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ABSfRACT 

The accuracy of the random vortex method. in approximating the solution of the 
Navier Stokes equation. is investigated using the model problem of a circular 
vortex as suggested by Milinazzo and Saffman [13]. The method consists of par­
titioning the vorticity into "vortex blobs". These blobs are moved via two 
actions. First. a blob is deterministically moved under the action of the velocity 
field associated with the other blobs. Then to simulate viscosity a random com­
ponent is added to the position of the blob. For this model problem the non­
linear terms of the Navier Stokes equation vanish. Thus the major error 
inherent in the deterministic component of the method vanishes. Consequently. 
for this model problem we concentrate on the interaction of the deterministic 
and random components of the method. Our results show that the accuracy of 
the method depends heavily on the initial distribution and strength of the com­
putational elements Le' .. the vortex blobs. With the right choice of initial condi­
tions we find that the error is O( R"""*N"""*). where R is a Reynolds number and N 
is the number of vortex blobs. 

IYnis wori< was S'.lp?o:-:ed L" pa:-: by L'le Di:'ector. Office of S"ergy Research. Office of Basic Ener­
gy SCie::1ces. E."lgL"eerj;tg, Ma::'e:r.a::caJ, and Geosciences Divisio::1 o! L1.e U.S. Department of Energy, 
u.."der Contract DE-AC03-76S?OOO98. 
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1. INTRODUCTION 

The vorticity stream formulation of the incompressible Navier-Stokes equa-

tion in the plane has the form, 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

where u = (u.v) is the velocity. GJ the vorticity. 1/1 the stream function. R is the 

Reynolds number and z = (z .y) are the spatial coordinates. 

To solve these equations numerically it is common to solve a discrete 

approximation of these equations on a grid. These approximations introduce an 

artifical viscosity term. The random vortex method (Chorin [5]) is designed to 

overcome this difficulty. The method involves partitioning the vorticity into a 

sum of "blobs". It is a fractional step method. At each time step. the convective 

part the Navier-Slokes equation is solved by moving each of the blobs under the 

action of the of the velocity field associated with the other blobs (vortex 

method). The diffusion part is simulated by letting the particles undertake a 

random walk (Lamperti [10] ch.4). It should be noted that large statistical 

errors can occur in the solution of vorticity by using this method. On the other 

hand. as velocity is an integral of vorticity. the statistical error for the velocity 

is much smaller. Chorin's method also allows for domains with boundaries. We 

shall use this method in the case in which the domain is the whole plane. Thus it 

is not necessary to discuss the boundary conditions. 

Chorm's method has. on the whole (see Leonard [11]). been received as a 

useful and important tool in the study of high Reynolds number. incompressible 

flows. However. }lilinazzo and Saffman [13] came to the conclusion that the 
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method could produce significant errors. even when a large number of vortex 

blobs were used. They obtained 10% error with 1000 blobs for a Reynolds 

number of 5000. Chorin [6] has .. pointed out that their conclusions were based 

on their choice of error measurement. He also criticizes their implementation 

of the random vortex method. in particular their choice of cutotI parameter (see 

section 2). 

It is our intent to reproduce Milinazzo and Saffman's results. in order to 

clarify their results and their disagreement with Chorin. In section 3, we 

present Milinazzo and SatIman's model problem. We analyse two methods of 

measuring the error for the method, the one proposed by Chorm.in [6], and the 

one used by Milinazzo and Sa tIman in their paper. Estimates are derived for the 

errors expected in the numerical results. These estimates are based on the cal­

culations of Milinazzo and SatIman [13], section 4, and agree with Chorin's [5] 

estimates. 

In section 4 we compare the method used by Chorin and others to approxi­

mate the initial vorticity and the construction of Milinazzo and SatIman. In the 

first method the vortex blobs are initially placed on a uniform grid. In the 

second method the blobs are placed by use of a random distribution. We find 

that the first method produces more accurate results. For instance, using 500 

blobs and a Reynolds number of 5000, we obtain a 5% error using the first 

method and a 12% error using the second method. These errors are calculated 

using Milinazzo and Saffman's method of error measurement. This result 

verifies Milinazzo and Saffman's result of a 10% error for 1000 blobs, since an 

increase in the number of blobs by a factor of 2 should decrease the error by a 

factor of~. Note that if we use Chorin's error measurement for the two cases 

above, we obtain errors of 0.3% and 0.7% respectively. 
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We find that there is little difference in our results when different cutoff 

functions are used. In particular, we tested those cutoffs used by Beale and 

Majda [4], Chorin [5], Hald [7] and Milinazzo and Saffm~ [13] (see table 1). 

Since the average distribution of particles for our problem is radially symmetric 

it is reasonable to assume that the angular motion of the vortex particles is 

governed by the vortex method, whereas the radial motion is governed by the 

random walk algorithm. As our methods of error measurement are only sensi­

tive to the average change in the radial position of the particles, it is not 

surprising that we cannot detect any difference between the various cutofffunc­

tions. 

Our numerical runs show that there are two types of errors in the computa­

tions. We refer to these as the startup error and the interaction error. The 

startup error depends on the difference between the initial distribution of vor­

tex blobs and the exact vorticity. The interaction error involves the errors pro­

duced through the interaction of the vortex method and the random walk algo­

rithms at each time step. Our computations show that Milinazzp and Saffman's 

implementation gives 2 to 5 times larger startup errors than the standard 

method. For a Reynolds number greater than 1000 the startup error "swamps" 

the interaction error, i.e., the computed error is due to Milinazzo and Saffman's 

choice of initial conditions. However, for larger Reynolds numbers (R ~ 20000) 

even the standard method produces significant startup errors in comparison to 

the interaction error. 

By measuring the error in a different way we can study the interaction 

term. We observe that the errors for the random vortex method and the solu­

tion of the diffusion equation using the random walk method are comparable, at 

least if the number of vortices are less than 500. Both methods produce errors 

of O(N-*R-""*), where N is the number of blobs. This verifies our analysis in sec­

tion 3.. The error for the random vortex though, is typically larger than that of 
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the random walk algorithm. 

With the lack of smoothness of our initial data. we could expect large 

errors. However the results are quite accurate and we use only moderate 

amounts of computing time (less than 4hr. on a Vax). Hald [7] and Beale and 

Majda [4] have shown that if the initial data is smooth then vortex methods can 

accurately solve the inviscid equations on ffi2. Thus. for problems involving 

smoother initial data. we expect more accurate results. 

2. THE RANDOM VORTEX ME'l'HOD. 

The random vortex method solves the Navier-Stokes equation (1.1-4) by a 

fractional step method. which consists of the two equations. 

and 

where A 'if; = CJ • 11. = - 'if; 11 • v = 'if;:e . 

- 1 A 
Co), - If Co) 

(2.1) 

(2.2) 

At each time step. equation (2.1) is solved by following the evolution of a 

finite number of ft.uid elements (vortex blobs). The solution of equation (2.2) is 

then simulated by adding a gaussianly distributed random component. of 

appropriate variance. to the position of these fluid elements (blobs). An approx­

imation to the Navier-Stokes equation is then obtained from the resulting vorti­

cily distribution. 

We will discuss the solution of equation (2.1) by the vortex method (Chorin 

[5]). The basic idea is to apprOximate the vorticity by a sum of "vortex blobs" .. 

A blob can be thought of as a region of vorticity which is convected in the flUid 
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under the action of the other blobs. In a real fiuid, the distrib~tion of vorticity 

inside a blob would be distorted by the flow. In the vortex method it is assumed 

that the blobs are translated as a whole. The validity of this is proved in Hald [7] 

and Beale and Madja [4]. The problem is then reduced to following the evolution 

of a flnite number of these blobs. 

First it is necessary to choose a set of "cutoff functions", f rp6 ~6>O' These 

functions are approximate 6 functions on the plane, such that for every func­

tion. u eLl nL-, 

rp6·U .. u as 6 .. 0 , (2.3) 

Here •. denotes convolution. We call 6 the "cutoff" for the function rp6. For any 

function rp with J rp = 1, rp6(Z) = 6-2 rp( Z /6) is a set of cutoff functions. For 

(.) t Lin L -, and small IS we have the following approximation. 

(')(Z)~rp6·(')(Z)~L "1;, rp6(Z-Zi) 
;, 

(2.4) 

for some pOints Z;, and constants -y;,. The first approximation in (2.4) is due to 

relation (2.3), the second approximation is simply a standard Riemann sum 

approximation to the convolution integral. We can chose the parameters Zi and 

'Yi in various ways. One approach is lo allow the pOints Zi to lie initially on uni­

form grid of mesh size h, and to let 'Yi = h 2 c.>(zt>; another is to let 'Yi = [ c.>, where 

Bj denotes the square centered on zi' of area h 2. 

The "vortex blobs" or simply the "blobs" are represented by the vorticity 

distributions c.>i (z) = 'Yio rp6( Z - zi ) (here we have suppressed the IS dependence 

of c.». We say that the center of the i'th blob is Zi and that its strength is-y;,. 

Let G be the fundamental solution to Laplace's equation and let G6 denote 

the smoothed kernel G*rp6' Then we have by (2.1) and (2.4) that the stream 

function 1/1 satisfies the following relation. 



'¥'(z) = G .c.,l(Z) ~ ~ I'i G· ~c5(Z -Zi) = ~ 1', Gc5(Z -if,) . 
"' i 

Thus an approximate velocity field is given by 

u(Z) = -'¥'¥ = -~I'i ~~c5 (Z -Z,) 

V(Z)= '¥'~=~?'i aGc5 (z-Z"-t) 
"' ax 
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(2.5) 

(2.6) 

(2.7) 

We use these equations to update the positions of the vortex blobs. 

Specifically. we suppose that the positions. z,(t) = (2; (t).Ydt». of the blobs 

satisfy the following first order system of differential equations. 

d:r:j aGeS _ _ 
d.t =-~I" iJy (Zj-~) (2.8) 

d:yj " aGc5 _ _ 
di= ~I'i ~Zj-Zi) (2.9) 

If the cutoff functions have radial symmetry we introduce the functions 

K(Z) and K6(Z) and the associated function f 6(r) defined by. 

K(z)=(-a¥.a~)G(z)= ~-12 (-y.z) 
21T'IZ 

(2.10) 

Kc5(z) = (-a¥ . oJ: )Gc5(z) = f c5( I Z I) K(z) (2.11) 

In table 1. we have displayed the functions f c5 associated with some of the more 

common choices of cutoff functions. Notice that f c5 ~ 1 as 6~0 or as r ~CICI. 

Using the functions defined above we can also rewrite equations (2.6) and 

(2.7) in the simpler form, 

(u (z),v (z» = ~ 1';. Kc5(z -z;.). 
i 

(2.12) 

The convergence of the vortex method for smooth initial data. using specific 

cutoff functions. has been proved. These results state that h. the initial distance 

between the blobs. and the cutoff 6. must satify a relation of the form 6 = h q • 
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where 0 < q < 1. Hald and Del Prete [9] first showed convergence using their 

cutoffs. Hald [7] subsequently improved those estimates. Finally Beale and 

Majda [4] have shown that there exi.!>ted cutoff functions which can produce arbi-

trary orders of convergence. 

The solution of equation (2.2) is performed by the following random walk 

method. It is well known that the probability distribution of the positions of par­

ticles undergoing a Brownian motion. satisfies equation (2.2). the diffusion equa­

tion (see Lamperti [10]). The idea is to use a gaussianly distributed sequence to 

add a random component to the positions of the vortex blobs at each time step. 

This will simulate the diffusion inherent in equation (2.2). 

An exact analysis of the Random Vortex 'method is not available. Marchioro 

and Pulvirenti [12] have shown that the random vortex method approximates 

the Navier-Stokes equations in a weak sense. as the initial grid size and cutoff 

approaches 0 in an appropiate way. Their result is impractical for us as we need 

stronger forms of convergence. For instance we need convergence in an [} or 

L- sense. Hald [8] has analysed a method similar to the random vortex method 

for a problem in chemical dynamics and obtained strong convergence. His 

results though. and the discussions found in [5]. [13] and [3] indicate that ran-

dom vortex method will approximate the solution of the Navier-Stokes equation 

with an error of order R-Yl, This is of the same order as the error obtained when 

equation (2.2) is solved by using random walks. 

3. THE MODEl. PROBLEM. 

Our model problem consists of solving equations (1.1-4). together with the 

follo'Wing non-smooth initial condition. 

[
1 iflzl~T 

~(z) = 0 if I z I ~T (3.1) 
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As this is radially symmetric, it follows that Q GJ = 0 (see Batchelor [1]). The 

Navier-Stokes equations reduce to the two following cases. 

,if R=co (3.2) 

,iIO<R<co (3.3) 

If R=co, the solution is a rotating blob ~ith angular velocity *, and period of 

rotation, T = 41T. For O<R<co, GJ is a solution of the heat equation and can be 

written in the form, 

GJ(z,t) = JEt(z -zIH(ZI) cUI 
m2 

(3.4) 

where ~ is the initial distribution of vorticity and E, is the fundamental solution 

for the heat equation, 

R -RI%!2 

E (z)= --e 4t 
t 41it 

(3.5) 

One test of our numerical method is to calculate the exact and numerical 

values of vortiCity (or veloCity) at many points and use a discrete norm (e.g. L2) 

to measure the error of the method. Another is to compare the positions of the 

vortex blobs at each time step with the positions of corresponding particles 

evolved by the exact flow. However, it is expensive to evaluate the integral (3.4) 

or to calculate the vorticity generated by the vortex blobs at many pOints. A 

common practice in these situations is to compare the exact and computed 

values of easily computable functionals. Following Milinazzo and Saffrnan, we 

chose the functional. 
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J 1 Z 12 (.)(Z.t )dz 
L (t) = :.;1R2--:: ___ _ 

J (.)(z.t)dZ 
(3.6a) 

1R2 

which satisfies 

L(t)=L(O)+ ~ (3.6b) 

In the random vortex method L can be approximated by. 

A(t)= ~~[(~(t»2+(Ydt»2]. 
\ 

(3.7) 

where the number of vortex blobs is denoted by N and their centers by 

(~(t ).y,; (t ». The derivation of this formula supposes that all of the vortex blobs 

in our test problem have equal strength. 

We will study the expected value, denoted by E. and the variance. denoted 

by a2, of the quantity A. An exact analysis is not available, but we expect that 

the general case should be comparable to pure diffusion. 1t follows from section 

4 of Milinazzo and Saffman [13] that, 

E(A(t»=A(O)+ ~ (3.8) 

2(A f t»= ~A(O)+ J!i.:'.J5- 3Mj 
a \ RN N R2 l t' (3.9) 

~~A(O) 
RN 

R 
for 1:»1. 

The analysis of the error is based on the functional L, and its numerical 

approximation A. We considered the relative error in A, 
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(t) = I A(t)-L(t) I 
e IL(t)1 

(3.10) 

Thus if the error in vorticity is small, then e (t) will be small. 

The function e (t) can be decomposed into two components corresponding 

to "startup" and "interaction" errors. Thus we introduced the following func-

tions. 

_IA(O)-L(O)I 
e.t.up - I L (0) I 

( t ) = I A (t) - [ A (0) + 4t / R J I 
ell A(t) I 

Note that A(O) + 4t / R is the expected value of A(t). 

(3.11) 

(3.12) 

In the case of pure diffusion the standard deviaion a(e l(t» can be calculaed 

from (3.9), and saisftes 

(3.13) 

for RI t » 1. 

Milinazzo and Saffman [13] measure the error by comparing the functional, 

g(t)= :t [L(t)-L(O») (3.14) 

with its numerical approximation, 

h(t) = :t ~(t) -L(O)] (3.15) 

By (3.6b), 9 (t) = 1. Hence Milinazzo and Saffman's error is deflned to be, 

eMS(t) = 1 9 (t) -h(t) 1 = 11-h(t) I· (3.16) 
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One can construct examples in which the vorticity field generated by a sum 

of vortex blobs approximates the exact vorticity for the model problem arbi­

trarily well. but for which the function eys(t) is of arbitrary size (in particular. 

when R is large or t small). This is true even when t is restricted to a bounded 

interval O<t <T. Thus we prefer to estimate the error byestarlup and e 1. 

4. NUMERICAL RESULTS. 

There are many possible ways to implement the random vortex method. 

For example. we can make the following choices. 

(1) Initial placement and strength of the vortex blobs. 

(2) Form of cutoff function and the appropriate cutoff size for a given number 

of blobs. 

(3) Choice of time integration scheme to solve the system of equations. (2.8) 

and (2.9). 

(4) Random number generator to be used for the simulation of the random 

walk. 

Our implementation consisted of the following choices. 

The positions z\ ot the blobs were initially given on a uniform grid of mesh 

size h. Let Bi be the square of area h 2 centered on Zi and parallel to the grid 

Then the strengths of each blob are given by, Ii = [ c.). We call this a uniform 
( 

grid distribution with averaging. 

For the cutoff function we chose Chorin's (see table:) with a cutot! c5 = 2h. 

To integrate equations (2.8) and (2.9), we used forth order Runge-Kutta as 

our time integration method. Y.ilinazzo and Sa.Ffman [:3] chose Heun's method, 

whereas Chorin [5] used Euler's method. With a time step of M = 0.05 the error 

in the O.D.E. was less than 10-1:5 • 
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To simulate the random walk we needed a 2-dimensional gaussianly distri­

buted sequence of pOints (1,(2), with zero mean and standard deviation v. This 

was obtained from a uniformily distributed sequence of points (171,'7]2)' on 

[O.l]X[O.lJ. by using the formula. 

(1 = vcos (211"'771) [-2 log (1]2»)* 

(2 = V sin (21T1] 1) [-2 log (1]2)]* 

(4.1) 

(4.2) 

Figures 1a-b and 2a-b display typical results. These figures display the com­

puted value of A(t). compared to the expected value of A(t) and its standard 

deviation as given by (3.8) and (3.9) (R = 1250. N = 429 and 468. 6 t = 0.05). 

Notice that the error due to the random walk algorithm seems to dominate at 

this relatively low Reynolds number. 

We then chose to study the effect of varying the initial distribution of the 

vortex blobs and the choice of cutoff function. 

Following Milinazzo and Saffman [13] (p.384). we investigated the effect of 

distributing the blobs randomly at t = O. The positions, z\. of the blobs were gen­

eraled by using a uniformily distributed sequence of points on [0,1] x [0.1]. This 

type of initial distribution will be called random and h ~ill denote the average 

distance between the blobs. 

The strengths of the blobs were determined by either; 

(1) 7\ = [Co) where B\ denotes the square of area h 2 centered on~; 

Figures 3a-d display the errors obtained for the various initial startup pro­

cedures discussed. Notice the particularly "choppy" behavior of figures 3c-d. 

This can be explained by observing that the addition of a blob al position (x.y) 

will change the error by an amount of N-l (x 2 + y2 ). N being the total number 
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of blobs for a particular run. Hence the addition of one blob near the boundary 

of the support of the vorticity will produce a change of 1/ N. 

Comparison of figures 3a-d clearly show the superior accuracy of t.he uni­

form grid with blob strength given by (1), in approximating the initial angular 

moment. Figures 4a-d show the error .e (3 T) (T is the period of the exact solu­

tion for the inviscid case.) obtained when blobs with the various initial conditions 

were moved by the random walk algorithm (R=1250). There is a correlation 

between the errors shown in figures 3a-b and figures 4a-b. This shows that for 

the methods where the blobs have a random distribution at t =0 the initial error, 

as measured by estartup' dominates the error produced by the random walks. 

Figures lb and 2b show that the phenomenon is less for a uniform initial distri­

bution. Finally the averaging gives the best results. This is expected since the 

initial data is not smooth. 

In the remainder of this paper we will use uniform grid and averaging. 

For runs with Reynolds number greater than 20000, it became evident that 

even with the use of a uniform grid and averaging that startup errors were dis­

torting the errors produced by the interaction of the two fractional steps of our 

method (see table 2). To eliminate the effect of the startup error we have intro­

duced the functional e 1 . 

We observed that practically any choice of cutoff function and cutoff 0, pro­

duced similar results. This seems to be due to our method of error measure­

ment. If the vortex blobs have a distribution which is radially symmetry, then 

the velocity given by (2.12), for any cutoff, has no mean radial component. As 

our modes of error measurement only detect changes in radial positions (L 

depends on distance of blobs from origin) we cannot accurately compare 

different cutoff functions. On the other hand, we need a cutoff function if R ¢ 00, 

since the random walk algorithm allows blobs to become arbitrarily close. 
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Hence if no cutoffs were used, the interactions would be unstable. We chose 

Chorin's cutoff function with «5 = 2h. 

From (3.13), for a fixed number of blobs we expect that the error would be 

O(R'""*), at least for pure diffusion. Table 2 tabulates our results as we increased 

Reynolds number from 1250 to 80000. With 500 blobs, note that the errors for 

the random vortex method are larger than those obtained for random walks, but 

that the rates of convergence as R ... IX) are similiar. These results verify the 

estimates established in section 3. for the random walk simulation. 

How does the number of vortex blobs affect the accuracy. With R = 1250, 

figures 4a, 5 and 6 contain the relevent data. First note that comparison of the 

plots in figures 5 and 6 indicate that the random vortex method and the random 

walk algorithm produce Similar results. In addition though, observe the way in 

which the error decreased with an increase in the number of particles. Figure 

4a shows that for the random walk algorithm it is unlikely for the error to be 

greater than the standard deviation a(e 1(3T)). We did not observe an error 

greater than 2 times this quantity. The results for the random vortex method 

are similar. 

5. CONCLUSION. 

We have shown that the choice of initial conditions are important in the ran­

dom vortex method. With our initial vorticity a uniform grid initial distribution 

of blobs with the strength of the blobs obtained by averaging give the best 

results. The dependence on the initial conditions is also found in the vortex 

method for smooth initial data. Here though, the choice of cutoff function is 

also important (Beale and Madja [4] and Perlman [14]). 

The time evolution of the errors obtained for the random vortex method is 

similar to the corresponding result for the random walk algorithm. This is a 

favourable outcome. We could not expect the fractional step algorithm to 
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produce less error than its individual parts, but it was conceivable that the 

errors would be much larger. 

Finally, our results indicate that the error for the random vortex method is 

O(N""*R-*). Hence, for a fixed number of vortex blobs, the accuracy of the 

method increases as the Reynolds number increases. 
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Table 1. Common cutoff functions 

Chorin [5] 

{ 1 .il r >0 
14(r)= r/o.ilr<o 

Milinazzo and Satiman [13] 

{ 1 .il r >15 . 
14(r)= r2/tS2 .il r<tS 

Hald [7] 

r2 [ r2 r' r' r'J 16(r) = 62 14- 105r 196r 14064"+ 36 15:; .il r <0. 1 ,il r >15. 

~ r2 r3 r 4 r:5 raj If 6(r) = 362 56- 630r 1568r 168064"+ 864r 17566" ,il r < 15, 1 ,il r > 0 

. Beale and Majda [4] 

_r2 

1,,( r) = 1 - e ,,2 

-c.. -L 
16(r)=1-2e 62 + e 262 

r2 
2 --

I 6(r) = 1 - (~2 1) e 6
2 



Table 2. Comparison of error measurements 
(in X), for runs with 500 blobs 

and with B$tllrlup =.239%. 

Random vortex method Random walk algorithm 

Reynolds number 
e (T) e 1(T) ellS ( T) e (T) e l( T) eltls(T) 

80000 . 40B .310 324 . . 602 .10B 47B . 
20000 .196 .536 39.1 .516 .193 103. 
5000 .453 LOB 22.5 .362 .354 1B.0 
1250 1.46 2.00 1B.2 .434 .634 5.39 
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Figure 1a 

Figure 1b 

Figure 2a 

Figure 2b 

Figure 3a 

Figure 3b 

Figure 3c 

Figure 3d 

Figure 4a 

Figure 4b 

Figure 4c 

Figure 4d 

l'igure 5 

Figure 6 
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IJST OF FlGURE CAPTIONS. 

Angular moment for 429 blobs evolved by random walk algorithm 
for R =1250 together with its expected value and standard devia­
tion. 

Angular moment for 468 blobs evolved by random walk algorithm 
for R =1250 together With its expected value and standard devia­
tion. 

Angular moment for 429 blobs evolved by random vortex method 
for R =1250 together with its expected value and standard devia­
tion. 

Angular moment for 468 blobs evolved by random vortex method 
for R =1250 together with its expected value and standard devia­
tion. 

Initial error. e,tarlup' for uniformily distributed vorlex blobs with 
averaged strength. 

Initial error. e,tarlup. for uniformily distributed vortex blobs with 
unaveraged strength. 

Initial error. e.tarlup. for randomly distributed vortex blobs with 
averaged strength. 

Initial error. e.tarlu~. for randomly distributed vortex blobs with 
unaveraged strength. 

Error e (3T) tor uniforrnily distributed vortex blobs with averaged 
strength evolved by random walks with R = 1250. 

Error e (3T) for uniformily distributed vortex blobs with unaver­
aged strength evolved by by random walks with R = 1250. 

Error e (3 T) for randomly distributed vortex blobs with averaged 
strength evolved by by random walks with R = 1250. 

Error e (3T) for randomly distributed vortex blobs with unaver­
aged strength evolved by by random walks '\\<ith R = 1250. 

Error e (3T) for uniformily distributed vortex blobs with averaged 
strength evolved by random walks with R = 1250. 

Error e (3T) for uniformily distributed vortex blobs with averaged 
strength evolved by random vortex method with R = 1250. 
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Figure 3c. 
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Figure 5. 27 
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