
UCLA
UCLA Electronic Theses and Dissertations

Title
Local and Transderivational Constraints in Syntax and Semantics

Permalink
https://escholarship.org/uc/item/7nt7m7sb

Author
Graf, Thomas

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7nt7m7sb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Local and Transderivational Constraints
in Syntax and Semantics

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Linguistics

by

Thomas Graf

2013

c© Copyright by

Thomas Graf

2013

ABSTRACT OF THE DISSERTATION

Local and Transderivational Constraints
in Syntax and Semantics

by

Thomas Graf

Doctor of Philosophy in Linguistics

University of California, Los Angeles, 2013

Professor Edward P. Stabler, Chair

A long-standing tension in Minimalist syntax is that between the structure-building

operations Merge and Move on the one hand and the constraints restricting the

shape of the structures built by said operations on the other. Proposals differ vastly

in how much weight they attribute to each component, partially because there seems

to be no principled connection between the two — constraints can easily be grafted

onto any syntactic theory, and the choice of constraints is apparently independent of

the types of posited operations. As a consequence, many foundational questions still

lack satisfying answers: What kinds of constraints are there? What is their respective

power, and are there any factors that could limit it? Are there phenomena that can

only be explained via constraints? Why would syntax have both operations and

constraints?

My thesis explores these and related questions from a mathematically informed

perspective. The central result is that Minimalist syntax can express a constraint

purely via the operation Merge iff computing said constraint requires only a finitely

bounded amount of working memory iff the constraint can be defined by an extension

of first-order logic known as monadic second-order logic. A peculiar lexicalization

procedure is used to establish the equivalence between Merge and constraints.

ii

The procedure pushes the working memory configurations that emerge during the

computation of a constraint directly into the lexical categories. Refining categories

in this fashion allows the selectional restrictions of lexical items to act as a proxy

through which constraints are expressed via Merge.

Merge-expressible constraints are very powerful and can capture dependencies

between nodes as well as the domains that such dependencies are usually relativized

to. Hence almost all conditions proposed in the syntactic literature belong to this

class, including transderivational constraints and economy conditions. Surprisingly,

the power of Merge-expressible constraints does not vary with respect to the type of

syntactic tree structure they are stated over (phrase structure tree, multidominance

tree, derivation tree), nor is it affected by locality restrictions. With respect to

the issues raised above, then, the emerging picture is that the kind of constraints

entertained by syntacticians belong to a uniform class of structural conditions that is

computationally well-behaved and tightly linked to the foundations of the framework.

The existence of these constraints in language is a natural consequence of the core

component of Minimalist syntax: feature-driven Merge.

Even though all claims are stated and proved with mathematical rigor, little

knowledge is presupposed beyond a basic familiarity with generative syntax. Mini-

malist grammars are used as a formalization of Minimalist syntax, complemented

with ideas from formal language theory and mathematical logic. All concepts are

carefully explained and illustrated with numerous examples, including some ad-

vanced notions that so far have only been covered in highly technical papers. Thus

the thesis should be of interest not only to theoretically minded syntacticians, but

also to computational linguistics and everybody on their way to becoming one.

iii

The dissertation of Thomas Graf is approved.

David Kaplan

Edward L. Keenan

Dominique Sportiche

Edward P. Stabler, Committee Chair

University of California, Los Angeles

2013

iv

Don’t you use your fancy mathematics to muddy the issue!

Applejack, My Little Pony: Friendship is Magic

v

TABLE OF CONTENTS

Introduction . 1

I Setting the Stage 5

1 Minimalist Grammars . 6

1.1 Minimalist Grammars: The Intuition . 7

1.1.1 Feature Calculus . 8

1.1.2 Derivations . 12

1.1.3 Building Structures . 16

1.1.4 The Shortest Move Constraint . 24

1.1.5 Slices . 27

1.2 Formal Definition . 31

1.2.1 Combining Slices Into Derivation Trees 33

1.2.2 The Feature Calculus as Tree-Geometric Constraints 38

1.2.3 From Derivations to Multi-Dominance Trees 45

1.2.4 Formal Summary . 51

1.3 The Chapter in Bullet Points . 52

2 Minimalist Grammars: Advanced Topics . 53

2.1 Selected Formal Results . 55

2.1.1 Derivational Complexity . 55

2.1.2 Weak Generative Capacity . 65

2.1.3 The Importance of Remnant Movement A 67

vi

2.1.4 Strong Generative Capacity . 74

2.2 Evaluating the Adequacy of Minimalist Grammars 78

2.2.1 Relevance of Mathematical Results to Linguistics 79

2.2.2 Feature Calculus . 86

2.2.3 Movement . 91

2.2.4 Locality . 95

2.2.5 Derived Trees . 97

2.2.6 Generative Capacity . 99

2.2.7 Missing Components . 105

2.3 The Chapter in Bullet Points . 108

II The Formal Landscape of Constraints 110

3 Constraints on Trees . 111

3.1 A Taxonomy of Constraints . 114

3.1.1 The Role of Constraints in Linguistics 114

3.1.2 The Müller-Sternefeld Hierarchy 119

3.1.3 Logic and Constraints . 123

3.1.4 Formalizing the Research Problem 133

3.2 Tree-Local Constraints as Merge . 134

3.2.1 Operations on Minimalist Derivation Tree Languages 134

3.2.2 Constraints as Category Refinement: The Basic Idea 140

3.2.3 Formal Specification of the Refinement Algorithm A 149

3.2.4 The Power of Lexical Refinement 157

3.3 The Relative Power of Constraint Classes 160

vii

3.3.1 A Revised Müller-Sternefeld Hierarchy 160

3.3.2 Why use Constraints at all? . 168

3.4 Increasing the Faithfulness of MGs A 173

3.4.1 Locality Conditions . 173

3.4.2 Agreement and Pied-Piping . 176

3.4.3 Relaxing the SMC . 178

3.5 The Chapter in Bullet Points . 179

4 Transderivational Constraints . 182

4.1 Transderivational Constraints as Rewriting Rules 185

4.1.1 Examples of Reference-Set Constraints 185

4.1.2 Introducing Tree Transducers . 187

4.1.3 Putting it All Together . 194

4.2 Example 1: Focus Economy . 199

4.2.1 Focus Economy Explained . 199

4.2.2 A Model of Focus Economy . 204

4.3 Example 2: Merge-over-Move . 216

4.3.1 Merge-over-Move Explained . 216

4.3.2 Properties of Merge-over-Move 219

4.3.3 A Model of MOM . 220

4.3.4 Empirical Evaluation . 225

4.4 Example 3: Shortest Derivation Principle 232

4.4.1 The Shortest Derivation Principle Explained 233

4.4.2 A Model of the Shortest Derivation Principle 235

4.4.3 Scope Economy: A Semantic SDP? 239

viii

4.5 The Chapter in Bullet Points . 241

Conclusion . 243

Symbols and Abbreviations . 245

Bibliography . 247

ix

ACKNOWLEDGMENTS

If PHD comics is to be believed, grad school is a never-ending plight, a soul-crushing

purgatory where young, idealistic minds get to toil away in solitude while their

cohorts are already transitioning into the proper adult lifestyle of family, money,

careers. The thesis is a beacon of hope, the promise of salvation that will allow

the devout grad student to ascend to the heavens of tenure track — or so they say.

Frankly, I have no idea what all the fuss is about.

Writing this thesis wasn’t a defining experience in my life, let alone a dreadful

one. After all, it would not be an academic lifestyle without spending hours in front

of a computer deprived of any social contact. Moreover, I had an excellent thesis

committee, and I am grateful to all the members for making the gestation process

an enjoyable experience. But whereas writing the thesis was only an enjoyable

experience, not a defining one, the great time I had at UCLA definitely meets both

criteria. Looking back, it is hard to believe how much of an impact the last five years

have had one me (strictly positive, I assure you).

Of course nobody has shaped my recent thinking more than Ed Stabler. In fact, Ed

is the reason I am a mathematical linguist today. As an undergraduate I found myself

disillusioned with both computational linguistics and generative syntax. But then,

one lucky day, I stumbled upon a certain paper called “Derivational Minimalism”

and even though I didn’t understand a word — those pesky symbol salads sure were

hard to decipher back then — I immediately felt that this is the way to make sense of

language, that this is what I had to do. A lesser man might have failed to sustain my

interest, but every new project Ed starts gets me even more excited. He is a great

teacher to boot, a brilliant advisor, and has well-reasoned opinions on the two most

important aspects of life: Linux and Star Trek.

I am also indebted to Ed Keenan for his extraordinary support from the very

beginning, for opening my eyes to the beauty of Boolean algebra, and for being the

x

most reliable supplier of funny yet insightful anecdotes; if only I had taped them all.

Besides the two Eds, many other faculty have helped me in one way or the other

over the years. Dominique Sportiche and Kie Zuraw in particular always had an

open ear for my ideas about syntax and phonology, respectively.

Many more people deserve a shout-out, be it for personal or professional reasons.

Without going into further details, let it just be said that the following people have

earned the highly prestigious Thomas Graf seal of approval
TM

: Natasha Abner, Mel

Bervoets, Joe Buffington, Heather Burnett, Karen Campbell, Alex Drummond, Jenn

Fischer, Meaghan Fowlie, Michael Freedman, Hans-Martin Gärtner, Mattyas Huggard,

Tim Hunter, Dana Kleifield, Hilda Koopman, Natasha Korotkova & Vanya Kapitonov,

Marcus Kracht, Shalom Lappin, Winnie Lechner, Ingvar Löfstedt, Jens Michaelis,

Uwe Mönnich, Gereon Müller, Anna Pagé & Bernhard Koller, James Pannacciulli,

Martin Prinzhorn, Jim Rogers, Uli Sauerland, Tamara Vardomskaya, Martin Walkow,

Alexis Wellwood, Kristine Yu, and Sarah Zobel.

A 6000 miles long-distance Thank You

note goes to my parents. They have

had to put up with a lot of things due

to me, some of them even worse than

constantly being asked by their friends

what this weird mathematical linguistics

thing is all about.

Ein 9000 Kilometer Dankeschön-

Ferntelegramm geht an meine Eltern.

Sie haben sich wegen mir mit so

einigem abfinden müssen, manches

sogar schlimmer als die unentwegten

Fragen von Bekannten worum es denn

bei dieser komischen Mathematischen

Linguistik überhaupt geht.

xi

VITA

2007 Mag.phil. (≈ M.A.) in Linguistics, summa cum laude, University

of Vienna.

2009 Springer Prize for Best Student Paper at ESSLLI2009

2010 M.A. in Linguistics, UCLA.

2010 & 2011 DOC-Fellowship of the Austrian Academy of Sciences

PUBLICATIONS

Graf, Thomas. 2012. Concealed Reference-Set Computation: How Syntax Escapes

the Parser’s Clutches. In Anna Maria Di Sciullo (ed.), Towards a Biolinguistic Under-

standing of Grammar. Essays on Interfaces, 339–362. John Benjamins: Amsterdam.

Graf, Thomas. 2012. Movement-Generalized Minimalist Grammars. In Denis

Béchet and Alexander Dikovsky (eds.), Proceedings of LACL 2012, Lectures Notes in

Computer Science 7351, 58–73. Springer: Heidelberg.

Graf, Thomas. 2011. Closure Properties of Minimalist Derivation Tree Languages. In

Sylvain Pogodalla and Jean-Philippe Prost (eds.), Proceedings of LACL 2011, Lectures

Notes in Artifical Intelligence 6736, 96–111. Springer: Heidelberg.

Graf, Thomas. 2010. Formal Parameters of Phonology: From Government Phonology

to SPE. In Thomas Icard and Reinhard Muskens (eds.), Interfaces: Explorations in

xii

Logic, Language and Computation, Lecture Notes in Computer Science 6211, 72–86.

Springer: Berlin.

Graf, Thomas. 2007. Agreement with Hybrid Nouns in Icelandic. Snippets 16, 7f,

2007

xiii

INTRODUCTION

In this thesis I try to clarify the role that constraints may play in a syntactic theory.

The questions I address include:

• Why should there be constraints in syntax?

• How do constraints relate to operations? Are they more/less powerful?

• How can the power of constraints be restricted? Are they affected by locality

restrictions?

• Are there subclasses of constraints with particularly interesting properties?

Should only specific types of constraints be used?

• Can constraints be efficiently computed? If so, how?

• Should semantic notions such as logical entailment be part of syntactic con-

straints?

These and related issues have been explored in the generative literature for many

years. What sets this thesis apart is its mathematical and computational grounding.

While I approach the topic from a linguistically informed perspective, I do not

rely on empirical case studies or arguments of conceptual simplicity. Instead, I

use mathematical models that allow me to establish the fundamental properties of

constraints and prove them in a rigorous manner.

The mathematically disinclined need not worry, though, as I have made a deliber-

ate attempt to present the material in as approachable a manner as possible. Proofs

and formal definitions can be skipped, and all important concepts and results are

illustrated with examples. Advanced material that is not essential for understanding

the main ideas is explicitly marked with the symbol A. Only some set-theoretic

notation and the basics of first-order logic go unexplained, both of which are usually

1

covered in the first few weeks of a graduate level introduction to semantics. Readers

who wish to explore every nook and cranny of the thesis should also have some

basic familiarity with notions from formal language theory such as regular and

context-free string grammars and finite-state automata.

By carefully working through the thesis, the reader will get to see Minimalist

syntax and constraints from a new perspective. They will understand the importance

of derivation trees and their close relation to the Minimalist feature calculus. It

will also become clear why syntactic constraints can be computed with a finitely

bounded amount of working memory and why this fact entails that these constraints

can be expressed purely via Merge. On a technical level, the reader will acquire

an intuitive understanding of many advanced topics from mathematical linguistics

such as Minimalist grammars, mild context-sensitivity, weak and strong generative

capacity and their role in evaluating grammar formalisms, tree languages and tree

transductions, monadic second-order logic, and Thatcher’s theorem.

The thesis is designed in a modular way so that readers can skip parts that they

are not interested in. The first two chapters are dedicated to Minimalist grammars,

which provide the formal model of Minimalist syntax used throughout this thesis.

Chapter 1 provides both an intuitive presentation of the formalism and a separate,

more rigorous treatment. Either section provides the necessary background to follow

my claims, but only the latter provides the details that are necessary to follow the

proofs. The reader may freely pick one of the two depending on his mathematical

comfort level and prior familiarity with Minimalist grammars. Chapter 2 also comes

in two parts. The first one introduces the reader to the computational properties

of MGs, whereas the second one discusses to what extent Minimalist grammars are

an adequate model of Minimalist syntax — an issue that is crucial to evaluating the

relevance of my results to syntacticians. Neither section is absolutely necessary for

the later chapters, but in particular the first one introduces various points that will

be referenced later on, so they are recommended reading.

2

The second part of the thesis is dedicated to the mathematical exploration of

constraints in Minimalist grammars. Chapter 3 covers the central results of this thesis:

monadic second-order logic as a description logic of constraints, the expressive

equivalence of Merge and constraints definable in this logic, the equivalence of

constraints over representations and derivations, and the fact that local constraints

are just as powerful as locally unbounded ones. The first equivalence result follows

from the fact that monadic second-order definable constraints can be computed

by finite-state tree automata. The states of these automata can be pushed directly

into the category and selector features checked by Merge, so that Merge implicitly

enforces these constraints during the structure building process. Chapter 4 then

extends this equivalence result to transderivational constraints by treating them not

as filters, but as rewriting rules that turn suboptimal derivations into optimal ones.

This is formally captured by modeling them as linear tree transducers.

For syntacticians, the shortest path through this thesis consists of Sec. 1.1, 3.1,

and 3.2.2, optionally supplemented by 2.1.1, 2.2, the rest of 3.2, and 3.3. If their

primary interest is transderivational constraints they may skip 3.1 and move directly

to Chap. 4 after Sec. 3.2.2. However, I highly recommend working through 2.1.1 in

this case.

Formally minded readers can follow the recommendations for linguists except

that Sec. 1.1 is replaced by 1.2. They might particularly appreciate that the definition

of Minimalist grammars uses a two-step format that treats a grammar as a regular

derivation tree language plus a mapping from derivations to phrase structure trees.

This approach has yielded a lot of interesting insights in recent years but has not

been discussed in a widely accessible manner yet. Similarly, Sec. 2.1 covers many

technical aspects of MGs only found in specialized literature such as the relation of

Minimalist derivation tree languages to bottom-up tree automata and context-free

string grammars, the complexity of the mapping from derivations to phrase structure

trees, their strong generative capacity, and the importance of remnant movement for

3

pushing MGs beyond the realm of context-free string languages.

4

Part I

Setting the Stage

5

CHAPTER 1

Minimalist Grammars

Contents

1.1 Minimalist Grammars: The Intuition 7

1.1.1 Feature Calculus . 8

1.1.2 Derivations . 12

1.1.3 Building Structures . 16

1.1.4 The Shortest Move Constraint 24

1.1.5 Slices . 27

1.2 Formal Definition . 31

1.2.1 Combining Slices Into Derivation Trees 33

1.2.2 The Feature Calculus as Tree-Geometric Constraints 38

1.2.3 From Derivations to Multi-Dominance Trees 45

1.2.4 Formal Summary . 51

1.3 The Chapter in Bullet Points . 52

Minimalist grammars (MGs) provide the rigorous foundation on which all results

of this thesis rest. A good intuitive grasp of the formalism is indispensable, and

basic familiarity with the underlying mathematics is helpful in appreciating some of

the finer points discussed in Chap. 3 and 4. This chapter provides as accessible an

introduction to these issues as possible.

Section 1.1 presents MGs in an intuitive fashion that avoids mathematical no-

tation without sacrificing any details of the formalism. Extensive use is made of

6

practical examples to illustrate abstract ideas. Differences between MGs and Mini-

malist syntax that are common sources of confusion are also pointed out prominently.

Section 1.2, on the other hand, defines MGs with all the mathematical rigor

necessary to support the results proved in the later chapters. Mathematically inclined

readers may prefer to start with this section right away, consulting the previous

two only where clarification is needed. This section might also be of interest to

MG researchers because it presents the fairly recent two-step approach to MGs (cf.

Kobele et al. 2007; Mönnich 2006, 2007; Graf 2012b,c). That is to say, MGs are

defined in terms of their derivation tree languages and a mapping from derivations

to multi-dominance phrase structure trees.

This chapter is followed by further information on the formal properties of MGs

as well as a detailed evaluation of the linguistic faithfulness of MGs in Chap. 2.

Impatient readers may choose to proceed to Chap. 3 right away, where I show that

MGs can be enriched with constraints on derivation trees and phrase structure trees

without increasing their generative capacity.

1.1 Minimalist Grammars: The Intuition

MGs were originally defined in Stabler (1997) as a formalization of Chomsky’s

(1995c) early version of Minimalism. As is often done in these cases, Stabler

implements only the core aspects of Chomsky’s highly detailed proposal, in the hope

that mathematical results will be easier to establish this way but can later be shown

to carry over to more faithful extensions. Whether this strategy has been successful

will be discussed in the next chapter (Sec. 2.2). For now, let us set the question of

faithfulness aside and focus just on what Stabler’s formalization of Minimalism looks

like.

MGs can be described in broad strokes as Minimalist syntax with a more stringent

feature calculus:

7

1. Lexical items (LIs) consist of a (possibly null) phonetic exponent and 1 or

more features.

2. Features come in two polarities, and both Merge and Move delete exactly two

features that differ only in their polarity.

3. Each LI’s features are linearly ordered and must be checked in that order.

4. Besides checking features, Merge and Move also build phrase structure trees

in the familiar way.

5. The Shortest Move Constraint blocks every configuration where more than

one phrase can be moved in order to check a given feature.

The following subsections expand on these points, starting with 1–3, which jointly

make up the MG feature calculus. After that, structure building and the Shortest

Move Constraint are discussed in greater detail. I deliberately proceed at a leisurely

pace, making use of examples and highlighting subtle differences between MGs

and Minimalist syntax. The examples consist mostly of single trees or short toy

grammars; a fully developed MG grammar for a fragment of English can be found in

Chap. 2 of Kobele (2006), though. Readers who prefer a brisker pace are advised to

skip ahead to Sec. 1.2 and consult the examples provided here for clarification.

1.1.1 Feature Calculus

MGs require a modest amount of book-keeping regarding which features trigger

certain operations at a given point in the derivation. In the spirit of the Borer-

Chomsky Conjecture (Borer 1984; Chomsky 1995c), features are the fuel for the

entire MG machinery, and variation between grammars are merely variations in

feature specifications of LIs. Consequently, every MG can be given as a list of

feature-annotated LIs.

8

While their reliance on features endows MGs with sufficient rigor to support

mathematical reasoning, it is also a common source of estrangement for practicing

Minimalists, who are used to a high-level style of analysis where not every feature

licensing a particular step in the derivation is given explicitly. As a matter of fact,

many questions about features are seldom discussed in the literature, e.g. whether

an LI may have the same feature multiple times (cf. Nunes 2000) and how many

possible values there are for a given feature (cf. Adger 2006, 2010). Due to their

feature-driven nature, MGs have to make specific assumptions about these issues; I

refrain from defending them here, for once the reader has a better understanding of

the formalism, they will see that little hinges on these details.

Early Minimalism postulates a bifurcation into interpretable and uninterpretable

features, only the latter of which of are actually deleted by feature checking. MGs,

on the other hand, assign each feature one of two polarities — positive and nega-

tive — and feature checking is tantamount to the deletion of two features of opposite

polarity.

Example 1.1

According to Adger (2003), a transitive verb like kiss has an interpretable V feature

and an uninterpretable D feature, while a noun like pigs has an interpretable D

feature. When kiss is merged with pigs, the two enter into a checking relation. They

only agree on their D features, so these are the only ones that can be checked. The

uninterpretable feature is subsequently deleted, but the interpretable feature is still

present because interpretable features are never erased from the structure. In the

corresponding MG analysis, kiss has a negative feature V− and a positive feature D+,

and pigs carries a matching D−. But when the two are merged, both D+ and D− are

deleted, not just one of them.

As another example, consider the checking of abstract Case, which involves two

9

uninterpretable features rather than just one. In Minimalist syntax, the head T hosts

the overt subject position and has an uninterpretable Case feature. At the same

time, there is also an uninterpretable Case feature on the subject DP, which has been

introduced at a lower point in the structure. Since feature checking cannot take

place at a distance, the subject is first moved into Spec,TP, after which both Case

features can be checked and deleted. In MGs, the features triggering Move are still

of opposite polarity: T has a positive Case feature, the DP a negative one.

In a sense, MGs treat all features as uninterpretable and thus subject to deletion.

Their distinction between positive and negative polarity features adds another

dimension that roughly corresponds to the directionality of the dependency. For

instance, a verb licenses the presence of its DP arguments, so its D features are all of

positive polarity. Since feature checking involves features of opposite polarities, it

follows that each DP argument has a negative D feature. Polarity therefore encodes

the distinction between licensor and licensee and is not related to the notions of

interpretability or valuation entertained in Minimalist syntax.

Features are further divided into Merge features on the one hand and Move

feature on the other. No feature can be both a Merge feature and a Move feature,

so there is no uncertainty as to which operation will be invoked in order to check a

feature. This is not the case for Minimalist syntax, where D-features may be checked

via Merge in the case of a DP being selected by a verb, or via Move when a DP

has to check the so-called EPP-feature of a T head. MGs do not allow for this kind

of overlap and partition the set of features into four subclasses according to their

polarity and operation type:

10

Merge Move

- category feature f licensee feature −f

+ selector feature = f licensor feature +f

This basic system makes it very easy to specify the appropriate feature make-up for

various LIs. Note that an LI may contain several occurrences of the same feature,

e.g. two selector features =D. As pointed out by Kobele (2005), this means that one

should not think of MG features in terms of properties, since it makes little sense for

an LI to have the same property twice. Rather, features are the building blocks from

which LIs are assembled.

Example 1.2

The transitive verb kiss has a category feature V and selector feature =D, whereas

ditransitive owe has two such selector features. The determiner the, in turn, has a

category feature D and selector feature =N, while its wh-counterpart which also has

a licensee feature −wh, which must be checked via Move by a matching selector

feature +wh on some C-head.

Simply annotating LIs with features in this way is insufficient, though, if it

matters in which order arguments are selected. Consider ditransitive verbs that take

a CP as one of their arguments, as in John told Bill that Mary had left him. Saying

that this instance of tell carries the features V, =D and =C is insufficient, because

the grammar also needs a way to decide whether the CP or the DP should be selected

first. Some kind of order needs to be established between the two selector features.

For cases where a head selects two arguments of different categories in a specific

order, syntacticians might be inclined to infer said order from the thematic roles of

the arguments. But this requires at the very least a basic Θ-role system, which MGs

do not provide. A mathematically simpler solution to the problem is to linearly order

11

all the features of an LI. Only the first (i.e. leftmost) feature of an LI is active and

may enter a checking relation with a matching feature of opposite polarity. Once it

has been deleted via feature checking, the feature immediately following it becomes

active. So if an XP should be selected by LI l before a YP, then =X precedes =Y

in the specification of l. For the MG apparatus, then, an LI consists of a phonetic

exponent (denoted ε if null) and a finite string of features as depicted in Tab. 1.1

(the double colon :: visually separates the two components).

the :: =N D pigs :: N ε :: =V =D v
the :: =N D − nom sleep :: V ε :: = v + nom T
which :: =N D −wh kiss :: =D V that :: =T C
which :: =N D − nom −wh owe :: =D =D V ε :: =T C
’s :: =D =D D tell :: =C =D V ε :: =T +wh C

Table 1.1: Lexical Items as Combinations of Phonetic Exponents and Feature Strings

The features on each LI regulate the structure-building process and serve in

determining grammaticality: in order for a tree to be well-formed, all features must

have been checked on all LIs except the category feature of the highest head, which

must be a C feature. This is similar to the requirement in Minimalist syntax that

grammatical sentences are CPs from which all uninterpretable features have been

erased.

1.1.2 Derivations

Although the MG feature calculus is simple, it is often helpful to have a pictorial

representation of how features are discharged, and at what point. While there are

several ways this can be accomplished, the most intuitive one for linguists is provided

by augmented derivation trees (proof nets are a viable alternative, see Stabler 1999

and Salvati 2011).

An augmented derivation tree provides a record of the steps taken during the

derivation and their relative order: its leafs are annotated with the LIs a given tree

12

is constructed from, and interior nodes are labeled with the name of the operation

that takes place at this point and the name of the two features being checked. The

daughters of an interior node are the elements that are combined by the operation

the node represents. Note that an augmented derivation tree is actually a strictly

binary branching multi-dominance tree because a given subtree might be involved

in both Merge and Move.

Example 1.3

Let us verify that the pigs sleep is well-formed with respect to the feature calculus of

the MG defined by the lexicon in Tab. 1.1. That is to say, is there some way we can

combine LIs in our lexicon to get some structure for the pigs sleep that only contains

an unchecked C feature on the highest head?

For pigs and sleep, we have the LIs pigs :: N and sleep :: V, respectively. For the,

there are two options, the :: =N D and the :: =N D − nom. In either case the can

select pigs, and the features N and =N on pigs and the, respectively, are subsequently

deleted. Consequently there are no features left on pigs, while the first unchecked

feature on the is now its category feature D. The corresponding derivation tree is

given below for the case where the also carries a licensee feature.

Merge[N]

pigs :: Nthe :: =N D − nom

None of the LIs we have considered so far have a matching selector feature, so

let us turn our attention to sleep now. It only has a category feature, so it, too, needs

to be selected by some other LI. Only the empty v head may select a verb, so we

merge it with sleep. This gives us ε sleep, which is string equivalent to sleep. The

derivation tree is similar to the one for the pigs.

Merge[V]

sleep :: Vε :: =V =D v

13

Note that the first unchecked feature the v-head is now =D, which matches the

first unchecked feature of the. So Merge can be applied once more.

Merge[D]

Merge[V]

sleep :: Vε :: =V =D v

Merge[N]

pigs :: Nthe :: =N D − nom

At this point all features have been discharged except for the category feature v

and the licensee feature −nom on the. The LI ε :: =v + nom T is the only available

selector for v, so it is merged in the familiar way.

Merge[v]

Merge[D]

Merge[V]

sleep :: Vε :: =V =D v

Merge[N]

pigs :: Nthe :: =N D − nom

ε :: =v + nom T

The first feature of the T-head is now +nom. If none of the LIs we have merged

so far had a matching −nom feature as its first currently active feature, the grammar

would have to abort: Move is not applicable because there is no matching feature

for +nom, and no further Merge steps are possible because no LI has a category or

selector feature as its first active feature. Fortunately we picked an LI for the earlier

on that carries a −nom feature, and this feature is currently active. So Move applies,

the nominative features are erased, and T’s category feature becomes active. Note

that we draw a movement branch in the augmented derivation tree directly to the in

order to make fully explicit which head hosts the relevant licensee feature.

14

Move[nom]

Merge[v]

Merge[D]

Merge[V]

sleep :: Vε :: =V =D v

Merge[N]

pigs :: Nthe :: =N D − nom

ε :: =v + nom T

The last step consists of merging the LI ε :: =T C. The only unchecked feature

at this point is C, so the assembled structure is well-formed.

Move[nom]

Merge[v]

Merge[D]

Merge[V]

sleep :: Vε :: =V =D v

Merge[N]

pigs :: Nthe :: =N D − nom

ε :: =v + nom T

ε :: =T C

Merge[T]

We have not yet talked about how one determines the actual phrase structure

tree built by this derivation, but it should be intuitively clear the resulting tree yields

the string the pigs sleep. Hence there is at least one way of generating this sentence

so that all requirements of the MG feature calculus are obeyed.

So far, then, we have seen that MGs build on a symmetric feature calculus — each

checking operation deletes two features of opposite polarity — in which each LI is

annotated with a string of features that must be checked one after another. The

15

checking is accomplished through sequential applications of Merge and Move, and

derivation trees provide an elegant means for keeping track of the order in which the

operations are applied. But Merge and Move aren’t merely responsible for checking

features of a respective type, they crucially build structure in doing so. What, then,

are the actual structures generated by MGs?

1.1.3 Building Structures

A great advantage of augmented derivation trees is that they make it very easy to

define the phrase structure trees produced by Merge and Move. MGs generate a

variant of the Bare Phrase Structure trees defined in Chomsky (1995a,c). Heads

still project phrases similar to X′-syntax, except that interior nodes are omitted if

they have only one daughter. The labeling mechanism used to indicate projection

is kept as simple as possible, so that interior labels are merely arrows (< or >)

pointing toward the branch along which the projecting head can be found. Ignoring

Move and questions of linearization for now, it should be easy to see that the trees

generated this way differ only marginally from the augmented derivation trees: LIs

are reduced to their phonetic exponent, and interior nodes are relabeled < and >

depending on where the projecting head is to be found.

Example 1.4

Applying Merge as indicated in the derivation tree below yields the phrase structure

tree to the left, which could also be drawn as the tree to the right using a more

elaborate labeling algorithm.

Merge[D]

Merge[V]

sleep :: Vε :: =V =D v

Merge[N]

pigs :: Nthe :: =N D − nom

16

>

<

sleepε

<

pigsthe

vP

v′

sleepε

DP

pigsthe

Computing the output of Move follows the same procedure, except that the tail

end of the movement branch must be relocated from the LI hosting the licensee

feature to the root of the phrase said LI projects — after all, we want the entire phrase

to move, not just the LI. This yields the kind of multi-dominance tree commonly

entertained in current Minimalist writing.

Multi-dominance trees can easily be converted into standard Bare Phrase Struc-

ture trees by detaching the moving subtree from all branches except the movement

branch attached to the highest node and optionally attaching traces or copies to any

dangling branches created this way (see Kobele 2006 for a rigorous treatment of

copying movement).

Example 1.5

In the derivation below, the movement step yields the multi-dominance tree to the

left, or alternatively the phrase structure tree to the right.

17

Move[nom]

Merge[v]

Merge[D]

Merge[V]

sleep :: Vε :: =V =D v

Merge[N]

pigs :: Nthe :: =N D − nom

ε :: =v + nom T

>

<

>

<

sleepε

<

pigsthe

ε

>

<

>

<

sleepε

t

ε

<

pigsthe

This procedure even works in more complicated cases such as remnant movement

and roll-up movement. In remnant movement (also known as diving or surfing), a

phrase XP from which another phrase YP has been extracted is itself moved across

the landing site of YP to some higher position. This yields a configuration in which YP

no longer c-commands its original position inside XP. This is blocked by the Empty

Category Principle in GB, but Minimalism freely allows for this kind of movement.

Example 1.6

Remnant movement analyses are commonly invoked for cases of verb fronting in

German (den Besten and Webelhuth 1990).

18

(1) [tDP

[tDP

gelesen]VP

read]VP

hat
has

Hans
Hans

[das
[the

Buch]DP

book]DP

tVP.
tVP.

‘Hans read the book.’

It is commonly assumed that the finite verb in German resides in C0, and everything

preceding it in Spec,CP. By this reasoning, gelesen in Gelesen hat Hans das Buch must

be a phrase despite appearance to the contrary. This is accounted for by having the

object move out of the VP, which then moves into Spec,CP — an instance of remnant

movement. The MG derivation for this analysis is given below (all usually posited

instances of head movement are ignored in this example, as is the head-finality of

TP and VP in German).

Move[top]

Merge[T]

Move[nom]

Merge[v]

Move[acc]

Merge[D]

Merge[V]

Merge[D]

Merge[N]

Buch :: Ndas :: =N D − acc

gelesen :: =D V− top

ε :: =V =D + acc v

Hans :: D − nom

ε :: = v + nom T

hat :: =T + top C

19

>

<

>

<

>

>

<

<

<

Buchdas

gelesen

ε

Hans

ε

hat

>

<

>

<

>

>

<

tε

t

<

Buchdas

ε

Hans

hat

<

tgelesen

In roll-up movement (also known as snowballing), a phrase XP moves into

the specifier of the next higher phrase, which then continues to move on its own,

20

carrying XP along with it. This provides an easy way to invert the order of LIs in a

given phrase.

Example 1.7

According to Cinque (2005), the underlying order of demonstratives, numerals,

adjectives and nouns in a noun phrase is universally fixed by a single template.

There are three (possibly empty) functional heads W, Y, and X such that each of them

optionally hosts a demonstrative phrase, numeral phrase, or adjectival phrase in its

specifier, respectively. Moreover, the noun phrase is the complement of X, which is

the complement of Y, which is the complement of W.

WP

W′

YP

Y′

XP

X′

NPX

AP

Y

NumP

W

DemP

This structure yields the basic Dem-Num-A-N pattern found in English and many

other Indo-European languages, cf. the three bright students. All empirically at-

tested permutations of the base order are created via Move. The mirror im-

age N-A-Num-Dem is generated via roll-up movement. First NP moves into

a second specifier of X, then XP into a second specifier of YP, and finally YP

into a second specifier of WP, yielding the phrase structure tree depicted be-

low.

21

WP

WP

W′

tYPW

DemP

YP

YP

Y′

tXPY

NumP

XP

XP

X′

tNPX

AP

NP

The corresponding MG derivation yields the multi-dominance representation of the

same structure.

Move[y]

Merge[D]

Merge[Y]

Move[x]

Merge[Num]

Merge[X]

Move[n]

Merge[A]

Merge[N]

NP :: X − nε :: =N =A + n X − x

AP :: A

ε :: =X =Num + x Y − y

NumP :: Num

ε :: =Y =D + y W

DemP :: D

22

>

>

<

>

>

<

>

>

<

NP :: X − nε :: =N =A + n X − x

AP :: A

ε :: =X =Num + x Y − y

NumP :: Num

ε :: =Y =D + y W

DemP :: D

The examples above demonstrate that it does not matter for our translation from

derivation trees to phrase structure trees how many elements move and what their

respective timing is — reducing LIs to their phonetic exponent, relabeling interior

nodes by < and > to indicate projection, and shifting the tail of movement paths

jointly yield the desired multi-dominance tree.

The astute reader might be wondering, though, how < and > can be used to

pick out the projecting head because phrase structure trees are commonly taken to

be unordered following Kayne (1994). If one cannot distinguish left from right, one

cannot use arrows to point in the direction of the head. The answer to this minor

conundrum is that the trees generated by MGs are in fact ordered. This is once again

done for the sake of convenience because unordered trees are not as well-behaved

mathematically (cf. Kepser 2008). However, the assigned order is identical to the

23

one obtained by the c-command algorithm of Kayne (1994): the first argument of a

head is put to its right, all other arguments to its left.

1.1.4 The Shortest Move Constraint

Minimalist syntax is ripe with principles that militate against specific instances of

movement if several options exist. For instance, if XP and YP both carry a feature

that would allow them to check an uninterpretable feature on ZP via movement,

then XP may move to Spec,ZP only if it is not c-commanded by YP. This is supposed

to explain why English wh-subjects can always be moved to Spec,CP, but wh-objects

only if there is no wh-subject.

(2) a. Who t bought the book?

b. Who t bought what?

c. What did she buy t?

d. ?? What did who buy t?

Stabler (1997) steers away from adding such constraints to MGs, once again in an

effort to encompass the essentials of Minimalist syntax in as simple a framework as

possible (nonetheless the effects of well-known locality constraints on the formalism

were a topic of interest from the very beginning; see example 3.1 in Sec. 3.1.1 as well

as Gärtner and Michaelis 2007 and references cited there). But the wh-movement

patterns above touch on a more fundamental issue that needs to sorted out, viz.

cases where two or more LIs have the same licensee feature active at the same time

in the derivation.

Example 1.8

Consider the German remnant movement derivation in example 1.6 on page 18.

This derivation is fully deterministic because every LI carries a different licensee

24

feature. However, if nom and acc were both replaced by the feature case, then

subject and object would have the same licensee feature −case. What more, once

the subject is merged, both licensee features would be active at the same time. How,

then, does one determine which LI checks the +case feature on v, and which one

the feature of T?

Rather than establish an elaborate locality algorithm that matches licensee

features to licensor features based on structural configurations, Stabler (1997)

flat-out blocks all cases of ambiguity via the Shortest Move Constraint (SMC).

SMC Two licensee features may both be active at the same time in the derivation

only if they are distinct.

Example 1.9

Consider once more the German remnant movement derivation in example 1.6 on

page 18, with the minor change that nom and acc have been replaced by case as

described in the previous example.

When the verb selects the determiner das, the latter’s licensee feature becomes

active. The verb itself also carries a licensee feature, which becomes active once

the verb is selected by v. So at this point in the derivation two licensee features

are active. But since one is −case and the other −top, the SMC is obeyed and the

derivation may continue. Once the subject Hans is selected by v, yet another licensee

feature becomes active. This time, though, it is another instance of −case, which

violates the SMC. The derivation is subsequently rejected as ungrammatical by the

grammar.

25

The SMC is a common source of confusion for syntacticians. For one thing, it

has little in common with the eponymous constraint from the syntactic literature.

The naming of the constraint is indeed unfortunate, but it makes slightly more sense

once one realizes that the SMC is motivated by configurations such as (2d), which

in turn are closely connected to discussions of locality in the literature.

A more important issue, however, is the abundance of cases in the literature

where two or more LIs are taken to be eligible movers. It seems that by adopting

the SMC, MGs actively exclude a significant portion of syntactic inquiry. As so often

with mathematical work, though, looks are deceiving, and there are ways to weaken

the SMC without jeopardizing the framework. Unfortunately, appreciating this point

takes some formal background that is not in place yet. The issue will be picked up

again in Sec. 2.2.3 and 2.2.4.

In sum, MGs do not impose any locality conditions but instead require that Move

be deterministic. Notice that this makes the dashed lines of augmented derivation

trees redundant, because one can always deduce from the feature calculus which LI

moves where. Therefore I will no longer indicate movement dependencies in the

derivation tree. I also drop the features from interior node labels to reduce clutter.

Example 1.10

Example 1.3 concluded with an augmented derivation tree for The pigs sleep. The

derivation is repeated below in the simplified format.

26

Move

Merge

Merge

Merge

sleep :: Vε :: =V =D v

Merge

pigs :: Nthe :: =N D − nom

ε :: =v + nom T

ε :: =T C

Merge

Derivation trees play a central role in later chapters, so the reader is advised to

familiarize himself with this simple format. It captures the actions of the MG feature

calculus in a succinct manner while reflecting the shape of the phrase structure tree

modulo displacement of phrases via Move. Since derivation trees fully specify both

aspects in an elegant manner, they can easily serve as the primary data structure of

MGs. That is to say, every MG can be equated with its set of well-formed derivation

trees.

1.1.5 Slices

At the beginning of this section it was pointed out that MGs follow the Borer-

Chomsky Conjecture in pushing all parametric variation into the lexicon while

keeping the properties of Merge and Move as well as the feature calculus constant

across grammars. So in order to define an MG, it suffices to list all its LIs. But we

have also learned that every derivation specifies a unique multi-dominance tree

thanks to the SMC, which makes Move a deterministic operation. Thus every MG

is also uniquely specified by its set of derivation trees, which I also refer to as a

Minimalist derivation tree language (MDTL). But in contrast to lexicons, MDTLs do

27

not constitute a very useful way of defining MGs because they might be infinite so

that writing down a list of all well-formed derivations isn’t feasible (even though it

is very easy to compute the set of well-formed derivation trees for any given MG,

see Sec. 2.1.1). Fortunately there is a way to decompose derivations into partial

derivations such that every MG is uniquely specified by a finite set of such partial

derivations.

Just like phrase structure trees can be decomposed into subtrees containing

exactly one LI and all its projections, derivation trees can be decomposed into

subderivations that consist of an LI and all the interior nodes that check one of the LI’s

positive polarity features (i.e. selector and licensor features). These subderivations

are called slices.

Example 1.11

Example 1.4 showed a simple MG derivation and the phrase structure tree it gen-

erates using a more standard labeling convention. The trees are repeated here

for the reader’s convenience, and their interior nodes are decorated in the style of

augmented derivation trees. This is just an expository device, though, and thus not

necessary for slices.

Merge[D]

Merge[V]

sleep :: Vε :: =V =D v

Merge[N]

pigs :: Nthe :: =N D − nom

vP

v′

sleepε

DP

pigsthe

The phrase structure tree can be decomposed into four subtrees such that each

28

consists of an LI and its projections. Put slightly differently, each subtree corresponds

to a maximal phrase with its arguments removed.

pigs sleep DP

the

vP

v′

ε

Notice that the phrase structure tree and the derivation tree differ only in their

labels. Every node in the phrase structure tree corresponds to a specific node in

the derivation tree. If the derivation tree is decomposed in a way that reflects the

decomposition of the phrase structure tree, one obtains four partial derivation trees,

that is to say, four slices.

pigs :: N sleep :: V Merge[N]

the :: =N D − nom

Merge[D]

Merge[V]

ε :: =V =D v

One can tell immediately that the nodes dominating an LI in a slice correspond

exactly to its positive polarity features and also reflect their order. Left-to-right in

the feature string corresponds to bottom-up in the slice.

Intuitively, slices are the derivational equivalent of phrasal projection. Just

like every node in a phrase structure tree is either an LI or one of its projections,

every node in a derivation belongs to the slice of some LI. The slice of an LI is

readily determined: its leaf is the LI itself, and for every positive polarity feature

an interior node of the appropriate type is added on top of the slice — Merge for

selector features, Move for licensor features. Hence every Minimalist lexicon can be

converted into a set of slices. These slices can be recombined to yield derivation trees,

29

although not all combinations may obey the requirements of the feature calculus.

Example 1.12

Suppose the four slices from the previous example are supplemented by another two

involving Move.

which :: =N D −wh Move

Merge

ε :: = v +wh C

These slices can be recombined in a number of ways by attaching a slice as the

second daughter of a Merge node. Some combinations respect the feature calculus,

many do not.

Merge

which :: =N D −whpigs :: N

Move

Merge

ε :: = v +wh CMerge

sleep :: Vthe :: =N D

But even the illicit combinations never include configurations where Move has more

than one daughter — only Merge nodes may have a slice attached to them.

An MG’s MDTL, then, is the result of I) freely combining all slices in all possible

ways such that every Merge node has two daughters, and II) subsequently filtering

out all derivations that fail the requirements of the feature calculus. Since slices

are obtained from LIs, of which every MG has only a finite number, every MDTL

is specified by a finite number of slices, wherefore every MG can be defined as a

30

finite set of slices. The decomposition of derivations into slices thus combines the

succinctness of the lexical perspective with the clarity of the derivational perspective

on MGs.

Slices are an essential tool in my investigation of constraints in Chap. 3. In

particular, the fact that all derivations are assembled from slices entails that deriva-

tions are lexicalized in the sense that every node in the derivation is associated to a

positive polarity feature of some LI. Figure 1.1 shows a Minimalist derivation and its

implicit partition into slices.

Move

Merge

Merge

Merge

sleep :: Vε :: =V =D v

Merge

pigs :: Nthe :: =N D − nom

ε :: =v + nom T

ε :: =T C

Merge

Figure 1.1: Minimalist derivation with slices indicated by color

1.2 Formal Definition

Several equivalent formalizations of MGs have been proposed in the literature, all of

which serve slightly different purposes. The original definition in Stabler (1997) is

the most intuitive one and casts MGs as a mechanism for combining LIs into (linearly

ordered) phrase structure trees. The chain-based definition of Stabler and Keenan

(2003), on the other hand, makes MGs a lot easier to work with mathematically at

the expense of turning them into a string-based formalism. That is to say, sentences

are generated directly from LIs without the intermediate step of phrase structure

trees. Finally, the two-step approach to MGs has gained a lot of traction in recent

31

years (see Kobele et al. 2007, Graf 2012b,c for MGs, and Morawietz 2003, Mönnich

2006, 2012 for two-step approaches to other grammar formalisms).

The idea behind the two-step approach is that each MG is specified by two

components: its set of well-formed derivations, and a mapping from derivations

to the desired output structures. A mapping to phrase structure trees yields the

formalism of Stabler (1997), a mapping to strings that of Stabler and Keenan (2003).

Yet another mapping might turn derivations into logical formulas in order to add

semantics to MGs. In a certain sense, the derivations become the central object

constructed by syntax, while phrase structure trees, prosodic trees, logical formulas

etc. are just the interpretation of these objects at the interfaces.

Even though the two-step approach takes a little bit more formal legwork to set

up correctly, it is both accessible and more general than the previous approaches. By

modularizing MGs into two components — derivations as a tree-geometric represen-

tation of the feature calculus and a given mapping as the linguistic interpretation of

derivations — it becomes possible to look at each component in isolation. Moreover,

both components can be modified independently to create new MG variants, a strat-

egy explored in Graf (2012c). Given these advantages, and because derivations were

already discussed extensively in the previous section, I forego alternative definitions

and only present Graf’s (2012c) two-step definition of MGs here.

I start with the definition of derivation trees as combinations of slices, followed

by a number of tree-geometric constraints that rule out combinations violating the

feature calculus. The mapping from derivations to multi-dominance trees concludes

the definition. Readers who are content with the intuitive presentation so far may

skip ahead to the next chapter.

32

1.2.1 Combining Slices Into Derivation Trees

As discussed in Sec. 1.1, MGs combine LIs into bigger structures via the feature

calculus, the actions of which can be represented as (augmented) derivation trees.

Graf (2012c) inverts this relation: LIs correspond to incomplete derivation trees, and

the tree-geometric constraints on how these partial derivations may be combined

implicitly encode the Minimalist feature calculus.

The derivational fragment introduced by an LI is called a slice. A slice contains

a single LI and all the interior nodes that check one of said LI’s positive polarity

features. Since these are exactly the nodes that are mapped to a projection of the

LI in the derived tree, slices could be called the derivational equivalent of phrasal

projection. Slices are obtained from LIs, which are built over a given feature system

and a fixed string alphabet (i.e. a finite, non-empty set of symbols).

Definition 1.1. Let BASE be a non-empty, finite set of feature names. Furthermore,

OP := {merge, move} and POLARITY := {+,−} are the sets of operations and polarities,

respectively. A feature system is a non-empty set Feat⊆ BASE×OP× POLARITY.

Note that this is merely a different notation for the familiar MG feature system:

• category features f :=

f , merge,−
�

,

• selector features = f :=

f , merge,+
�

,

• licensee features − f :=

f , move,−
�

, and

• licensor features + f :=

f , move,+
�

.

In cases where only the name, operation, or polarity of f is of interest, ν(f), ω(f)

and π(f) will be used, respectively.

33

Example 1.13

A wh-licensee feature is encoded by the tuple 〈wh, move,−〉. Thus we have:

ν(−wh) = ν(〈wh, move,−〉) = wh

ω(−wh) =ω(〈wh, move,−〉) =move

π(−wh) = π(〈wh, move,−〉) =−

As before LIs consist of a phonetic exponent and a non-empty string of features.

Here Feat+ denotes the set of all non-empty strings over Feat.

Definition 1.2. Given a string alphabet Σ and feature system Feat, a (Σ, Feat)-lexicon

is a finite subset of Σ× Feat+.

I continue to informally make use of :: as a separator of the two lexical components

where convenient.

The next step translates each LI into its corresponding slice, i.e. the part of the

derivation it has control over by virtue of its positive polarity features. This part

is notationally dense, admittedly. A ranked alphabet is an alphabet in which each

symbol is assigned a rank. If symbol σ is of rank n, written σ(n), the node it is

assigned to must have exactly n daughters. Given a ranked alphabet Σ, TΣ is the set

of all possible trees with labels drawn from Σ.

Definition 1.3. Let Lex be a (Σ, Feat)-lexicon, Lex? := {σ :: f1 · · · fn? | σ :: f1 · · · fn ∈

Lex}, and Ω the ranked alphabet {l(0) | l ∈ Lex} ∪ {Move(1), Merge(2)}. Then the slice

34

lexicon of Lex is slice(Lex) :=
�

ζ(l) | l ∈ Lex?
	

, where ζ : Lex?→ TΩ is given by

ζ(σ :: f1 · · · fi ? fi+1 · · · fn) :=























































































σ :: f1 · · · fn

if f1 · · · fi = ε

ζ(σ :: f1 · · · fi−1 ? fi · · · fn)

if π(fi) =−

Move(ζ(σ :: f1 · · · fi−1 ? fi · · · fn))

if τ(fi) =move and π(fi) = +

Merge(�i,ζ(σ :: f1 · · · fi−1 ? fi · · · fn))

if τ(fi) =merge and π(fi) = +

I follow (Graf 2012c) in stipulating that slices are right branching, but this is merely a

matter of convenience — linear order is irrelevant in derivation trees for all linguistic

purposes.

Example 1.14

Suppose we want to determine the slice of the LI ε :: =V =D + acc v − top, which

is an empty v that selects a VP, a DP, and undergoes topicalization at some later

point in the derivation. In order to obtain its slice, we need to compute ζ(ε ::

=V =D + acc v − top ?).

The feature immediately preceding ? is −top. Since π(−top) = −, the second

case in the definition of ζ applies, so

ζ(ε :: =V =D + acc v − top ?) = ζ(ε :: =V =D + acc v ? −top).

35

Now v immediately precedes ?, but once again π(v) =−, whence

ζ(ε :: =V =D + acc v ? −top) = ζ(ε :: =V =D + acc ? v − top).

But now the next feature to be evaluated is +acc, and since both τ(+acc) =move

and π(+acc) = +, the third case of ζ applies:

Move

ζ(ε :: =V =D ? +acc v − top)

In the next step, we see that τ(=D) = merge and π(=D) = +, so the tree is

expanded by a Merge node accordingly.

Move

Merge

ζ(ε :: =V ? =D + acc v − top)�2

The last feature is =V, for which the same procedure applies.

Move

Merge

Merge

ζ(ε :: ? =V =D + acc v − top)�1

�2

No features precede ? anymore, which triggers the first case in the statement of

ζ, the removal of ? from the feature string and the termination of the recursive

procedure. The slice of the LI is given below.

36

Move

Merge

Merge

ε :: =V =D + acc v − top�1

�2

The white squares in a slice are called ports and can be replaced by other slices

via tree concatenation. Combining the slices of a grammar in all possible ways yields

its free slice language.

Definition 1.4. The closure of slice(Lex) under tree concatenation is the free slice

language FSL(Lex).

Example 1.15

Suppose that slice(Lex) consists of three slices:

pigs :: D sleep :: V Move

Merge

Merge

ε :: =V =D + acc v − top�1

�2

Then FSL(Lex) is an infinite set that contains, among others:

pigs :: D Move

Merge

Merge

ε :: =V =D + acc v − topsleep :: V

pigs :: D

37

Move

Merge

Merge

ε :: =V =D + acc v − toppigs :: D

pigs :: D

Move

Merge

Merge

ε :: =V =D + acc v − topMove

Merge

Merge

ε :: =V =D + acc v − top�1

�2

�2

Note that FSL(Lex) is almost never a well-formed derivation tree language

because one possible way of combining a slice is not to combine it with anything. If

it contains any ports, these are not filled in this case, and a slice with unfilled ports

is not a well-formed derivation. Therefore FSL(Lex) is a well-formed derivation tree

language iff Lex ⊆ Σ×
�

C , merge,−
�	

, i.e. every LI carries a C-feature and nothing

else.

1.2.2 The Feature Calculus as Tree-Geometric Constraints

Although not all members of FSL(Lex) are well-formed derivations, it clearly contains

all well-formed derivations by virtue of containing all possible combinations of slices

38

in slice(Lex). The only thing that needs to be done, then, is to enforce certain

constraints on FSL(Lex) that are obeyed only by well-formed derivations. These

constraints essentially express the MG feature calculus in terms of tree-geometric

properties of derivations.

When formulating the relevant constraints, some additional notions come in

handy. The slice root of LI l := σ :: f1 · · · fn is the unique node of ζ(l) reflexively

dominating every node in ζ(l). An interior node of ζ(l) is associated to feature fi on

l iff it is the i-th node properly dominating l. Two features f and g match iff they

have identical names and operations but opposite feature polarities. More formally,

ν(f) = ν(g), ω(f) =ω(g), and π(f) 6= π(g). An interior node m matches a feature

g iff m is associated to a feature that matches g.

Example 1.16

Consider the slice from example 1.14, with interior nodes subscripted for easier

reference.

Move3

Merge2

Merge1

ε :: =V =D + acc v − top�1

�2

In this slice, Merge1 is associated to the feature=V =

V, merge,+
�

and thus matches

any occurrence of the feature V =

V, merge,−
�

. Merge2 and Move3, respectively,

are associated to =D and +acc and match D and −acc. Note that the features v and

−top on the LI are not associated to any nodes as they have negative polarity.

Keeping aside Move for now, there are two conditions that a Minimalist derivation

must satisfy. First, the derived tree must be a final category, by convention a CP.

39

In the derivation tree, this means that the highest slice must belong to an LI of

category C. Second, Merge must be triggered by matching features. One of the two

triggering features is the feature a Merge node is associated to, i.e. a selector feature

of the LI whose slice the Merge node belongs to. Since slices are right branching by

stipulation, this LI can be found by following the right branch down the Merge node.

The other feature, then, must be a category feature that can be found along the left

branch. More specifically, it must be the category feature of the LI whose slice root

is immediately dominated by the Merge node.

Example 1.17

Consider the following fragment of the derivation in Fig. 1.1 on page 31, with the

slices altered to be strictly right-branching per the new convention.

Merge

Merge

ε :: =V =D vsleep :: V

Merge

the :: =N D − nompigs :: N

The arguments selected by v appear to the left of the respective Merge nodes, so

that the matching category features must indeed occur along the respective left

branch. It is also easy to see that the category feature must occur on the LI of the

slice immediately dominated by the Merge node.

Little formal embellishment is required to precisely state the two conditions as

constraints on free slice languages. For every t ∈ FSL(Lex), node m of t, and LI l:

Final If the slice root of l is the root of t, then the category feature of l is C.

Merge If m is associated to selector feature = f , then its left daughter is the slice

root of an LI with category feature f .

40

Regulating Move is more difficult, but the solution is also more insightful for

syntacticians. Just as with Merge, it has to be ensured that every Move node has a

matching licensee feature. At the same item, the SMC must also be enforced. Since

Move is inherently non-local in MGs, neither condition can be enforced by the simple

kind of structural description used for Merge above. What is needed is an algorithm

to find the Move nodes checking a given LI’s licensee features.

Several obvious observations can be made. Movement is always upwards, so the

Move nodes checking an LI’s licensee features must all dominate it. Furthermore, no

LI can check its own licensee features — only one feature can be active on a single

LI, while checking involves two features and thus two distinct LIs. Consequently, the

relevant Move nodes dominate not only the LI, but also its slice root.

Now suppose that l is an LI with − f as its first licensee feature, and m is the

lowest matching Move node properly dominating the slice root of l. Can we conclude,

then, that m checks − f on l? In a well-formed derivation, this is indeed the case. For

if m does not check l ’s licensee feature, it must be checking the− f licensee feature of

some distinct LI l ′. But this inevitably results in an SMC violation because l ’s licensee

feature is already active (if l has any licensee features, they occur immediately after

the category feature, so the first one among them becomes active once l is selected).

It follows therefore that the lowest Move node properly dominating an LI’s slice root

and matching its first licensee feature is the only possible option for checking said

licensee feature.

It should be clear that the logic of the argument above applies recursively to all

other instances of Move, except that the Move node checking the LI’s n-th licensee

feature not only dominates the slice root of the LI, but also the Move node that

checked the n− 1-th licensee feature. This means that the Move nodes checking

the licensee features of a given LI can be easily determined in a recursive fashion:

Given an LI l, start at the slice root of l and move upwards through the derivation

tree until you encounter a Move node associated to a feature that matches l ’s first

41

licensee feature. If l has another licensee feature, continue moving upwards until

you encounter a Move node that can check this feature. Continue this way for all

remaining licensee features of l. Note that picking the first matching Move node

encountered this way is the only potentially licit choice given the SMC. This makes

it clear that the SMC adds a certain notion of locality to MGs, weak as it might be.

The search procedure above is easily recast in terms of a recursive definition.

For every t ∈ FSL(Lex) and LI l in t with string − f1 · · · − fn of licensee features, the

occurrences of l in t are defined as below:

• occ0(l) is the slice root of l in t.

• occi(l) is the unique node m of t labeled move such that m matches − fi,

properly dominates occi−1, and there is no node n in t that matches − fi,

properly dominates occi−1, and is properly dominated by m.

I also refer to occ0(l) as the zero occurrence of l, while all other occurrences of l are

positive occurrences.

Example 1.18

None of our examples so far included cases where an LI moves more than once.

In the derivation below, two LIs undergo two movement steps each. Once again

subscripts are used give each interior node a unique name, and each Move node has

a superscript indicating the licensor feature it is associated to.

42

Move+h
7

Move+g
6

Merge5

d :: =C D + g + hMove+ f
4

Move+g
3

Merge2

c :: =A C + g + fMerge1

b :: =A B − g − ha :: A − f − g

The zero occurrences of LIs a and b are easily determined: occ0(a) = a and occ0(b) =

Merge1. The first licensee feature of a is −f, wherefore its first occurrence must

be the lowest Move node associated to +f that dominates the zero occurrence of

a, i.e. a itself. A quick glance suffices to verify that Move4 is the only node fitting

these criteria, so occ1(a) =Move4. The second occurrence must be the closest node

that dominates Move4 and matches −g, as Move6 does. So occ2(a) =Move6. At this

point a has exactly as many occurrences as licensee features, so all occurrences of a

have been found. Applying the same procedure for b one gets occ1(b) =Move3 and

occ2(b) =Move7.

Now that the relevant Move nodes are easily picked out via the occurrences

mechanism, two natural conditions are sufficient to regulate all aspects of Move:

an LI must have as many occurrences as licensee features (“every licensee feature

gets checked”), and every Move node is an occurrence for exactly one LI (“checking

involves exactly two features”). The SMC does not need to be enforced separately, it

43

is a corollary of the second constraint given the definition of occurrence.

For every t ∈ FSL(Lex), node m of t, and LI l with licensee features − f1 · · · − fn,

n≥ 0:

Move There exist distinct nodes m1, . . . , mn such that mi (and no other node of t)

is the ith positive occurrence of l, 1≤ i ≤ n.

SMC If m is labeled move, there is exactly one LI for which m is a positive occurrence.

Example 1.19

Both Move and SMC are satisfied in the derivation depicted in example 1.18. Move

holds because both a and b have two licensee features and two occurrences each.

Moreover, the occurrences of a and b are unique, so there aren’t two Move nodes

that are both a first or second occurrence for one of the two nodes. Nor is there a

Move node that is an occurrence for both a and b, so SMC is also satisfied.

Now consider the minimally different derivation where the order of +g and + f

on c is switched.

Move+h
7

Move+g
6

Merge5

d :: =C D + g + hMove+g
4

Move+ f
3

Merge2

c :: =A C + f + gMerge1

b :: =A B − g − ha :: A − f − g

44

This derivation clearly isn’t well-formed due to a SMC violation: once a gets to

check its first licensee feature − f thanks to Move3, both a and b have −g as

their first active feature. Determining occurrences as before, we also see that

Move4 = occ2(a) = occ1(b). That is to say, Move4 is an occurrence for both a and b,

a clear violation of SMC. This shows that SMC indeed enforces the SMC in a purely

tree-geometric fashion.

A combination of slices is a well-formed derivation iff it satisfies all four con-

straints.

Definition 1.5. A set L of trees is a Minimalist derivation tree language (MDTL) iff

there is some Minimalist lexicon Lex such that L is the greatest subset of FSL(Lex)

whose members all satisfy Final, Merge, Move, and SMC.

Observe the maximality requirement in the definition, which ensures that an MDTL

contains all derivations that are well-formed with respect to a given grammar.

1.2.3 From Derivations to Multi-Dominance Trees

As discussed in Sec. 1.1.3, derivation trees differ only minimally from the derived

multi-dominance trees. In order to compute the derived tree represented by a

derivation one has to

• insert branches for Move, and

• order siblings correctly, and

• relabel interior nodes with < and > to indicate projection, and

• remove each LI’s feature component.

45

Making these ideas precise requires some advanced machinery that won’t see much

active use in the rest of this thesis, despite its elegance and utility in other areas.

However, there are several references to concepts touched upon in this section — in

particular during the discussion of formal properties of MGs in Sec. 2.1 and the

relation between specific constraint classes in Sec. 3.2.4 — so readers are invited to

proceed nonetheless.

Every linguist knows about the use logical formulas in formal semantics for

precisely expressing the denotations of LIs and how they combine to yield specific

truth conditions. What is less known is that logic can also be used in the area

of syntax to specify tree structures. With just a few primitive relations such as

immediate dominance /, precedence ≺, equality ≈ and monadic predicates for node

labels, it is an easy task to describe trees through logical formulas. An entire subfield

of mathematical linguistics called model-theoretic syntax is dedicated to studying

tree logics and their applications to linguistics and formal language theory (Kracht

1997; Cornell and Rogers 1998; Rogers 1998, 2003; Pullum 2007; Kepser 2008).

The model-theoretic approach has a major role to play in Chap. 3 and is discussed in

greater detail in Sec. 3.1.3.

Example 1.20

Consider the tree below.

<

pigsthe

Let the parent relation be expressed by /, such that x / y is true iff x is the parent

of y. Similarly, x ≺ y iff x precedes y. Then the tree above is described by the

following formula of first-order logic:

∃x∃y∃z[the(x)∧ pigs(y)∧< (z)∧ z / x ∧ z / y ∧ x ≺ y]

46

This formula translates into “There are nodes x , y and z such that x is labeled

the, and y is labeled pigs, and z is labeled <, and z immediately dominates x , and

z immediately dominates y, and x precedes y.” Note that this formula does not

uniquely specify the tree above, because it also holds of any bigger tree, such as the

following three.

<

diedpigsthe

<

thepigsthe

>

<

pigsthe

In order to rule out these trees, we need to add another conjunct to the formula:

∧∀z′[z′ ≈ x ∨ z′ ≈ y ∨ z′ ≈ z]. Here ≈ denotes node identity, so the conjunct states

that every node is either x , y , or z — in other words, x , y , and z are the only nodes

in the tree.

It is also worth pointing out that the formula above isn’t the only one that is true

in the tree. For instance, every node is either a mother or a child but not both, so

the formula ∀x
�

∃y[x / y]↔¬∃y[y / x]
�

holds.

Right now our concern isn’t the description of trees but of mappings between

trees. The specification of such mappings via logical formulas is considerably less

common in the literature, even in mathematical linguistics. Suppose that the

Minimalist derivation i should be mapped to the corresponding multi-dominance

tree o. In Sec. 1.1.3, this was accomplished by rules describing the changes that

need to be made to i in order to obtain o. These rules can also be expressed in terms

of logics, yielding a logical specification of the translation procedure.

47

Example 1.21

A particularly easy example is sibling permutation. Assume that we want to map

the tree i from the previous example to the tree o in which the order of the and

pigs is reversed. To this end, we need two new predicates, which we might call

“o-dominance” /o and “o-precedence” ≺o. Then we define x /o y ⇐⇒ x / y. This

is equivalent to saying that the dominance relations in i are all preserved in o. For

o-precedence, on the other hand, we have x ≺o y ⇐⇒ y ≺ x . So x precedes y in

o iff y precedes x in i. The corresponding rule could also be expressed as “Switch

the order of siblings”.

A logically expressed mapping thus consists of two components: a set of relations

and predicates that describe the structure of the input trees, and a distinct set of

relations and predicates for the output trees. Crucially, the latter must be expressed

in terms of the former.

For MGs, several predicates are necessary when talking about derivation trees.

As usual, the immediate dominance relation / is employed. Moreover, there are

predicates for the labels Merge, Move, and every LI in the lexicon. This is all that is

needed to fully specify derivation trees in logical terms, but a few ancillary predicates

come in handy. First, occ(x , l) iff x is an occurrence of l. Second, sliceroot(x , l) iff x

is the slice root of l. Third, Lex(x) iff x is an LI. Finally, x ∼ y iff x and y belong to

the same slice. See Graf (2012b,c) for how these predicates can be expressed via

dominance.

In order to specify multi-dominance trees, dominance and precedence are re-

quired. They will be denoted Ê and ≺, respectively, and these are the predicates

that need to be defined using only the predicates listed in the previous paragraph.

The translation procedure from Sec. 1.1.3 offers a guideline for how this is to be

accomplished.

48

The most important modification to the structure is the insertion of movement

branches spanning from the slice root of an LI to its occurrences. At the same time,

all branches already present in the derivation tree are carried over unaltered.

x Ê y ⇐⇒ x / y ∨ ∃l
h

occ(x , l)∧ sliceroot(y, l)
i

This formula encodes that x dominates y in the multi-dominance tree iff one of the

following two holds: x dominates y in the derivation tree, or there is some LI for

which x is an occurrence and y the slice root.

The precedence relation is next. Phrases move to the left and never to the right,

so the daughters of Move nodes in the derivation are always to the right, the root of

the moving phrase to the left. As for Merge, if a node has a mother labeled Merge

that belongs to the same slice, said node is a left daughter only if it is an LI.

x ≺ y ⇐⇒ ∃l∃z[occ(z, l)∧ sliceroot(x , l)∧ z / y]∨

∃z[Merge(z)∧ z / x ∧ z / y ∧ (x ∼ z→ Lex(x))]

Relabeling the interior nodes is just as simple. Move nodes are always replaced

by >, as are Merge nodes unless they dominate the LI whose slice they belong to.

> (x) ⇐⇒ Move(x)∨ (Merge(x)∧¬∃y[x / y ∧ Lex(y)∧ x ∼ y])

< (x) ⇐⇒ Merge(x)∧ ∃y[x / y ∧ Lex(y)∧ x ∼ y]

Finally, LIs must lose all their features but keep their string exponents.

∧

σ∈Σ

�

σ(x) ⇐⇒
∨

l:=σ:: f1··· fn∈Lex

l(x)
�

49

The conjunction of all these formulae yields the intended mapping from deriva-

tion trees to multi-dominance trees, which I call Φ. While the mapping is relatively

simple, it cannot be expressed purely in first-order logic given the predicates we

started out with. This is so because defining occ(x , l) requires proper dominance,

which cannot be stated in terms of the parent relation / in first-order logic. Of

course one can easily start out with proper dominance /+ and then derive / from

that via x / y ⇐⇒ x /+ y ∧¬∃z[x /+ z ∧ z /+ y]. Alternatively, one might fall back

to a slightly more expressive extension of first-order logic in which parenthood and

proper dominance are interdefinable.

Monadic second-order logic (MSO) is an excellent candidate for such a step.

MSO extends first-order logic with the option of quantifying not only over individual

nodes, but also sets of nodes (see Sec. 3.1.3 for examples). With MSO proper

dominance is obtained from immediate dominance in two simple steps. First, a set

X is closed with respect to immediate dominance iff the children of a member of X

are also in X . Then x properly dominates y iff every set that is closed with respect

to immediate dominance contains y if it contains x .

closed(/, X)↔∀x , y[X (x)∧ x / y → X (y)]

x /+ y↔∀X [closed(/, X)∧ X (x)→ X (y)]

So depending on which route one takes, the mapping Φ from derivation trees

to multi-dominance trees can be viewed as a first-order transduction using domi-

nance or an MSO transduction with the parent relation as the most basic predicate.

The latter perspective, however, is more useful for mathematical work thanks to

several appealing properties enjoyed by MSO transductions, as will be discussed in

Sec. 2.1.4.

50

1.2.4 Formal Summary

There are many different ways MGs can be defined. I opted for a strategy that

makes derivation trees the central structure of interest. Derivations provide a tree-

geometric representation of the feature calculus and are easily converted into the

kind of multi-dominance trees currently favored in Minimalist syntax. The basic

building blocks of derivations are called slices, where a slice consists of an LI and all

the Merge and Move nodes that are associated to one of the LI’s positive polarity

features. A derivation is well-formed iff it is a combination of slices respecting the

following constraints. For every t ∈ FSL(Lex), node m of t, and LI l with licensee

features − f1 · · · − fn, n≥ 0:

Final If the slice root of l is the root of t, then the category feature of l is C.

Merge If m is associated to selector feature = f , then its left daughter is the slice

root of an LI with category feature f .

Move There exist distinct nodes m1, . . . , mn such that mi (and no other node of t)

is the i-th positive occurrence of l, 1≤ i ≤ n.

SMC If m is labeled move, there is exactly one LI for which m is a positive occurrence.

All structural aspects of a given MG are fully specified via its MDTL — i.e. its set

of well-formed derivations. The only locus of parameterization is the lexicon, which

determines the set of slices and thus the MDTL. In order to define a specific MG one

merely has to specify a lexicon.

Definition 1.6. A Minimalist Grammar is a triple G := 〈Σ, Feat, Lex〉 such that Lex

is a (Σ, Feat)-lexicon. The MDTL of G is the largest subset of FSL(Lex) that obeys

Final, Merge, Move, and SMC. The tree language L(G) generated by G is the image

of its MDTL under the MSO transduction Φ.

51

1.3 The Chapter in Bullet Points

• Minimalist grammars are a bare-bones version of Minimalist syntax with a

very explicit feature calculus.

• Both Merge and Move are triggered by symmetric feature checking of two

features of opposite polarity. Merge involves selector and category features,

Move licensor and licensee features.

• The timing of operations is recorded by derivation trees, and every MG is

uniquely specified by its set of derivation trees.

• Each derivation tree is assembled from slices. The slice of an LI contains the LI

and every interior node of the derivation that denotes an operation that was

triggered by one of the LI’s selector or licensor features. Intuitively, a slice is

the derivation tree equivalent of the nodes projected by an LI in the phrase

structure tree.

• An MG’s derivation tree language contains all the possible ways of combining

slices such that the constraints of the feature calculus are obeyed.

52

CHAPTER 2

Minimalist Grammars: Advanced Topics

Contents

2.1 Selected Formal Results . 55

2.1.1 Derivational Complexity . 55

2.1.2 Weak Generative Capacity . 65

2.1.3 The Importance of Remnant Movement A 67

2.1.4 Strong Generative Capacity . 74

2.2 Evaluating the Adequacy of Minimalist Grammars 78

2.2.1 Relevance of Mathematical Results to Linguistics 79

2.2.2 Feature Calculus . 86

2.2.3 Movement . 91

2.2.4 Locality . 95

2.2.5 Derived Trees . 97

2.2.6 Generative Capacity . 99

2.2.7 Missing Components . 105

2.3 The Chapter in Bullet Points . 108

This chapter discusses advanced aspects of MGs, first on a technical and then on

a conceptual level. None of them are indispensable to follow the gist of the argument

in later chapters, but they are conducive to a more profound understanding of the

issues at play there. In particular readers who intend to work through any of the

53

proofs are encouraged to read at least Sec. 2.1, which covers the most important

formal properties of MGs. The focus is firmly on the complexity of the different

types of languages generated by MGs: derivation tree languages (2.1.1), string

languages (2.1.2), and phrase structure tree languages (2.1.4). The reader will see

that MGs are underlyingly context-free but nonetheless generate mildly context-

sensitive string languages. This increase in complexity is brought about by Move,

implemented by the mapping from derivations to derived trees. More precisely, it

is remnant movement that propels standard MGs out of the realm of context-free

grammar formalisms, as is discussed in Sec. 2.1.3. This refactoring of structurally

complex patterns into two relatively simple components — context-free derivations

and the mapping realized by Move — is what grants MGs their power in spite of

their simplicity.

Sec. 2.2 is concerned with the linguistic faithfulness of MGs. It is decidedly less

technical in nature, although some arguments necessarily involve advanced concepts.

The general upshot is that even though MGs differ from standard Minimalism in

various ways, these differences are immaterial for the issues studied in the MG

literature — including this thesis. I demonstrate that MGs can easily be modified to

make them resemble Minimalist syntax more closely, but I also point out why the

bare-bones MGs defined in the previous chapter are a better choice if one desires a

genuine understanding of Minimalist syntax.

The two sections can be read independently of each other, but just like the

remaining chapters of this thesis, Sec. 2.2 contains some ideas that cannot be fully

appreciated without the technical background from Sec. 2.1.

54

2.1 Selected Formal Results

2.1.1 Derivational Complexity

The MG formalism enjoys several properties that make it very attractive from a

computational perspective. Arguably the most important one is that every MDTL

forms a regular tree language. That is to say, for every MG its set of well-formed

derivations can be recognized by a bottom-up tree automaton, a device that processes

the tree from the leaves towards the root and assigns each node one of finitely many

states based on the label of said node and the states that have been assigned to its

daughters. If the state assigned to the root is a designated final state, the tree is

accepted by the automaton and thus considered well-formed. If a non-final state

is assigned, or the automaton cannot assign a state to some node in the tree, the

automaton aborts and rejects the tree.

Example 2.1

Suppose we are given a strictly binary branching tree with nodes labeled either a

or b, and we want to determine if the tree contains at least one b. This is a simple

task for a tree automaton. The relevant automaton has two states called 0 and

1 that keep track of whether a b has already been encountered or not. The logic

driving the state assignment is the obvious one: a node labeled b receives state 1,

and if a node has a daughter with state 1, it is also assigned state 1. That way the

state 1 is percolated towards the root. Thus, if 1 is a final state but 0 is not, the

automaton accepts a tree iff it contains at least one b. The run of this automaton

over a particular tree is shown below.

55

000

0

1

1

1

1

1

a

b

aa

a

aa

ba

The behavior of an automaton is usually given as a set of transition rules. A

rule of the form σ(a, b)→ c means that a node labeled σ is assigned state c if its

daughters have the states a and b, respectively. For leaves this simply shortens to

σ→ c.

Example 2.2

The automaton from the previous example is described by ten transition rules:

a→ 0 a(0, 0)→ 0 b(0,0)→ 1

b→ 1 a(0, 1)→ 1 b(0,1)→ 1

a(1, 0)→ 1 b(1,0)→ 1

a(1, 1)→ 1 b(1,1)→ 1

These rules can be represented more succinctly using some basic mathematical

notation. Let Q := {0, 1} be the set of states of the automaton, and q, q′ ∈ Q two

56

arbitrary states. Then the above rules can be conflated into four basic patterns.

a→ 0

b→ 1

a(q, q′)→







0 if q = q′ = 0

1 otherwise

b(q, q′)→ 1

Example 2.3

Things become more interesting if one further requires that the number of b is a

tree is not only strictly greater than 0 but also an odd number. Hence a tree must

contain 1 or 3 or 5, . . . occurrences of b. This can be accommodated by splitting

the state 1 in the previous example into two states o and e for “odd” and “even”,

respectively. Not only does the automaton now keep track of whether some b has

been already encountered, it also performs some basic arithmetic to determine if the

number of bs seen so far is odd or even. Only if the state assigned to the root is o

does it accept the tree.

As before leaves labeled a have state 0. Leaves labeled b, on the other hand,

are assigned o — only one b has been seen so far, namely the leaf itself, and 1 is

an odd number. When percolating the information upwards towards the root via

state assignments, the automaton has to change between e and o depending on the

states of the daughters. For example, a node labeled b with daughter states o and e

57

is given state e. This is so because the left subtree contains an odd number of bs,

the right one an even one, an odd number plus an even number is an odd number,

and an odd number of bs plus the one occurrence of b at the current node yields an

even number of bs.

The additional complexity brings about an according increase in the number of

rules. But the use of meta-rules once again allows for a fairly succinct representation.

a→ 0

b→ o

a(q, q′)→



















0 if q = q′ = 0

o if either o = q 6= q′ or q 6= q′ = o

e otherwise

b(q, q′)→







o if q = q′

e otherwise

This automaton correctly rejects the tree from the previous example, as can be told

immediately from the depiction of the run.

000

0

o

o

e

o

o

a

b

aa

a

aa

ba

What makes bottom-up tree automata so interesting from a linguistic perspective

is that their states are abstract stand-ins for working memory configurations. Conse-

58

quently, the fact that MDTLs are regular entails that they can be computed using

only a finite amount of working memory (by virtue of bottom-up tree automata

using only a finite number of states).

There are several viable strategies to show the regularity of MDTLs. Regularity

follows immediately from the fact that all constraints and properties invoked in

the definition of MDTLs in Sec. 1.2 are easily stated in terms of MSO. This is so

because MSO-definability is equivalent to being regular (Büchi 1960; Rabin 1969).

Insights from Michaelis (1998, 2001), which were later made fully explicit in Kobele

et al. (2007), furnish a more instructive proof, though. In order for an automaton to

determine if a derivation tree is grammatical, it must keep track of the computations

of the feature calculus. It is a natural idea, then, that the states of the automaton

should simply be tuples where each component is a string of features that still need

to be checked.

Example 2.4

Let us return to the familiar derivation of the pigs sleep from Sec. 1.1, depicted here

as a standard derivation tree rather than an augmented one.

Move

Merge

Merge

Merge

sleep :: Vε :: =V =D v

Merge

pigs :: Nthe :: =N D − nom

ε :: =v + nom T

ε :: =T C

Merge

How would a tree automaton process this tree using tuples of unchecked feature

strings as its states? Recall that the automaton proceeds bottom-up, meaning that

59

it starts at the leaves. Suppose, then, that the is the first leaf to be read. It has the

feature string =N D − nom, and each feature must still be checked at this point

in the derivation because no operations have applied yet. So this leaf is assigned

the state 〈=N D − nom〉. More generally, every leaf is assigned the unique state

that is identical to the feature component of the LI the leaf is labeled with. To the

automaton, then, the derivation looks as follows after all LIs have been mapped to

states.

Move

Merge

Merge

Merge

〈V〉〈=V =D v〉

Merge

〈N〉〈=N D − nom〉

〈=v + nom T〉

〈=T C〉

Merge

The automaton now moves up by one level and calculates the new states based on

the label of the node and the states of the daughters. For example, the Merge node

immediately dominating 〈=N D − nom〉 and 〈N〉 receives the state 〈D − nom〉. This

assignment is correct because the two states start with matching Merge features that

can be checked and the node in question is labeled Merge; checking completely ex-

hausts the string of unchecked features in the state 〈N〉 and reduces 〈=N D − nom〉

to 〈D − nom〉. The Merge node immediately dominating 〈=V =D v〉 and 〈V〉 re-

ceives the state 〈=D v〉 for the same reason.

60

Move

Merge

Merge

〈=D v〉

〈V〉〈=V =D v〉

〈D − nom〉

〈N〉〈=N D − nom〉

〈=v + nom T〉

〈=T C〉

Merge

Once again we have two states that start with matching Merge features: 〈D − nom〉

and 〈=D v〉. However, this time neither state is purged of all its unchecked features

by Merge. Instead, both −nom and v become active features in the derivation. The

automaton has to take note of this by switching from a singleton tuple to a pair

〈v,−nom〉. The feature v occupies the first component to indicate that it is carried by

the LI of the current slice — i.e. the head of the projected phrase in the corresponding

derived tree.

Move

Merge

〈v,−nom〉

〈=D v〉

〈V〉〈=V =D v〉

〈D − nom〉

〈N〉〈=N D − nom〉

〈=v + nom T〉

〈=T C〉

Merge

The automaton now has to determine if 〈−nom, v〉 can be combined with

〈=v + nom T〉 via Merge. While the feature −nom has nothing to contribute at this

61

point, v is also active and matches =v. So feature checking can take place, yielding

the new state 〈+nom T,−nom〉.

The next node is a Move node and we see that two matching Move features are

active, resulting in the state 〈T〉 following the familiar logic. This state is of course

compatible with 〈=T C〉, so that the root of the derivation is assigned 〈C〉. Recall

that MGs deem a derivation well-formed iff all features have been checked except

the category feature of the highest projecting head, which must be C. The automaton

has to enforce the same condition in order to determine whether a derivation is

well-formed. This is accomplished by having 〈C〉, and nothing else, be a final state

of the automaton. In our case, 〈C〉 is the state assigned to the root of the tree,

wherefore the automaton deems the derivation well-formed, as intended.

〈T〉

〈+nom T,−nom〉

〈v,−nom〉

〈=D v〉

〈V〉〈=V =D v〉

〈D − nom〉

〈N〉〈=N D − nom〉

〈=v + nom T〉

〈=T C〉

〈C〉

As shown in the example above, it is a simple procedure to annotate derivations

with tuples such that each component keeps track of the features of an LI that still

need to be checked. But a bottom-up tree automaton is limited to a finite number of

distinct tuples, and nothing said so far guarantees that for any given MDTL only a

finite number of distinct feature configurations need to be considered — fortunately

a quick proof sketch suffices to establish that this is indeed the case.

62

Proof. Suppose towards a contradiction that the number of distinct tuples is infinite.

If there is an upper limit on the number of components per tuple, then at least

one component can take an infinite number of values. But since each component

contains the feature component of some LI or a proper suffix thereof, the number of

values is finite by virtue of the finiteness of MG lexicons. Therefore the maximum

number of components per tuple must be unbounded given our initial assumption.

It is easy to see, though, that for every MG there is some upper bound k such

that no tuple needs to have more than k components. Observe first that if an n-tuple

is assigned to a node in a well-formed derivation, all components except the first

one start with a licensee feature. If some component after the first one starts with

a non-licensee feature, this feature is not carried by the LI of the current slice and

hence inaccessible to further operations throughout the derivation. If, on the other

hand, the first component starts with a licensee feature, no further Merge steps are

licensed yet the state is distinct from the unique final state 〈C〉. In either case the

derivation is ill-formed. Therefore an n-tuple contains exactly n− 1 strings that

start with a licensee feature, n≥ 2. But by the SMC two identical licensee features

may not be active at the same time, wherefore every component must begin with a

distinct licensee feature. Since the number of licensee feature is finitely bounded, so

is the number of components. It follows that every MDTL can be recognized using

only a finite number of such tuples. �

Intuitively, the automaton needs to keep track of only two things: the features on

the head projecting the current node, and any LIs in the current subtree that still

need to undergo movement. Since the SMC limits the maximum number of LIs that

are allowed to move at any given point in the derivation, only a finite amount of

information must be recorded in each state. Thus MDTLs are indeed computable

with a finitely bounded amount of working-memory, but this appealing property

crucially hinges on the SMC.

63

Example 2.5

Consider the ill-formed derivation below where both the subject and the object need

to undergo wh-movement.

Move

Merge

Move

Merge

Merge

Merge

Merge

what :: D −whbought :: =D V

ε :: =V =D v

who :: D − nom −wh

ε :: = v + nom T

ε :: =T +wh C

The automaton assigns the states in the familiar way until the first Move node is

encountered.

Move

Merge

Move

〈+nom T,−wh,−nom −wh〉

〈v,−wh,−nom −wh〉

〈=D v,−wh〉

〈V,−wh〉

〈D −wh〉〈=D V〉

〈=V =D v〉

〈D − nom −wh〉

〈= v + nom T〉

ε :: =T +wh C

64

At this point the automaton gets stuck. While checking of the nominative features is

possible, this would cause the −wh feature of the subject to become active. Since

there is already an active −wh feature on the object, the result is an SMC violation.

This is captured by the fact that the automaton would have to assign the state

〈T,−wh,−wh〉, which never occurs in a well-formed derivation.

2.1.2 Weak Generative Capacity

The expressive power of a grammar formalism can be evaluated with respect to

the generated string languages (weak generative capacity) and the generated tree

languages (strong generative capacity). The latter is obviously of greater interest

to linguists, but solid results have emerged only recently. Weak generative capacity

results, on the other hand, abound in the mathematical linguistics literature, and

while their linguistic relevance has been contested (a point I pick up again in

Sec. 2.2.6), they still are useful in establishing a lower bound — if a formalism

cannot even generate the right set of strings, it cannot generate the right set of

phrase structure trees either. Fortunately, both the weak and the strong generative

capacity of MGs is relatively well understood.

The weak generative capacity of MGs was determined early on by Harkema

(2001a,b) and Michaelis (1998, 2001), who proved their equivalence to multiple

context-free grammars (MCFGs; Seki et al. 1991). This puts them in the class of

mildly context-sensitive formalisms, which are more expressive than context-free

grammars but weaker than context-sensitive grammars.

Theorem 2.1 (MG ≡MCFG). For every MG there exists a weakly equivalent MCFG,

and the other way round. �

In contrast to context-free grammars, mildly context-sensitive formalisms can

65

handle a limited amount of crossing dependencies but none of the highly complicated

patterns a context-sensitive grammar can produce. Take the language am bncmdn

for instance. It consists of all strings such that no as are preceded by occurrences

of b, c, or d, no occurrences of a, b, or c follow any d, all bs precede all cs, and

the number of as and bs matches the number of cs and ds, respectively. Hence

this language contains abbcdd, aaabcccd, and aabbccdd, among others, but not

bbacdd, aaabcccdd b, or abcdd. This language is mildly context-sensitive but not

context-free, even though am bncmdk is a context-free language. This is so because

am bncmdn contains two crossing dependencies — one between a and c, the other

between b and d — whereas am bncmdk only has one dependency, so crossing of

dependencies is trivially precluded. In a sense, am bncmdn is the result of interleaving

the strings of two distinct context-free languages, namely amcm and bndn. The

language of strings of as whose length is prime (aa, aaa, aaaaa, . . .), on the other

hand, is context-sensitive but not mildly context-sensitive. The consensus among

mathematical linguists is that natural languages are mildly context-sensitive, so MGs’

membership in this class is a welcome state of affairs.

The term mild context-sensitivity actually subsumes two classes of languages:

Tree Adjoining languages (TALs) and multiple context-free languages (MCFLs), with

the latter properly subsuming the former. Both are named after the prototypical

formalism generating them, viz. Tree Adjoining Grammar (TAG) and MCFGs. The

separating cases between the two classes look rather arbitrary from a naive perspec-

tive. For example, both an bncndn and an bncndnen are MCFLs, but only the first one

is also a TAL. It is unclear which class is a better approximation of natural language.

Both contain languages that differ significantly from all attested natural languages,

but there is no consensus whether there are natural languages that do not belong to

anyone of the two. So while both classes overgenerate, they might subsume natural

language and thus provide a reasonable first approximation.

Several arguments have been put forward in the literature that some natural

66

language phenomena necessitate an extension of MCFLs, called parallel MCFLs

(PMCFLs; Culy 1985; Radzinski 1991; Michaelis and Kracht 1997; Kobele 2006).

PMCFLs allow for a limited amount of copying, as for example in the language a2n
,

which is the smallest set containing the string a and every string whose length is

double that of some other string (a, aa, aaaa, aaaaaaaa, . . .). As the jump from

MCFLS to PMCFLs involves copying, it is hardly surprising that PMCFLs constitute

exactly the class of languages generated by MGs where movement may leave behind

pronounced copies. So with respect to string language, standard MGs are strictly

more powerful than TAG (because TAL⊂MCFL), but they are also strictly weaker

than MGs with overt copying (because MCFL⊂ PMCFL).

2.1.3 The Importance of Remnant Movement A

It is worth noting that the equivalence between MGs and MCFGs falters if movement

must obey the Proper Binding Condition (PBC). The PBC requires that a mover

c-commands all its traces, which rules out remnant movement. Kobele (2010) shows

that MGs without remnant movement are equivalent to context-free grammars

(CFGs). So rather than MCFLs, these MGs generate only context-free string lan-

guages. Since not all natural languages are context-free on the level of strings, these

PBC-obeying MGs are empirically inadequate. Moreover, MGs that shun Move and

only use Merge are already capable of generating all context-free string languages.

Consequently, PBC-obeying movement adds nothing to the formalism as far as weak

generative capacity is concerned.

Lemma 2.2. For every CFG there is a weakly equivalent MG whose LIs only carry

Merge features. �

Proof. It is a well-known fact that every CFG can be brought into Chomsky normal

form such that the right-hand side of a rule consists of exactly two non-terminals

or exactly one terminal. Assume w.l.o.g. that the start category of a given CFG

67

is C rather than the standard S. Each rule R of a CFG in Chomsky normal form

can be translated into a Minimalist LI as follows. If R is of the form A → BC ,

then its corresponding LI is ε :: =C =B A. Otherwise R is of the form A→ a and

corresponds to LI a :: A. Proving the correctness of this translation is left as an

exercise to the reader. �

Example 2.6

Consider the following CFG for the string language an bn, n≥ 0, and the lexicon of

its corresponding MG.

C→ A T C→ ε

T→ C B A→ a

B→ b

ε :: =T =A C ε :: C

ε :: =B =C T a :: A

b :: B

The CFG derivation for aabb is shown below together with its MG pendant.

68

C

T

B

b

C

T

B

b

C

ε

A

a

A

a

Merge

Merge

Merge

Merge

b :: Bε :: =B =C T

Merge

Merge

Merge

Merge

b :: Bε :: =B =C T

ε :: C

ε :: =T =A C

a :: A

ε :: =T =A C

a :: A

Lemma 2.3. For every MG whose LIs only carry Merge features there is a weakly

equivalent CFG. �

Proof. This already follows from Kobele’s (2010) result for PBC-obeying MGs, but

can also be shown independently. Given an MG M , a weakly equivalent CFG G is

constructed as follows. Let L be the MDTL of M , and Lloc the result of relabeling

each node in every derivation of L with the state it is assigned by the automaton

described in example 2.4.

69

Suppose that slices are right branching as defined in Sec. 1.2. For every node

m with daughters d and d ′, add the rule m→ d ′ d to G if d ′ is a leaf and the first

component of m’s label is a proper suffix of the label of d ′. Otherwise add the rule

m→ d d ′. For every LI σ :: f1 f2 · · · fn of M add the rule

f1 f2 · · · fn
�

→ σ. Since

both the number of states and the size of M ’s lexicon are finite, G has a finite number

of rules, wherefore it is a CFG.

The weak equivalence of M and G is a corollary of Thatcher’s theorem (Thatcher

1967; see also Sec. 3.2.2), which, loosely paraphrased, establishes that if one regards

the states an automaton assigns to the trees of a regular language as part of the

node labels, then one obtains the derivation tree language of some CFG. �

Example 2.7

We already saw an MG for an bn, but this grammar can be made more succinct.

ε :: C a :: A

ε :: =B =C =A C b :: B

The derivation tree for aabb is also less verbose (depicted here with right-branching

slices).

Merge

Merge

Merge

ε :: =B =C =A Cb :: B

Merge

Merge

Merge

ε :: =B =C =A Cb :: B

ε :: C

a :: A

a :: A

The automaton then assigns states in the usual fashion.

70

〈C〉

〈=A C〉

〈=C =A C〉

〈=B =C =A C〉〈B〉

〈C〉

〈=A C〉

〈=C =A C〉

〈=B =C =A C〉〈B〉

〈C〉

〈A〉

〈A〉

Proceeding through the tree from top to bottom, we add the following three rules:

〈C〉 → 〈A〉 〈=A C〉

〈=A C〉 → 〈C〉 〈=C =A C〉

〈=C =A C〉 → 〈=B =C =A C〉 〈B〉

Each LI also needs to be converted into a rule.

〈C〉 → ε 〈A〉 → a

〈=B =C =A C〉 → ε 〈B〉 → b

It is easy to see that processing additional derivation trees will not add further

rules to G, so we can terminate the procedure here. The derivation tree of G for

aabb is almost indistinguishable from the one above. The major difference is that

leafs have no siblings, and the order of heads and their first argument is switched to

reflect their order in the string.

71

〈C〉

〈=A C〉

〈=C =A C〉

〈B〉

b

〈=B =C =A C〉

ε

〈C〉

〈=A C〉

〈=C =A C〉

〈B〉

b

〈=B =C =A C〉

ε

〈C〉

ε

〈A〉

a

〈A〉

a

The two lemmata above and the findings of Kobele (2010) jointly imply the weak

equivalence of CFGs, MGs without movement, and MGs without remnant movement.

Theorem 2.4. Given a string language L, the following three claims are equivalent:

• L is context-free,

• L is generated by an MG whose LIs carry no Move features,

• L is generated by an MG where every instance of Move obeys the PBC. �

It is tempting to interpret this theorem as a slight against the PBC and in favor of

remnant movement. But things are not that simple. While it is true that context-free

formalisms are empirically inadequate because of the mild context-sensitivity of

natural language, the inadequacy of a grammar formalism does not necessarily entail

the inadequacy of all its subparts. In the case at hand, it is certainly true that MGs

are too weak if they only have PBC-obeying movement; yet adding other movement

types such as head movement renders them once again weakly equivalent to MCFGs

72

and MGs with remnant movement (Stabler 1999, 2003). Regarding generative

capacity, then, Thm. 2.4 only states that PBC-obeying phrasal movement by itself is

insufficient and must be complemented by another movement type, be it remnant

movement, head movement or something completely different.

The reader might also be wondering at this point why the conversion from MGs

to CFGs does not work with Move. In other words, why are MGs weakly equivalent

to MCFGs rather than CFGs? For instance, the derivation in example 2.4 contains

a Move node that is assigned the state 〈T〉 by the automaton, while its daughter

has the state 〈+nom T,−nom〉. Why, then, does it not suffice to simply add the

rule 〈T〉 → 〈+nom T,−nom〉 to the CFG? The answer is that even though this rule

correctly represents the inference of the feature calculus, it is string-vacuous — the

rule does not alter the derived string in any way. But changing the derived string is

the main task of Move, it is designed to account for the fact that constituents do not

always appear in their original position. In order to handle Move, the rule above

must be combined with an instruction that selects a specific substring of the string

generated so far and puts it in front of it. Adding such displacement instructions

to CFGs in order to handle Move yields MCFGs, which we already saw are weakly

equivalent to standard MGs.

The last two sections have touched on several points that open up a very differ-

ent perspective on MGs. The importance of derivation trees to MGs was already

established in the previous chapter, but now we also know that derivation trees

can be computed in an efficient manner using only a finitely bounded amount of

working memory. This fact also makes it possible to describe MDTLs in terms of

CFGs. In other words, MGs are underlyingly context-free, but their context-freeness

is obscured by the fact that the linear order in the string is altered by Move. This is

reminiscent of the Aspects model, where context-free D-structures were manipulated

by transformational rules to yield the intended surface structure. The crucial differ-

ence, though, is that the mapping from Minimalist derivations to phrase structure

73

trees is very limited. If only Merge and ECP-obeying Move are present, the mapping

is so weak it even fails to increase the class of string languages that can be generated.

More powerful movement types such as remnant movement, head movement, or

sideward movement allow MGs to take the step beyond context-freeness. The details

of this transformational step are discussed next.

2.1.4 Strong Generative Capacity

The modular perspective of MGs in terms of I) a context-free feature calculus

represented by regular derivation tree languages, and II) a mapping from derivations

to phrase structure trees has proved invaluable in establishing their strong generative

capacity. While some results go as far back as Kolb (1999), arguably the first intuitive

application of the idea is given in Kobele et al. (2007). Rather than discuss each

finding and the technical machinery underlying it, I restrict myself to a few intuitive

observations here that serve to situate MG tree languages with respect to other

formalisms.

In Sec. 1.2.3, I showed that a very simple mapping suffices to turn Minimalist

derivation trees into their respective multi-dominance trees. This mapping consisted

of three steps. First the linear order of siblings had to be modified such that heads

appear to the left of their complements rather than to the right. Then nodes had to be

relabeled such that LIs lost their feature component and interior nodes were replaced

by < and > to indicate projection. Finally, new branches were introduced between

an LI l ’s slice root and all the occurrences of l, i.e. the Move nodes that check one

l ’s licensee features. This mapping was specified in terms of an MSO transduction.

That is, the predicates encoding the relations in the multi-dominance tree (labels,

dominance, precedence) were explicitly defined in terms of the predicates for the

derivation tree. Dominance in the derived tree, for instance, is defined by a very

74

simple MSO formula.

x Ê y↔ x / y ∨ ∃l
h

occ(x , l)∧ sliceroot(y, l)
i

This formula can be translated as “node x is a mother of node y in the derived tree

iff x is a mother of y in the derivation tree or there is some LI l such that x is an

occurrence of l and y the slice root of l.” The other formulas are of comparable

complexity, showing that the mapping from derivation trees to multi-dominance

trees is a rather simple MSO transduction.

Multi-dominance trees are a peculiarity of recent Minimalism and seldom consid-

ered in other frameworks such as TAG. So in order to simplify comparisons between

MGs and these formalisms, one should modify the transduction such that it yields

standard trees instead. This is a simple task if one isn’t concerned about the insertion

of traces. Intuitively, if a node has multiple mothers in the multi-dominance tree, it

suffices to remove all branches except the one attached to the highest mother.

x Êstandard y↔ x Ê y ∧¬∃z[z Ê y ∧ z Ê+ x]

The formula reads out as “node x is a mother of node y in the phrase structure

tree iff x is a mother y in the multi-dominance tree and there is node z in the

multi-dominance tree that is a mother of y and (properly) dominates x .”

Note that this transduction yields phrase structure trees without traces. Adding

traces is rather complicated since a derived tree with traces contains more nodes

than its corresponding derivation tree. Increasing the size of a tree, albeit possible,

is slightly cumbersome to achieve with an MSO transduction. Also note that the

formula above only yields the correct result for phrasal movement and needs to

be expressed more generally for head movement, sideward movement, or other

movement types. These caveats aside, it is clear that applying the transduction

encoded by this MSO formula after the one mapping derivations to multi-dominance

75

trees yields standard phrase structure trees. Since MSO transductions are closed

under composition, the result of applying these two transductions in sequence is

itself an MSO transduction. Hence mapping derivation trees to standard phrase

structure trees can be achieved via an MSO transduction, too.

The use of MSO transductions establishes an upper bound on the strong genera-

tive capacity of MGs. This is due to the following characterization: a tree language

L is the result of applying an MSO transduction to a regular tree language iff L is

the tree yield of a hyperedge replacement grammar (cf Engelfriet 1997). Hyperedge

replacement grammars are a formalism for generating graphs rather than trees,

but just like every tree has a string as its yield, graphs have trees as their yield.

Interestingly, hyperedge replacement grammars are weakly equivalent to MCFGs,

just like MGs (a corollary of Engelfriet and Heyker 1991 and Weir 1992). That is

to say, the string yield of the tree yield of a hyperedge replacement grammar is an

MCFL, and for every MCFL there is a hyperedge replacement grammar that weakly

generates it. Since MGs and hyperedge replacement grammars generate the same

class of string languages, do the two also generate the same class of tree languages?

The answer is no, hyperedge replacement grammars are strictly more powerful

than MGs regarding tree languages. This is so because the tree languages of MGs are

the image of regular tree languages under direction-preserving MSO transductions,

which form a proper subclass of the class of all MSO transductions (Mönnich 2006,

2007). An MSO transduction is direction preserving iff it holds for all nodes x

and y that if x is the mother of y in the output tree, then x properly dominates y

in the input tree. This class, and thus the class of phrase structure tree languages

generated by MGs, coincides with the class of multiple regular tree languages (MRTL;

see Raoult 1997 and Engelfriet 1997). These are the tree analogue of MCFGs, or

equivalently, regular tree grammars over tuples of trees rather than single trees.

Obviously one would like to know what kind of tree structures can be generated

by hyperedge replacement grammars but not by MGs. To my knowledge, no good

76

characterization of this class is known at this point. But comparisons with other

frameworks furnish some preliminary answers. In particular, some TAGs generate

tree languages that are beyond the reach of MGs. Note that his holds even though

TAGs are strictly weaker than MGs on a string level (so the relation between strong

and weak generative capacity is indeed rather indirect). TAG tree language coincides

with two classes. The first one is the class of tree languages that are the image of

regular tree languages under inverse direction preserving MSO transductions, where

an MSO transduction is inverse direction preserving iff it holds for all nodes x and

y that if x is the mother of y in the output tree, then y properly dominates x

in the input tree. The second class is given by the tree languages generated by

monadic, simple context-free tree grammars (Mönnich 1997; Fujiyoshi and Kasai

2000; Kasprzik 2007; Kepser and Rogers 2011). A context-free tree grammar oper-

ates similar to a context-free string grammar. Where the latter “slices” a generated

string in half to insert a new string between the two, a context-free tree grammar

slices a tree in half and inserts a new tree in between. Notice the difference to

regular rewriting mechanisms, which only insert new material at the edge of the

already assembled structure. So while MGs rely on a generalized notion of regularity

(the connection to MRTGs), TAGs depend on a limited version of context-free tree

manipulation.

Graf (2012e) shows that TAG tree languages are generated by MGs with a

particular kind of lowering movement. So subtrees move to a position they c-

command, not one they are c-commanded by. This result translates the rather

abstract issues of strong generative capacity into a concrete linguistic one: are there

any natural language phenomena that can only be described by lowering? If not,

then no natural language involves tree structures that are generated by TAGs but

not by MGs.

While TAGs and MGs disagree on the kind of mapping from derivation trees to

derived trees, they both have regular derivation tree languages and rely on MSO-

77

definable mappings. The same kind of split can be found with other formalisms.

MGs with overt copying, for example, have the same derivation trees as MGs without

copying; they only differ from the latter in that they use an MSO-mapping to multi-

dominance trees which are then converted into standard trees with over copies

instead of traces. There seems to be a general consensus, then, that the complexity

of natural language stems from the interaction of two simple components. The

only disagreement is about the specifics of the mapping from derivations to derived

trees. Narrowing down these parameters will prove a lot more difficult than weak

generative capacity results, and it will necessarily require a lot more linguistic

expertise.

2.2 Evaluating the Adequacy of Minimalist Grammars

A crucial criterion for every mathematical formalization is whether it is faithful to the

object under study. After all, if one models bumblebees as fixed wing aircrafts they

provably cannot fly (cf. Magnan 1934; Dickinson 2001). Similarly, theorems about

grammar formalisms are of little use if they depend on unrealistic assumptions about

said formalism. For example, SPE is easily shown to be capable of generating any

recursively enumerable string language (over the largest alphabet of symbols that

are representable in SPE’s feature system), yet the fragment used by phonologists

in their daily work turns out to be finite-state and thus significantly better behaved

(Kaplan and Kay 1994).

Naturally the relevance of MG research to syntacticians depends foremost on

how faithful MGs are to Minimalist syntax. From what we have seen so far, it seems

that the two are far removed from each other. But these differences are merely

superficial, as I argue in the next few sections. For not only is it an easy task to

change aspects of the MG formalism to bring it closer to Minimalist syntax, those

details are in fact immaterial once one views MGs in terms of their derivation tree

78

languages as previously described in Sec. 1.2.

I begin with a critical dissection of the common sentiment that mathematical

results are not pertinent to theoretical syntax because of profound differences in

scope and methodology. After that, I quickly move on to more concrete issues

(which are less likely to coax me into the kind of “methodological moaning” derided

in Pullum 1983). Proceeding in a bottom-up fashion, I start out with the feature

calculus, Move, and locality before turning to derived trees, generative capacity,

and possible extensions of the formalism. Readers that have no qualms about the

relevance of MG research to mainstream syntax may skip ahead to the next chapter.

2.2.1 Relevance of Mathematical Results to Linguistics

Nowadays there is very little overt animosity between generative grammarians and

mathematical linguists. But unfortunately this isn’t a product of fruitful collaboration

but rather a pronounced lack thereof — their peaceful cohabitation is grounded in

(mutual) indifference. Syntacticians consider the concerns of mathematical linguists

orthogonal to the generative enterprise, so that mathematical results go mostly

unnoticed in the community at large.

As far as I can tell, the disinterest in mathematical approaches stems from the

impression that they erroneously conflate two foundational distinctions or flat-out

deny their significance:

• weak generative capacity (string languages) vs the phrase structure trees

assigned to strings, and

• generated structures (E-language) vs the grammars generating those structures

(I-language).

Chomsky himself has repeatedly insisted on the importance of phrase structure and

I-language to the detriment of strings and E-language.

79

The notion of weak generative capacity [. . .] has almost no linguistic

significance. (Huybregts and van Riemsdijk 1982:73)

Strong generation is the basic notion; weak generation of a designated

set of strings [. . .] is defined as an auxiliary concept, of marginal

significance at best. (Chomsky 1990:143)

[. . .] E-language has no particular significance for formal linguistics.

(Chomsky 1990:145)

Because mathematical results such as Peters and Ritchie (1971, 1973b) pertain

only to the string languages generated by grammars, they are neither about phrase

structure nor I-language and hence have nothing to contribute to generative syn-

tax — or so the argument goes. This line of reasoning, however, does not apply

to most recent formal work, and even for the research that fits this mold it only

proves that mathematical linguists have not been very successful at communicating

to syntacticians how their theorems bear on I-language.

In order to fully appreciate this point, we first need to clarify what it means for

some result to “be about I-language”. Given the equivocation of I-language and

grammars, one might conclude that any result that tells us something about a gram-

mar formalism satisfies this condition. But this is obviously not what syntacticians

have in mind, since weak generative capacity results also increase our knowledge

about a formalism yet are considered insufficient. Even moving from strings to

phrase structure trees would keep us in the lesser domain of E-language results.

Identifying I-language with grammars entails at the very least that I-language

allows for more fine grained distinctions than E-language: two distinct grammars

might generate the same E-language, while the opposite does not hold. This is so

because I-languages may differ in how they build certain structures.

80

Example 2.8

Consider the tree below, where ��YP is an unpronounced copy of YP:

XP

X′

��YPX

YP

Depending on our assumptions about Move, there are at least two distinct ways of

generating this tree, namely overt raising of YP to Spec,XP and covert lowering of

YP from Spec,XP.

This kind of ambiguity is not a peculiarity of movement-based formalisms. The

following tree can be assembled in Tree Adjoining Grammar using either substitution

or adjunction:

A

A

A

A

A
A

A

A

A

A

A

Whatever the intended interpretation of the term I-language might be, it arguably

subsumes results about how grammars assign phrase structure to strings. In technical

parlance, this is tantamount to claims about derivation trees. Consequently, findings

pertaining to derivation trees should qualify as I-language results.1

A quick glance at recent publications in mathematical linguistics shows that
1There are of course components that have been considered pressing I-language issues at some

point in the history of generative syntax, yet are not reflected in derivation trees as commonly
construed — e.g. the structure of the lexicon and its interaction with syntax through the numeration.
This is irrelevant to my point, though. If theorems grounded in derivation trees count as I-language
results, then it suffices to give an example of one such theorem in the mathematical literature to
disprove the claim that mathematical results are only about E-language.

81

derivation trees take center-stage nowadays. Graf (2012b), for example, proves that

if every instance of unbounded movement is decomposed into an equivalent sequence

of movement steps such that each one only crosses a fixed number of maximal

projections, the structural complexity of derivation trees is lowered significantly — a

subtle hint that locality constraints do indeed simplify grammars. Kallmeyer (2009)

successfully unifies half a dozen variants of Multi-Component TAG by treating them

as standard TAGs with various constraints on their derivation trees, which raises

the question if other operations, too, can be stated more insightfully in terms of

derivational constraints. Stabler (2012) implements a parser for MGs that constructs

derivation trees rather than derived trees and thus operates significantly faster,

thereby demonstrating the practical viability of a syntactic approach that treats

derivations rather than phrase structure trees as the basic data structure. For further

examples see Shieber (2004), Kobele et al. (2007), Salvati (2011), and Kobele

and Michaelis (2012). The notion that findings from mathematical linguistics are

by necessity limited to E-language and devoid of any relevance for I-language is

untenable in light of these recent developments.

In fact, the focus on I-language aspects isn’t particularly novel. Equally expressive

formalisms can differ along many dimensions that have been investigated in the

literature, in particular parsing complexity and succinctness (where succinctness

denotes the overall size of the grammar, or alternatively how easily certain structures

can be derived). The good performance of the CKY-parser for CFGs, for instance,

only obtains for CFGs in Chomsky normal form. For every non-deterministic finite-

state automaton there exists a deterministic one that recognizes the same string

language, but the blow-up in size is exponential in the worst case. For any given

k ∈ N, {an bn | n≤ k} can be generated by some regular grammar, but this grammar

will be a lot more complicated than the CFG for {an bn | n ∈ N}; cf. Chomsky’s (1957)

analogous argument for favoring transformational grammar over CFGs. The copy-

language {ww | w ∈ Σ∗} can be defined in MGs without copying movement, but

82

the derivations are hard to make sense of compared to those with overt copying.

MGs and MCFGs have the same weak generative capacity, but the former are

more succinct, supporting the idea that MGs capture certain generalizations about

language missed by MCFGs. Since the very first day of formal language theory, there

has been great interest in how weakly equivalent formalisms fare with respect to

such properties, but for some reason this line of research garnered considerably less

attention among linguists than weak generative capacity results.

Even where E-language is the object under investigation, the implications for

I-language are numerous. This point is often missed in linguistic discussions because

the interesting bits of weak generative capacity results are in the proofs, which are

usually too laborious for the uninitiated. Establishing the weak generative capacity

of a given grammar formalism generally proceeds by exhibiting a procedure that

translates it into another formalism whose expressive power is already known. It

is the translations that provide us with insights about how those grammars work

internally, which differences are fundamental and which but notation. For concrete

examples, see Vijay-Shanker and Weir (1994), Kasper et al. (1995), Frank and

Satta (1998), Fujiyoshi and Kasai (2000), Michaelis (2001, 2004), Rogers (2003),

Stabler (2003), Mönnich (2006), Kasprzik (2007), Kanazawa et al. (2011), Graf

(2012e), Kobele and Michaelis (2012). In particular, weak generative capacity

results are of tremendous use in pinpointing a formalism’s locus of power. For

instance, the truly interesting insight of Peters and Ritchie (1971, 1973b) isn’t that

Transformational Grammar can generate all recursively enumerable languages, it is

that weak generative capacity cannot be easily restrained via the base component

(i.e. D-structure). This can be taken as evidence for the redundancy of the latter,

which Chomsky (1993) independently argued for 20 years later. On the other hand,

if the depth of derivations is linearly bounded by the length of the input string, only

context-sensitive languages can be generated (Peters and Ritchie 1973b). If a specific

notion of locality is introduced, the class generated by transformational grammars is

83

even weaker and lies properly between the context-free and the context-sensitive

languages (Peters and Ritchie 1973a; to my knowledge it is an open question

whether all languages in said class are mildly context-sensitive). In these and many

other cases, it is not the weak generative capacity itself that is of interest, but how

certain aspects of the grammar, i.e. I-language, contribute to it.

Many more examples could be added to this list, but the preceding material

should suffice to convince the reader that mathematical linguists seek to deepen

our understanding of (I-)language just as Minimalists do. But noble intentions do

not necessarily yield something good, and at least some syntacticians seem to think

that little of actual value has come out of the formally rigorous approach — not

because of some fundamental failure to focus on I-language, but because some of

the assumptions made in the formalization process are ad hoc. As is to be expected,

Chomsky himself has been very vocal about this topic:

To formalize one or another version [of X′-theory; TG] is a straightfor-

ward exercise, but [. . .] would require decisions that are arbitrary; not

enough is understood to make them on principled grounds. The serious

problem is to learn more, not to formalize what is known and make

unmotivated moves into the unknown. [. . .] One should not be misled

by the fact that computer applications require such moves. Throughout

history, those who built bridges or designed airplanes often had to make

explicit assumptions that went beyond the understanding of the basic

sciences. (Chomsky 1990:147)

There are several assertions in this statement that one could take issue with, and

at first it feels at odds with the push towards more rigorous theories that Chomsky

spearheaded in the late 50s.

Precisely constructed models for linguistic structure can play an impor-

tant role, both negative and positive, in the process of discovery itself.

84

By pushing a precise but inadequate formulation to an unacceptable

conclusion, we can often expose the exact source of this inadequacy and,

consequently, gain a deeper understanding of the linguistic data. More

positively, a formalized theory may automatically provide solutions for

many problems other than those for which it was explicitly designed.

Obscure and intuition-bound notions can neither lead to absurd conclu-

sions nor provide new and correct ones, and hence they fail to be useful

in two important respects. (Chomsky 1957:5)

Upon a more nuanced reading, though, it should be clear that the passage from

Syntactic Structures is not necessarily at odds with Chomsky’s later statement; the

former expounds the advantages of formalization, whereas the latter addresses the

issue of how rigorous a formalization is needed in order to reap those benefits.

So the problem with mathematical approaches isn’t one of principle, but merely

practicality: given that learning mathematics has a steeper learning curve than not

learning mathematics, does the initial time investment pay off in the long run?

Even in mathematics, the concept of formalization in our sense was not

developed until a century ago, when it became important for advancing

research and understanding. I know of no reason to suppose that lin-

guistics is so much more advanced than 19th century mathematics or

contemporary molecular biology that pursuit of Pullum’s injunction [i.e.

rigorous formalization of linguistic proposals; TG] would be helpful, but

if that can be shown, fine. (Chomsky 1990:146)

It could turn out that there would be richer or more appropriate math-

ematical ideas that would capture other, maybe deeper properties of

language than context-free grammars do. In that case you have an-

other branch of applied mathematics, which might have linguistic conse-

quences. That could be exciting. (Chomsky 2004b:43)

85

Many of the examples I gave above easily rise to Chomsky’s pragmatist challenge.

They show that mathematical linguistics isn’t merely the study of whether formalisms

fall into some computationally appealing class. Mathematical linguistics is about

how the internals of a proposal interact to yield its generative power, what kind of

structural dependencies it can express and which of them are instantiated in natural

language, how these dependencies may be represented in a succinct fashion, how

they are computed, whether they are learnable. These goals are in perfect agreement

with the generative enterprise. The dividing line between mathematical linguistics

and generative grammarians isn’t the object of study, it is methodology.

The crucial question, then, is whether the methodological choices of mathe-

matical linguists — characterized by abstraction and a preference for generaliza-

tions over entire classes of grammars and languages rather than specific instances

thereof — mean that their work is too far removed from the ideas of syntacticians

to be of any value to them. In the case of MGs, there are several technical simpli-

fications that are apparently at odds with Minimalist proposals. In the next few

sections, I show that these simplifications are merely a matter of mathematical

convenience. If desired, MGs can be altered in various ways to make them more

faithful to Minimalist syntax without changing their central properties (which were

discussed in Sec. 2.1).

2.2.2 Feature Calculus

The most immediate difference between MGs and Minimalist syntax lies in the status

and make-up of features. MG features are

• binary valued, and

• always involved in triggering a syntactic operation, and

• mandatorily erased after triggering said operation, and

86

• relevant to either Merge or Move, but not both, and

• linearly ordered, and

• able to occur several times on a single LI, and

• inseparable from their LIs.

The feature system of Minimalist syntax has undergone several revisions since its

inception; yet at no point in that development did it exhibit a majority of the

properties of the MG feature calculus.

Regarding the very first point in the list above, it is unclear whether features in

Minimalism are privative (i.e. without value), binary valued, or multivalued. The

only option that is ruled out is HPSG-style recursive feature structures (cf. Adger

2010). In addition, features in early Minimalism are distinguished according to their

interpretability in a manner that does not line up well with the polarity bifurcation

of MGs. In Minimalism, only Move needs to be triggered by uninterpretable features,

but then it does not matter whether only one feature is uninterpretable or both

of them. Moreover, only uninterpretable features are erased during the checking

procedure (cf. example 1.1 on page 9). This means that Minimalist syntax lacks

two instances of symmetry that are present in the MG feature calculus, as the latter

allows only features of opposite polarities to enter a checking relation but always

erases both of them.

MGs also diverge from Minimalism with respect to their basic ontology of features.

As Kobele (2005) points out, MGs treat features as building blocks from which LIs

are assembled. As such, they can be ordered and used multiple times for the same LI.

Minimalist syntax, on the other hand, views features as properties of LIs, and since

it makes little sense to establish an order on properties or claim that an object has a

property several times, neither is allowed.2 The disagreement on the metaphysics

2There is at least one notable exception to this claim. In his discussion of Icelandic, Chomsky
(1995c:286,354) stipulates that a feature may have a meta-property that specifies how often the

87

of features by itself is of little significance, but the two technical differences that

arise from these opposing views — feature order and iterability — cut too deep to be

ignored so easily.

Besides the major divergences regarding symmetry and the ontology of features,

there are also many minor ones. In Minimalism, category features can be involved

in both Merge and Move (the latter when checking an EPP/OCC feature), features

may detach from their LIs in order to move on their own, and multiple features

can be manipulated by a single operation if they are bundled (e.g. in the case of

φ-features). For the sake of completeness, one could even add the mostly forgotten

distinction between Delete(α) and Erasure (Chomsky 1995c:280) to this list. Finally,

almost all semblance of a correspondence between the two feature systems seems to

be lost once one takes the step from classic Minimalism to the contemporary system

of (un)valued features introduced in Chomsky (2001). Considering the important

role of features in Minimalist syntax, then, all these discrepancies cast doubt on the

faithfulness of MGs.

Fortunately, there is no reason for concern. While it cannot be ruled out that the

peculiarities of the MG feature calculus might cause MGs to be too far removed from

Minimalism to provide insightful answers to some questions (although none come

to mind), this is not the case for any of the issues covered in the MG literature so far,

including this very thesis. This can be shown in two ways. The more intuitive one is

to provide explicit translations from more faithful systems to the standard MG one.

feature needs to be checked before it can be erased. This is a notational variant of allowing multiple
features on the same LI, as was already observed by Nunes (2000).

To a certain degree, the modern Agree-based system with its reliance on OCC features is also
inconsistent with this view, provided one adopts Chomsky’s (2004a) position that phases are repre-
sentational, i.e. all operations that take place inside a phase do so simultaneously. For then an LI
needs multiple OCC features to trigger multiple instances of Move (which is still permitted in this
system), and since there is no derivational ordering anymore, these features are all present at the
same time.

88

Example 2.9 A

Suppose that features are no longer put in a linear order. So a given collection of

LIs can now combine into several derivations, depending on the order in which the

features are checked. The same behavior can be emulated by a standard grammar G

in which every LI is multiplied out into all its feature permutations. That is to say, if

a :: f1 f2 f3 is an LI of G, then so are a :: f1 f3 f2, a :: f2 f1 f3, a :: f2 f3 f1, a :: f3 f1 f2,

and a :: f3 f2 f1. Syntax — rather than being forced to guess the order in which

features must be checked to yield a well-formed derivation — now has to make a

choice about which of these minimally different LIs should be used when building a

derivation.

In the other direction, every MG with ordered features can be emulated by one

with unordered features. Intuitively, one can simply decompose a head with multiple

unordered features into a hierarchy of heads that each host one of the features

of the original head, similar to analyses that posit distinct probes for person and

number (Béjar and Rezac 2009). The strategy works as intended due to a few key

properties of MGs. First, observe that if an LI l has at least one selector feature,

one of them is the feature that must be checked first as there is no other way of

introducing l into the derivation. Second, l ’s licensor features must be checked

before its category feature due to the ban against countercyclic movement. Third, the

licensee features cannot be checked before the category feature because movement

is to a c-commanding position, and the only way to create such a position is for

some other LI to select l and thereby delete its category feature. Finally, for every

MG there is an equivalent one in which every LI moves at most once.

Therefore every LI has a feature string in the regular language (sγ)c(m), where

s is a selector feature, c a category feature, m a licensee feature, and γ a possibly

empty string of selector and licensor features. It is easy to decompose each LI into

a hierarchy of LIs that each contain at most three features: a selector feature, a

89

category feature, and possibly a selector, licensor or licensee feature. For example,

l :: = s = t + x a − y will be decomposed into

l :: = s al
0

ε :: =al
0 = t al

1

ε :: =al
1 + x al

2

ε :: =al
2 a − y.

Given our previous remarks, the features will also be checked in this order in

any MG with unordered features as long as a head can still distinguish between

arguments depending on whether they should be complements or specifiers — an

ubiquitous assumption in the literature. Note that no LI in these refined MGs has

the same feature twice, so we can also drop iterability of features without negative

repercussions.

Admittedly the lexicons created this way are huge and highly redundant, and the

reader would be justified to have reservations about their psycholinguistic adequacy.

But our sole goal here is to ensure that results about standard MGs carry over to

the variant without ordered, iterable features. The translation procedures reveal

that dropping these properties does not change anything about the formalism, both

systems are interchangeable. So any interesting property of standard MGs also holds

for these variants.

With a little creativity, similar translations can be devised to deal with other

points of divergence. Discarding with symmetric feature checking is a little bit

more difficult, but see the remarks on persistent features in Stabler (2011). We

can conclude that even though the MG feature calculus looks, at best, like a crude

imitation of the original Minimalist feature system, it is in fact perfectly capable of

emulating more faithful variants.

90

The alternate route of establishing the adequacy of the MG feature calculus is

more general but also less intuitive: the feature system cannot be unfaithful because

its technical details are irrelevant. Recall from Sec. 1.2 that a given MG is fully

specified by its derivation tree language, from which the set of phrase structure trees

is obtained by a specific transduction that moves subtrees from their base position to

their final landing site. The viability of this view is tied to three formal requirements

established in Sec. 2.1:

• the derivation tree language must be a regular tree language, and

• every Move node is an occurrence for exactly one LI, and

• the transduction from derivation trees to derived trees must be MSO-definable.

The MG feature calculus is just a means towards ensuring that these three properties

hold. There are infinitely many alternative systems that could be used in its place,

the original Minimalist system being but one of them. Consequently, one should not

attach too much importance to the peculiarities of a given feature system. For our

purposes, almost all of them will do, irrespective of whether they follow standard

MGs in treating features as building blocks and feature checking as invariably

symmetric.

2.2.3 Movement

The discussion of the feature system immediately leads to another problem of MGs:

successive cyclic movement. As the astute reader might have already observed, the

restriction to a bounded number of features for each LI prevents successive cyclic

movement in a system where every instance of Move must be triggered by some

feature that is subsequently deleted. This is so because successive cyclic movement

may involve an unlimited number of intermediate landing sites, wherefore no LI

could ever carry enough features to move through all intermediate landing sites for

91

every well-formed derivation.

Kobele (2006) offers a slight reinterpretation of successive cyclic movement that

does away with this problem. He proposes that only the final target site contains a

triggering feature, and all intermediate landing sites are filled with a (covert) copy

of the moving subtree during the mapping from derivation trees to derived trees.

So even though successive cyclic movement behaves like one-fell-swoop movement

with respect to the feature calculus, it still yields the desired phrase structure trees.

An alternative solution has already been touched upon in the previous subsection:

the difficulties with successive cyclic movement stem from specific assumptions

inherent in the standard MG feature system, which can be replaced by more suitable

alternatives without changing anything significant about the formalism. By extension,

successive cyclic movement is a challenge only for a specific MG feature calculus,

not for MGs as such.

Example 2.10 A

There are many ways of reigning in successive cyclic movement at the derivational

level. As an illustration of how this can be accomplished, I present one specific

strategy here.

In order to handle unlimited occurrences, the MSO transduction from derivations

to derived trees needs to be modified. This can be done without endangering MSO-

definability. First, we create an MSO transduction τ from standard MG derivations

to derived trees with successive cyclic movement. This transduction only differs

from the canonical one in that for every instance of movement crossing a landing

site of successive cyclic movement (usually vP and CP), a trace is inserted at this

position, following Kobele (2006). Thanks to the SMC only a bounded number of

phrases move across such a landing site, wherefore the desired modification can

easily be expressed in MSO terms.

92

In the next step, successive cyclic movement is introduced at the derivational

level via a mapping τ′ that inserts Move nodes in a fashion parallel to τ. An MG

derivation with successive cyclic movement thus can be obtained from one with

unbounded movement via τ′. Since MSO transductions are closed under composition

and reversal, τ′−1 ◦τ is also an MSO tranduction. This transduction translates MG

derivations with successive cyclic movement into MG derivations with unbounded

movement and maps them to the intended derived trees. Hence MGs with successive-

cyclic movement are the image of standard MGs under τ′, and their derived tree

languages are computed by τ′−1 ◦τ.

Another major concern about Move in MGs is its determinism. Determinism

is an immediate consequence of the SMC, which does not allow for two LIs to

have the same licensee feature as their first active feature at the same step in the

derivation. Under this restriction there can be no scenario where two LIs are both

eligible to move to a specific target site such that syntax has to make a choice as to

which one gets to move. But those cases are widely attested and serve as the major

motivation for various locality principles in the syntactic literature. The saving grace

of MGs in this case is that the derivational determinism holds only with respect to a

given choice of LIs. What might be considered a single LI in the syntactic literature

may correspond to several LIs in an MG, all of which differ slightly in their feature

make-up. So MGs still allow for non-determinism, but it is pushed exclusively into

the initial choice of LIs from which the derivation is to be assembled.

Purely lexical non-determinism is not widely entertained in the syntactic litera-

ture, though. This is motivated by the following line of reasoning: if a derivation

is fully specified by the LIs that occur in it, there should be no reason for syntax to

construct a derivation rather than simply pass the set of LIs directly to the interfaces.

Full lexical determinism is claimed to render syntax redundant. But this is incorrect.

93

A given set of LIs may still allow for multiple distinct derivations to be constructed.

In fact, any grammar in which at least two LIs have the same feature specification

has a limited amount of uncertainty so that derivation trees are indispensable for

disambiguation.

Example 2.11

Consider the MG consisting of the following three LIs.

John :: D Mary :: D killed :: =D=D C

Exactly four derivations are licensed by this grammar, two of which use all three LIs.

Those two only differ in which DP is merged as the subject/object.

Merge

Merge

killed :: =D=D CJohn :: D

John :: D

Merge

Merge

killed :: =D=D CMary :: D

Mary :: D

Merge

Merge

killed :: =D=D CMary :: D

John :: D

Merge

Merge

killed :: =D=D CJohn :: D

Mary :: D

94

Case features and theta roles reduce non-determinism, but cannot fully eliminate

it, e.g. in John knows that Bill likes him versus Bill knows that John likes him. Playing

devil’s advocate, one might propose that this kind of disambiguation could be

handled by semantics, wherefore derivations are still redundant. This argument has

two crucial flaws. First, it blurs the distinction between competence and performance.

There is little doubt that when planing their utterance, the speaker knows the

intended LF to some degree and may use this information to limit non-determinism.

But generative theories of syntax only model competence, which sentence planning

and production take no part in. Second, even if the speaker had full access to all

semantic information in syntax, this does not spell the end of all non-determinism

because multiple derivations may yield the same LF. This is the case for John and

Mary kissed versus Mary and John kissed. The idea that derivation trees provide no

information over the set of LIs that they are constructed from simply isn’t tenable

even if Move is deterministic.

In sum, MGs allow for all the non-determinism needed in the empirical analysis

of various phenomena related to locality, but they relegate said non-determinism to

the choice of LIs rather than syntax proper.

2.2.4 Locality

Issues of locality have already been implicitly touched upon in the discussion of

successive cyclic movement, which proved a little tricky to capture in MGs — in

stark constrast to unbounded movement, which is unproblematic in MGs. This is

exactly the opposite of the Minimalist postulate that local movement is the default

and seemingly unbounded movement is to be reinterpreted as a sequence of local

movement steps. Apparently, then, MGs are too lax regarding locality.

At the same time they are also too strong, as the SMC forbids any two LIs from

having the same licensee feature as their first unchecked feature at any point in

95

the derivation. Among other things, this precludes configurations where two DPs

are capable of checking the wh-feature of a C-head, as in [CP C[+wh] [TP who[-wh] T

[VP twho bought what[-wh]]]]. Cases like this are the prime motivation for relative

notions of locality in Minimalist syntax. MGs, on the other hand, apparently throw

out the baby with the bathwater by having the SMC block all problematic structures.

Both the lack of locality and the excessive strength of the SMC can be fixed in a

very general way building on the results I establish in Chap. 3. At this point it suffices

for the reader to know that locality conditions can be stated as (MSO-definable)

constraints over derivation trees, and once these locality restrictions are in place,

the SMC can be relaxed so that it allows for multiple active instances of the same

licensee feature (but only a finitely bounded number thereof). MGs with a relaxed

SMC and the right choice of locality constraints behave exactly like Minimalist syntax

in cases such as the one above.

Note, though, that we cannot completely do away with the SMC without losing

the restriction to regular derivation tree languages (see Salvati 2011 for a detailed

study of MGs without the SMC). As the well-behaved nature of MGs stems mostly

from the regularity of their derivation tree languages, some variant of the SMC

must remain in place. The repercussions are minimal in practice. Issues arise only

for unbounded multiple wh-movement, where an unlimited number of wh-phrases

may move to the same CP. But even then the problems are restricted to specific

analyses of the phenomenon. The standard account treats multiple wh-movement

like any other instance of wh-movement and thus requires an unbounded number of

licensee features to be active at the same time (one feature per moving wh-phrase).

Weakening the SMC in a manner so that it permits such cases yet still ensures that

all derivation trees are regular is impossible in the general case.

Even though unbounded multiple wh-movement is incompatible with the SMC

under the standard Minimalist analysis, this does not mean that the SMC precludes

any viable account of this phenomenon. A clustering approach to multiple wh-

96

movement (Gärtner and Michaelis 2010), for instance, is an attractive alternative

for MGs as it only needs a bounded number of licensee features at any given step

in the derivation and thus obeys the SMC. The SMC thus turns out to be rather

innocent (albeit sometimes inconvenient) for linguistic purposes — by adding locality

restrictions the SMC can be relaxed in a way that is more faithful to Minimalist syntax,

provides adequate empirical coverage, and preserves the regularity of Minimalist

derivation tree languages.

2.2.5 Derived Trees

The derived trees of an MG closely resemble standard Bare Phrase Structure trees

except for I) their interior node labels and II) the fact that they are linearly ordered.

As with the specifics of the feature calculus, the choice of interior node labels

is of little relevance and can be altered as desired. Strictly speaking, one could

dispense with interior node labels altogether, yielding a kind of label-free syntax

as envisioned by Collins (2002). Contrary to what Collins’s work might lead one

to expect, this changes nothing about the internal MG mechanics. These are still

determined by derivation trees, whose interior node labels are redundant anyways;

they only indicate the type of operation, which can easily be inferred from a node’s

arity. In a sense, MGs are already label-free, and that is why tinkering with interior

node labels is of no consequence.

Example 2.12

The interior node labels of the derived trees are obtained via the MSO-mapping

described in Sec. 1.2. The relevant two formulas are repeated here.

> (x)↔Move(x)∨ (Merge(x)∧¬∃y[x / y ∧ Lex(y)∧ x ∼ y])

97

< (x)↔Merge(x)∧ ∃y[x / y ∧ Lex(y)∧ x ∼ y]

It is easy to see that any symbol could have been used instead of < and > without

changing anything essential about the respective MSO formulas. In particular, if <

and > are replaced by the same symbol, all interior nodes have the same label. But

if all interior nodes have the same label, this label has no information to contribute,

just as if they had no label at all.

The requirement that derived trees be ordered is also mostly immaterial from a

linguistic perspective, but in contrast to the labeling mechanism, there is a technical

advantage to it. Unordered trees are a lot more cumbersome mathematically than

ordered ones while offering no new insights of linguistic relevance. This is not

meant to be a slight against Kayne’s (1994) seminal work which posits that string

precedence is determined by c-command rather than some precedence relation

defined over nodes in a tree. Keep in mind that the import of Kayne (1994) is not

whether trees are ordered, it is that string precedence is independent of any such

ordering relation. Since c-command relations are invariant with respect to tree

precedence, it is irrelevant for Kayne’s proposal whether trees are ordered. Granted,

it is slightly odd to require an ordering relation that is ultimately irrelevant for

the formalism. On the other hand, an unordered tree is indistinguishable from an

ordered one whose order is irrelevant, but the latter is more convenient to work

with. Readers who are uncomfortable with ordered derived trees may assume that

the derived tree language of an MG is actually the sibling permutation closure of the

set defined in Sec. 1.2.3. That is to say, the derived tree language contains each tree

in all its possible orderings.

98

Example 2.13

Suppose the following tree is in the derived tree language of some MG G.

>

<

PPV

DP

Then the sibling permutations of this tree are also in G’s derived tree language.

>

>

VPP

DP

<

DP<

PPV

>

DP>

VPP

2.2.6 Generative Capacity

A common complaint about any kind of formal grammar mechanism, including MGs,

is that it subsumes many unnatural grammars and languages; in other words, it

overgenerates both structurally and on the string level.

For example, there are infinitely many MGs whose LIs are phonetically null, so

that a moment of silence could be assigned the same tree structures as the collected

works of Shakespeare. In addition, nothing in the formalism commits us to at most

two arguments per head, the functional hierarchy v-T-C, or that subjects aren’t

based-merged in T. Linear order is also too unrestrained since the class of MG string

languages is closed under reversal, so for any given word order that can be derived

by MGs, its mirror image is derivable, too. Other unattested patterns that can be

generated by MGs are

• for every n ∈ N, the language MODn := {w ∈ Σ∗ | |w|mod n= 0} of strings

99

whose length is a multiple of n,

• the MIX-language MIX :=
�

w ∈ {a, b, c}∗ | |a|= |b|= |c|
	

, which contains all

strings over {a, b, c} in which all three symbols occur equally often (Salvati

2011; Kanazawa and Salvati 2012),

• the copying-language
¦

w#w#w | w ∈ D∗1
©

, where D∗1 (the one-sided Dyck

language over one pair of parenthesis) is the set of well-balanced bracketings

over {[,]}, e.g. [] and [][[][[][]]] but not][or [[] (Kanazawa and Salvati

2010).

While MOD2 might have a role to play in natural language insofar as the distinction

between odd and even matters for stress assignment in some languages (Graf

2010a), more fine-grained distinctions are not attested (e.g. a language that requires

clefted constituents to contain three, six, nine . . . words). The MIX-language is an

abstraction of unrealistic free word-order patterns such as a hypothetical language

with Dutch-style cross-serial dependencies where the order of words is completely

unrestrained. The last language represents cases where embeddings of unbounded

depth are copied and fully realized in three distinct positions in the utterance.

In sum, MGs are independent of well-established linguistic assumptions, fail to

capture certain complexity bounds on attested patterns, and are capable of modeling

elaborate dependencies that are simply unheard of. But is this actually a problem?

MGs’ independence from established syntactic knowledge is perfectly acceptable.

To expect otherwise is an instance of the ferris wheel fallacy: that there is some

set of tools that is powerful enough to construct ferris wheels, but nothing else.

Excessive malleability is an inevitable shortcoming of every scientific theory. Einstein

could have written any formula, but he wrote e = mc2. OT could model many

kinds of constraint-ranking problems, but the set of posited constraints turns it

into a theory of phonology. The basic formalism only has to carve out a class of

grammars satisfying properties that are necessary in order for them to qualify as

100

natural language grammars. Said properties might not be sufficient, though, which

is why additional, linguistically motivated stipulations have to be put in place.

Ideally, all extra stipulations will eventually fall out from grammar-external

restrictions. In Minimalist syntax, these are often thought of in terms of Bare Output

Conditions imposed by the interfaces, while mathematical linguists are primarily

looking at learning and parsing constraints. Parsing complexity can vary between

grammars even if they are weakly equivalent (recall that context-free grammars in

Chomsky Normal Form are easier to parse), and in some cases, structurally more

complex patterns are actually easier to parse (Joshi 1990; Kobele et al. 2012).

This suggests that the class of efficiently parsable MGs is a proper subset of all

MGs. Similarly, the classes of Gold-/PAC-/MAT-learnable MGs are necessarily proper

subsets of the entire MG class. Finally, there might be certain succinctness conditions

on grammars that rule out some of the more unwieldy ones. The grammar formalism

is just one of several parameters that jointly pick out the class of natural language

grammars, wherefore some amount of overgeneration is not too much of an issue at

this point.

It should also be noted that the examples of overgeneration above only consider

weak generative capacity, which — while suggestive — is far from conclusive. For

example, it is far from obvious that the reversal of a given string language can be

assigned a natural constituent structure in MGs. In this regard it is noteworthy that

if one adopts the basic phrase structure template advocated by Minimalists, only

certain word orders can be generated by MGs (Stabler 2011). Similarly, many formal

string languages might have to be assigned phrase structures that are highly dubious

from a linguistic perspective.

101

Example 2.14

The copy language
�

ww | w ∈ {a, b}∗
	

consists of all strings of the form ww, where

w is some arbitrary string over symbols a and b. In other words, it contains every

string that is the result of taking a string w and appending a copy of said string.

Hence aa and babbbabb are in the language, but a, abb and babbbab are not. The

empty string ε is a special case: since ε = εε, it is a member of the copy language.

The copy language is not context-free, but it is mildly context-sensitive (as a matter

of fact, it is a TAL). This means that standard MGs can generate the copy language

even though they lack copying movement. However, the MG for the copy language

is very cumbersome.

ε :: C − r − l ε :: =C + r + l C

a :: =C + r A − r b :: =C + r B − r

a :: =A + l C − l b :: =B + l C − l

This grammar derives the string abab via 5 Merge and 6 Move steps.

102

Move

Move

Merge

Move

Merge

Move

Merge

Move

Merge

Move

Merge

ε :: C − r − la :: =C + r A − r

a :: =A+ l C − l

b :: =C + r B − r

b :: =B + l C − l

ε :: =C + r + l C

The grammar distributes the workload in a somewhat opaque manner between

Merge and Move. First, the way the category features are distributed, as and bs

can only be generated in pairs of two. For instance, if a new a is to be introduced

into the derivation it must be via the LI a :: =C + r A − r. This LI selects a C and is

itself of category A. But the only thing that selects an A is the LI a :: =A + l C − l.

So everytime an a is introduced, a second one follows right in its footsteps.

If the grammar only used Merge, then this procedure would produce bbaa rather

than abab. This is where the movement features come in. They ensure that the

two as must move to different locations, one to an l licensor, the other one to an r

licensor (the feature names are mnemonics for left and right). In the example above,

103

those are provided by the two bs. This yields the desired abab. So while Merge

creates LIs in packs of two, Move breaks them up and moves them into different

positions.

The derived phrase structure tree looks fairly reasonable at first glance. But

adding explicit movement arrows for each instance of Move brings to light the

complexity of the underlying structure building process.

>

>

<

tε

>

<

tb

>

<

ta

t

>

<

tb

<

>

ta

ε

In this case the MG labeling mechanism also hides the fact that the two subtrees

aren’t perfect copies of each other due to the difference in category features.

TP3

TP3

T′3

tε

BP

B′

tb

AP

A′

ta

t

TP2

T′2

tb

TP1

T′1

ta

ε

104

One should also keep in mind that weak overgeneration is less of an issue than

strong undergeneration. If a desirable increase in a formalism’s strong generative

capacity comes at the cost of weak overgeneration, this is a price worth paying.

For example, the language in example 2.14 is straightforwardly generated by an

MG with overt copying movement. Adding overt copying, however, increases the

weak generative capacity of MGs to that of PMCFGs (see Sec. 2.1.2), so the number

of unnatural string languages generated by these grammars is even bigger. Some

mathematical linguists hence are reticent to take this step because it is more difficult

to gauge what level of strong generative capacity is truly needed. However, if

we reject regular and context-free grammars because of their inability to assign

linguistically adequate constituent structures, it is unclear why we should hesitate to

do the same for more powerful formalisms where necessary.

2.2.7 Missing Components

So far we have looked at things that MGs do differently from Minimalist syntax, but

there are also many parts of the latter that are completely missing from the former:

Agree, Head Movement, Sideward Movement, across-the-board movement, adjunc-

tion, Late Merger, feature percolation, multi-dominance structures, phases, binding

theory, island constraints, and many more. Various movement types have been incor-

porated over the years (Stabler 1999, 2003, 2006; Kobele 2008), and Graf (2012c)

gives a system for defining arbitrary movement types without increasing weak gen-

erative capacity. Among these movement types are standard, multi-dominance,

and copying versions of raising, lowering, and sideward movement for phrases as

well as heads, so that all variants of Move currently entertained in the literature

can be added to MGs. For results on adjunction and feature percolation see Frey

and Gärtner (2002), Gärtner and Michaelis (2007), Stabler (2011) and references

therein. The status of constraints and locality conditions in MGs is the subject of this

very thesis and will be explored in the next few chapters, but suffice it to say that

105

the class of constraints that can be added to MGs without increasing their generative

capacity (both weak and strong) is surprisingly big and includes the majority of

constraints proposed in the literature. Overall, numerous extensions of MGs have

already been explored, and with a few exceptions like Late Merger, they have little

effect on the crucial formal properties of MGs: the regularity of their derivation tree

languages and the MSO-definability of the mapping to derived trees.

This raises the question, though, why one should continue to work with the

bare bones version of MGs rather than adopt a more faithful version as the new

standard. If the computational properties of MGs are preserved by all these ex-

tensions, surely there is no harm in doing so while increasing our understanding

of the actual formalism by reducing the abstractness and cumbersome nature of

canonical MGs. To linguists, this line of reasoning sounds very plausible. A head

movement analysis, for example, might require fewer movement steps than the

corresponding remnant movement analysis. As a matter of fact, the latter might be

extremely complicated. But “complicated” is not the same thing as “complex” from a

mathematical perspective. A derivation with 15 phrasal movement steps could be

considered more complicated than one with 5 instances of phrasal movement and 5

instances of head movement. For the purposes of mathematical inquiry, however, the

grammar that only uses phrasal movement is less complex than the one that allows

for both phrasal movement and head movement. The fewer movement types there

are, the fewer cases need to be considered when constructing proofs. The simpler the

movement types, the easier it is to reason about them. If there is only one movement

type, then one does not even have to worry about how different movement types

might interact. The actual number of movement steps in a derivation, on the other

hand, is irrelevant thanks to various proof techniques such as induction. In other

words, mathematical work profits from reducing the complexity of the grammars

rather than the structures they produce.

Besides simplifying proofs, sticking with a frugal formalism also aids in analyzing

106

the individual subcomponents. For instance, the weak equivalence of MGs and

MCFGs was established for MGs with phrasal movement only, and the generative

power of MGs with head movement was then established via a translation between

the two MG variants. So these results were obtained via two proofs. Now suppose

that the proof of the weak equivalence of MGs and MCFGs had made use of both

remnant movement and head movement. In that case, the obvious question would

have been whether the expressivity of MGs depends on remnant movement, head

movement, or their interaction. This in turn would have required constructing

two new proofs, one for MGs with remnant movement and one for MGs with head

movement. Hence three proofs would have been necessary rather than just two. The

additional effort is required because one cannot readily deduce the properties of

specific subparts of the machinery from the behavior of the system as a whole. Quite

generally, the more parameters and modules a formalism consists of, the harder it is

to determine their respective contributions. By keeping the formalism as minimal

as possible, one gets a good understanding of its components, which subsequently

makes it easier to analyze more complicated versions.

Claims about a bare-bones formalism are also more general because most new

variant will be extensions of the original version. Since standard MGs can generate

all MCFLs, MGs with more movement types can, too. The derivation tree languages

of an extended MG variant cannot be less complex than the derivation tree languages

of standard MGs. By sticking to a formalism F that is as simple as possible, one

reduces the odds that there is some variant F ′ such that neither is an extension of

the other. This would be the worst case scenario, since none of the theorems about

one might readily carry over to the other, requiring significant extra work. Note also

that there is no maximally complex variant that subsumes all others, so picking a

very simple one is the safest route towards maximally general results.

The last point would be irrelevant if all syntacticians were in perfect agreement

about all technical aspects of Minimalism. For then there would be exactly one

107

universally accepted version of the theory and studying Minimalism would be

tantamount to studying this very theory. Of course this is not the case, and many

different competing proposals have been put forward. Even if there was only version

of Minimalism at any given point in time, this version would still have to change

continuously as new data is discovered. This is why there is little point in devising

a variant of MGs that encompasses every detail of Minimalism as defined in, say,

Chomsky (2001). Minimalism, like any scientific theory, keeps evolving, and thus it

is only prudent to set up MGs in a way that makes them compatible with as many

conceivable incarnations of Minimalism as possible.

The strategy of ensuring compatibility via simplicity also obviates Chomsky’s

(1990) criticism that formalization involves fixing certain aspects of the theory that

were deliberately left open (see the quote on page 84). A simpler theory clearly

has to make fewer assumptions, and thus it is less likely to conflict with ideas

in the literature. In sum, the canonical version of MGs is preferable to a more

faithful version for the purpose of mathematical inquiry. The formalism is easier to

understand, proofs are simpler, and results are more likely to generalize to other

variants.

2.3 The Chapter in Bullet Points

• MDTLs are regular tree languages and thus can be recognized by bottom-up

tree automata, a device that moves through a tree from the leafs towards

the root and assigns each node a state based on its label and the states of its

daughters.

• The tree automaton recognizing a given MDTL uses its states to keep track

of the computations of the feature calculus. Each state is a tuple of strings of

unchecked features, where the first element of the tuple lists the unchecked

features on the LI that is currently the head of tree, while the others are the

108

strings of unchecked features on the LIs encountered so far that still need to

move.

• A If the states of the automaton are considered part of the labels, then an

MDTL decorated this way can be generated by a context-free string grammar.

This shows that the feature calculus is underlyingly context-free.

• MGs are weakly equivalent to MCFGs, which puts them in the class of mildly

context-sensitive grammar formalisms. These are thought to provide a good

approximation of natural language, although issues remain (overgeneration

and maybe undergeneration).

• The mapping from derivation trees to phrase structure trees or multi-dominance

trees can be defined in MSO.

• Even though MGs are a simplified model of Minimalist syntax, they can be

made more faithful without changing any of their defining formal properties.

It is mathematically more convenient to work with the impoverished rendition,

but nothing hinges on it.

109

Part II

The Formal Landscape of Constraints

110

CHAPTER 3

Constraints on Trees

Contents

3.1 A Taxonomy of Constraints . 114

3.1.1 The Role of Constraints in Linguistics 114

3.1.2 The Müller-Sternefeld Hierarchy 119

3.1.3 Logic and Constraints . 123

3.1.4 Formalizing the Research Problem 133

3.2 Tree-Local Constraints as Merge . 134

3.2.1 Operations on Minimalist Derivation Tree Languages 134

3.2.2 Constraints as Category Refinement: The Basic Idea 140

3.2.3 Formal Specification of the Refinement Algorithm A 149

3.2.4 The Power of Lexical Refinement 157

3.3 The Relative Power of Constraint Classes 160

3.3.1 A Revised Müller-Sternefeld Hierarchy 160

3.3.2 Why use Constraints at all? 168

3.4 Increasing the Faithfulness of MGs A 173

3.4.1 Locality Conditions . 173

3.4.2 Agreement and Pied-Piping 176

3.4.3 Relaxing the SMC . 178

3.5 The Chapter in Bullet Points . 179

111

This chapter establishes the central result of the thesis, first proved in Graf (2011)

and Kobele (2011) independently of each other: the close connection between Merge

and a particular class of constraints.

Proposition 3.1 (Merge ≡ Constraints). A constraint can be enforced purely via

Merge iff it is rational iff it is MSO-definable iff it defines a regular tree language iff

it can be computed with a finitely bounded amount of working memory. �

These so-called rational constraints can be converted into selectional restrictions,

which are subsequently enforced via Merge. Thus adding a constraint to an MG

amounts to refining the lexicon so that it imposes more fine-grained subcategoriza-

tion requirements. Since a refined Minimalist lexicon still defines an MG, constraints

that can be lexicalized this way do not increase the generative capacity of the MG for-

malism. While localization strategies of this kind have been pursued before — GPSG’s

slash feature percolation comes to mind (Gazdar et al. 1985) — the lexicalizability

of rational constraints is surprising because almost all syntactic constraints belong

to this class. On the one hand, this makes it very easy to bring MGs closer to

contemporary Minimalist syntax, supporting my claim in Sec. 2.2.1 that MGs are a

faithful rendition of Minimalism. On the other hand it also raises the question what

purpose constraints might serve for linguistic theorizing if they do not add anything

over Merge.

A lot of formal legwork has to be done before we are in a position to discuss

these and related issues in an insightful way. The conceptual backdrop is provided in

Sec. 3.1. I start with a brief overview of previous work on constraints, in particular

Müller and Sternefeld’s (2000) classification of constraints. Their approach is then

complemented by the logical view of constraints, also known as model-theoretic

syntax (Blackburn and Meyer-Viol 1994; Rogers 1998; Pullum 2007). Synthesizing

the two traditions, I propose a general taxonomy of constraints for MGs that classifies

them according to the type of object they apply to (phrase structure tree, multi-

112

dominance tree, derivation tree) and the size of their locality domain. In particular,

constraints operating on a single tree are distinguished from transderivational

constraints, also known as economy conditions. Only the former are discussed here,

with the latter relegated to the next chapter.

Sec. 3.2 then establishes the connection between rational constraints and Merge.

Starting with the observation that adding a constraint C to an MG G is tantamount

to intersecting G’s MDTL with the set of derivation trees satisfying C , I show that

the result of such an intersection step usually won’t be an MDTL. Nonetheless an

equivalent MDTL can be obtained by refining category and selector features, i.e.

the features controlling the application of Merge. An intuitive description of this

procedure is given in Sec. 3.2.2, while Section 3.2.3 contains a mathematically

rigorous presentation of these ideas (which differs from the original approach in

Graf 2011). The latter section is optional and recommended only to readers that

wish to verify the validity of my proofs. Everybody else may immediately advance to

Sec. 3.2.4, which gives an overview of all the formal consequences for MGs.

The linguistic ramifications are explored in Sec. 3.3 and 3.4. I explain why the

type of tree a constraint is stated over is irrelevant in most cases and why locality

restrictions do not limit the power of rational constraints. I also give a few examples

for how MGs can be rendered more faithful via rational constraints.

This chapter draws heavily on concepts introduced in the first part of the thesis.

Readers should already be familiar with MDTLs and how they can be described

in terms of slices (Sec. 1.1.2 and 1.1.5, optionally 1.2.1 and 1.2.2), and it is ad-

vantageous to be aware of the connection between MDTLs, tree automata, and

context-free string grammars (Sec. 2.1.1 and 2.1.3). Quite generally tree automata

feature prominently, as do regular tree languages (cf. Sec. 2.1.1). For the un-

abashedly mathematical Sec. 3.2.3, familiarity with the closure properties of regular

tree languages is also presupposed.

113

3.1 A Taxonomy of Constraints

3.1.1 The Role of Constraints in Linguistics

Since the early days of generative grammar constraints have been the primary

tool for syntactic reasoning alongside operations. One of the earliest constraints

is probably the A-over-A principle (Chomsky 1964), and only a few years later

we already find an abundance of island conditions (Ross 1967) and the highly

influential notion of Subjacency (Chomsky 1973), the spirit of which still underlies

many locality principles put forward in the literature. Given the prominent role

constraints have enjoyed for over five decades now, any attempt at a comprehensive

overview would inevitably exceed the few pages alloted here. Still a few overarching

themes can be readily identified.

Two conceptual questions about constraints are commonly explored in the lit-

erature: their relation to operations on the one hand, and their explanatory power

on the other. The status of constraints with respect to operations is discussed under

various guises. For example, many theories differ in how much of the explana-

tory burden they put on each component, so that comparisons of these proposals

necessarily involve weighing the pros and cons of constraints versus operations. A

recent example of this is the discussion between strictly derivational Minimalists

(Epstein et al. 1998; Epstein and Seely 2002, 2006) and representational Minimalists

(Brody 1995, 2000, 2002). Derivationalists seek to explain constraints in terms of

operations, arguing that operations are a more fundamental, indispensable mech-

anism while constraints are tacked on, superfluous and do not fit naturally into

the framework. Representationalists share this sentiment of conceptual parsimony,

but turn the argument on its head. They claim that operations necessarily require

access to the structure they assemble, which in turn implies that these structures are

represented in some way. But if representations are indispensable, one might just as

well make them the center of the theory and limit their shape via representational

114

constraints. Whatever one might think about these arguments, they highlight that

there is some conceptual tension between constraints and operations.

Of course this sort of discussion extends beyond the boundaries of the Minimalist

community. HPSG and LFG, for example, are heavily constraint-based, and advocates

of these frameworks have argued extensively in favor of such a move. An even more

egregious example is the switch from rule-based to constraint-based formalisms

in phonology, brought about by OT. Phonology also furnishes one of the best

known arguments (Kisseberth 1970) that a purely operation-based theory might be

observationally adequate in the sense of Chomsky (1965) but nonetheless fail to

capture important generalizations. In these cases the main concern isn’t so much

the relation between operations and constraints as which one of the two is better

suited to express the right generalizations, i.e. the second issue identified above.

What all these examples have in common is that they base their conclusions

on empirical case studies. Save for a few exceptions such as Pullum and Scholz

(2001), the role of constraints is always evaluated with respect to a specific incar-

nation of a theory and a fixed set of phenomena. And rather than entire classes

of constraints, it is individual constraints whose adequacy is put under scrutiny.

That is a reasonable strategy if one’s primary interest lies in the properties of these

specific constraints — after all, it is their usefulness for empirical work that ultimately

matters to linguists, and this usefulness has to obtain with the theory the constraint

has been proposed for.

Unfortunately, the exceptional degree of specificity these studies depend on

renders their results highly volatile. Theories are constantly in flux, and superficially

minor changes may undermine the validity of earlier findings. For instance, there

were many reasons that motivated the switch from the operational extended standard

theory to GB with its pronounced reliance on principles, filters, and constraints, but

few of them could be invoked verbatim to argue for a stronger role of constraints

in Minimalism today. Besides theories, our understanding of empirical phenomena

115

also evolves, with new data calling earlier claims into doubt. There also seems

to be no easy way of generalizing the findings of empirical case studies to new

constraints, even if they closely resemble the ones that have been studied. Finally,

two constraints might work well in conjunction but yield horrible results in isolation.

Example 3.1

The SMC is essential in limiting the generative capacity of MGs to the class of

MCFLs. Without the SMC, MGs are significantly more powerful, although their

string languages are still context-sensitive and thus not completely unrestricted

(Salvati 2011). Another constraint that has been studied in the MG literature is

the Specifier Island Constraint (SPIC), which blocks extraction of a subconstituent

from a specifier (Stabler 1999). In conjunction with the SMC, the SPIC lowers the

generative capacity of MGs as one would expect (Michaelis 2004, 2009). What is

surprising, though, is that the SPIC increases the power of MGs that lack the SMC

(Gärtner and Michaelis 2005; Kobele and Michaelis 2005, 2011). As it turns out,

MGs with the SPIC but without the SMC are Turing complete. This means that they

can generate any recursively enumerable string language, putting them in the most

powerful class of formal grammars. We see, then, that the effects of the SPIC are not

monotonic and highly dependent on other parameters of the grammar. It might be

a reasonable constraint in conjunction with the SMC, but it has disastrous effects

without it.

The Turing completeness proof relies on the fact that any recursively enumerable

string language can be computed by an automaton with a single queue as its memory,

a so-called queue automaton. A queue is a particular kind of memory similar to

the stack used by pushdown automata. Both stacks and queue provide an infinite

storage for symbols, but the symbols are in a linear order representing the temporal

116

order in which they were put into memory. For instance, an automaton might start

with an empty storage and put symbols A and B in storage every time it reads an

a or b in the string. So for the string caababd, say, the string of symbols in the

storage would be AABAB at the point when d is encountered. What sets queues

apart from stacks is how symbols might be read from memory. In a stack, only the

rightmost symbol in memory can be read. If the automaton wanted to check if it has

seen an A at some point, it would first have to remove the B from memory, making

A the rightmost symbol. In a queue, on the other hand, only the leftmost symbol

in memory is accessible. Hence the automaton could immediately verify that it has

seen an a before, but would have to remove two As from memory to make the same

check for b. Essentially, then, stacks are a “last one in is the first one out” model of

memory, whereas queues are a “first one in is the first one out” model.

The lack of the SMC and the presence of the SPIC conspire in a way that makes

it possible to simulate a queue automaton via an MG. Consider first a standard MG

with both the SMC and the SPIC. Now take a look at the two derivations below,

each of which involves two LIs in a head argument relation such that both undergo

movement.

Move

Merge

a :: =B A + xMove

Merge

b :: =X B+ yMerge

x :: =Y X− xMerge

y :: =Z Y − yz :: Z

117

Move

Merge

a :: =B A + yMove

Merge

b :: =X B+ xMerge

x :: =Y X− xMerge

y :: =Z Y − yz :: Z

The derivation on the top is well-formed. First y moves to the specifier of b, taking

along z. Then x moves by itself to the specifier of a. The second derivation, on

the other hand, contains a violation of the SPIC. This time x moves first, turning it

into a specifier of b. As an immediate consequence the SPIC no longer allows any

extraction to take place from x . But y is contained by x and still needs to get its

licensee feature −y checked. At this point the derivation has become unsalvageable.

This example shows that the SPIC limits the order in which movement steps

may take place. If LI x enters the derivation before LI y , then x must move before

y. The similarity to the “first one in is first one out” strategy of queues should be

apparent. Merging an LI is the analogue of putting a symbol in the queue, and

moving it is tantamount to removing the symbol. Now as long as the SMC holds,

only a finite number of LIs can move at any given point, so the size of the queue is

finitely bounded. However, once the SMC is dropped, this limit disappears, allowing

MGs to simulate queue automata via Merge and Move.

In sum, most of the approaches in the literature focus on the evaluation of

specific constraints with respect to contemporary theories and a small selection

118

of empirical phenomena. While this maximizes the immediate applicability of the

results, it limits their scope, breadth and long-term viability. More abstract and

far-reaching questions cannot be answered this way to a satisfying degree:

• What kinds of constraints are there?

• Are there principled distinctions between them regarding expressivity, learn-

ability or psychological reality?

• Can constraints of one type be translated into another?

• How do constraints interact?

• What factors limit the power of constraints?

• Are there phenomena that can only be explained by constraints?

• What is the relation to operations?

• Why are there constraints in syntax at all?

Everyone who wishes to explore these topics must move away from specific con-

straints towards a perspective that emphasizes classes of constraints. The next

section presents two important steps in this direction.

3.1.2 The Müller-Sternefeld Hierarchy

Linguists have accumulated a rich set of terms over the years to distinguish various

types of constraints, but there is little consensus on what the relevant types are, how

they should be defined, and if these distinctions should even matter.

The most elaborate attempt at systematizing these notions and put them into

relation is undertaken in Müller and Sternefeld (2000). Müller and Sternefeld rely

on two parameters in their classification of constraints. First, constraints may apply

to phrase structure trees or to derivations. Second, the application domain of the

119

constraint may be a locally bounded subtree, the entire tree, or a collection of trees.

Out of the six logically possible combinations, they identify five as correspondents

of well-known constraints from the literature. Any constraint that applies to a

single phrase structure tree is called representational, irrespective of whether it is

locally bounded or not. A derivational constraint, on the other hand, is a locally

bounded constraint on derivation trees, and its unbounded counterpart is called

global. Constraints that apply to collections of trees are translocal or transderivational,

depending on whether they apply to phrase structure trees or derivations.

While these definitions sound clearcut, deciding which class a specific constraint

belongs to tends to be a muddled affair. Consider the PBC, which states that every

trace must be properly governed at LF. During the era of GB, the PBC was thought

of as a filter on phrase structure trees produced by Move α, which makes it a

representational constraint. But a plausible reinterpretation of the PBC could also

phrase it as a constraint on when movement may take place during the derivation,

putting it in the class of derivational constraints. This kind of duality also holds

for other constraints such as Subjacency and Relativized Minimality. But at least

constraints that under a Minimalist conception apply at the interfaces seem to be

good candidates for purely representational constraints. Kayne’s (1994) LCA, for

instance, states that no two leaves in the final phrase structure tree may c-command

each other. While there might be ways of enforcing this derivationally, the relevant

constraint would presumably look very different. So despite the strong overlap

between derivational and representational constraints, there still seem to be a few

distinguishing cases.

Global constraints are also difficult to pin down. Intuitively, a global constraint

is a constraint on derivations that requires unbounded look-ahead or look-back.

The standard example is GB’s Projection Principle, which states that the Θ-criterion

(Fillmore 1968) holds at all steps during the derivation. The Projection Principle

thus ensures that at any given point in the derivation, every argument is assigned

120

exactly one Θ-role and every Θ-role is assigned to exactly one argument. But it is

relatively easy to see that this requires neither look-ahead nor look-back. Instead,

one only needs a derivational constraint that ensures that an argument receives a

Θ-role when it enters the derivation, that every Θ-role is discharged at some point,

and that no structure manipulating operation may affect the assignment of Θ-roles.

But not only can global constraints usually be recast in derivational terms, they are

also readily subsumed by transderivational constraints.

A transderivational constraint takes as input a set of derivations, ranks those

derivations according to some economy metric, and then discards all but the highest

ranked trees. A prominent example is the Shortest Derivation Principle (Chomsky

1995b), which out of a set of competing derivations picks the one that involves

the fewest instances of Move. Rizzi’s (1997) Avoid Structure is a close relative

that militates against trees that contain more functional heads than are necessary

for the derivation to converge. The Accord Maximization Principle of Schütze

(1997) optimizes in the other direction by forcing as many morphological features

as possible to enter into agreement relations. Since transderivational constraints

have access to the entire derivation during the evaluation phase, global constraints

are easily rephrased as transderivational ones. For example, the Merge-over-Move

principle (Chomsky 1995b, 2000) enforces that Merge is always preferable to Move

unless this causes the derivation to become ill-formed at some — possibly much

later — point. In Müller and Sternefeld’s (2000) classification, Merge-over-Move is

a global constraint since it applies to a single derivation but requires unbounded

look-ahead. In the syntactic literature, however, it is often recast in transderivational

terms such that given a choice between two well-formed derivations, Merge-over-

Move prefers the one that delays Move the longest. This kind of reinterpretation isn’t

too surprising, though, seeing how transderivational constraints are by definition an

extension of global constraints.

Translocal constraints are transderivational constraints that apply to phrase

121

structure trees rather than derivations. They aren’t nearly as common, presumably

because they, too, can easily be stated as transderivational constraints instead.

The best known example of a translocal constraint is the Avoid Pronoun principle

(Chomsky 1981), which establishes a general dispreference for overt pronouns.

Given two representations that differ only on whether a given pronoun is overt or

covert, the Avoid Pronoun principle chooses the one with the covert pronoun. Once

again it is easy to see how this principle could be phrased as a transderivational

ban against the introduction of overt pronouns unless necessary at some later point,

similar to the Merge-over-Move principle. As Merge-over-Move is also global, its

similarity to Avoid Pronoun suggests that the latter might be global, too.

It seems, then, that the boundaries between the constraint classes are rather

blurry. Representational and derivational constraints show strong overlap, global

constraints can be viewed as derivational or transderivational, and translocal con-

straints as global or transderivational. This does not mean that the classification is

misguided, though. For one thing, that specific constraints can be shifted between

two or more classes does not mean that these classes are equivalent. Maybe the

original formulation of the constraint just happens to employ a mechanism that is

more powerful than necessary, so that the constraint can be pushed into a weaker

class. Moreover, the kind of shifting seems to be restricted to more closely related

classes. For instance, the Avoid Pronoun principle can easily be made global, but it

is less obvious what a representational analogue would look like. On the other hand,

every constraint can be made transderivational. There seems to be a power differ-

ence between the respective constraint classes that affects which constraints can be

moved into which classes. Based on our observations so far, the interdependencies

might be something along the following lines:

• representational∩ derivational 6= ;,

• representational 6= derivational,

122

• derivational< global< transderivational,

• global∩ translocal 6= ;,

• translocal< transderivational

This is remarkably close to the hierarchy proposed in Müller (2005), which I call

the Müller-Sternefeld (MS) hierarchy: representational = derivational < global <

translocal< transderivational. As I did in this section, Müller derives the hierarchy

purely from careful examination of specific representative constraints. Therefore we

would be wise to treat it merely as an intriguing conjecture for now, a conjecture

that needs to be proved through more rigorous means.

3.1.3 Logic and Constraints

Even though constraints have been a cornerstone of linguistic theories since the

sixties, they did not attract much attention among mathematical linguistics until

thirty years later. While transformations and other operations could readily be rein-

terpreted as various computational devices such as formal grammars and automata,

there was no such model for constraints. This changed in the early nineties when

a series of papers pointed out the close relation between linguistic constraints and

logical formulas (Blackburn et al. 1993; Blackburn and Meyer-Viol 1994; Backofen

et al. 1995; Kracht 1995a,b; Rogers 1997, 1998). A constraint c is a statement that

must be satisfied by a structure in order to be well-formed with respect to c. A

logical formula φ is a statement that must be satisfied by a structure in order to be a

model of φ.

Example 3.2

Take a simple constraint that forbids any node labeled B to be (properly) dominated

by a node labeled A. This constraint can be expressed more accurately as “for all

123

nodes x and y, if x dominates y and y has label B, then x does not carry label

A”. Now suppose that x /+ y and A(x) are true iff x dominates y and x is labeled

A, respectively. Then our constraint can be translated into the first-order formula

∀x , y[x /+ y ∧ B(x)→¬A(x)].

With just a small number of binary predicates such as proper dominance (x /+ y)

and identity (x ≈ y), unary predicates for labels (VP(x), John(x)), and the standard

logical connectives and (∧), or (∨), not (¬), implies (→) and iff (↔) it is possible

to define increasingly complicated predicates and relations to express very elaborate

constraints in logical terms.

Example 3.3

Assume that the constraint above involves c-command rather than proper dominance.

That is to say, no node labeled A may c-command a node labeled B. This change is

trivial if there is a predicate c-com(x , y) that holds iff x c-commands y . In that case

the new formula is ∀x , y[c-com(x , y)∧ B(x)→¬A(x)].

But for various reasons it is unappealing to enrich a logic with more and more

primitive, unanalyzed predicates. The number of basic predicates should be small,

and all additional predicates one might need must be defined in terms of those

basic predicates. For c-command, this merely involves using proper dominance and

equivalence to restate the standard definition in logical terms.

124

c-com(x , y) ⇐⇒ x c-commands y iff

¬(x ≈ y)∧ x and y are not the same node, and

¬(x /+ y)∧ x does not dominate y , and

∀z
h

for every node z it holds that

z /+ x → z dominating x implies that

z /+ y
i

z also dominates y

A more common definition of c-command demands instead that the mother of x

c-command y . This can also be stated in logical terms, of course, but we first have

to define the mother-of predicate /.

x / y ⇐⇒ x is the mother of y iff

x /+ y∧ x dominates y , and

¬∃z
h

there is no z such that

x /+ z∧ x dominates z and

z /+ y
i

z dominates y

The new definition of c-command differs only minimally from the previous one.

c-com(x , y) ⇐⇒ x c-commands y iff

¬(x ≈ y)∧ x and y are not the same node, and

¬(x /+ y)∧ x does not dominate y , and

125

∀z
h

for every node z it holds that

z / x → if z is the mother of x

z /+ y
i

then z dominates y

By explicitly defining c-command through proper dominance, we ensure that the

properties of a logic using both dominance and the c-command predicate do not

differ from the corresponding logic without c-command. The predicate c-com(x , y) is

merely a convenient shorthand for the formula on the right-hand side. So the formula

c-com(x , y)∧ A(x) is actually an abbreviation of (x ≈ y)∧ (x /+ y)∧∀z[z /+ x →

z /+ y]∧ A(x).

There are many different logics, and they all differ with respect to their expres-

sivity. For example, propositional logic is significantly weaker than first-order logic

as it is incapable of quantifying over nodes. The power of first-order logic, in turn,

depends on the kind of predicates being used. A logic with binary predicates is more

powerful than one with monadic predicates only. Similarly, a variant of first-order

logic in which every formula may only use the variables x and y is weaker than one

that may use an arbitrary number of variables. Things get even more involved once

one considers the plethora of modal logics that have been proposed over the years

(cf. Blackburn et al. 2002). The obvious question, then, is which logic is best suited

to expressing linguistic constraints.

Different proposals have been made (see Kepser 2008 and references therein),

but arguably the most commonly adopted logic is monadic second-order logic (MSO).

I briefly discussed MSO in Sec. 1.2.3, where it wasn’t used for constraints but rather

the definition of the MG mapping from derivation trees to derived trees. MSO is

126

a minimal extension of first-order logic that can also quantify over sets of nodes.

Hence it can express dependencies between individual nodes as well as conditions

on specific domains.

Example 3.4

Binding principles incorporate the notion of a binding domain that can be formalized

in terms of MSO.

Principle A (simplified) Every anaphor must be c-commanded by some DP within

its binding domain.

C-command was already defined in example 3.3, and the notion of anaphor can be

formalized in various ways. A crude yet efficient way is to simply list all LIs that are

anaphors. For English, this would be himself, herself, and itself.

anaphor(x) ⇐⇒ x is an anaphor

himself(x)∨ x is labeled himself, or

herself(x)∨ x is labeled herself, or

itself(x)∨ x is labeled itself

Only the notion of binding domain still needs to be defined. The binding domain of

α is the smallest category that contains α, a governor of α, and an abstract subject

accessible to α. A completely faithful implementation of this definition is a laborious

task (see Rogers 1998:Ch.12), so for the sake of exposition I use a simplified version

here: the binding domain of α is the smallest TP containing α. Using MSO, this can

be captured as follows.

First, the predicate TP(X) holds of a set X of nodes iff it is a subtree whose root

127

is labeled TP.

TP(X) ⇐⇒ the set X of nodes is a TP iff

∀x , y
h

�

for all nodes x and y

X (x)∧ X (y)→ if both x and y belong to X

(x /+ y↔¬y /+ x) then either x dominates y or the other way round
�

∧ and

X (x)∧ x / y → X (y) X contains the daughters of every x ∈ X
i

∧ and

∃x
h

there is a node x

X (x)∧ TP(x) that belongs to X , is labeled TP, and

∀y
�

and for every node y it holds that

X (y)→ if y also belongs to X

x ≈ y ∨ x /+ y
�

i

then it is x or dominated by x

Then the predicate b-dom(X , x) holds iff the set X of nodes is the smallest TP

containing node x . Finding the smallest set requires the notion of proper subset,

which is also MSO-expressible.

X ⊂ Y ⇐⇒ X is a subset of Y iff

∀x
�

it holds for every x that

X (x)→ Y (x)
�

∧ if X contains x , so does Y , and

∃x
�

there is some x

Y (x)∧¬X (x)
�

that is contained by Y but not X

128

Now we can finally define binding domains.

b-dom(X , x) ⇐⇒ X is the binding domain of x iff

TP(X)∧ X is a TP, and

X (x)∧ X contains x , and

¬∃Y
h

and there is no Y such that

TP(Y)∧ Y is a TP, and

Y (x)∧ Y contains x , and

Y ⊂ X
i

Y is a subset of X

With this battery of predicates in place, Principle A only takes a single line.

∀x
�

anaphor(x)→∃X∃y[b-dom(X , x)∧DP(y)∧ X (y)∧ c-com(y, x)]
�

Example 3.5 A

Principle A can actually be stated as a first-order formula without set quantification

(the reader is invited to come up with the corresponding formula). The same does

not hold for the constraint ∗EVEN which deems all strings of even length ill-formed.

Let ≺ denote string precedence such that x ≺ y iff x is immediately to the left of y .

Then the following MSO-formula defines ∗EVEN:

∃O
�

∀x
�

�

�

¬∃y[y ≺ x ∨ x ≺ y]
�

→ O(x)
�

∧∀y
h

x ≺ y →
�

O(x)↔¬O(y)
�

i

�

�

This formula is much more complicated than the ones we have encountered so far.

129

Intuitively, it states that there is a set O such that the first node of the string belongs

to O, the last node of the string belongs to O, and a node belongs to O iff the nodes

neighboring it do not. In other words, O contains the first, third, fifth, . . . node in

the string, but none of the nodes in an even position. Hence the first and the last

node of the string belong to O iff the string’s length is odd. This correctly rules out

all strings of even length.

MSO’s ability to define dependencies between nodes as well as specific domains

within which dependencies must be met grants them a great amount of power

when it comes to stating syntactic constraints. Rogers (1998) is an impressive

demonstration of that. Rogers defines a variant of MSO over tree structures similar

to the one we have been using so far and then proceeds with a full implementation of

standard GB, complemented with Rizzi’s (1990) Relativized Minimality. This shows

that MSO formulas over trees are indeed a viable model for syntactic constraints.

Only a few conditions come to mind that might be of interest to syntacticians yet

cannot be stated via MSO. The most glaring limitation is that MSO-formulas cannot

determine whether two subtrees are identical (unless there is a fixed upper bound

on the size of these subtrees). So an analysis of ellipsis as deletion under structural

identity might not be MSO-definable, depending on what ancillary assumptions are

made. For example, if structural identity is actually encoded via multi-dominance

so that the tree in question does not literally contain two identical subtrees, but

just one that is attached to two positions, an MSO-treatment is still in the realm of

possibility.

A bigger problem is posed by semantic and pragmatic constraints. Even though

MSO is a logic, it cannot make explicit use of notions such as semantic entailment

or satisfiability. Hence a constraint that, say, needs to check whether two clauses

130

are truth conditionally equivalent cannot be expressed in MSO unless there is an

equivalent, purely structural generalization.

Example 3.6

Fox (2000) proposes that QR is banned in cases where it does not affect meaning.

As this requires checking entailment patterns, it cannot be done in MSO. However,

Fox later simplifies this condition such that a quantifier may QR over another one

only if this could in principle create a new reading. So a universal may QR over

an existential because there is at least one formula φ such that ∀x∃yφ differs

semantically from ∃y∀xφ. QR of a universal over a universal, on the other hand,

never yields a new reading and thus is blocked. If only finitely many different types

of quantifiers need to be distinguished (e.g. two for existential and universal), then

the weakened condition can be expressed in simple structural terms and thus should

be MSO-definable. This issue will be taken up again in Sec. 4.4.3.

Note that the question of MSO-definability isn’t one of whether semantics plays

a role in the constraint, but whether the semantic aspects can be described in

structural terms. The licensing of NPIs in a negative polarity context, for instance,

has a semantic flavor to it, yet it can be expressed as a distributional limitation

to certain structural configurations such as in the scope of a downward entailing

quantifier (which in turn can be described as combinations of specific LIs). The

type system of Montagovian semantics, although closely related to meaning, can be

treated like syntactic selection. So it isn’t semantic constraints as such that pose a

challenge for MSO, it is semantic constraints that necessarily involve the inspection

of the denotation of formulas of possibly unbounded size (if the size were bounded,

we could compile a list to void the need for interpretation). It is safe to say that

syntactic constraints do not require this kind of power, nor does a significant number

of constraints at the syntax-semantics interface. Overall, then, MSO provides a

131

reasonable description language for the kind of constraints syntacticians are likely

to entertain.

When restricted to trees, MSO is also very appealing from a formal perspective

thanks to its expressive equivalence to bottom-up tree automata, which we encoun-

tered in Sec. 2.1.1 (Doner 1970; Rabin 1969; Thatcher and Wright 1968). Every

closed MSO-formula φ (i.e. a formula without free variables) can be converted into

an equivalent bottom-up tree automaton A. That is to say, the set of trees satisfying

φ is identical to the tree language recognized by A. This conversion also works in

the other direction, establishing the equivalence of bottom-up tree automata and

MSO over trees.

The connection between MSO and tree automata has two important implications.

First, since tree automata use a finite set of states as their memory, computing MSO

formulas takes only a finitely bounded amount of working memory. This means that

any constraint for which there exists an equivalent MSO formula can be computed

with a finitely bounded amount of working memory, too. At least from a cognitive

perspective, then, MSO-definable constraints are very appealing. Second, MSO

can only define regular tree languages. The string yield of a regular tree language

is context-free. But as briefly mentioned in Sec. 2.1.2, not all natural languages

are context-free, so there are some phenomena in natural language that cannot be

described in terms of MSO-definable constraints.

The mismatch in the weak generative capacity of MSO and natural language

syntax admittedly raises concerns about the suitability of MSO as a formal model of

linguistic constraints. Then again, MGs offer the right kind of generative power but

are also fully specified by their MTDLs, which are regular and thus MSO-definable.

So if every linguistic constraint can be paraphrased as an MSO-constraint over

Minimalist derivation trees, the expressive limitations of MSO do not matter after

all. But is such a paraphrase possible? This brings us back to the issues discussed in

the previous section, in particular how powerful derivational and global constraints

132

are in comparison to other types.

3.1.4 Formalizing the Research Problem

We are now in a position to synthesize the distinct threads that have been running

through this thesis into one coherent view that will allow us explore the status

of constraints in syntax in a rigorous fashion. First, I adopt the MS-hierarchy

(Sec. 3.1.2) as a succinct taxonomy of the different types of constraints employed in

the syntactic literature. For the sake of clarity, an explicit distinction is made between

constraints over phrase structure trees and constraints over multi-dominance trees,

and constraints that do not compare multiple structures are subsumed under the

macro-class of tree-local constraints. I only investigate tree-local constraints in this

chapter, with reference-set constraints relegated to Ch. 4.

tree-local reference-set
local global

phrase structure tree representational translocal
multi-dominance tree multirepresentational

derivation tree derivational global transderivational

Table 3.1: Refined parameterization of the Müller-Sternefeld hierarchy

In order to make constraints amenable to mathematical inquiry, I only consider

constraints that can be expressed as MSO-formulas over the relevant type of tree

structure (Sec. 3.1.3). All such tree-local constraints are called rational.

Definition 3.2. A constraint defining a language L of trees is rational iff L is the set

of models of some MSO-formula without free variables.

Finally, MGs provide the formal model of Minimalist syntax. The original defini-

tion in Sec. 1.2.4 is expanded with the option of adding constraints over derivations

as well as derived trees. I express this in terms of intersection with the tree lan-

guages defined by the constraints. The tree language defined by a constraint over

133

derivations is intersected with the MG’s MDTL, that of a constraint over derived trees

with the image of the MDTL under the mapping to derived trees (multi-dominance

trees or bare phrase structure trees depending on the type of mapping).

Definition 3.3 (MGs with Rational Constraints). A Minimalist Grammar with Ra-

tional Constraints (MGRC) is a 5-tuple G := 〈Σ, Feat, Lex,D,R〉 such that

• Lex is a (Σ, Feat)-lexicon, and

• D and R are finite sets of regular tree languages.

The MDTL of G is the largest subset of FSL(Lex)∩
⋂

D∈D D that obeys Final, Merge,

Move, and SMC. The tree language L(G) generated by G is the image of its MDTL

under the MSO transduction Φ intersected with
⋂

R∈R R.

The primary question is how MGRCs fare with respect to standard MGs regarding

weak and strong generative capacity, which allows for conclusions to be drawn with

respect to the impact of constraints on syntax. It will also be interesting to see

to which extent the power of MGRCs depends on the presence of specific types of

constraints.

3.2 Tree-Local Constraints as Merge

3.2.1 Operations on Minimalist Derivation Tree Languages

As pointed out at the end of Sec. 3.1.3, rational constraints over phrase structure

trees are arguably too weak to be empirically adequate. I suggested that this might

not be a problem, though, if all such constraints can be translated into constraints

over derivation trees. Restricting the shape of derivations should be sufficient

because each MG is uniquely specified by its MDTL. Let us then ignore constraints

over derived trees for now and focus solely on the question whether MGRCs with

constraints over derivations are more powerful than standard MGs.

134

This can be rephrased in more technical terms as whether the class of MDTLs is

closed under intersection with regular tree languages. That is to say, is the result of

intersecting an MDTL with a regular tree language itself an MDTL? If so, this kind of

intersection is but a convenient way of converting one MG into another and adds

no power to the formalism. By extension, rational constraints would be merely a

different way of specifying MGs. As the reader will see now, the class of MDTLs

is not closed under intersection with regular tree languages, but it is closed under

intersection with MDTLs. The second result follows from a principled connection

between MDTLs and Minimalist lexicons, and in the next section we will see how

this connection can be exploited to get around the lack of closure under intersection

with regular tree languages.

Recall from Sec. 1.2 that the slice of an LI l is a partial derivation tree that

consists of l and all the interior nodes associated to one of l ’s positive polarity

features. Intuitively, the slice of LI l contains exactly the nodes in the derivation

tree that correspond to the projections of l in the phrase structure tree (with l as

the 0-th projection). The free slice language FSL(Lex) of lexicon Lex consists of all

(possibly partial) derivation trees that can be obtained by combining the slices of

Lex. The MDTL over Lex, in turn, is the largest subset of FSL(Lex) that satisfies the

requirements of the feature calculus, which are expressed by four constraints on the

shape of derivation trees: Final, Merge, Move, and SMC. As explained in Sec. 2.1.1,

every MDTL is a regular tree language.

A proper subset S of an MDTL is not necessarily itself an MDTL. The maximality

requirement of MDTLs entails that the property of being an MDTL is in general not

preserved under removal of derivation trees. As a consequence, the intersection of

an MDTL M with a tree language L is not guaranteed to be an MDTL, even if L is

regular.

Theorem 3.4. The class of MDTLs is not closed under intersection with regular tree

languages. �

135

Proof. We have to exhibit a case where the intersection of an MDTL with a reg-

ular tree language fails to be an MDTL. Consider the MG G given by the lex-

icon Lex := {a :: = c c,ε :: c}. This grammar generates the string language a∗,

and its MDTL LG consists of all derivation trees of the form Merge(· · ·Merge(
︸ ︷︷ ︸

n

ε ::

c , a :: = c c) · · · , a :: = c c)
︸ ︷︷ ︸

n

, n ≥ 0. For every n ≥ 1, let Ln be the singleton set con-

taining G’s derivation tree tn for an. Note that tn is built from the same slices as

every other tm, m≥ 1. As every singleton set is regular, so is Ln, yet LG ∩ Ln = Ln is

not an MDTL because it fails maximality. �

Although the proof above uses singleton sets as a particular example, the underlying

problem immediately extends to regular tree languages in general. MDTLs, by

virtue of their maximality, are continuous in a particular sense: if an MDTL contains

derivation tree t, then it also contains every subtree of t that obeys all conditions of

the feature calculus. Regular tree languages, on the other hand, are not bound by

the feature calculus and may destroy this kind of continuity when intersected with

an MDTL.

Example 3.7

For a more interesting example of the destructive force of regular tree languages,

consider a variant of MG G with movement:

ε :: c a :: = c c − a

a :: = c c a :: = c + a c

The corresponding MDTL contains the two derivations below, among others:

Move

Merge

a :: = c + a cMerge

a :: = c c − aε :: c

136

Move

Merge

a :: = c + a cMerge

a :: = c c − aMove

Merge

a :: = c + a cMerge

a :: = c c − aε :: c

Now let Lo be the set of at most binary branching trees such that I) each node is

labeled by Merge, Move, or one of G’s LIs, and II) every tree has an odd number of

nodes. We already saw in example 2.3 on page 57 that bottom-up tree automata can

distinguish trees according to whether they contain an odd or an even number of

nodes, so Lo is regular. Yet intersecting Lo with the MDTL of our example grammar

G clearly does not yield an MDTL. Although the two derivation trees above are built

from the same slices, only the larger one of the two is contained in the intersection as

its number of nodes is odd. This provides us with yet another regular tree language

that can destroy the maximality property of MDTLs under intersection.

Given our observations so far, one would expect that any intersection step that

does not destroy the maximality of MDTLs produces an MDTL. In particular, the

intersection of two MDTLs should also be an MDTL. This is indeed the case.

Theorem 3.5. The class of MDTLs is closed under intersection. �

The theorem is a corollary of a slightly stronger result that reduces the intersection

of MDTLs to the intersection of Minimalist lexicons. So rather than intersecting the

MDTLs of two MGs G and G′, it suffices to take the intersection of their lexicons.

137

Since every subset of a Minimalist lexicon is also a Minimalist lexicon, the equality

between MDTL intersection and lexicon intersection implies the intersection closure

theorem above.

Lemma 3.6. Given MGs G := 〈Σ, Feat, Lex〉 and G′ :=

Σ, Feat, Lex′
�

with MDTLs L

and L′, respectively, L ∩ L′ is the MDTL L∩ of MG G∩ :=

Σ, Feat, Lex ∩ Lex′
�

. �

Proof. Observe first that FSL(Lex) ∩ FSL(Lex′) = FSL(Lex ∩ Lex′). Clearly both

FSL(Lex ∩ Lex′) ⊆ FSL(Lex) and FSL(Lex ∩ Lex′) ⊆ FSL(Lex′), so FSL(Lex ∩ Lex′) ⊆

FSL(Lex) ∩ FSL(Lex′). In the other direction, FSL(Lex) ∩ FSL(Lex′) contains only

trees built from slices belonging to both Lex and Lex′, so FSL(Lex) ∩ FSL(Lex′) ⊆

FSL(Lex ∩ Lex′), establishing the equality of the two.

By the definition of MDTLs, L is the largest subset of FSL(Lex) that satisfies the

constraints Final, Merge, Move, and SMC. Overloading our notation, we identify

each constraint with the set of trees that obey it, so that L := FSL(Lex) ∩ Final ∩

Merge∩Move∩ SMC (and analogously for L′). Hence

L ∩ L′ = FSL(Lex)∩ FSL(Lex′)∩ Final∩Merge∩Move∩ SMC

= FSL(Lex ∩ Lex′)∩ Final∩Merge∩Move∩ SMC

= L∩ �

It must be pointed out that the same kind of reduction does not work for

union — in general, the MDTL of G∪ :=

Σ, Feat, Lex ∪ Lex′
�

is a superset of L ∪ L′.

As a matter of fact L ∪ L′ is not even an MDTL in many cases.

Example 3.8

Suppose that the lexicon of MG G contains a :: c and b :: = c c, that of G′ d :: c and

e :: = c c. These are just variants of the MG we encountered in the proof of Thm 3.4.

The union of their respective MDTLs L and L′ thus contains derivation trees of the

138

shape Merge(· · ·Merge(
︸ ︷︷ ︸

n

x :: c , y :: = c c) · · · , y :: = c c)
︸ ︷︷ ︸

n

, n≥ 0, where either x = a

and y = b, or x = d and y = e.

Now consider G∪, whose lexicon contains all four LIs. Its derivation trees have

the same basic shape, except that x ∈ {a, b} and y ∈ {d, e}. That is to say, a can

now occur in the same derivation as e, and similarly for b and d. Upon reflection it

should be clear that the MDTL of G∪ is the smallest MDTL that contains L ∪ L′ (both

are built with the same slices), wherefore the latter is not an MDTL.

The difference between lexical intersection and lexical union is that the latter allows

for new combinations of slices, so that FSL(Lex∪Lex′) will often be a proper superset

of FSL(Lex)∪ FSL(Lex′), which is why the proof of Lem. 3.6 does not carry over to

union.

Theorem 3.7. The class of MDTLs is not closed under union. �

Corollary 3.8. The class of MDTLs is not closed under complement. �

Proof. By De Morgan’s law, intersection and union are interdefinable via complement:

L ∪ L′ = L ∩ L′. If the class of MDTLs was closed under complement, closure under

intersection would entail closure under union. �

The results so far seem discouraging. The class of MDTLs is not closed under

union or complement, let alone intersection with regular tree languages. While it is

closed under intersection, this isn’t very helpful for the purpose of adding constraints

to MGs — intersection of MDTLs merely amounts to removing LIs from the lexicon,

which clearly isn’t enough to express the majority of constraints entertained in the

literature. Still, the proof of intersection closure is illuminating in that it highlights

the connection between MDTLs and Minimalist lexicons. The proof strategy does

not readily extend to union or intersection of regular tree languages, but maybe

139

this is because the correspondence between MDTLs and lexicons is more abstract

in these cases. What is needed at this point, then, is a more general lexicalization

strategy that also works for the other operations.

3.2.2 Constraints as Category Refinement: The Basic Idea

Let us go back to some of the examples involving non-MDTLs. The proof of Thm. 3.4

involved intersection with a singleton set, and example 3.7 intersection with the

regular language Lo of trees that contain an odd number of nodes. In each case the

resulting set is not an MDTL. However, the astute reader might have already noticed

that in both cases it is rather easy to construct an MG that generates the intended

phrase structure language. As a matter of fact, even the derivation trees are almost

the same, except for the names of some category and selector features.

Example 3.9

The MG G presented in the proof of Thm. 3.4 is given by the lexicon Lex :=

{a :: = c c,ε :: c}. As before, Ln denotes the singleton set containing G’s derivation

tree tn for an, where n is some fixed natural number. Intersecting G’s MDTL with Ln

yields a non-MDTL that contains only tn.

Since every singleton string language is an MCFL, there is an MG that generates

the string an (in fact, there are infinitely many). More importantly, though, there

is an MG Gn whose derivation tree for an is structurally identical to tn, except for

some category features.

The lexicon of Gn contains n+ 1 LIs: ε :: a0, a :: =a0 a1, . . ., a :: =an−2 an−1,

a :: =an−1 c.

The derivation tree for the case where n = 3 is given below. The reader is invited

to verify that modulo subscripts, the tree is identical to G’s derivation t3.

140

Merge

a :: =a2 cMerge

a :: =a1 a2Merge

a :: =a0 a1ε :: a0

Example 3.10

The strategy of refining categories also furnishes an MG for the non-MDTL in

example 3.7. There we were given an MG G with four LIs:

ε :: c a :: = c c a :: = c c − a a :: = c + a c

The regular tree language Lo contained all trees whose number of nodes is odd.

Intersecting the MDTL of G with Lo did not produce an MDTL.

Once again there is a nearly identical MDTL which only differs in the category

and selection features. This MDTL is generated by the following MG:

ε :: co a :: = co co a :: = co co − a a :: = co + a ce

a :: = ce ce a :: = ce ce − a a :: = ce + a co

ε :: c a :: = co c a :: = ce + a c

This grammar implicitly keeps track of the number of nodes via the category system.

For instance, the original ε :: c corresponds to a single leaf node in the derivation

tree, so its category is changed to co to indicate that the subtree headed by this LI

contains an odd number of nodes. In the same vein, a :: = c + a c is replaced by

two LIs. If its complement is of category co, then the LI heads a subtree with an even

141

number of nodes: an odd number of nodes in the complement, the LI itself, a Merge

node, and the Move node associated to the licensor feature +a. Consequently, the LI

must have category feature ce. Note that we still need LIs of category c in order for

the derivations to be well-formed. To this end, each LI of category co is duplicated

without the subscript (as listed in the third row).

A quick inspection of the refined versions of the two derivations in example 3.7

reveals that the derivations indeed differ only with respect to the presence of

subscripts.

Move

Merge

a :: = co + a ceMerge

a :: = co co − aε :: co

Move

Merge

a :: = ce + a cMerge

a :: = ce ce − aMove

Merge

a :: = co + a ceMerge

a :: = co co − aε :: co

Category refinement establishes the necessary connection between MDTLs and

142

lexicons that makes it possible to incorporate constraints. The idea is very simple.

Applying a constraint, i.e. intersecting an MDTL with another tree language, filters

out certain derivations. As derivations are assembled from slices, this is tantamount

to blocking certain combinations of slices. But MGs already provide Merge as a

mechanism for determining which slices may combine. Merge is regulated by cate-

gory features and selector features. The greater the number of distinct category and

selector features, the more fine-grained distinctions can be made as to which slices

may be joined by Merge. Hence, whenever a constraint blocks certain combinations

of slices, this effect can be emulated in the lexicon by fine-tuning the set of Merge

features.

There are two possible problems with the idea of using feature refinement in

order to enforce constraints purely via Merge. First, Minimalist lexicons are finite

by definition, so the number of new features introduced by the refinement must be

finite. Second, how does one find a suitable refinement to mimic a given constraint?

In the case of rational constraints, both issues are easily addressed thanks to their

connection to bottom-up tree automata.

As mentioned before, rational constraints and bottom-up tree automata have the

same generative capacity, so that one can be translated into the other. Bottom-up

tree automata, in turn, have a finite set of states that they use to determine whether

a tree is well-formed. Given an algorithm for incorporating the states of an automata

directly into the category features, then, both issues disappear immediately: the

finiteness of the lexicon is guaranteed by the finiteness of the state set, and the

procedure for precompiling a rational constraint C directly into a given MG consists

of converting C into an equivalent automaton A followed by the refinement algorithm

for automata.

Before we move on, a slightly more abstract perspective is helpful in bringing out

the connection between constraints and category refinement. Regular tree languages

and the derivation tree languages of context-free string grammars are related in a

143

peculiar way that was first pointed out by Thatcher (1967). The class of derivation

tree languages of CFGs is properly included in the class of regular tree languages. Yet

Thatcher realized that the states of a tree automaton can be viewed as an alphabet,

which the automaton “adds“ to the original node labels. Therefore it is possible

to refine any regular tree language R over alphabet Σ to a degree where it can

be described as the derivation tree language of a context-free grammar over the

alphabet Σ×Q, where Q is the set of states of the automaton computing R.1

Example 3.11

The following CFG generates some basic English sentences, but lacks agreement

between the subject and the finite verb.

S → NP VP

NP → John | children | NP and NP

VP → laugh | laughs

Subject verb agreement is easily enforced by a tree automaton with states sg, pl, fin,

and these transition rules:

John → sg

children → pl

laugh → pl

laughs → sg

and → pl

1Strictly speaking, Thatcher’s (1967) result applies to local sets rather than CFG derivation tree
languages. A tree language L is a local set iff there is some finite set S of trees of depth 1 such that L
is the smallest set containing every tree t for which it holds that all subtrees of depth 1 are members
of S. For example, the set of strictly binary branching trees with nodes labeled a or b is local — let
S := {a(a, a), a(a, b), a(b, b), b(a, a), b(a, b), b(b, b)}. Every CFG derivation tree language is local,
as each rule A→ α defines a tree A(a1, . . . , an), where α = a1 · · · an. However, local sets do not
enforce a strict distinction between terminal and non-terminal symbols, and thus they constitute a
slightly relaxed version of CFG derivation tree languages.

144

σ(q) → q for σ ∈ {NP,VP} and q ∈
�

sg, pl
	

NP(q, pl, q′) → pl q, q′ ∈
�

sg, pl
	

S(q, q) → fin q ∈
�

sg, pl
	

A CFG derivation tree with state annotations is given below.

sg sg

pl pl

pl

sg sg

pl

finS

VP

laugh

NP

NP

John

andNP

John

Incorporation of the states into the alphabet yields a CFG with subject verb

agreement. Notice that the derivations still have the same shape.

S →

NP, sg
�

VP, sg
�

S →

NP, pl
�

VP, pl
�

NP, sg
�

→

John, sg
�

NP, pl
�

→

children, pl
�

NP, pl
�

→

NP, q
�

and, pl
�

NP, q
�

q ∈
�

sg, pl
	

VP, sg
�

→

laughs, sg
�

VP, pl
�

→

laugh, pl
�

S

VP, pl
�

laugh, pl
�

NP, pl
�

NP, sg
�

John, sg
�

and, pl
�

NP, sg
�

John, sg
�

145

The connection between regular tree languages and CFGs extends to MGs, too.

In Sec. 2.1.1 and 2.1.3 we saw that the MG feature calculus is context-free. That is to

say, if we annotate the nodes of derivation trees with tuples whose components keep

track of the strings of features that still need to be checked, then each MDTL can be

described by a CFG. The gerrymandering of the category features indirectly refines

the non-terminals of the “feature calculus CFG” in the spirit of Thatcher (1967).

Example 3.12

The longer one of the two derivations in example 3.7 is repeated here with interior

nodes labeled by tuples. In addition, the states assigned by the automaton are also

indicated.

o o

o

o

o

o

o

e

e

e

o〈c〉

〈+a c,−a〉

a :: = c + a c〈c − a〉

a :: = c c − a〈c〉

〈+a c,−a〉

a :: = c + a c〈c − a〉

a :: = c c − aε :: c

Looking at the tuple-based version of the corresponding refined derivation, one

can see how subscripting the category features with states of the automaton affects

all interior node labels, parallel to the CFG in example 3.11. In contrast to Thatcher’s

strategy, however, interior node labels aren’t combined with the state assigned to

the same node. Instead, each LI l has its category feature subscripted with the state

of its slice root. The selector features are also subscripted to match the new category

features of the respective arguments.

146

〈c〉

〈+a c,−a〉

a :: = ce + a c

ce − a
�

a :: = ce ce − a

ce

�

+a ce,−a
�

a :: = co + a ce

co − a
�

a :: = co co − aε :: co

Thatcher’s (1967) strategy of incorporating states into the alphabet makes it

possible to express rational constraints via context-free means such as the MG feature

calculus. However, the procedure as originally formulated cannot be applied to

MDTLs. The Thatcher-algorithm would produce labels like

Merge, q
�

. But the

interior nodes of a derivation tree must be labeled by Merge or Move. This leaves

only the option of pushing the state into the features of the LIs. Since every interior

node in a derivation is associated to a specific positive polarity feature, this is doable

in principle. But note that most of the states in the previous examples are actually

redundant for the refinement procedure. As a matter of fact, it always suffices for

the category feature of each LI l to be subscripted by the state assigned to its slice

root.

The redundancy of all states except those belonging to slice roots follows from

the fact that bottom-up tree automata can be made deterministic (cf. Comon et al.

2008:Sec. 1.1). Suppose we are given a bottom-up tree automaton A and a derivation

t whose root is the slice root of LI l. The derivation is accepted by automaton A iff

its root is assigned a final state. The root of t is the slice root of l, so in order to

147

encode t ’s grammaticality it suffices to subscript l with the state of its slice root. At

least for the highest slice only the state at the slice root is important, then. As for all

other slices, we may freely assume that A is deterministic because every bottom-up

tree automaton can be determinized. That is to say, there is no ambiguity as to what

state a node may be assigned — there is exactly one state it can receive given its

label and the states of its daughters. Now if A is deterministic, then the state that A

assigns to the slice root of an LI l ′ can be reliably predicted from the states assigned

to the slice roots of the arguments of l ′.

Example 3.13

Consider the slice for the LI a :: = c + a c from the MG in example 3.7.

Move

Merge

a :: = c + ac�

The state of the Move node depends on the state of the Merge node, which in turn

depends on the state of the LI and the root of whatever slice s is substituted for �. A

deterministic automaton always assigns the same state to the LI, so that the state of

the Move node can inferred from the root of the slice s. For the automaton presented

in example 3.7, the state of Move is o if the root of s has state e, and e otherwise.

In sum, the state of the root of the derivation, which is the root of the highest

slice, is the decisive one in determining its well-formedness. This state in turn, can

be reliably predicted from the states assigned to the slice roots of the arguments,

which in turn depend on the states assigned to the slice roots of each argument’s

arguments, and so on. Hence it suffices to subscript every LI’s category feature by

the state q assigned to its slice root, and its selector features by the corresponding

148

states that produce q. The complete procedure for lexicalizing rational constraints

can be carried out in four steps:

• Given a rational constraint C , convert it into a deterministic tree automaton A

that defines the same regular language.

• Decorate the derivation trees of MG G with the states A assigns to each node.

• Subscript the category feature of each LI l with the state of l ’s slice root.

• Add corresponding subscripts to all selector features so that the feature check-

ing requirements of Merge are still satisfied for each derivation.

Note that this strategy depends purely on the symmetry of the feature checking

mechanism underlying Merge. All other properties of MGs, in particular those

pertaining to Move, are immaterial. Hence once could easily add new movement

types, add the SPIC from example 3.1, or even drop the SMC — the lexicaliation

procedure would still work as intended. We thus have a very strong result: rational

constraints over derivations can be expressed purely via Merge, wherefore they can

freely be added to the formalism without increasing its generative capacity.

3.2.3 Formal Specification of the Refinement Algorithm A

As just explained, the refinement algorithm only has to decorate selector and category

features with the states assigned to the relevant slice roots. This still leaves open the

question how these states should be determined.

One strategy, presented in Graf (2011), is to first add states to all nodes of all

derivation trees using the original algorithm of Thatcher (1967). Lexical refine-

ment is straight-forward then. This approach has the advantage that all ill-formed

derivations can be disregarded, so that the refined lexicon contains no LIs that

never occur in a well-formed derivation. However, specifying the algorithm in a

149

way so that it won’t loop indefinitely while looking at more and more trees drawn

from a potentially infinite MDTL is rather tricky. The regularity of both MDTLs and

the language defined by the automaton guarantees that only a finite number of

trees need to be inspected in order to produce the full lexicon of the refined MG,

so an algorithm that smartly picks a representative sample of trees will terminate

eventually. Graf (2011) makes no effort at defining such a smart algorithm, seeing

how he is mostly concerned with proving certain closure properties rather than

practical implementability. The intuitive appeal and mathematical simplicity of the

derivation tree route thus comes at the cost of reduced practicality.

I opt for an alternative approach here which completely omits derivation trees.

Instead, the algorithm operates directly on the lexicon by creating all possible

refinements of LIs that are in line with the state calculus of the automaton. In most

cases this will produce many redundant LIs that do not occur in any well-formed

derivations. Fortunately, efficient CFG algorithms can be used to prune away these

useless LIs (see Grune and Jacobs 2008:49-52).

The lexical refinement algorithm takes as input a Minimalist lexicon Lex and

the canonical automaton A := 〈Σ,Q, F,∆〉 of some regular tree language R. An

automaton for language L is canonical iff it is the smallest deterministic automaton

recognizing L. For every LI l ∈ Lex it constructs the slice of l, denoted slice(l), via

the function ζ defined in Sec. 1.2.1 on page 33. It then simulates all possible runs of

A over slice(l) by replacing each �i in slice(l), i ≥ 0, by some q ∈ Q and applying

the relevant transition rules in ∆ to determine the state of the slice root. Each such

slice is then translated back into a refined LI, producing the refined lexicon LexR. For

every l := σ :: γcqδ ∈ LexR such that γ and δ are strings of features and q ∈ F a

final state of A, the LI l ′ := σ :: γcδ is also added to LexR. Note that l must be kept

in addition to l ′ to allow for derivations where l is selected by another LI. For L and

LR the MDTLs of the MGs defined by Lex and LexR, respectively, LR is identical to

L ∩ R modulo state subscripts.

150

Algorithm 3.1: Lexical Refinement
Input : Minimalist lexicon Lex ⊆ Σ× Feat∗,

deterministic bottom-up tree automaton A := 〈Σ,Q, F,∆〉
Output : Refined Minimalist lexicon LexR ⊆ Σ× (Feat∗ ∪ (Feat×Q)∗)

/* remove ill-formed LIs */
1 Lex′ := Lex ∩

�

γ f δ | γ ∈ (BASE×Op× {+})∗,
2 f ∈ BASE×

merge,−
�

,
3 δ ∈ (BASE× 〈move,−〉)∗

	

/* pool LIs that behave the same wrt refinement */
4 max := maximum number of positive polarity features for every l ∈ Lex′

5 foreach ql ∈Q and γ ∈ (BASE×Op× {−})max do
6 Lex[γ, ql] :=

�

l ∈ Lex′ | l := σ :: γfδ,σ ∈ Σ,δ ∈ Feat∗,
7 f ∈ BASE×

merge,−
�

,
8 γ a fixed string of positive polarity features,
9 A assigns state ql to l

	

/* instantiate refined lexicon */
10 LexR := ;

/* compute refined LIs */
11 foreach Lex[γ, ql] do
12 pick one arbitrary l := σ :: f1 · · · fn ∈ Lex[γ, ql]
13 k := number of selector features of l
14 foreach −→qk :=

q1, . . . , qk
�

∈Qk do
15 l[−→qk] := ζ(l,−→qk) /* see Alg. 3.2 */
16 compute state q that A assigns to root of l[−→qk] according to ∆
17 if q exists then
18 foreach l ∈ Lex[γ, ql] do
19 add refined LI ρ(l,−→qk ·

q
�

) to LexR /* see Alg. 3.3 */

/* create LIs with final category C */
20 foreach l := σ :: f1 · · · fi

C, q
�

· · · fn ∈ LexR do
21 if q ∈ F then
22 add σ :: f1 · · · fi C · · · fn to LexR

23 return LexR

151

Algorithm 3.2: Slice function ζ for computing state-annotated slices
Input : Minimalist LI l := σ :: f1 · · · fn and vector v :=

v1, . . . , vk
�

Output : Slice of l with states instead of ports

/* Find number j of selector features and index i of last
positive polarity feature */

1 i := 1
2 j := 0
3 while 1≤ i ≤ n do
4 if fi ∈ BASE×

merge,−
�

then
5 i := i− 1
6 break
7 else if fi ∈ BASE×

merge,+
�

then
8 i := i+ 1
9 j := j+ 1

10 else
11 i := i+ 1

/* sanity check length of vector */
12 if j 6= k then raise exception

/* Construct slices top-down, iterating from fi to f1 */
13 function ζ(l, v, i, j) def
14 if fi =

f , merge,+
�

then
15 t :=Merge(v j,ζ(l, v, i− 1, j− 1))
16 else if fi =

f , move,+
�

then
17 t :=Move(ζ(l, v, i− 1, j))
18 else if i = 0 then
19 t := l

20 return ζ(l, v, i, k)

152

Algorithm 3.3: Pairing function ρ for states and features
Input : Minimalist LI l := σ :: f1 · · · fn and vector v :=

v1, . . . , vk
�

Output : Refined LI lr

/* sanity check length of vector */
1 if k 6= 1+ number of selector features in l then raise exception

/* pair selector features with states */
2 function zip(fi · · · fn, j) def
3 if fi ∈ BASE×

merge,+
�

then
4

¬

fi, v j

¶

· zip(fi+1 · · · fn, j+ 1)
5 else if fi ∈ BASE×

merge,−
�

then
6

¬

fi, v j

¶

7 else
8

fi

�

· zip(fi+1, j)

9 return σ :: zip(f1 · · · fn, 1)

Algorithm 3.1 gives a pseudo-code implementation of the procedure. Note that I

opted for clarity over efficiency, leaving lots of room for optimization. In particular,

each slice is processed twice: first during its creation, then in order to compute

the state of its root. The same holds for every LI: it is accessed once during the

construction of its slice, and a second time during the feature refinement. All these

steps can be consolidated into one such that each LI is refined at the same time

as its state-annotated slice is constructed. The assignment of states could also be

improved, seeing how it relies on checking all logically possible combinations, many

of which might not allow for any state to be assigned to the slice root. The set of

state combinations can be restricted top-down — the slice root must receive some

state — and bottom-up via the state of the LI.

Note that even though the number of state combinations explodes quickly and

is the biggest factor in determining run-time behavior — for an LI with k selector

features, there are |Q|k — the algorithm still runs in linear time of the size of the MG

lexicon. Let max be the maximum number of positive polarity features per LI. Then

every l ∈ Lex spawns at most |Q|max−1 state annotated slices (as the automaton is

153

deterministic, exactly one state is a valid subscript for the category feature). Each

such slice is processed only a fixed number of times, and the maximum size of slices

is linearly bounded by max. In practice, the size of the lexicon is negligible as long as

the algorithm can pool most LIs into a small number of equivalence classes Lex[γ, ql]

that each contain all LIs whose slices are isomorphic and receive state ql at the

lexical leaf node. Hence the algorithm does not depend on the size of the lexicon

itself but rather on the degree of distinctness between individual LIs. Of course the

latter is bounded by the former, so knowing the lexicon size suffices for evaluating

the worst case scenario.

The size of the refined lexicon LexR is also linearly bounded by the size of Lex.

Proposition 3.9. Let Lex be an MG lexicon and A := 〈Σ,Q, F,∆〉 the canonical

acceptor of some regular tree language. Then the size of the refined lexicon LexR is

less than

2 ·
∑

i=0

�

|Lex(i)| · |Q|i
�

where Lex(n) := {l ∈ Lex | l has exactly n selector features}. �

Keep in mind that |Lex(i)| = 0 for all i >max, so no explicit upper bound needs to be

put on the sum operator.

The factor 2 in the formula is due to MGs considering only C a final category.

As a consequence, each LI with a category feature

C, q
�

, q ∈ F , has a duplicate

in which

C, q
�

is replaced by C. Graf (2011) proposes a relaxed form of MGs in

which each grammar comes with an explicitly defined set F of final categories. This

requires only a minimal change in the definition of Final provided in Sec. 1.2.2 and

does not affect any of the formal properties of MGs and MDTLs. When the set of

final categories is no longer limited to C and A assigns a state to the root of every

state annotated slice, the size of the refined lexicon LexR generated by the algorithm

is exactly
∑

i=0

�

|Lex(i)| · |Q|i
�

.

In most cases LexR contains many LIs that cannot occur in a well-formed deriva-

154

tion by virtue of their feature make-up. While these superfluous LIs do no harm, it

would be preferable if there was an algorithm that automatically removed all useless

LIs from LexR. Fortunately various algorithms for context-free string grammars can

be co-opted toward this end. In Sec. 2.1.3 I sketched a way of translating an MG Gm

into a context-free string grammar Gc whose derivation tree language is identical

to the MDTL of Gm, except that interior nodes are decorated with tuples of feature

strings. As a matter of fact, this translation was just a special case of Thatcher’s

(1967) procedure for converting regular tree languages into CFGs where the inte-

rior nodes of the derivation trees correspond exactly to the states of the feature

automaton presented in example 2.4 on page 59. Now if an LI never occurs in a

derivation of Gm, then it is an unreachable terminal in Gc. Trimming unreachable

terminals from a CFG is a common problem with well-known, efficient solutions

(see Grune and Jacobs 2008:49-52). Given such a trimmed CFG G r
c , it is easily

converted back into an MG G r
m; the lexicon is the smallest set containing every LI

σ :: f1 · · · fn such that

f1 · · · fn

�

→ σ is a terminal production of G r
c . Hence, in order

to remove all superfluous LIs from an MG, it suffices to convert it into a CFG, prune

all unreachable terminals, and translate the resulting CFG back into an MG.

We can conclude so far that the algorithm for refining MGs via their slices rather

than their MDTL can be stated in a few lines of pseudo-code, runs in linear time

of the size of the lexicon, and yields a refined lexicon whose size is also linearly

bounded by the original lexicon. The refined lexicon may contain unusable LIs, but

these can be discarded automatically. The most important question, though, has not

been addressed yet: is the algorithm correct? That is to say, given an automaton

A recognizing a regular tree language R and MGs G and GR with MDTLs L and LR,

respectively, are L ∩ R and LR identical modulo the names of category and selector

features?

The notion of projection is helpful in making this question slightly more pre-

cise. A projection is a surjective map π : Σ → Ω between two (possibly ranked)

155

alphabets. The extension π̂ of π to trees is given in the natural way such that for

t := σ(t1, . . . , tn) a Σ-labeled tree, π̂(t) := π(σ)(π̂(t1), . . . , π̂(t1)). We overload our

notation such that π may also denote π̂, and we say that t ′ is a projection of t iff

there is some projection π such that t ′ := π(t). The terminology carries over from

trees to languages in the familiar fashion: L is a projection of L′ iff L :=
⋃

t∈L′ π(t).

We can now paraphrase the correctness question as follows: let A := 〈Σ,Q, F,∆〉 be

the canonical automaton recognizing some regular tree language R, G an MG with

lexicon Lex and MDTL L, and GR an MG with lexicon LexR and MDTL LR. Is L ∩ R a

projection of LR?

It isn’t too difficult to prove that L is a projection of LR under the extension of the

map π that sends every feature

f , o, p, q
�

∈ BASE×Op×POLARITY×Q to

f , o, p
�

.

Theorem 3.10. π(LR) = L ∩ R. �

Proof. It suffices to show that t ∈ LR implies π(t) ∈ L∩R, and that for every t ∈ L∩R

there is some tR ∈ LR such that t = π(tR). We prove by induction on the depth of t.

If t ∈ LR contains exactly one node, it is an LI σ :: f consisting of a single category

feature. In this case f :=

fi, q
�

iff the canonical acceptor A assigns q to π(σ ::

fi, q
�

)

iff A assigns q to σ :: fi. Note that since A is deterministic, q is unique. Therefore

σ ::

fi, q
�

∈ LR iff fi = C, q ∈ F , and σ ::

fi, q
�

∈ LexR

iff σ :: C ∈ Lex and A assigns it state q ∈ F

iff fi = C, σ :: fi ∈ Lex and σ :: fi ∈ R

iff σ :: fi ∈ L ∩ R.

If t ∈ LR contains more than one node, then its root is the slice root of some

LI l := σ :: =

f1, q1

�

· · ·=

fk, qk

�

fk+1, q
�

· · · fn, k ≥ 1. For all 1 ≤ i ≤ k, the i-th

argument ai of l has category feature

fi, qi

�

. By our induction hypothesis, then, A

assigns qi to the slice root of ai in π(t). As A is deterministic, it also assigns a unique

state to the slice root of π(l), which must be q. Since t ∈ LR only if fk+1 = C and

156

q ∈ F , it follows that t ∈ LR implies π(t) ∈ L∩R. A simple variation of this argument

shows that for every t ∈ L ∩ R there is a t ′ ∈ LR such that t = π(t ′). �

This shows that all rational constraints can indeed be lexicalized and thus do not

increase the power of MGs.

3.2.4 The Power of Lexical Refinement

The lexical refinement strategy sketched and formally defined in Sec. 3.2.2 and 3.2.3,

respectively, opens up many new ways of manipulating MGs through their derivation

languages without increasing their strong generative capacity. Whatever additional

restrictions one would like to put on Minimalist derivation trees, as long as they are

rational, they can be expressed in a local fashion via Merge.

Actually, the constraints can even be stated over the derived trees rather than the

derivations. This is so because every rational constraint over derived trees can be

automatically translated into a rational constraint over derivation trees. In Sec. 1.2.3

I explained that Minimalist derivations can be mapped to multi-dominance trees — or

alternatively phrase structure trees — via an MSO-definable transduction Φ. The

direction of MSO transductions can easily be reversed, so the reversal of Φ, denoted

Φ−1, translates derived trees into derivation trees. These reversed MSO transductions

have the peculiar property that they preserve regularity. That is to say, if L is a

regular tree language, then so is its image under Φ−1. Now if C is some rational

constraint defining some language L of derived trees, then Φ−1(L) is the language of

derivation trees corresponding to these derived trees and is guaranteed to be regular.

In the terminology of Müller and Sternefeld, locally unbounded representational

constraints reduce to locally unbounded constraints over derivations, i.e. global

constraints.

Proposition 3.11 ((multi)representational ≤ global). For every rational constraint

over derived trees there exists an equivalent rational constraint over derivation

157

trees. �

This answers one of the main questions raised in Sec. 3.1: Are MGRCs, that

is MGs with rational constraints over derivations and/or representations, more

powerful than MGs? The answer is no, because both kinds of constraint can be

lexicalized.

Theorem 3.12 (MG ≡MGRC). For every MG with rational constraints there exists

a strongly equivalent standard MG (and the other way round). �

Note that this result only holds for rational constraints — non-rational constraints

can be lexicalized only if they could also be expressed as rational constraints.

Theorem 3.13. Let M be an MDTL and L a tree language defined by some constraint

C . Then C can be lexicalized only if there is some regular tree language R such that

M ∩ L = M ∩ R. �

Proof. Suppose that C can be lexicalized, and that the tree language L defined

by C is not regular (for otherwise R could be chosen to be L). Since C can be

lexicalized, M ∩ L is equivalent to some MDTL MR modulo lexical refinement. As

MDTLs are regular and regularity is preserved under the state-removing projection

π (see Sec. 3.2.3), undoing the lexical refinement of MR yields a regular subset R of

M . Clearly M ∩ R= R= π(MR) = M ∩ L. �

Not only then can Merge express rational constraints, it can only express constraints

that are rational with respect to the MDTL they apply to.

Proposition 3.14 (Merge ≡ Rational Constraints). A constraint can be expressed

via Merge iff it is rational. �

Even though Merge and rational constraints — and by extension MGs and

MGRCs — are expressively equivalent, the latter are definitely easier to work with.

158

Rather than writing a grammar completely by hand, one might now start with a

bare bones MG that is subsequently refined via easily defined rational constraints.

Applications of this strategy will be explored later in Sec. 3.4.

Curiously, rational constraints aren’t the only way to manipulate MDTLs while

staying inside the realm of MG-definability. If one ignores the subscripts introduced

by lexicalization, MDTL-status is preserved under a variety of set-theoretic operations.

In these cases, we say that MDTLs are projection-closed (p-closed) under these

operations: MDTLs are p-closed under operation O iff it holds for every MDTL L

that applying O to it yields some set that can be turned into an MDTL via lexical

refinement (readers wondering about the meaning of “projection” here are referred

to the end of Sec. 3.2.3).

Theorem 3.15. The class of MDTLs is p-closed under intersection with regular tree

languages. �

Corollary 3.16. The class of MDTLs is p-closed under intersection, union, relative

complement, and symmetric difference. �

Proof. By Thm 3.5 MDTLs are closed under intersection, which immediately entails

their p-closure under intersection. Independently of this fact, though, p-closure also

follows from Thm. 3.15 due to every MDTL being regular.

Given two MDTLs L and M , their union is given by L ∪M := S ∩ (L ∪M), where

S is the MDTL built from the union of the lexicons for L and M ; note that L ∪M is

regular. Their relative complement R := L \M is also regular language, so L \M =

L ∩ (L \M) = L ∩ R is a projection of some MDTL by Thm. 3.15. This furthermore

implies closure under symmetric difference as L4M := (L ∪M) \ (L ∩M). �

Note that p-closure under relative complement does not imply p-closure under

complement with respect to the class of all MDTLs. The complement of some set S

is its relative complement with respect to its largest superset S′. For example, the

159

complement of a language L of strings over alphabet Σ is Σ∗ \ L. Since Σ∗ is the set

of all strings over Σ, Σ∗ \ L is the set of all strings that are not contained by L, which

is indeed the complement of L. Complement is not a well-defined notion for the

class of all MDTLs because there is no largest MDTL with respect to which it could

be defined.

However, if we restrict our attention to the class of all MG whose lexicon is a

subset of some finite set Lex over Σ, Feat, there will be one MDTL that subsumes all

others and complement can be expressed in terms of relative complement as usual.

Corollary 3.17. Let Lex be some finite subset of Σ∗ × Feat∗, and MGLex the class

of MGs whose lexicon is a subset of Lex. Then the class of MDTLs of grammars

G ∈MGLex is p-closed under complement. �

The general upshot of all these p-closure properties is that we need not limit

ourselves to just intersection; union and relative complement are viable alternatives

in the specification of grammars. This opens up an entirely new box of tools that

linguists haven’t made use of so far. It will be interesting to see if they can foster

new generalizations.

3.3 The Relative Power of Constraint Classes

3.3.1 A Revised Müller-Sternefeld Hierarchy

The p-closure properties of MDTLs have important repercussions for the extended

MS-hierarchy discussed in Sec. 3.1.2. Recall that Müller and Sternefeld (2000)

distinguish five classes of constraints, based on two parameters: the type of object

it applies to (representations or derivations), and its locality degree (local, global,

transductive). I proposed a slight refinement in order to address whether derivations

are mapped to standard phrase structure trees or multi-dominance trees (see Fig. 3.1

on page 133). The MS-hierarchy makes two important claims about tree-local

160

constraints: locality matters for constraints over derivation trees, and local con-

straints over derivations are exactly as powerful as constraints over representations

(whose locality degree is irrelevant). Neither claim is entirely correct when rational

constraints are considered.

Take the issue of locality. The application domain of rational constraints is

unbounded because they coincide with MSO formulas, whose validity is evaluated

with respect to the entire tree. But rational constraints are also strictly local because

every MSO formula can be converted into a bottom-up tree automaton, which assigns

states in a maximally local fashion — the state of a node depends only on its label

and the states of its daughters. The locality of the tree automaton is preserved even

when it is precompiled into the grammar using the lexicalization strategy described

in the previous section. Every rational constraint, no matter what its locality domain,

can be mediated locally via the symmetric feature checking mechanism of Merge.

In the parlance of Müller and Sternefeld (2000), derivational≡ global. Contrary to

Müller (2005), then, locality is irrelevant for all rational constraints over derivations.

Proposition 3.18 (derivational ≡ global). For every locally unbounded rational

constraint over derivation trees, there is an equivalent locally bounded one (and the

other way round). �

In order to see whether locality is a meaningful parameter for rational constraints

over phrase structure trees or multi-dominance trees, the general relation between

derivations and derived structures must be properly understood first. As mentioned

many times before (Sec. 1.1.3 and 1.2.3), the difference between derivation trees

and multi-dominance trees is minimal. Except for some simple relabelings, the two

are distinguished merely by the presence of a few additional branches indicating

the target sites of movement. Note that this information is already present in the

derivation tree, so the branches are redundant for rational constraints. The same

holds for the headedness information encoded by the interior node labels, and the

161

linear order of constituents. Multi-dominance trees thus do not add any information,

so multirepresentational ≤ derivational (which was already established in a more

formal way in the previous section).

On the other hand, multi-dominance trees do not destroy any information, either.

Every multi-dominance tree can easily be turned into its corresponding derivation

tree (up to isomorphism) by deleting all movement branches and restoring the

original labels of all nodes. Both tasks are quickly accomplished once one has found

all Move nodes, which is simple: a node is a Move node iff it properly dominates

a mother of one of its daughters. So multi-dominance trees and derivation trees

provide the same amount of information.

Proposition 3.19 (multirepresentational ≡ derivational). For every rational con-

straint over multi-dominance trees, there exists an equivalent rational constraint

over derivation trees, and the other way round. �

The power of constraints over phrase structure trees depends crucially on how

traces are implemented. If traces are indexed, then they provide exactly the same

information as multi-dominance trees and the equivalence of representational and

derivational constraints obtains as claimed by Müller (2005). However, in the MG

literature traces are not indexed, nor is there a mechanism of chain formation that

could keep track of which traces belong to which mover. As a result, traces in MG

phrase structure trees only indicate that something has moved, but not what and

where. Obviously this constitutes a loss of information, a loss that is significant

enough to render representational constraints strictly weaker than derivational ones.

Lemma 3.20. Let Φ be the natural mapping from Minimalist derivation trees to

phrase structure trees with index-free traces. Then there is a regular language R (of

derivation trees) and MDTL M such that there is no regular language L (of phrase

structure trees) for which Φ(M)∩ L = Φ(M ∩ R). �

162

>

<

>

<

>

<

>

<

td

>

<

td

<

td

b

<

tb

a

>

<

ta

>

<

ta

<

ta

ε

ε

Figure 3.1: Phrase structure tree generated by MG G+ for the string aaaabbddd

163

Move

Merge

ε :: =Afin + e CMove

Merge

a :: =Bfin + a AfinMove

Merge

b :: =Dfin + b BfinMove

Merge

d :: =D + d Dfin

Move

Merge

d :: =D + d D − dMerge

d :: =B D − dMerge

b :: =A B − bMove

Merge

a :: =A + a A − aMove

Merge

a :: =A + a A − aMerge

a :: =E A − aε :: E − e

Figure 3.2: Derivation tree of G+ for the string aaaabbddd

164

>

<

>

<

>

<

>

<

td

>

<

td

<

td

b

>

<

tb

<

tb

a

>

<

ta

<

ta

ε

ε

Figure 3.3: Phrase structure tree generated by MG Gn for the string aaabbbddd

165

Move

Merge

ε :: =Afin + e CMove

Merge

a :: =Bfin + a AfinMove

Merge

b :: =Dfin + b BfinMove

Merge

d :: =A + d Dfin

Move

Merge

a :: =B + a A − aMove

Merge

b :: =D + b B − bMove

Merge

d :: =A + d D − dMerge

a :: =B A − aMerge

b :: =D B − bMerge

d :: =E D − dε :: E − e

Figure 3.4: Derivation tree of Gn for the string aaabbbddd

166

Proof. Let G+ be the following MG for the regular string language ai b jdk, i, j, k ≥ 2:

ε :: E − e a :: =E A − a b :: =A B − b d :: =B D − d

a :: =A + a A − a b :: =B + b B − b d :: =D + d D − d

ε :: =Afin + e C a :: =Bfin + a Afin b :: =Dfin + b Bfin d :: =D + d Dfin

This grammar uses roll-up movement to create “towers” of as, bs, and cs, respectively.

The set Tx of well-formed x-towers, x ∈ {a, b, c}, can be specified recursively:

< (x , t) ∈ Tx and for all y ∈ Tx , > (y,< (x , t)) ∈ Tx . Each x-tower resides in the

specifier of an LI of category Xfin. Hence every phrase structure tree in the derived

tree language L+ generated by G+ is of the form > (ε,< (ε,> (Ta,< (a,> (Tb,<

(b,> (Td ,< (d, t)))))))). See Fig. 3.1 on page 163 for an annotated example tree

and Fig. 3.2 on page 164 for the corresponding derivation tree.

Now consider the MG Gn, which generates the mildly context-sensitive an bndn,

n≥ 2:

ε :: E − e a :: =B A − a b :: =D B − b d :: =E D − d

a :: =B+ a A − a b :: =D + b B − b d :: =A + d D − d

ε :: =Afin + e C a :: =Bfin + a Afin b :: =Dfin + b Bfin d :: =D + d Dfin

Even though Gn uses remnant movement, every member of its set Ln of phrase

structure trees fits the structural pattern given for G+, with the important restriction

that all towers have the same height. Example trees are given in Fig. 3.3 on page 165

and 3.4 on the preceding page.

Since the string yield of Ln isn’t a context-free string language, Ln is not a regular

tree language. The language L+, on the other hand, is regular, as can easily be

gleamed from the pattern presented before: the set of x-towers is regular, and L+ is

simply the result of inserting x-towers at specific leafs of a finite template. Hence Ln

is a non-regular proper subset of the regular set L+. As regular languages are closed

under intersection, it follows that there is no regular L such that L+ ∩ L = Ln.

167

However, let G be the MG whose lexicon is the union of the lexicons of G+ and

Gn. Now fix M and R to be the MDTLs of G and Gn, respectively. Clearly R⊆ M , so

Φ(M ∩ R) = Φ(R) = Ln. �

Proposition 3.21 (representational < derivational). Rational constraints that are

stated over derivation trees are properly more powerful than rational constraints

over index-free phrase structure trees. �

Putting all our findings together, we see that almost all tree-local constraint

classes in the MS-hierarchy conflate into one if measured by their relative power.

Proposition 3.22 (Revised MS-Hierarchy). Within the class of rational constraints,

representational<multirepresentational≡ derivational≡ global �

In the next chapter, we will see that even transderivational constraints do not

improve on the expressivity of derivational constraints, putting them in the same

group as the majority of the other constraint classes.

3.3.2 Why use Constraints at all?

It is important to keep in mind that Prop. 3.22 only evaluates the expressive power

of the respective classes. The complexity of extensionally equivalent constraints can

still vary.

Example 3.14

The PBC is easily formulated as a constraint over trace-indexed phrase structure trees:

if x and y belong to the same chain, then either x c-commands y or y c-commands

x . This condition is clearly satisfied by PBC-obeying movement. Remnant movement,

on the other hand, creates configurations where not all chain members are related

by c-command anymore. We already encountered such a case in example 1.6 on

168

page 18, where the DP das Buch is moved into Spec,vP followed by movement of

the VP containing its trace into Spec,CP. As a result, neither c-command each other

anymore.

Stating the PBC over derivation trees is more involved. One has to ensure for

every LI l that none of its occurrences are dominated by an occurrence of some LI

l ′ such that some node of the slice of l ′ dominates l (the derivational equivalent of

phrasal containment). While this is still conceptually transparent, it does not match

the simplicity of the phrase structure constraint.

So different constraints still excel in different areas when it comes to expressing

generalizations in as simple a form as possible. This is particularly noticeable when

scrutinizing the refined grammar in example 3.10. Without prior knowledge of the

constraint that has been lexicalized, it is difficult to make out what kind of tree-

geometric property is encoded in the subscripts. Linguistic constraints are a lot more

complex on average than a simple ban against trees with an even number of nodes,

which can be computed using only two states. A faithful implementation of binding

theory, for example, is near incomprehensible from an automaton perspective (cf.

Graf and Abner 2012). This problem becomes even more pressing once multiple

constraints are combined. It is safe to assume that even with only a handful of

constraints, the number of distinct states pushed into the category features will

quickly reach three digits, causing an enormous blow-up in the size of the refined

lexicon.

Example 3.15

Suppose we are given an MG consisting of 10 LIs, 5 of which select no arguments,

3 take one, and 2 two. Furthermore, there are three constraints whose respective

169

automata have 2, 5, and 8 states. For all intents and purposes, these numbers are

unrealistically low. Yet in the worst case the fully refined lexicon will contain 13, 045

distinct LIs.

Let us quickly verify how this number falls out, using the formula from Prop. 3.9

on page 154. First, instead of carrying out three refinement steps for the individual

automata, they can be combined into one big automaton with 2 · 5 · 8= 80 states.

The automaton accepts exactly those trees that are deemed well-formed by the

original three automata. It then suffices to carry out the refinement only once for the

big automaton (the eventual size of the refined lexicon does not depend on whether

one uses the big automaton or the three original ones).

Out of the 10 LIs, 5 have no selector features, so they yield only 5 ·800 = 5 ·1 = 5

refined LIs. Then there are 3 LIs with 1 selector feature, from which one obtains

3 · 801 = 3 · 80 = 240 refines LIs. The lion’s share, however, is contributed by the

remaining 2 LIs with 2 selector features. In the worst case, the refinement algorithm

produces 2 · 802 = 2 · 6400= 12800 LIs. The total number might even double if the

sole unchecked feature in a well-formed derivation is always C, because in this case

all LIs of category Cq must have a duplicate entry with category feature C if q is a

final state. Deducing the original constraints from over twenty thousand LIs is an

impossible task for any mortal (and it isn’t much easier with ten thousand).

It is also interesting to observe the relative contribution of the number of states

and selector features to the overall size of the refined lexicon. Increasing the number

of LIs without selector features from 5 to 500 increases the total of 13, 045 by only

495, so LIs without selector features are negligible. Similarly, adding 3 new LIs with

a single selector feature leads to the creation of merely 240 new LIs. While 240 is a

lot more than 3, it is but a fraction of the sum of 13,045+ 240= 13,285 LIs. The

blow-up is significantly more noticeable when 2 new LIs with two selector features

170

are added, as this almost doubles the size to 25,845.

The truly decisive factor, however, is the number of states needed for the con-

straints. Introducing one more constraint that can be computed with 2 states almost

quadruples the size of the lexicon to 51, 685. This effect would be even larger if the

lexicon contained LIs with more than two selector features. For instance, if the LIs

with one selector feature had three such features instead, the total size would be

1,548,805 with three constraints and 12,339,205 after the addition of the fourth

constraint, an increase by factor 8. We see that the greater the number of states and

the maximum of selector features per LI, the bigger the relative blow-up.

For further illustration of this difference, take a grammar with 6 constraints,

each computed by a non-deterministic automaton with 10 states (a conservative

estimate for a faithful implementation of Minimalist syntax). Refinement with a

non-deterministic automaton means that the state on the category feature is no

longer uniquely determined by the selector features and the LI’s phonetic exponent.

Consequently, an LI with n selector features may yield as many new LIs under

refinement via a non-deterministic automaton as an LI with n+ 1 selector features

under refinement via a deterministic automaton. Then the size of the refined lexicon

could exceed the number of seconds since the big bang (≈ 4.3 · 1017) if the original

lexicon contains at least one LI with two selector features (1 · (106)3 = 1018), while

it would require at least 430,000 LIs with one selector feature to reach the same

threshold (4.3 · 1017/(106)2 = 4.3 · 105). Yet if the grammar employs only 2 out of

the given 6 constraints, the number of LIs with two selector features would have to

be close to 430 billion (= 4.3 · 1017/10(2·3)).

The reader should keep in mind, though, that these numbers represent the worst

case where all logically possible ways of assigning states to selector features yield an

LI that occurs in at least one well-formed derivation. It remains to be seen whether

171

linguistically plausible grammars and constraints ever come close to the worst case

scenario. So while the lexical blow-up will in general be significant, it might not be

quite as astronomical in practice as in this example.

The explosion of the number of LIs and the fact that there isn’t a single class

of tree-local constraints that is best suited to expressing all linguistic generaliza-

tions show convincingly that Prop. 3.22 only talks about the generative power of

these constraint classes. Their succinctness, intuitiveness, psychological reality and

explanatory adequacy are independent of this result. One might think that this de-

prives the equivalences of all linguistic relevance, turning them into a mathematical

curiosity at best. But just like one should not overstate the importance of Prop. 3.22,

one should not outright dismiss it either.

The interchangeability of the constraint classes and their expressibility via Merge

still have important implications for generative syntax. For one thing, we are

guaranteed that all these constraints show monotonic behavior, no matter in which

way they are combined. That is to say, there are no cases analogous to the one in

example 3.1, where a constraint increased the power of MGs rather than limiting it.

Rational constraints are also appealing from a cognitive perspective because their

computation requires only a finitely bounded amount of working memory. Moreover,

the choice in favor of a specific constraint type cannot be made purely on empirical

grounds, because with respect to their empirical coverage, all classes of rational

constraints are equivalent (except over index-free phrase structure trees). Preferring

a constraint type over others thus is a matter of explanatory adequacy.

As a matter of fact, using constraints at all — rather than relying just on Merge — is

a matter of explanatory adequacy, too. Once again, there is no syntactic empirical

data that could serve to distinguish the two approaches. Extra-syntactic domains like

processing might provide evidence in favor of one of the two, but even if that should

172

turn out to be the case it would only pertain to how the grammar is implemented

in the parser, not how its internals are specified. Finally, the duality of Merge and

constraints does away with one of the most basic questions in Minimalism, namely

why syntactic constraints like the Person Case Constraint exist at all. As Merge

already provides all the power needed to express constraints, it would be puzzling if

there were none. From this perspective it isn’t the existence of constraints that is

bewildering, but rather that the majority of rational constraints is not instantiated

in any known natural language (see Graf 2012a for an extended discussion of this

issue with respect to the Person Case Constraint).

3.4 Increasing the Faithfulness of MGs A

3.4.1 Locality Conditions

In my discussion of the faithfulness of MGs in Sec. 2.2 I claimed that many missing

aspects of Minimalist syntax can be incorporated via rational constraints. I now give

a few examples how this might be accomplished, starting with locality constraints.

Intervention conditions and island effects such as the one below are completely

absent from canonical MGs despite their ubiquity in the syntactic literature.

(3) a. Whoi did John say that Bill adores t i?

b. ?/* Whoi did John doubt whether Bill adores t i?

Without further precautions, an MG that derives (3a) will also derive (3b) as move-

ment is restricted only by the feature calculus, not the shape of the phonological

strings. An MSO-constraint can easily militate against such locality violations.

Recall from Sec. 1.2.2 and 1.2.3 that a Move node m is an occurrence of LI l

iff it is involved in checking one of l ’s licensee features. Moreover, the predicate

occ(m, l) holds iff m is an occurrence of l, and x /+ y denotes that x (properly)

dominates y. Similarly, sliceroot(y, l) iff y is the root of the slice of l. Finally, the

173

predicate whether(x) holds of x iff it is labeled by an LI with whether as phonetic

exponent. This is simply a shorthand for l1(x)∨ l2(x)∨ · · · ∨ ln(x), where l1, . . . , ln

are the lexical entries for whether. With these ancillary predicates, movement in

(3b) is blocked by the following constraint:

∀m∀l
h

occ(m, l)→¬∃x∀y
�

whether(x)∧m /+ x ∧ (sliceroot(y, x)→ y /+ l)
�

i

This MSO formula ensures that no slice headed by an LI with string exponent whether

occurs between an LI and any of its movement nodes — which is tantamount to

blocking movement across a phrase headed by whether.

Other locality conditions follow an analogous pattern. Take the Complex NP

Constraint, which blocks extraction from a CP that is complement of a noun, and

the Specified Subject Constraint, which rules out movement originating from inside

a DP in subject position.

(4) * Whoi did John reject the claim that the lobbyists bribed t i?

(5) a. Wherei is it likely that John went t i?

b. * Wherei is that John went t i likely?

Once again some auxiliary predicates must be defined. We use CatX(x) as a short-

hand for “x is an LI with category feature X”. Like whether(x), this is merely a

shorthand for a disjunction l1(x) ∨ l2(x) ∨ · · · ∨ ln(x), but this time l1, . . . , ln are

all the items with category feature X. Furthermore, compl(x , XP) holds iff x is the

complement of an XP:

compl(x , l) ⇐⇒ ∃y
�

sliceroot(y, x)∧ c-com(l, y)∧ c-com(y, l)
�

compl(x , XP) ⇐⇒ ∃y
�

compl(x , y)∧CatX(y)
�

This definition uses the standard c-command definition as specified in example 3.3

174

on page 124, but employs it over derivation trees instead. In a derivation tree an LI

c-commands the slice root of its complement, and the other way round. The same

trick can be used to pick out specifiers, whose slice roots are dominated by the slice

root of the LI they c-command.

spec(x , XP) ⇐⇒ ∃y∃z∃z′
�

sliceroot(y, x)∧ sliceroot(z′, z)∧

CatX(z)∧ c-com(y, z)∧ z′ /+ y
�

The Complex NP Constraint and Specified Subject Constraint now can be ex-

pressed as minimal variants of each other (assuming that subjects are simply DPs

residing in Spec,TP).

∀m∀l
h

occ(m, l)→¬∃x∀y
�

C(x)∧compl(x ,NP)∧(sliceroot(y, x)→ m/+ y∧y/+l)
�

i

∀m∀l
h

occ(m, l)→¬∃x∀y
�

D(x)∧spec(x , TP)∧(sliceroot(y, x)→ m/+ y∧ y /+ l)
�

i

The that-trace filter combines the structural component of the last two constraints

with the sensitivity to phonetic material we saw with respect to whether. In general,

a wh-word can be extracted out of a CP headed by that, but not if it is the subject of

the clause.

(6) a. Whati did you say that John ate t i?

b. * Whoi did you say that t i ate my burrito?

∀m∀l
h

occ(m, l)→∃x∃y
�

(that(x)∧sliceroot(y, x)∧m/+ y∧y/+l)→¬spec(l, TP)
�

i

Locality conditions a general pattern of the form ∀m∀l[occ(m, l)→ φ], where

φ is some MSO-formula (with m and l as its only free variables, if it has any). Many

more constraints can be captured this way, for instance the Coordinate Structure

175

Constraint, the Left Branch Condition, and barriers or phases (but see my remarks

on successive cyclic movement in Sec. 2.2.3). Many of the principles formalized in

Rogers (1998) can also be adapted for MGs, although the change from derived trees

to derivation trees will require some marginal revisions in certain cases, in particular

binding and control, which rely on representational c-command and thus need to be

computed slightly differently on a derivational level.

3.4.2 Agreement and Pied-Piping

Through the use of constraints we can also reduce the number of movement steps in

our grammars. In early Minimalism Chomsky (1995c), satisfying feature dependen-

cies between non-adjacent phrases invariably required movement, an assumption

inherited by MGs. In such a setup, subject-verb agreement, say, is assumed to be

an effect of the subject moving into the specifier of the TP and checking its person

features. But other instances of agreement, e.g. between determiners or adjectives

on the one hand and nouns on the other, are rather cumbersome to handle this way.

This brought about a major revision of the feature calculus in order to make feature

checking apply at a distance in certain cases Chomsky (2001). As long as we do

not allow unbounded nesting and crossing of the checking paths defined by this

operation, rational constraints can yield the same effect by associating every lexical

item with “pseudo-features” that encode properties not pertinent to movement.

For instance, the Icelandic adjective rauðan ’red’, which is masculine, singular,

accusative, and strongly inflected, could be assigned the corresponding pseudo-

features, represented by the predicates masc(x), sing(x), acc(x), and strong(x). As

before, each such predicate is simply a disjunction of LIs. Assume for the sake of

exposition that adjectives take a single complement which is either a noun or another

adjective. Then the constraint below enforces basic number agreement between

176

nouns and adjectives.

∀x , y
�

(CatA(x)∧ compl(y, x))→ (sing(x)↔ sing(x))∧ (pl(x)↔ pl(x))
�

The structural condition in the antecedent of the implication can be altered freely to

accommodate other configurations, and the agreement dependencies on the right

hand of the implication can reach any empirically desirable degree of complexity.

A more interesting case is long-distance subject-verb agreement in English exple-

tive constructions.

(7) a. * There seems to John to be several men in the garden.

b. There seem to John to be several men in the garden.

In the case of adjective-noun agreement above one could easily refine categories by

hand to ensure the right agreement patterns, but for long-distance dependencies the

automatic refinement via MSO-constraints is the preferable solution. The general

format can remain the same, only the subformula CatA(x)∧ compl(y, x) needs to be

replaced by a suitable structural description.

But the application of pseudo-features need not stop here. They also make

it possible to add a restricted version of pied-piping to MGs. In pied-piping, a

constituent containing some element with a movement licensee feature seems to be

stuck to it for the purposes of movement.

(8) a. [Which famous linguist]i did Robert write a book [about t i]?

b. [About which famous linguist]i did Robert write a book t i?

In the literature this is sometimes analyzed as the movement licensee feature of the

DP percolating upwards into the PP. This strategy is shunned by some syntacticians

as too stipulative and overly permissive, and rightly so, for MGs with such a feature

percolation mechanism can generate any recursively enumerable language (Kobele

2005). But at least for the example above, only a very limited kind of feature

177

percolation is required. We could have two lexical entries for about and which, one

each with a wh-licensee feature and one each without said feature. In order to

prevent overgeneration, one then requires that about may have a licensee feature

only if its complement is headed by which. More generally, one may stipulate that the

complement is headed by an LI that could in principle carry a wh-licensee feature.

This is trivial if one uses the pseudo-feature mechanism described above. (For an

alternative implementation of pied-piping as a new type of movement see Graf

(2012c).)

3.4.3 Relaxing the SMC

Dynamic restrictions on the distribution of features also allows us to work around

certain shortcomings of the SMC. The SMC — albeit essential for keeping MDTLs

within the confines of regular tree languages — comes with its fair share of linguistic

inadequacies, in particular with respect to wh-movement. Since English allows for

wh-phrases to stay in situ, every wh-phrase in an MG must come in two variants,

one with a wh-licensee feature, and one without it. But given this duality, nothing

prevents superiority violations like the one in (9b) (for the sake of simplicity, only

wh-movement is indicated by traces).

(9) a. Whoi t i prefers what?

b. * Whati does who prefer?

The ungrammatical (9b) can be derived because who need not carry a wh-licensee

feature, in which case the MG will treat it like any other DP. Consequently, nothing

prevents what from carrying a wh-licensee feature and moving to Spec,CP.

Instances of overgeneration like this can also be blocked via pseudo-features:

rather than checking whether any LI along the movement path has the same active

licensee feature, one must determine whether it could potentially have an active

licensee feature. In (9b) above, this condition is violated because who could be a

178

carrier of an active wh-licensee feature.

This strategy can even be extended to multiple wh-movement. MGs struggle

with this kind of movement, because either the grammar has only one wh-feature,

in which case multiple wh-movement is impossible, or there are several types of

wh-features, in which case those features are incorrectly regarded as distinct by

the SMC and even the most basic superiority violations are no longer captured. A

grammar with multiple distinct wh-features but a single pseudo-wh-feature gets us

the best of both worlds. The SMC no longer applies to these features and all desired

locality restrictions on wh-movement can be enforced as MSO-constraints that are

stated with respect to pseudo-features instead.

3.5 The Chapter in Bullet Points

• Logic and Constraints

– Constraints are modeled as logical formulas without free variables.

– The power of a constraint is reflected by the power of the weakest logic(s)

that can express it.

– MSO allows for quantification over nodes and sets of nodes and thus

is powerful enough to state the majority of constraints proposed in the

syntactic literature (demonstrated by the MSO-implementation of GB in

Rogers 1998).

– MSO-definable constraints are called rational.

– Every MSO-formula (and thus every rational constraint) can be converted

into an equivalent deterministic bottom-up tree automaton, and vice

versa.

• Constraints and Merge

179

– Once a rational constraint has been converted into an equivalent deter-

ministic automaton, the automaton can be precompiled into the grammar.

– For every LI, its category feature is subscripted with the state that the

automaton assigns to its slice root in some derivation. If there are several

such states, multiple copies of the LI are created that differ only in their

subscript.

– The selector features must also be refined accordingly, except that the

subscript is determined by the state of the slice root of the selected

argument.

– The result of the refinement is an MG that enforces the constraint through

the symmetric feature calculus governing Merge. The derived structures

generated by this grammar are indistinguishable from the ones generated

by the original grammar with the constraint, and their derivations differ

only in the names of category and selector features.

– It follows that a constraint over derivations can be expressed by Merge

iff it is rational.

– As the result depends only on the symmetric feature checking of Merge,

it is independent of the types of movement in the grammar. In particular,

it is irrelevant whether the SMC holds.

• Classes of Constraints

– In the spirit of Müller and Sternefeld (2000), constraints are classi-

fied according to the structure they operate on (phrase structure tree

with no indexed traces, phrase structure tree with indexed traces, multi-

dominance tree, derivation tree) and the size of their application domain

(bounded tree-local, unbounded tree-local, set of competing trees).

– Rational constraints over phrase structure trees without indexed traces

180

are properly weaker than local rational constraints over derivations. All

other types of tree-local rational constraints are equally powerful.

181

CHAPTER 4

Transderivational Constraints

Contents

4.1 Transderivational Constraints as Rewriting Rules 185

4.1.1 Examples of Reference-Set Constraints 185

4.1.2 Introducing Tree Transducers 187

4.1.3 Putting it All Together . 194

4.2 Example 1: Focus Economy . 199

4.2.1 Focus Economy Explained . 199

4.2.2 A Model of Focus Economy . 204

4.3 Example 2: Merge-over-Move . 216

4.3.1 Merge-over-Move Explained 216

4.3.2 Properties of Merge-over-Move 219

4.3.3 A Model of MOM . 220

4.3.4 Empirical Evaluation . 225

4.4 Example 3: Shortest Derivation Principle 232

4.4.1 The Shortest Derivation Principle Explained 233

4.4.2 A Model of the Shortest Derivation Principle 235

4.4.3 Scope Economy: A Semantic SDP? 239

4.5 The Chapter in Bullet Points . 241

182

The previous chapter established that a constraint can be lexicalized and ex-

pressed via Merge iff it is rational, i.e. MSO-definable. From this the interdefinability

of all the subclasses of tree-local constraints could be derived, with the exception

of constraints over phrase structure trees without indexed traces. A basic under-

standing of MSO also allows one to see that the majority (if not all) of tree-local

constraints in the syntactic literature are rational. This still leaves open the issue of

translocal and transderivational constraints, which according to the classification in

Tab. 3.1 on page 133 aren’t tree-local but rather reference-set constraints (RCs). Are

these constraints more powerful than tree-local ones? Or equivalently, can they be

expressed via Merge?

The main problem in tackling this issue is that the formalization of tree-local

constraints in terms of MSO-formulas does not extend elegantly to RCs. These

constraints are relative and violable. Rather than enforcing absolute well-formedness

conditions that are checked against single trees, an RC takes as input a set of trees

and determines which one of them satisfies a given condition best. The tree in

question might still violate the condition several times, and for arbitrary sets there

might not be an upper bound on the number of violations even among the best

matches. MSO-formulas are ill-suited to capture this behavior. Under their standard

interpretation, they apply to single trees, and they are either true in a tree or not.

Illicit trees aren’t valued differently depending on how close they come to being a

model of the formula. Hence RCs need a new model that can measure gradients in

well-formedness between trees and translate those back into the categorical system

of grammaticality.

OT-style grammars are a natural candidate as they, too, rank competing structures

and dismiss all but the best among them as ungrammatical. Frank and Satta (1998)

propose to model OT in terms of transducers, i.e. automata with output. A transducer

reads an input structure and creates an output structure guided by the shape of the

183

former. In the case of a transderivational constraint, the transducer would transform

a suboptimal derivation into an optimal one. Notice how this strategy subverts the

standard linguistic dichotomy of constraints versus operations. RCs are turned from

filters that weed out suboptimal forms into rewriting rules that transform suboptimal

outputs into optimal ones.

Counterintuitive as a procedural view of RCs might be to linguists, it is the more

fruitful one for mathematical purposes. The central result of this chapter arguably

could not have been obtained otherwise.

Proposition 4.1. A transderivational constraint can be expressed by Merge iff it can

be modeled by a regularity-preserving transduction from an MDTL into itself. �

This means that if the output of an RC is both regular and a subset of the MDTL the

constraint applies to, then the constraint can be expressed by Merge. Putting it more

bluntly, one might say that a transderivational constraint can be expressed by Merge

iff it can be converted into an equivalent derivational constraint. The line of reason

leading to this result is formally developed in Sec. 4.1. In order to show that many

RCs actually fall into this subclass (and thus are reducible to purely derivational

constraints) I implement three well-known specimen from the literature: Focus

Economy (4.2), Merge-over-Move (4.3), and the Shortest Derivation Principle (4.4).

Most constraints in the syntactic literature are merely variants or combinations of

these constraints from a mathematical perspective.

As this chapter builds a new formal model, few prerequisites carry over from

the previous ones. Familiarity with MGs and MDTLs is still necessary, though,

and knowledge of the regularity of MDTLs and their p-closure under intersection

with regular tree languages is indispensable for understanding the validity of the

formal argument. Seeing how transducers are essentially automata with output, it is

also helpful to have worked through the examples of bottom-up tree automata in

Sec. 2.1.1, and a little bit of MSO is used for the implementation of Focus Economy

184

in Sec. 4.2.

4.1 Transderivational Constraints as Rewriting Rules

4.1.1 Examples of Reference-Set Constraints

Out of all the items in a syntactician’s toolbox, RCs are probably the most peculiar one.

When handed some syntactic tree, an RC does not determine its well-formedness

from inspection of the tree itself. Instead, it constructs a reference set — a set

containing a number of trees competing against each other — and chooses the

optimal candidate from said set.

Consider Fewest Steps, also known as the Shortest Derivation Principle (Chomsky

1991, 1995b). For any derivation tree t, the Shortest Derivation Principle constructs

a reference set that consists of t itself and all the derivations that were assembled

from the same LIs as t. The derivations are then ranked by the number of Move

nodes they contain such that the tree(s) with the fewest instances of movement is

(are) chosen as the winner. All other trees are flagged as ungrammatical, including t

if it did not emerge as a winner.

Another RC is Focus Economy (Szendrői 2001; Reinhart 2006), which is supposed

to account for the empirical fact that neutral stress is compatible with more discourse

situations than shifted stress. Take a look at the utterances in (10), where main

stress is indicated by bold face. Example (10a) can serve as an answer to various

questions, among others “What’s going on?” and “What did your neighbor buy?”.

Yet the virtually identical (10b), in which the main stress falls on the subject rather

than the object, is compatible only with the question “Who bought a book?”. These

contrasts indicate a difference as to which constituents may be focused, i.e. can be

interpreted as providing new information.

(10) a. My neighbor bought a book.

185

b. My neighbor bought a book.

Focus Economy derives the relevant contrast by stipulating that first, any constituent

containing the node carrying the sentential main stress can be focused, and second,

in a tree in which stress was shifted from the neutral position a constituent may

be focused only if it this would not be possible in the original tree with unshifted

stress. In (10a), the object, the VP and the entire sentence can be focused, since

these are the constituents containing the main stress carrier. In (10b), the main

stress is contained by the subject and the entire sentence, yet only the former may

be focused because focusing of the latter is already a licit option in the neutral stress

counterpart (10a).

The application domain of RCs includes narrow syntax as well as the interfaces. In

syntax, one finds Fewest Steps (Chomsky 1995c), Merge-over-Move (Chomsky 1995c,

2000), Pronouns as Last Resort (Hornstein 2001), resumption in Lebanese Arabic

(Aoun et al. 2001), phrase structure projection (Toivonen 2001), the Person Case

Constraint (Rezac 2007), Chain Uniformization (Nunes 2004), object extraction in

Bantu (Nakamura 1997), and many others. The most prominent interface constraints

are Rule I (Grodzinsky and Reinhart 1993; Heim 1998; Reinhart 2006; Heim 2009),

Scope Economy (Fox 1995, 2000), and the previously mentioned Focus Economy,

but there are also more recent proposals such as Situation Economy (Keshet 2010).

We will see later on that syntactic RCs are usually reducible to tree-local constraints,

while some prominent constraints from semantics such as Rule I pose a challenge that

might be insurmountable. This mirrors earlier observations in Sec. 3.1.3 regarding

the limitations of MSO when it comes to semantics. As a rule of thumb, it must

be possible to describe a constraint in purely structural terms in order for it to be

expressible via Merge — the meaning of a subtree cannot be taken into account.

The viability and adequacy of RCs, in particular transderivational ones, is a

contentious issue. It has been conjectured that they are computationally intractable

(Collins 1996; Johnson and Lappin 1999), too powerful (Potts 2001), or make the

186

wrong empirical predictions (Sternefeld 1996; Gärtner 2002). The next section

is a refutation of these claims. We will see that reference-set constraints can be

implemented as finite-state devices; linear bottom-up tree transducers (lbutts),

to be precise. Lbutts are of interest for theoretical as well as practical purposes

because regular tree languages are closed under linear transductions, so applying

a linear transducer to a regular tree language yields a regular tree language again.

As MDTLs are p-closed under intersection with regular tree languages, they are

also closed under linear transductions that map an MDTL to a subset of itself. It

follows immediately that every reference-set constraint fitting this criterion can be

equivocated with the output language defined by the transduction, which in turn

can be represented by an automaton that can be lexicalized. Hence reference-set

constraints can be expressed by Merge, too.

4.1.2 Introducing Tree Transducers

As just noted, RCs will be modeled in terms of tree transducers. Tree transducers

can be viewed as a particular kind of SPE- or Aspects-style rewriting system, and this

was indeed the linguistic motivation for their introduction in Rounds (1970). The

connection between transducers and rewriting systems brings about an intriguing

shift in perspective regarding RCs: rather than filtering out suboptimal trees in a

rather arcane, non-local way, RCs rewrite them into optimal ones using what may

be considered a subclass of syntactic transformations.

The rewriting procedure can be viewed as a generalization of the assignment

of states to nodes carried out by bottom-up tree automata. When handed a tree as

its input, a transducer moves through said tree in a bottom-up fashion, from the

leaves towards the root, possibly relabeling nodes, deleting subtrees, or inserting

new structural material. Once it reaches the root, the end result of its modifications

is either thrown away or returned as an output tree, depending on whether the end

result is deemed well-formed. Sometimes there are several ways to manipulate an

187

input tree, and in these cases the transducer might create multiple output trees, just

like a non-deterministic automaton might have several states it could assign to a

given node.

Table 4.1 on the next page depicts the rules of a transducer for simple instances

of wh-movement. Each one consists of a left-hand side, a rewrite arrow, and a

right-hand side. The left hand side varies depending on whether the transducer is

at a leaf node or a non-terminal node. In the former case, it comprises only the

label of said node, as in rules (1) and (2). Otherwise, it specifies the label of the

current node, plus the states of the daughters of the node. But in contrast to the

states of an automaton, these states immediately dominate the subtrees rooted by

the daughters of the current node and will be removed once the transducer moves

to the next higher node. Like an automaton, a transducer may only consider (I) the

label of node it is currently at, and (II) the state symbols said node dominates in

order to determine which rewrite rule to apply. So rule (5), for instance, may be

applied if and only if the current node is labeled TP, its left daughter is q∗, and its

right daughter is qwh.

On the right-hand side of rules (3), (4) and (5), the states dominated in the

left-hand side are gone. Instead, a new state was added on top of the new output

subtree. Similarly, the right-hand sides of rules (1) and (2) each contain a state

dominating the leaf node. This setup allows left-hand sides and right-hand sides

to interact as follows in order to push states upwards through the tree during the

rewrite steps: First, the transducers reads the currents node label and the states it

dominates, if they exist. Depending on the applicable rewrite rules, it may leave this

part of the tree unaltered (rule (1)), change the label (rule (2)), insert new structure

(rule (5)), or delete a subtree (the last option is not featured in our example, but

could easily be obtained from, say, rule (4) by removing one of the two subtrees

in the right-hand side). Irrespective of how the subtree is rewritten, though, the

transducer must put a state symbol on top of it, i.e. closer to the root. Note that

188

(1) σ → q∗

σ

(3) σ

q∗

subtree 2

q∗

subtree 1

→ q∗

σ

subtree 2subtree 1
(2) what → qwh

twh

(4) σ

qwh

subtree 2

q∗

subtree 1

→ qwh

σ

subtree 2subtree 1
(5) TP

qwh

subtree 2

q∗

subtree 1

→ q∗

CP

C′

TP

subtree 2subtree 1

do

what

Table 4.1: Rules of a transducer for simplified wh-movement; only q∗ is a final state

this way of rewriting makes it necessary to traverse trees bottom-up. One starts

by rewriting leaves adding states on top of them, then one rewrites the mothers of

the leaves (which involves removing the old states and again adding a new one on

top), after that the next higher mothers, and so on, until one finally reaches the root.

The transducer deems the output tree well-formed only if the state dominating the

root node is a final state, a notion that once again should already be familiar from

our earlier discussion of tree automata. For each transducer one has to specify in

advance which states are final states.

Let us work through the example in Tab. 4.1 in greater detail now. As I mentioned

189

in passing before, the transducer is supposed to model very simple instances of wh-

movement (wh-movement was chosen because it should be sufficiently familiar to all

readers that they can fully focus their attention on the mechanics of the transducer).

Only two states are used, q∗ and qwh. The former indicates that nothing was changed

in the subtree dominated by q∗ — we may call it the identity state — whereas qwh

signals that somewhere in the subtree it dominates, a wh-word was replaced by a

trace.

The five rules of the transducer can now be paraphrased as follows. First, note

that σ is used as a shorthand for any label, so an instruction to rewrite σ as σ

instructs the transducer to keep the current label. Consequently, rule (1) tells the

transducer that if it is at a leaf node, it should leave said node unaltered and record

this decision by adding the state q∗ on top. Rule (2), on the other hand, allows for

leaf nodes labeled what to be rewritten by wh-traces. Naturally we add the state qwh

this time. Crucially, the two rules are not in conflict, and the transducer may choose

freely between rule (1) and (2) whenever it encounters a leaf labeled what (since

σ matches any label). Hence the transducer creates several output trees for inputs

with wh-words, some with wh-in-situ and some with wh-movement.

Rule (3) and (4) are fairly unremarkable insofar as they merely ensure that

the transducer does not manipulate non-terminal nodes and that qwh is percolated

upwards as necessary. If we did not take care to carry along qwh at every step of the

rewriting process, then the transducer would “forget” that it had replaced a wh-word

by a trace earlier on. That is to say, it would merely remove wh-words rather than

displace them. Finally, rule (5) tells the transducer to add a CP with the wh-word on

top of a TP if rule (2) was applied at some earlier point. Note that if qwh is a final

state, rule (5) need never apply since output trees in which the transducer failed to

switch back from qwh into q∗ before reaching the root node would also be considered

acceptable. Hence only q∗ may be a final state if we want wh-words to be reinserted

into the tree after they have been replaced by traces.

190

A transduction using all five rules is given in Fig. 4.1 on the next page. Except for

deletion, it shows off all the capabilities of transducers that will be needed for RCs,

in particular relabelings, the insertion of new material, and the ability to use states

to both memorize limited amounts of structural information and decide whether

output trees should be accepted or discarded.

Three different RCs will be implemented as transducers in this chapter, so in

order to save space while maintaining maximum clarity I will provide the full

mathematical definitions. This requires that all the notation for transducers is in

place.

Definition 4.2. A bottom-up tree transducer is a 5-tupleA := 〈Σ,Ω,Q, F,∆〉, where

Σ and Ω are finite ranked alphabets, Q is a finite set of states, F ⊆ Q the set

of final states, and ∆ is a set of productions of the form f (q1(x1), . . . , qn(xn)) →

q(t(x1, . . . , xn)), where f ∈ Σ is of rank n, q1, . . . , qn, q ∈ Q, and t(x1, . . . , xn) is a

tree with the node labels drawn from Ω∪
�

x1, . . . , xn
	

.

Note that the trees in the transition rules are represented in functional nota-

tion such that f (q1(x1), . . . , qn(xn)) denotes a tree whose root f dominates the

states q1, . . . , qn, which in turn dominate the subtrees represented by the variables

x1, . . . , xn. Using this format, rule (5) could be written as TP(q∗(x), qwh(y)) →

q∗(CP(what, C′(do,TP(x , y)))).

Later in this section, it will sometimes be more convenient to specify a transduc-

tion top-down rather than bottom-up. In this case, the tree on the left-hand side

consists of a state dominating a node with n subtrees, and the right-hand side is

a tree with states dominating the subtrees from the left-hand side. For example,

q(f (x , y))→ g(a, b, q′(x)) would be a transduction step that applies if state q domi-

nates a subtree with root f . This tree is then rewritten as a tree rooted by g, which

has three daughters: a, b, and the original subtree, dominated by state q′.

191

TP

DP

the men

T′

T VP

like what

TP

DP

the men

T′

T VP

q∗

like

qwh

twh

TP

DP

the men

T′

T qwh

VP

like twh

TP

DP

the men

qwh

T′

T VP

like twh

TP

q∗

DP

the men

qwh

T′

T VP

like twh

q∗

CP

what C′

do TP

DP

the men

T′

T VP

like twh

(1),(2) (4)

(1),(4)

(1),(1),(3)

(5)

Figure 4.1: Example of transduction for simple wh-movement

192

Definition 4.3. A top-down tree transducer is 5-tupleA := 〈Σ,Ω,Q, F,∆〉, where Σ,

Ω and Q are as before, F ⊆Q is the set of initial states, and all productions in ∆ are

of the form q(f (x1, . . . , xn))→ t, where f ∈ Σ is of rank n, q ∈ Q, and t is a tree

with the node labels drawn from Ω∪
�

q(x) | q ∈Q, x ∈
�

x1, . . . , xn
		

.

For the sake of succinctness (but to the detriment of readability), I adopt the

following notational conventions for tree transducer productions:

• α{x ,y} is to be read as “αx or αy”.

• αa...z(βa′...z′ , . . . ,ζa′′,...,z′′) is to be read as “αa(βa′ , . . . ,ζa′′) or . . . or αz(βz′ , . . . ,ζz′′)”.

Example 4.1

The production σ(qi j{a,b}(x), q jkc(y))→ q{a,c}(σ(x , y)) is a schema defining eight

productions:

σ(qi(x), q j(y))→ qa(σ(x , y)) σ(qi(x), q j(y))→ qc(σ(x , y))

σ(q j(x), qk(y))→ qa(σ(x , y)) σ(q j(x), qk(y))→ qc(σ(x , y))

σ(qa(x), qc(y))→ qa(σ(x , y)) σ(qa(x), qc(y))→ qc(σ(x , y))

σ(qb(x), qc(y))→ qa(σ(x , y)) σ(qb(x), qc(y))→ qc(σ(x , y))

Only a proper subclass of bottom-up and top-down tree transducers will be

used here, namely linear transducers. A production is linear if each variable in its

left-hand side occurs at most once in its right-hand side. That is to say, copying of

subtrees is forbidden. A transducer is linear if each production is linear. I denote

a linear bottom-up/top-down tree transducer by lbutt/ltdtt. The class of ltdtts is

properly contained in the class of lbutts, which in turn is closed under union and

193

composition (Engelfriet 1975). The domain and the range of an lbutt are both

regular tree languages. The relation τ induced by a (linear) tree transducer is called

a (linear) tree transduction. A bottom-up tree transducer rewrites s as t iff s and t

are Σ- and Ω-labeled trees, respectively, and for some q ∈ F , q(t) can be obtained

from s by finitely many applications of productions δ ∈∆. The definition is almost

unchanged for top-down tree transducers, except that we require that t can be

obtained from q(s) and q ∈ F .

4.1.3 Putting it All Together

So far we have seen MGs as a formalization of Minimalist syntax and transducers as

a potential mathematical model of transderivationality, but it is still unclear how the

two combine to reveal something fundamental about RCs.

The answer, albeit building on highly technical insights (Engelfriet 1975) is

simple: if an RC can be be modeled as a linear transducer that rewrites suboptimal

derivations of some MDTL M into optimal ones, then the set of these optimal

derivations is a regular subset of M . The regularity of this subset is guaranteed by the

fact that MDTLs are regular and regularity is preserved under linear transductions.

The subset, in turn, can be viewed as a derivational constraint, which as we know

can be expressed purely via Merge. RCs that can be modeled by transducers thus do

not increase the power of the MG formalism.

A lot of the formal machinery can be readily adapted from previous work on the

computational implementation of OT (Frank and Satta 1998; Wartena 2000; Jäger

2002; Kepser and Mönnich 2006). Frank and Satta (1998) propose to model OT as

a system for describing transductions in a modular way. Rather than having one

big transduction that immediately maps inputs to optimal outputs, OT starts out

with the Generator as a very simple transduction from inputs to output candidates.

Each constraint in turn defines a transduction from output candidates to optimal

194

candidates. In order to get the actual set of outputs, all the transductions have to be

applied in sequence: the input is fed into the generator transduction, the output of

said transduction into the transduction defined by the first constraint, the ouputs

of this transduction into the transduction defined by the second constraint, and so

on. Frank and Satta prove that given certain restrictions on the complexity of the

individual constraints, the transductions can be composed into one big transduction

that directly maps inputs to outputs and is no more powerful than the individual

transductions by themselves. In particular, regularity of the input language is

preserved.

Wartena (2000) and Kepser and Mönnich (2006) generalize Frank and Satta’s

ideas to tree languages, which are our primary concern here. If the input language

belongs to the class of regular or linear context-free tree languages and the trans-

duction realized by the OT grammar is a linear tree transduction, then the output

language is also regular or linear context-free, respectively. But what kind of OT-style

constraints can be captured by linear tree transductions? Frank and Satta’s original

proposal is very restrictive in that it only accommodates constraints that have an

upper bound on the number of violations. That is to say, past some threshold n

trees with n and n+ 1, n+ 2, . . . violations are considered equally ungrammatical.

This is clearly inadequate for OT, and it is also problematic for many RCs. Consider

the Shortest Derivation Principle, which one might view as an OT-constraint that is

violated once for every movement step in the derivation. As there is no upper bound

on the length of derivations, even the most optimal output for some input might have

more than n movement steps. But then all derivations with more than n movement

nodes will be considered equally optimal, and no filtering takes place at all. In order

to capture RCs, one needs a method to express these kinds of counting constraints

by linear tree transductions without some artificial bound on the maximum number

of registered violations.

Jäger (2002) uses a brilliant trick to get around the upper bound on constraint

195

violations. Rather than directly modeling a constraint’s mapping from candidates to

optimal outputs as a transduction, Jäger proposes to model the ranking induced by

the constraint as a transduction, and to derive the correct mapping from the ranking.

Example 4.2

A quick toy example might clarify the difference between the two types of trans-

ductions. Suppose that constraint C evaluates four inputs i, j, k and m such that

m has more violations than k, k has more violations than i and j, which both incur

the same number of violations. The transduction realized by C rewrites the four

inputs as the optimal outputs, in this case i and j. We may informally denote this by

i, j, k, m→ i, j. The ranking induced by C , on the other hand, is i = j < k < m. The

transduction expressing this ranking rewrites i and j as k, and k as m.

This approach gets us around the upper bound because transductions are defined

on structures of unbounded size, so for every candidate, no matter how deviant, it is

in principle possible to rewrite it as an even less optimal one.

Example 4.3

Suppose we have a constraint ∗a that punishes every occurrence of the symbol a

in a string, and the inputs to the constraint are all of the form ba+, i.e. a string

that stars with a b, followed by one or more as. Then ∗a induces the ranking

ba < baa < baaa < This ranking can be expressed by a string transduction that

rewrites a given string ω as ωa. This transduction is defined for every input and

there is no greatest element that cannot be rewritten by the transduction, or must

be rewritten by itself, so the transduction really defines the same infinite ranking as

the constraint.

196

Deriving the input-output mapping from the ranking of candidates takes some

ingenuity. The crucial insight is that the optimal output candidates are the least

elements in the ranking. Hence an output candidate o is optimal only if there is no

other output candidate o′ such that o′ is rewritten as o by the ranking transduction.

Using several closure properties of regular (string or tree) languages, one can isolate

the optimal candidates and build a transduction that discards all suboptimal candi-

dates. First, one looks at the set of outputs produced by the ranking transduction.

This is the set of suboptimal outputs. If one subtracts this set from the set of inputs

to the constraint, one winds up with the set of optimal output candidates. One can

then take the diagonal of this set — the transduction that rewrites every element as

itself. This transduction is only defined for the optimal candidates in the input, and

as a result all suboptimal outputs are discarded. As the diagonal of a regular tree

language is guaranteed to be a linear transduction, this method yields the desired

type of transduction for constraints

Example 4.4

Let us return to example 4.2 for a moment. There we had a constraint C that applies

to inputs i, j, k and m and induced a ranking i = j < k < m, so that only i and j

aren’t filtered out by the constraint. Now suppose that we also have a transduction τ

that rewrites i and j as k, and k as m, mirroring the ranking by C . However, nothing

is rewritten as i and j. We can write this more succinctly as τ(i) = k, τ(j) = k,

τ(k) = m, τ(m) = undefined. So applying τ to the set
�

i, j, k, m
	

yields the set

{k, m}. Subtracting the latter from the former, we get
�

i, j, k, m
	

\ {k, m} =
�

i, j
	

.

The diagonal of
�

i, j
	

is a transduction δ that rewrites i as i and j as j but is

undefined for k and m. Hence if one applies δ to
�

i, j, k, m
	

, the output is
�

i, j
	

,

which are exactly the optimal outputs.

Jäger’s strategy makes the transducer approach sufficiently flexible to handle

197

the majority of OT-style constraints, and it is applicable to RCs as we will see later.

There is an important restriction, though. As Jäger shows, representing a ranking

as a transduction yields the correct result only if the OT grammar satisfies global

optimality: if o is an optimal output candidate for input i, then it is an optimal

candidate for every input that it is an output candidate for. This condition is clearly

violated by faithfulness constraints, which evaluate how closely a candidate matches

a given input. But even output markedness constraints, which pay no attention to

the input, can be problematic.

Graf (2010b, 2012d) investigates this issue with respect to RCs. For RCs, the

input plays no role beyond determining the reference set. The actual economy metric

evaluates trees only with respect to their own shape and thus can be regarded as

an output markedness constraint in OT terms. This entails that optimality is global

with respect to reference sets: if two trees have the same reference-set, then the

optimal trees in said reference set are identical for both of them. Moreover, RCs

satisfy a property Graf calls output join preservation.1 An RC preserves output joins

iff it holds for all trees s and t whose reference sets overlap that there is another

tree u whose reference set is a (not necessarily proper) superset of the union of the

reference sets of s and t. Output join preservation holds of RCs because trees are

always members of their own reference set. So if two reference sets overlap, then the

trees in their intersection belong to both reference sets, wherefore their reference

set must subsume the union of the two. Graf shows that output join preservation

and global optimality with respect to reference sets jointly imply global optimality.

Consequently, Jäger’s strategy of defining transductions via rankings can be used

without reservations for modeling RCs.

In order to demonstrate the viability of transducers as a model of RCs, I im-

plement three popular transderivational constraints in the next few sections. In

1 Actually, Graf refers to this as output joint preservation, but I know from a reliable source that
this is not the term he had in mind.

198

the spirit of the OT approach, I present RCs in a modular fashion as a cascade of

linear transducers that each realize a small part of the mapping from suboptimal

derivations to optimal ones. Remember that this is a viable strategy because the

composition of two linear transducers it itself a linear transducer (Engelfriet 1975).

Defining RCs in a piece-wise manner we can break them into small, easily under-

stood parts that can then be recombined into one big transducer representing the

constraint as a whole. Note that this is just a matter of convenience, one could just

as well directly define the complete transducer, but the definition would be a lot

more complex. It is also worth keeping in mind that there are infinitely many ways

to split a transducer into a sequence of smaller ones, so the transducers I describe

are just one of many equivalent ways of defining the transductions induced by the

respective RCs.

4.2 Example 1: Focus Economy

4.2.1 Focus Economy Explained

Our first example is Focus Economy (Szendrői 2001; Reinhart 2006), which was

briefly discussed in the introduction. This constraint is an example of an RC operating

at the interfaces, and as such it differs from syntactic RCs in that it does not filter

out existing derivations but rather restricts the interface structures a derivation may

be mapped to. Technically I will treat Focus Economy as a mapping from trees

to interface structures annotated for stress and focus. Focus Economy makes for

a good first example for two reasons. First, modeling it as a transducer is very

natural considering that it actually involves a change in structure rather than just

the removal of illicit trees. Second, the structural manipulations it carries out are

very simple and involve only node relabelings.

Focus Economy has been invoked in order to account for the fact that sentences

such as (11a), (11b) and (11c) below differ with respect to what is given and what

199

is new information. Once again main stress is marked by boldface.

(11) a. My friend Paul bought a new car.

b. My friend Paul bought a new car.

c. My friend Paul bought a new car.

That these utterances are associated to different information structures is witnessed

by the following (in)felicity judgments. For the reader’s convenience, the focus, i.e.

the new discourse material introduced by each answer, is put in square brackets.

(12) What happened?

a. [FMy friend Paul bought a red car.]

b. # [FMy friend Paul bought a red car.]

c. # [f My friend Paul bought a red car.]

(13) What did your friend Paul do?

a. He [F bought a red car].

b. # He [F bought a red car].

c. # He [F bought a red car].

(14) What did your friend Paul buy?

a. He bought [F a red car].

b. # He bought [F a red car].

c. # He bought [F a red car].

(15) Did your friend Paul sell a red car?

a. # No, he [F bought] a red car.

b. No, he [F bought] a red car.

c. # No, he [F bought] a red car.

(16) Did your friend Paul buy a green car?

a. # No, he bought a [F red] car.

200

b. # No, he bought a [F red] car.

c. He bought a [F red] car.

Restricting our attention to the a-sentences only, we might conclude that a

constituent can be focused just in case one of its subconstituents carries sentential

main stress. A short glimpse at the b- and c-utterances falsifies this conjecture,

though. Perhaps, then, main stress has to fall on the subconstituent at the right edge

of the focused constituent? This is easily shown to be wrong, too. In (17) below, the

stressed constituent isn’t located at either edge of the focused constituent.

(17) a. What happened to Mary?

b. [F John killed her.]

The full-blown Focus Economy system (rather than the simplified sketch given

in the introduction) accounts for the data as follows. First, the Main Stress Rule

demands that in every pair of sister nodes, the “syntactically more embedded” node

(Reinhart 2006:p.133) is assigned strong stress, its sister weak stress (marked in the

phrase structure tree by subscripted S and W, respectively). If a node has no sister, it

is always assigned strong stress (over Minimalist phrase structure trees, this will be

the case only for the root node, as all Minimalist trees are strictly binary branching).

Main stress then falls on the unique leaf node that is connected to the root node by

a path of nodes that have an S-subscript. See Fig. 4.2 for an example.

The notion of being syntactically more embedded isn’t explicitly defined in the

literature. It is stated in passing, though, that “. . . main stress falls on the most

embedded constituent on the recursive side of the tree” (Reinhart 2006:p.133).

While this is rather vague, it is presumably meant to convey that, at least for English,

in which complements follow the heads they are introduced by, the right sister node

is assigned strong stress as long as it isn’t an adjunct. This interpretation seems to

be in line with the empirical facts.

The second integral part of the proposal is the operation Stress Shift, which shifts

201

TPS

T′S

VPS

DPS

APS

carSredW

aW

boughtW

TW

DPW

D′S

PaulSfriendW

myW

Figure 4.2: Stress-annotated phrase structure tree for ‘My friend Paul bought a new
car’.

the main stress to some leaf node n by assigning all nodes on the path from n to the

root strong stress and demoting the sisters of these nodes to weakly stressed nodes.

For instance, the tree for “My friend Paul bought a new red car” is obtained from

the tree in Fig. 4.2 by changing friendW and PaulS to friendS and PaulW , respectively,

and DPW and T′S to DPS and T′W , respectively.

While Stress Shift could be invoked to move stress from anaphoric elements to

their left sister as in (17), this burden is put on a separate rule, for independent

reasons. The rule in question is called Anaphoric Destressing and obligatorily assigns

weak stress to anaphoric nodes, where a node is anaphoric iff it is “. . . D[iscourse]-

linked to an accessible discourse entity” (Reinhart 2006:p.147). Thus Anaphoric

Destressing not only accounts for the unstressed anaphor in (17), but also for the

special behavior of stress in cases of parallelism.

(18) First Paul bought a red car.

a. Then John bought one.

b. * Then John bought one.

The overall system now works as follows. Given a phrase structure tree that has

not been annotated for stress yet, one first applies Anaphoric Destressing to make

202

sure that all d-linked constituents are assigned weak stress and thus cannot carry

main stress. Next the Main Stress Rule is invoked to assign every node in the tree

either W or S. Note that the Main Stress Rule cannot overwrite previously assigned

labels, so if some node n has been labeled W by Anaphoric Destressing, the Main

Stress Rule has to assign S to the sister of n. Now that the tree is fully annotated, we

compute its focus set, the set of constituents that may be focused.

(19) Focus Projection

Given some stress-annotated tree t, its focus set is the set of nodes reflexively

dominating the node carrying main stress.

The focus set of “Paul bought a red car”, for instance, contains [car], [AP red car],

[DP a red car], [VP bought a red car] and [TP Paul bought a red car] (equivalently,

we could associate every node in the tree with a unique address and simply use

these addresses in the focus set). For “Then John bought one”, on the other hand, it

consists only of [John] and [TP Then John bought one].

At this point, Stress Shift may optionally take place. After the main stress has

been shifted, however, the focus set has to be computed all over again, and this time

the procedure involves reference-set computation.

(20) Focus Projection Redux

Given some stress-annotated tree t ′ that was obtained from tree t by Stress

Shift, the focus set of t ′ contains all the nodes reflexively dominating the

node carrying main stress which aren’t already contained in the focus set of

t.

So if “Then John bought one” had been obtained by Stress Shift from [TP Then John

bought one] rather than Anaphoric Destressing, its focus set would have contained

only [John], because [TP Then John bought one] already belongs to the focus set

of “Then John bought one”. As an easy exercise, the reader may want to draw

annotated trees for the examples in (11) and compute their focus sets.

203

4.2.2 A Model of Focus Economy

In order to precisely model Focus Economy, I have to make some simplifying assump-

tions. First, I stipulate that every adjunct (but not the extended projection of the

phrase it adjoins to) is explicitly marked as such by a subscript A on its label. This is

simply a matter of convenience, as it reduces the complexity of the transducers and

makes my model independent from the theoretical status of adjuncts in MGs. No

matter how adjunction is implemented, if it preserves the regularity of MDTLs then

tree transducers can correctly distinguish adjuncts from arguments. The subscript A

simply abstracts away from this extraneous factor.

Second, I only consider MGs without Move for now. This is not due to some

technical limitations — keep in mind that MDTLs are regular with or without Move.

Rather, the interaction of focus and movement is not touched upon in Reinhart

(2006), so there is no original material for me to formalize. Incidentally, movement

seems to introduce several interesting complications, as illustrated by sentences

involving topicalization, where no other assignment of focus and main stress is

grammatical.

(21) a. [F Johni] Paul likes ti.

b. * Johni [FPaul] likes ti.

c. * Johni [F Paul likes ti].

At the end of the section I explain how the model can be extended to capture theories

involving movement.

The last simplification concerns Anaphoric Destressing itself. While the core of

Anaphoric Destressing, the destressing of pronominal (and possibly covert) elements,

is easy to accommodate, the more general notion of d-linking is impossible to capture

in any model that operates on isolated syntactic trees. This is a consequence of

the limitation to purely structural reasoning mentioned in Sec. 4.1.1, which makes

204

it impossible to accommodate discourse factors. However, the role of d-linking

in anaphoric destressing is of little importance here, as our focus is firmly on the

reference-set computational aspects of Focus Economy. This aspect is completely

independent of anaphoric destressing. That is to say, Focus Economy need not

decide which elements may be destressed, it only needs to know which ones are,

and this information can be supplied by some independent mechanism. Hence my

implementation will allow almost any constituent to be anaphorically distressed and

leave the task of matching trees to appropriate discourse contexts to an external

theory of d-linking that remains to be specified.

With these provisions made explicit, we can finally turn to the formalization

of Focus Economy in terms of transducers. The input language I is a set of trees

generated by some movement-free MG E for English. Remember that for movement-

free MGs, derivations and phrase structure trees differ only in their labels, so it does

not matter what kind of trees are fed to the transducer. This also entails that no

matter whether I contains derivations or phrase structure trees, it is a regular tree

language.

The reference-set for a given input tree is computed by the composition of four

linear transducers corresponding to Anaphoric Distressing, the Main Stress Rule,

Stress Shift, and Focus Projection, respectively. Given a tree t derived by E , the

transducer cascade computes all logically possible variants of t with respect to stress

assignment and then computes the focus in a local way. Note that Focus Economy

does not apply during this stage, so no reference-set comparison is carried out yet.

Consequently, the reference set of an input tree contains all trees that are correctly

annotated for stress and involve the focusing of a constituent that contains the

carrier of main stress. This leads to overgeneration with respect to focus, of course,

a problem that is later taken care of by another transduction that enforces the Focus

Economy rule.

Anaphoric Distressing is modeled by a non-deterministic ltdtt that may randomly

205

add a subscript D to a node’s label in order to mark it as anaphoric. The only

condition is that if a node is labeled as anaphoric, all the nodes it properly dominates

must be marked as such, too. In a more elaborate model, the D subscripts would be

supplied by a theory of discourse.

Definition 4.4. Let Σ := ΣL ∪ΣA be the vocabulary of the MG E that generated

the input language I , where ΣL contains all node labels and ΣA their counterparts

explicitly labeled as adjuncts. Anaphoric Destressing is the ltdtt D where ΣD := Σ,

ΩD is the union of Σ and ΣD :=
�

σD | σ ∈ Σ
	

, Q :=
�

qi, qd
	

, F :=
�

qi
	

, and ∆D

contains the rules below, with σ ∈ Σ and σD ∈ ΣD:

qi(σ(x , y))→ σ(qi(x), qi(y)) qi(σ)→ σ

q{i,d}(σ(x , y))→ σD(qd(x), qd(y)) q{i,d}(σ)→ σD

Although this definition looks intimidating, it describes a very simple transducer

that either leaves a node unchanged or adds a subscript D. The state qi is the

default state, indicating that no dominating nodes have been altered so far. Once

the transducer decides to add a subscript, though, it changes into the state qd and

must add the same subscript to all nodes it encounters until it reaches a leaf.

Example 4.5

Suppose the following phrase structure tree is fed as input to Anaphoric Destressing.

TP

VPA

yesterdayAVP

herkissed

DP

NP

Paulfriend

my

Among the many output trees created by the transducer, we also find the linguistically

206

plausible one in which the anaphor her is marked as destressed.

TP

VP

yesterdayAVP

herDkissed

DP

NP

Paulfriend

my

The transducer for the Main Stress Rule is non-deterministic, too, but it proceeds

in a bottom-up manner. It does not alter nodes subscripted by A or D, but if it

encounters a leaf node without a subscript, it randomly adds the subscript S or W to

its label. However, W is allowed to occur only on left sisters, whereas S is mostly

restricted to right sisters and may surface on a left sister just in case the right sister is

already marked by A or D. Note that we could easily define a different stress pattern,

maybe even parametrized with respect to category features, to incorporate stress

assignment rules from other languages.

Definition 4.5. Main Stress is the lbuttM where ΣM := ΩD , ΩM is the union of Σ,

ΣD and Σ∗ :=
�

σS,σW | σ ∈ Σ
	

, Q :=
�

qs, qu, qw
	

, F :=
�

qs
	

and ∆M contains the

following rules, with σ ∈ Σ, σA ∈ ΣA, σx ∈
�

σx | σ ∈ Σ
	

for x ∈ {D, S, W}:

σA→ qu(σA) σA(qu(x), qu(y))→ qu(σA(x , y))

σD→ qu(σD) σD(qu(x), qu(y))→ qu(σD(x , y))

σ→ qsw(σSW) σ(q{u,w}(x), qs(y))→ qsw(σSW (x , y))

σ(qs(x), qu(y))→ qsw(σSW (x , y))

It is crucial in the definition of Main Stress that the transition rules do not cover

207

all logically possible combinations of node labels and states. For example, there is

not transition if both states on the left-hand side are qs. This ensures that no stress

patterns are generated where two sister nodes are both marked with S. Similarly,

there is no rule where the right daughter of a node is qw, so that no right daughter

can ever be subscripted with W , and Should such configurations arise, the transducer

aborts the construction of the output tree and starts with a new one. Due to this,

the transducer generates exactly one output tree for every input, even though it is

non-deterministic. This is the desired behavior, as for every tree there should be

exactly one default stress.

Example 4.6

The phrase structure tree from the previous example is rewritten by Main Stress to

yield the default prosody with main stress on kissed.

TPS

VPS

yesterdayA,WVPS

herDkissedS

DPW

NPS

PaulSfriendW

myW

Stress Shift, in turn, is implemented as a non-deterministic ltdtt that may ran-

domly switch the subscripts of two S/W-annotated sisters.

Definition 4.6. Stress Shift is the ltdtt S where ΣS = ΩS = ΩM , Q :=
�

qi, qs, qw
	

,

F :=
�

qs
	

, and ∆S contains the rules below, with σ ∈ ΣS and σ∗ ∈ Σ∗ :=

208

�

σS,σW | σ ∈ Σ
	

:

qs(σ∗(x , y))→ σSSS(qisw(x), qiws(y)) qs(σ∗)→ σS

qw(σ∗(x , y))→ σW (qi(x), qi(y)) qw(σ∗)→ σW

qi(σ(x , y))→ σ(qi(x), qi(y)) qi(σ)→ σ

This transducer non-deterministically assigns each daughter one of three states. If

the state is qi, the label of the daughter is not altered in the next rewrite step. If it

is qS or qW , the subscript is changed to S or W , respectively. Notice that only three

combinations of states can be assigned to the daughters: qi and qi (nothing changes),

qS and qW , or qW and qS. This ensures that stress shift only creates well-formed

stress patterns where no two daughters have the same stress subscript.

Example 4.7

Among the many outputs produced by Stress Shift for our example tree, we find

the ones for “My friend Paul kissed her yesterday” and “My friend Paul kissed her

yesterday”, as well as the example tree itself (Stress Shift need not change any

subscripts at all).

TPS

VPW

yesterdayA,WVPS

herDkissedS

DPS

NPS

PaulSfriendW

myW

TPS

VPS

yesterdayA,SVPW

herDkissedS

DPW

NPS

PaulSfriendW

myW

209

The last component of the transduction computing the reference set for Focus

Economy is Focus Projection. Focus Projection is formalized as a non-deterministic

ltdtt with two states, q f and qg . The transducer starts at the root in q f . Whenever a

node n is subscripted by W, the transducer switches into qg at this node and stays

in the state for all nodes dominated by n. As long as the transducer is in q f , it may

randomly add a superscript F to a label to indicate that it is focused. Right afterward,

it changes into qg and never leaves this state again. Rather than associating a

stress-annotated tree with a set of constituents that can be focused, Focus Projection

now generates multiple trees that differ only with respect to which constituent along

the path of S-labeled nodes is focus-marked.

Definition 4.7. Focus Projection is the ltdtt F , where ΣF = ΩS , ΩF is the union of

ΩS and ΩF
S := {ωF |ω ∈ ΩS }, Q := {q f , qg}, F := {q f }, and ∆F contains the rules

below, with σ ∈ ΣF and σS ∈ ΣF \
�

σS | σ ∈ Σ
	

:

q f (σS(x , y))→ σS(q f (x), q f (y))

q f (σS(x , y))→ σF
S (qg(x), qg(x)) q f (σS)→ σF

S

q f (σS(x , y))→ σS(qg(x), qg(x)) q f (σS)→ σS

qg(σ(x , y))→ σ(qg(x), qg(y)) qg(σ)→ σ

Example 4.8

Four nodes are viable hosts for the F -subscript in the tree for “My friend Paul kissed

her yesterday”: TP, DP, NP, and Paul. No other node is available because the subscript

may be added only as long as the transducer is in state q f , which it leaves as soon as

210

it encounters a node with subscript W . For the same reason only TP, the higher VP

projection, or yesterday may carry the subscript in the tree for “My friend Paul kissed

her yesterday”.

All four transducers are clearly linear since they only relabel nodes and do not

manipulate any structure, let alone copy subtrees. The ltdtt can be automatically

converted into lbutts, so that one gets four lbutts that can then be composed into

one big lbutt RefSet that rewrites input trees into stress-annotated and focus-marked

output trees. More precisely, the reference set computed by this transducer contains

all variants of a tree t such that I) some subtrees may be marked as adjuncts or

anaphorical material (or both) and thus do not carry stress information, II) there

is exactly one path from the root to some leaf such that every node in the path is

labeled by S, and III), exactly one node belonging to this path is marked as focused.

Now it only remains for us to implement Focus Projection Redux. In the original

account, Focus Projection Redux applied directly to the output of Stress Shift, i.e.

trees without focus information, and the task at hand was to assign the correct

focus. In my system, on the other hand, every tree is fed into Focus Projection and

marked accordingly for focus. This leads to overgeneration for trees in which Stress

Shift has taken place — a node may carry focus even if it could also do so in the

tree without shifted main stress. Consequently, the focus set of “My friend Paul

kissed her yesterday”, for instance, contains [PN Paul], [NP friend Paul], [DP my friend

Paul], and the entire DP. Only the first three are licit foci, though, because the TP

can already be focused with the default stress assignment. Hence the transduction

system devised in this section confronts Focus Projection Redux with the burden

of filtering out focus information instead of assigning it. In other words, Focus

Projection Redux is a constraint.

The constraint Focus Projection Redux can be attached to the reference-set

211

transduction through a mathematical trick. As we will see in a moment, Focus

Projection Redux can be specified as an MSO formula (see Sec. 3.1.3), wherefore it

defines a regular tree language. Every regular tree language L can be turned into

a transduction τ by taking its diagonal: for every tree t, its image under τ is t if

t ∈ L and undefined otherwise. So the diagonal of a tree language corresponds

to a transducer that rewrites every tree in the language by itself and aborts on all

trees that are not contained in the language. This implies that composing RefSet

with the diagonal of the language defined by Focus Projection Redux filters out all

output trees created by the former that do not obey the latter. Concretely, a tree

with shifted stress is filtered out if the F subscript is attached to a node that could

also be focused under default stress.

The MSO definition of Focus Projection Redux relies on two predicates, StressPath

and FocusPath. The former picks out the path from the root to the leaf carrying main

stress, whereas the latter refers to the path from the root to the leaf that would carry

main stress in the absence of stress shift. Hence FocusPath replicates some of the

information that is already encoded in the Main Stress transducer, but there is no

need to worry about this redundancy here.

In the formulas below, A(x), D(x) and S(x) are predicates picking out all nodes

with subscript A, D, S, respectively. These are simply convenient shorthands for

disjunctions; for example, A(x) might stand for TPA(x)∨ VPA(x)∨DPA(x)∨NPA(x).

Moreover, x / y holds iff x is the parent of y , x ≺ y iff x is the left sibling of y , and

x /∗ y iff x dominates y or the two are the same node. The predicate Path(X) holds

of a set X of nodes iff it contains the root of the tree, exactly one leaf, and “has no

holes”, that is to say, if x dominates y and both belong to X , then so does every

212

node between the two.

Path(X) ⇐⇒ ∃r ∃!l ∀z
h

X (r)∧ X (l)∧¬∃x
�

u / r ∨ l / u
�

∧
�

r /∗ z ∧ z /∗ l↔ X (z)
�

i

The Stress Path is simply the unique path in which every node is subscripted with S.

The leaf of this path is the LI carrying primary stress.

StressPath(X) ⇐⇒ Path(X)∧∀x[X (x)→ S(x)]

The Focus Path, on the other hand, extends from the root to the leaf that would carry

default stress. Suppose x is in the path and has daughters y and z. Only one of the

two can be in the path. If y is an adjunct or destressed — indicated by the subscripts

A and D, respectively — then z belongs to the Focus Path irrespective of the linear

order of y and z. In all other cases, the right daughter belongs to the path.

FocusPath(X) ⇐⇒ Path(X)∧∀x ∀y ∀z
h

X (x)∧ x / y ∧ x / z→
�

A(y)∨ D(y)→ X (z)
�

∧
�

¬A(y)∧¬D(y)∧ y ≺ z→ X (z)
�

i

Example 4.9

The Stress Path in “My friend Paul kissed her yesterday” extends from the root

towards Paul.

213

TPS

VPW

yesterdayA,WVPS

herDkissedS

DPS

NPS

PaulSfriendW

myW

Its Focus Path, on the other hand, is identical to the Stress Path of “My friend Paul

kissed her”, the default prosody. Thus it extends from the root to kissed. The two

paths overlap only at the root node.

TPS

VPW

yesterdayA,WVPS

herDkissedS

DPS

NPS

PaulSfriendW

myW

In a tree where no stress shift has taken place, StressPath and FocusPath are

true of the same subsets and any node contained by them may be focused. After an

application of the Stress Shift rule, however, the two paths are no longer identical,

although their intersection is never empty (it has to contain at least the root node).

In this case, then, the only valid targets for focus are those nodes of the Stress

Path that are not contained in the Focus Path. Or the other way round, a node

belonging to both the Stress Path and the Focus path may be focused only if the two

are identical. This is formally expressed by the MSO sentence φ below. Just like

A(x), D(x) and S(x) before, F(x) is a predicate defining a particular set of nodes,

this time the set of nodes with subscript F . I furthermore use X ≈ Y as a shorthand

214

for ∀x[X (x)↔ Y (x)].

φ := ∀x ∀X ∀Y [F(x)∧ X (x)∧ Y (x)∧ StressPath(X)∧ FocusPath(Y)→ X ≈ Y]

Note that φ by itself does not properly restrict the distribution of focus. First of

all, there is no requirement that exactly one node must be focused. Second, nodes

outside StressPath may carry focus, in which case no restrictions apply to them at

all. Finally, both the Stress Path and the Focus Path may be empty, because we have

not made any assumptions about the distribution of labels. Crucially, though, φ

behaves as expected over the trees produced by the transducer RefSet. Thus taking

the diagonal of the language licensed by φ and composing it with RefSet filters out

all trees with illicit foci, and only those. Since the diagonal over a regular language

is a linear transduction, the transduction obtained by the composition is too. This

establishes the computational feasibility of Focus Economy when the input language

is a regular tree language.

So far I have left open the question, though, how movement fits into the picture.

First of all, it cannot be ruled out a priori that the interaction of movement and focus

are so intricate on a linguistic level that significant modifications have to be made to

the original version of Focus Economy. On a formal level, this would mean that the

transduction itself would have to be changed. In this case, it makes little sense to

speculate how my model could be extended to accommodate movement, so let us

instead assume that Focus Economy can remain virtually unaltered and it is only the

input language that has to be modified. If we want the full expressive power of MGs,

then the best strategy is to express Focus Economy as a constraint over derivation

trees, since every MDTL is regular. As the differences between derivations and their

derived trees are very minor, few formal alterations are needed. Of course empirical

factors regarding movement might have to be taken into consideration, but it is

unlikely that linear tree transducers are too weak to accommodate them.

215

4.3 Example 2: Merge-over-Move

Another well-known reference-set constraint is Chomsky’s Merge-over-Move condi-

tion (MOM; Chomsky 1995c, 2000), which is the subject of inquiry in this section.

After a short discussion of the mechanics of the constraint and its empirical moti-

vation, I turn to the formal aspects of implementing MOM. In contrast to Focus

Economy, where the transduction produces new output trees, MOM is a genuine

filter in the sense that it maps a set of trees to a subset of itself. Nonetheless the

procedure for devising a MOM transducer exhibits many parallels to Focus Economy.

4.3.1 Merge-over-Move Explained

In comparison to Focus Economy, modeling MOM is slightly more intricate, because

there are multiple versions of the constraint, which are seldom carefully teased apart

in the literature. Naturally they all share the core idea of MOM: if at some point in a

derivation we are allowed to choose between Merge and Move as the next step of the

derivation, Merge is preferable to Move. This idea can be used to account for some

puzzling contrasts involving expletives (if not indicated otherwise, all examples are

taken from Castillo et al. 2009).

(22) a. There seems to be a man in the garden.

b. * There seems a man to be in the garden.

c. A man seems to be in the garden.

In the original formulation of Minimalist syntax, every derivation starts out with a

multiset of LIs — the numeration — that are enriched with interpretable and uninter-

pretable features, the latter of which have to be erased by feature checking. Under

such a conception, (22a) and (22c) are easy to derive. Let us look at (22c) first. It

starts out with the numeration {seems, to, be, a, man, in, the, garden}. Multiple

applications of Merge yield the phrase [TP to be a man in the garden]. At this point,

216

the Extended Projection Principle (EPP) demands that the specifier of the infinitival

TP be filled by some phrase. The only item left in the numeration is seems, which

cannot be merged in SpecTP. Hence we are stuck with moving the DP a man into

SpecTP, yielding [TP a man to be tDP in the garden]. Afterwards, the TP is merged

with seems and the DP is once again moved, this time into the specifier of seems to

check the case feature of the DP and satisfy the EPP.

For (22a), however, things are slightly different. Here the numeration initially

consists of {there, seems, to, be, a, man, in, the, garden}. Once again we start out

by merging items from the numeration until we arrive at [TP to be [DP a man in the

garden]]. But now we have two options: Merger of there, which is later followed by

moving there into the specifier of seems, thus yielding the grammatical (22a), or first

moving a man into the specifier of to be and subsequently merging there with seems

a man to be in the garden, which incorrectly produces the ungrammatical (22b).

MOM rectifies this overgeneration problem by barring movement of a man into the

specifier of to be, as the more economical route of merging there in this position

is available to us. At the same time, MOM does not block (22c) because we aren’t

given a choice between Merge and Move at any point of its derivation.

Different versions of MOM emerge depending on the setting of two binary

parameters:

P1 Reference set algorithm: indiscriminate/cautious

Indiscriminate versions of MOM (iMOM) pick the most economical derivation

even if it derives an ungrammatical phrase structure tree — such derivations

are said to crash. Cautious versions of MOM (cMOM), on the other hand,

choose the most economical derivation that yields a well-formed tree.

P2 Mode of application: sequential/output

Sequential versions of MOM (sMOM) check for MOM violations after every

step of the derivation. Thus early violations of MOM carry a significantly

217

greater penalty than later ones.MOM applied to the output (oMOM), however,

is sensitive only to the total number of violations, not their timing. So if

derivation d incurs only one violation of MOM, which occurs at step 4 in the

derivation, while derivation d ′ incurs seven, starting at step 5, then d will

win against d ′ under an output filter interpretation of MOM and lose under a

sequential one.

Combining the parameters in all logically possible ways (modulo underspecifi-

cation) yields the four variants isMOM, csMOM, ioMOM and coMOM. All four of

them supposedly use the Identity of Numerations Condition (INC) for computing

reference sets, according to which the reference set of a derivation d contains all the

derivations that can be built from the same numeration as d.“Supposedly”, because

only the sMOM variants have been discussed at length in the literature. The original

proposal by Chomsky (1995c) is what I call csMOM. But the global flavor of csMOM

with its reliance on derivational look-ahead prompted the creation of isMOM as

a strictly local alternative. Indeed isMOM can be argued to contain not even a

modicum of reference-set computation, as it simply states that if there is a choice

between Merge and Move, the former is to be preferred. Whether such a choice

exists can always be checked tree-locally.

For simple cases like (22), where we only have to choose once between Merge

and Move, all MOM variants produce the same results. But as soon as one encounters

examples involving embedded clauses, the predictions diverge.

(23) a. There was [a rumor [that a man was tDP in the room]] in the air.

b. [A rumor [that there was a man in the room]] was tDP in the air.

Both oMOM-versions get the right result: Each sentence prefers Move over Merge

exactly once, so assuming that there are no (grammatical) competing derivations

that start from the same numeration and incur fewer violations, (23a) and (23b)

should both be grammatical. The sMOM variants, on the other hand, struggle with

218

this data. The sentences are built up from the same numeration, so (23b) should

block (23a), since the former violates MOM at a later derivational step than the

latter. In order to account for such cases, Chomsky (2000) stratifies numerations

into subnumeration such that each CP has its own numeration. In the case at hand,

(23a) is built from the numeration {{there, was, a, rumor, in, the, air}, {that, was, a,

man, in, the, room}}, and (23b) from the minimally different {{was, a, rumor, in,

the, air}, {that, there, was, a, man, in, the, room}}. By the INC, then, derivations

built from the former do not belong to the same reference set as derivations built

from the latter.

So now we have a third parameter to take into account. Even though it isn’t

directly related to the makeup of MOM, I will indicate it as a prefix as before.

P3 Application domain: restricted/unbounded

Restricted versions of MOM (rMOM) are parts of a grammar where every CP

has its own numeration. Unbounded versions (uMOM) belong to grammars

with one big numeration.

Taking stock, we have csuMOM as the version of MOM introduced in (Chom-

sky 1995c), isuMOM as its local counterpart, and csrMOM as the modification put

forward in (Chomsky 2000). Somewhat surprisingly, no oMOM variants are enter-

tained in the Minimalist literature, despite the small empirical advantage they have

displayed so far (but comparable proposals have been put forward by advocates of

OT-syntax). For this reason, I shall mostly restrict myself to sMOM variants in the

following.

4.3.2 Properties of Merge-over-Move

The defining property of sMOM is that the timing of violations is more important

than the number of total violations. The earlier a violation occurs, the less optimal a

derivation is with respect to sMOM. Thus the evaluation has to proceed in a bottom

219

up fashion, weeding out candidates with unnecessary instances of Move after every

derivational step. But how exactly should this be accomplished? In the case of Focus

Economy, comparing distinct trees was made easy by the fact that the competing

trees only differ in their node labels, so the tree with default stress could be inferred

from the tree with shifted stress. This made it possible to represent the competing

trees within a single tree (using the FocusPath and StressPath predicates) and thus

emulate the comparative procedures by well-formedness constraints on this one

underlying tree. If we could find a similar way of representing competing derivations

within one derivation tree, a major hurdle in the formalization of MOM would be

out of the way.

Unfortunately there is yet another problem, and this one pertains to sMOM as

well as oMOM, namely the INC. It is impossible for a linear tree transducer to com-

pute the reference-sets defined by the INC. The major culprit here is the restriction

to finite memory, which entails that we can only distinguish between a bounded

number of occurrences of LIs. For some suitably large n, the multiset M ′ obtained

from M := {Johnn, thinksn, thatn, Mary died} by adding one more occurrence of

John, thinks, and that will be indistinguishable from M for the transducer. But the

undefinablity of the INC does not necessarily entail the undefinability of MOM.

4.3.3 A Model of MOM

The INC is both too powerful and too weak. Consider (22) again, repeated here for

the reader’s convenience.

(24) a. There seems to be a man in the garden.

b. * There seems a man to be in the garden.

c. A man seems to be in the garden.

MOM’s objective is to explain why (24b) is ungrammatical, and it does so by

using a metric that makes it lose out against (24a). The grammaticality of (24c), on

220

the other hand, follows from the fact that it isn’t a member of the same reference

set, due to the INC. But identity of numerations is a rather indirect encoding of

the relationship that holds between (24a) and (24b). A formally simpler condition

emerges upon inspection of their derivation trees (cf. Fig. 4.3). Ignoring the feature

specifications of the LIs, we see that the only difference between the respective

derivation trees is the timing of move. Rather than a transducer modeling the INC,

then, all we need is a transducer that will produce (at least) the derivation trees for

(24a) and (24b) when given either as an input. This involves merely changing the

position of the unary branch, which is an easy task for a linear transducer. But now

Merge

Move

Merge

Merge

Merge

Merge

Merge

Merge

gardenthe

in

Merge

mana

to be

there

seems

C

Merge

Merge

Merge

Move

Merge

Merge

Merge

Merge

gardenthe

in

Merge

mana

to be

seems

there

C

Figure 4.3: Modulo the feature components of their LIs, the derivation trees of (24a)
and (24b) differ only in the position of the unary branch

compare these derivations to the one for (24c) in Fig. 4.4 on the next page. The

derivation trees of (24a) and (24b) are essentially the result of non-deterministically

replacing one instance of move in the derivation tree of (24c) by merger with

expletive there. Strikingly, though, rewriting the lower occurrence of Move yields

the grammatical (24a), whereas rewriting the structurally higher occurrence gives

221

Merge

Move

Merge

Move

Merge

Merge

Merge

Merge

gardenthe

in

Merge

mana

to be

seems

C

Figure 4.4: The derivation tree of (24c) can be taken as the basis for the previous
two

rise to the ungrammatical (24b). Now if we design the transducer such that it won’t

rewrite Move as a there-merger after it has already passed up on an opportunity

to do so earlier in the derivation, (24b) cannot be generated from the derivation

tree of (24c). In linguistic parlance, this is tantamount to treating MOM as a well-

formedness condition on derivation trees (note the similarity to the Focus Economy

strategy).

The idea just outlined is captured as follows: First, we take as our input language

I some MDTL. Then we use a transducer α to map this language to a set U of

underspecified derivation trees. The transducer strips away all features from all LIs.

In the TP-domain, it deletes expletive there and rewrites Move as the placeholder �.

The underspecified representation of (24a)–(24c), for instance, is almost identical

to the derivation tree of (24c) except that the two Move nodes are now labeled �

(and their LIs are devoid of any features). These underspecified representations

are then turned into fully specified representations again by the transducer β . It

222

reinstantiates the features on the LIs and non-deterministically rewrites � as Move

or Merger of there, but with the added condition that once a � has been replaced by

Move, all remaining instance of � in the same CP have to be rewritten as Move.

I use J to denote the output language of the transduction realized by β . The

name is meant to be a shorthand for junk, as J will contain a lot thereof, for

two independent reasons. First, the non-deterministic rewriting of � allows for

two occurrences of � to be rewritten as there, which yields the (derivation tree

of the) ungrammatical there seems there to be a man in the garden. Second, the

reinstantiation of the features is a one-to-many map that will produce a plethora of

illicit derivation trees as some LIs may not be able to get all their features checked.

This overgeneration problem is taken care of by intersecting J with I . All outputs

that weren’t already part of the input language are thereby removed, as are the

inputs that violate MOM.

After these important remarks, let us get started on the low-level implementation

of MOM. As mentioned before, I assume that the input language I is an MDTL of

some MG E with lexicon Lex. The transduction α is obtained from composing the

two transducers Remove Features and Underspecify.

Definition 4.8. Remove Features is the deterministic (one-state) relabeling that maps

each l :=

σ :: f1, . . . , fbase, . . . , fn
�

∈ Lex to l ′ := σ fbase
, where fbase is the base feature

of l. The set of these simplified LIs is denoted by Λ.

As every Minimalist LI has exactly one category feature, Remove Features is well-

defined. The map defined by Remove Features is many-to-one, so Λ is finite by virtue

of the finiteness of Lex.

Definition 4.9. Underspecify is the lbuttU , where ΣU := Λ∪
�

Merge, Move
	

, ΩU :=

ΣU ∪ {�}, Q :=
�

q∗, qc, qi, qt
	

, F :=
�

q∗
	

, and ∆U consists of the rules below, where

I use the following notational conventions:

223

• σI (σC) denotes any LI l ∈ Λ whose base feature is I (C),

• the symbol “there” refers to any expletive l ∈ Λ involved in MOM (usually just

there, but possibly also it),

• σl denotes any LI which does not fall into (at least) one of the categories

described above,

• rules for binary branching nodes are stated under the assumption that slices

are right-branching (cf. Sec. 1.2.1).

σl → q∗(σl) Merge(qi∗(y), qc∗(x))→ q∗(Merge(x , y))

σI → qi(σI) Merge(q{i,∗}(y), qi(x))→ qi(Merge(x , y))

there→ qt(there) Merge(q{i,∗}(y), qt(x))→ qi(�(y))

σC → qc(σC) Move(q∗(x))→ q∗(Move(x))

Move(qi(x))→ qi(�(x))

The underspecified derivations have to be turned back into fully specified ones

by the transduction β , which is the composition of Path Condition and the inverse of

Remove Features.

Definition 4.10. Path Condition is the lbutt P , where ΣP := ΩU , ΩP := ΣU ,

Q :=
�

q∗, qc, qo
	

, F :=
�

q∗
	

, and ∆P contains the rules below (the same notational

conventions apply):

σl → q∗(σl) Merge(qc{c,∗}(x), qo{c,∗}(y))→ q∗(Merge(x , y))

σI → q∗(σI) Merge(q{∗,o}(x), qo(y))→ qo(Merge(x , y))

σC → qc(σC) Move(q∗(x))→ q∗(Move(x))

�(q∗(x))→ q∗(Merge(there, x))

�(q{o,∗}(x))→ qo(Move(x))

224

The crucial step toward capturing MOM is the last rule of Path Condition, which

tells the transducer that after it has rewritten one instance of � as Move, it has to

switch into state qo, which tells it to always rewrite � as Move. Only if it encounters

a node of category C may the transducer switch back into its normal state q∗ again.

Figures 4.5 and 4.6 show how Path Condition turns the underspecified derivation

back into the derivations for There seems to be man in the garden and A man seems to

be in the garden (before the features are added back in).

4.3.4 Empirical Evaluation

As discussed above, the transducer model of MOM accounts for simple expletive/

non-expletive alternations as in (24). Instead of going through another iteration

of the same basic argument, let us look at a more complex example that we have

encountered before, repeated here as (25).

(25) a. There was [a rumor [that a man was tDP in the room]] in the air.

b. [A rumor [that there was a man in the room]] was tDP in the air.

Recall that this was a problematic case for pre-Chomsky (2000) versions of MOM

(i.e. csuMOM and isuMOM), because in the absence of stratified numerations the

INC puts (25a) and (25b) in the same reference set, where they have to compete

against each other. Under a sequential construal of MOM, then, (25a) will block

(25b) as it opts for Merge rather than Move at the first opportunity.

Under the transducer conception of MOM (tMOM), on the other hand, (25) is a

straightforward generalization of the pattern in (24). The underspecified derivation

tree of both sentences is shown in Fig.4.7. When the underspecified derivation

is expanded to full derivations again, all four logical possibilities are available:

there-insertion in both CPs, Move in both CPs, there-insertion in the lower CP and

Move in the higher one, and Move in the lower CP and there-insertion in the higher

225

M
er

ge

�

M
er

ge

� q ∗

M
er

ge

to
be

a
m

an
in

th
e

ga
rd

en

se
em

s

C

M
er

ge

�

M
er

ge

q ∗

M
er

ge

M
er

ge

to
be

a
m

an
in

th
e

ga
rd

en

th
er

e

se
em

s

C

M
er

ge

� q ∗

M
er

ge

M
er

ge

M
er

ge

to
be

a
m

an
in

th
e

ga
rd

en

th
er

e

se
em

s

C

q ∗

M
er

ge

M
ov

e

M
er

ge

M
er

ge

M
er

ge

to
be

a
m

an
in

th
e

ga
rd

en

th
er

e

se
em

s

C

M
er

ge

q o

M
ov

e

M
er

ge

M
er

ge

M
er

ge

to
be

a
m

an
in

th
e

ga
rd

en

th
er

e

se
em

s

q c C

Fi
gu

re
4.

5:
R

ew
ri

ti
ng

th
e

un
de

rs
pe

ci
fie

d
de

ri
va

ti
on

tr
ee

in
to

th
e

de
ri

va
ti

on
tr

ee
of

Th
er

e
se

em
s

to
be

a
m

an
in

th
e

ga
rd

en

226

M
er

ge

�

M
er

ge

� q ∗

M
er

ge

to
be

a
m

an
in

th
e

ga
rd

en

se
em

s

C

M
er

ge

�

M
er

ge

q o

M
ov

e

M
er

ge

to
be

a
m

an
in

th
e

ga
rd

en

se
em

s

C

M
er

ge

� q o

M
er

ge

M
ov

e

to
be

a
m

an
in

th
e

ga
rd

en

se
em

s

C

q ∗

M
er

ge

M
ov

e

M
er

ge

M
ov

e

M
er

ge

to
be

a
m

an
in

th
e

ga
rd

en

se
em

s

C

M
er

ge

q o

M
ov

e

M
er

ge

M
ov

e

M
er

ge

to
be

a
m

an
in

th
e

ga
rd

en

se
em

s

q c C

Fi
gu

re
4.

6:
R

ew
ri

ti
ng

th
e

un
de

rs
pe

ci
fie

d
de

ri
va

ti
on

tr
ee

in
to

th
e

de
ri

va
ti

on
tr

ee
of

A
m

an
se

em
s

to
be

in
th

e
ga

rd
en

227

one. The last option is available because the transducer, which is in the “rewrite all

instances of � as Move”-state qo after rewriting � as Move, switches back into the

neutral state q∗ after encountering the CP headed by that. Thus when it encounters

the second � node in the higher CP, it can once again choose freely how to rewrite

it. Provided the four derivation trees obtained from the underspecified derivation

Merge

�

Merge

Merge

in the airMerge

Merge

Merge

�

Merge

Merge

in the rooma man

was

that

rumor

a

was

C

Figure 4.7: Underspecified Derivation Tree of (25a) and (25b).

aren’t filtered out by the MG, they are in turn transformed into the following derived

structures, all of which are grammatical:

(26) a. There was a rumor that there was a man in the room in the air.

b. There was a rumor that [a man]i was t i in the room in the air.

c. [A rumor that there was a man in the room]i was t i in the air.

d. [A rumor that [a man]i was t i in the room] j was t j in the air.

228

The identity of numerations condition of the original version of MOM entails that

these four sentences belong to three distinct equivalence classes, one containing

(26a), one containing (26b) and (26c), and one containing (26d). MOM enriched

with stratified numerations, on the other hand, puts each sentence into its own

equivalence class. Only tMOM lumps them all together into one equivalence class,

which is the more plausible route to take, at least intuitively.

The very fact that Merge variants as well as Move variants can be obtained from

the same underspecified derivation indicates that the transducer version is less of

a relativized ban against Merge and more of a description of the set of possible

continuations of a derivation once a choice pro-Merge or pro-Move has been made.

Empirically, this has the welcome effect that we do not run into the undergeneration

problems that plague isMOM, and to a lesser degree csMOM. Consider the following

utterances.

(27) a. It seems that John was in the room.

b. * John seems it was in the room.

The derivation for either sentence starts out by assembling the small clause [John [in

the room]], which is subsequently merged with a T head (phonetically realized by

was). Now isMOM would enforce base-merger of it into the specifier of the TP, rather

than movement of John into said position. From there on, only ungrammatical

structures can be generated. Either John remains in situ and the derivation crashes

because of the unchecked case feature of John, or John moves over the expletive

into SpecTP of the matrix clause, in violation of the Shortest Move Condition. The

only grammatical alternative, (27a), cannot be generated because it is blocked by

isMOM. With tMOM one does not run into this problem, as it will generate both

sentences, but the second one will probably be filtered out by the MG itself because

of the illicit movement step. The csMOM variant alternates between the two options:

If (27b) is ungrammatical for independent reasons, (27a) does not have to compete

229

against it and will emerge as the winner, just as with the transducer model. If (27b)

is grammatical, it will block (27a), in line with isMOM.

This general theme is repeated in various configurations where other versions of

MOM undergenerate. Shima (2000) lists a number of cases where Merge-over-Move

makes false predictions and, in fact, something along the lines of a Move-over-Merge

principle seems to be required.

(28) a. It is asked [how likely tJohn to win]i John is t i.

b. * John is asked [how likely tJohn to win]i it is t i.

The assembly of [is [how likely John to win]] proceeds as usual. At this point, a

decision has to be made as to whether we want to move John into SpecTP or base-

merge the expletive instead. The isMOM variant once again picks the base-merger

route, so we end up with [it [is [how likely John to win]]. After this phrase is

merged with asked and is, John moves into the specifier of the matrix TP to get its

case feature checked. Unless moving John is barred for independent reasons, (28b)

will be grammatical, so that (28a) will be blocked under both indiscriminate and

cautious construals of MOM. Thus we get the following contrast between different

versions of MOM. The variant isMOM always blocks (28a), csMOM blocks it only

if (28b) is grammatical, and tMOM never blocks it. So for both csMOM and tMOM

we have to make sure that our MG E contains some locality condition that rules out

(28b). A natural candidate would of course be the islandhood of [how likely John

to win].

We also have to make further assumptions about E to rule out cases of super-

raising like (29a) and multiple occurrences of there as in (29b). On a conceptual

level, this is a defensible move as the deviancy of those examples does not seem

to be directly related to MOM, and they are hardly ever discussed with respect to

MOM in the literature. However, if we really wanted to incorporate those restric-

tions into MOM, at least the ban against double there can easily be accommodated

230

by changing from a “once you go Move, you never go back” version of Path Con-

dition to “once you have chosen, it’s always Move”. This is easily accomplished

by replacing the rule �(q∗(x)) → q∗(Merge(there, x)) by the minimally different

�(q∗(x))→ qo(Merge(there, x)).

(29) a. * A man seems there to be in the room.

b. * There seems there to be a man in the room.

Interestingly, at least German allows for multiple expletives to occur in a single

clause, even within the mittelfeld, which is usually considered a part of the TP.

Examples are given in (30) (my own judgments). As multiple expletives can be

hosted by German TPs, the contrast between German and English can’t be reduced

to the fact that German mandatorily requires SpecCP to be filled and thus has two

specifiers that may host expletives.

(30) a. Es/Da
it/there

scheint
seems

da
there

ein
a

Mann
man

im
in.the

Garten
garden

zu
to

sein.
be

b. Es/?Da
it/there

scheint
seems

da
there

ein
a

Mann
man

da
there

im
in.the

Garten
garden

zu
to

sein.
be

’There seems to be a man in the garden.’

c. Es/?Da
it/there

scheint
seems

da
there

ein
a

Mann
man

im
in.the

Garten
garden

da
there

zu
to

sein.
be

’There seems to be a man in the garden.’

If we assume that economy principles are universal, then any cross-linguistic varia-

tion has to arise from other grammar-internal factors. From a transducer perspective,

though, there are no good reasons for such a stipulation. As long as language-

specific variants of a constraint all belong to the same transducer class, they are

all equally economic in a mathematical sense. In the case of Path Condition, the

slight modification proposed above has absolutely no effect on the runtime-behavior

of the transducer, nor is it in any tangible way less intuitive or less “Minimalist”.

Reference-set constraints must not be artificially kept away from matters of crosslin-

231

guistic variation, because this is an empirical domain where they are in principle

superior to standard well-formedness conditions. This has not been noticed in the

syntactic literature yet — e.g. for Müller and Sternefeld (1996:491) “it is [. . .] not

clear how a [reference-set; TG] constraint like Economy can be rendered subject to

parametrization” — but in contrast to well-formedness conditions these constraints

offer multiple loci of parametrization: the transductions α and β , and the definition

of the filter as well as at which point of the transduction it is applied. Now that our

formal understanding of reference-set constraints has finally reached a level where

at least such basic questions can be given satisfactory answers, the initial empiri-

cal questions can be reapproached from a new angle that challenges the received

wisdom on when, where and how reference-set constraints should be employed.

4.4 Example 3: Shortest Derivation Principle

In the last section, I left open how to formalize oMOM, the variant of MOM which

doesn’t weigh violations depending on how early they happen in the derivation. In

other words, oMOM simply counts the number of violations and picks the candi-

date(s) that incurred the least number of violations. This is very close in spirit to the

Shortest Derivation Principle (SDP) of Chomsky (1991, 1995b), which I (and many

authors before me) have also referred to as Fewest Steps.2

The SDP states that if two convergent (i.e. grammatically well-formed) deriva-

tions are built from the same LIs, the one with the fewest operations is to be

preferred. Usually, the set of operations considered by the economy metric is as-

sumed to comprise only Move, the reason being that Merge is indispensable if all

the LIs are to be combined into a single phrase marker. Naively, then, oMOM is but

a variant of the SDP that does not penalize every instance of Move but only those

2Technically, Fewest Steps is the original formulation and the SDP its more “minimalist” reformu-
lation that does away with representational machinery such as Form-Chain. This makes it a better fit
for MGs, and for this reason I prefer the name SDP over the better-known Fewest Steps.

232

where Merge would have been a feasible alternative. Even though I will refrain from

discussing oMOM any further in this section and focus on the SDP instead, their

close relation means that after reading this and the previous section, the reader will

be in possession of all the tools required to formalize oMOM. In fact, I explicitly

encourage the reader to draw at least a sketch of the implementation to test their

own understanding of the material.

Returning to the SDP, I explore two variants of this principle, one being the

original proposal and the other one the result of extending the set of operations

that enter the economy metric to Merger of phonologically unrealized material

such as (certain) functional heads in the left periphery. The underlying intuition

of this extension is that covert material should be merged only if it is required for

convergence. Curiously, this prima facie innocent modification has the potential to

push the SDP out of the realm of linear transductions: the SDP restricted to Move

can be defined by a linear transducer, whereas the SPD applied to Move and Merge

of covert material is not, unless restrictions on the distribution of silent heads are

put into place.

4.4.1 The Shortest Derivation Principle Explained

To give the reader a better feeling for the constraint I once more present a simple

example first. It is a well-known fact that A-movement in English exhibits freezing

effects. While arguments may be extracted from a DP in complement position, as

soon as the DP A-moves to a higher position, usually Spec,TP, extraction is illicit — the

DP’s arguments are frozen in place. This contrast is illustrated in (31).

(31) a. Whoi did John take [DP a picture of t i]?

b. * Whoi was [DP j
a picture of t i] taken t j by John?

At first (31b) seems to be a mere instance of a CED-effect (Huang 1982) as in

(32), so whatever rules out the latter should also take care of (31b).

233

(32) Whoi is [DP a picture of t i] on sale?

The corresponding derivation for this analysis of the ungrammaticality of (31b)

would be (33).

(33) a. [VP taken [DP j
a picture of whoi] by John]

b. [TP [DP j
a picture of whoi] T [VP taken t j by John]]

c. [CP whoi was [TP [DP j
a picture of t i] T [VP taken t j by John]]]

Notably, though, the DP in (31b) is not base-generated in subject position but in

object position, so in theory it should be possible to extract the wh-word from the

DP before it moves into subject position and thus becomes a barrier for movement

in the sense of Chomsky (1986). There are two distinct derivations that make use of

this loophole, the relevant stages of which are depicted in (34) and (35) below.

(34) a. [VP taken [DP j
a picture of whoi] by John]

b. [CP whoi was [TP T [VP taken [DP j
a picture of t i] by John]]]

c. [CP whoi was [TP [DP j
a picture of t i] T [VP taken t j by John]]]

(35) a. [VP taken [DP j
a picture of whoi] by John]

b. [VP whoi taken [DP j
a picture of t i] by John]

c. [TP [DP j
a picture of t i] T [VP whoi taken t j by John]]

d. [CP whoi was [TP [DP j
a picture of t i] T [VP taken t j by John]]]

The first derivation can be ruled out on grounds of the extension condition, which

bans countercyclic movement. The second, however, seems to be well-formed,

provided that extraction of the wh-phrase is licensed by feature checking (in a

phase-based approach, this could be handled by an EPP/OCC-feature, for instance).

So we erroneously predict that (31b) should be grammatical.

Collins (1994) solves this puzzle by recourse to the SDP. Note that (33) and

(34) involve one movement step less than (35). So if (35) has to compete against

234

at least one of the two, it will be filtered out by the SDP. The filtering of (33) and

(34), respectively, is then left to the subject island constraint and the ban against

countercyclic movement (whatever their technical implementation might be in our

grammar).

4.4.2 A Model of the Shortest Derivation Principle

The SDP features interesting extensions of the constraints seen so far. As it punishes

every single instance of Move, it needs some limited counting mechanism, in contrast

to Focus Economy and MOM, which relied on surprisingly simple well-formedness

conditions on somewhat peculiar paths. This means that the SDP is the first time

that we have to fall back to the strategy of Jäger and define a transduction for

the ranking of candidates. This ranking will be computed by a transducer that

non-deterministically adds Move nodes to derivations. That way, if a derivation d

is rewritten as d ′, we know that d is more optimal than d ′. The derivations that

cannot be obtained from other derivations by adding Move nodes are optimal with

respect to the SDP.

As with MOM, we start out with the set of derivation trees of some MG E . And

as we did before, we immediately strip away all the features except the category

feature, which is preserved so that distinct trees with identical string components

won’t be put in the same reference set later on.

Definition 4.11. Remove Features is the deterministic (one-state) relabeling that

maps each l :=

σ :: f1, . . . , fbase, . . . , fn
�

∈ LexE to l ′ := σ fbase
, where fbase is the base

feature of l. The set of these simplified LIs is denoted by Λ.

In the next step, we have to ensure that two derivations wind up in the same

reference set if and only if they differ merely in their number of movement steps. To

this end, we first define a transducer that deletes all unary branches (i.e. branches

representing Move) from the derivation, and then another one which arbitrarily

235

reinserts unary branches. This will generate derivations that were not present at

the stage immediately before we removed all instances of Move, but as the reader

might have guessed, this can easily be fixed by following our own example set in

the previous section and use the input language as a filter — only this time the

“input language“ isn’t the derivation language of E but the language serving as the

input to the transducer that removed all movement nodes, i.e. the output language

of Remove Features. The result of these three transductions and the filtration is

a transduction that relates only those (feature-free) derivations that are identical

modulo movement.

Definition 4.12. Remove Move is the deterministic ltdtt R , where ΣR := Λ ∪
�

Merge,Move
	

,Ω := ΣR \ {Move} ,Q = F :=
�

q
	

, and ∆R consists of the rules

below:

σ→ q(σ) Merge(q(x), q(y))→ q(Merge(x , y))

Move(q(x))→ q(x)

Definition 4.13. Insert Move is the non-deterministic ltdtt I , where ΣI := ΩR ,

ΩI := ΣR , Q = F :=
�

q
	

, and ∆I contains the rules below, with O≤n denoting

n-many unary O-labeled branches or less for some fixed, non-negative n:

σ→ q(σ) Merge(q(x), q(y))→Move≤n(Merge(x , y))

One strong restriction of Insert Move is that at any node in the derivation tree it

can only insert a finite number of movement steps. This is so because a transducer

may only have finitely many rules and after every step in the transduction the

transducer has to move one step up in the input tree, so it cannot remain stationery

at one point and keep inserting one unary branch after another until it finally decides

236

to move on. A transducer with such capabilities is said to have ε-moves, and such

transducers do not share the neat properties of their standard brethren. However,

the restriction to only finitely many unary branches per rewrite-step is immaterial

for MGs. This follows from the simple observation that since the number of features

per LI is finite, and so is the lexicon itself, there is a longest string of features for

each grammar. The length of this string dictates how many movement steps may be

licensed by a single LI, and thus there is an upper bound on the number of movement

steps between any two instances of Merge. For MGs, the limits of the transducer are

inconsequential because they are also limits of the grammar.

The composition of Remove Features, Remove Move, Insert Move, and the diagonal

of the output language of Remove Features will be our reference-set algorithm. It

maps every derivation to the derivations that differ from it only in the number of

Move nodes. The next step, then, is the definition of the economy metric. But for

this not much more work is needed, because the metric is already given by Insert

Move. The transducer all by itself already defines the ranking of all output candidates

relativized to those candidates that compete against each other, so all we have to

do is follow Jäger’s procedure. Recall the basic intuition: the transducer defines a

relation < on the output candidates such that o < o′ iff o′ is the result of applying

the transducer to o. Given this relation, a few nifty regular operations are enough to

filter out all elements that are not minimal with respect to <, i.e. the suboptimal

candidates. The result will be a transduction mapping, as desired, inputs to the

derivation tree(s) over the same LIs that contain(s) the fewest instances of Move — it

only remains for us to reinstantiate the features, which is taken care of by the inverse

of Remove Features, and to remove any output trees that weren’t part of the original

MDTL.

The astute reader may point out that my implementation of the SDP, while tech-

nically correct, leads to both underapplication and overapplication of the intended

principle. Overapplication is caused by the indiscriminate removal of features, in

237

particular movement-licensors that are involved in topicalization, wh-movement and

(possibly) scrambling. As a consequence, these instances of movement will appear

redundant to the SDP and cause the derivation to lose out to the one that involves

only standard A-movement. This is easily fixed by “blacklisting” these features such

that they have to be preserved by Remove Features.

Underapplication, on the other hand, is due to the lack of a transduction that

would remove covert material whose only purpose is to host a movement-licensor

feature. So if, say, a topicalization feature is always introduced by the category

Topic (cf. Rizzi 1997, 2004), a derivation hosting this functional element will never

compete against a derivation without it. For topicalization, this is actually a welcome

result and presents an alternative for avoiding overapplication. In general, though,

this must be regarded as a loophole in the SDP that needs to be fixed lest the

principle can be deprived of any content by assigning every movement feature its

own functional category. A solution is readily at hand: Extend Remove Move and

Insert Move such that they may also remove or insert certain functional elements,

just like MOM’s Underspecify may remove instances of expletive there that can later

be reinserted by Path Condition.

While the parametrization of Remove Features poses no further problems irre-

spective of the MG involved, extending Remove Move and Insert Move to functional

categories will produce the correct results only if our initial grammar does not

allow for recursion in the set of categories that the transducer should remove. In

other words, there has to be an upper limit on the number of removable categories

that can be merged subsequently before non-removable material has to be merged

again. This is because of the previously mentioned inability of linear transducers to

insert material of unbounded size. On a linguistic level, the ban against recursion

in the functional domain is fairly innocent as even highly articulated cartographic

approaches give rise only to a finite hierarchy of projections.

238

4.4.3 Scope Economy: A Semantic SDP?

At first glance, the SDP seems very similar to Scope Economy (Fox 1995, 2000),

which was briefly mentioned in example 3.6 on page 131 during the discussion of

the limits of MSO with respect to semantics. Scope Economy limits the cases where

a quantifier may be covertly displaced via QR. In the original formulation, QR is

allowed only if movement of the quantifier brings about a change in meaning. Later

on, this condition was weakened such that QR is blocked only if it is semantically

vacuous in all configurations. That is to say, if permuting two quantifiers never

changes meaning, then any QR step inducing such a permutation is illicit. For

instance, QR of a universal is blocked across another universal but fine across an

existential because there is a possibility that a new meaning might arise in the

latter case. As Scope Economy is a ban against extraneous movement, one might be

inclined to treat it as a variant of the SDP. But this view is problematic.

First, linear transducers have the same limitations as MSO when it comes to

semantics. They can only read and manipulate structure, all semantic inferences that

be expressed in purely structural terms are beyond their capabilities. This limitation

immediately rules out the strong version of Scope Economy which evaluates the

impact of QR on the specific meaning of the tree. But even the weak interpretation

of Scope Economy exceeds the limits of linear transductions. Recall that the SDP

transduction contains a substep in which Move nodes are inserted in the derivation,

and that a linear transducer can only insert a finitely bounded number of these nodes

at any given position. If Scope Economy were to be implemented in an SDP-style

fashion, these Move nodes would have to inserted in the C-domain, which hosts the

landing sites for QR. But since the size of CPs is unbounded, a single CP may contain

an unbounded number of quantifiers. If all these quantifiers are eligible to undergo

QR, then there is no upper limit of Move nodes that might have to be inserted above

the C-head. Hence no linear transduction could correctly model Scope Economy.

239

But the problem goes even deeper. The limitations of linear transductions could

be overcome by a more powerful transducer model, e.g. extended linear top-down

tree transducers (Graehl et al. 2008; Maletti 2008:cf.). These transducers allow for

ε-transition, which means that rules can be applied arbitrarily often to the same

node. They also preserve regularity, so an RC that can be described by such an

extended linear transduction can still be expressed via Merge (they are not closed

under composition, though, so a cascade of these transducer might not itself be an

extended linear top-down transduction). Hence it might be possible to implement

Scope Economy as an extended linear top-down tree transduction. But the derivation

trees created this way would not be well-formed Minimalist derivations because only

a finite number of LIs may move at any given point in the derivation. Moving an

unbounded number of quantifiers to the same CP simply isn’t possible with canonical

MGs.

I emphasized several times throughout this thesis that MGs provide a very

malleable formalism that can easily be adapted to meet various demands. This

becomes particularly easy once one views MGs as the pairing of MDTLs with a

specific mapping from derivations to multi-dominance trees. The crucial property

of MDTLs is their regularity, and said regularity would be preserved even if an

unbounded number of Move nodes could occur at any position (just like the string

language ab∗a in which an arbitrary number of bs may occur between the two as

is regular). The derivational limits of MGs, then, could be fixed to reign in Scope

Economy, but even this would be insufficient, because the real source of the problem

is the MSO transduction. If there is no upper bound on the number of movement

nodes, then we can no longer reliably pick out the Move nodes that check an LI’s

licensee features. For every licensee feature it is still possible to find the block of

Move nodes that contains the one associated to a matching licensor feature, but it

cannot be determined which node within this block is the right one. This means that

if an unbounded number of quantifiers undergo QR, one can tell that they all will

240

occupy specifiers of the containing CP, but their relative order cannot be uniquely

determined. An existential might end up higher than a universal, or maybe lower,

there is no way to enforce a unique order. But the relative scope of the quantifiers is

exactly what matters for Scope Economy, so if allowing for an unbounded number

of QR steps comes at the price of losing the means to determine their relative order,

there simply is no feasible way of accommodating Scope Economy as a variant of

the SDP.

In conclusion, an SDP-style implementation of Scope Economy is only feasible

for the weakened version that foregoes all semantic interpretation, and even then

the number of quantifiers per CP that may undergo QR must be finitely bounded.

I do not know whether this restriction is empirically tenable. If it turns out that

no such upper bound exists, a viable strategy might be to adopt Scope Economy to

different types of movement. For example, the clustering movement presented in

Gärtner and Michaelis (2010) can combine an unbounded number of constituents

into a single cluster than could then undergo movement to Spec,CP. Provided all

possible orders of quantifiers can be obtained by clustering, Scope Economy could

be stated as a restriction on clustering rather than QR.

4.5 The Chapter in Bullet Points

• Transderivational constraints use a relative notion of grammaticality. A tree is

grammatical only if there is no competing tree that is more optimal according

to the relevant metric.

• Transderivational constraints are modeled by tree transducers. Rather than

acting as a filter that removes suboptimal derivations, they are rewrite rules

that turn suboptimal derivations into optimal ones.

• A tree transducer is linear if isn’t allowed to copy subtrees, which is never

241

needed for transderivational constraints.

• As MDTLs are regular and the image of a regular tree language under a linear

tree transduction is a regular tree language, a transderivational constraint

can be expressed by Merge if it is a linear tree transduction from MDTLs into

themselves.

• Case studies of three constraints from the literature indicate that most trans-

derivational constraints satisfy this property.

242

CONCLUSION

A lot of ground was covered in this thesis, on a technical as well as a conceptual

level. The initial research question concerned the status of constraints in Minimalist

syntax, in particular whether a syntax with constraints is more powerful than one

without. Rather than detailed case studies or philosophical arguments, mathematical

and computational techniques were the essential tools in this inquiry. Minimalist

grammars served as a model of Minimalist syntax, and monadic second-order logic

as a powerful yet computationally well-behaved description language for constraints.

My central result is that all constraints that can be defined in monadic second-

order logic are expressible via Merge. This finding hinges on just two facts: I) Merge

is symmetric in the sense that it involves the checking of a category feature on

the argument and a selector feature on the head, and II) constraints definable in

monadic second-order logic can be converted into finite-state tree automata. In

order to enforce a constraint via Merge, it suffices to refine the lexical entries such

that category and selector features are suffixed with the states of the automaton

computing said constraint. Hence any version of Minimalist syntax that uses sub-

categorization restrictions of some kind furnishes all the means to express a wide

variety of constraints.

The expressive equivalence of Merge and monadic second-order logic has in-

teresting implications. We saw that constraints over representations are exactly

as powerful as constraints over derivations. Moreover, locality restrictions cannot

limit the power of these constraints. Even transderivational constraints can be

expressed via Merge as long as they do not rely on semantic notions such as identity

of meaning.

Crucially, though, all these equivalences hold only with respect to the expressive

power of constraints. Constraints can still differ in succinctness so that some

generalizations are easier to state over representations than derivations, or the other

243

way round. Most importantly, the feature refinement strategy that makes it possible

to express constraints via Merge can cause enormous blow-ups in the size of the

lexicon and as a consequence, it obscures generalizations that could be captured in

a succinct manner by constraints.

To a certain extent, the expressive equivalence of Merge and monadic second-

order logic constitutes cause for worry because the latter can define configurations

that are highly unnatural from a linguistic perspective. Why, then, don’t we find

them in language even though Merge already provides syntax with the necessary

means? One option might be to alter the feature checking mechanism involved in

Merge, but it is unclear how it could be sufficiently weakened and still capture all

subcategorization restrictions. A more intriguing option is that syntax is indeed

capable of generating unnatural languages, but that none of the grammars that do

so are learnable and/or parsable. This would be in the spirit of Chomsky’s (2005)

idea that the class of natural language is restricted by factors external to UG. It will

be interesting to see whether this line of research can limit the class of syntactic

constraints in a meaningful way.

244

SYMBOLS AND ABBREVIATIONS

Φ mapping from derivations to derived trees

ζ mapping from lexical items to slices

CFG context-free (string) grammar

EPP Extended Projection Principle

FSL free slice language

INC Identity of Numerations Condition

(l)butt (linear) bottom-up tree transducer

LI lexical item

(l)tdtt (linear) top-down tree transducer

MCFG multiple context-free grammar

MCFL multiple context-free language

MDTL Minimalist derivation tree language

MG Minimalist grammar

MGRC Minimalist grammar with rational constraints

MOM Merge-over-Move constraint

MRTG multiple regular tree grammar

MRTL multiple regular tree language

MSO monadic second-order logic

PBC Proper Binding Condition

PMCFG parallel multiple context-free grammar

PMCFL parallel multiple context-free language

RC reference-set constraint

SDP Shortest Derivation Principle

SMC Shortest Move Constraint

SPIC Specifier Island Constraint

TAG Tree adjoining grammar

245

TAL Tree adjoining language

246

BIBLIOGRAPHY

Adger, David. 2003. Core syntax: A minimalist approach. Oxford: Oxford University

Press.

Adger, David. 2006. Remarks on minimalist feature theory and Move. Journal of

Linguistics 42:663–673.

Adger, David. 2010. A minimalist theory of feature structure. In Features: Perspectives

on a key notion in linguistics, ed. Anna Kibort and Greville G. Corbett, 185–218.

Oxford: Oxford University Press.

Aoun, Joseph, Lina Choueiri, and Norbert Hornstein. 2001. Resumption, movement

and derivational economy. Linguistic Inquiry 32:371–403.

Backofen, Rolf, James Rogers, and K. Vijay-Shanker. 1995. A first-order axiom-

atization of the theory of finite trees. Technical Report RR-95-05, Deutsches

Forschungszentrum für Künstliche Intelligenz GmbH, Erwin-Schrödinger Straße,

Postfach 2080, 67608 Kaiserslautern, Germany.

Béjar, Susana, and Milan Rezac. 2009. Cyclic agree. Linguistic Inquiry 40:35–73.

den Besten, Hans, and Gert Webelhuth. 1990. Stranding. In Scrambling and barriers,

ed. Günther Grewendworf and Wolfgang Sternefeld, 77–92. New York: Academic

Press.

Blackburn, Patrick, Claire Gardent, and Wilfried Meyer-Viol. 1993. Talking about

trees. In Proceedings of the Sixth Conference of the European Chapter of the Associa-

tion for Computational Linguistics, 30–36.

Blackburn, Patrick, and Wilfried Meyer-Viol. 1994. Linguistics, logics, and finite

trees. Logic Journal of the IGPL 2:3–29.

247

Blackburn, Patrick, Maarten de Rijke, and Yde Venema. 2002. Modal logic. Cam-

bridge: Cambridge University Press.

Borer, Hagit. 1984. Parametric syntax: Case studies in semitic and romance languages.

Dordrecht: Foris.

Brody, Michael. 1995. Lexico-logical form: A radically Minimalist theory. Cambridge,

Mass.: MIT Press.

Brody, Michael. 2000. Mirror theory: Syntactic representation in perfect syntax.

Linguistic Inquiry 31:29–56.

Brody, Michael. 2002. On the status of representations and derivations. In Derivation

and explanation in the minimalist program, ed. Samuel D. Epstein and Daniel T.

Seely, 19–41. Oxford: Blackwell.

Büchi, J. Richard. 1960. Weak second-order arithmetic and finite automata.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6:66–92.

Castillo, Juan Carlos, John E. Drury, and Kleanthes K. Grohmann. 2009. Merge over

Move and the extended projection principle: MOM and the EPP revisited. Iberia

1:53–114.

Chomsky, Noam. 1957. Syntactic structures. The Hague: Mouton.

Chomsky, Noam. 1964. Current issues in linguistic theory. The Hague: Mouton.

Chomsky, Noam. 1965. Aspects of the theory of syntax. Cambridge, Mass.: MIT Press.

Chomsky, Noam. 1973. Conditions on transformations. In A festschrift for Mor-

ris Halle, ed. Stephen Anderson and Paul Kiparsky, 232–286. New York: Holt,

Rinehart, and Winston. Reprinted in Chomsky (1977).

Chomsky, Noam. 1977. On wh-movement. In Formal syntax, ed. Peter Culicover,

T. Wasow, and A. Akmajian, 71–132. New York: Academic Press.

248

Chomsky, Noam. 1981. Lectures on government and binding: The Pisa lectures.

Dordrecht: Foris.

Chomsky, Noam. 1986. Barriers. Cambridge, Mass.: MIT Press.

Chomsky, Noam. 1990. On formalization and formal linguistics. Natural Language

and Linguistic Theory 8:143–1477.

Chomsky, Noam. 1991. Some notes on economy of derivation and representation.

In Principles and parameters in comparative grammar, ed. Robert Freidin, 417–454.

Cambridge, Mass.: MIT Press.

Chomsky, Noam. 1993. A minimalist program for linguistic theory. In The view from

building 20, ed. Kenneth Hale and Samuel Jay Keyser, 1–52. Cambridge, Mass.:

MIT Press.

Chomsky, Noam. 1995a. Bare phrase structure. In Government and binding theory

and the minimalist program, ed. Gert Webelhuth, 383–440. Oxford: Blackwell.

Chomsky, Noam. 1995b. Categories and transformations. In The minimalist program,

chapter 4, 219–394. Cambridge, Mass.: MIT Press.

Chomsky, Noam. 1995c. The minimalist program. Cambridge, Mass.: MIT Press.

Chomsky, Noam. 2000. Minimalist inquiries: The framework. In Step by step: Essays

on minimalist syntax in honor of Howard Lasnik, ed. Roger Martin, David Michaels,

and Juan Uriagereka, 89–156. Cambridge, Mass.: MIT Press.

Chomsky, Noam. 2001. Derivation by phase. In Ken Hale: A life in language, ed.

Michael J. Kenstowicz, 1–52. Cambridge, Mass.: MIT Press.

Chomsky, Noam. 2004a. Beyond explanatory adequacy. In Structures and beyond:

The cartography of syntactic structures volume 3, ed. Adriana Belletti, 104–131.

Oxford: Oxford University Press.

249

Chomsky, Noam. 2004b. The generative enterprise revisited. Discussions with Riny

Huybregts, Henk van Riemsdijk, Naoki Fukui and Mihoko Zushi. Berlin: Mouton de

Gruyter.

Chomsky, Noam. 2005. Three factors in language design. Linguistic Inquiry 36:1–22.

Cinque, Guglielmo. 2005. Deriving Greenberg’s universal 20 and its exceptions.

Linguistic Inquiry 36:315–332.

Collins, Chris. 1994. Economy of derivation and the generalized proper binding

condition. Linguistic Inquiry 25:45–61.

Collins, Chris. 1996. Local economy. Cambridge, Mass.: MIT Press.

Collins, Chris. 2002. Eliminating labels. In Derivation and explanation in the

minimalist program, ed. Samuel D. Epstein and Daniel T. Seely, 42–64. Oxford:

Blackwell.

Comon, H., M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-

son, and M. TommasiK. 2008. Tree automata: Techniques and applications.

Available online: http://www.grappa.univ-lille3.fr/tata. Release from

November 18, 2008.

Cornell, Thomas, and James Rogers. 1998. Model theoretic syntax. In The Glot

International State of the Article Book, volume 1 of Studies in Generative Grammar

48, 101–125. Mouton de Gruyter.

Culy, Christopher. 1985. The complexity of the vocabulary of Bambara. Linguistics

and Philosophy 8:345–351.

Dickinson, Michael. 2001. Solving the mystery of insect flight. Scientific American

284:48–57.

Doner, John. 1970. Tree acceptors and some of their applications. Journal of

Computer and System Sciences 4:406–451.

250

http://www.grappa.univ-lille3.fr/tata

Engelfriet, Joost. 1975. Bottom-up and top-down tree transformations — a compari-

son. Mathematical Systems Theory 9:198–231.

Engelfriet, Joost. 1997. Context-free graph grammars. In Handbook of formal

languages, Vol III: Beyond words, ed. Gregorz Rozenberg and Arto Salomaa, 125–

213. Berlin: Springer.

Engelfriet, Joost, and L.M. Heyker. 1991. The string generating power of context-free

hypergraph grammars. Journal of Computational System Science 43:328–360.

Epstein, Samuel D., Erich M. Groat, Ruriko Kawashima, and Hisatsugu Kitahara.

1998. A derivational approach to syntactic relations. Oxford: Oxford University

Press.

Epstein, Samuel D., and Daniel T. Seely. 2002. Rule applications as cycles in a

level-free syntax. In Derivation and explanation in the minimalist program, ed.

Samuel D. Epstein and Daniel T. Seely, 65–89. Oxford: Blackwell.

Epstein, Samuel D., and Daniel T. Seely. 2006. Derivations in minimalism. Cambridge,

Mass.: Cambridge University Press.

Fillmore, Charles J. 1968. The case for case. In Universals in linguistic theory, ed.

Emmon Bach and R.T. Harms, 1–88. New York: Holt, Rinehart and Winston.

Fox, Danny. 1995. Economy and scope. Natural Language Semantics 3:283–341.

Fox, Danny. 2000. Economy and semantic interpretation. Cambridge, Mass.: MIT

Press.

Frank, Robert, and Giorgio Satta. 1998. Optimality theory and the generative

complexity of constraint violability. Computational Linguistics 24:307–315.

Frey, Werner, and Hans-Martin Gärtner. 2002. On the treatment of scrambling and

adjunction in minimalist grammars. In Proceedings of the Conference on Formal

Grammar (FGTrento), 41–52. Trento.

251

Fujiyoshi, Akio, and Takumi Kasai. 2000. Spinal-formed context-free tree grammars.

Theory of Computing Systems 33:59–83.

Gärtner, Hans-Martin. 2002. Generalized transformations and beyond: Reflections on

minimalist syntax. Berlin: Akademie-Verlag.

Gärtner, Hans-Martin, and Jens Michaelis. 2005. A note on the complexity of

constraint interaction. In Logical aspects of computational linguistics (LACL’05), ed.

P. Blache, E. Stabler, and J. Busquets, number 3492 in Lecture Notes in Artificial

Intelligence, 114–130. Berlin: Springer.

Gärtner, Hans-Martin, and Jens Michaelis. 2007. Some remarks on locality conditions

and Minimalist Grammars. In Interfaces + recursion = language? Chomsky’s

minimalism and the view from syntax-semantics, ed. Uli Sauerland and Hans-Martin

Gärtner, 161–196. Berlin: Mouton de Gruyter.

Gärtner, Hans-Martin, and Jens Michaelis. 2010. On the treatment of multiple-

wh-interrogatives in minimalist grammars. In Language and logos, ed. Thomas

Hanneforth and Gisbert Fanselow, 339–366. Berlin: Akademie Verlag.

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. 1985. Generalized

phrase structure grammar. Oxford: Blackwell.

Graehl, Jonathan, Kevin Knight, and Jonathan May. 2008. Training tree transducers.

Computational Linguistics 34:391–427.

Graf, Thomas. 2010a. Logics of phonological reasoning. Master’s thesis, University of

California, Los Angeles.

Graf, Thomas. 2010b. A tree transducer model of reference-set computation. UCLA

Working Papers in Linguistics 15:1–53.

252

Graf, Thomas. 2011. Closure properties of minimalist derivation tree languages. In

LACL 2011, ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of Lecture

Notes in Artificial Intelligence, 96–111. Heidelberg: Springer.

Graf, Thomas. 2012a. An algebraic perspective on the person case constraint. In

Theories of Everything. In Honor of Ed Keenan, ed. Thomas Graf, Denis Paperno,

Anna Szabolcsi, and Jos Tellings, volume 17 of UCLA Working Papers in Linguistics,

85–90.

Graf, Thomas. 2012b. Locality and the complexity of minimalist derivation tree

languages. In Formal Grammar 2010/2011, ed. Philippe de Groot and Mark-Jan

Nederhof, volume 7395 of Lecture Notes in Computer Science, 208–227. Heidelberg:

Springer.

Graf, Thomas. 2012c. Movement-generalized minimalist grammars. In LACL 2012,

ed. Denis Béchet and Alexander J. Dikovsky, volume 7351 of Lecture Notes in

Computer Science, 58–73.

Graf, Thomas. 2012d. Reference-set constraints as linear tree transductions via

controlled optimality systems. In Formal Grammar 2010/2011, ed. Philippe

de Groote and Mark-Jan Nederhof, volume 7395 of Lecture Notes in Computer

Science, 97–113. Heidelberg: Springer.

Graf, Thomas. 2012e. Tree adjunction as minimalist lowering. In Proceedings of the

11th International Workshop on Tree Adjoining Grammars and Related Formalisms

(TAG+11), 19–27.

Graf, Thomas, and Natasha Abner. 2012. Is syntactic binding rational? In Proceed-

ings of the 11th International Workshop on Tree Adjoining Grammars and Related

Formalisms (TAG+11), 189–197. Paris, France. URL http://www.aclweb.org/

anthology-new/W/W12/W12-4622.

253

http://www.aclweb.org/anthology-new/W/W12/W12-4622
http://www.aclweb.org/anthology-new/W/W12/W12-4622

Grodzinsky, Yosef, and Tanja Reinhart. 1993. The innateness of binding and corefer-

ence. Linguistic Inquiry 24:69–102.

Grune, Dick, and Ceriel J.H. Jacobs. 2008. Parsing techniques. A practical guide. New

York: Springer, second edition.

Harkema, Henk. 2001a. A characterization of minimalist languages. In Logical aspects

of computational linguistics (LACL’01), ed. Philippe de Groote, Glyn Morrill, and

Christian Retoré, volume 2099 of Lecture Notes in Artificial Intelligence, 193–211.

Berlin: Springer.

Harkema, Henk. 2001b. Parsing minimalist languages. Doctoral Dissertation, Univer-

sity of California.

Heim, Irene. 1998. Anaphora and semantic interpretation: A reinterpretation of

Reinhart’s approach. In The interpretive tract, ed. Uli Sauerland and O. Percus,

volume 25 of MIT Working Papers in Linguistics, 205–246. Cambridge, Mass.: MIT

Press.

Heim, Irene. 2009. Forks in the road to Rule I. In Proceedings of NELS 38, 339–358.

Hornstein, Norbert. 2001. Move! A minimalist theory of construal. Oxford: Blackwell.

Huang, C.-T. James. 1982. Logical relations in Chinese and the theory of grammar.

Doctoral Dissertation, MIT.

Huybregts, Riny, and Henk van Riemsdijk, ed. 1982. Noam Chomsky on the generative

enterprise: A discussion with Riny Huybregts and Henk van Riemsdijk. Dordrecht:

Foris.

Johnson, David, and Shalom Lappin. 1999. Local constraints vs. economy. Stanford:

CSLI.

254

Joshi, Aravind. 1990. Processing crossed and nested dependencies: An automaton

perspective on the psycholinguistic results. Language and Cognitive Processes

5:1–27.

Jäger, Gerhard. 2002. Some notes on the formal properties of bidirectional optimality

theory. Journal of Logic, Language, and Information 11:427–451.

Kallmeyer, Laura. 2009. A declarative characterization of different types of mul-

ticomponent tree adjoining grammars. Research on Language and Computation

7:55–99.

Kanazawa, Makoto, Jens Michaelis, Sylvain Salvati, and Ryo Yoshinaka. 2011. Well-

nestedness properly subsumes strict derivational minimalism. In LACL 2011,

ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of Lecture Notes in

Artifical Intelligence, 112–128. Berlin: Springer.

Kanazawa, Makoto, and Sylvain Salvati. 2010. The copying power of well-nested

multiple context-free grammars. In LATA 2010, volume 6031 of LNCS, 344–355.

Kanazawa, Makoto, and Sylvain Salvati. 2012. MIX is not a tree-adjoining language.

In Proceedings of the 50th Annual Meeting of the Association for Computational

Linguistics, 666–674.

Kaplan, Ronald M., and Martin Kay. 1994. Regular models of phonological rule

systems. Computational Linguistics 20:331–378.

Kasper, Robert, Bernd Kiefer, Klaus Netter, and K. Vijay-Shanker. 1995. Compilation

of HPSG to TAG. In Proceedings of the 33rd annual meeting of the Association for

Computational Linguistics, 92–99.

Kasprzik, Anna. 2007. Two equivalent regularizations of Tree Adjoining Grammars.

Master’s thesis, University of Tübingen.

Kayne, Richard S. 1994. The antisymmetry of syntax. Cambridge, Mass.: MIT Press.

255

Kepser, Stephan. 2008. A landscape of logics for finite unordered unranked trees.

In FG-2008, ed. Philippe de Groote, Laura Kallmeyer, Gerald Penn, and Giorgio

Satta.

Kepser, Stephan, and Uwe Mönnich. 2006. Closure properties of linear context-free

tree languages with an application to optimality theory. Theoretical Computer

Science 354:82–97.

Kepser, Stephan, and Jim Rogers. 2011. The equivalence of tree adjoining grammars

and monadic linear context-free tree grammars. Journal of Logic, Language and

Information 20:361–384.

Keshet, Ezra. 2010. Situation economy. Natural Language Semantics 18:385–434.

Kisseberth, Charles. 1970. On the functional unity of phonological rules. Linguistic

Inquiry 1:291–306.

Kobele, Gregory M. 2005. Features moving madly: A formal perspective on feature

percolation in the minimalist program. Research on Language and Computation

3:391–410.

Kobele, Gregory M. 2006. Generating copies: An investigation into structural identity

in language and grammar. Doctoral Dissertation, UCLA.

Kobele, Gregory M. 2008. Across-the-board extraction and minimalist grammars. In

Proceedings of the Ninth International Workshop on Tree Adjoining Grammars and

Related Frameworks.

Kobele, Gregory M. 2010. Without remnant movement, MGs are context-free. In

MOL 10/11, ed. Christian Ebert, Gerhard Jäger, and Jens Michaelis, volume 6149

of Lecture Notes in Computer Science, 160–173.

256

Kobele, Gregory M. 2011. Minimalist tree languages are closed under intersection

with recognizable tree languages. In LACL 2011, ed. Sylvain Pogodalla and Jean-

Philippe Prost, volume 6736 of Lecture Notes in Artificial Intelligence, 129–144.

Kobele, Gregory M., Sabrina Gerth, and John T. Hale. 2012. Memory resource

allocation in top-down minimalist parsing. In Proceedings of Formal Grammar

2012.

Kobele, Gregory M., and Jens Michaelis. 2005. Two type-0 variants of minimalist

grammars. In FG-MoL 2005. The 10th conference on Formal Grammar and the 9th

Meeting on Mathematics of Language, 81–93. Edinburgh.

Kobele, Gregory M., and Jens Michaelis. 2011. Disentangling notions of specifier

impenetrability. In The Mathematics of Language, ed. Makoto Kanazawa, András

Kornia, Marcus Kracht, and Hiroyuki Seki, volume 6878 of Lecture Notes in

Artificial Intelligence, 126–142.

Kobele, Gregory M., and Jens Michaelis. 2012. On the form-meaning relations

definable by CoTAGs. In Proceedings of the 11th International Workshop on Tree

Adjoining Grammars and Related Formalisms (TAG+11), 207–213. Paris, France.

URL http://www.aclweb.org/anthology-new/W/W12/W12-4624.

Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An automata-

theoretic approach to minimalism. In Model Theoretic Syntax at 10, ed. James

Rogers and Stephan Kepser, 71–80.

Kolb, Hans-Peter. 1999. Macros for minimalism: Towards weak descriptions of

strong structures. In Mathematics of syntactic structure, ed. Hans-Peter Kolb and

Uwe Mönnich, 232–259. Berlin: Walter de Gruyter.

Kracht, Marcus. 1995a. Is there a genuine modal perspective on feature structures?

Linguistics and Philosophy 18:401–458.

257

http://www.aclweb.org/anthology-new/W/W12/W12-4624

Kracht, Marcus. 1995b. Syntactic codes and grammar refinement. Journal of Logic,

Language and Information 4:41–60.

Kracht, Marcus. 1997. Inessential features. In Logical aspects of computational

linguistics, ed. Alain Lecomte, F. Lamarche, and G. Perrier. Berlin: Springer.

Magnan, Antoine. 1934. Le vol des insectes. Paris: Hermann et Cle.

Maletti, Andreas. 2008. Compositions of extended top-down tree transducers.

Information and Computation 206:1187–1196.

Michaelis, Jens. 1998. Derivational minimalism is mildly context-sensitive. Lecture

Notes in Artificial Intelligence 2014:179–198.

Michaelis, Jens. 2001. Transforming linear context-free rewriting systems into

minimalist grammars. Lecture Notes in Artificial Intelligence 2099:228–244.

Michaelis, Jens. 2004. Observations on strict derivational minimalism. Electronic

Notes in Theoretical Computer Science 53:192–209.

Michaelis, Jens. 2009. An additional observation on strict derivational minimalism.

In FG-MOL 2005, ed. James Rogers, 101–111.

Michaelis, Jens, and Marcus Kracht. 1997. Semilinearity as a syntactic invariant. In

Logical Aspects of Computational Linguistics, ed. Christian Retoré, volume 1328 of

Lecture Notes in Artifical Intelligence, 329–345. Springer.

Mönnich, Uwe. 1997. Adjunction as substitution. In Formal Grammar ’97, 169–178.

Mönnich, Uwe. 2006. Grammar morphisms. Ms. University of Tübingen.

Mönnich, Uwe. 2007. Minimalist syntax, multiple regular tree grammars and

direction preserving tree transductions. In Model Theoretic Syntax at 10, ed. James

Rogers and Stephan Kepser, 83–87.

258

Mönnich, Uwe. 2012. A logical characterization of extended TAGs. In Proceed-

ings of the 11th International Workshop on Tree Adjoining Grammars and Related

Formalisms (TAG+11), 37–45. Paris, France. URL http://www.aclweb.org/

anthology-new/W/W12/W12-4605.

Morawietz, Frank. 2003. Two-step approaches to natural language formalisms. Berlin:

Walter de Gruyter.

Müller, Gereon. 2005. Constraints in syntax. Lecture Notes, Universität Leipzig.

Müller, Gereon, and Wolfgang Sternefeld. 1996. A-bar chain formation and economy

of derivation. Linguistic Inquiry 27:480–511.

Müller, Gereon, and Wolfgang Sternefeld. 2000. The rise of competition in syntax:

A synopsis. In Competition in syntax, ed. Wolfgang Sternefeld and Gereon Müller,

1–68. Berlin: Mouton de Gruyter.

Nakamura, Masanori. 1997. Object extraction in Bantu applicatives: Some implica-

tions for minimalism. Linguistc Inquiry 28:252–280.

Nunes, Jairo. 2000. Erasing erasure. D.E.L.T.A. 16:415–429.

Nunes, Jairo. 2004. Linearization of chains and sideward movement. Cambridge,

Mass.: MIT Press.

Peters, Stanley, and Robert W. Ritchie. 1971. On restricting the base component of

transformational grammars. Information and Control 18:483–501.

Peters, Stanley, and Robert W. Ritchie. 1973a. Non-filtering and local-filtering trans-

formational grammars. In Approaches to natural language, ed. Jaakko Hintikka,

J.M.E. Moravcsik, and Patrick Suppes, 180–194. Dordrecht: Reidel.

Peters, Stanley, and Robert W. Ritchie. 1973b. On the generative power of transfor-

mational grammars. Information Sciences 6:49–83.

259

http://www.aclweb.org/anthology-new/W/W12/W12-4605
http://www.aclweb.org/anthology-new/W/W12/W12-4605

Potts, Christopher. 2001. Three kinds of transderivational constraints. In Syntax at

Santa Cruz, ed. Séamas Mac Bhloscaidh, volume 3, 21–40. Santa Cruz: Linguistics

Department, UC Santa Cruz.

Pullum, Geoffrey K. 1983. The revenge of the methodological moaners. Natural

Language and Linguistic Theory 1:583–588.

Pullum, Geoffrey K. 2007. The evolution of model-theoretic frameworks in linguistics.

In Model-Theoretic Syntax @ 10, ed. James Rogers and Stephan Kepser, 1–10.

Pullum, Geoffrey K., and Barbara C. Scholz. 2001. On the distinction between model-

theoretic and generative-enumerative syntactic frameworks. In Logical aspects

of computational linguistics: 4th international conference, ed. Philippe de Groote,

Glyn Morrill, and Christian Retoré, number 2099 in Lecture Notes in Artificial

Intelligence, 17–43. Berlin: Springer.

Rabin, Michael O. 1969. Decidability of second-order theories and automata on

infinite trees. Transactions of the American Mathematical Society 141:1–35.

Radzinski, Daniel. 1991. Chinese number names, tree adjoining languages, and mild

context sensitivity. Computational Linguistics 17:277–300.

Raoult, Jean-Claude. 1997. Rational tree relations. Bulletin of the Belgian Mathemat-

ical Society 4:149–176.

Reinhart, Tanya. 2006. Interface strategies: Optimal and costly computations. Cam-

bridge, Mass.: MIT Press.

Rezac, Milan. 2007. Escaping the person case constraint: Reference-set computation

in the φ-system. Linguistic Variation Yearbook 6:97–138.

Rizzi, Luigi. 1990. Relativized minimality. Cambridge, Mass.: MIT Press.

Rizzi, Luigi. 1997. The fine-structure of the left periphery. In Elements of grammar,

ed. Liliane Haegeman, 281–337. Dordrecht: Kluwer.

260

Rizzi, Luigi. 2004. Locality and left periphery. In The cartography of syntactic

structures, ed. Adriana Belletti, volume 3, 223–251. New York: Oxford University

Press.

Rogers, James. 1997. “Grammarless” phrase structure grammar. Linguistics and

Philosophy 20:721–746.

Rogers, James. 1998. A descriptive approach to language-theoretic complexity. Stan-

ford: CSLI.

Rogers, James. 2003. Syntactic structures as multi-dimensional trees. Research on

Language and Computation 1:265–305.

Ross, John R. 1967. Constraints on variables in syntax. Doctoral Dissertation, MIT.

Rounds, William C. 1970. Mappings on grammars and trees. Mathematical Systems

Theory 4:257–287.

Salvati, Sylvain. 2011. Minimalist grammars in the light of logic. In Logic and

grammar — essays dedicated to Alain Lecomte on the occasion of his 60th birthday,

ed. Sylvain Pogodalla, Myriam Quatrini, and Christian Retoré, number 6700 in

Lecture Notes in Computer Science, 81–117. Berlin: Springer.

Schütze, Carson. 1997. INFL in child and adult language: Agreement, case and

licensing. Doctoral Dissertation, MIT.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. 1991. On

multiple context-free grammars. Theoretical Computer Science 88:191–229.

Shieber, Stuart M. 2004. Synchronous grammars as tree transducers. In TAG+7:

Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms,

88–95.

Shima, Etsuro. 2000. A preference for Move over Merge. Linguistic Inquiry 375–385.

261

Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of computational

linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in Computer Science,

68–95. Berlin: Springer.

Stabler, Edward P. 1999. Remnant movement and complexity. In Constraints and

resources in natural language syntax and semantics, ed. Gosse Bouma, Geert-Jan M.

Kruijff, Erhard Hinrichs, and Richard T. Oehrle, 299–326. Stanford, CA: CSLI

Publications.

Stabler, Edward P. 2003. Comparing 3 perspectives on head movement. In Syntax at

sunset 3: Head movement and syntactic theory, ed. A. Mahajan, volume 10 of UCLA

Working Papers in Linguistics, 178–198. Los Angeles, CA: UCLA.

Stabler, Edward P. 2006. Sidewards without copying. In Formal Grammar ’06,

Proceedings of the Conference, ed. Gerald Penn, Giorgio Satta, and Shuly Wintner,

133–146. Stanford: CSLI Publications.

Stabler, Edward P. 2011. Computational perspectives on minimalism. In Oxford

handbook of linguistic minimalism, ed. Cedric Boeckx, 617–643. Oxford: Oxford

University Press.

Stabler, Edward P. 2012. Bayesian, minimalist, incremental syntactic analysis. Ms.,

UCLA.

Stabler, Edward P., and Edward Keenan. 2003. Structural similarity. Theoretical

Computer Science 293:345–363.

Sternefeld, Wolfgang. 1996. Comparing reference-sets. In The role of economy

principles in linguistic theory, ed. Chris Wilder, Hans-Martin Gärtner, and Manfred

Bierwisch, 81–114. Berlin: Akademie Verlag.

Szendrői, Kriszta. 2001. Focus and the syntax-phonology interface. Doctoral Disserta-

tion, University College London.

262

Thatcher, James W. 1967. Characterizing derivation trees for context-free grammars

through a generalization of finite automata theory. Journal of Computer and

System Sciences 1:317–322.

Thatcher, James W., and J. B. Wright. 1968. Generalized finite automata theory with

an application to a decision problem of second-order logic. Mathematical Systems

Theory 2:57–81.

Toivonen, Ida. 2001. On the phrase-structure of non-projecting words. Doctoral

Dissertation, Stanford, CA.

Vijay-Shanker, K., and David J. Weir. 1994. The equivalence of four extensions of

context-free grammars. Mathematical Systems Theory 27:511–545.

Wartena, Christian. 2000. A note on the complexity of optimality systems. In Studies

in optimality theory, ed. Reinhard Blutner and Gerhard Jäger, 64–72. Potsdam,

Germany: University of Potsdam.

Weir, David. 1992. A geometric hierarchy beyond context-free languages. Theoretical

Computer Science 104:235–261.

263

	Introduction
	I Setting the Stage
	Minimalist Grammars
	Minimalist Grammars: The Intuition
	Feature Calculus
	Derivations
	Building Structures
	The Shortest Move Constraint
	Slices

	Formal Definition
	Combining Slices Into Derivation Trees
	The Feature Calculus as Tree-Geometric Constraints
	From Derivations to Multi-Dominance Trees
	Formal Summary

	The Chapter in Bullet Points

	Minimalist Grammars: Advanced Topics
	Selected Formal Results
	Derivational Complexity
	Weak Generative Capacity
	The Importance of Remnant Movement
	Strong Generative Capacity

	Evaluating the Adequacy of Minimalist Grammars
	Relevance of Mathematical Results to Linguistics
	Feature Calculus
	Movement
	Locality
	Derived Trees
	Generative Capacity
	Missing Components

	The Chapter in Bullet Points

	II The Formal Landscape of Constraints
	Constraints on Trees
	A Taxonomy of Constraints
	The Role of Constraints in Linguistics
	The Müller-Sternefeld Hierarchy
	Logic and Constraints
	Formalizing the Research Problem

	Tree-Local Constraints as Merge
	Operations on Minimalist Derivation Tree Languages
	Constraints as Category Refinement: The Basic Idea
	Formal Specification of the Refinement Algorithm
	The Power of Lexical Refinement

	The Relative Power of Constraint Classes
	A Revised Müller-Sternefeld Hierarchy
	Why use Constraints at all?

	Increasing the Faithfulness of MGs
	Locality Conditions
	Agreement and Pied-Piping
	Relaxing the SMC

	The Chapter in Bullet Points

	Transderivational Constraints
	Transderivational Constraints as Rewriting Rules
	Examples of Reference-Set Constraints
	Introducing Tree Transducers
	Putting it All Together

	Example 1: Focus Economy
	Focus Economy Explained
	A Model of Focus Economy

	Example 2: Merge-over-Move
	Merge-over-Move Explained
	Properties of Merge-over-Move
	A Model of MOM
	Empirical Evaluation

	Example 3: Shortest Derivation Principle
	The Shortest Derivation Principle Explained
	A Model of the Shortest Derivation Principle
	Scope Economy: A Semantic SDP?

	The Chapter in Bullet Points

	Conclusion
	Symbols and Abbreviations
	Bibliography

