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Abstract
We assess the performance of turbulence closures of varying degrees of sophistication in the
prediction of the mean flow and the thermal fields in a neutrally-stratified Ekman layer. The
Reynolds stresses that appear in the Reynolds-averagedmomentum equations are determined
using both eddy-viscosity and complete differential Reynolds-stress-transport closures. The
results unexpectedly show that the assumption of an isotropic eddy viscosity inherent in
eddy-viscosity closures does not preclude the attainment of accurate predictions in this flow.
Regarding the Reynolds-stress transport closure, two alternative strategies are examined:
one in which a high turbulence–Reynolds–number model is used in conjunction with a
wall function to bridge over the viscous sublayer and the other in which a low turbulence–
Reynolds-number model is used to carry out the computations through this layer directly to
the surface. It is found that the wall-function approach, based on the assumption of the appli-
cability of the universal logarithmic law-of-the-wall, yields predictions that are on par with
the computationally more demanding alternative. Regarding the thermal field, the unknown
turbulent heat fluxes are modelled (i) using the conventional Fourier’s law with a constant
turbulent Prandtl number of 0.85, (ii) by using an alternative algebraic closure that includes
dependence on the gradients of mean velocities and on rotation, and (iii) by using a differ-
ential scalar-flux transport model. The outcome of these computations does not support the
use of Fourier’s law in this flow.

Keywords Ekman layer · Prandtl number · Reynolds-stress closures · Similarity theory ·
Turbulent heat-flux closures

1 Introduction

Most turbulence closures in use for the prediction of environmental flows in general, and the
atmospheric boundary layer (ABL) in particular, have been developed and calibrated with
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L. Braun et al.

reference to experimental data from simple, uni-directional two-dimensional shear flows
in which complicating effects such as those arising from buoyancy, streamline curvature,
or system rotation are entirely absent. In the Ekman layer–the boundary layer formed by
pressure gradients induced in a rotating system and which is considered to be a realistic
simpler representation of the ABL–the flow is three dimensional, the direction of the resultant
velocity varies with height (the Ekman spiral) and, further, rotational effects appear explicitly
in the equations governing the transport of momentum, and in the transport equations for
the turbulent fluxes of momentum, heat, and contaminants. Thus some of the modelling
assumptions inherent in these closures may no longer be valid in this more complex flow.
One such assumption that is central to conventional turbulence closures, but whose validity
in the more general ABL flow may be questionable, is that of Boussinesq in which the
unknown Reynolds stresses are assumed to be proportional to the local mean rates of strain
implying alignment of their respective directions. For this to be the case, the contributions
of the convective and diffusive transport processes to the balances of the Reynolds stresses
must be negligible compared to the processes of generation and dissipation. However, this
condition is not always obtained (Kannepalli and Piomelli 2000). Moreover, in practical
applications, the coefficient of proportionality, the eddy viscosity, is assumed to be isotropic
when in fact measurements of three-dimensional shear flows show that this is not generally
the case (Johnstone and Flack 1996). There is therefore a need to carefully evaluate the
performance in the Ekman layer of some of the more commonly-used closures using reliable
results obtained in recent direct numerical simulations (DNS) and experiments.

A number of studies on the assessment of turbulence closures for the Ekman layer
have been reported in the literature. We confine attention here to those that used the more
physically-based and widely-used 1.5- and 2.5-order turbulence closures. Of the former cat-
egory, the k−ε model, with k being the turbulence kinetic energy (TKE) and ε its dissipation
rate, appears to have received the most attention. Detering and Etling (1985), Andrén (1991),
and Apsley and Castro (1997) found it necessary when using this model to modify the pro-
duction term in the ε equation to improve the prediction of the wind profile in the ABL. In
all these studies, the eddy viscosity was assumed to be isotropic. In contrast, Wirth (2010)
postulated that the eddy viscosity is an anisotropic fourth-order tensor in three-dimensional
space and derived an expression for it that produced good results for the Ekman spiral. Mar-
latt et al. (2012) used their DNS results to evaluate this model. They found that the closest
agreement between the k−ε model results and the DNS data is obtained when the coefficient
Cμ that enters into the calculation of the eddy viscosity is made a function of the turbulent
Reynolds number. This coefficient was taken as constant in the previous studies, a practice
that Marlatt et al. (2012) found to produce the least satisfactory agreement with the DNS
results. We include the k − ε model in our assessment.

The notion of turbulent viscosity is dispensedwithin 2.5-order turbulence closureswherein
the Reynolds stresses are obtained from the solution of a modelled differential transport
equation for each component, a total of six for the Ekman layer. In this study, we evaluate
two models of this category. These models have in common several of the approximations
needed to close the exact equations for the Reynolds stresses but differ in one important
respect: one is applicable only in the fully-turbulent region of the flow, thereby requiring the
assumption that the universal logarithmic law-of-the-wall is valid so it can be used to bridge
over the viscous sublayer, and another that is also applicable in the viscous sublayer thereby
allowing for the simulations to be extended directly to the wall. Apart from determining the
influence of each approach on the quality of the predictions, the results obtained with these
models serve to show the extent to which the effects of convective and diffusive transport are
important in such a flow. Furthermore, because all three models are solved using the same
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computational tool, and their results tested against the same benchmark data, differences in
their results can be attributed to their formulation with greater certainty.

We also consider the question of how best to model the turbulent transport of heat in the
neutral Ekman layer, a topic that, despite its obvious importance, has received relatively less
attention than that of the flow field. The usual approach to modelling the turbulent heat fluxes
is to assume them to be proportional to the local gradients of mean potential temperature.
The proportionality coefficient, the turbulent diffusivity, is in turn taken to be proportional
to the turbulent viscosity via a turbulent Prandtl number typically taken to be constant. The
assumption of a constant turbulent Prandtl number has been the subject of numerous studies,
most recently by Li (2019) who found no evidence to support it. Here, we use this approach
tomodelling the heat fluxes and compare this with two other models that are entirely different
in their formulation: one that is also algebraic in the heat fluxes but allows for the turbulent
Prandtl number to vary depending on the details of the turbulence field, and another in
which the fluxes are obtained from the solution of modelled differential transport equation,
a total of three in the Ekman layer. The objective of these simulations is to place on record
the performance of these three different modelling approaches and thus provide a basis for
assessing their suitability for use in this flow.

While many of the features that pose the Ekman layer as an exacting test for turbulence
closures are considered,we note thatABLflows are subject to complicating effects that are not
considered here but whose presence can adversely affect the performance of these closures.
Three complicating effects are worthy of note, these are: stable stratification, mean-flow
unsteadiness and surface drag effects. The effects of stable stratification are to diminish the
turbulence activity leading to reduction in the vertical turbulent fluxes of heat andmomentum
relative to the neutrally-stratified flow. A number of alternative approaches to sensitizing the
turbulence closures to the effects of stable stratification have been proposed. Mauritsen et al.
(2007), for example, proposed a model in which the TKE k, which is typically used in
eddy-viscosity closures to obtain a characteristic turbulent velocity scale, is replaced by the
total turbulence energy being the sum of k and the turbulent potential energy. The model’s
performance was assessed by comparisons with large-eddy simulations (LES) for neutral and
stably-stratified cases where it was found to yield results that were indistinguishable from
those of LES. Concerning the effects of mean-flow unsteadiness on the Ekman layer, large-
eddy simulations by Momen and Bou-Zeid (2017) of a neutral flow with unsteady pressure
forcing indicated that these effects are determined by the relative magnitudes of the time
scales for the inertial and turbulence processes, and the pressure forcing. The results were
used to test first- and 1.5-order turbulence closures which, for the case where the forcing
and the turbulence time scales are comparable, were found to fail badly in capturing the
changes wrought on the flow dynamics by virtue of the turbulence being out of equilibrium
with the mean flow. The matter of how to account, in a turbulence closure, for the effects of
surface drag produced by tall vegetative canopies was considered by Sogachev et al. (2012)
who advanced a model based on extension of the equation for the turbulence length scale.
The model proved successful in reproducing the effects of both vegetation and atmospheric
stability. Consideration of howbest to account for these complicating effects in the framework
of the turbulence closures that are the focus of the present contribution is deferred to a future
study.
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2 Mathematical Formulation

2.1 Mean-Flow Equations

The coordinate system used is shown in Fig. 1, where the x- and y-axes are the horizontal
coordinates and z is the vertical coordinate. The x-component of the freestream geostrophic
velocity vector is Ug = (Ug, 0).

The flow is assumed to be horizontally homogeneous and hence all gradients in the y-
direction vanish, and in accordance with the usual boundary-layer assumptions, diffusion is
considered to be important only in the vertical direction. The flow is taken to be steady and the
fluid (air) to be of constant properties. With these assumptions, the time-averaged equations
governing the conservation of mass, momentum, and thermal energy (temperature) can be
written as

∂U

∂x
+ ∂W

∂z
= 0, (1)

U
∂U

∂x
+ W

∂U

∂z
= ∂

∂z

(
ν
∂U

∂z
− uw

)
− 1

ρ

∂ p

∂x
+ f V , (2)

U
∂V

∂x
+ W

∂V

∂z
= ∂

∂z

(
ν
∂V

∂z
− vw

)
− 1

ρ

∂ p

∂ y
− f U , (3)

U
∂�

∂x
+ W

∂�

∂z
= ∂

∂z

(
ν

Pr

∂�

∂z
− wθ

)
. (4)

In the above, U , V , and W are the velocity components in the x-, y-, and z-directions
respectively, p is the time-averaged static pressure, � is the potential temperature, Pr is the
molecular Prandtl number, ρ is the density, ν is the kinematic viscosity, and f is the Coriolis
frequency,

f = 2�sin(φ), (5)

Fig. 1 Geostrophic coordinate
system and a visualization of the
computed Ekman spiral at 90◦ N
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where � is the Earth’s rotation rate and φ is the latitude. The pressure gradient in Eq. 3 is
constant across the layer and is given by

∂ p

∂ y
= −ρ f Ug. (6)

In Eqs. 2–4, −uw and −vw are the components of the Reynolds-stress tensor that are
responsible for the vertical transport of momentum by turbulence and wθ is the vertical
turbulent heat flux. These are unknown quantities that are determined using the turbulence
closures given below.

2.2 The k− �Model

The k−ε model utilizes Boussinesq’s hypothesis in which the Reynolds stresses are assumed
to be linearly proportional to the local rates of strain,

− uiu j = Km

(
∂Ui

∂x j
+ ∂Uj

∂xi

)
− 2

3
δi j k, (7)

where Km is the eddy viscosity.
In the Ekman layer, and to the boundary-layer approximations, Eq. 7 yields the following

expressions for the momentum fluxes

−uw = Km
∂U

∂z
,

−vw = Km
∂V

∂z
. (8)

In the k − ε model, the eddy viscosity is obtained from

Km = Cμ

k2

ε
, (9)

where ε is the dissipation rate of TKE. For the fully-developed Ekman layer, k and ε are
obtained from the solution of the equations

U
∂k

∂x
+ W

∂k

∂z
= ∂

∂z

[(
ν + Km

σk

)
∂k

∂z

]
+ Pk − ε, (10)

U
∂ε

∂x
+ W

∂ε

∂z
= ∂

∂z

[(
ν + Km

σε

)
∂ε

∂z

]
+ Cε1

ε

k
Pk − Cε2

ε2

k
, (11)

where Pk is the rate of production of k,

Pk = Km

((
∂U

∂z

)2

+
(

∂W

∂z

)2
)

. (12)

The coefficients in this model are assigned their standard values, viz. Cμ = 0.09, σk = 1.0,
σε = 1.3, Cε1 = 1.44, Cε2 = 1.92 (Launder and Spalding 1972).

2.3 The Reynolds-Stress Transport Models

The exact equations governing the conservation of the Reynolds stresses uiu j form the basis
of Reynolds-stress transport models (hereafter, RSM refers to the Reynolds-stress model).
In rotating coordinates, these equations are given by
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Convection: Ci j︷ ︸︸ ︷
Uk

∂uiu j

∂xk
= −

Shear production: Pi j︷ ︸︸ ︷(
uiuk

∂Uj

∂xk
+ u juk

∂Ui

∂xk

)
−

Rotation production: Gi j︷ ︸︸ ︷
2�ksin(φ)

(
u jumεikm + uiumε jkm

)

+

Diffusion: Di j︷ ︸︸ ︷
∂

∂xk

[
ν
∂uiu j

∂xk
− uiu j uk − 1

ρ

(
p′uiδ jk + p′u jδik

)]

+

Pressure-strain: �i j︷ ︸︸ ︷
p′
ρ

(
∂ui
∂x j

+ ∂u j

∂xi

)
−

Dissipation: εi j︷ ︸︸ ︷
2ν

∂ui
∂xk

∂u j

∂xk
. (13)

In Eq. 13, the terms representing convection, production by shear and rotation, and viscous
diffusion are treated exactly as they appear in this equation. The remaining terms contain
unknown correlations that are modelled as follows. In the diffusion term Di j , the pressure
diffusion term makes negligible contribution to the stress balances and is hence generally
neglected (Wilcox 1993). The triple velocity correlations represent the process of diffusion
due to velocity fluctuations, and are modelled according to the Daly and Harlow (1970)
gradient-diffusion hypothesis

− uiu j uk = Cs
k

ε
ukul

∂uiu j

∂xl
, (14)

where Ck is a coefficient set equal to 0.22.
The fluctuating pressure rate-of-strain correlation term �i j was modelled following Gib-

son and Launder (1978) and accounts for the ground effects on these correlations in the
ABL

�i j = �i j,1 + �i j,2 + �i j,1,w + �i j,2,w. (15)

The first two terms represent the effects on the fluctuating pressure field of turbulence fluc-
tuations and of mean rates of strain. These are modelled as

�i j,1 = −C1
ε

k

(
uiu j − 2

3
δi j k

)
, (16)

�i j,2 = −C2

(
Pi j − 2

3
δi j Pk

)
. (17)

The last two terms represent the effects of a solid surface in damping the pressure fluctuations
in its vicinity, and inhibit the transfer of energy to the turbulence fluctuation perpendicular
to the surface. These terms are also modelled separately

�i j,1,w = C1,w
ε

k

(
ukumnknmδi j − 3

2
ukui nkn j − 3

2
uku j nkni

)
fw, (18)

�i j,2,w = C2,w

(
�km,2nknmδi j − 3

2
�ik,2nkn j − 3

2
� jk,2nkni

)
fw, (19)

where ni is the unit vector normal to the wall and fw is a function that reflects the strength
of surface damping.

Gibson and Launder (1978) did not consider the contribution of the production by rotation
term to the pressure-strain correlations. However, rotation-related terms do in fact appear in
the exact equations for these correlations and hence their effects must also be accounted for
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in the model for these correlations. Here, we adopt the proposals of Younis et al. (1998) by
incorporating the production by rotation term in a manner analogous to Eq. 17

�i j,3 = −C3

(
Gi j − 2

3
δi j Gii

)
. (20)

Following Gibson and Launder (1978) and Younis et al. (1998), the coefficients that
appear in Eqs. 14–20 are assigned the values C1 = 1.8, C2 = 0.6, C3 = 0.6, C1,w = 0.5,
C2,w = 0.3, Cs = 0.22.

Since the fluid viscosity is absent from the exact equations for the fluctuating triple velocity
correlations and thepressure-strain correlations, itmay reasonablybe assumed that themodels
for these correlations, which themselves are independent of viscosity, are valid across the
entire range of turbulence Reynolds number. This does not apply to the last term in Eq. 13,
which represents the rate atwhich ui u j is dissipated by viscous action.Here,we do expect that
the model for εi j should reflect the DNS and experimental results that indicate that viscous
dissipation is highly anisotropic in the viscosity-affected region of the flow but becomes
isotropic in the high turbulent–Reynolds-number regions of the flow away from solid walls.
A model that reflects the correct asymptotic behaviour of the dissipation rate term at both
low- and high-turbulence Reynolds number is given by Kebede et al. (1985)

εi j = ε

[
2

3
δi j (1 − fs)

+ fs F
uiu j + uiuknkn j + u juknkni + δi j ukulnknl

k

]
, (21)

where ni is again the unit vector normal to the surface. The function fs in Eq. 21 is a function
of the turbulence Reynolds number Ret

fs = exp(−Ret/40), (22)

with Ret = k2/(νε). Close to thewall, in the viscous sublayer, Ret is low and fs approaches a
value of unity which eliminates the isotropic contribution and produces the correct anisotropy
of the dissipation tensor. Farther away from the wall, Ret is high and fs approaches zero,
and in this case, the model correctly obtains the expected isotropic dissipation result. The
function F in Eq. 21, which is necessary to ensure that the trace of εi j yields the result εi i =
2ε, has the form

F =
(
1 + 5

2

ukul
k

nknl

)−1

. (23)

Differences between the high and low-Ret models are also present in the equation from
which ε is obtained. This equation can be written in a unified form applicable to both models
as

Ul
∂ε

∂xl
= ∂

∂xl

[(
νδml + Cε

k

ε
umul

)
∂ε

∂xm

]

+ Cε1
ε

k
Pk − Cε2

εε

k
+ Cε3ν

k

ε
ukul

(
∂2Ui

∂x j∂xl

)(
∂2Ui

∂xk∂xl

)
. (24)

When Eq. 24 is used for the low-Ret model calculations, it is more convenient from the
standpoint of specifying the boundary conditions at the wall to solve an equation in which ε
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Table 1 Coefficients of the ε

equation
Model Cε Cε1 Cε2 Cε3 Cε4

High Ret 0.18 1.45 1.90 0 0

Low Ret 0.18 1.45 (1 − fs ) + 2.0 fs 1.90 0.3 1.0

is replaced everywhere by ε∗

ε∗ = ε − 2Cε4ν

(
∂
√
k

∂xl

)2

, (25)

where ε∗ is the difference between ε and its value at the wall and can hence be set equal to
zero there. The model coefficients are listed in Table 1.

2.4 Algebraic Turbulent Heat-Flux Models

2.4.1 Linear Model

In the linear model for the turbulent heat fluxes (Fourier’s law), the heat fluxes are related to
the local gradients of the potential temperature

− uiθ = Kh
∂�

∂xi
, (26)

where Kh is the turbulent diffusivity. In the fully-developed horizontally homogeneous
Ekman layer, Eq. 26 gives the vertical turbulent heat flux as

− wθ = Kh
∂�

∂z
. (27)

The turbulent diffusivity is typically related to the turbulent viscosity via the turbulent Prandtl
number (Prt ) i.e.,

Kh = Km

Prt
, (28)

where Prt is the turbulent Prandtl number which is typically assumed to be constant. Its
value, deduced from laboratory experiments, ranges from 0.73 to 0.92 (Kays 1994). In the
ABL, the precise value for Prt is the subject of ongoing research (see, for example, the
recent review by Li 2019). In our work, we assign to this parameter the constant value of
0.85, which represents an average of the experimentally determined values.

It is worth noting here that Fourier’s law aligns the directions of the turbulent heat fluxes
with those of the temperature gradients. Thus in a flow, such as the present, where the only
finite temperature gradient is in the z-direction, Eq. 26 indicates that only the vertical turbulent
heat flux is finite–the horizontal flux components (uθ and vθ ) being identically zero. This
feature of the linear turbulent flux model is of no consequence here since it is restricted to
the case of neutral stratification. This would not be the case in vertical stratified flows (e.g.
plumes) since the horizontal fluxes there enter into the expression for the buoyant rate of
generation of TKE (Malin and Younis 1990).
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Table 2 Coefficients of the
non-linear algebraic heat flux
model

C1t C2t C3t ξ χ

0.03 0.21 0.105 0.2 4.0

2.4.2 Non-Linear Turbulent Flux Model

It will be seen in the next subsection that the exact equations for uiθ require the turbulent heat
fluxes to explicitly dependon the gradients ofmeanvelocity andon the rotation rate.Anumber
of alternative proposals have been reported in the literature. We use the model proposed by
Müller et al. (2015) because it has been extensively tested and because it incorporates an
explicit dependence on the rotation rate. The model equation is

−uiθ = C∗
1t
k2

ε

∂�

∂xi
+ C2t

k

ε
uiu j

∂�

∂x j

− C3t
k2

ε2

[
uiuk

(
∂Uj

∂xk
+ ε jmk�msin(φ)

)

+u juk

(
∂Ui

∂xk
+ εimk�msin(φ)

)]
∂�

∂x j
, (29)

with C∗
1t given by

C∗
1t = C1t

(
1 − exp(−Aχ Peξ

t )
)

, (30)

where Pet (= Pr Ret ) is the turbulent Peclet number and A is a parameter that depends on
the second and third invariants of the Reynolds-stress anisotropy tensor. The values assigned
to the model coefficients are listed in Table 2.

In the Ekman layer, Eq. 29 obtains the vertical heat flux as

− wθ =

Kh︷ ︸︸ ︷
k2

ε

(
C∗
1t + C2t

w2

k

)
∂�

∂z
. (31)

Note that Fourier’s law with constant turbulent Prandtl number can be recovered from Eq. 31
by setting C∗

1 = Cμ/Prt and C2t = 0. On the other hand, by retaining the assigned values
for these coefficients, Eq. 31 can be recast in the manner of Eq. 28 with the eddy viscosity
defined as in Eq. 9 to yield an expression for a variable turbulent Prandtl number

Prt = Cμ

C∗
1t + C2tw2/k

. (32)

Aphysical interpretationmay be attached to Eq. 32: in the Ekman layer, the presence of a solid
surface inhibits the transfer of turbulence energy from the normal-stress components where
it is directly generated into w2, the component perpendicular to the surface. A reduction in
the level of w2 compared to that in a free shear layer leads to a relatively higher value of Prt
in the wall-bounded flow. This is consistent with experimental observations (e.g. Launder
1976).
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2.5 Differential Transport Model for the Turbulent Fluxes

The exact equation describing the conservation of the turbulent heat fluxes in rotating coor-
dinates is given by (see e.g. Younis et al. 2005)

Convection: Ciθ︷ ︸︸ ︷
Uk

∂uiθ

∂xk
= −

Production: Piθ︷ ︸︸ ︷(
ukui

∂�

∂xk
+ ukθ

∂Ui

∂xk

)
−

Rotation: Giθ︷ ︸︸ ︷
2εi jk� j sin(φ)ukθ

−

Diffusion: Diθ︷ ︸︸ ︷
∂

∂xk

[
ukuiθ + p′θ

ρ
δik − �ui

∂θ

∂xk
− νθ

∂ui
∂xk

]

−

Dissipation: εiθ︷ ︸︸ ︷
(� + ν)

∂θ

∂xk

∂ui
∂xk

−

Correlations: πi︷ ︸︸ ︷
p′
ρ

∂θ

∂xi
, (33)

where � is the molecular thermal diffusivity. The convection term Ciθ and the production
terms Piθ andGiθ are exact and in no need of modelling; Piθ represents the production of uiθ
due to turbulent interactions with the mean velocity temperature fields, and Giθ represents
additional contribution due to rotation Younis et al. (2012). The molecular diffusion part of
the term Diθ is also treated exactly but the diffusion by turbulence term is modelled bymeans
of the gradient-diffusion hypothesis

−ukuiθ = Cθ

k

ε
ukul

∂uiθ

∂xl
, (34)

where Cθ is a coefficient assigned the value of 0.15.
Following Gibson and Launder (1978) and Malin and Younis (1990), the fluctuating

pressure–temperature correlations πiθ are modelled as the sum of three terms

πiθ = πiθ,1 + πiθ,2 + πiθ,w

= − C1θ
ε

k
uiθ + C2θ (Piθ + Giθ ) − Cθ,w

ε

k
uiθnink fw. (35)

The third term on the right-hand side of Eq. 35 controls the strength of the wall correction in
a manner analogous to that previously presented in connection with modelling the pressure-
strain correlations. The coefficients in this equation are assigned their standard values viz.
C1θ = 2.85, C2θ = 0.55, Cθ,w = 1.2 (Malin and Younis 1990).

2.6 Solution Procedure

The governing equations were solved using the EXPRESS program (Younis 1987), which is
a finite-volume solver for steady-state boundary-layer flows. Discretization of the convective
and diffusive fluxes used the second-order accurate central-differencing scheme.Amarching-
integration strategy was used whereby the solutions were advanced in small forward steps
in the x-direction (Fig. 1) from prescribed initial conditions until fully-developed conditions
were attained. Iterations were performed at each step due to the strong coupling between the
various equations. A non-uniform grid distribution was used in the vertical direction with the
nodes being more concentrated in the near-wall region where the gradients of all dependent
variables were greatest. In total, 53 grid nodes were used for the high-Ret model and the k−ε
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model while, for the low-Ret model, the number was increased to 160 in order to adequately
resolve the flow in the viscous sublayer.

In the results that follow, the Coriolis frequency f = 1.4× 10−4 s−1, with the kinematic
viscosity of air taken as ν = 1.46 × 10−5 m2 s−1. With these values, the viscous Ekman
layer depth δE (= √

2ν/ f ), which describes the height at which viscous forces are dominant
(Cushman-Roisin and Beckers 2010), is obtained as 0.54m. The simulations were performed
for a reference Reynolds number of Re f (= UgδE/ν) of 1000 and a latitude of φ = 90◦
N, conditions that correspond to the DNS results of Marlatt et al. (2012) and Coleman et al.
(1990) that will be used for model validation.

The boundary conditions applied at the surface depended on the choice of turbulence
model. For the low-Ret model, all the dependent variables were set equal to zero except
for the temperature whose value there was set equal to �w = 288.2 K. With the high-Ret
model, the first computational grid node was located outside the viscous sublayer where it
was assumed that the modulus of the resultant velocity, Q = √

U 2 + V 2, obeys the universal
law-of-the-wall

Q+ = Q

Qτ

= 1

κ
ln

(
z+

) + C, (36)

where Qτ is the friction velocity (= √
τw/ρ) and z+ = Qτ z/ν. The von Kármán constant κ ,

and C are assigned their usual values of 0.41 and 5.0, respectively. Furthermore, at the same
node, the vertical gradients of the Reynolds stresses and heat fluxes were set equal to zero,
consistent with the assumption of a constant-stress region, while the value of dissipation was
set equal to the rate of production of TKE.

In the freestream, the x-component of the velocity vector is set equal to Ug and the tem-
perature there assigned the constant value�g = 298.2K. The overall temperature difference
of 10 K is sufficiently small for the air properties to remain constant and for stratification
effects to be negligible. The dissipation rate and all components of the Reynolds-stress tensor
were set equal to zero, and when the differential heat flux model was used, the turbulent heat
fluxes were also set to zero there.

At the inlet, the mean velocity components were prescribed in accordance with the ana-
lytical solutions for laminar flow (Cushman-Roisin and Beckers 2010) viz.,

U = Ug

(
1 − exp(−z/δE )cos

z

δE

)
, (37)

V = Ugexp(−z/δE )sin
z

δE
. (38)

Themean temperature profile is assumed to be similar to themean streamwise velocity profile
viz.,

� = �w + (
�g − �w

) U

Ug
. (39)

The profiles of the turbulence parameters were prescribed based on the experimental
correlations of Schlichting and Gersten (2006). Thus the turbulent shear stress -uw was
assumed to vary linearly with distance from the surface until reaching a maximum value of
Q2

τ at z+ = 10 and then to decrease linearly to vanish at the free stream. The TKE k was
then obtained from the structure parameter −uw/k = 0.3 and the normal stresses obtained
in the same proportion to k as in a flat-plate boundary layer, i.e. u2/k = 1.0, v2/k = 0.6 and
w2/k = 0.4. The dissipation rate ε was deduced from the eddy-viscosity relationship Eq. 9.
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3 Results and Discussion

To compare with experimental and DNS results, it was necessary to ensure that the com-
putations were performed along sufficient length to obtain profiles that are self-similar and
independent of the profiles prescribed at the inlet. Two parameters were chosen to test for
the attainment of self-similarity: the skin-friction coefficient c f , being representative of the
state of the flow field, and, for the thermal field, the Stanton number St , which is the ratio
of the heat transferred into the boundary layer to its thermal capacity. These parameters are
defined as

c f = 2

(
Qτ

Ug

)2

, (40a)

St = Nux
Rex Pr

, (40b)

where Rex (= x Ug/ν) is the Reynolds number and Nux is the Nusselt number

Nux = − (∂�/∂z)z=0(
�w − �g

)
/ x

. (41)

Since the computations were started from profiles that were not in equilibrium, it is to be
expected that Nu and Re would initially vary with streamwise distance until equilibrium is
established and these parameters attain constant values. In such conditions, theReynolds anal-
ogy between the turbulent transfer of heat and momentum is expected to apply. A modified
form of the Reynolds analogy, and one which is applicable to fluids with non-unity Prandtl
number, is the Chilton–Colburn analogy, which indicates that when both the flow and thermal
fields have attained equilibrium, then Pr2/3St = c f /2. Figure 2 shows the streamwise varia-
tion c f and St , and of their ratio in line with the Chilton–Colburn analogy. It is immediately
evident that the effects of the assumed inlet profiles persist over a significant development
length until equilibrium is achieved wherein c f and St become constant and their ratio
becomes approximately equal to one, thereby providing an independent confirmation of the
modified analogy. Once equilibrium is achieved, then the predicted profiles of velocity, tem-
perature and turbulent heat and momentum fluxes, appropriately non-dimensionalized, cease
to change with further streamwise development.

3.1 MeanVelocity Profiles

The predicted mean velocity profiles are shown in Fig. 3, where they are compared with
the DNS results of Marlatt et al. (2012). The velocity components in the streamwise (U )
and lateral (V ) directions are non-dimensionalized with the freestream geostrophic velocity
component Ug . The vertical distance is non-dimensionalized by the turbulent Ekman layer
depth δτ = Qτ / f . All model simulations predict a maximum of U greater than Ug . This
supergeostrophic region is also evident in the DNS results of Marlatt et al. (2012) and in
the measurements performed by Caldwell et al. (1972) and Sous and Sommeria (2012). It
is considered a characteristic feature of the Ekman layer that arises because the pressure
gradient in the y-direction that induces the lateral flow is constant with height while the
Coriolis force increases with it. This, together with reduction in friction with distance from
the wall, produces the observed supergeostrophic peak. With further increase in height,
the lateral velocity component V decreases due to the balance between the Coriolis force
and the pressure gradient. At the top of the Ekman layer, the geostrophic balance results
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Fig. 2 Streamwise development of skin friction coefficient c f , Stanton number St , and their ratio.
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Fig. 3 Mean velocity profiles as a function of non-dimensional height. low-Ret model;
high-Ret model; k − ε model; © DNS of Marlatt et al. (2012)

in an extinction of the V -component and a flow parallel to the geostrophic velocity with
speed Ug . Overall, the V profile resembles that of a wall jet. The low-Ret model yields
predictions that are close to the DNS of Marlatt et al. (2012), with a slight overprediction
of the streamwise velocity component U . The high-Ret model and the k − ε model obtain
almost indistinguishable results.

Figure 4 shows the predicted mean velocity profiles in the form of a hodograph. Also
shown there are the DNS results of Coleman et al. (1990) and, for interest, the laminar
solutions (Eqs. 37, 38). The low-Ret model again shows good agreement with the DNS
results, especially near the wall. The k − ε model prediction is close to the high-Ret model
and both predictions agree well with the DNS; there is only a slight underprediction of V
near the wall. The high-Ret model and the k − ε model fail to provide a simulation of the
whole Ekman hodograph, because the first node is placed in the logarithmic layer, at z+ of
around 25, while the low-Ret model is applied directly to the surface.

The model predictions of the resultant mean velocity magnitude Q are plotted in wall
coordinates in Fig. 5 where they are compared with the DNS results of Marlatt et al. (2012).
Also shown there are the standard profiles for the viscous sublayer (Q+ = z+) and for
the fully-turbulent flow (Eq. 36). The low-Ret model follows the viscous sublayer profile
until z+ ≈ 6 and agrees well with the DNS until z+ ≈ 30. For 30 < z+ < 200, the
non-dimensional velocity Q+, obtained by means of the low-Ret model, still describes a
logarithmic region but one with somewhat different slope and intercept than Eq. 36 and the
DNS. The reason can be found in an underprediction of the friction velocity Qτ (see Table 3).
The high-Ret model result, also shown in Fig. 5, indicates that at z+ ≈ 25, the value for
Q+ is fixed to the logarithmic law-of-the-wall. The high-Ret model and the k − ε model
reach nearly the same simulation results for Q+. Both models follow fairly closely to both
the law-of-the-wall and to the DNS, since the absolute friction velocity is obtained by means
of the logarithmic law-of-the-wall and the mean profiles of U and V are correctly predicted
(see Fig. 4). In summary, although Q+, obtained with the low-Ret model, partially deviates
from the DNS and empirical predictions, it still predicts the characteristic velocity profile
composed of a viscous sublayer, a logarithmic layer and a wake region, while Q+, obtained
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Fig. 5 Resultant mean velocity profile in terms of wall coordinates. low-Ret model;
high-Ret model; k − ε model; © DNS of Marlatt et al. (2012); Q+ = z+ and Q+ =
1/0.41ln(z+) + 5

by means of the high-Ret model and the k − ε model, can only predict a characteristic
logarithmic region and a wake region.

3.2 The Reynolds Stresses

Figure 6 compares the predicted profiles of the Reynolds stresses with the DNS results
of Marlatt et al. (2012) and the atmospheric measurements of Brost et al. (1982). Brost
et al. (1982) scaled the vertical height by the inversion height zi . With reference to Andrén
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Fig. 6 Normal (left) and shear (right) Reynolds stresses. low-Ret model; high-Ret model;
k − ε model; © DNS of Marlatt et al. (2012); � DNS of Coleman (1999); 	 atmospheric data of

Brost et al. (1982)

(1991), who relied on observations, the atmospheric data are rescaled by using the assumption
zi = 0.4Qτ / f .

In general, the normal stresses exhibit a broadly similar behaviour. Until the streamwise
velocity component U reaches the geostrophic wind speed, u2 is dominant, whereas v2

becomes dominant in the supergeostrophic region. As also mentioned inMarlatt et al. (2012),
the surface impedes the vertical fluctuations,which is evident in the lowvalue ofw2 compared
to the other normal stresses.
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The normal stresses u2 and w2 obtained by Marlatt et al. (2012) reach a maximum in
the viscous sublayer, whereas the normal stresses obtained with the low-Ret model reach a
maximum in the logarithmic region at about z+ ≈ 35. The normal stresses obtained with
the high-Ret model and the k − ε model both reach their maximum at the first node, fixed
at z+ ≈ 25. The k − ε model fails to closely match DNS results partly because, being
based on the Boussinesq assumption and the flow being fully developed, it predicts all three
components of normal stress to be equal. The low- and high-Ret model achieve similar results
for z+ > 25 and both models underpredict the maximum values of u2 and w2. However, the
predicted maximum of v2 is very close to the DNS of Marlatt et al. (2012). Both Reynolds-
stress transport models therefore provide generally satisfactory results compared to DNS
data. As the normal stress results are in the range of the atmospheric data of Brost et al.
(1982), the current simulation seems to reproduce real atmospheric conditions.

The turbulent shear stresses are compared with the DNS results of Marlatt et al. (2012)
and Coleman (1999) in Fig. 6. The maximum value of −uw near the wall is reproduced best
by means of the high-Ret model and the k − ε model. However, the profile obtained with the
k − ε model deviates from the DNS results farther away from the wall. The low-Ret model
underpredicts the maximum of −uv provided by Marlatt et al. (2012) and Coleman (1999).
However, the location of the maximum at z+ ≈ 16 corresponds with Marlatt et al. (2012)
(maximum at z+ ≈ 12). In contrast, the k − ε model predicts this component of shear stress
to be zero everywhere as a consequence of ∂U/∂ y and ∂V /∂x being zero in this horizontally
homogeneous, fully-developed flow. The shear stress−vw profile obtained with the low-Ret
model provides a very good approximation of the DNS results of Coleman (1999), besides an
underprediction of the near-wall minimum value. The change of sign of −uv correlates with
−vw at z+ ≈ 50 and appears where the lateral velocity component V reaches its maximum.
This location is close to the prediction of Marlatt et al. (2012) at z+ ≈ 58. The low-Ret
model and the k − ε model results are similar for −vw, while the high-Ret model deviates
from both models for 0.2 < z f /Qτ < 0.5. The low-Ret model predicts the location of the
Reynolds stress peaks correctly and the obtained profiles agree with the DNS. However, the
near-wall peak values of u2, w2, and −uv are underpredicted. The stress profiles, obtained
with the high-Ret model are close to the profiles obtained with the low-Ret model. Thus if
detailed predictions of the Reynolds-stress profiles in the viscous sublayer are not of interest,
there would be little advantage in using the low-Ret model in preference to the high-Ret
model.

An interesting result to emerge from the present simulation concerns the lateral velocity
component V , specifically its vertical gradient ∂V /∂z and the turbulent shear-stress compo-
nent −vw that enters into its equation (Eq. 3). In a two-dimensional boundary layer, these
two quantities are of the same sign as suggested by the Boussinesq assumption. In the Ekman
layer, the vertical profile of V resembles that of a wall jet (Fig. 3). Due to turbulent trans-
port, the location where −vw = 0 in the wall jet does not coincide with the location where
∂V /∂z = 0 but lies in-board of it, closer to the surface (Irwin 1973). This is also obtained
in our simulations with the Reynolds-stress models where the shear stress becomes zero at
z f /Qτ = 0.040while the velocity gradient becomes zero at a value of 0.046. The k−ε model
obtains the two locations as coincident but this does not appear to have caused significant
errors in its results.

A characteristic of three-dimensional flows such as the Ekman layer is that the angles that
the resultants of the velocity, the velocity gradients and the shear stress make with the x-axis
are not equal and, further, they vary in the vertical direction. These angles are defined as
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Fig. 7 Flow angles as predicted with the low-Ret model. shear-stress angle α; velocity
gradient angle β; resultant velocity angle ζ

shear stress angle

α = tan−1
(

vw

uw

)
, (42)

velocity gradient angle

β = tan−1

(
∂V
∂z
∂U
∂z

)
, (43)

and wind direction angle

ζ = tan−1
(
V

U

)
. (44)

Here, these angles are obtained with the low-Ret model, since the high-Ret model and the
k−ε model do not resolve the viscous sublayer and hence cannot provide values at the surface.
As can be seen in Fig. 7, the wind direction angle ζ starts at the wall with a value similar
to the other two angles. With increasing height, ζ decreases due to a growing Coriolis force
until finally approaching the value zero since the flow is parallel to the x-axis and the lateral
velocity component V is zero. Up until a height of z f /Qτ ≈ 0.7 the shear-stress angle α and
the velocity-gradient angle β nearly linearly spiral with z, and at the same same time α and
β produce very similar results until z f /Qτ ≈ 0.4. For z f /Qτ > 0.4, however, β becomes
larger than α and the angles deviate from each other by up to 30 degrees. A similar behaviour
is obtained in the DNS results of Coleman et al. (1990). The k − ε model assumption of a
proportionality between Reynolds stresses and mean velocity gradients implies equality of
α and β, which is a reasonable assumption close to the surface but is not generally true.

There are two important parameters that characterize theEkman layer, the geostrophic drag
coefficient Qτ /Ug and the surface shear-stress angle αw . These are evaluated for different
Reynolds numbers and by means of the similarity theory of Spalart (1989) extrapolated to
larger Reynolds numbers. The parameters are important, since they express the magnitude
and the direction of the shear stress at the surface. The different model predictions are
compared with DNS results in Table 3. Note that αw = 45◦ for the laminar Ekman layer. The
geostrophic drag coefficient obtained with the low-Ret model deviates between 4–7% from
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Table 3 Geostrophic drag
coefficient Qτ /Ug and surface
shear-stress angle αw in
comparison with DNS results
(φ = 90◦)

Case Re f Qτ /Ug α◦
w

k − ε model 1000 0.0532 -

High Ret model 1000 0.0528 -

Low Ret model 1000 0.0499 19.41

Marlatt et al. (2012) 1000 0.0520 18.56

Miyashita et al. (2006) 1140 0.0521 19.40

Coleman (1999) 1000 0.0530 19.00

Spalart et al. (2008) 1000 0.0535 19.36

the DNS data, the high-Ret model and the k − ε model only 1–2%. These results confirm
that the high-Ret model and the k−ε model align more with the logarithmic law-of-the-wall
than the low-Ret model. As the wall modelling for the high-Ret model does not provide any
values for the shear-stress angle at the surface, there is no αw result for the k − ε model and
the high-Ret model. αw , obtained by means of the low-Ret model, differs from the DNS
results between 1–5%.

We next consider the model predictions of αw and Qτ /Ug for values of Ret in the range
730–4000. The results are presented in Fig. 8 where they are compared with the DNS results
of Coleman (1999), Coleman et al. (1990), Spalart et al. (2008) and Miyashita et al. (2006).
The high-Ret model results for Qτ /Ug showa reasonable development, compared to theDNS
data. However, the slope of the profile is higher. The obtained values of Qτ /Ug by means
of the low-Ret model are shifted downwards, but the development for Reynolds number of
Ref ≥ 1000 is parallel to the DNS results. The low-Ret model results show an interesting
development for Reynolds numbers of Ref < 1000, as Qτ /Ug rapidly decreases, whereas
αw rapidly increases. After investigating the behaviour of other quantities, such as the mean
velocity components and the Q profile in terms of wall coordinates, an Ekman layer with
a laminar-like behaviour can be discovered. That corresponds with the results of Miyashita
et al. (2006), where the authors cannot observe a logarithmic region for Ref = 600, but an
emerging logarithmic region at Ref = 775. The results of αw for Ref ≥ 1000, obtained with
the low-Ret model, are close to the DNS results.

3.3 Similarity Theory

The present simulations were performed at a Reynolds number of Ref = 1000 so that
the results can be compared with those in the established literature (Table 3). This value is
undoubtedly lower than that encountered in actual ABL conditions. However, asMarlatt et al.
(2012) and Coleman (1999) suggest, Ekman-layer simulations at low Reynolds numbers can
still be useful and representative of ABL conditions as long as the computed mean velocity
profiles exhibit a logarithmic region. As shown in Fig. 5, this requirement is satisfied by
the present predictions. Given the results at low Reynolds numbers, the goal is to be able to
extrapolate the two important Ekman-layer parameters, Qτ /Ug and αw , to higher Reynolds
numbers that are more representative of actual ABL conditions. The ability to do this would
render the simulations at low Reynolds numbers useful for the purposes of weather/climate
predictions at high Reynolds numbers. Csanady (1967) developed a similarity theory that
enables this extrapolation. The theory is founded on the existence of the logarithmic law-
of-the-wall. The law is applied to three dimensions, which involves the surface shear stress
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Fig. 8 Variation of the geostrophic drag coefficient Qτ /Ug (top) and surface shear-stress angle αw with
Reynolds number. © low-Ret model; 	 high-Ret model; ×k − ε model; + DNS of Miyashita et al. (2006);
� DNS of Coleman et al. (1990); ♦ DNS of Coleman (1999); � DNS of Spalart et al. (2008)

αw . Spalart (1989) found that Csanady (1967) theory did not agree with simulation at low
Reynolds numbers (Re f = 500−767) and proposed amodification that involved the addition
of a higher-order term and an additional equation

A = Ug

Qτ

sinθw, (45)

B = Ug

Qτ

cosθw + 2

κ
ln
Ug

Qτ

− 2

κ
Re f + 1

κ
ln2, (46)

θw = αw + 2C5

Re2f

(
Ug

Qτ

)2

. (47)

Equations 45 and 46 represent Csanady (1967) theory but with the actual surface shear
angle αw replaced by a shifted angle θw as defined by Eq. 47. A number of coefficients
are involved, of which the von Kármán constant κ is assigned its usual value of 0.41. The
remaining three constants (A, B, and C5) are obtained by substituting the DNS results into
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Table 4 Determination of the
similarity theory constants A and
B (κ = 0.41 and C5 = −52)

Re f Qτ /Ug αw
◦ θw

◦ A B

2000 0.04469 15.46 15.45 5.960 1.342

2500 0.04322 14.63 14.62 5.841 1.237

3000 0.04187 14.29 14.28 5.893 1.259

4000 0.03956 13.60 13.60 5.942 1.557

Average 5.909 1.349

Eqs. 45–47. Coleman et al. (1990), using the DNS results for Re f = 400 and Re f = 500
and C5 = −52, obtained the extrapolated results shown in Fig. 9. We revisit this approach
by using the results from our low-Ret model to evaluate the constants A and B only now
with the benefit of having data from much higher values of Re f than those used by Coleman
et al. (1990). The outcome of this re-evaluation is presented in Table 4. Note that according
to Coleman (1999), the modification of the surface shear stress angle, θw , is needed when
Re f < 5000, which is the case here. Subsequently, A and B are calculated by Eqs. 45 and 46
at each Reynolds number. As can be seen in Table 4, the obtained values are not very different
from each other and, when averaged, yield the values of A = 5.91 and B = 1.35.

In Fig. 9, the extrapolated values of the geostrophic drag coefficient Qτ /Ug and the surface
shear angle αw as obtained using the averaged values of A and B and those of Coleman et al.
(1990) are compared. In presenting the results obtained with our model, a continuous line
is used to designate the range of Re f values used to evaluate A and B, and a dashed line to
show the range over which the results have been extrapolated. We subsequently performed
calculations at three significantly higher values of Re f viz. 10, 000, 20, 000, and 40, 000 to
explore the extent to which the model results agreed with similarity theory together with the
averaged values of A and B. As can be seen from Fig. 9, the results are quite close which
suggests that similarity theory can yield useful results despite the many assumptions invoked
in its formulation.

3.4 Mean Temperature Profile

Thepredictedmean temperature profiles are shown inFig. 10 as a functionof non-dimensional
height. Since, for air, Pr < 1, the thermal boundary layer is slightly thicker than the momen-
tum boundary layer and hence the mean temperature profile and the turbulent heat fluxes are
presented for 0 ≤ z f /Qτ ≤ 1.5. The difference between the explicit algebraic model and the
differential transport model is insignificant. However, the mean temperature profile obtained
with Fourier’s law departs from the other two models by providing smaller temperature val-
ues for z f /Qτ > 0.06. This result is entirely due to assigning the turbulent Prandtl number a
constant value of 0.85. By assigning the higher value of 1 implied by the alternative models,
all the predicted temperature profiles become virtually indistinguishable from each other.

Figure 11 shows themean temperature profiles plotted in wall coordinates in order to com-
pare the simulation results with a law-of-the-wall for temperature, proposed by Duponcheel
et al. (2014)

�+ = � − �w

�τ

= Prt
κ

ln

(
1 + Pr

Prt
κ z+

)
, (48)

where the friction temperature �τ is defined as
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curve. Coleman et al. (1990) values of A and B: . © low-Ret model predictions

�τ =
λ

(
∂�
∂z

)
z=0

ρcpQτ

. (49)

Here λ is the thermal conductivity and cp is the specific heat at constant pressure. The law
was developed for low Prandtl numbers with the goal of offering an accurate wall function
for high-Ret models. The authors derived Eq. 48 from the heat-flux conservation near the
wall, without neglecting the turbulent thermal diffusivity Kh . The formulation does not
need a blending function (such as that proposed by Kader 1981), which links the linear law
close to the wall with the logarithmic further away from the wall. Equation 48 approaches
�+ = Pr z+ for small z+, which fulfills the requirement of a laminar law in the near-wall
region. The predicted mean temperature profile generally agrees with the law-of-the-wall for
z+ < 200, but the slope of both the algebraic and the differential heat-flux model is higher
than the slope obtained with Eq. 48. Nevertheless, the proposed function of Duponcheel et al.
(2014) could be a useful wall function for a high-Ret heat transfer simulation of the Ekman
layer.
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Fig. 10 Predicted vertical profiles of mean potential temperature. differential transport model;
non-linear model; Fourier’s law (Prt = 0.85)
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Fig. 11 Mean temperature profile in wall coordinates. differential transport model; non-
linear model; Fourier’s law; law of the wall for temperature of Duponcheel et al. (2014)
(Eq. 48 with Pr = 0.71, Prt = 0.85, κ = 0.41)

3.5 Turbulent Heat Fluxes

The predicted vertical profiles of the turbulent heat fluxes obtained with the various models
are presented in Fig. 12. The fluxes are non-dimensionalized by the friction velocity and the
friction temperature. It is interesting to note that the largest of the heat fluxes occurs in the
streamwise direction (uθ ) even though the only temperature gradient that is finite is in the
vertical direction. The Fourier law cannot predict the conductive heat transfer, as the law
does not consider velocity gradients and Reynolds stresses. At the same time, the maximum
value of the vertical heat flux departs from the differential and algebraic models by ≈ 60%.
The differential model and the algebraic model predict different maximum values of −uθ

123



L. Braun et al.

and −vθ . However, the location of these maxima is the same. The difference between both
models in the prediction of −wθ is insignificant.

3.6 EddyViscosity, Diffusivity and the Turbulent Prandtl Number

Predicted andmeasured vertical profiles of the turbulent viscosity Km are presented in Fig. 13.
Plotted there is the single (isotropic) profile obtained with the k − ε model (Eq. 9), and two
profiles that are implied in the RSM but that do not enter into the computations viz.

Km13 = −uw

∂U/∂z
, (50)

Km23 = −vw

∂V /∂z
. (51)

The discontinuous behaviour obtained for Km23 is characteristic of that obtained in a wall jet
and arises because ∂V /∂z passes through zero. With increase in vertical distance, the eddy
viscosities Km13 and Km23 move closer together suggesting that departures from isotropy
are quite small. The isotropic eddy viscosity is seen to closely follow the Km13 distribution
across a significant depth of the Ekman layer.

The components of eddy viscosity are sometimes presented in the literature not as indi-
vidual components but in an averaged form. Marlatt et al. (2012) define the average viscosity
as

Km = [
uw2 + vw2]0.5

[(
∂U

∂z

)2

+
(

∂V

∂z

)2
]−0.5

. (52)

The profiles of the averaged eddy viscosity as deduced from the DNS results of Marlatt et al.
(2012) and the experimental data of Caldwell et al. (1972) are presented in Fig. 13 (note
that the Caldwell et al. (1972) results pertain to the somewhat higher Reynolds number of
Re f = 1159). Because theRSMpredicted profiles of Km13 and Km23 are essentially identical,
their individual profiles turn out to be essentially identical to the profile of their average as
evaluated from Eq. 52. In the inner layer, remarkably close correspondence between the
RSM and DNS results is observed though the RSM results do not capture the non-monotonic
behaviour seen in the DNS results.

Profiles of the eddy diffusivity Kh are presented in Fig. 14. For the non-linear and differ-
ential models, this parameter is obtained from

Kh = −wθ

∂�/∂z
, (53)

and is presented in Fig. 14 as a function of non-dimensional height. The differential and non-
linear algebraic models yield closely-matched results that indicates that the diffusive and
convective processes are relatively small. In contrast, Fourier’s law, with a constant Prandtl
number of 0.85, yields substantially different results. There are no DNS or experimental
data to confirm these results. By using Eqs. 52 and 53, the turbulent Prandtl number can
now be calculated using the models predictions. The results are shown in Fig. 15 where it
can be seen that the models indicate that the turbulent Prandtl number depends on height,
especially in the near-wall region (z f /Qτ < 0.05), with average values that can exceed
1.1. This finding is in good accord with results from several semi-empirical models for the
near-wall behaviour of turbulent Prandtl number in laboratory flows (Kays et al. 2005). Li
(2019) reviewed alternative models for the turbulent Prandtl number in the neutral ABL and
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Fig. 12 Turbulent heat fluxes. differential transport model; non-linear model;
Fourier’s law
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Fig. 13 Vertical profiles of eddy viscosity. high-Ret model Km13 ; high-Ret model Km23 ;
k − ε model; © DNS results of Marlatt et al. (2012); 	 experimental data of Caldwell et al. (1972)
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Fig. 14 Vertical profiles of eddy diffusivity. differential transport model; non-linear model;
Fourier’s law

found that different theories yield values that are higher than 0.85. Repeating the Fourier law
calculations with Prt = 1.0 produced temperature profiles that were virtually identical to
the those obtained with the differential and the non-linear models.
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Fig. 15 Turbulent Prandtl number as a function of height above surface. differential transport model;
non-linear model; Prt = 0.85

4 Conclusions

The turbulent Ekman layer provides a simple model for the ABL and hence the interest in
developing turbulent closures that can accurately predict its flow and thermal fields. The
results presented above indicate that the k − ε turbulence model, in its standard form, can
be relied upon to capture the main features of this flow such as the vertical distribution of
the mean velocity components. When presented in wall coordinates, these model results
accurately reproduce the logarithmic-law profile obtained from the DNS results of Marlatt
et al. (2012). The geostrophic drag coefficient was also well predicted with this model.
Because attention here was confined to fully-developed flow, the normal stresses obtained
by the Boussinesq assumption are obtained as being equal whereas in reality turbulence is
highly anisotropic due to the damping effects of the surface. On the other hand, the turbulent
shear stresses were reasonably well predicted.

Concerning the Reynolds-stress transport models, results obtained with high- and low-
Ret variants of the same basic model were quite similar for the vertical profiles of the mean
velocity components and the Reynolds stresses. The use of the logarithmic law-of-the-wall
to provide boundary conditions for the high-Ret model does not appear to have adversely
affected its overall performance, though having to apply these conditions at some distance
away from the surface meant that only the low Ret model was capable of reproducing the
entire Ekman spiral. Examination of the predicted directions of the resultant turbulent shear
stresses and the associated gradients ofmean velocity gradients showed these to be coincident
across the vertical extent of the Ekman layer. Furthermore, analysis of the predicted vertical
profiles of the eddy viscosities Km13 and Km23 showed these to be reasonably equal except for
a small region close to the surface where Km23 was discontinuous where the lateral velocity
component V was at a maximum and hence ∂V /∂z, which appears in the denominator,
was identically zero. This result indicates that the assumption of isotropic eddy viscosity in
lower-order models such as the k − ε is quite acceptable in this flow.
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Even though the focus of the study was on the case of Re f = 1000 and a latitude of 90◦ N,
the conditions for which the majority of DNS results are available, the results obtained with
the low-Ret model were used to in conjunction with the similarity theory of Spalart (1989)
to obtain predictions at Re f values more representative of those encountered in the ABL.
Subsequent predictions with the low-Ret model for values of Re f up to 40, 000 agreed very
well with extrapolated similarity theory results.

For weather predictions, the computational cost of turbulence models is an important
parameter. Since the high Ret model yields as good results as the low Ret alternative but
with less computational cost, there is no justification for using the more complex and com-
putationally more demanding model. However, if the simulation of flow very close to the
surface is of interest, then the only available option would be to perform the calculations
directly to the wall.

The thermal field predictions obtained with a non-linear algebraic heat-flux model and
the more complex differential transport model showed no significant differences in terms
of the vertical profiles of the mean temperature and the heat fluxes. In contrast, Fourier’s
law, even when used in conjunction with the Reynolds-stress model, produced a temperature
distribution that is vastly different from the other models. These model results can be brought
in line with the others simply by assigning to the turbulent Prandtl number a value of 1 instead
of its more usual value of 0.85.

Acknowledgements Lukas Braun gratefully acknowledges the financial support provided by the Studiens-
tiftung des deutschen Volkes that facilitated this research at UC Davis.

Appendix: Comparisons with the DNS of Deusebio et al. (2014)

A reviewer drew our attention to the DNS results of Deusebio et al. (2014) for the mean
temperature and vertical heat flux in a neutrally-stratified Ekman layer. These results are
presented in Fig. 16 where they are compared with the present predictions. In the viscous
sub-layer (z+ < 8), the correspondence between the DNS results for mean temperature and
the predictions of the differential and the non-linear flux models is quite close. However,
differences appear further away from the surface. There, the pronounced change in the slope
of the temperature profile exhibited by the DNS is not reproduced in the models’ predictions.
Concerning the vertical turbulent heat flux, significant differences between the present results
and the DNS are apparent. We are at a loss to explain the observed differences in the profiles
shape, especially in the outer region of the boundary layer where the DNS results show an
extensive region of constant heat flux. We are however encouraged to see that the two models
yield almost identical results even though they differ in so many ways (e.g. algebraic vs.
differential), and share no assumptions in their formulation.
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Fig. 16 DNS and present predictions of mean temperature (top) and vertical heat flux (Re = 1600). © DNS
of Deusebio et al. (2014); differential transport model; non-linear model
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