability as n — co.

e Entropy condition: Let F¢ = {fi — fo : f1, f» € F}. Let N(e,0,,F%) be the covering
number of the class F¢ w.r.t norm/dissimilarity || f ||= o,(f). Assume that the class
F satisfies limg, o fod" \/log N(e,0n, Ft)de = 0.

Theorem 5. Let W denote the measured baseline covariates, A the intervention assign-
ment and Y the outcome. A randomized trial with adaptive pair-matching results in n/2
conditionally independent copies of paired random variable

0; = (0j1,052) = (Wj1, Aj1, Yin), (Wia, Aja, Yia))

where index j = {1,...,n/2} denotes the partitioning of the study units {1,...n} into
matched pairs according to similarity on their baseline covariates W™ = (W1, ..., W,). Our
target of inference is the sample average treatment effect (SATE) [19]:
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where Py denotes the distribution of the full data X = (W,Y(1),Y(0)). Under the above
conditions, the TMLE W, (P,) = 3" Qx(1,W;) — Q;(0,W;) is an asymptotically linear
estimator of the SATE:

n/2

W, (P,) — U5 (Py) = ni/Q 3" D3(@. Qo g0) (%, 05) + op(n™17)

with influence curve
DS(Q QO;.QO)(Xj? Oj) = DC(Q Qo,go)(éj) - DI(QO)(Xﬁ Oj)

where Q(A, W) denotes the limit of the targeted estimator of the conditional mean function
Qo(A, W) and where the marginal probability of being assigned the treatment or the control
is known go(A) = Ry(A).

The first component DC(O_]-) is the influence curve for the TMLE targeting the conditional
estimand W§(Py) = 3" [Qo(1, W;) — Qo(0,W))] in a trial with adaptive pair-matching:

DC(Q» QO)gﬂ)(Oj) = % [DC(Q Q0»90>(Oj1) + DC(Q Qo,go)(Oﬂ)]
with D(Q, Qo g0)(0) = (o) = X0 (3 - g w)

_ [(@oa, W) — QL W)) — (Qo(0, W) — @(o,wi))}

The second component Df()_(j,oj) 1s the following function of the paired full data Xj =
(X1, Xj2)-

D7 (Qo)(X;,0;) =

DN | —

{D}—(QOXXJL Oj1) + D7 (Qo)(Xja, sz)]
with D7 (Qo)(Xi, 0;) = Yi(1) — Yi(0) — [Qo(1, Ws) — Qo(0, W5)]

The standardized TMLE for the SATE is asymptotically normal with mean 0 and variance
%S given by the limit of
1 n/2 - S 2
oS = 2 ZPOTL{DS(Q>Q0790)(Xj7Oj)}
j=1

n

where P} f = Eo[f|W™] denotes the conditional expectation of a function f of
O™ = (0, ...,0,), given the vector of baseline covariates W™ = (W1, ..., W,).
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Proof. Let Qo(W) = Qo(1,W) — Qo(0, W) denote the true difference in treatment-specific
means. We can write the deviation between the TMLE W,,(P,) for the conditional estimand
US(Py) and the SATE as

\Ijn(Pn) - \IIS(PX)
=:wnua>—-WSU%>—[wsuaﬂ——WSU%ﬂ

n/2

n/2 Z DC(0;) — [¥5(Px) — WS(Py)] + op(n1/?)
n/2 ) )

n/2 Z DC O |: ZY QO(M)] + Op(’n,il/Q)
n/2

:n—mz[DC<Oj>—5(m1>— {0) = QuI¥30) + Yil1) = Yal0) — QulWia) )|

where D¢(0;) is the influence curve of the TMLE for the conditional estimand S (Py) under
adaptive pair-matching and where D7 (X;,0;) is the following function of the paired full
data XJ = (le, X]2>

[DF(X]L Oj) + D7 (Xj2,0j2)

i(1) = Yi(0) = [Qo(1,Wi) — Qo(0,W5)]

Thus, we have shown the TMLE is an asymptotically linear estimator of the SATE in a trial
with adaptive pair-matching:

[]

Strictly speaking, the influence curve must only be a function of the observed data.
Nonetheless, the theorem is sufficient to prove asymptotic normality and consistency of the
TMLE.
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D.2 Variance and variance estimation for the TMLE
of the SATE in an adaptive pair-matched trial

Theorem 6. The asymptotic variance of the standardized estimator is given by the limit of
1 n/2 - - 2
0-72L7S - TL_/Q Z P(?{DS(Q7 QO: gO)<XJ7 O])}
j=1
n/2

_ niﬂ; |:P61{DC<Q,Q0790)<OJ>}2 — %lPSL{D}—(QO)(XjLOjl)}Q

- EPSL{DJT(QO)(XJ% Oﬂ)}z]

Proof. The conditional variance can be expressed as
1 n/2 N2
oS = n/QZP”{DS(X 0; )}
n/2

-2 Zpg{DC(oj) _Dp7X;, O»}Q

-y {PO“{DC(O]-)F T P&{DW@? 0»}2 - 2Po”{DC<OJ> * DR Oj)H

The conditional variance of the D7 (X, O;) component is

1
2
2 1 2
= —Pél{Df(thOﬂ)} + ;lpél{Df(ija sz)}

+ §P§{Df(th Oj1) X Df(Xj%Oﬂ)}

Under the randomization assumption, each D7 (X;, O;) component has conditional mean
zero, given its baseline covariates W;:
E[D7(X;,0)|Wi] = E[Yi(1) - Yi(0) — Qo(W;)| W]

= BE[Y;(1)|W;] — E[Yi(0)[Wi] — [Qo(L, W;) — Qo(0, W;)]

= Ey(Yi|A; = 1, W) — Eo(Y;|A; =0, W;) — [QO(L W) — Qo(0, Wz)} =0
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Therefore, the conditional covariance of the D/ components within a matched pair is zero:
POn{D}—(le’ Oj1) x D}—(XJQ’OJQ)}

_E[D]:(

0;1) x D (Xﬂ,oj2 wn)
= E[E[Y) (1> Yir(0) —

Qo(Win)[Wi] x D7 (X2, 05)] = 0

The conditional variance of the D7 (X}, 0;) component simplifies to

2

2 2
_ 1 1
P"{Df( O, )} = ZPS“{Df(le,Oﬂ)} + ZP(?{D]:(X]Q?OJQ)}

The conditional covariance of the D¢(0;) and D7 (X, O;) components is
Pg{DC(O ) x D7 (X;,0; )}
= %Pg{ [D€(0;1) + D°(0j2)] x [DF(Xj1,051) + Df(XjQ,OjQ)]}
= }l[pg{DC(oﬂ) x D7 (Xj1,05)} + Py{D(0;1) x D" (Xj2,05)}
+ P{D(0j2) x D" (X;1,051)} + Py {D(Oj2) x D (X}, Oﬂ)}}

As shown in Appendix of [140], the covariance of the D(0O;) and D”(O;) components is
equal to the variance of D7 (0O;). Therefore, we have

PSL{DC(Oﬂ) X DI(thOjl)} = PSL{DI(XﬂaOﬂ)}Q
PSL{DC(OJQ) X Df(ng,Oﬂ)} = PSL{DF(XﬂaOﬂ)}Q
Under the randomization assumption, the other terms are zero:
P&{DC(Oﬂ) X Df(Xﬂ,OjQ)} = E[D(O51) x E[D7(X;2,02)|Wjs]] = 0
Pg{DC(oﬁ) X Df(Xﬂ,oﬂ)} = E[D(0;2) x E[D”(X;j1,0:1)|Wi]] =0

We have that the conditional covariance of the D¢(0;) and D’ (X, O;) components equals

L 1 2 2
Pg{DC(oj) x Df(Xj,oj)} = ZPO”{D’T(Xﬂ, OjQ)} + Zpél{DF(ijy()jz)}
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Combining the terms, we have
n/2

e %/22 [pg{DC(Oj)}Q _ ;lPOn{D}—(XJI;Ojl)}

j=1

2

1 2
- ZPSL{DJT(XJ‘% Oﬂ)} }

]

The asymptotic variance of the TMLE for the SATE ¢%¢ is always less than or equal
to 02¢, which is the asymptotic variance of the TMLE for the conditional parameter. As
shown in [129], we can estimate the upper bound as
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Ordering the observations within matched pairs, such that the first corresponds to the unit
randomized to the intervention (A;; = 1) and the second to the control (A, = 0), it follows
that

D@, 90)(0;) = DY@y, 90)(05) = (Vi1 = @ (1, Wi1)) — (Y2 — Q7,(0, Wj2))
allowing us to represent the variance estimator as the sample variance of the difference in
residuals within matched pairs:

n/2 2
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This variance estimator will be consistent if there is no heterogeneity in the treatment ef-
fect within strata of covariates (i.e. if the variance of the D component is zero) and if
the conditional mean function Qq(A, W) is consistently estimated. Otherwise, the variance
estimator will be conservative.

We can relax the assumption that the conditional variance converges to some limit.
Specifically, we have that the standardized and scaled estimator converges to a normal dis-
tribution with mean 0 and variance given by the ratio of the true conditional variance o>
divided by our conservative estimator 62<:

HP) WP | (%)
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Since the ratio of variances is always < 1. The standard normal distribution N (0, 1) provides
a conservative approximation to the asymptotic distribution.
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D.3 Step-by-step instructions to obtain a
cross-validated variance estimator

Let Q,(A, W) denote the initial estimator for conditional mean outcome, which was selected
through the data-adaptive procedure (Sec. 4.2 for a non-matched trial and Sec. 4.3 for a pair-
matched trial). Let g,(A|W) denote the estimator of the exposure mechanism, which was
collaboratively selected through the data-adaptive procedure (Sec. 4.4). A cross-validated
estimate of the variance of the data-adaptive TMLE can be implemented as follows. As
before, we present V-fold cross-validation, where the data are partitioned into V' folds of size
~ n/V. If matching was used, the partitioning should preserve the pairs.

i. For each fold v = {1,...,V} in turn,

a. Set the observation(s) in fold v to be the validation set and the remaining observations
to be the training set.

b. Using observations in the training set, fit the selected TMLE.

- Fit the selected working model for the conditional mean outcome @, (A, W).
- Fit the selected working model for the exposure mechanism g, (A|W).
- Target the initial estimator. Denote the estimated fluctuation coefficient €,.

c. For each observation Oy in the validation set, estimate the influence curve (and
correction factor p, if relevant).

- Use the initial fit Q,(A, W), based on the training data, to obtain initial pre-
dictions of the outcome under the treatment Q,(1, W) and under the control
Qn (07 Wk) .

- Use the the fit of the exposure mechanism g, (A, W), based on the training set,
to calculate the clever covariate H, (A, Wy).

- Update the initial estimates with the estimated fluctuation parameter ¢,. Denote
the targeted predictions of the outcome under the treatment Q7 (1, W) and the
control Q7 (0, Wy).

- Plug-in the relevant components to estimate influence curve, appropriate for the
target parameter and study design.

ii. Estimate the variance of the data-adaptive TMLE with the sample variance of the
estimated influence curve, normalized by the appropriate sample size.





