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Lyme Disease Risk Influences Human Settlement in the Wildland–Urban Interface:

Evidence from a Longitudinal Analysis of Counties in the Northeastern United States

Ashley E. Larsen,* Andrew J. MacDonald, and Andrew J. Plantinga

Department of Ecology, Evolution, and Marine Biology, and Bren School of Environmental Science and Management,
University of California, Santa Barbara, California

Abstract. The expansion of human settlement into wildland areas, including forests in the eastern United States,
has resulted in fragmented forest habitat that has been shown to drive higher entomological risk for Lyme disease. We
investigated an alternative pathway between fragmentation and Lyme disease, namely whether increased risk of Lyme
disease results in a reduced propensity to settle in high-risk areas at the interface of developed and undeveloped lands.
We used longitudinal data analyses at the county level to determine whether Lyme disease incidence (LDI) influences
the proportion of the population residing in the wildland–urban interface in 12 high LDI states in the eastern United
States. We found robust evidence that a higher LDI reduces the proportion of a county’s population residing in
the wildland–urban interface in high-LDI states. This study provides some of the first evidence of human behavioral
responses to Lyme disease risk via settlement decisions.

INTRODUCTION

Globally, emerging infectious disease (EID) events have
increased significantly over time and most EIDs over the
past 70 years were zoonoses originating in wildlife.1 A pri-
mary driver of zoonotic disease emergence, particularly those
with wildlife origins, is land use change, which has and con-
tinues to drive many zoonotic EIDs from Nipah virus in
Malaysia,2,3 to infection with human immunodeficiency virus
in sub-Saharan Africa.4 Furthermore, rates of land use change,
and associated fragmentation of natural habitats, are steadily
increasing across the globe as human population expands.5

These changes in human development and land use patterns
have important ecological implications, including for the dis-
tribution and abundance of reservoir hosts and vectors of
human disease.6 Numerous human diseases are vectored
and/or amplified in nonhuman hosts, including leishmaniasis,
rabies, and Lyme disease, and many of these nonhuman
vectors and hosts are influenced by land use patterns and
land use change.7–9 Thus, understanding how current and
future changes in land use are expected to impact human
disease risk has become an important focus for epidemiolo-
gists, disease ecologists, and public health practitioners.5

Of particular interest to this end has been the case of
Lyme disease in the United States. Lyme disease, caused
by the bacterium Borrelia burgdorferi and vectored by Ixodes
scapularis ticks in the east and I. pacificus ticks in the west,
was recognized as an important emerging infection in the
late 20th century.10 Since its formal recognition more than
30 years ago, Lyme has become the most commonly reported
vector-borne disease in North America and Europe, and
its prevalence and geographic range continue to increase.11

During this same time, changes in land use (i.e., reforesta-
tion and subsequent suburban development), particularly
in the northeastern United States, created conditions that
promote enzootic B. burgdorferi infection, thus enabling
Lyme disease to become zoonotic.12

Since the late 1970s and early 1980s, ecological and epide-
miological research has endeavored to explain patterns of

Lyme disease emergence and identify human risk factors. It
has since been well established that vector tick populations
are higher in forested habitats than in adjacent non-forested
habitat types, such as grassy lawns or old fields.13–20 Analo-
gous relationships were found between forested habitats
more broadly and human cases of Lyme disease. For example,
Glass and others21 found that more cases of Lyme disease
were associated with residences located in forested areas
than in non-forested areas in Baltimore County, Maryland.
Similarly, Kitron and Kazmierczak22 found that Wisconsin
counties with a higher average normalized difference vegeta-
tion index, a remotely sensed vegetation index and surrogate
for forest cover, had higher Lyme disease rates than those
with a lower average normalized difference vegetation index,
suggesting that the presence of forest is an important predic-
tor of human incidence.
Recognition of the importance of forested habitats to the

enzootic disease cycle and transmission to humans prompted
studies of the effects of fragmentation of forested habitats
(often resulting from suburban development in forested
landscapes) on entomological risk factors, such as density of
nymphs (DON), density of infected nymphs (DIN), or nymphal
infection prevalence (NIP), and on patterns of human inci-
dence. Studies exploring the relationship between forest
fragmentation and entomologic risk factors have found
strong evidence of increased entomologic risk associated
with increased forest fragmentation.19,23–26 For example,
Allan and others24 found that DON, DIN, and NIP were
inversely correlated with forest patch area in Dutchess
County, New York. Similarly, Brownstein and others26 found
that increasing fragmentation of forest (decreasing patch size
and increasing distance between patches) in Connecticut
served to increase tick infection prevalence and increase tick
density. A higher density of vectors and a higher prevalence
of infected vectors suggest that human risk of exposure
should be expected to be higher in more fragmented forest
habitats than in more contiguous forest habitats.
For zoonotic spillover to occur, susceptible human hosts

must be interacting with infected vectors. This interaction
should be expected to occur more frequently where subur-
ban neighborhoods intersect with forests that they have
fragmented. As a result, the increased entomologic risk
factors and increased opportunities for human interaction
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with infected vectors are expected to result in higher human
incidence in more fragmented forest habitat. Surprisingly,
empirical evidence for this relationship is much less clear.
Studies attempting to link patterns of human incidence directly
to forest fragmentation have tended to find the opposite or
ambiguous results.26–29 For example, Cromley and others27

found that human incidence is higher in low-density than
in medium-density residential developments around Lyme,
Connecticut. Brownstein and others26 subsequently expanded
this study to the entire state of Connecticut and found that
there were fewer cases of Lyme disease in areas where forests
were smaller and more isolated (i.e., more fragmented) than in
areas with more contiguous forest. Although these two studies
found a negative relationship between human incidence and
forest fragmentation, Jackson and others28,29 found that inci-
dence rates in Maryland were not influenced by population
density or development type, suggesting no effect of fragmen-
tation on Lyme disease incidence (LDI).
This body of research therefore suggests two divergent

conclusions: 1) that forest fragmentation is both associated
with higher entomological risk, and 2) that forest fragmen-
tation is simultaneously associated with lower human inci-
dence of Lyme disease. Synthesis of these divergent results
has been attempted,30 but the discussion is ongoing and
unresolved.31,32 The disagreement between these two con-
clusions and the difficulties associated with reconciling them
yields, at best, ambiguous public health recommendations
and intervention strategies.
The lack of a clear pathway between entomologic risk

and human disease incidence may in part be caused by neglect
of the feedback cycle between forest fragmentation and
LDI that could be confounding statistical analyses. Suburban
development fragments forested habitat, as well as puts per-
sons in closer contact with disease vectors and at higher disease
risk. However, the existence of habitat types and particular
areas of the landscape associated with higher health risks may
themselves modify human development patterns.33,34

The mechanism by which Lyme disease risk could affect
human settlement patterns, in this case the population resid-
ing in the wildland–urban interface (WUI), is through the
effect of risk on housing demand. There is abundant evi-
dence that local demand for housing decreases when resi-
dents are exposed to human health risks associated with
air and water pollution,35–40 hazardous waste sites,41–43 and
nuclear power facilities.44 In turn, lower housing demand
results in less land conversion for new housing construc-
tion45–47 and reduces migration to the area.48,49 By the same
mechanism, counties with higher Lyme disease risk would
have lower demand for new housing construction in the
WUI and lower growth in the share of the population resid-
ing in the WUI.
If settlement decisions, and resulting forest fragmentation,

are made in response to Lyme disease risk through the above
mechanism, and Lyme disease risk is a function of fragmenta-
tion, which follows logically from higher entomologic risk in
fragmented forests reported in the literature, then statistical
analyses attempting to estimate the effect of forest fragmen-
tation on LDI are likely to be biased. This suggestion offers a
possible explanation for the ambiguous findings in the litera-
ture and the unexpected negative relationships reported.
We explored the existence of a second pathway between

LDI and fragmentation. Specifically, we addressed the ques-

tion of whether LDI is affecting human settlement patterns in
the WUI in high LDI states in the northeastern United States.
We used multi-year, county-level land use, population, and
disease incidence data to provide novel insight into human
behavioral modification in response to disease risk and in
doing so, elucidated a common statistical problem that may be
plaguing broader understanding of what drives human LDI.

MATERIALS AND METHODS

Data. Population in the wildland–urban interface. To under-
stand if Lyme disease risk influences human settlement deci-
sions, we investigated whether LDI changes the share of
a county’s population residing in the WUI. The WUI is
defined as the area where structures and other human devel-
opment meet or intermingle with undeveloped wildland.50

A census block, the smallest geographic unit used in the
population census, is classified as WUI if it contains more
than 6.17 housing units/km2 and either 1) more than 50% of
the block is covered by wildland vegetation or 2) vegetation
covers less than 50% of the block, but it is located within
2.4 km of a block that is heavily vegetated (> 75% cover)
and larger than 5 km2.51

Population residing in the WUI in 2000 and 2010 for
each county was obtained from the Silvis Laboratory at
the University of Wisconsin (http://silvis.forest.wisc.edu/).
The Silvis Laboratory website states that the current 2000
and 2010 WUI maps are not comparable. However, the
2000 and 2010 county population totals are comparable
(Radeloff V, unpublished data, December 11, 2013). The
land covers classified as wildlands include coniferous, decid-
uous, and mixed forest; shrubland; grasslands/herbaceous;
transitional; and woody and emergent herbaceous wetlands.
Vegetative cover is measured by using National Land Cover
Data for 200152 and 2006.53 For additional methodologic
details, see Radeloff and others.50 Total county population
was obtained from 2000 and 2010 population censuses.
A county’s WUI population was obtained by summing the
populations of census blocks classified as WUI within a given
county. The census block is the smallest geographic unit
used in the population census. For the 2010 Census, the
average size of census blocks in the contiguous 48 states
(excluding water) was approximately 0.70 km2. The proportion
of the county residing in the WUI (WUIpop) was then calcu-
lated as WUI population divided by total census population.
Lyme disease incidence. We used county level data on the

number of confirmed cases of Lyme disease reported by
county of residence in each county for 1992–1996, 1997–2001,
2002–2006, and 2006–2011.54 We define LDI as the number
of cases in the county per 100,000 total county population.
Total county population is obtained from the most recent
census to a given period. Thus, the 1990 population is the
base for the 1992–1996 counts, the 2000 population is the
base for the 1997–2001 and 2002–2006 counts, and the 2010
population is the base for the 2007–2011 counts.
Additional determinants of WUI population. The decision

to locate in the WUI is likely tied to other attributes beyond
disease risk. For instance, higher income households often
find it advantageous to locate in exurban areas with larger
lot sizes.55 To control for this potential income effect, we
obtained the median household income for each county in
1995 and 2005 from the U.S. Bureau of the Census and used
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the Consumer Price Index to adjust the 1995 values for infla-
tion. Household income data is found at http://www.census
.gov/did/www/saipe/data/statecounty/data/1995.html and the
Consumer Price Index Inflation Calculator is found at http://
data.bls.gov/cgi-bin/cpicalc.pl. We tested models with and with-
out the income covariate (Income).
The decision to locate in the WUI may also be influ-

enced by unobserved characteristics of individual regions.
For instance, state-level policies, such as restrictions on land
development, may lead to differences among states in the
WUI population unrelated to disease risk. Failure to control
for these unobserved characteristics would result in biased
estimates of the relationship between LDI and WUI popula-
tion (caused by omitted variable bias). Similarly, temporal
effects common to all counties (e.g., home mortgage rates)
could influence the decision to locate in the WUI, and as
above could result in biased estimates if omitted from the
regression. To control for these potential regional and year
differences, we tested models with year and state-by-year
fixed effects. The year fixed effect (Year_2010) is a dummy
variable that takes the value 1 for 2010 and the value 0 for
2000. State-by-year fixed effects are dummy variables that
take the value 1 if the observation corresponds to the given
state in the year 2010 and the value 0 otherwise.
Our analysis is focused on counties in the northeastern

United States with high incidence of Lyme disease. To deter-
mine if our results are sensitive to the set of included counties,
we conducted robustness tests with two sample regions. Using
the predictions of Diuk-Wasser and others56 as a guide, we
constructed a small sample of counties, Eastern counties (small
sample), that includes all 404 counties in 12 high LDI states
(CT, DE, ME, MD, MA, MN, NH, NJ, NY, PA, VT, and WI),
and the District of Columbia. A second sample, Eastern
counties (large sample), includes an additional 499 counties
in five states (IL, IN, MI, OH, and VA). All versions of our
model are estimated using the two samples. A third sample,
comprised of all counties in the contiguous 48 states except
those in the large sample of eastern counties, Non-eastern
counties, was used to check whether our main result was
caused by spurious correlation.
Methodological challenge. Because of ethical and logistical

constraints, controlled experiments investigating the effect
of LDI on human behavior, as with many human health and
economics studies, are impossible. Establishing causality in
the absence of random assignment into treatment (e.g., into
LDI value) often relies on quasi-experimental approaches
applied to observational data. These approaches, which include
the panel data model we detail below, can identify causal rela-
tionships under certain conditions, but are also limited by
unobservable bias that precludes a causal interpretation of the
regression coefficients. We used a combination of statistical
approaches to address two common sources of bias in obser-
vational data: omitted variable bias and simultaneity bias.
Although there is no way to know if we have eliminated all
sources of bias, we showed that our results are robust to
changes in sample and model specification.
Controlling for additional determinants of WUI popula-

tion, such as household income, we can mitigate bias stem-
ming from omitted variables, but estimating the effect of LDI
on WUI population faces another critical challenge from
simultaneously determined regressors. Although LDI may
influence an individual’s decision to reside in the WUI, the

presence of persons in the WUI may create the conditions for
high LDI. In other words, the population living in the WUI
and LDI are determined at the same time. To obtain an
unbiased coefficient in a least-squares regression framework,
the dependent variable cannot be determined simultaneously
with any of the regressors because this simultaneity violates
the exogeneity assumption (Supplemental Appendix). Simul-
taneity implies that neither of these two relationships (the
effect of LDI on WUI population or the effect of WUI popu-
lation on LDI) can be identified by separate estimation of
either equation.
In some instances, using a time-lagged variable rather than

the corresponding contemporaneous measure can address
simultaneity problems. In particular, the WUI population
in 2000 (2010) cannot affect LDI that had already occurred
in 1992–1996 (2002–2006). Furthermore, because there is a
delay in the public availability of Lyme disease statistics,
settlement decisions cannot respond contemporaneously to
disease risk. Although this time delay may eliminate the
causal channel from WUI population to LDI, it does not
ensure that there is no correlation between the lagged mea-
sure of LDI and the error term (i.e., the exogeneity require-
ment may still fail). For instance, if broad-leaf forests have
higher DON and NIP with the Lyme spirochete than conifer
forests, and persons have settlement preferences for forest
type, then failure to control for forest composition could again
result in a biased regression coefficient caused by omitted
variable bias. Because forest composition is essentially con-
stant on short time scales, lagged LDI will be correlated
with the error terms capturing the effect of forest composi-
tion on the current WUI population.
If cross-sectional data is available for multiple periods,

then fixed effects can be used to mitigate problems with
omitted variables. For our study, this involves estimating a
separate intercept term (or dummy variable) for each county.
These county-fixed effects control for any time-invariant
characteristics of a county (including forest composition) that
may otherwise result in correlation between the lagged
measure of LDI and the error term. Another way to deal
with unobserved differences among counties is the random
effects model. However, this model requires the county
random effect to be uncorrelated with LDI and all other
explanatory variables. The difference between fixed and
random effects models is discussed in more detail in the
Supplemental Appendix.
Regression models. To evaluate the potential simultaneity

bias, we first regressed the share of the county’s population
residing in the WUI on the contemporaneous measure of LDI
and a constant term. Formally, the cross-sectional models we
estimate are specified:

WUIpop _ 00 = b0 + b1LDI _ 00 + e ð1Þ

WUIpop _ 10 = b0 + b1LDI _ 10 + e ð2Þ

where LDI_00 (LDI_10) is the measure of LDI in 2000
(2010), WUIpop_00 (WUIpop_10) is the share of the popu-
lation in the WUI in 2000 (2010), b0 is the intercept,
b1 is the slope coefficient we are estimating, and e is the
error term.
To address the potential simultaneity between WUIpop

and LDI, we pooled the WUIpop variables for 2000 and
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2010 (WUIpop_0010) and use the lagged measures of LDI.
Formally, the model is specified:

WUIpop_0010 = b0 + b1LDI_ lagged + b2Year_2010 + e ð3Þ
where LDI_lagged includes the pooled LDI measures for
1992–1996 and 2002–2006, and Year_2010 captures any time
effects common to all counties. Because (3) specifies a com-
mon intercept term, b0, it does not control for the influence
of time-invariant county characteristics that may cause lagged
LDI to be correlated with the error term.
The last set of models includes county fixed effects to

control for any time-invariant factors that affect the WUI
population. The lagged LDI model with county and year
fixed effects is formally specified as

WUIpop_0010 = bi + b1LDI_ lagged + b2Year _2010 + e ð4Þ
where the intercept, bi, now takes a different value for each
county i. The final model is the same as (4) except that it

also includes the income variable (Income) and state-by-year
fixed effects.

RESULTS

The variables used in the analysis are summarized in
Table 1 and shown in Figure 1. The mean county share of the
population living in the WUI increased during 2000–2010
in all three samples, although the gain was smallest in the
small sample of eastern counties. Mean LDI was highest for
the small sample of eastern counties, although it increased
steadily from the early 1990s to the late 2000s in the small
and large samples of eastern counties. Finally, average house-
hold income in inflation-adjusted dollars increased slightly
during 1995–2005 in all samples. We mapped the 2010 mea-
sure of WUI population and the 2007–2011 measure of LDI
(Figure 1). It is evident that counties with high LDI tend
to have a large share of its population residing in the WUI.

Table 1

Summary statistics for variables used in the analysis*

Variable Period

Eastern counties (large sample) Eastern counties (small sample) Non-eastern counties

Mean SD Mean SD Mean SD

WUlpop 2000 0.377 0.324 0.429 0.321 0.478 0.303
WUlpop 2010 0.384 0.329 0.432 0.324 0.489 0.306
LDI 1992–1996 39.9 202.8 83.7 297.3 3.9 13.4
LDI 1997–2001 54.3 224.4 117.0 324.8 2.3 6.2
LDI 2002–2006 84.4 259.7 180.6 365.4 2.2 7.1
LDI 2007–2011 114.9 232.2 238.3 300.9 2.3 13.7
Income 1995 44,255 10,213 45,400 10,591 36,500 8,351
Income 2005 44,885 11,146 46,841 11,522 36,662 8,455
No. observations 903 404 2,204

*WUIpop is the share of the county population living in the wildland-urban interface; LDI is the number of confirmed cases of Lyme disease in a county per 100,000 population; Income is mean
household income in 2005 U.S. dollars. Eastern counties (large sample), Eastern counties (small sample), and Non-eastern counties represent the three different samples evaluated.

Figure 1. Proportion of the United States population residing in the wildland–urban interface (WUI) in 2010 and Lyme disease incidence
per 100,000 county residents for 2007–2011.
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However, many counties with large WUI populations, such
as those in the Rocky Mountain region, have relatively low
LDI, suggesting that factors other than LDI are important
for explaining variation in WUI population shares.
Estimation results are shown in Table 2 for the cross-

sectional and pooled models (equations 1–3) and the two
eastern samples. To avoid small coefficient estimates and
standard errors, we multipled the WUIpop variable by 1,000
before estimation. In each of the six models, we estimate a
positive coefficient on the contemporaneous measure of LDI.
All estimates are significantly different from zero and have a
high degree of confidence. These results are counterintuitive
because one would expect high LDI to deter persons from
locating in the WUI. Use of the time-lagged incidence mea-
sure (equation 3) does not change the qualitative nature of the
results. The coefficients on the LDI variable are still positive

and significantly different from zero. The adjusted R2 mea-
sures for these regressions are small (2.2–10.7%), suggesting
that additional explanatory variables are needed.
Results for the fixed effects models are shown in Table 3.

The first four columns in Table 3 show the estimates for
equation (4) (the county fixed effects are not reported). We
include a constant term in the model, which requires that
the fixed effect for one county be omitted. For the large and
small samples of eastern counties, the estimated coefficients
on the LDI measure are negative, significantly different from
zero, and show a high degree of confidence. The coefficient
estimate changes only slightly when the more restrictive
sample is used. The negative coefficients on LDI_lagged con-
form with expectations, indicating that as LDI in a county
increases, the WUI population decreases, all else equal. The
fixed effects models explain a large share of the variation

Table 2

Cross-sectional models (equations 1 and 2) and pooled models (equation 3) of the county population share living in the wildland-urban interface*
Variable Coefficient SE P Variable Coefficient SE P

Eastern counties (large sample) Eastern counties (small sample)
2000 2000

LDI_00 0.232 0.047 < 0.001 LDI_00 0.188 0.048 < 0.001
Constant 364.2 10.951 < 0.001 Constant 407.1 16.693 < 0.001
Adjusted R2 = 0.025 Adjusted R2 = 0.034

2010 2010
LDI_10 0.372 0.046 < 0.001 LDI_10 0.356 0.051 < 0.001
Constant 341.7 11.790 < 0.001 Constant 347.6 19.417 < 0.001
Adjusted R2 = 0.068 Adjusted R2 = 0.107

2000 and 2010 pooled 2000 and 2010 pooled
LDI_lagged 0.211 0.033 < 0.001 LDI_lagged 0.170 0.034 < 0.001
Year_2010 −1.718 15.258 0.910 Year_2010 −13.131 22.581 0.561
Constant 368.4 10.819 < 0.001 Constant 414.9 16.049 < 0.001
Adjusted R2 = 0.022 Adjusted R2 = 0.028
Dependent variable = WUIpop + 1,000
*Cross-sectional and pooled models with contemporaneous (LDI_00 or LDI_10) and lagged (LDI_lagged) measure of Lyme disease incidence in the small sample and large sample of Eastern

counties. LDI is the number of confirmed cases of Lyme disease in a county per 100,000 population and WUIpop is the share of the county population living in the wildland–urban interface.
In both samples and both years, we found a counterintuitive positive relationship that was significant (P < 0.05) when contemporaneous LDI was used. Using lagged LDI did not change the sign
or statistical significance of the result.

Table 3

Fixed effects models (equation 4) of the county population share living in the wildland–urban interface*
Variable Coefficient SE P Variable Coefficient SE P

Eastern counties (large sample)
LDI_lagged −0.019 0.007 0.006 LDI_lagged −0.016 0.007 0.018
Year_2010 8.525 1.508 < 0.001 Year_2010 0.554 43.271 0.990
Constant 377.6 1.079 < 0.001 Income 0.001 0.000 0.175

Constant 347.7 21.959 < 0.001
State-by-year effects: No State-by-year effects: Yes
Adjusted R2 = 0.991 Adjusted R2 = 0.991

Eastern counties (small sample)
LDI_lagged −0.015 0.006 0.012 LDI_lagged −0.016 0.006 0.008
Year_2010 4.817 2.026 0.018 Year_2010 −0.646 21.734 0.976
Constant 430.4 1.463 < 0.001 Income 0.001 0.001 0.091

Constant 375.8 32.243 < 0.001
State-by-year effects: No State-by-year effects: Yes
Adjusted R2 = 0.993 Adjusted R2 = 0.993

Non-eastern counties
LDI_lagged −0.098 0.092 0.287 LDI_lagged −0.116 0.095 0.219
Year_2010 11.947 1.305 < 0.001 Year_2010 23.945 15.619 0.125
Constant 477.9 0.984 < 0.001 Income 0.0005 0.0005 0.295

Constant 460.2 17.005 < 0.001
State-by-year effects: No State-by-year effects: Yes
Adjusted R2 = 0.980 Adjusted R2 = 0.980
Dependent variable = WUIpop + 1,000
*Year and county fixed effects models with lagged Lyme disease incidence for the small sample and large sample of eastern counties, and a model robustness check with non-eastern counties.

Including county and year fixed effects we find a negative and significant relationship between LDI and WUI population in both eastern samples. LDI is the number of confirmed cases of Lyme
disease in a county per 100,000 population and WUIpop is the share of the county population living in the wildland–urban interface. This relationship holds when state-by-year fixed effects and
income are included, and, as expected, is not observed in non-eastern counties where LDI is much lower. The high R2 is caused by the inclusion of fixed effects, as can be determined by comparing
the fixed effects model to the cross-sectional models in Table 2.

LYME DISEASE RISK AND HUMAN SETTLEMENT 751



(approximately 99%) in the WUI population among counties
and over time. The high adjusted R2 statistics are due primarily
to the county fixed effects, not to the LDI variable, as suggested
by a comparison with the pooled model results in Table 2.
For the final specification, we augment equation (4) by

including a measure of household income and state-by-year
fixed effects (columns 5–8 of Table 3). The coefficient on
Income is positive for all three samples, but not significantly
different from zero at standard confidence levels. Including
Income and state-by-year fixed effects (not reported) has
only a small effect on the estimated LDI_lagged coefficient.
Importantly, the coefficient estimate remains negative and
significantly different from zero for the two eastern samples.
As a final robustness check, we estimate the two fixed

effects models using the sample of non-eastern counties
(bottom panel of Table 3). If the effects we find in north-
eastern counties truly measure a human response to Lyme
disease risk, those effects should disappear in areas where
Lyme disease risk is low. As shown in Table 1, mean LDI is
close to zero in the non-eastern sample of counties. When
we estimated the fixed effects models with this sample, the
coefficients on LDI_lagged became much larger in absolute
value and the standard errors increase by a factor of 13. The
estimates are no longer significantly different from zero.
To understand the magnitude of the effects, consider that

the average population for counties in the Eastern counties
(small sample) was 183,132 persons in 2010, of which 43.2%
(79,113 person) lived in the WUI on average. Over the period
2007–2011, there was an average of 238 Lyme disease cases
per 100,000 population. Our results indicate that, for the
average county, a 10% increase in Lyme disease cases per
100,000 population resulted in 70 fewer persons locating in
the WUI (70 = 0.10 + 238 + 0.000016 + 183132). Thus, a
10% increase in LDI translates into approximately a 0.1%
decrease in the WUI population.

DISCUSSION

Approximately 60% of human pathogens are zoonotic,57,58

and many of these are closely intertwined with land use and
land use change.5 Land use patterns and land use change can
drive environmental modifications that promote vector or
reservoir host populations (e.g., increased standing water for
irrigation, reduced predation on reservoir hosts). These same
patterns and changes can also influence human encounter
rates with vectors and reservoir hosts of disease as human
settlements encroach upon, and intermingle with, natural
habitat. There is strong evidence that habitat modification, in
the form of forest fragmentation, is a driver of entomologic
risk for Lyme disease,19,23–26 and it follows logically that
increased entomologic risk, coupled with increased human
population in high-risk areas, should increase LDI. How-
ever, empirical studies testing this theory have found sur-
prisingly divergent results, often reporting the opposite of
the expected relationship.26–29

One possible cause of the divergent results reported in
the literature is a simultaneous relationship between LDI
and human settlement in high-risk areas, which often results
in fragmentation of natural habitat. We provide evidence of
an alternative pathway from LDI to forest fragmentation,
namely that LDI has a negative and statistically significant
effect on the population residing in the WUI. Rather than

using forest fragmentation metrics as in earlier studies, we
instead examine the share of a county’s population residing
in the WUI to provide a more precise measure of human
exposure to entomologic risk because forest fragmentation
can occur without human settlement.
We isolated a significant negative effect of LDI on human

population residing in the WUI only after we included con-
trols for the feedback from WUI population to LDI. When
this feedback is ignored, LDI is found to have a counter-
intuitive, positive effect on population residing in the WUI.
This feedback is the root cause of simultaneity bias, which,
as the name suggests, is caused by the dependent and one
or more right-hand side variables being determined simulta-
neously. The counterintuitive result in our case is consistent
with there being a simultaneous relationship between WUI
population and LDI. Beyond biasing the estimated effect of
LDI on the WUI population, this relationship would also bias
the estimated effect of WUI population (or forest fragmenta-
tion, as in previous studies) on LDI.
Several previous studies have estimated the effect of

forest fragmentation on LDI and reported counterintuitive
findings. For instance, Brownstein and others26 used fragmen-
tation metrics, mean patch size and mean patch isolation, cal-
culated for towns in Connecticut to predict human incidence
rates of Lyme disease by using Poisson regression models. The
authors found a significant positive relationship between mean
patch size and LDI and a significant negative relationship
between mean patch isolation and LDI, suggesting that human
cases are more common in areas with larger, less isolated forest
patches.26 This result is in contrast with field-collected data on
tick density and infection prevalence from the same study.26

Similarly, Jackson and others28 used calculated land-cover
metrics (e.g., landscape area, percentage of landscape in
forest, length of edge habitat around forest patches) to pre-
dict reported LDI in a 12-county area of Maryland by using
regression analysis. The authors found ambiguous rela-
tionships, ranging from weakly positive to weakly negative,
between number of forest patches < 2 hectares (a measure
of fragmentation) and LDI depending on which other vari-
ables were included in the model. As a result, this fragmen-
tation metric was dropped from the final model, suggesting
that fragmentation had no explanatory power in the analysis.
Furthermore, neither development type nor population den-
sity were significant predictors of LDI in the study area.29

As in these studies, we also obtained unexpected results
when the feedback from forest fragmentation to LDI was
not accounted for. Intuitively, high LDI would not be
expected to increase the human population residing in the
WUI where entomologic risk is high. To control for the feed-
back from WUI population to LDI, we used a time-lagged
measure of LDI and included county fixed effects in the
model. Although lagging LDI eliminates the simultaneity
with WUI population, it does not ensure that the exogeneity
condition (i.e., no correlation between lagged LDI and the
disturbance terms) will be satisfied. If there are determinants
of WUI population that change little over time, and they are
not measured by independent variables, their influence on
WUI population will be captured in the model’s disturbance
terms. If these time-invariant factors are also correlated with
LDI, then there will be correlation between the disturbance
terms and lagged LDI, which is a potential source of omitted-
variable bias.
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As discussed above, county forest composition is one such
time-invariant factor that could induce correlation between
lagged LDI and errors in WUI population. Road densities
are a second potential source of omitted-variable bias. Higher
road densities increase human access to the WUI and, there-
fore, are likely to be associated with higher WUI popula-
tions. Roads can also be the cause of forest fragmentation
and may affect how easily host species move between forest
fragments (i.e., the permeability of non-forest habitats),
which could in turn affect important entomologic risk factors
such as DON or NIP within forest fragments.28,29 Because
county road densities change little within a 10-year time
period, LDI measures for 1992–1996 (2002–2006) are likely
to be correlated with road densities in 2000 (2010). Thus, if
the WUI population model does not include road density as
an independent variable (see equation 3), there can be correla-
tion between the model’s disturbance terms and the lagged
LDI measure.
The solution to this omitted variable bias problem is to

control for the time-invariant determinants of WUI popula-
tion. In this case, their effects are no longer captured by the
model’s disturbance terms, thereby eliminating the induced
correlation with the lagged LDI measure. Because it is dif-
ficult to identify, much less measure precisely, all of the
potential time-invariant determinants of WUI population, we
include county fixed effects in the model. A county fixed
effect is a catch-all variable that measures the combined influ-
ence of all time-invariant factors on a county’s WUI popula-
tion. When we include county fixed effects in the model
(equation 4), the lagged LDI measure has the expected
negative effect on WUI population. This finding is robust to
two alternative samples of eastern counties and, as expected,
the coefficient on lagged LDI becomes statistically insignifi-
cant when we use a sample of counties with low LDI.
In addition to identifying a possible explanation of the

divergent results presented in the literature on forest frag-
mentation as a driver of entomologic risk but not LDI, our
results imply that humans respond to risk of acquiring Lyme
disease through settlement choice. Humans respond to risk
through behavioral changes aimed at risk reduction. This
response is particularly true of risk of acquiring infectious
diseases, behavioral responses to which range from washing
hands to avoid rhinovirus infection, to using bed nets and
insecticides to reduce malaria transmission. Larger scale
measures such as draining wetlands59 or altering animal hus-
bandry practices60 have also been undertaken in efforts to
reduce human disease risk. One would expect humans to also
respond to Lyme disease risk through behavioral changes.
There is abundant evidence that demand for housing decreases
in areas where human health risks are greater. Given the
strong association between forested, especially fragmented
forest, habitats and increased entomologic risk, reduced pro-
pensity to reside in the WUI is one way for humans to avoid
this increased risk.
Societies and persons have correctly associated particular

habitats with increased disease risk and have been avoiding
these habitats since before the modern germ theory of dis-
ease became widely accepted. The name malaria came from
a pre-germ theory association between the symptoms of
Plasmodium infection and the bad air emanating from swamps
and marshes where the malaria vector breeds. As the miasma
theory of disease, which produced these early associations,

gave way to the germ theory and modern science, avoidance
of swamps and associated bad air gave way to the use of bed
nets, insecticides, and destruction of mosquito breeding habi-
tat. Having eradicated malaria in addition to many other
infectious diseases, from smallpox, to polio, to hookworm,
throughout the developed world, the possibility that infec-
tious diseases could be altering behavior or changing settle-
ment patterns at such a scale in the developed world is easily
overlooked. However, in this study we found that humans
make settlement decisions, altering larger scale patterns of
development, in response to Lyme disease risk.
This alternative pathway between LDI and forest frag-

mentation has not yet been investigated,61 and although the
results obtained here are novel, they may not be limited to
Lyme disease. Many other zoonotic diseases are influenced
by land use and land use change from Nipah virus and leish-
maniasis to malaria and infection with human immuno-
deficiency virus.1–9,62 With the increase in zoonotic disease
emergence and spread globally, it is necessary to understand
what land use configurations inhibit or exacerbate disease
incidence. Further, accounting for human behavioral responses
to risk will be critical to identifying relationships between land
use and human disease into the future.
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