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RESONANCES AND SYMMETRJES 

Arthur H. Rosenfeld 
Department of Physics, and 

Lawrence Berkeley Laboratory_ 
University of California 

Berkeley, California 94720 

ABSTRACT 

In baryon phenomenology we discuss mainly a recent paper 
paper by G. H. Trilling on SU(3) tests. He shows that SU(3) pre­
dictions relating cross sections can be greatly improved by the in­
troduction of angular momentum barrier penetration coefficients, as 
is already routine when making SU(3) classifications of resonances. 

Under mesons we discuss 'TT'TT and K'TT s-wave scattering. The 
recent work of Flatte et al. and of Protopopescu et al. explains s-
wave rrrr scattering in terms of two poles: --

E at .JS = 600 ± 70 - i(250 ±50) MeV on sheets II or IV, 

>'< 
s' at .J8 = 980±7- i( 38± 7) MeV on sheet II. 

INTRODUCTION 

The program chairman asked me to choose one current inter­
esting advance in our understanding of baryons, and one advance in 
mesons. For my baryon topic I have chosen to point out the success 
of a nice and simple paper by G. H. Trilling which greatly improves 
the agreement between experimental cross sections and SU(3) pre­
dictions. 

For my meson topic I have chosen the recent rapid advance in 
our understanding of s-wave rr'TT and K'TT scattering amplitudes, with 
rrrr poles called E at ~ 600 MeV and S* at KK threshold, and several 
possible K'TT poles. 

I. TESTS OF SU(3) IN PARTICLE REACTIONS 

I war1t to start by contrasting two familiar figures involving 
SU(3) predictions: one shows the success of scaling decay rates; 
one shows the failure to relate cross sections. Figure 1, is taken 
from the review of Tripp et al. 1 The left panel shows SU(3) coupling 
constants g (actually what is plotted is g2) calculated for a total of 
four different decay rates of three different resonances which are 
members of the same J = 3/z+ decuplet. If SU(3} were perfectly 
described by our Eq. (3) below, which applies for decays, then the 
same value of g2 would describe all four decays. It can be seen 
that SU(3) 11 succeeds," on the average, to better than± 500/o. Other 
panels of Fig. 1 confirm this. 
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Fig. 1. · Display of the relative coupling constants for (a) various de­
cay modes of the 3/2+ decuplet and its recurrence and (b) the 1/2-
unitary singlet and the 3/2- unitary singlet and its recurrence. The 
SU(3) coefficients and corrections for mass differences have been in­
troduced so that within each multiplet all decay modes should have 
the same value of g2. Taken from R. D. Tripp, et al., Nucl. Phys .. 
B3, 10 (1967). 
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Figure 2 shows the SU(3) matrix element T (actually what is 
plotted is IT 12) calculated by Meshkov, Snow, and Yodh2 for four 
different reactions. If SU(3) were perfectly described by our Eq. (8) 
below, then the same T would describe all four reactions. In­
stead, I T I 2 for the endothermic reactions (involving K+ production), 
lie one or more orders of magnitude below those like K-p- Yi 
(1386)1T, which is endothermic by only 100 MeV. 

Why does Eq. (3) work for resonance decays, while Eq. (8) 
fails for cross sections? The answer, recently given by Trilling3 
is that Eq. (3) includes an extra centrifugal barrier -penetration 
factor B1· Thus, for the p-wave decay of the 3/2+ decuplet of Fig. 
1, the factor is 

B1 (kR) = 1 + (kR)2 

where k is. the decay momentum and R is the radius of interaction. 
Specifically for the lowest-Q decay of Fig. 1, ~(1385)- ~1T, 
kR = 117 MeV/c ~ 1 fermi~ o~s. and B 1 ~ 1/3, which is an appre­
ciable and necessary correction, the like of which we shall now in­
corporate into eros s sections. 

Calculation of SU(3) Couplings 

Having introduced you to the barrier problem, I want now to 
summarize how from data one extracts, or can extract, SU(3) 
couplings or reduced widths for three different cases: 

A. Decay rates of resonances with known quantum numbers. 

B. Cross sections where partial wave analyses are available. 

C. Cross sections where little is known. 

A. Decays of Resonances with Known Quantum Numbers 

Here the procedure is well standardized. I take a few para­
graphs from Appendix II of the forthcoming Review of Particle 
Properties, 4 where an up-to-date list of references may also be 
found. 

Decay Rates 

In terms of a relativistically invariant matrix element T, the 
decay rate for two-body decay of a resonance of mass M is 

rex: (1) 

where Rz = k/M is the two-body phase space factor. Since the nu­
merator is an invariant, and since r must transform as 1/E, we 
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Fig. 2. Experimental values of 1/3 O'aFa, O'bFb, O'cF c• and O'dF d 
vs Q for the 11 U -spin equalities. 11 The letter next to each data point 
is the reference number of the data source. This is Fig. 2 of 
Meshkov, Snow, and Yodh, Phys. Rev. Letters ..!1_, 212 (1964). 
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introduce the denominator 1/M. 

For meson decays (see below) the rates are calculated ac­
cording to Eq. (1); for baryon resonance decays into 1/2+ baryons 
and o- mesons, one next takes into account the fact that spin sums 
in I T 12 introduce another factor M cancelling the 1/M. We are 
then left With 

r = IT 12k 
MN' for baryons 

M 
(2) 

IT 12k 2 for mesons. = 
M2 MN' (2' ) 

The powers of the nucleon mass MN or M~ have been introduced so 
that we can treat I T I as dimensionless. ' 

IT 1
2 

contains centrifugal barrier factors, which we call Br 
We then have 

Octet 

Octet­
Singlet 
mixing 

with 

{ G 8 = A cos B-A' sinB 
G1 = A sin B+A' cosB 

G8 = cDgD+cFgF 

G1 = c1 g1 · . 

(3) 

(4) 

(5) 

(6) 

Here c. are the SU(3) coeffic;ients with the sign convention adopted in 
this article. MN is the nucleon mass, M is the resonance mass for 
which r is calculated, k is the center-of-mass momentum for the 
channel being considered, gi are the relevant couplings. 

The appendix goes on to discuss singlet-octet mixing, which we 
can ignore, except to say that when it is taken into account, we find 
that the gi for the octets agree as well as they did for the decuplets 
and singlets pictured in Fig. 1. Progress for the resonances classi­
fied as of 1969 is summarized by Levi-Setti5 in my Fig. 3, where 
the standard deviation of the observed gi seems to be ~ ± 50o/o. 

Next we come to cross sections, e. g., K-p-+ Arr , where we 
call K-p, channel 1; Arr, channel (3. Then, using the same notation 
as in Eq. (2), 
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Fig. 3. By defining as "predicted" widths, those predicted using the 
best values for the SU(3) multiplet coupling constants, the ratios of 
the predicted width to observed width are indicated for the decay 
modes and SU(3) assignments entered in Levi-Setti' s Table 3. The 
tails of solid arrows correspond to the locations of upper or lower 
limits of decay rates. The dashed arrows indicate the displace­
ment caused by the introduction of singlet-octet mixing in the 1/2-
and 3/2- states. This is Fig. 3 of Levi-Setti' s ta1k at the 1969 Lund 
Intl. Con£. on Elementary Particles. Proceedings published by 
Institute of Physics, Lund, Sweden. 
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(7) 

where f is the flux factor (f o: k 1 M, where both £1 and fs are ex­
pressed in the c. m. and M = ,..JS). This gives immediately 

= I Tf~ I 2 
I FMSY , (8) 

which is the equation used in 1964 by Meshkov, Show, and Yodh to 
plot the I T I 2 of Fig. 2. They would have been more successful if 
they had taken one more step, written something like 

( 1. ) - r-=~--=-:-
T 1 ~ - c 1 g1 ..JB1 (k1 R) c~g~ ..j B1 (k~R) , (9) 

and then plotted g1 g~. 

However, before lamenting lost barrier factors, and before 
leaving the success of SU(3) for resonances, I want to remind you of 
the current successful sign count associated with Eq. (9). Ass\lllle 
that our reaction goes through a resonant intermediate state: 

K p- Res(M) -Arr, 

where in fact Res(M) is one of the six ~ resonances labelled in my 
Fig. 4. Note that the initial and final states (K-p and Arr) are, from 
the point of view of SU(3 ), closely related; i. e. , rr and K belong to 
the same o- octet, p and A to the same 1/2+ octet. This means that 
we are really discussing 11 SU(3)-elastic" scattering: 

so that gJ.l.. and g~ are both the same SU(3) 
g[ o-, 1tL:+, Res(M)] and 

T = c 1 c~g
2 

\/B 1 B~ . 

coupling constant 

(10) 

Hence the sign of T should be just the sign of the product c
1 

c 8 of the 
SU(3) and SU(2) coefficients. Experimentally the intermed1a!""e reso­
nances overlap in energy enough to permit a measurement of the sign 
of the Arr interference. Figure 4 shows 19 resonances whose inter­
ferences permit 16 sign checks, 15 of which have actually been 
checked. Since 215 is a very large number, I find this a glorious 
victory for SU(3 ). 

I conclude that for case A [SU(3) applied to resonances], SU(3) 
relates hundreds of measurements in a very satisfactory way. 
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SU(3) RELATIVE SIGN OF RESONANT AMPLITUDES 

l•ol 
I(l3d5) 

P13 

• 

{ e} lei 
A ( 1670) A.(l6901 

SOl 003 
X X 

X 
SOl 003 013 S II 015 

I (17601 I (17601 
{e} lei 

A(l405) A(l520) 1(16601 

1•1 !•I lei 

{e} lel 
Il1760) I(1760l 

X 
Sll 015 

lei lei l•ol l•l 
A(1820) A(1830) I(2030) A(2100) 

F05 005 F17 G07 
X .... 

\ 

X X X X 
F15 

1(1915) 
jej 

)ej j'oj 
1(1915) 1(20301 

F15 F17 
X ,,--,, /--,, ,--.... ,. t'' I \I \ 

', { ,\ ) I 
I 

,'- ', .... ....., 
-A,. -+~~r'--~-----+1~~+'--------~~~~~-~~------~-..-t-~~------

\ I \ I ..... _#~', , __ ., 
P13 

I(l385) 

llo\ 

013 
It16601 

!el 

X 
- , ~ . ' .... / , __ .... 

X X 

XBL 7112-4933 

Fig. 4. Plot reproduced from Levi-Setti' s review at Lund, 1969. 
Arrows indicate the sign of the amplitude predicted from Eq. (10); 
X marks the observed phases. Three phases are arbitrary (one for 
each final state: .ATT, E TT in I = 0, E TT in I = 1) and are indicated 
with black dots. 
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A Discussion of Barrier Penetration Factors B 1 

Before going on to introduce the centrifugal barrier -penetra­
tion factors B1 (with 1 up to 10) into the cross-section equation (18), 
we had better discuss the factors themselves and introduce you to 
both the standard refe renee [Chap. VIII of Blatt and We is skopf 1 s 
Theoretical Nuclear Physics (John Wiley, 1952)] and to a nice and 
convenient new treatment by von Hippel and Quigg, 16 

The 11 industry standard" for B1 is taken from Blatt and 
Weisskopf's Eq. (5.8), page 361, where they are called v1: 

2 
X 

B1 = 2 ' 
1+x 

4 
X 

B2 = 2 4 • 
9 + 3x +x 

where x:: kR as used above. For x < < 1, 

21 
X 

[ (21 -1 ) ! ! ] 
2 

and for x > > 1, B 1 -+ 1. Figure 5 gives B 1 vs. kR for .. 1 - 7. 

(10.1) 

(10.2) 

I have always found the Blatt and Weisskopf treatment slightly 
unsatisfactory for two reasons: 

1) It assumes that the region of interaction is a square well and 
matches the logarithmic derivative of the wave functions at the 
boundary. That's fine when the intermediate state is a nucleus; but 
I find it a bit disconcerting when it is, say, 6.(1236). 

2) I could understand that the essence of the problem involved the 
properties of the spherical Bessel functions j1, or more precisely 
of the outgoing spherical Hankel functions h1 

(11) 

But the relation of the B 1 to I h 1 1
2 

was not perfectly transparent. 

Von Hippel and Quigg have eased both my dissatisfactions. 
Without any matching of wave functions, they merely note that out­
side R, where the only potential is the centrifugal barrier, the radial 
wave function U(x) = rt\J(x) is given by 

(12) 

where C is a normalization constant. 

For large x ( > > 1 ), I U I approaches a constant, 
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Fig. 5. Barrier factors B1 from Eqs. (15) or (16) which also cor­
responds to the v 1 of Blatt and Weisskopf (Eq. 5.8, page 361). To 
get the full kinematic part of the partical width one must still in­
clude a two-body phase space factor k/M, as in Eq. (3). 
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U 1 (x) = C exp [ i (x -
1
; ) ] , (13) 

but inside of X ;, .t' Eq. (12) increases rapidly with decreasing x. 
The reason, they point out·, is that the outgoing wave is being re­
fleeted inwards by the centrifugal barrier. The quantity of interest 
comes by dividing (12) by (13) to give 

U .t (kR) 
U.t ( 00 ) = xh1 (x) kR = kRh1 (kR) . (14) 

This is the amplitude at R required to 11 push" one unit out to r = oo • 

They then get B .t by squaring Eq. (14) and taking its reciprocal. 
They call it the transmission coefficient T, but I have already used 
" T 11 for a T .matrix element, so I write 

1 
(15) 

Their transmission coefficients B 1 are identically the v1 of · 
Blatt and Weisskopf, which should settle any doubts about the original 
derivation. These dimensionless B.t are then related to the T matrix 
elements of Eqs. (2) and (7) by Eq. (3) as before: 

2 k r = (cg} B1 M MN. (3) 

Von Hippe! and Quigg like to call B
1
k/M the 11 kinematic width. 11 

In an Appendix, von Hippe! and Quigg give a useful power series 
expansion for the h.t; however Tom Lasinski has pointed out to me 
that their power series involves complex arithmetic, and there is an 
even simpler real expression7 for the j h 1 j2: . 

(21 -k) ! (21 -2k) ! (2x)2 (k-.t) 

k! [ ( .t -k)! ] 2 
(16) 

Von Hippe! and Quigg take up the question of the best value for 
R, from several points of view: 

1. ·.The shape of resonances, e. g. D-(1236). 

2. SU(3) relations between the widths of resonances, as in 
Fig. 1. 

3. Lower limits on R. This is based on the observation that 
the amplitude in (14) must not become so large in the region outside 
R that it leads to a probability greater than unity. 

Their conclusion is: 

for meson resonances, 1/4 F < R < 3/4 F; 

for baryon resonances, 1/2 F < R < 1 F. 
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There are several other nice physics points in their paper, but 
we must now return to the calculation of SU(3) coupling constants 
from cross sections. 

B. Cross Sections Where a Partial Wave Analysis Is Available 

B1. First consider two reactions fed by the same incoming state. 

Trilling choses two which should, according to SU(3), be equal: 

K- p -+ 1T + ~- (exothermic, and partial wave analysis 
available), (17) 

-+ Ko= 0 (endothermic, no partial wave analysis 
available)·. (18) 

Figure 6 (Trilling's Fig. 3) shows that the observed exothermic 
cross section is larger than the endothermic one by an order of mag­
nitude. He then explains the ratio with the help of the thesis of Dan 
Kane, 8 who did the partial wave analysis of K-p- 1T+ ~-. 

To discuss the scaling, we combine Eqs. (8) and (9) and gen­
eralize the result to a sum over partial waves 

(19) 

1 •. 2 ~ - s I ~(2j+1)c1g1c(3g(3 .JB1(k1)Bl(k(3)P11 k1 

If we had a partial wave decomposition of both reactions (17) 
and (18), we could factor out all the kinematics and SU(3) coefficients 
and compare g17 and g18· But for the case in hand we can only pre­
dict (18) from (17). To do this, write (19) exhibiting only those fac­
tors which depend on k(3 

1 
k' 

1 
(20) 

The 'T should then be the same for both reactions, so we can 
predict the second from the first just by changing the value of k(3 in 
(20 ). 

The result of this scaling is Trilling's Figs; 3 and 4, which are 
my Figs. 6 and 7. Figure 6 shows the cross sections vs. energy. 
The top curve [through C1 (1T ~ ) ] is Kane 1 s partial-wave fit. 
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Fig. 6. Trilling's comparison of two K- p cross sections. Top curve 
is from fit B2 of Kane 1 s thesis. Bottom curve is top curve scaled 
according to Eq. (20 ). This is Fig. 3 of Trilling. 3 
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The lower curve is the top curve scaled down according to (20). 
The agreement is good. Figure 7 does the same scaling for the ang­
ular distributions at one energy ( .JS = 1930 MeV), again with consid­
erable success . 

BZ. Reactions fed by different states. 

Our previous example involved only one initial state, so it made 
sense to compare the two reactions at the same value of s, i.e. the 
same value of Pb . · earn 

Trilling next considers another pair of cross sections which 
SU (3) says should be equal: 

(21) 

(22) 

At what energies shall we make the comparison? If we could 
identify resonancesL. we might compare at the pea~ of corresponding . 
resonances. Since KN resonances are heavier than their "ITN counter­
parts in the same supermultiplet, perhaps we should compare at the 
same incon1ing momenta. Actually, I made a table of corresponding 
N,:, and Y* resonances, and compared both their decay momenta into 
"ITN or KN, and also the 'IT or K beam momentum needed to form them. 
The kinematic quantity that matches as well or better than any other 
is the beam momentum. This is exactly the choice that Trilling made 
on the grounds of convenience, and he finds that it works well. 

C. Effective 1 for Cross Sections Where No Partial Wave Analysis 
Is Known 

For such cross sections a new question arises: what average 
or effective angular momentum 1 shall we chose for the barrier fac.: 
tors B1? Trilling follows the procedure of Davier and Harari. 9 

C1. For channels where nonexotic particles can be exchanged: 
e. g. , 'IT+p-+ K+~ +. 

At small t these should be dominated by a peripheral term of 
the form Jo(R ,J:t) = Jo(R 2k sin 0) which corresponds to 1 = kR. He 
chooses R so as to make the first zero of J 0 [ Jo(2.4) = 0] correspond 
to the cross-over between 'IT+p and ~+P differential cross sections, 
namely at .-t = 0.3 Gev2. Then R x 0.3 = 2.4, which gives R = 0.88 F, 
and 

1 = kR = k x 0. 88 F = k(MeV)c · 
225 

(23) 

I wondered if this radius seems reasonable at lower energy, 
where direct-channel resonances produce bumps in the cross section, 
so I made Fig. 8, which is a scatter plot of all the "ITN resonances on 
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Fig. 8. Scatter plot of the known non-strange resonances. The 
lower x-scale is the c. m. momentum of the NTT decay mode. The 
upper scale, for convenience, is the pion lab momentum necessary 
to form the resonance. 
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the partiCle data tables. All the dots fall on or below a line given by 

. k(MeV /c) 
J. = k x 1 fe rm1 = • max 200 

(23') 

Thus the two points of view agree and, combined, suggest a value of 
R of 0. 9 to 1 fermi. Notice the remarkably high values of J. involved 
in testing high-energy experiments: my 1. -line of Fig. 8 runs off 
scale at 1. = 12 for 13 GeV / c of beam momentum . 

C2. - - + Channels like n p -+D. TI , as plotted in Fig. 1. 

Here the forward peaks are suppressed because exotic ex­
changes are needed, and Trilling suggests that R (and J. = kR) is 
probably decreased. Let's take a closer look at the original four 
reactions of Fig. 2, which SU(3) says should all be equal: 

1 - - + I 3 a (n p-+D..6n ), at 2 GeV c, k = 670 MeV /c 

a(" 

(24) 

(25) 

a (K-p-~6-n+ ), at 2 GeV/c, k=420 MeV/c (26) 

rr (11 ,_,-K+) 
v ...... .:::.6 ' (27) 

where the subscript 6 stands for the 3/2+ decuplet. 

In Fig. 9 (Trilling's Fig. 1) he plots a collection of observed 
cross sections, with a curve drawn through reaction (25) which is the 
best known. ·What value of J. does one now insert into Eq. (20) to 
scale from reaction (25) to the other three? Equations (23) or Fig. 8 
suggest J. p.x = 4 for nonexotic exchange, but as expected that over­
corrects ill1s set of reactions. We try reducing R from 1 F to about 
3/4F, and l.max from 4 to 3. That still overcorrects. Then we 
realize that since large 1 is ruled out by exotic exchange, and can­
not dominate the reaction, perhaps we should scale with an average 
J., say 2 instead of the 3 we just tried. That works very well (see 
Fig. 10). 

[Trilling does not in fact scale with l = 2. Instead of the full 
barrier expressions (10.1) he uses the threshold limits (10.2) which 
are too extreme. Consequently he needs an average J. of only unity. 
This question can be resolved in the near future, since partial wave 
analyses of reactions (24) and (26) are soon to be published. ] 

Trilling goes on to apply his recipes to many reactions, in­
cluding photoproduction, and the results are very encouraging. I 
conclude that there has been notable progress in the application of 
SU(3) to hadronic interactions, and suggest that you read Trilling's 
paper. 

/ 
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Fig. 9. Cross sections for reactions (24) through (27), which are 
the same as appeared in Fig. 1. Solid curve is hand-drawn through 
the ~ 6 TT+ data, which have the smallest errors. This is Trilling's 
Fig. 1. 
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3 

XBL 7111-4644 

Fig. 10 .. The curve of Fig. 9 has been scaled according to Eq. (19) 
to give agreement with the other three cross sections. The effec­
tive value of l is 2 or 1 (see text). This is Trilling's Fig. 2 . 
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II. S-WAVE SCATTERING OF 1T1T ANDK1r: THEE AND S,:~ MESONS 

A. The 1T1T S-Wave Amplitude 

1. Summary of Published Papers 

Figure 12 (a) shows all information published as of the date I 
am speaking '(Dec. 1971 ). There is agreement that the I- spin zero, 
S-wave phase shift o8 rises slowly to 60° at 700 MeV, but as soon 
as the amplitude enters the strong S-P interference region under the 
p (765) rneson, confusion reigns, for the reasons that I shall discuss 
in B below. Baton et al. could not distinguish between the two solu­
tions plotted (labelled 0 up" and 11 down"). Moreover if we look at 
recent preprints, the situation is not reassuring. If we look ahead at 
Fig. 12(b), which shows somedatathatwillbepublished in 1972, we 
see that Baillon et al. at SLAC are still having ambiguity problems, 
and that at higherenergies the Wisconsin-Toronto group (Caroll 72) 
is having .trouble agreeing with its own earlier solution (Oh 70) based 
on the first 40% of its data. 

The only significant omen in Fig. 12(a) is a lone elasticity 
limit plotted as a triangle labelled HYAMS 70. This result (from 
the CERN -Munich-ETH, IC, Hawaii collaboration10) shows a sudden 
rise in the inelasticity at KK threshold, and suggests the need for a 

.coupled channel (1T1T and KK) analysis. 

An of course, to complete the summary of what is publis)led, 
the Particle Data Meson Table of last year (April 71) had an S entry: 

Branching Fractions 
1T1T < 65% 
KK > 35o/o 

2. The New 7.1-GeV 1T+ Experiment of LBL's Group A 

Group A decided to invade this disarrayed field with its large 
7 .1-GeV bubble chamber experiment. (This is the film that Group A 
had taken to study the splitting of the A2+, and which surprisingly 
showed no splitting.) The reactions studied for 1T1T scattering were: 

+ ++ + -1Tp-+/::,. 1T1T 

--.t::,.++K+K-. 

This experiment has th~ following advantages over earlier ones. 
a) More events, and enough KK events to permit a two-channel 
analysis. 
b) Better extrapolation to the 1T pole for the following reason: 

• 
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The matrix element at the lower vertex of the sketches 
below involves 

.,.-
.,+ 

.,.+ 
I .,+ I .,.-

.,.I .,.xI q xlq I 
I n p I ll++ 

.,. -p ..... n.,.+ .,.- .,.+p - 6.+ + .,. + .,.-

T=(nl£•91 P"i) T=¢.++1(1- ~~!;)•gl tur;) 

XBL 724-1181 

a factor .9..• the 3-momentum of the exchanged 1T. Moreover, if 
a proton (as opposed to a .6.++) is produced at the lower vertex, 
.9.. goes to zero between the physical region and the 1T pole. This 
produces well-known difficulties in the extrapolation, as dis­
cussed for example by Kane11 at the 1970 Philadelphia Con­
ference. A .6.++, however (as opposed to a proton), can emit 
a real pion, and if the lower vertex involves the production of 
a A++ one can extrapolate to the 1T pole without going near 
.9.. = 0. So the Group A experimenters find that linear extrapo­
lations seem to work well. 

There is of course also a disadvantage to producing .6. ++ 
instead of nucleons: for the same beam energy one cannot get 
as close to t = 0. But luckily the Group A experiment was at 
fairly high energy (7.1 GeV/c) so that small values oft are 
still accessible. 

I am not sure which of these two advantages is more im­
portant, but Fig. 11 certainly demonstrates that the experi­
ment uncovered stucture never seen before. 

Figure 11 is taken from the preprint of Flatte et al. 12 Note the 
discontinuity in (Y 1) at about 988 MeV (KK threshold) and the associ­
ated rise in CJ (KK) and in (Y2). 

These striking features of Fig. 11 permit Flatte et al. to per­
form a coupled-channel analysis and to arrive at the Argand plot 
shown. It turns out that the 11 + (1070) = 5>:< is really the 11 + (980 ± 10) 

0 0 
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Fig. 11. Number of events and spherical harmonic moments as a 
function of mass in the reactions rr+p - .6. ++rr + rr- and rr+p - .6. ++K+K­
at 7.1 GeV/c. The curves are derived from an OPE approximation 
which treats the rr+rr- and K+K- systems as final states in the rr+rr­
scattering process. The amplitude includes a p-meson and £-meson, 
and S-wave interaction which includes a constant-phase-shift back­
ground and an s>:< resonance which couples to both rrrr and KK. The 
S-wave amplitude is shown on the Argand plot. Since the model fails 
above 1050 MeV, this amplitude is probably very in~ccurate in that 
region. This is Fig. 1 of Flatte et al. , Phys. Letters 38B, 232 
(1972). 
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' Do 

--,----------.-._,_••'-+r------,------, '1so· o: ~-- • BATON 70 

(a) 150"~- D BEAUPRE 70 

I 
120° 

90" 

1.5 

XBL 724-683 
· ... ~ -- . ' 

Fig. 12(a) The rrrr S-wave, I= 0 phase shift parameters, showing 
some solutions available through 1971. BATON 70 actually pre­
sented two "down" solutions; the one we plot allowed for inelasticity, 
the other corr~sponded to a purely elastic hypothesis. The new 4rr 
data of ALSTON -GARNJOST 71· show that the rrrr channel is essen­
tially elastic up to KK threshold; if we had plotted the elastic fit of 
BATON 70, it would have agreed better with the newer fits in (b). 

(b) The rrrr S-wave, I= 0 phase shift parameters, as given 
by three very recent solutions: BAILLON 72, CARROLL 72, and 
FLATTE 72. Energy-dependent fits are indicated by lines, or (wheh 
-~rrors are given) by triangles (indicating the central value in each 
bin used) a:nd an error band (FLATTE 72). Energy-dependent solu­
ti.ons are indicated with central values and errors; the solutions of 
BATON 70 are not strictly energy-independent since they were ac­
tually determined from smooth curves through the data. 

This figure is from Reviews of Particle Properties, Particle 
DataGroup, Physics Letters, April1972. Complete references 
are contained therein. 
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and is cou,pled comparably to TTTT *nd to KK. 'IJ:l.ey introduce coupling con­
stants gTT and gK between the S and TTTT or KK, and find 

g = 0.2, 
TT gK = 0.5. 

But I feel that the most interesting part of the story is yet to 
come. Turn now to Fig. 12(b), where the solution plotted as an 
Argand plot in Fig. 11 is plotted as bands of og and 6£ TJ8 • Two 
comments are in order: 

* 1) In addition to showing the S resonance (seen by none of the 
older solutions) the solution of Flatte et al. rules out the earlier 
II up" solutions. This has implications on the credibility of II up" 
solutions for Krr scattering which I shall discuss under B below. 

2) Instead of flapping unpredicatably like a flag in the wind, the 
solution is. now tied down between 900 and 1000 MeV, and one can go 
back and try to explain the region below 900 MeV. 

Note add~d after I returned to Berkeley: 

+ SerbanProtopopescu and his collaborators onthe 7.1-GeV/c 
TT experiment have now done a complete 2-channel K-matrix fit to 
the TTTT and KK s-waves between 550 and 1150 MeV. Their results 
will ;a.ppear as LBL 787 and as a talk by Protopopescu in the Pro­
ceedings of the forthcoming 1972 Philadelphia Conference, 13 but they 
permit me to say that they get a good fit with two poles, the S* (al­
ready reported by Flatte et al.12) and the long-sought E meson. 
Typical positions of these poles are: 

E: ,[8 = (600±70)- i(250±50)~ Sheets !lorN ... 
s'": ,fS: (980± 7)- i( 38± 7), Sheet II. 

(The sheets are defined by: Im kTTTT < 0 and Im kKK > 0 for II, 

Im kTTTT > 0 and Im kKK < 0 for IV.) 

B. The Krr S-wave amplitude and the "Up-Down" Ambiguity 

Finally, I would like to present the present status of Krr S-wave 
scattering and discuss the "up-down" ambiguity, which plagues both 
TTTT and Krr scattering. 

The current Krr situation is summarized in Fig. 13, which we 
have prepared for the next edition of Reviews of Particle Properties. 4 
Apart from the fact that there is no analogy to KK threshold, our Krr 
Fig. 13 is very reminiscent of our TTTT Fig. 12. I now want to explain 
the ambiguities common to both figures, and shall do so in terms of the 
multiple branches at the D-wave K*(1420) plotted in Fig. 13. In this 
mass region we consider only S1j2 and D1j2 waves; 

• • 
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--------- • BINGHAM 72-
• MERCER 71 
J-YUTA 71 

+and -I--FIRESTONE 72 
I 

XBL 724-679 

Fig. 13. !-spin 1/2 S-wave KTT phase shift. Taken from Review of 
Particle Properties, Physics Letters, Apri11972. References are 
contained the.rein. 
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then 

and 

a (Y2 ) ex: 4.5 Res*n+ 3.2 In 1
2

, a (Y 4 ) a: 1n1
2

. (28) 

Suppose one takes n as a known resonant amplitude, and solves for 
S, using only the un-normalized moments a (Y 2 ) ~nd a (Y 4 ). S 
enters only in (Y2) and only then in the form ReS "n = Sn cos Osn 

s.n. 

This situation is sketched in Fig. 14. A constant 11 real" 
S { ~ 100° according to FIRESTONE 72) is plotted as a fixed black 
dot; an ambiguous moving solution S1 as an open circle. Lines of 
constant S . .Q lie on a perpendicular to n, running through the "real" 
S. The general case is plotted in Fig. 14(a). Consider the dashed 
line On' parallel to n, drawn from the center of the unitary circle. 
One can see by inspection that On' is the bisector of the angle SOS' , 
so that angle On of On' is the average of the angles 8 and 8' , which 
S and S' subtend from the center of the circle with respect to the 
horizontal. This leads to the well-known result 

(29) 

Figures 2(b), (c), and (d) show that as n moves through reso­
nance, S 1 also moves counterclockwise and crosses S near resonance. 
Moreover, at this crossing point the perpendicular ton is tangent to 
the unitary circle, so that o and 6' are insensitive to S. n and so 
are badly determined. 

Figure 14(e) displays o' vs On according to {28) for a constant 
11 real" o of 100°. The errors are plotted assuming a typical error in 
(Y2) of± 0.02. 

Far from the n-wave resonance, the data on (j <X I s I 
2 

+ sl n 12 

can sometimes resolve the ambiguity. 

There is yet another difficulty, pointed out to me by Christoph 
Schmid, namely that inadequacies in the model being used to fit the 
data may cause instabilities in the solution which in turn may throw 
one "off the track" of the real :solution and onto the track of the 
11 mirror. 11 

Consider again Fig. 14(c) where D is about to cross S. If 
n has the same phase as S, the amplitude 

T = S + 5 n P 2 {cos 8) 

should go to zero at angles 8 such that P2 (cos 8) = - S/5n. But there 
will be some intensity measured at these angles, for example, be­
cause there are diagrams other than pion exchange, so the model 

.1! -· 
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80 = H 8 + 8' 

= ~[!28- 90°) + (28'-90ol] 
f/2 below D-wove 

resonance 

=a+ a' -90° 

S sti II 100°, D-wove 
resonant 

(d) 5(85 = 100°1 
0' 

D-wave f/2 above 
resonance 

XBL 724-680 

Fig. 14. A constant "real" S-wave amplitude is plotted at a black 
dot with o~ =100°. The ambiguous moving S' which gives the same 
value of \ Y2) is plotted as an open circle. The four cases (a) 
through (d) are explained in the text. The locus of S' is the 45° line 
inFig. 14(e). 
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cannot fit the data. A X 
2 

barrier will grow where S has the same 
phase as D, with two relative minima on either side. S will then be 
repelled by D and sit first in the left-hand minimum, then flip to the 
right-hand one as D crosses S. This is all very annoying, since 
(for the large S of Fig. 14) it occurs just as S' is also crossing S 
and one is trying to distinguish solutions on the grounds of continuity. 

In the paragraph above I have said "S· D" interference because 
I wanted to refer to Fig. 14. In actual practice it is the instability 
in S· P interference which is currently troublesome-specifically 
the two points at about 860 MeV in Fig. 13, where the K*(890) P-wave 
eros ses the 11 down" S solution. 

To complete the list of ambiguities, remember that one can 
never distinguish solutions modulo rr. 

To illustrate these difficulties, Firestone et al. have drawn 
many possible paths connecting ambiguous solutionS, and we have 
copied these in Fig. 13. To further illustrate the problem, we have 
drawn their unique solutions as solid crosses, but drawn their am­
biguous ones as pairs of dashed crosses joined by a dashed vertical 
line. These ambiguities of course occur at K*(890) and K*(1420). 

All this discussion of ambiguities should make it evident that 
I would bet strongly on the smoothest track, which in the case of K1r 
is the lowest one. It then looks very much like that for 7TTT, where 
the lowest one has turned out to be favored by Flatte et al. 

ACKNOWLEDGMENTS 

Almost nothing that I have said is original. I want to thank the 
friends from whom I have collected these ideas: in particular, 
George Trilling, Tom Lasinski, Lina Galtieri, Maxine Matison, 
Stan Flatte, and Serban Protopopescu. 

., .. 

1 • 



. ,.; 

-29-

REFERENCES 

1. R. D. Tripp et al. , Nucl. Phys. B3, 10 (1967 ). 

2. Mcschkov, Snow, and Yodh, Phys. Rev. Letters _!l, 212 (1964). 

3. G. H. Trilling, LBL-522 and Nucl. Phys. B (in press, 1972). 

4. Review of Particle Properties, Phys. Letters, April 1972. 

5 .. R. Levi-Setti, in Proc. of the 1969 Lund lntl. Con£. on Ele­
mentary Particles (Inst. of Physics, Lund; Sweden). 

6. F. von Hippel and C. Quigg, Phys. Rev. B5, 624 (1972). 

7. Handbook of Mathematical Function, edited by Abramovitz and 
Stegun. Natl. Bureau of Standards Applied Math. Series, 
55 (US GPO, 1964). 

8. D. F. Kane, UCRL-20682 (1971) (unpublished). 

9. M. Davier and H. Harari, Phys. Letters 35B, 239 (1970). 

10. Hyams, Koch, Lorenz, Lutjens, Ochs, Schlein, Stierlin, 
Weilhammer, Beusch, Wetzel, Johnson, Stenger, and Wohlmut; 
in Proc. of the 1970 Philadelphia Con£. on Exptl. Meson Spec­
troscopy, edited by Baltay and Rosenfeld (Columbia, 1970). 

11. Gordon Kane, pg. 1 of the 1970 Philadelphia Proceedings (see 
Ref. 10). 

12. Flatte, Alston-Garnjost, Barbaro-Galtieri, Friedman, Lynch, 
Protopopescu, Rabin, and Solmitz, Phys. Letters 38B, 232 (1972). 

13. Protopopescu, Alston-Garnjost, Barbaro-Galtieri, Flatte, 
Friedman, Lasinski, Lynch, Rabin, and Solmitz; LBL-787 and 
in Pro c. of the 1972 Philadelphia Con£. on Exptl Meson Spec­
troscopy, edited by Baltay and Rosenfeld (Am. Inst. of Phys., 
to be published, 1972). 



' \. 

.• .J 

r------------------LEGALNOTICE---------------------

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



a; 

-. -
TECHNICAL INFORMATION DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94 720 




