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Neural-Attention-Based Deep Learning Architectures for
Modeling Traffic Dynamics on Lane Graphs

Matthew A. Wright, Simon F. G. Ehlers, and Roberto Horowitz

Abstract— Deep neural networks can be powerful tools, but
require careful application-specific design to ensure that the
most informative relationships in the data are learnable. In
this paper, we apply deep neural networks to the nonlinear
spatiotemporal physics problem of vehicle traffic dynamics.
We consider problems of estimating macroscopic quantities
(e.g., the queue at an intersection) at a lane level. First-
principles modeling at the lane scale has been a challenge due
to complexities in modeling social behaviors like lane changes,
and those behaviors’ resultant macro-scale effects. Following
domain knowledge that upstream/downstream lanes and neigh-
boring lanes affect each others’ traffic flows in distinct ways, we
apply a form of neural attention that allows the neural network
layers to aggregate information from different lanes in different
manners. Using a microscopic traffic simulator as a testbed, we
obtain results showing that an attentional neural network model
can use information from nearby lanes to improve predictions,
and, that explicitly encoding the lane-to-lane relationship types
significantly improves performance. We also demonstrate the
transfer of our learned neural network to a more complex
road network, discuss how its performance degradation may
be attributable to new traffic behaviors induced by increased
topological complexity, and motivate learning dynamics models
from many road network topologies.

I. INTRODUCTION

Well-designed deep neural networks (deep NNs) have
exhibited a powerful ability to model complex nonlinear
phenomena. While deep NNs may be most well known
for their uses in image processing and statistical language
modeling applications [1], this modeling ability also makes
them well-suited to predicting nonlinear physical phenomena
like the dynamic behavior of road traffic [2].

In all deep NN applications, the particular neural architec-
ture (i.e., the type of “layers” used) is of particular importance:
it is desired to select an NN with a so-called “inductive
bias” that admits learning the necessary element-to-element
relationships in a generalizable form [3].

In this work, we present results on using NNs to model
traffic dynamics at a lane level. We consider the road network
as a directed graph, with the nodes being road lanes and
various types of edges being different kinds of lane-to-lane
relationships. We use an NN model to estimate macroscopic
traffic characteristics for these lanes (e.g., the number of
vehicles occupying it at a given time).
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The motivation to consider macroscopic dynamics for lane
graphs (rather than the traditional road dynamics graph of
“links,” with lanes lumped together [4]) is threefold. First,
lanes are more of an “atomic unit” of the road network:
while statistical models for individual lanes may freely be
composed into one for the whole link, the reverse is not true.

Second, resolution of road features at a lane level is
necessary for vehicle control and route planning applications.
An NN architecture that can take in per-lane data and output
per-lane network predictions would be useful in these settings.

Third, a lane-level NN model can address a shortcoming
of traditional macroscopic traffic dynamics modeling. Macro-
scopic traffic models can describe the aggregate behavior of
all vehicles on a road via a continuous partial differential
equation (PDE) approximation [4], [5]. Zooming in to the lane
level, however, requires modeling of more complex human
behaviors (lane changes, for example, have proven difficult to
model, both in predicting when drivers will make a maneuver
and how it will affect the other vehicles on the road [6]). This
gap in our first-principles understanding is a natural place to
attempt to statistically learn a model rather than derive one.

In this paper, using a microscopic traffic simulator [7] as a
testbed, we find that a lane-graph-based NN can achieve these
goals. We present results showing that a deep NN can outper-
form a PDE-model-based method on an intersection queue
estimation problem. The NN architecture leverages the lane
graph, basing per-lane queue and occupancy estimates on up-
stream, downstream, and neighboring lanes’ observations. We
show that encoding these different lane-to-lane relationships
in the lane graph differently (which some earlier NN layers
for graph-structured data do not do) is critical for this problem.
We also show that our NN architecture can permit the transfer
of NN models between road networks, opening the door to
cross-region data-driven intelligent transportation systems.
All code used in development of these results is available
online at github.com/mawright/trafficgraphnn.

The remainder of this paper is organized as follows.
Section II briefly reviews the idea of aggregate traffic models,
NN operations for graph-structured data, and the specific
application of deep NNs to road networks. All three problems
have a large body of work; we review only a few closely-
related items here. Section III presents the new NN layer
we use in our lane graph models. Section IV presents our
developed software framework and the estimation problem
we consider as a test case. Section V provides details for our
simulation setup and NN methods. Section VI presents in
detail the results we outlined in the previous paragraph, and
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section VII outlines next steps.

II. BACKGROUND

A. Partial Differential Equation Models of Traffic

Traffic flows at an aggregate level are often described by
analogy to compressible fluid flows [4]. Mathematically, this
means a fluid-like partial differential equation (PDE). The
PDE model of traffic is usually credited to Lighthill and
Whitham [8] and Richards [9].

The PDE models of traffic, while crude approximations
of traffic’s dynamics, have been invaluable tools in traffic
engineering, both for forecasting/infrastructure planning and
for real-time traffic control [5]. In this paper, we make use
of a particular method based on the PDE model of traffic due
to [10]. The method of [10] is a technique for estimating the
number of vehicles queued at a red light, in situations where
this value is not directly observable. More specifically, it is
often the case that an intersection is instrumented only with
inductive loop detectors that can measure when a vehicle
is occupying a specific location, and if the queue at an
intersection extends past the most-upstream detector, it is
unobservable.

In [10], it is proposed to apply the PDE approximation of
traffic to estimate this unobserved queue. After the light turns
green and traffic begins to move, [10] propose to identify
when the shockwaves predicted by the PDE model of traffic
passes by these fixed detectors, then to apply a method-
of-characteristics analysis to track the shock trajectories in
space and time and finally back out the upstream PDE
boundary location (i.e., the initial length of the queue). This
calculation is performed on each lane individually to obtain
a per-lane, per-cycle maximum queue estimate. There are
obvious inaccuracies to applying a continuous PDE analysis
at a scale where the continuum approximation is not valid, but
nevertheless, the method represents an integration of domain
knowledge to obtain an estimate where there was none before.

In this paper, we make use of [10]’s method both as a
model-based baseline, and as an input to our NN models. For
more details on our implementation, see [11].

B. Neural network operations for graph data

Deep NNs have had particular success in domains with
regularly-structured data, such as images and text. In those
domains, prior knowledge that the data structure encodes
important information (e.g., that a pixel’s meaning can be
better understood by examining it in combination with nearby
pixels than with far-away pixels) enable better statistical
learning. The term geometric deep learning [12] has been used
to describe efforts to generalize these lessons to structured
data on more general topological domains, such as graphs.

Many early works on deep NNs for graph-structured data
consider learning features in the graph’s spectral domain
(i.e., in the eigenbases of matrices associated with the graph)
[13], [14]. Another line of work ( [15], [16], etc.) attempts
to make inferences in the “graph domain,” i.e., by relating
nodes to their neighbors (c.f. the difference between how
modern convolutional NNs’ operations are carried out in the

pixel/time domain, whereas in classical signal processing,
convolutions are often performed in the frequency domain).

One item to note is that, for features learned in the spectral
domain of a graph, those features are tied to the particular
graph spectrum. The transferability of spectral graph NNs
is unclear [12]. The neighborhood-based approaches, on the
other hand, do not have this constraint and can be freely
transferred (but, of course, have the drawback that a node’s
“receptive field” is limited). In this paper, we are explicitly
interested in transferring between lane graphs, and so our
proposed models fit in the neighborhood-based approach (we
also present comparisons against a spectral-type approach
[13] in our detailed results).

More broadly, authors have recently argued that AI systems
need to be allowed to learn to reason about related but distinct
entities to truly mimic humans’ learning capability [3]. The
existence of distinct entities with information tied to their
relationships to one another is often rendered mathematically
as graphs, and inferring meaning about their relationships as
classic message passing; designing NN architectures that can
approximate this tractably is a topic of much discussion [3].

Our particular NN is based largely on a neural architecture
termed attention ( [17], [18], etc.). This technique and our
application of it are described in section III.

C. Neural networks for traffic dynamics

We are of course not the first to use deep NNs for traffic
flows. The difficulty of first-principles modeling of traffic
flow, along with the availability of massive amounts of
observational data, make it a model problem for machine
learning methods [2]. Here, we briefly discuss two recent
works that make use of graph-type NN operations.

[19] and [20] both propose graph NN layers that learn
spatiotemporal relationships in traffic networks. [19] propose
a “diffusion convolutional” operation with learned coefficients,
used to model traffic movements as a random walk along a
graph. [20] propose a “traffic graph convolutional” operation
that incorporates traffic-theoretic information by clipping
adjacency matrices based on whether traffic can feasibly
move from one location to another in a time interval, based
on the road distance and a prescribed freeflow speed.

In both papers, this graph operation forms the internals
of a recurrent neural network (RNN) layer that is iteratively
applied to a traffic timeseries to learn an autoregressive model.
Their methods are applied to freeway-network-scale traffic
measurements in two major U.S. metro areas: Los Angeles
in [19] and Seattle in [20].

In comparison, while in the present paper we do not
attempt a joint learning of spatial and temporal relationships
via a spatial RNN layer (see section V-B for our NN
architecture), we operate at a finer scale (lane level) and
explicitly consider the graph-to-graph transfer problem. We
also consider the impact of having multiple edge types.
This last point is of importance at a lane graph level, since
the macroscopic meaning of lane-to-lane relationships are
distinctly different for adjacent lanes (i.e, lane changes) and
upstream/downstream lanes.



III. MULTI-EDGE-TYPE ATTENTIONAL NEURAL
NETWORK LAYERS

Neural attention [17] is a powerful and widely-applicable
neural architecture. Neural attention is often described as
letting the NN “attend” or “pay attention to” certain elements
of the input data [18]. This means that, in a multilayer NN,
an early layer is able to send to later layers the most relevant
information for downstream tasks.

Technically, we define an NN layer for graph data as
accepting two items, 1) a graph (V,E) with node set V and
edge set E and 2) {xi ∈ RN : i ∈ V }, a data vector for every
node. In this work, we restrict our focus to layers where the
domain of the output data is the same graph (V,E). That is,
the output of the NN layer is {hi ∈ RH : i ∈ V }, a per-node
featurization of the input data.

In this paper, we assume that our graph is a directed
graph, and also allow the graph to be multidimensional,
with each edge also having one of a finite number of
edge dimensions d ∈ {1, . . . , D}. We denote the collection
of d-dimension edges as Ed. In our application, the edge
dimensions correspond to different lane-to-lane topological
relationships, e.g., upstream, downstream, adjacent, self, etc.

For computational purposes, define a fixed ordering for the
nodes {1, . . . , n}, n = |V | and the corresponding per-edge-
type adjacency matrices Ad, where the i, jth entry of Ad is
1 iff (i, j) ∈ Ed, and 0 otherwise.

The basic outline of a standard attentional layer is to learn
two tasks in parallel: 1) a learned featurization of each node’s
data fi = f(xi) and 2) an attention scoring a : RN×RN → R
that quantifies the relative importance of the edge (i, j). Then,
the attention scores are used to compute, for each node, a
weighted average of the featurized data of all nodes (or some
subset of them).

In particular, we adapt the “Graph Attention Layer” of [16]
with a new generalization to multidimensional graphs. We
perform our per-node embedding via a learned weight matrix
W ∈ RF×N , fi = Wxi. Then, we compute the attention
scoring with a single (scalar output) fully-connected neural
network layer, one for each edge type:

adi,j = σ
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where W d
i ,W

d
j ∈ RF are learned weights and σ(·) denotes

some elementwise NN nonlinearity (in this paper, following
[16], we use for σ(·) the LeakyReLU function with slope
parameter 0.2).

The attention scores adi,j are then normalized via a softmax
function,

αd
i,j =

exp(adi,j)∑
{k:(i,k)∈Ed} exp(adi,k)

. (2)

The per-node, per-edge-type layer outputs are computed as
a weighted average of fj for nodes j to which i is d-related:

hdi =

( ∑
{k:(i,k)∈Ed}

αd
i,k fk

)
+ bd (3)

where bd is a learned bias vector.
Finally, the per-edge-type weighted-average feature vectors

are concatenated together,

hi =
[(
h1i
)T · · · (hDi )T ]T (4)

and this vector hi becomes the layer output for node i.
We make use of multi-head attention [18], where the above

calculations are all performed several times, in parallel. The
idea is that different attention “heads” are able to learn
different concepts. In a multi-head layer, every head’s hi
(4) is concatenated together to become the final layer output.
Subsequent layers then combine information across edge
types and attention heads. Like [18], we use fully-connected
layers for this purpose.

IV. METHODS

A. Software framework

We wrote Python code to set up traffic simulations,
extract and preprocess data, and train the NNs. We used the
microscopic traffic simulator SUMO (Simulation of Urban
MObility) [7]. Our NN layers use the Keras [21] “Layer”
standard in the interest of making them generally applicable.

B. A model problem for spatiotemporal deep learning on
lane graphs: traffic queue prediction

Our test case problem in this paper is the estimation of
the number of vehicles on a lane preceding a traffic signal,
using readings from traditional fixed loop detectors. Accurate
real-time vehicle counts at a traffic signal are necessary for
effective signal control [10], [22], but, as discussed in section
II-A where we describe a model-based estimation method,
these counts are in general unobservable from raw data alone.

We define two output quantities for our NN to predict: the
maximum queue length at any point in a lane’s red-green
cycle, and the total count of vehicles on the lane at every
timestep (the second quantity will be always no smaller than
the first since it includes vehicles in transit who have not
reached the signal queue yet).

V. IMPLEMENTATION DETAILS

A. Simulation Details

We generated 100 SUMO simulations on the three-by-three
grid network shown in Figure 1. For each simulation, we
generated a sequence of random vehicle trips through the road
network using SUMO’s randomTrips tool. Each vehicle
entered the network on a randomly-selected entrance road
(one of the roads whose upstream boundary is the edge of the
road network) and was given a goal of a randomly-selected
exit road (one of the roads whose downstream boundary is the
edge of the network). A new vehicle entered the road in this
manner every 0.4 s, for 3600 s. Each vehicle had a maximum
speed given by multiplying SUMO’s default maximum speed
by a randomly-drawn multiplicative factor drawn from a
Gaussian distribution with mean 1 and standard deviation 0.1,
clipped at 0.2 and 2. We enabled SUMO’s “rerouting” option
so vehicles could reroute themselves around congestion during



(a) (b)

Fig. 1. Training road network. (a) A 3x3 grid of three-lane roads, with attaching perimeter roads. Each road is 750 m long. (b) Zoomed view of one
intersection. The yellow boxes represent stopbar vehicle detectors.

the simulation, and disabled its default “teleport” option. All
other simulation parameters were left at their defaults.

On each 750-m lane, we placed two simulated loop
detectors: one at the stopbar (visible in Fig 1b) and one 125
m upstream. Each detector recorded data every 1 s. These
data are occupancy (a value in [0, 1] reporting the portion of
the 1-s period that a vehicle occupied the loop detector) and
the speed of those vehicles (if any).

The input data for lane i at timestep t, xti ∈ R6 was a
vector with elements 1) the stopbar detector occupancy, 2) the
stopbar detector speed, 3) the upstream detector occupancy,
4) the upstream detector speed, 5) a 0-1 indicator value that
is 1 if the lane’s traffic light is green and 0 if it is red, and
6) the PDE-model-based [10] estimate of the queue.

We note that, when the traffic queue is not detected to have
extended past the upstream detector, [10] notes that the per-
lane queue can be estimated via an input-output accounting.
In practice, we found [11] that this was especially sensitive
to lane changes. Therefore, when a per-lane input-output
difference resulted in a negative number of cars, we use a
heuristic where we split this deficit evenly among the lanes
that accounted for a surplus of cars (in reality, they had lane-
changed out of the lane with a surplus and counted against
the lane who saw it exit without entering).

The output vector yti ∈ R2 has elements 1) the maximum
queue length, in vehicles, of the lane during a red-green
cycle, and 2) the count of the total number of vehicles on
the lane during that timestep. These values were recorded via
SUMO’s “lane area” detectors and are given by the record
fields maxJamLengthInVehicles and nVehSeen.

The queue length and the PDE-based queue length estimate
are defined per cycle rather than per timestep. The PDE-based
estimate [10] gives a per-lane estimate of the time of the
maximum queue (based on the PDE characteristic curves),
while the input-output relationship (used when the queue
length does not extend past the upstream detector) can give
an instantaneous per-lane estimate when the light changes
from green to red. All other timesteps had this feature filled
with the dummy value -1.

B. Our neural network architecture
In the NN literature, the problem setting where both the

input and output domains are sequentially structured (i.e.,
timeseries data) is called the “sequence-to-sequence” problem
[23], [24]. The canonical NN architecture for this problem is
a so-called “encoder-decoder” [23] approach.

One approach to modeling spatiotemporal data such as
videos [25] is to break the encoder and/or decoder into two
parts. First, an encoder for the spatial information (i.e., a
convolutional NN stack or graph-type layers) operates on each
timestep independently. Then, these per-timestep encodings
are passed into an NN architecture meant to learn temporal
correlations, such as an RNN layer stack. Our NN model
used in this paper follows this paradigm.

We take in a set of per-lane input timeseries {xti ∈ RN}Tt=1

for lanes i ∈ {1, . . . , n}. We pack each timestep’s data into a
data matrix for the entire graph, Xt ∈ Rn×N We pass each
data matrix into a graph encoder stack made up of several
layers, each layer consisting of two sublayers: first, one of our
multi-edge-type attention layers; second, a fully-connected
layer. After each sublayer, we apply a layer normalization
[26] operation with learned scaling and shift parameters. The
idea of a layer with an attentional sublayer followed by
a fully-connected sublayer is inspired by the Transformer
architecture of [18], though our fully-connected sublayer is
simpler and we omit the residual connections. In this paper,
our graph encoder stack has two of these attention-fully
connected layers, with ReLUs in between each sublayer.

The output of this graph encoding layer is a matrix of
size n × F , where F is the feature dimension of the last
fully-connected layer. We have batch_size× T of these
matrices, one for each timestep and element of our sample
batch. The objective is that each node’s F -long feature vector
has aggregated information from other nodes’ data.

Our next step is to learn the temporal relationships. We
pass each of the batch_size× n timeseries into an RNN
independently. In this work, we use a two-layer RNN, using
the gated recurrent unit (GRU) architecture. The first RNN
layer is meant to encode the sequence forward in time. The



second RNN layer uses an attentional decoding mechanism
based on [17], with a modification that we do not let the RNN
attend to timesteps in the future, using a masking technique
similar to [16], [18] and our graph encoder. We use ReLU
nonlinearities at the output of each RNN layer as well.

The final layer in our NN is a fully-connected layer that
maps the output of the second RNN layer to our output
domain {yti ∈ RM}. Since, in this case, our outputs (the
queue length and the lane occupancy) are strictly nonnegative,
we use a ReLU nonlinearity at the NN output as well, to
restrict our NN’s image to nonnegative numbers.

C. Training details

The 100 simulations were split into an 80-simulation train-
ing set, a 10-simulation validation set, and a 10-simulation
test set. We trained against the Huber loss. The NNs were
trained with the Adam optimization algorithm [27], with its
parameters left at their Keras defaults. We annealed the Adam
learning rate by multiplying it by a factor of 0.1 when the
Huber loss on the validation set did not decrease over 10
epochs. We used early stopping, ending training when the
validation Huber loss did not decrease for 20 epochs.

The data for each simulation were chopped into periods
of 30-second averages. For occupancy, speed, and the green
indicator in xi and vehicles on the lane in yi, we took the
mean over the period, and for the defined-per-cycle values
of maximum queue length in yi and PDE-based max queue
estimate in xi, we took the max. This 30-second averaging of
detector data is prevalent in traffic engineering [28], despite
recent awareness that it averages out important information
[29]. This choice then mimics a lossy downsampling that
is endemic to commonly-available data for practitioners.
Another reason for doing this averaging is that we found
that our NNs performed poorly on 1-second data. This is
not too surprising; the 1-second data is very sparse, and
it is known that RNNs have difficulty learning long-term
dependencies [30] despite many developments (including
gated RNN architectures like the GRU) to tackle this problem.

For timesteps where the maximum queue length in yi is
undefined (see the last paragraph of section V-A), we did not
use the NN’s output for that output feature and no gradient
was taken.

VI. RESULTS AND DISCUSSIONS

We trained a variety of NNs with different combinations
of encoded edge types in our layer from section III. Table I
gives quantitative results in terms of estimation mean absolute
error (MAE) on the 10-simulation held out test set.

In the table, the leftmost column describes the adjacency
matrix structure included in our graph encoding layers
described in section III. The row for “A = I” indicates
that no lane-to-lane adjacency information was encoded;
instead, an identity matrix was passed in. This effectively
means that the lane was only able to “attend” to itself, i.e.,
the graph encoding layer acted functionally identically to
a fully-connected layer. Further entries in the first block
of rows indicate that we add more adjacency matrices to

TABLE I
PDE- AND NN-BASED ESTIMATION RESULTS

Configuration Mean Absolute Error (vehicles)

Cycle Queue Length Lane Occupancy

A = I 1.04 ± 0.004 1.50 ± 0.003
+Adownstream 1.06 ± 0.01 1.47 ± 0.01
+Aupstream 1.06 ± 0.01 1.37 ± 0.01
+Aneighbors 0.96 ± 0.01 1.24 ± 0.01

{I, Aupstream} 1.07 ± 0.004 1.40 ± 0.01
{I, Aneighbors} 0.97 ± 0.01 1.40 ± 0.01

PDE-based estimate [10] 5.36 -

Values shown are mean abs. error ± one std. dev. over five random seeds.

encode more structure. “+Adownstream” means that we also
include an adjacency matrix to denote downstream lane-to-
lane connections, “+Aupstream” adds the reverse relation (i.e.,
the transpose of Adownstream), and +Aneighbors means we added
a matrix that indicates whether lanes were neighbors (i.e.,
they were on the same road). These additional adjacency
matrices are cumulative: +Aupstream also has the downstream
adjacency dimension, and +Aneighbors has all four.

The rows “{I,Aupstream}” and “{I, Aneighbors}” denote NNs
with only the two noted adjacency matrices (as opposed to
the cumulative adding of edge types in the previous rows).

All NNs described in Table I used four attention heads
in the graph encoding sublayers. Information regarding
parameter counts for each NN is given in the Appendix.

Next, we highlight several findings.

A. Significantly Outperforming the PDE-Based Estimate

We found that our lane-graph NN models significantly
outperform the method of [10] in estimating the lane queues.
The mean absolute error value of 5.36 vehicles is much
higher than even our worst-performing NN. Figure 2 shows
an example of the per-cycle lane queue estimates for one
right-turn lane in the grid network.

Note that [10]’s method was proposed to do lanewise queue
estimation, but, as we mentioned earlier and discuss in more
detail in [11], we found that it performs poorly in lanewise
estimation in simulations with lane changing, like the ones
analyzed in this work.

B. Benefits of Attending to Adjacent Lanes

We see in Table I that assimilating additional lanes’
information via our multi-edge-type attentional encodings
provides benefits to estimation. This is particularly notable
in the occupancy estimation problem, where each additional
edge type added gives a performance boost.

Interestingly, the cycle maximum queue length estimation
performance seems to do worse when the downstream and
upstream lanes’ information are attended to. Under a two-
sample t-test (unequal variances), the performance loss for
both cases (adding the downstream lanes and adding both the
downstream and upstream lanes) is statistically significant
under most traditional levels (p ≈ 0.005 and p ≈ 0.0005,
respectively) (the difference in estimation error between the
attending downstream case and the attending downstream and
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Fig. 2. Example per-cycle queue estimates for a right-turn lane. The
adjacency-attending NN is the one with all four edge-type encodings in
Table I and the lane-local NN is the A = I one. Note that the NN that
can attend to adjacent lanes is able to predict the queue near cycle 35 more
accurately than the lane-local one. When the queue does not back up enough
to generate a shockwave to observe, the PDE-based method falls back to an
input-output equation [10], which performs poorly in the presence of lane
changing [11].

TABLE II
RESULTS FOR SECTIONS VI-C AND VI-D

Variation from Base Model Mean Absolute Error (vehicles)

Cycle Queue Length Lane Occupancy

(approx.) 1/4-size attn. dim. 0.98 ± 0.01 1.27 ± 0.01
Flattened adjacency matrix 1.22 ± 0.03 1.58 ± 0.03
One (4x-size) attention head 0.96 ± 0.01 1.24 ± 0.02

GCN, {I, Aup/downsteam} 1.81 ± 0.06 2.20 ± 0.05
GCN, {I, Aneighbors} 1.87 ± 0.04 2.54 ± 0.04
GCN, all adj. matrices A 1.49 ± 0.03 1.85 ± 0.03

“Base model” refers to the model with all four adjacency matrices (+Aneighbors
in Table I). GCN = Graph Convolutional Network [13]. Values shown are
mean abs. error ± one standard deviation over five random seeds.

upstream case is not statistically significant, p ≈ 0.41). The
fact that performance actually degrades instead of holding
steady likely indicates overfitting.

Adding the neighboring lanes’ information gave a clear per-
formance boost in the max queue length problem, indicating
that attending to those lanes is useful. Note also that while
the configuration of only attending to neighboring lanes (the
row {I, Aneighbors}) achieves about the same performance on
queue estimation as the NN with all four adjacency matrices,
it cannot perform as well on the lane occupancy problem. So,
attending to all types of adjacent lanes is beneficial for this
other, harder, problem.

C. Ablation Studies

We investigated the contribution of individual components
of our NNs by selectively removing them. The results are
shown in the first set of rows in Table II and discussed here.

1) The advantage of four-way edge type encoding is not
simply due to an increased number of parameters: As
discussed in section III, in this work we augmented our
graph encoding layers with extra adjacency matrices defining
extra lane-to-lane relations by concatenating hdi ’s together (4).
This means that the output dimension of the graph encoding
layer increases linearly with D, and thus the fully-connected

sublayer immediately downstream has a weight matrix whose
number of rows also increases linearly with D. As can be
seen in the Appendix, this can lead to a large increase in the
total NN parameter count.

To verify that the increased performance of our extra edge-
type encodings are not just due to increased parameter counts
of downstream layers, we trained an NN with a (roughly)
quarter-sized attention dimension F (it was not exactly 1/4
size, but was chosen to bring the parameter count close to
the A = I case, as shown in Table IV). Its performance is
shown in the first row of Table II. We see there is a slight
performance drop from the full-size base model, but we still
perform substantially better than the other models with fewer
adjacency dimensions. This suggests the high performance
of the four-dimensional edge-type NN is indeed due to being
able to attend to other lanes.

2) Flattening out edge type information is very costly:
To study whether encoding different lane relationships in
different ways (i.e., letting the model attend to upstream
lanes in different ways than to neighboring lanes), we trained
a model where we “flattened out” the adjacency dimensions.
That is, here we used a single-dimension (D = 1) adjacency
matrix where the i, j entry being 1 meant that lane i and j
were related by any of the lane-to-lane relationships (self,
downstream, upstream, neighboring).

The second row in Table II shows this model’s performance.
We see this model actually performed much worse, even worse
in fact than the naive, non-adjacent-attending model (A = I
in Table I). This suggests that attending to distinct relation
types differently is critical, and attempting to treat them the
same can lead to model confusion.

3) Is multi-head attention not needed when domain knowl-
edge gives information of all edge-type relationships?: The
third row in Table II shows the results when we use only
one attention head. In this case, the attention head is 4x
larger than the base model’s four attention heads, meaning
that the output dimension of this sublayer is the same. Quite
interestingly, we saw no significant performance drop in
our application, whereas [18], when applying attention to a
language translation task with no multi-edge-type encodings,
saw a clear performance degradation with a single-headed
configuration. We hypothesize this may be because our multi-
edge-type encoding captures the benefits of learning multiple
types of relationships that multi-head attention captures.

D. Comparing multi-edge-type attention to the Graph Con-
volutional Network layer

The “Graph Convolutional Network” (GCN) layer of [13]
is a popular spectral-type graph NN layer. The second
group of rows in Table II presents results where replace our
multi-edge-type attentional sublayers in our NN architecute
with 256-hidden-unit GCN layers (using the Keras GCN
implementation published by the authors, and using [13]’s
adjacency matrix “renormalization trick”), with subsets of
adjacency matrices (as in section VI-B).

The GCN layer considers only one adjacency matrix
and only undirected graphs. This means that to apply the



Fig. 3. Random road network used in graph-to-graph transfer trial.
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Fig. 4. Example performance of the transferred NN from the grid network
to the random network. The queue on a right-turn lane is shown.

GCN layer to our setting, we need to both flatten the
adjacency matrices into one (see section VI-C.2) and drop all
directionality information. This means, for instance, that we
cannot encode downstream and upstream relations separately
for the GCN. These topological assumptions not being valid
for the nonlinear dynamics encountered on the road network
may explain the GCN layer’s poorer performance here.

E. Graph-to-Graph Transfer Learning: First Results

An important problem in geometric deep learning is the
graph-to-graph transfer problem [12]. In the classic spectral-
based graph NN layers, the layer features are computed in
the graph’s spectral domain. This means that the applicability
of these layers across graph topologies is undefined.

The local graph layers, on the other hand, since they
rely only on local information, do not have this problem.
Further, the particular learned attention scoring construction
of attentional graph layers (1)-(3) means that different-sized
d-neighborhoods can be used with the same layer.

Figure 3 shows a randomly-structured grid-like network
with 750-m-long roads (the same length as the grid network),
generated with SUMO’s NETGENERATE function. We eval-
uated our NNs on 10 one-hour-long simulations on it.

Figure 4 shows an example of how our four-edge-
dimensional, four-headed NN predicts on the target network.
Interestingly, the NN qualitatively follows the right general
trend, but makes a few very large errors in understanding the
queue near cycle 10 and near the end of the timeframe. Note

TABLE III
GRAPH-TO-GRAPH TRANSFER RESULTS FOR TWO EXEMPLAR NNS

Configuration Mean Absolute Error (vehicles)

Cycle Queue Length Lane Occupancy

A = I 5.77 ± 0.10 7.47 ± 0.14
All four adjacency matrices 6.32 ± 0.11 8.18 ± 0.14

PDE-based estimate [10] 15.04 -

Values shown are mean abs. error ± one std. dev. over five random seeds.

the scale on the plot: a queue length of 60 is not typical on the
grid network. Reexamining Figure 3, we see that the random
network’s irregularity leads to fewer alternate routes than the
grid-based one, and therefore perhaps a greater likelihood of
bottlenecking. This means that the queue length of nearly
60 vehicles is atypical for the grid-based one but may be
not so out of the ordinary for the random one. Thus, the
underestimation may be due to the fact that the NN had
never seen that degree of bottlenecking in the grid network.

Table III shows mean absolute errors for the four-
dimensional NN, the NN with no adjoining lane information,
as well as the PDE-based baseline. We see that both the
NNs and the PDE-based estimate have much larger errors.
The fact that the baseline error increases suggests that some
of the lost accuracy for the NNs may be intrinsic to this
network’s dynamics presenting a more challenging problem in
general. However, of interest is that the local-lane-information-
only NN performs better on both prediction tasks. Since by
construction the lane-local NN does not see what is happening
on other lanes, we believe the fact that it now outperforms
the adjacency-matrix-using network supports the hypothesis
that the different road topology induced different inter-lane
and inter-road dynamics as a source of increased error.

Put together, this interpretation justifies the idea of cross-
network training to learn dynamics models that may only
emerge on particular topologies. Extending our experiments to
more networks, and more complex networks, in this manner
is an item of ongoing work.

VII. CONCLUSION AND FUTURE WORK

We introduced the idea of applying attentional operations
for deep learning models on lane graphs. Our results indicate
that these particular architectures can be useful on the lane
level, where first-principles models are difficult to derive.

We propose two immediate avenues for future work. First
is the application of these NN architectures to more complex
and varied traffic scenarios, such as more variable demands,
more variable vehicle behaviors, or further applications of the
network transfer problem. The eventual goal of this avenue
of work would be the transfer of these NN models from
simulation to real-world lane graphs.

The other important avenue is further NN architecture
engineering. We introduced a multi-edge-type attentional layer
that can integrate information from different node-to-node
relationships in different ways. Our studies on flattening
out the edge types and the comparison with the GCN layer
(sections VI-C.2 and VI-D, respectively) give evidence that
this topological information is crucial to learn the complex



dynamics on the lane graph. A shortcoming is that we do
not (yet) include the time relationships in these edge types.
Recent items in the NN literature like time convolutional
networks [31], and the integration of those with attention [32]
have challenged the assumption that RNNs are the optimal
NN approach for timeseries data (learned downsampling
convolutions in the time dimension would also be a more
satisfying method of downsampling than our hard 30-second
averaging). An open question is whether the time dimension
can be treated as just another edge dimension, or whether it
would be more effective to structure the architecture so that
time means something distinct from spatial relations. A deep
attention-based model for both space and time is particularly
appealing for nonlinear dynamics problems, where the scalar
attention scores (1) could be used to indicate the importance of
different elements of the state space through entire dynamics
trajectories according to the learned dynamics model.

APPENDIX

In our NNs, we set the output dimension (a.k.a. number
of units) of all fully-connected layers, as well as the GRU
dimensions, to 128 (except for the GCN NN, which had
fully-connected layers of dimension 256). The base graph
encoder layer dimension F was 96. Parameter counts for all
our NN variants are shown in Table IV.

TABLE IV
PARAMETER COUNTS FOR NN CONFIGURATIONS

From: NN Configuration Param. count

Table I

A = I 385,027
+Adownstream, {I, Aupstream}, {I, Aneighbors} 486,403
+Aupstream 587,779
+Aneighbors 689,155

Table II

approx. 1/4-size attn. dim. (F = 32) 384,003
Flattened adjacency matrix 385,027
One (4x-size) attention head 689,155
GCN (all versions) 481,027
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