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Abstract 

Are mental additions of single-digit numbers solved through 
direct retrieval from long-term memory or through persistent 
use of an automatized counting procedure along a mental line? 
In this paper, we present an experiment based on small 
additions along an artificial mental line, which tends to show 
that for very small addends (+2 to +4), counting may still be 
used at the end of a 3-week training. To investigate this issue, 
we developed the AutoCoP computational model, which 
describes how small additions could be solved, based on 
attention, working memory and experience. The simulations of 
AutoCoP based on this experiment showed that the effects 
detected at the behavioral level are reproduced and consistent 
with the theory, which assumes the use of a counting procedure 
in experts. 
Keywords: Numerical cognition; mental addition; 
computational modeling; working memory; mental line 

Introduction 
Mental arithmetic and more specifically solving of basic 
additions have been the focus of many studies in the field of 
numerical cognition for several decades. Understanding the 
mechanisms underlying basic arithmetic is of great interest, 
as the resulting theories may be applied in the field of 
learning or education to improve teaching practices or to 
remedy disorders such as dyscalculia. Should kids learn by 
heart their addition tables or rather learn how to count faster 
and faster? There is a relative consensus in the scientific 
community, that retrieval of arithmetic facts from long-term 
memory is the dominant strategy used to solve simple 
addition problems in adults. According to associationist 
models and especially the Instance Theory of Automatization 
(Logan, 1988), the initial sequential multi-step algorithm 
used in basic arithmetic such as in additions, creates episodic 
traces associating each element involved in the operation. 
When the number of traces associated to a problem is high 
enough, the result is directly retrieved from long-term 

memory. Using chronometric data, almost all studies show 
that the duration for solving basic additions increases with the 
size of the smallest operand and decreases from 
400 ms/increment in 6-year-old children to 20 ms/increment 
in adults (Groen & Parkman, 1972). According to 
associationist theories, this remaining slope detected in 
experts could correspond to the sporadic use of a counting 
procedure in case of retrieval failures or could be explained 
by the structural or functional characteristics of the retrieval 
process used at the memory network level storing the 
associations (Uittenhove et al., 2016, p. 291). Nevertheless, 
several recent studies cast doubt on this consensus and 
suggest that long-term memory retrieval may not be the 
dominant strategy used by experts to solve basic additions 
(Fayol & Thevenot, 2012; Barrouillet & Thevenot, 2013; 
Uittenhove et al., 2016; Mathieu et al., 2016). These studies 
suggest, on the contrary, that experts may use automatized 
and unconscious counting procedures corresponding to the 
quick scrolling of ordered numerical representations such as 
a mental number line (Figure 1). 
 

 
 

Figure 1. Representation of the counting procedure activated 
when solving a simple additive problem 

 
Using an alphabet-arithmetic verification task (e.g. A+2=C?), 
Thevenot et al. (2020) confirmed these hypotheses and 
pointed out that even after intensive training, participants still 
use a counting strategy and increase the speed of execution 
of the counting steps for the small operands (+2 to +4), 
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whereas for a specific category of problems corresponding to 
the largest addends, a minority of participants seems to favor 
memory retrieval. This conclusion calls into question the 
consensus according to which memory retrieval is primarily 
used for the smallest additions, which have been encountered 
first in preschool and have been more accurately and more 
frequently solved during training. 

These hypotheses could fit the Race Model described by 
Logan and Cowan (1984) in which memory retrieval 
competes with the counting algorithm. For larger problems, 
the algorithm may be slower, which explains why memory 
traces have a better chance of winning than when the 
algorithm is faster, as with small problems. According to 
these studies, it seems currently impossible to exclude the 
possibility that individuals are still counting after extensive 
practice of small additions.  

A method to investigate this issue is to develop a 
computational model to precisely describe how additions 
involving very small operands could be solved based on what 
is known about human cognition and especially attention and 
working memory. The goal is first to get a proof of concept 
able to reproduce the known effects, then a tool that would 
help researchers to investigate the theoretical models of 
solving basic additions. 

AutoCoP: a new counting model based on an 
automatized procedure relying on working 

memory 
The AutoCoP model of mental additions proposed in this 
study is based on the theoretical model presented by 
Uittenhove et al. (2016), which describes mental additions 
involving very small operands as an automatized and 
unconscious procedure scrolling an ordered representation 
such as a number line sequence. This model does not consider 
the notion of strategic variability as described in the Race 
Model. In its first version, AutoCoP focuses on the speed up 
of the counting procedures and not on memory retrieval that 
may occur in some participants with the largest addends. 
According to this model, fluency in mental additions would 
not result from a transition from costly counting procedures 
to memory retrieval, but rather from slow to automated and 
ultra-fast procedures. At the beginning of the training, these 
algorithms are requiring control and awareness of each of 
their steps but at the end, they are performed out of the control 
of the participant who remains unaware of the process itself. 
According to Uittenhove et al. (2016), the high speed of this 
process may be due to the fact that it occurs during a single 
focus of attention for very small additions. Working memory 
plays a central role in the execution of this procedure and is 
continuously updated during this process. Therefore, 
intermediate inputs and outputs involved in the compiled 
procedure may not be accessible to the consciousness of the 
person who performs it. This model is also inspired by the 
Adaptive Control of Thought-Rational (ACT-R) (Anderson 

et al., 2004). In ACT-R, learning begins with a first stage 
during which individuals control their processing strategies. 
This step is followed by a stage in which knowledge is 
compiled to create fast procedures. Nevertheless, in contrast 
to Anderson’s model, Autocop relies on automatization 
rather than compilation. Indeed, whereas in Logan and 
Anderson’s models, “learning mechanisms reduce the 
number of things to think about” (Logan, 2018, p. 453) either 
through retrieval or chunking, we propose that “the number 
of things to think about” remains the same with practice but 
that their execution and mental succession is accelerated until 
automatization. Therefore, the experience acquired during 
the training makes it possible to speed up procedural 
strategies until they are automated and no longer under 
individuals’ cognitive control. From a behavioral point of 
view, training results in a decrease in solution times until it 
reaches a plateau. 

AutoCoP: description and implementation 
AutoCoP simulates the training of adding numerical 
operands (e.g. +2) to items belonging to a sequence of 
ordered elements corresponding to any mental line, either 
existing (e.g. 1 2 3 4…, A B C D …) or artificial (e.g. X G R 
Q D F V K B…). For instance, based on the alphabetical line, 
the model estimates the duration to compute A+2 or to check 
whether A+2=C is correct. For this purpose, the model 
simulates the basic cognitive processes to go from one 
element to the next one until it reaches the correct result. The 
model also considers the individual's experience on counting 
along the sequence. The experience is here assumed to 
depend on the number of times each particular step on the 
mental line has been performed. Therefore, each element of 
the sequence has an experience value, e.g. a participant may 
have high experience moving from element i to i + 1 but a 
weaker experience moving from element k to k + 1. In Table 
1, at the beginning of the training, there is no experience 
associated with the elements of the sequence X G R Q D F V 
K B P, i.e. each letter has an experience value equal to 0. 
When performing an operation like X+6, one has to move 
from X to G, G to R, R to Q, Q to D, D to F and F to V which 
increases the experience value of each element X, G, R, Q, D 
and F. 
 

Table 1: Example illustrating how experience is updated 
during the training on the X G R Q D F V K B P line: each 
number represents the number of times each next element 

has been retrieved. 
 

Operation Experience of each element 
 

None 
X G R Q D F V K B  P 
0  0  0  0  0 0  0  0  0  0 

X+6=V 1  1  1  1  1 1  0  0  0  0 
D+3=K 1  1  1  1  2 2  1  0  0  0 
G+2=Q 1  2  2  1  2 2  1  0  0  0 
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Figure 2. The different stages of an equation verification according to the AutoCoP model 

 
Working memory occupies a central place in this model, 

both at processing and at data storage levels. Indeed, all data 
stored in working memory must be kept at a sufficient level 
of activation throughout the process. Thus, each element 
stored in working memory is associated with an activation 
value, which evolves during the processing episode. The way 
it evolves was inspired by the Time-Based Resource Sharing 
Model (TBRS, Barrouillet et al., 2011) and its 
implementation (Portrat & Lemaire, 2015). The TBRS model 
considers that information stored in working memory decays 
over time when attention is focused on another task. 
Attentional focus is seen as a mechanism that can only be 
dedicated to one process at a time and that may quickly 
switch from a processing stage to a refreshing stage within 
working memory. 

The implementation of AutoCoP (Figure 2) aims to 
simulate a verification task of additions such as X+3=Q, 
which is correct using the artificial mental line of Table 1, or 

D+4=K, which is not. As described before, each elementary 
step of the algorithm gives rise to the update of the activation 
value of each element stored in working memory and its 
refreshing if necessary. Let us now detail the basic steps of 
the model with the equation X+3=Q to be verified. 

 
Initialization phase (steps 1 - 3 in Figure 2): All the elements 
of the equation (e.g. X, 3, and Q corresponding to the augend, 
addend and result) are encoded in working memory. Their 
activation value (between 0 and 1) is initialized to 1. 
Iteration phase (steps 4 - 9 in Figure 2): The iterative 
counter, initialized to 0, is incremented following the 
numerical line (1 2 3 4 …) up to the next value. The next 
element on the mental line is retrieved and replaces the 
augend in working memory. The duration of this step 
depends on the experience of the element being processed 
according to a mathematical function that will be presented 
later. Then, the experience of the newly replaced element in 
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working memory is increased by 1. If the iterative counter is 
equal to the addend, then the process is finished at the end of 
the step. Otherwise, the iteration continues until it reaches the 
addend. In line with the TBRS model, the activation value of 
each working memory element at a given moment (see Figure 
2: the value in parenthesis next to the elements stored in the 
working memory part) is updated by considering the duration 
of each step of the process. If the forgetting threshold is 
reached for any stored element, then a refreshing step is 
carried out which adds an extra delay to the duration of the 
process. In the previous example, the working memory 
therefore contains successively the following elements 
(augend, addend, result, increment): 
 

[X 3 Q 0] [G 3 Q 1] [R 3 Q 2] [Q 3 Q 3] 
 

End of processing (step 10 in Figure 2): At the end of the 
iteration phase, the result obtained is compared to the result 
of the equation and the answer (yes/no) is provided. 

Mathematical modeling 

As previously described, the duration of the calculation 
considers the possible extra delay for refreshing each element 
stored in the working memory if the activation value is lower 
than the forgetting threshold as well as the duration to move 
from one element to another on the mental lines. The 
implementation of the TBRS model relies on an exponential 
function (Oberauer and Lewandowsky, 2011) to represent the 
decay of the elements stored in working memory. The 
activation value ai after a duration t, of an element i of the 
working memory follows the following decay function: 
 

𝑎௜(𝑡) = 𝑎௜(0). 𝑒(ି஽ )    (1)  
   t in second, D decay between 0 and 1 
 

     If the activation value ai of element i becomes lower than 
the forgetting threshold, then the element is refreshed and its 
activation value ai is updated to 1. 
For an element i of the mental line, the duration to retrieve 
the next one, that is to move from i to i+1, consists of the sum 
of two durations: an incompressible duration of 
approximately 20 ms which corresponds to the duration 
observed in experts and a duration depending on a decreasing 
function considering the experience of the element i and 
based on Equation 2 (Figure 3). 
 
 
 
 
 
 
 
 
 

         Experience  
 

Figure 3: Relationship between experience on the mental 
line and reaction time 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑖 → 𝑖 + 1) = 𝑅𝐷𝐵 + 𝑅𝐷𝐹.  𝑒
ቆ

ି൫௘௫௣௘௥௜௘௡௖௘(௜→௜ାଵ)൯
ோ஽஽

ቇ
(2) 

 
RDB: Retrieval Duration Baseline (20 ms) 
RDF: Retrieval Duration Factor 
RDD: Retrieval Duration Divisor 
In Equation 2, the duration is maximal (i.e. equal to RDB + 
RDF) when the experience is zero and minimal (i.e. equal to 
RDB) when the experience increases towards infinity. 

This computational model was implemented in a C 
program, which is available at our Open Science Foundation 
web page. We now present the human data that are used to 
assess the model. 

A new experiment based on a new mental line 
Numerous studies on small basic additions show a 
monotonous linear effect of the smaller operand on solution 
times (Barrouillet & Thevenot, 2013). On alphanumeric 
addition training tasks (based on the alphabetical sequence), 
Thevenot et al. (2020) showed that resolution times decrease 
as the training progresses but eventually reach a plateau. At 
the end of the training, the effect of the operand on solution 
times continues (except for the largest addend). In this 
analysis, the authors found a positive slope of 217 ms/addend 
and of 235 ms/addend (for experiment 1 with problems 
involving addends 2 to 4 and for experiment 2 with problems 
involving addends 2 to 5) and a clear linear pattern of solution 
times as a function of addends for those operands.  

The problem with the existing numerical and alphabetical 
mental lines is that participants already learned them since 
kindergarten and therefore know them perfectly well, which 
precludes the description of what happens at the beginning of 
learning. Our solution was to rely on an artificial mental line 
that no participant would know before the experiment. In 
addition, it would allow us to check whether the effects 
observed with the standard alphabetical line also occur with 
other types of mental line. A learning experiment with 19 
students aged between 18 and 29 years was conducted over 3 
weeks. Participants learned to add digits (addends +2 to +5) 
to the first eight letters of a new sequence (e.g. X G R Q D F 
V K B P N S H J), which they had to learn the week-end 
preceding the beginning of the experiment. In each of the 15 
daily training sessions, participants had to check equations (8 
letters × 4 addends from +2 to +5) based on this new artificial 
line and which were presented in random order. Half of the 
presented equations were associated with the correct answer 
(e.g. X+3=Q – “true”) whereas the other half was associated 
with an incorrect answer (e.g. G+4=V – “false”). Every 
combination of letters, addends (+2 to +5), and response 
validity (“true” or “false”) was presented six times per 
session. Thus, every session involved 384 trials (i.e., 8 letters 
x 4 addends x 2 possible answers x 6 repetitions), which were 
divided into three blocks separated by a break. 

Our experimental results are very similar to those of 
Thevenot et al. (2020) on the alphabetical mental line. The 
overall correct answer rate was 97.33% (SD = 0.82%). We 
conducted a 15 (Session: 1 to 15) x 4 (Addend: 2 to 5) 

D
uration (m

s) 
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repeated-measures ANOVA on correct answers and “true” 
equations, which showed that the mean solution times 
significantly decreased over sessions (F(14,252)=114.4, 
SD=0.86, p<.001) from 5 177 ms (SD=3 013 ms) in session 
1 to 1 412 ms (SD=729 ms) in session 15. We compared the 
mean solution times of each session n to session n+1 to 
determine whether a plateau has been reached at the end of 
the training. From session 9, the differences between 
successive sessions begin to disappear: between session 9 and 
session 10, the difference is not significant (t(18)=2.608, 
p=0.154), same as between session 11 and 12 (t(18) =-1.364, 
p=1) and between session 14 and 15 (t(18)=1.55, p=1). These 
results suggest a stagnation of mean solution times from 
session 9.  

A main effect of addend was also found (F(3,54)=39.01, 
ηp

2=0.684, p<.001) showing that solution times generally 
increased as a function of addend, with 1 807 ms (SD=1 283), 
2 254 ms (SD=1 649), 2 450 ms (SD=1 827) and 2 582 ms 
(SD=2 070) respectively for addends +2, +3, +4, +5. More 
important in these results is the interaction between session 
and addend (F(42,756)=21.57, ηp

2=0.545, p<.001) showing 
that the effect of addend decreased across sessions (Figure 4).  

 

 
 

Figure 4. Mean solution times as a function of addend for 
Sessions 1, 2, 3, 4, 5, 10, 13 and 15. Error bars represent 

standard errors 
 

We calculated the slope of solution times as a function of 
addend and it remained significant from the beginning to the 
end of training (Session 1: M=760 ms/addend (SE=44, 
p<.001) - Session 5: M=271 ms/addend (SE=20, p<.001) 
Session 10: M=155 ms/addend (SE=14, p<.001) and Session 
15: M=82 ms/addend (SE=10, p<.001). Nevertheless, the 
difference in slope was no longer significant between 
sessions 10 and 15 (t(35.67)=1.268, p=0.1065).  

The results also showed that the effect of the addend on 
solution times persists over all sessions, indicating that 
participants are somehow still counting even after 3 weeks of 
learning. However, from session 5, there is no longer 
significant difference between the solution times of addends 
+4 and +5. This last result seems to indicate that +5 problems 
are not processed as the other problems during the course of 
the training as in Thevenot et al.’s (2020) study.  

Learning an artificial mental line would therefore produce 
the same effects as mental lines such as the number line or 
the alphabetical line. The plateau reached at the end of the 
training coupled with a persistent effect of the addend tends 
to support an acceleration of the counting procedure for very 
small addends (+2 to +4). These experimental effects are the 
benchmarks of our model simulations. 

Simulations 
The goal of our simulation is firstly to estimate the two 
parameters RDD and RDF described in Equation 2 which 
control the speed of scrolling the mental line as a function of 
learning, then to check whether the effects produced by the 
model are similar to those detected in the experiment based 
on the artificial line and finally, to verify whether the mean 
solution times estimated by the model with those parameters 
are close to those observed at the behavioral level. The model 
simulates the verification task of 32 “true” equations 
presented to 19 virtual participants in random order during 15 
sessions as described in the experiment. The model produces 
one solution time per addend and per session based on the 
mean solution times obtained from the 19 participants during 
the simulation. 

Initializing model parameters 
The model parameters were initialized with the following 
values: 
- Encoding duration of augend, addend and result: 80 ms per 
element (Widaman et al., 1989); 
- Decay parameters and forgetting threshold (from the TBRS 
model): 0.5 (Equation 1) (Oberauer and Lewandowsky, 
2011); 
- Duration of the motor command performed at the end of the 
process (to press the key on the keyboard): 300 ms 
(Rosenbaum, 1980); 
- Duration of the comparison between the result obtained and 
the result presented: 200 ms (Kang and Ratcliff, 2018); 
- RDB parameter (Equation 2) which corresponds to the 
minimum duration of a step: 20 ms (Groen and Parkman, 
1972); 
- Refreshing time elements in working memory: 80 ms 
(Oberauer and Lewandowsky, 2011). 

Parameter estimation 
The data collected from the experiment based on the artificial 
line were used to estimate the parameters RDD and RDF 
described in the Equation 2. Session 1 was excluded because 
it includes a large extra delay, probably due to the fact that 
participants were discovering the experiment for the first 
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time. Therefore, the simulation was performed from sessions 
2 to 15 for addends +2 to +5. The estimation consists of 
searching the RDD and RDF parameter values that minimize 
the MSE (Mean Squared Error) between the mean data 
calculated by the model and the mean experimental data per 
addend and per session. The overall shape of the MSE as a 
function of RDD and RDF values is illustrated in Figure 5. 
The mean MSE obtained is 274 ms (for RDD=72 and 
RDF=740), which represents 12% of the mean solution times 
(2 271 ms, SD=1 754 ms).  

 

 
 

Figure 5. MSE (ms) as a function of RDD and RDF  

Comparison of simulated and experimental data 
Exactly like theoretical models in cognitive psychology are 
first assessed on their ability to predict behavioral effects, 
exploratory computational models such as ours need also to 
be first tested based on their ability to reproduce effects with 
simulated data. If simulations show the basic effects, then 
deeper investigation is conducted to check whether the data 
magnitude is correctly reproduced. 

Figure 6 represents the mean simulated solution times with 
RDD=72 and RDF=740, by addend for sessions 2, 3, 4, 5, 7, 
8, 10, 13 and 15. The model produces globally the same 
effects as the experiment on the artificial line for very small 
addends: 
- An effect of the addend, which results in an increase of 
solution times as a function of the addend; 
- An effect of the sessions, which results in a decrease in 
solution times as the training progresses; 
- An interaction effect between sessions and addends, the 
effect of which decreases as the sessions progress. 

Nevertheless, the model underestimates the solution times 
for addends +2 to +4 and overestimates solution times for 
addend +5. In fact, it does not consider the bend of the curve 
for the last addend detected by Thevenot et al. (2020). This 
drop could correspond to the beginning of memory retrieval 
which is not considered at the moment. Thus, the simulated 
data almost follow a linear trend for all addends until session 
7 but from session 8, the model predicts a slight acceleration 
between addend +4 and addend +5. Nevertheless, for 

addends+2 to +4, the estimated slopes in sessions 10 and 15 
are respectively 233 and 111 ms/addend for experimental 
data and 255 and 152 ms/addend for simulated data, which is 
in the same order of magnitude.  

 

 
 

Figure 6. Mean solution times as a function of addend for 
RDD=72 RDF=740 - simulated data 

Discussion 
In the end, the model manages to reproduce human behavior 
on the artificial line for the smallest addends (from +2 to +4), 
namely a decrease in solution times as the sessions progress.  

To explore different theoretical hypotheses, it is fruitful to 
carry out simulations in order to predict the behavior under 
other conditions. The AutoCoP model hypothesizes the 
automation of the counting procedure along the mental line, 
resulting in a residual slope of the solution times as a function 
of the addend. To make a prediction about what could happen 
after a very long training on our artificial material, similar to 
what occurred with “fossilized” mental lines (i.e. numerical 
mental line), we performed a simulation on a mental line for 
addends +2 to +5 over 100 sessions. The residual slope of 
48 ms/addend obtained in session 100 is of the same order of 
magnitude as that measured by Uittenhove et al. (2016) 
(45 ms/addend). 

At the end of the training, simulations always show a 
significant slope, in accordance with an ultra-fast counting 
procedure as proposed by AutoCoP model. However, the 
notion of competition between the counting algorithm and 
direct memory retrieval which could explain the inflection of 
solution times for the largest addend is part of our future 
work. 
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