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Chapter 9

Gene Drive Strategies for
Population Replacement

John M. Marshall1 and Omar S. Akbari2
1Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA,
2
Department of Entomology, University of California, Riverside, CA, USA

INTRODUCTION

After 3.8 billion years of research and development, Nature has provided

inspiration for a plethora of human design problems. During the

Renaissance, Leonardo da Vinci designed a flying machine inspired

by the anatomy of birds. Today, Nature’s evolutionary solutions are inform-

ing the design of solar panels from photosynthesis, and digital displays using

the light-refracting properties of butterfly wings. Nature’s intricate structures

and processes may also help in the fight against mosquito-borne diseases.

Gene drive—the process whereby natural mechanisms for spreading genes

into populations are used to drive desirable genes into populations (e.g.,

genes conferring refractoriness to malaria or dengue fever in mosquitoes)—

is another example of Nature’s processes being applied for the benefit of

humanity. Gene drive systems may either spread from low initial frequencies

or display threshold properties such that they are likely to spread if released

above a certain frequency in the population and are otherwise likely to

be eliminated.

Population replacement, in this context, refers to the process whereby a

population of disease-transmitting mosquitoes is replaced with a population

of disease-refractory ones. Several approaches are being explored to engineer

mosquitoes unable to transmit human diseases, and there have been a number

of notable successes. For example, Isaacs et al. have engineered Anopheles

stephensi mosquitoes expressing single-chain antibodies that prevent

Plasmodium falciparum malaria parasites from developing in the mosquito,

thus preventing onward transmission of the parasite [1]. Gene drive systems

are expected to be instrumental in spreading disease-refractory genes into

wild mosquito populations, given the wide geographical areas that these spe-

cies inhabit and the expectation that refractory genes will be associated with
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at least modest fitness costs [2]. Gene drive systems are also being

considered to implement population suppression strategies whereby genes

conferring a fitness load or gender bias are instead driven into the vector

population, thereby reducing disease transmission.

Early Inspiration

Initial suggestions for spreading desirable genes into insect pest populations

date back to the early 1940s and involved the proposition of translocations

[3,4] and transposable elements (TEs) [5], inspired from natural systems.

Translocations are rearrangements of parts between nonhomologous chromo-

somes. If insects homozygous for a translocation are introduced into a

population at high frequency, they are predicted to spread to fixation [6], and

if the translocation is linked to a disease-refractory gene, it is predicted to

consequently be driven into the population as well. Initial field trials with

translocations were unsuccessful in demonstrating spread [7]; but this is

likely a result of those translocations being generated using X-rays, which

often induce high fitness costs.

The suggestion of using TEs to drive disease-refractory genes into mos-

quito populations was largely inspired by the observation that a TE known

as the P element spread through most of the global Drosophila melanogaster

population within the span of a few decades following natural acquisition

from Drosophila willistoni [8]. TEs are able to spread through a population

due to mechanisms that enable them to increase their copy number within a

host genome and hence to be inherited more frequently in subsequent

generations. As a result, they are able to spread into a population from very

low initial frequencies even if they incur a fitness cost to their host [9]. It

was hoped that the P element invasion of Drosophila could be repeated in

disease-transmitting mosquito species using a TE attached to a disease-

refractory gene; however, early laboratory work on TEs in mosquito vector

species has failed to identify elements with high remobilization rates

following integration into mosquito lines [10].

Promising New Systems

Two of the most promising gene drive systems at present also involve technol-

ogies inspired by Nature—the use of homing endonuclease genes (HEGs)

observed to spread in fungi, plants, and bacteria [11], and a selfish genetic ele-

ment known as Medea observed to spread in Tribolium beetles [12,13].

A synthetic Medea element has been developed in Drosophila that works by

the hypothesis that Medea encodes both a maternally expressed toxin and a

zygotically expressed antidote [14]. This combination results in the death of

wild-type offspring of Medea-bearing mothers, thus favoring the Medea allele

in subsequent generations and mimicking the behavior of the natural element
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in Tribolium. Medea was the first synthetic gene drive system to be developed

and has a number of desirable design features; however, significant work is

still ongoing to develop a Medea element in a mosquito disease vector.

Recently, there has been much excitement around HEGs as, while Medea

was first engineered in Drosophila, a naturally occurring HEG has been

shown to spread in a laboratory population of Anopheles gambiae, the main

African malaria vector, containing an engineered target sequence for the

HEG [15]. HEGs spread by expressing an endonuclease that creates a

double-stranded break at specific target sequences lacking the HEG.

Homologous DNA repair then copies the HEG to the cut chromosome,

increasing its representation in subsequent generations. Similar to the

aforementioned gene drive systems, HEGs are being considered to drive

disease-refractory genes into mosquito populations; however, a number of

additional strategies for their application are also being considered, which

aim to suppress rather than replace mosquito populations [11], and progress

has been made toward these ends as well [16].

Design Criteria

As the technology for developing gene drive systems for population replace-

ment develops on a number of fronts, it is useful to consider design criteria

for assessing the safety and efficacy of the various approaches. An excellent

review by Braig and Yan [17] proposes several biological properties that an

ideal gene drive system should or must have:

1. The gene drive system must be effective. That is, it must be strong

enough to compensate for any loss in host fitness due to the presence of

both itself and its transgenic load (manifest as a reduction in host fertil-

ity, life span, or competitiveness). It must be able to spread to very high

frequency in a population on a timescale relevant to disease control

(i.e., a few years) and must be unimpeded by wild-type vectors immi-

grating into the target area.

2. The gene drive system must be able to carry with it several large genes

and associated regulatory elements. At the very least, a disease-

refractory and marker gene will be needed along with regulatory ele-

ments; but multiple disease-refractory genes are preferable in order to

slow the rate at which the pathogen evolves resistance to each of them.

3. Features should be included to minimize the rate at which linkage is

lost between the drive system and disease-refractory genes, as even rare

recombination events could be significant for wide-scale spread over a

long time period.

4. It should be possible to use the gene drive system to introduce waves of

refractory genes over time to counteract the effects of evolution
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of pathogen resistance, mutational inactivation of the refractory gene, or

loss of linkage between the refractory gene and drive system.

5. The gene drive system should be easily adapted to multiple vector

species. Human malaria, for instance, is transmitted by approximately

50 species of mosquitoes belonging to the genus Anopheles. In sub-

Saharan Africa, the most important transmitters are An. gambiae,

Anopheles coluzzii, Anopheles arabiensis, and Anopheles funestus,

ideally all of which should be rendered refractory in a population

replacement strategy.

Additional features of an ideal gene drive system were proposed by

James to address ecological, epidemiological, and social issues, including

safety [2]. Safety is a broad criterion that should be assessed through risk

assessment in which potential hazards are identified along with their corre-

sponding magnitudes and likelihoods. This provides a framework for man-

aging the most significant risks and for the overall safety of the system to

be scored. However, prior to a comprehensive risk assessment, a few gen-

eral safety criteria for gene drive systems can be imagined.

6. The behavior of the gene drive system in the target species should

be stable and predictable, thus minimizing the likelihood of

unpredictable side effects in target species.

7. A mechanism should be available to prevent horizontal transfer of the

gene drive system and/or refractory gene to nontarget species, thus min-

imizing the wider ecological impact of the release.

8. The gene drive system and refractory gene should not cause undesirable

effects for human health, for instance, by selecting for increased viru-

lence in the pathogen population. The gene drive system should also

include a mechanism for removing the refractory gene from the popula-

tion in the event of any adverse effect.

9. The gene drive system must be consistent with the social and regulatory

requirements of the affected communities. For instance, public attitude

surveys in Mali [18] highlight the importance of confined field trials

prior to a wide-scale release, which could be achieved through the ini-

tial use of gene drive systems with high release thresholds followed by

subsequent releases with more invasive systems.

10. The gene drive system should be cost-effective, as budgets for disease

control are limited and a number of alternative interventions are avail-

able. The initial development of gene drive systems is expensive; but

ongoing investment can be minimized by designing systems that are

resilient to evolutionary degradation.

Cost-effectiveness is an important consideration, as it is not only relevant to

the choice of gene drive system, but to whether gene drive should be used at all.

In a recent modeling study, Okamoto et al. demonstrated the economic feasibil-

ity of releasing large numbers of insects carrying a dengue-refractory gene
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without a gene drive system in order to reduce the dengue transmission potential

of Aedes aegypti mosquitoes in Iquitos, Peru [19]. Wide-scale control of

Anopheles malaria vectors in sub-Saharan Africa is less likely amenable to the

mass release strategy; however, it is essential to assess this in terms of efficacy,

safety, and cost-effectiveness prior to implementation.

In this chapter, we review a range of gene drive systems being considered

to drive disease-refractory genes into mosquito vector populations. We

divide gene drive systems into two broad categories: (i) those that spread by

causing a double-stranded break at a specific target sequence and insert

themselves at this location through DNA repair (e.g., HEGs) and (ii) those

that use combinations of toxins and antidotes, active at different life stages,

to favor their own inheritance (e.g., Medea). We also review modern

approaches to developing translocations as form of gene drive, which do not

fit into either category. Systems using symbiotic or commensal microorgan-

isms to mediate gene drive are covered in another chapter (e.g., Wolbachia).

For each system, we review the biological mechanisms involved, the

system’s current stage of development, and its alignment with the abovemen-

tioned design criteria.

GENE DRIVE SYSTEMS THAT SPREAD VIA TARGET SITE
CLEAVAGE AND REPAIR

We begin by reviewing gene drive systems that manipulate inheritance in

their favor by causing a double-stranded break at one or more specific target

sites in the host’s genome and utilize the host’s homologous DNA repair

mechanism to increase their genomic copy number. Gene drive systems of

this type include TEs, HEGs, and a number of recently proposed HEG ana-

logs, such as zinc-finger nucleases (ZFNs), transcription-activator-like effec-

tor nucleases (TALENs), and clustered, regularly interspaced, short

palindromic repeats (CRISPRs).

Transposable Elements

TEs are genomic components capable of changing their position and some-

times replicating within a genome. Consequently, they show widespread

prevalence throughout the genomes of many taxa, with various families of

TEs accounting for B90% of the Salamander genome, 50% of the Ae. aegypti

genome, and 45% of the human genome. There are various classes of TEs,

and those being considered for population replacement in mosquitoes belong

to class 2. Class 2 elements contain both repeat sequences that mark their

boundaries and their own transposase gene that catalyzes transposition. They

move via a cut-and-paste mechanism [20], whereby transposition results in

excision of the TE via two double-stranded breaks, leaving behind a gap

where they have been excised. In some cases, this gap is filled by
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homologous gap repair from a chromatid also having the TE. The excised

TE is then inserted at another genomic location, resulting in their genomic

copy number being increased by one. In a second replication mechanism,

some TEs transpose during the S phase of the cell cycle. If a recently repli-

cated element transposes to an unreplicated region of the genome, it will be

replicated a second time, resulting in a net gain of one element in the genome.

Current Status. The widespread distribution of TEs in Nature together with

observations of the rapid spread of the P element in Drosophila [8] inspired

initial hopes that class 2 TEs could be inserted, along with disease-refractory

and marker genes, into transgenic lines of Ae. aegypti (the main vector of den-

gue fever) and Anopheles vectors of malaria. Class 2 TEs lacking their transpo-

sase gene are often used as vectors for introducing novel genes into

mosquitoes; hence, integration into mosquito lines is relatively straightforward.

More problematic, however, has been the remobilization of TEs containing

their own transposase gene once they have been integrated. An excellent

review by O’Brochta et al. describes results from experiments in which four

class 2 TEs—Hermes, Mos1, Minos, and piggyback—were used to create

transgenic lines of Ae. aegypti [10]. In all cases, remobilization was shown to

be highly inefficient. More recently, attempts were made to improve the post-

integration mobility of Hermes in Ae. aegypti using an additional construct to

express a transposase gene under the control of a testis-specific promoter [21];

however, remobilization was still only observed in less than 1% of the

transgenic lines.

Design Criteria. The observed remobilization of natural TEs suggests that

remobilization of introduced elements should also be possible; however, the

regulation of TE mobility is complex, and it may require much experimenta-

tion to find TEs compatible with mosquito vectors. This work is likely not

cost-effective, as TEs fail to satisfy most of the design criteria outlined earlier,

and have been superseded by more recently proposed systems like HEGs and

Medea. Of particular note, it is unlikely that TEs will be able to carry large

inserts containing disease-refractory genes as transposition events are known

to be imprecise and prone to DNA loss. Furthermore, a study on the Himar1

mariner element suggests that transposition rates decline substantially with

increasing insert size [22], suggesting that elements which have lost their

transgenic load will outspread those which have not [23]. Finally, the large

numbers of target sites that TEs have undermine their predictability and stabil-

ity in target species, and their wide species host range highlights the risk of

horizontal gene transfer and spread in nontarget species.

Homing Endonuclease Genes

HEGs are highly efficient selfish genetic elements that spread by expressing

an endonuclease that recognizes and cleaves a highly specific target

sequence of 14 40 base pairs usually only present at a single site in the host
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genome [24]. As the HEG is positioned directly opposite its target site, actu-

ally within its own recognition sequence, it induces a double-stranded break

only in chromosomes lacking the HEG. The HEG is effectively copied to the

target site, in a process referred to as “homing,” when the cell’s repair

machinery uses the HEG-bearing chromosome as a template for homology-

directed repair. When homing occurs in the germ line of the host organism, a

HEG can be transmitted to progeny at a higher than Mendelian inheritance

ratios, enabling its spread through a population (Figure 9.1A).

On the basis of observations of homing activity in a number of nonmetazo-

an organisms including yeast, fungi, algae, and plants, Burt proposed that

HEGs could be used as a gene drive system for population replacement in

mosquito disease vectors; however, he also proposed and favored their use as a

population suppression system [11]. Burt proposed a suite of HEG-based

FIGURE 9.1 Preferential inheritance of homing-based gene drive systems. (A) Left panel:

A homing HEG (green) encodes an endonuclease that recognizes and cleaves a specific target

sequence (red) on a wild-type chromosome (step 1). Once the target site is cleaved, the cell

repairs the chromosomal break through homologous recombination using the HEG-bearing chro-

mosome as a template (step 2). This two-step process results in the HEG effectively being cop-

ied to the wild-type chromosome in a process referred to as “homing,” thereby converting a

HEG heterozygote into a HEG homozygote. Right panel: When a HEG-bearing male (green

mosquito) is released into the wild and mates with a wild-type female (gray mosquito), the

majority of their progeny inherit the HEG, and over time the HEG invades entire populations.

(B) Left panel: For HEG-based population suppression, an X-shredder HEG is positioned on the

Y chromosome (Y-linked X-shredder HEG). This HEG encodes an endonuclease that recognizes

and cleaves chromosomal sequences that are repeated exclusively on the X-chromosome of the

mosquito. When expressed during spermatogenesis, X-bearing spermatids are disrupted by the

HEG, resulting in the majority of functional sperm being Y-bearing and containing the HEG.

Right panel: When a Y-linked X-shredder HEG-bearing male (green mosquito) is released into

the wild and mates with a wild-type female (gray mosquito), all resulting progenies are HEG-

bearing males. Over time, this is predicted to induce an all-male population crash and potentially

eventual extinction of the vector species.

Gene Drive Strategies for Population Replacement Chapter | 9 175



strategies for genetic control of mosquito vectors—two involving population

replacement and three involving population suppression:

1. First, the HEG could be linked to a disease-refractory gene and engi-

neered to target a gene-sparse region of a chromosome (so as to reduce

impacts on mosquito host fitness), thus carrying the disease-refractory

gene with it as it spreads into the population.

2. In a related population replacement approach, the HEG could be engi-

neered to target an endogenous gene involved in the development or

transmission of the pathogen, thus reducing vector competence as it

spreads [25]. This approach has the benefit that it does not involve an

effector gene and hence is more resilient to evolutionary degradation;

however, it does require a gene to be identified, the disruption of which

would block pathogen transmission, and for a HEG to be engineered to

target this, which is quite arduous.

3. In terms of population suppression, a HEG could be engineered that tar-

gets a native mosquito gene required in at least one copy for either mos-

quito survival or fertility. If a HEG of this type is active in the mosquito

germ line, then it will increase in frequency in the population, inducing a

genetic fitness load on the population as it spreads. This could lead to

either population suppression or an eventual population crash.

4. An alternative to the homing-based applications of HEGs is to rely

entirely on their target site cleavage activity. In the first of these

approaches, known as the “autosomal X-shredder” strategy, a HEG can

be designed to specifically cleave the X chromosome at multiple loca-

tions, effectively destroying it. If an X-shredder HEG is expressed during

male meiosis, it will result in destruction of X-bearing male sperm. If

females mate with males having the X-shredder, most viable sperm will

be Y-bearing and hence most of the progeny will be male. This strategy

will reduce the reproductive potential of the population; but it requires

regular releases since the X-shredding gene is associated with a fitness

cost and will only persist in the population for a few generations.

5. Finally, Burt proposed a “Y-linked X-shredder” strategy whereby, if the

X-shredder HEG is located on the Y chromosome, then it will be driven

into the population along with the transgenic Y chromosome as it induces

an increasingly male gender bias. This approach would mimic naturally

existing meiotic drive systems that bias sex ratios, although it could

potentially induce a much larger gender bias than those observed in

Nature [26 28], causing a cascade of male-only population crashes that

could potentially lead to species extinction (Figure 9.1B).

Current Status. An encouraging result for homing-based HEG strategies

has been the engineering of a naturally occurring HEG, I-SceI, which has

been shown to cleave in Ae. aegypti [29] and spread in laboratory popula-

tions of both D. melanogaster and An. gambiae containing an engineered
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target sequence for the HEG [15,30,31]. These results are encouraging

because they show that, although HEGs have not been discovered in any

metazoan species to date, there is nothing intrinsic about metazoan biology

that prevents HEGs from homing. Furthermore, the fact that this was

achieved in An. gambiae, the most important African malaria vector, is

hopeful for its application to disease control. For the population replacement

strategy to work in the wild, a HEG must be engineered or identified which

has a target sequence in the wild mosquito genome. Engineering HEGs to

recognize and cleave new target sequences has proven difficult thus far

[32 34], and future research should focus on the development of novel

approaches to circumvent these difficulties.

Population suppression strategies that rely solely on the target site cleave

activity of HEGs have shown remarkable progress in recent years. A HEG

originally discovered in the slime mold Physarum polycephalum, I-Ppo1

[35], was integrated into the An. gambiae genome and shown to recognize

and cleave a conserved DNA sequence, repeated hundreds of times and

located exclusively on the X chromosome cluster of ribosomal DNA genes

in An. gambiae [36]. This cleavage activity is highly applicable to both the

autosomal and Y-linked X-shredder strategies of HEG-driven population sup-

pression and has also provided a novel genetic approach to the sterile insect

technique for An. gambiae. The expression of I-Ppo1 during spermatogenesis

in An. gambiae resulted in cleavage of the paternal X chromosome in differ-

entiating spermatozoa, which was expected to result in a male bias among

progeny. However, it turned out that the I-Ppo1 from mature sperm cells

was carried over into the zygote, thus shredding the zygotic X chromosomes

as well and rendering the transgenic males completely sterile [37]. It was

later shown that transgenic mosquitoes engineered with I-Ppo1 could induce

high levels on sterility in large cage populations, confirming the suitability

of this technology for use in sterile insect population suppression programs

[38]. This could be a useful first application of HEG technology in the wild

given the self-limiting nature of sterile insect releases.

For X-shredder strategies to work, I-Ppo1 would need to be destabilized

in order to minimize its carryover into the zygote by mature sperm. To this

end, recent work by Galizi et al. has succeeded in expressing destabilized

autosomal versions of I-Ppo1, which result in efficient shredding of the

paternal X chromosome and are restricted to male meiosis [16].

Consequently, males carrying this construct are fully fertile and some inser-

tions produce .95% male offspring bias. Males inheriting the autosomal

I-Ppo1 gene also produce a male bias in their progeny, showing that the

gender-biasing effect of autosomal X-shredders will remain in the population

for several generations; however, continued releases would be required, as

the X-shredder gene is not favored through inheritance when located on an

autosome and is expected to be eliminated due to fitness costs. Nevertheless,

for repeated releases, population suppression is expected, which would be
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more efficient than the previously mentioned sterile male releases and would

also be self-limiting, albeit over a longer period. Autosomal X-shredders

could therefore be an appropriate second application of HEG technology.

The only remaining steps in order to realize the Y-linked X-shredder

strategy are to dock the destabilized I-Ppo1 HEG onto the An. gambiae Y

chromosome and ensure that it is expressed during spermatogenesis. To this

end, recent progress has been made in developing a Y chromosome docking

line in An. gambiae [39]. Future work will focus on docking the HEG onto the

Y chromosome and ensuring it can be expressed and function as anticipated.

Design Criteria. HEG-based strategies for genetic control of vector-borne

diseases are extremely promising given the remarkable progress made

recently, most notably in the malaria vector An. gambiae. HEGs are highly

effective as a gene drive system, capable of spreading for low initial frequen-

cies to high frequency on a short timescale. They are also relatively short

sequences targeting very precise regions of the genome, suggesting both

stability and a low rate of corruption due to evolutionary degradation.

Species-specific regulatory sequences can be included to limit their horizontal

transfer to nontarget species, and furthermore, a strategy has been proposed to

reverse the spread of a deleterious HEG through the release of HEG-resistant

alleles in the event of unforeseen consequences [11]. Additionally, a wide

range of HEG strategies are available displaying different levels of confine-

ability, allowing them to be used at all stages of a phased release and to be

tailored to the social and regulatory requirements of affected communities.

Target site cleavage strategies show more promise than those reliant on

homing activity as they sidestep many of the abovementioned design criteria

and are independent of disease-refractory genes. Target site mutagenesis and

gap repair through nonhomologous end joining can both result in disruption

of the HEG cleavage site, rendering certain individuals immune to the HEG

and preventing the HEG from spreading through an entire population. For

strategies in which a HEG disrupts a gene required for mosquito survival or

fertility, HEG-resistant mutants will be favored in a population once they

emerge. Furthermore, there is a possibility of losing the disease-refractory

gene either through mutagenesis or during homology-directed repair—a con-

cern that becomes more serious for larger inserts, and would render a popula-

tion replacement strategy futile. The Y-linked X-shredder strategy is less

vulnerable to target site mutagenesis as it targets so many loci on the X chro-

mosome at once. It is, however, dependent on germ line gene expression on

the An. gambiae Y chromosome although this could potentially be achieved

through the use of insulator sequences.

TALENs and ZFNs

TALENs and ZFNs have been proposed as alternative platforms for engi-

neering homing-based gene drive systems [40]—that is, systems that spread
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by cleaving a specific target sequence and then using the cell’s repair

machinery to copy themselves to the target site. The benefit of TALENs and

ZFNs over HEGs is that they can be easily engineered to target desired DNA

sequences due to the modular nature of their DNA-binding domains.

TALENs are derived from naturally occurring proteins that are secreted by

the pathogenic bacteria Xanthomonas spp. to alter gene expression in host

plant cells [41,42]. These proteins contain arrays of highly conserved, repeti-

tive DNA-binding domains, each recognizing only a single base pair, with

specificity being determined by repeat-variable di-residues [43,44]. The rela-

tionship between these repeats and DNA recognition can be exploited to

design TALENs that target virtually any desired DNA sequence. For ZFNs,

DNA-binding specificity can be similarly manipulated, being determined by

an array of finger modules that can be generated either by selection using

large combinatorial libraries, or by rational design [45].

For both TALENs and ZFNs, DNA-binding modules can be combined

with several types of domains, including transcriptional activators, nucleases,

and recombinases, allowing for a comprehensive range of genetic modifica-

tions [46]. In terms of cleavage activity, a wide range of tailored recognition

sequences can be cleaved efficiently as TALENs and ZFNs are fusion pro-

teins consisting of a nonspecific fok1 nuclease linked to a DNA-binding

motif [47,48]. The TALEN or ZFN may then be copied to the cleaved target

side by homology-directed repair, and hence used as a gene drive system for

driving disease-refractory genes into mosquito populations.

Current Status and Design Criteria. Both TALENs and ZFNs rely upon

homing activity and thus, for the purposes of population replacement and

control, are functionally similar to HEGs. Given this similarity, the range of

replacement and suppression strategies outlined earlier is also applicable to

these systems and many of the design issues are similar too. For example,

TALENs and ZFNs are also expected to spread from low initial frequencies,

species-specificity can be incorporated through the addition of regulatory

elements, and a deleterious TALEN or ZFN can be removed from a popula-

tion through the release of TALEN- or ZFN-resistant alleles. However, there

are some important differences. In terms of cost-efficiency, both TALENs

and ZFNs are easier to engineer to target specific DNA sequences, and con-

sequently, they could be straightforwardly adapted to multiple vector species,

which is particularly important for malaria control. However, concerns arise

regarding their stability, as their repetitive nature makes them more prone to

mutation and evolutionary degradation. Recent progress toward developing

both TALEN- and ZFN-based gene drive systems in D. melanogaster have

successfully demonstrated DNA-binding specificity, cleavage, and homing

through homology-directed DNA repair; however, mutational inactivation

led to a decline in effectiveness over just a short period of time [40]. Thus, if

TALENs or ZFNs are to be useful as gene drive systems in the future, their

stability issues must first be overcome.

Gene Drive Strategies for Population Replacement Chapter | 9 179



Clustered, Regularly Interspaced, Short Palindromic Repeats

CRISPR is another promising system proposed, although not yet demon-

strated, as an alternative platform for homing-based gene drive. The system is

based on an adaptive immune process in bacteria whereby sequences derived

from invading bacteriophages or plasmids are integrated into the bacterial

CRISPR locus. This essentially provides bacterial cells with the ability to

“remember” and protect themselves against previously encountered viral gen-

omes and invasive, mobile genetic elements [49]. To perform nuclease activi-

ties, CRISPR systems use an array of CRISPR RNAs (crRNAs) derived from

exogenous DNA targets (e.g., viral genomes), noncoding transactivating

RNAs, and a cluster of CRISPR-associated (Cas) genes. Three types of

CRISPR systems have been discovered, with type II CRISPR systems being

best characterized. These consist of a Cas9 nuclease and a crRNA array

encoding guide RNAs and auxiliary transactivating crRNAs to mediate target

site cleavage [50]. As for the homing-based systems described earlier, if the

double-stranded break is repaired by homology-directed repair, the CRISPR

system may be copied to the cleaved target site and hence used as a gene drive

system for population replacement similar to HEGs. If the target site cleavage

activity is directed toward the X chromosome, then the population suppression

strategies initially described for HEGs could also be realized.

Current Status. Recent encouragement for CRISPR-based gene drive has

been provided by proof-of-principle studies showing that the type II CRISPR

system from Streptococcus pyogenes can be modified to target endogenous

genes in bacteria [51] and human cell lines [52,53]. It has subsequently been

shown that CRISPR can be used to alter genes in a range of other species

including insects such as D. melanogaster [54,55] and mosquitoes.

Straightforwardly, utilizing this system in other organisms requires only two

components—the Cas9 nuclease and guide RNAs [52,56]. DNA-binding

specificity is determined by the first 20 nucleotides of the guide RNA as

these designate the DNA target side that Cas9 will be guided to according to

Watson Crick DNA RNA base pairing rules. The only restriction for the

target site selection is that it must lie directly upstream of a protospacer adja-

cent motif sequence that matches the canonical form 50-NGG. Aside from

that, it is possible that the CRISPR system can be engineered to target and

cleave essentially any genomic location, with subsequent homing and gene

drive occurring via homology-directed repair, however this remains to be

demonstrated.

Design Criteria. CRISPR-based gene drive has yet to be implemented;

however, its mechanisms imply that the approach is achievable. In terms of

design criteria, the system is very similar to TALENs and ZFNs—it is

expected to spread from low initial frequencies, species-specificity can be

incorporated through regulatory elements, and a deleterious CRISPR can

be removed through release of CRISPR-resistant alleles. The system is active
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in a range of species and target sites are even easier to engineer than for

TALENs, suggesting the system would be easily adapted to multiple vector

species. Another advantage of the CRISPR system is that it can be used to

target multiple sequences in a single experiment [57], increasing its potential

efficacy and decreasing the rate at which target site mutagenesis could slow

its spread. A major concern, however, is that the CRISPR system itself may

be degraded. The CRISPR system is quite large, consisting of promoters, the

Cas9 gene, guide RNAs and, depending on the strategy being implemented,

multiple disease-refractory genes and associated regulatory elements.

A system this size is prone to mutation and errors introduced during homing,

including potential loss of function of disease-refractory genes. These con-

siderations may lead to population suppression strategies being favored for

CRISPR-based drive systems; however, this would place selection pressure

on mutant CRISPR alleles having lost their function and so the evolutionary

stability of the CRISPR system will need to be explored and optimized if it

is to provide a cost-effective alternative to the relatively stable yet difficult-

to-engineer X-shredding HEGs.

TOXIN ANTIDOTE GENE DRIVE SYSTEMS

We now move on to gene drive systems that use combinations of toxins

and antidotes, active at different life stages, to favor their own inheritance

[58]. Gene drive systems of this type include Medea, engineered forms of

underdominance such as UDMEL, self-limiting systems such as killer-

rescue, and other toxin antidote possibilities such as Semele, Medusa, and

inverse Medea.

Medea

The story of Medea has origins in both Greek mythology and beetle biology.

In Greek mythology, Medea was the wife of the hero Jason, to whom she

had two children. Her marriage to Jason was hard-earned, transpiring only

after she enabled him to plough a field with fire-breathing oxen, among other

achievements; but despite this, he left her when the king of Corinth offered

him his daughter. As a form of revenge, Medea killed their two children.

From a biological perspective, such infanticide would make Medea an unfit

mother; but if the trait is genetic and children that inherit it also have the

ability to defend themselves, then mathematical models show that it actually

has a selective advantage and, if present at modest levels in a population, is

expected to become present among all individuals within a matter of genera-

tions [59,60]. This is simply because children who are able to defend them-

selves against a murderous parent are more fit than those who cannot.

The Greek analogy sounds bizarre; but genes displaying these properties

do actually exist in Nature and have been discovered and characterized in
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various regions of the world [12,61,62]. The first such element to be identi-

fied was in the flour beetle Tribolium castaneum [12] and was given the

name Medea after both the character from Greek mythology, and as an

acronym for “maternal-effect dominant embryonic arrest.” By crossing

individuals from geographically isolated locations, it was found that Medea-

bearing males gave rise to both wild-type and Medea-bearing offspring; but

that Medea-bearing females only gave rise to Medea-bearing offspring. It

appeared that Medea-bearing mothers were selectively killing non-Medea-

bearing offspring; or alternatively that they were trying to kill all offspring

and the Medea-bearing offspring were able to defend themselves.

The genetic factors involved in this behavior remain obscure; but the

dynamics suggest a model in which Medea consists of two tightly linked

genes—a maternally expressed toxin gene, the product of which causes all

eggs to become unviable and a zygotically expressed antidote gene, the prod-

uct of which rescues Medea-bearing eggs from the effects of the toxin

[12,63]. In Tribolium, Medea dynamics are attributed to an insertion of a

composite Tc1 transposon inserted between two genes both having maternal

and zygotic components [13]. Remarkably, this system was reverse-

engineered using entirely synthetic components in laboratory populations of

D. melanogaster and was shown to rapidly drive population replacement

[14,64]. These synthetic elements were constructed using two unique, tightly

linked components—a maternal toxin consisting of maternally deposited

microRNA designed to target an essential embryonic gene; and a zygotic

antidote consisting of a tightly linked, zygotically expressed, microRNA-

resistant version of the embryonic essential gene. The combination of these

components results in the death of wild-type offspring of Medea-bearing

mothers, thus favoring the Medea allele in subsequent generations and mim-

icking the behavior of the natural element in Tribolium (Figure 9.2A).

Current Status. Medea was the first synthetic gene drive system to be

developed, in this case in D. melanogaster [14]. Given that the synthetic

Medea elements were constructed using rationally designed synthetic compo-

nents and well-understood, conserved molecular and genetic mechanisms, it

should be possible to engineer Medea elements in a range of other insects

including mosquitoes. The Medea drive strategy is particularly well-suited to

driving disease-refractory genes into mosquito populations, and hence the

development of several efficient refractory genes for each disease of interest

is encouraged.

Design Criteria. In many ways, Medea is the ideal system for replace-

ment of wild mosquito populations with disease-refractory varieties.

Solutions are available for all of the design criteria outlined earlier, and

Medea has an advantage over homing-based strategies for population

replacement since it is stably integrated into the host chromosome, thus not

affected by the substantial risk of loss during homology-directed repair. If

introduced at modest population frequencies, Medea can spread and rapidly
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FIGURE 9.2 Dynamics of toxin antidote-based gene drive systems. (A) Medea elements dis-

tort the offspring ratio in their favor through the action of a maternally expressed toxin (MT)

and a zygotically expressed antidote (ZA). This results in the death of wild-type offspring of

heterozygous mothers and enables the Medea element to spread into a population from very low

initial frequencies. Dynamics here are shown for a Medea element with no fitness cost, released

at 10% in the population. Transgenic frequency refers to any individual carrying at

least one copy of the element. (B) UDMEL (maternal-effect lethal underdominance) is a

toxin antidote-based underdominant system consisting of two constructs, each of which

possesses a maternally expressed toxin (MT1 and MT2) whose activity is manifest during prog-

eny embryogenesis and a zygotic antidote (ZA1 and ZA2) capable of neutralizing the maternal

toxin expressed by the opposite construct. This results in heterozygous females being sterile if

mated to wild-type individuals, thus leading to the characteristic bistable dynamics of underdo-

minant systems. Dynamics here are shown for UDMEL constructs at independently assorting loci

having no fitness costs. If released at a population frequency of 20%, the system spreads to fixa-

tion in the population; but if released at 15%, the system is eliminated. (C) Semele elements dis-

tort the offspring ratio in their favor through the action of a semen-based toxin (SBT) and a

female-specific antidote (FA). This results in unviable crosses between transgenic males and

wild-type females and favors transgenic individuals provided the Semele element is present at

population frequencies exceeding B36% (above this frequency, the selective advantage of the

antidote exceeds the selective disadvantage of the toxin). Dynamics here are shown for a Semele

element with no fitness cost. If released at a population frequency of 40%, the element spreads

to fixation in the population; but if released at 30%, the system is eliminated. (D) Medusa is a

two-construct, sex chromosome-linked drive system capable of inducing confineable and revers-

ible population suppression. The system consists of four components—a maternally expressed,

X-linked toxin (MT1) causes suppression of the female population and selects for the transgene-

bearing Y since only transgenic male offspring have the corresponding Y-linked zygotically

expressed antidote (ZA1). A zygotically expressed, Y-linked toxin (ZT2) and a zygotically

expressed, X-linked antidote (ZA2) then selects for the transgene-bearing X when the transgene-

bearing Y is present, creating a balanced lethal system. When present above a certain threshold

frequency, Medusa spreads while creating a strong male gender bias leading to population sup-

pression. Dynamics here are shown for Medusa constructs having no fitness costs. For two con-

secutive male-only releases at a population frequency of 50%, the population becomes entirely

male as the system spreads to fixation in the population; but for two consecutive male-only

releases at a population frequency of 40%, the system is eliminated.



replace a population, even in the presence of modest fitness costs [60]; how-

ever, Medea is unlikely to spread following a small-scale accidental release

because its driving ability is low at low population frequencies [18].

Tight linkage between the toxin, antidote, and refractory genes by placing

the toxin and refractory genes within an intron of the antidote gene can

improve system stability and reduce the rate of loss of the refractory gene

through recombination. However, in the event that the Medea element or

refractory gene become unlinked, mutated, or rendered ineffective through

parasite evolution, second-generation Medea elements can be generated that

utilize toxin antidote combinations distinct from those of the first-

generation elements [14], making it possible to carry out multiple cycles of

population replacement. This strategy can also be used to remove refractory

genes from populations in the event of adverse effects. As the functional

components of Medea are developed in mosquito species, it will become

more cost-efficient to develop these elements and to adapt them to multiple

vector species.

Toxin Antidote-Based Underdominance

Underdominant systems display the property that heterozygotes, or their

progeny, have lower fitness than either homozygote [65]. In the simplest

case of a single biallelic locus for which matings between opposite homozy-

gotes are sterile, whichever allele is more frequent in the population will

tend to spread to fixation. Underdominant systems therefore display features

similar to that of a bistable switch at the population level—if the system is

present above a critical threshold frequency, it will tend to spread to fixation,

while if it is present below the threshold, it will tend to be eliminated in

favor of the alternative allele or chromosome. A variety of toxin antidote

systems have been proposed to achieve these underdominant dynamics and

the critical threshold frequency depends on the system and fitness cost.

A range of underdominant systems is available in Nature, including chro-

mosomal alternations such as inversions, translocations, and compound chro-

mosomes [3,4]. We will return to translocations in the Translocation section;

but will concentrate here on novel forms of underdominance that are in prin-

ciple straightforward to engineer using combinations of toxins and antidotes.

Toxin antidote approaches to underdominance were originally proposed by

Davis et al., who suggested an elegant system having two transgenic con-

structs, each of which possesses a gene whose expression induces lethality

and a gene that suppresses the expression or activity of the gene inducing

lethality carried by the other construct [66]. The constructs can either be

inserted at the same locus on a pair of homologous chromosomes or at dif-

ferent loci on nonhomologous chromosomes. These systems display underdo-

minant properties because individuals carrying neither or both constructs are

viable; but a proportion of their offspring—those carrying just one of the
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constructs—are unviable. The critical threshold for the two-locus system

is B27%, above which it is predicted to spread to fixation, and for the

single-locus system is B67% [66].

Current Status. Attempts to engineer the underdominance system

proposed by Davis et al. have thus far been unsuccessful [66]; however, a

related novel underdominant system known as maternal-effect lethal under-

dominance (UDMEL) has recently been engineered in D. melanogaster and

demonstrated to replace wild-type laboratory populations in a threshold-

dependent manner [67,68]. In the UDMEL system, there are two transgenic

constructs, each of which possesses a maternally expressed toxin gene whose

activity is manifest during progeny embryogenesis and a zygotic antidote

gene capable of neutralizing the maternal toxin expressed by the opposite

construct. From the crosses produced by this system (Figure S1 of Akbari

et al. [67]), it can be seen that heterozygous females are sterile if mated to

wild-type individuals, while populations of transgenic homozygotes are fully

viable, as are wild-type populations. This leads to the characteristic

bistable dynamics of underdominant systems. As per the system proposed by

Davis et al., the UDMEL constructs can be inserted at the same locus or on a

pair of homologous chromosomes [66]. The critical threshold for the two-

locus system is B19% and for the single-locus system is B64%, assuming

no fitness costs [67], and threshold-dependent drive has been demonstrated

in the laboratory for both cases (Figure 9.2B).

Design Criteria. Toxin antidote-based underdominant systems such as

UDMEL are an excellent option during the testing phase of population

replacement, or whenever a confined release is desired. The threshold nature

of these systems has three advantages in these scenarios. First, they are

unlikely to spread following an accidental released because escapees will

inevitably be present at subthreshold levels and be eliminated from the envi-

ronment [18]. Second, they are expected to be confineable to isolated release

sites because transgenic insects released at superthreshold frequencies are

expected to spread transgenes locally while they remain at subthreshold

levels at nearby locations. And third, releases are reversible as transgenes

can be eliminated by diluting them to subthreshold frequencies through a

sustained release of wild-type insects.

It should be noted that the confineability of these systems, although

likely, is not guaranteed.

In theory, chance events could lead to underdominant systems gaining a

foothold and spreading in structured populations, presumably beginning from

a single individual; however, this is more likely to occur on an evolutionary

timescale than on a human timescale. Underdominant systems may be better-

suited to An. gambiae because it disperses quickly over the range of a single

village [69,70], reducing the chance of its spread being confined to smaller

subpopulations. The small-scale population structure of Ae. aegypti, however,

may prevent its village-wide spread in natural populations of these vectors.
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Otherwise, similarly to Medea, solutions are available for all of the design

criteria outlined earlier. As the functional components are developed and

identified in mosquitoes—microRNAs, maternal and early-zygote-specific

promoters and essential genes—these systems will be highly useful for

confined population replacement of vector species such as An. gambiae.

Killer-Rescue

Killer-rescue is an intriguingly simple two-locus gene drive system proposed

by Gould et al. for both its ease of engineering and its ability to spread into

a population in a time-limited way [71]. Both these qualities are desirable in

the early stages of a population replacement program. The system consists of

two alleles at unlinked loci—one that encodes a toxin (a killer allele) and

another that confers immunity to the toxin (a rescue allele), which could be

tightly linked to a gene for disease refractoriness. A release of individuals

homozygous for both alleles results in temporary drive as the alleles segre-

gate and the presence of the killer allele in the population confers a benefit

to those also carrying the rescue allele. In an alternative configuration, a

second killer allele can be included at an independently assorting locus to

enhance the selective benefit of the rescue allele. However, regardless of

the conformation, the killer allele soon declines in frequency due to its

inherent fitness cost and, as it does, the selective benefit of the rescue

allele is lost. As this happens, if the rescue allele or disease-refractory

gene confers a fitness cost to the host, then it will gradually be eliminated

from the population as well over a timeframe determined by the magnitude

of its fitness cost—a higher fitness cost leading to it being eliminated more

quickly.

Design Criteria. As mentioned earlier, the killer-rescue system is intrigu-

ing for its ability to spread in a time-limited manner, thus reducing risks, as

appropriate during field trials of transgenic mosquitoes carrying disease-

refractory genes. The system is also spatially limited, as it only has a win-

dow of time in which to disperse to neighboring populations, and will spread

to much lower levels in these populations than at the population of release

[72]. Similar to underdominant systems, it will not persist following an acci-

dental release, and its elimination from a population can be accelerated

through large-scale releases of wild-type insects. Also, similar to other

toxin antidote systems, solutions are available for all of the design criteria

outlined earlier.

Some consideration should go into the fitness cost of the rescue allele

and refractory gene, as a high fitness cost will lead to rapid elimination, but

the maximum frequency of the disease-refractory allele in the population

will be compromised; while small fitness costs will allow the system

to spread to very high maximum frequencies, but it may take several years

for the system to be eliminated from the population entirely. Further
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complicating this, fitness costs are exceedingly difficult to quantify in the

field. The bistable nature of underdominant systems therefore makes them

more controllable in terms of confinement and reversibility; however, the

major benefit of the killer-rescue system is its ease of engineering.

Molecular tools are already available to engineer the system in a variety of

mosquito species, allowing the system to be implemented with relative ease

in a range of disease vectors.

Other Confineable Toxin Antidote Systems

As Medea, killer-rescue, and the various forms of engineered underdomi-

nance highlight, there are many ways in which toxins and antidotes can be

used to favor the inheritance of one allele over another. For example, even if

we limit ourselves to single-locus systems like Medea, either the toxin or

antidote gene could be placed under the control of a paternal, maternal, or

zygote-specific promoter, function through a recessive or dominant mecha-

nism, and be located on a sex chromosome or autosome [73]. The possibili-

ties multiply if we also consider multilocus systems. A few additional

toxin antidote systems displaying unique population dynamics are Semele,

inverse Medea, and Medusa, all of which are also confineable to partially

isolated populations.

Semele. Semele is a single-locus system consisting of a toxin gene

expressed in the semen of transgenic males that either kills or renders

infertile wild-type females and an antidote gene expressed in females that

protects them against the effects of the toxin [74]. The name is an acronym

for “semen-based lethality” and, like Medea, also has Greek origins. In

Greek mythology, Semele was a mortal female who attracted the attention

of Zeus while slaughtering a bull at his altar (Zeus, at this point, was flying

overhead disguised as an eagle). Zeus became infatuated with Semele and

impregnated her, but Semele died after witnessing his godliness because

she was not herself a god. The story parallels the biology of the Semele

construct, in which wild-type females die (or become infertile) upon

mating with transgenic males.

Semele has several interesting population dynamic properties. If only

males carrying the Semele allele are released into a wild population, they are

expected to suppress the population size when released in large numbers.

This happens because all of the wild females that mate with the Semele

males are susceptible to their toxic semen. If both males and females carry-

ing the Semele allele are released, the system displays bistable dynamics

with a threshold frequency of B36% in the absence of fitness costs [74].

Above the threshold, the selective advantage of the female antidote

outweighs the reproductive disadvantage conferred by the toxic semen and

the system spreads into the population. In combination, this means that an

initial release of Semele males could be used to suppress a population
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preceding a superthreshold release of males and females, thus reducing

the release size required to exceed the critical population frequency

(Figure 9.2C).

Inverse Medea. Inverse Medea is another single-locus system capable of

achieving confined population replacement [75]. The system consists of a

zygotic toxin and maternal antidote—essentially the same components as the

Medea system with the promoters switched. This has the effect of rendering

heterozygous offspring of wild-type mothers unviable and leads to

bistable dynamics in which the system spreads when it represents a majority

of the alleles in a population, and is otherwise eliminated. While similar

dynamic properties are displayed by other underdominant toxin antidote

systems, the benefit of inverse Medea is its ease of engineering once the

components to generate Medea elements in mosquito vectors have been iden-

tified. Several approaches to engineering these elements are available—for

example, the toxin could be a microRNA that silences expression of a gene

whose activity is required for early embryo development, and the antidote

could be a maternally expressed RNA that restores the necessary activity to

the zygote and is resistant to silencing.

Medusa. Medusa is a two-construct, sex chromosome-linked drive system

capable of inducing confineable and reversible population suppression [76].

The system consists of four components—two at a locus on the X chromo-

some and two at a locus on the Y chromosome. The combination of a

maternally expressed, X-linked toxin and a zygotically expressed, Y-linked

antidote causes suppression of the female population and selects for the

transgene-bearing Y since only transgenic male offspring of Medusa-bearing

females are protected from the effects of the toxin. At the same time, the

combination of a zygotically expressed, Y-linked toxin and a zygotically

expressed, X-linked antidote selects for the transgene-bearing X when the

transgene-bearing Y is present. Together, this creates a balanced lethal sys-

tem that, when present above a certain threshold frequency, spreads while

creating a strong male gender bias, hence causing population suppression

(Figure 9.2D). Characteristic of all drive systems with thresholds, releases of

Medusa mosquitoes are confineable and reversible, making the system an

ideal tool for confined population suppression. This could be particularly

useful in the lead-up to releases of invasive population suppression systems

such as Y-linked X-shredder HEGs [76].

The name Medusa is an acronym for “sex chromosome-associated Medea

underdominance,” as its components are identical to those of Medea and

engineered underdominance. The name also has origins in Greek mythology,

where Medusa is a beautiful yet terrifying woman who caused onlookers to

be turned to stone (toxin) but was ultimately beheaded by Perseus who

distracted himself with Athena’s mirrored shield (antidote). Simple popula-

tion dynamic models show that an all-male release of Medusa males, carried

out over six generations, is expected to induce a population crash within 12
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generations for modest release sizes [76]. Reinvasion of wild-type insects

can result in a population rebound; however, this can be prevented through

regular releases of modest numbers of Medusa males.

Design Criteria. The vast range of possible toxin antidote combina-

tions highlights the versatility of this approach to engineering gene drive

systems. Semele is an excellent option for confined population replacement

due to its ability to suppress a vector population prior to replacement,

inverse Medea is an excellent underdominant system that is easy to engi-

neer once the components of the Medea system have been identified in

mosquito vectors, and Medusa is an ideal system for confined population

suppression in preparation for invasive X-shredder strategies [76]. Other

toxin antidote systems are imaginable and may be favored depending on

the components first identified in molecular work on vector species [73].

As toxin antidote systems, the design criteria outlined earlier are gener-

ally satisfied, and as largely confineable systems, the systems highlighted

here are excellent options during the testing phase of population replace-

ment, or whenever a confined release is desired.

TRANSLOCATIONS

As the first gene drive system to be proposed [4], translocations have since

undergone a lull in interest following the observation that radiation-

generated translocations failed to spread in the field, likely due to high

fitness costs induced by X-rays [7]. However, recent developments in molec-

ular biology permit the creation of translocations without relying upon radia-

tion suggesting that, after several decades of inactivity, the application of

this gene drive system could be revisited. Translocations result from the

mutual exchange of chromosomal segments between nonhomologous chro-

mosomes. Translocation heterozygotes are usually partially sterile, while

translocation homozygotes are usually fully fertile. This effect is manifest

during meiosis when nearly half of the gametes from a translocation hetero-

zygote have a duplication of one chromosomal segment and a deficiency of

another. The haploid gametes are functional, but when they fuse with native

gametes following fertilization, the resulting zygotes are inviable. This pro-

duces the bistable dynamics described for other underdominant systems.

Current Status. Curtis proposed that if a translocation strain was devel-

oped that had a disease-refractory gene tightly linked to the translocation

break point, disease-resistance would spread into that population as the trans-

location fixes [4]. To test this hypothesis, mosquito strains with chromo-

somal translocations were developed using X-ray mutagenesis; however, the

low fitness associated with these strains and the difficulty of bringing

disease-refractory genotypes into appropriate genetic backgrounds inhibited

these approaches from further development. It is now possible to generate

translocations at almost any genomic location without irradiation as a result
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of progress in genome sequencing and synthetic biology [77,78]. This will

reduce the fitness costs associated with translocations and will allow disease-

refractory genes to be more easily linked to translocation break points,

making them a feasible, future gene drive system for confined population

replacement.

Design Criteria. As an underdominant system displaying bistable

dynamics, translocations provide another option for confined population

replacement. As modern molecular techniques are yet to be applied to the

development of this system, its agreement with several of the design crite-

ria mentioned earlier are yet to be determined, and its attractiveness as a

local gene drive system will depend on its ease of engineering and satisfac-

tion of these criteria in comparison to toxin antidote-based underdominant

systems. Toxin antidote-based systems may be preferable for phased

releases as their components are more similar to invasive Medea elements

that could be used for subsequent wide-scale population replacement. That

said there is a theoretical expectation that translocations are an effective

gene drive system for local population replacement [4] and that the loss of

disease-refractory genes will be minimized by inserting them at transloca-

tion break points. As a bistable system, translocations could be eliminated

from a population through mass release of wild-type insects and would

satisfy social and regulatory requirements when confinement is desired.

CONCLUSION

In 2006, Sinkins and Gould published an excellent review of gene drive

systems for insect disease vectors which today provides a testament to how

quickly the field has progressed in less than a decade [79]. As the authors

state, “ultimately, the drive system that becomes most widely used might

be one that is entirely novel and not described here.” Interestingly, the

majority of the drive systems described in this chapter—TALENs,

CRISPRs, UDMEL, killer-rescue, Semele, inverse Medea, and Medusa—

were not mentioned in the Sinkins and Gould review as they are have only

been recently published.

Of the systems that were mentioned by Sinkins and Gould, progress has

been rapid. In mentioning Medea, for instance, the authors stated that “a

molecular understanding of its function could lead to the development of

artificial Medea-like constructs”—something that was achieved the following

year [14] and is now one of the most promising approaches for population

replacement. Regarding HEGs, the authors stated that, “Unfortunately, HEGs

have only been reported in fungi, plants, bacteria and bacteriophages . . . the

potential for developing an HEG-based functional system in insects is

unknown.” The following year, a HEG isolated from a species of slime

mold demonstrated cleavage activity in An. gambiae [36], and a few

years later, another naturally occurring HEG was shown to spread in
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laboratory populations of both D. melanogaster and An. gambiae [15,30,31].

HEGs are now one of the most promising gene drive systems for inducing

population suppression (Table 9.1). Research on using Wolbachia to control

vector-borne diseases has been even more rapid, with large-scale field trials

already having taken place in several countries including Australia and

Vietnam [80]. This prompts the question of what the gene drive field will

look like a decade from now?

Gene Drive for Any Situation

Sinkins and Gould also pointed out that “the various types of drive mechan-

isms should not be viewed as competing systems,” adding that, “Different

characteristics will be needed in different situations.” Gene drive systems

can lead to a number of outcomes in terms of population dynamics, and the

optimal system in each case will depend upon the desired outcome. For driv-

ing disease-refractory genes into mosquito populations over a wide area,

Medea seems to be a very promising system, as it is capable of spreading

from low initial frequencies and is also stably integrated into the host chro-

mosome. When population replacement is desired over a wide geographic

area, stability in the face of evolutionary degradation is an important consid-

eration, and Medea may be preferable to homing-based strategies incorporat-

ing disease-refractory genes because these are susceptible to DNA loss

during homology-directed repair, which is expected to become increasingly

significant over large spatial and temporal scales.

Systems with release thresholds are preferable when a confined release is

desired because these systems are likely to be confineable to their population

of release and to be reversible through releases of wild-type insects [72].

Toxin antidote-based underdominant systems would be an obvious choice if

the goal were to test the concept of population replacement prior to a release

of toxin antidote-based Medea elements. The bistable nature of these

systems makes them particularly amenable to confinement; however, killer-

rescue systems and a mass release of transgenic insects with disease-

refractory genes [19,71] should also be considered, as these are significantly

easier to engineer in a wide range of vector species and the spreading a

disease-refractory gene into an isolated population will not always require

gene drive.

For population suppression, Y-linked X-shredder HEGs are an ideal

system, assuming the X-shredding HEG can be docked onto the Y chromo-

some and expressed during spermatogenesis. The major benefits of the

X-shredder HEG are the generally small size of HEGs, making them less

susceptible to evolutionary degradation, and the large number of loci

cleaved on the X chromosome, making the strategy less susceptible to

target site mutagenesis [11]. Autosomal X-shredders, as a self-limiting

population suppression system acting through the same molecular
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TABLE 9.1 Alignment of Potential Gene Drive Systems with Design Criteria Outlined in the Introductiona

Design

Criteria

Target Site Cleavage-Based Gene Drive Systems Toxin Antidote-Based Gene Drive

Systems

Engineered

Translocations

Engineered
TEs

Engineered
HEGs

ZFNs, TALENs CRISPRs Medea, UDMEL Killer-rescue,
Semele,
Medusa

Effectiveness
of spread

Maybe [10]
(not yet
effective in
vector
species)

Yes [11] (very
effective, first
drive system
shown to
spread in a
malaria vector)

Probably [40]
(homing
demonstrated,
currently
compromised by
mutational
inactivation)

Probably
[51 57]
(components
identified, can
target multiple
sequences at
once)

Probably
[14,64,67]
(observed to
spread in
laboratory
Drosophila
populations)

Theoretically
[71,74,76] (not
yet engineered,
models predict
spread)

Theoretically
[4,77,78] (models
predict spread, not
yet engineered
using modern
components)

Ability to
carry large
effector
genes

No [22]
(transposition
rate declines
with
increasing
insert size)

Possibly [11]
(could be lost
during
homology-
directed repair)

Possibly [40]
(could be lost
during
homology-
directed repair)

Possibly (could
be lost during
homology-
directed repair)

Yes [14,67] (stably
integrated into
host chromosome)

Yes [71,74,76]
(stably
integrated into
host
chromosome)

Yes [4] (stably
integrated into
host chromosome)

Tight linkage
with effector
genes

No [23]
(transposition
events prone
to DNA loss)

No [11]
(homology-
directed repair
prone to DNA
loss)

No [40]
(homology-
directed repair
prone to DNA
loss)

No (homology-
directed repair
prone to DNA
loss)

Yes [14,67] (place
toxin and effector
genes within
intron of antidote
gene)

Yes [71,74,76]
(place effector
gene within
intron of
antidote gene)

Yes [4] (very tight
if effector gene
linked to a
translocation
break point)

Waves of
introductions

Maybe [10]
(difficult-to-
engineer
multiple TEs)

Maybe [11]
(difficult to
engineer)

Yes [40] (easier
to engineer than
HEGs)

Yes (easier to
engineer than
HEGs)

Yes [14,67] (use
distinct
toxin antidote
combinations)

Yes [71,74,76]
(use distinct
toxin antidote
combinations)

Yes [4] (use
threshold
properties)



Easily
adapted to
other species

No [10]
(difficult to
find TEs
compatible
with vector
species)

No (difficult to
engineer target
site)

Maybe [40] (once
components
identified in
species)

Maybe (once
components
identified in
species)

Maybe [14,67]
(once components
identified in
species)

Maybe
[71,74,76]
(once
components
identified in
species)

Maybe [77,78]
(once components
identified in
species)

Stability in
target
species

No [8] (large
number of
target sites
undermine
predictability)

Yes [11] (short
sequences
targeting
precise
genomic
regions)

Moderate to low
[40] (prone to
mutation due to
repetitive nature)

Moderate to
low (more
prone to
mutation due to
repetitive nature
and large size)

Yes [14,67] (stably
integrated into
host chromosome)

Yes [71,74,76]
(stably
integrated into
host
chromosomes)

Yes [77,78] (very
stable)

Minimal
horizontal
gene transfer

No [8] (wide
species host
range)

Yes [11]
(include
species-specific
regulatory
sequences)

Yes [11,40]
(include species-
specific
regulatory
sequences)

Yes [11]
(include
species-specific
regulatory
sequences)

Yes [14,67]
(include species-
specific regulatory
sequences)

Yes [71,74,76]
(include
species-specific
regulatory
sequences)

Yes

Mechanism
for removal

No Yes [11]
(design second
HEG to target
first HEG)

Yes [11,40]
(design second
ZFN or TALEN to
target first ZFN or
TALEN)

Yes [11] (design
second CRISPR
to target first
CRISPR)

Yes [14,67] (use
threshold
properties or
second-generation
element to remove
refractory gene)

Yes [71,74,76]
(use threshold
properties or
dilution with
wild-types)

Yes [4] (use
threshold
properties)

Social and
regulatory
requirements

No [79] (not
confineable
or reversible)

Yes [11] (wide
range of
strategies with
different levels
of
confineability)

Yes [11,40] (wide
range of strategies
with different
levels of
confineability)

Yes [11] (wide
range of
strategies with
different levels
of
confineability)

Yes [18,72]
(confineable or
unlikely to spread
following small
accidental release)

Yes [72]
(confineable to
partially
isolated
populations)

Yes [72]
(confineable to
partially isolated
populations)

aIn many cases, data supporting satisfaction of design criteria are preliminary. TEs, transposable elements; HEGs, homing endonuclease genes; ZFNs, zinc-finger nucleases;
TALENs, transcription-activator-like effector nucleases; CRISPRs, clustered, regularly interspaced, short palindromic repeats; UDMEL, maternal-effect lethal underdominance.



mechanism, are an obvious choice for testing this drive system prior to a

wide-scale release. Similar approaches using ZFNs, TALENs, and

CRISPRs should also be considered, especially considering their relative

ease of engineering. However, the repetitive nature of ZFNs and TALENs

and the large size of CRISPRs generally will make them more susceptible

to mutation and evolutionary degradation (Figure 9.3).

Outstanding Issues and Future Outlook

In 1899, US patent officer Charles Duell famously stated that, “Everything

that can be invented already has been invented.” It would be just as foolish

to say that all imaginable gene drive systems have already been imagined.

The coming decades are bound to witness the emergence of a plethora of

novel mechanisms for spreading desirable genes into insect populations, and

it will be fascinating to see how these systems align with the design criteria

mentioned earlier. Furthermore, of the systems for which development has

already begun, it will be fascinating to see how their laboratory and field

studies progress. Progress on toxin antidote-based systems will be greatly

facilitated by the development of their functional components—toxins, anti-

dotes and regulatory elements—in mosquito vectors. It will also be interest-

ing to see how modern approaches to translocations perform against

toxin antidote-based approaches to underdominance. Regarding homing-

based systems, critical developments will be the engineering of HEGs for

other vector species, the insertion and expression of X-shredders on the Y

chromosome, and determining the resilience of alternative homing-based

systems to evolutionary degradation.

As a technology capable of engineering or eliminating entire species, the

development of gene drive systems carries with it both great promise and

great responsibility. Issues are heightened by the ability of invasive systems

to spread into neighboring communities and countries without their consent

[81]. Comprehensive risk assessments that address ecological, epidemiologi-

cal, and social issues are therefore essential, and such technology should

only be used in the absence of significant risks. On the flip side, gene drive

technology has the potential to make a profound impact on relieving the

global vector-borne disease burden [2]. Considering malaria as an example,

traditional interventions such as bed nets and antimalarial drugs require

human compliance, which never truly exceeds B80% coverage, meaning

that there is always a residual human population capable of sustaining

transmission [82]. Replacement of disease-transmitting mosquitoes with

disease-refractory ones has the unique benefit that it does not require human

compliance, and can spread into areas where interventions are difficult to

apply. This makes it one of the most promising components of future

integrated strategies for the elimination of vector-borne diseases.
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FIGURE 9.3 Confineability and stability of potential gene drive systems. The potential gene

drive systems described in this chapter differ in multiple ways, including their confineability

(the ability to limit their spatial spread following a release) and their stability (resilience against

evolutionary degradation, predictable behavior in the host organism and infrequent spread into

nontarget species). Here, we depict the potential gene drive systems in a two-dimensional graph

according to these properties. Self-limiting systems eliminate themselves from a population as a

result of their own dynamics and hence are highly confineable, although some persist in a popu-

lation longer than others. Self-sustaining systems are capable of maintaining a high population

frequency but are relatively confineable if they display threshold properties in terms of release

frequency. Self-sustaining systems not displaying threshold dynamics can be highly invasive.

Toxin antidote-based systems (yellow) are relatively stable but have differing levels of confine-

ability. Cleavage-based population replacement systems (purple) are relatively invasive whether

they carry disease-refractory genes or induce a population fitness load. The process of homing

also causes them to be relatively unstable due to errors introduced during gap repair.

Cleavage-based population suppression systems (salmon) can be either invasive if located on the

Y chromosome or self-limiting if located on an autosome. ZFNs, zinc-finger nucleases;

TALENs, transcription-activator-like effector nucleases; CRISPRs, clustered, regularly inter-

spaced, short palindromic repeats; HEGs, homing endonuclease genes; UDMEL, maternal-effect

lethal underdominance.
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