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Abstract

We define the irreversibility effect and demonstrate its importance in problems involving investment
decisions under uncertainty. We establish several analytical and numerical results that suggest both
that the effect holds more widely than generally recognized, and that an existing result (Epstein’s
Theorem) giving a sufficient condition for determining whether the effect holds can be applied more
widely than previously indicated, in particular to problems involving intertemporally nonseparable
benefit functions. We further show that a low elasticity of intertemporal substitution will however
result in failure of the effect, but that the effect will hold if the value of information increases in
the degree of flexibility.

This research received financial support from the National Science Foundation grant No. SES-
9818642. The authors gratefully acknowledge comments on an earlier draft of some of the material
in this paper by Christian Gollier and participants at the International Conference on Risk and Un-
certainty in Envrionmental and Resource Economics, Wageningen, The Netherlands, and Columbia
Earth Institute Environmental Economics Seminar.



1. Introduction

Environmental impacts of an investment in resource development can be long lasting, or even

irreversible. This is a feature of environmental valuation and decision problems that has received

a great deal of attention in the literature, based on findings in the natural sciences. For example,

there is both scientific and popular concern today about loss of biodiversity, the genetic information

that is potentially valuable in medicine, agriculture, and other productive activities. Much of the

concern is for endangered species, or the habitats such as tropical moist forests that are subject

to more or less irreversible conversion to other uses. But even if species survival is not at issue,

biological impacts can be very difficult to reverse over any relevant time span. The clear-cutting

of a climax forest species, for example, removes the results of an ecological succession that may

represent centuries of natural processes. Regeneration may not lead to the original configuration,

as opportunistic species such as hardy grasses come in and preempt the niche otherwise filled by

the climax species (Albers and Goldbach 2000).

Irreversibilities have also been identified as a key feature of the problem of how to respond to

potential impacts of climate change. Emissions of greenhouse gases, in particular carbon dioxide,

accumulate in the atmosphere and decay only slowly. According to one recent calculation, assuming

business-as-usual use of fossil fuels over the next several decades, after a thousand years carbon

dioxide concentrations will still be well over twice the current level, and nearly three times the

pre-industrial level - and will remain elevated for many thousands of years (Schultz and Kasting

1997). There is also some prospect of essentially irreversible catastrophic impact as would result

for example from the disintegration of the West Antarctic Ice Sheet and consequent rise in sea level

of 15-20 feet. Recent findings suggest that this possibility is more serious, and perhaps closer in

time, than economists (and others) have realized ((Kerr 1998) and (de Angelis and Skvarca 2003)).

Irreversibilities are of course not confined to environmental decisions, but occur in a wide variety

of economic settings, as the definitive work on investment decisions under uncertainty by Dixit and

Pindyck (1994) makes clear.

In the environmental economics literature the analysis of investment decisions under uncertainty

and irreversibility was introduced by Arrow and Fisher (1974) and Henry (1974), who show that,

for a linear net benefit function or an all-or-nothing choice, it will be optimal to delay or reduce

investment, for example in a water resource development project in a natural environment, if future
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net benefits are uncertain, investment decisions are irreversible, and there is a possibility of learning

about future benefits. Dixit and Pindyck and others establish essentially the same result for the

more general investment problem, broadening the treatment to include nonlinear benefit functions

and continuous choices, at the same time greatly enriching the analysis with a rigorous treatment

of stochastic optimization.

Beginning with the seminal paper by Epstein (1980) on decision-making and the temporal resolu-

tion of uncertainty, and including important contributions by Freixas and Laffont (1984), Jones and

Ostroy (1984), Hanemann (1989), Kolstad (1996), Ulph and Ulph (1997), and Gollier, Jullien and

Treich (2000), another strand of the literature has focused on the question of whether the rather

strong and unambiguous results of Arrow and Fisher, Henry, and Dixit and Pindyck, continue to

hold in still more general settings in which the benefit function exhibits properties not considered

by these authors.

In this paper we take up the discussion of several aspects of this question. The next section

provides a definition of the irreversibility effect that is more general than others in the literature.

Section 3 is a reconsideration of Epstein’s Theorem, leading to the conclusion that it is more widely

applicable than commonly understood. Section 4 is an examination of necessary and sufficient

conditions for the effect to hold in a continuous-choice, nonlinear setting. Our main conclusion

here is that the effect appears to be quite robust, established in part through a novel application

of Epstein’s Theorem and in part through critical analysis of necessary and sufficient conditions in

the literature. Section 5 explores the relationship to risk aversion and intertemporal substitution

and Section 6 the relationship to flexibility and the value of information. Section 7 offers some

broad conclusions on the status and significance of the irreversibility effect.

2. The Irreversibility Effect: A Definition

The issues we want to explore can be represented in a two-period decision problem. In the first

period, the decision maker chooses a variable, x1; in the second period, a variable, x2. Net benefits

in the first period, denoted by B1(x1), are deterministic and depend only on x1, but net benefits

in the second period, denoted by B2(x1, x2, zi), are stochastic and are a function both of x1, x2,

and also of z, a random variable that reflects the underlying uncertainty about the nature of net

benefits.1 We assume that B1 is concave and twice continuously differentiable in x1, and B2 is

1For technical reasons, it turns out to be advantageous to assume that z is a discrete random variable.
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concave and twice continuously differentiable in x1 and x2. An issue that will become of some

importance is whether or not the benefit function is separable in x1 and x2. In the general case

where B2 is a function of x1, the benefit function is said to be nonseparable. If, on the other hand,

B2 were only a function of x2 and z but not of x1, then the benefit function would be said to be

separable.

In principle, there are constraints on the first- and second-period choices. C1 denotes the con-

straint function for x1. A crucial issue in the literature is the extent to which the first period choice

of x1 constrains the future choice of x2. In general, we will assume that the first period choice

does constrain the second period choice, the constraint on the latter being given by C2(x1). The

constraint on x2 could take a variety of forms and, in general, it implies a loss of flexibility in the

second period decision. A sharp form of the constraint would be C2(x1) = x1 > x2 which implies

that x2 is constrained to be less than x1; we refer to this, and any such constraint on x2, as the

irreversibility constraint.2 Note that, by using a non-separable formulation of the second period

net benefit function, we already imply that that the first period decision will affect the choice con-

fronting the decision maker in the second period. Making the second period constraint function

depend on x1 introduces a separate element of interdependence between the two choices.

Before the second period decision is made, the decisionmaker receives a signal, denoted by yj,

that reveals some information about z. This is the source of learning. The amount of information

contained in y depends on how closely related z and y are. Let y and y′ denote two potential

signals where the correlation between y and z is greater than the correlation between y′ and z.

y is said to be more informative about z and leads to greater learning about the true nature of

z than y′. After the signal is received, the decisionmaker updates her prior expectations about z

by formulating a posterior distribution denoted by πij = p(z = zi/y = yj) and then chooses x2

for each signal to maximize the expected benefit over the different states. Let qj denote the prior

probability distribution for y.

With this notation, the dynamic optimization problem is:

(1) max
x1∈C1

(
B1(x1) +

∑
j

qj max
x2∈C2(x1)

[∑
i

πijB2(x1, x2, zi)
])

2The key here is the inequality; depending upon the interpretation of x1 and x2 the irreversibility could alternatively
be represented by an inequality running in the opposite direction, C2(x1) = x1 < x2
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Finally, we assume that a unique solution exists, and lies in the interior of C1. Let x∗
1 denote the

maximum corresponding to the more informative signal y, and x∗∗
1 the maximum corresponding to

the less informative signal y′.

The conventional definition of the irreversibility effect in the literature is

(2) either x∗
1 ≥ x∗∗

1 or x∗
1 ≤ x∗∗

1

If the decision is how much wildlife habitat to keep intact and not convert to farmland, then an

increase in the initial choice implies an irreversibility effect. In this case the irreversibility effect

holds if x∗
1 ≥ x∗∗

1 . On the other hand if the decision is how much of a greenhouse gas to emit

when damages due to global warming are uncertain, then a decrease in the initial choice implies an

irreversibility effect. In this case the irreversibility effect holds if x∗
1 ≤ x∗∗

1 .

An alternative definition, due to Freixas and Laffont (1984), is

(3) C2(x∗
1) ⊇ C2(x∗∗

1 ).

The irreversibility effect is said to hold if the second period choice set associated with x∗
1 is at least

as large as the choice set associated with x∗∗
1 . Freixas and Laffont also use this relationship to

define flexibility.3

We propose a third, more general definition. Define x̂1 as the value of x1 that gives maximum

decisionmaking flexibility in the future. For example, if x2 is constrained to be greater than (less

than) x1, x1 ∈ [0, 1] and x2 ∈ [0, 1], then x̂1 = 0 (x̂1 = 1). This is because with x1 = 0 (x1 = 1)

there is no constraint on the choice of x2, and so there is maximum decisionmaking flexibility. In

3There is a second definition of flexibility in the literature due to Jones and Ostroy (1984). Rather than the set of
choice variables, Jones and Ostroy define flexibility in terms of the set of second period positions that can be attained
from the first period position at a given cost and for a particular state of the world. Let c(x1, x2, zi) denote the cost
of moving from x1 to x2 given that the state of the world is zi. Then G(x1, zi, α), where

G(x1, zi, α) ≡ {x2 : c(x1, x2, zi) ≤ α},
is the set of second period positions attainable from x1 at a cost that does not exceed α in state s. In general x∗

1 is
said to be more flexible than x∗∗

1 when for all α ≥ 0 and for all zi, G(x∗
1, zi, α) ⊇ G(x∗∗

1 , zi, α). In section 3 we show
that the definition of flexibility due to Frexias and Laffont is too restrictive, and can lead to the conclusion that the
irreversibility effect is violated when in fact it is not. In the same section we also show that the definition due to
Jones and Ostroy proves to be more general.

4



terms of the second period choice set x̂1 implies a choice set that consists of all the possible value

of the second period choice, x2. We will say that an irreversibility effect exists if

(4) |x∗
1 − x̂1| ≤ |x∗∗

1 − x̂1|,

that is, if the optimum corresponding to the more informative signal is at least as close to the

point of maximum flexibility as the optimum corresponding to the less informative signal. In some

models x̂1 may be a constant, while in others it may be a function of the model parameters. The

virtue of this definition is that it is more widely applicable than either of the alternatives. Note that

it encompasses both cases under equation (2) and is independent of the structure of the problem.

It is equivalent to x∗
1 ≥ x∗∗

1 in cases where x2 is constrained to be less than x1, x1 ∈ [0, 1] and

x2 ∈ [0, 1]. In such cases, x̂1 = 1, and according to our definition, the irreversibility effect holds if

|x∗
1 − 1| ≤ |x∗∗

1 − 1|. Since x1 lies between 0 and 1, this simplifies to x∗
1 ≥ x∗∗

1 . Alternatively, if x2

is constrained to be greater than x1, x1 ∈ [0, 1] and x2 ∈ [0, 1], then since x̂1 = 0, our definition

simplifies to x∗
1 ≤ x∗∗

1 .

In the next section we turn to Epstein’s theorem, and after establishing the theorem we discuss

two applications. Both applications show that, contrary to a common perception in the literature,

Epstein’s sufficient condition can be used to establish whether the irreversibility effect holds in

models with intertemporally nonseparable benefit functions. In addition, the second application

also shows that the conventional definitions of the irreversibility effect based on equations (2) and

(3) are too restrictive and that our definition in equation (4) is more general.

3. Epstein’s Theorem and its Applications

Epstein (1980) establishes a sufficient condition under which the initial level of investment in

a two-period model with uncertainty and the possibility of future learning is less than the initial

level with uncertainty and no or less learning. Using the model in section 2, we can state Epstein’s

sufficient condition as follows. Let J(x1, ξ) denote the value function, which is defined as

(5) J(x1, ξ) ≡ max
x2∈C2(x1)

∑
i

ξjB2(x1, x2, zi)
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where ξ = [ξ1, ξ2, ...ξj ...ξN ] and ξj = [π1j , π2j , ..πij .., πMj ] and is a vector of the posterior probability

distribution corresponding to the signal yj. Assume that J(x1, ξ) is concave and differentiable with

respect to x1.4 The sufficient condition relating x∗
1 to x∗∗

1 is given in Theorem 1.

Theorem 1. If Jx1(x
∗
1, ξ) is a concave (convex) function of ξ, then x∗

1 ≤ (≥)x∗∗
1 ,

where Jx1(x1, ξ) is the slope of the value function with respect to its first argument. In words,

the sufficient condition states that if the slope of the value function with respect to x1 is concave

(convex) in the posterior probability distribution, then the optimal choice of x1 associated with the

more informative signal is less (more) than the optimal choice associated with the less informative

signal.

Epstein’s proof is as follows:

Proof. By assumption x∗
1 is the unique solution to

∑
qjJx1(x

∗
1, πj) = 0 and x∗∗

1 is the unique solution

to
∑

q,
jJx1(x

∗∗
1 , π,

j) = 0, where πj and π′
j denote the j-the columns of the posterior probability

distribution associated with the more and less informative signals. Suppose that Jx1(x
∗
1, ξ) is

convex in ξ. Since y is more informative than y′, 0 =
∑

qjJx1(x
∗
1, πj) >

∑
q,
jJx1(x

∗∗
1 , π,

j). Therefore

x∗
1 ≥ x∗∗

1 . Similarly, if Jx1(x
∗
1, ξ) is concave in ξ, then −Jx1(x

∗
1, ξ) is convex in ξ and it follows that

x∗
1 ≤ x∗∗

1 .

�

We want to offer three observations regarding this theorem. First, as Epstein clearly states, this

is a sufficient condition, not a necessary condition. Second, although the theorem is widely seen

as providing a condition for the existence of the irreversibility effect, irreversibility per se does not

affect the condition because the constraint that defines the irreversibility, C2, plays no specific role

in the proof of theorem. Third, because Epstein illustrates the use of his theorem by applying it

to some particular models that have an intertemporally separable benefit function, it is sometimes

thought that his condition can only be used to investigate the irreversibility effect if there is an

intertemporally separable benefit function.5 However, Epstein’s condition can in fact be used to

check whether the irreversibility effect holds when there is an intertemporally nonseparable benefit

4This assumption holds if B2(x1, x2, z) is concave in x1 and x2 and if for C2(x1) = {x2|f(x1, x2) ≥ 0}, the function
f is concave (Epstein 1980).
5For example, see (Ulph and Ulph 1997) page 637 and (Gollier et al. 2000) page 233.
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function. We show this first in Ulph and Ulph’s model of the optimal control of greenhouse gas

emissions, and second in Epstein’s model of the firm’s-demand-for-capital.

3.1. First Application: Non-Separability. To show that Epstein’s condition can be applied

to a problem characterized by an intertemporally nonseparable benefit function—the control of

greenhouse gas emissions, as modeled by Ulph and Ulph (1997)—consider the following dynamic

optimization problem:6

(6) max
x1≥0

(
B1(x1) +

∑
j

qj max
x2≥δx1

∑
i

πij(B21(x2 − δx1) − ziB22(x2))
)

where x1 is the flow of greenhouse gas emissions in the first period, x2 is the stock of greenhouse

gases in the second period, 1−δ is the rate of decay of the stock of greenhouse gases, zi is a random

variable, B1 and B21 are concave benefit functions and B22 is a convex damage function. Let the

jth element of J(x1, ξ) = maxx2≥δx1

∑
i πijU(x2 − δx1)− ziD(x2). Further assume that the benefit

and damage functions are quadratic and let B1(x1) = a1x1 − 0.5a2x
2
1 and B22(x2) = 0.5a3x

2
2 where

a1
a2

> x1 so that marginal utility is positive.

For the second period, the jth element of the Lagrangian is given by

L = max
x2≥δx1

(
B21(x2 − δx1) −

∑
i

πijziB22(x2) + λ(x2 − δx1)
)

where λ is the Lagrangian multiplier. The first order condition for the optimal choice in the second

period, x∗
2, is then

(7)
∂B21(x2 − δx1)

∂x2
− dB22(x2)

dx2
ξjzi + λ ≤ 0

where ξj = [π1j , π2j , ..πij , ..πMj ]. We assume that x2 is strictly positive so that the inequality in

equation (7) holds with an equality. If the inequality constraint on x2 is not binding then λ = 0

and the jth element of x∗
2 is given by

6As stated this problem is a slight generalization of the one by Ulph and Ulph in that it allows for a range of learning
levels while Ulph and Ulph allow for either perfect or no learning.
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x∗
2 =

a1 + a2δx1

a2 + a3ξjzi

If the constraint binds then x∗
2 = δx1. By the envelope theorem the jth element of the slope of the

value function in x1 is (and for λ = 0),

Jx1(x1, ξ) = −a1δ +
a1a2δ − a2a3δ

2x1ξjzi

a2 + a3ξjzi
,

The ijth element of the first derivative of the slope of the value function in ξ = [ξ1, ξ2, ..ξj , ..ξN ]

is

∂Jx1(x1, ξ)
∂ξ

= −(a2δ)2a3x1zi + a1a2a3δzi

(a2 + a3ξijzi)2
< 0

and that of the second derivative is

∂2Jx1(x1, ξ)
∂ξ2

=
2(a2a3δzi)2x1 + 2a1a2δ(a3zi)2

(a2 + a3ξijzi)3
> 0

This implies that the slope of the value function is convex in ξ7 and thus x∗
1 ≥ x∗∗

1 . Since

x2 is constrained to be greater than δx1 a lower level of x1 in the first period implies a greater

level of flexibility. For this problem, then, the irreversibility effect is violated. We have however

shown that Epstein’s condition can be used to establish whether the effect holds in the case of an

intertemporally non-separable net benefit function.

That the irreversibility effect does not hold in the case of global warming seems somewhat

counter-intuitive, but a recent contribution by Gollier et al. (2000) suggests an explanation. Within

the class of models characterized by hyperbolic absolute risk aversion (HARA) preferences, that is,

with utility functions

(8) B(x) =
γ

1 − γ

[
η +

x

γ

]1−γ

,

7Note that if λ �= 0 then Jx1(x1, ξ) = 0 and Jx1(x1, ξ) is neither concave nor convex in ξ.
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where x is a function of x1 and x2, the coefficient of absolute risk aversion is η + x
γ ,8 and the slope

of the value function is concave (convex) in the random variable if and only if γ < 1 (γ > 1 or

γ < 0).9

To see how this explains the counter-intuitive result of Ulph and Ulph, consider the coefficient

of relative risk aversion associated with the net benefit function in the second period, that is, with

B2(x2) = B21(x2 − δx1) − ξjziB22(x2). Since

dB2(x2)
dx2

= a1 − a2(x2 − δx1) − a3x2ξjzi

and

d2B2(x2)
dx2

2

= −a2 − a3ξjzi,

the coefficient of relative risk aversion is

CRRA =
(a2 + a3ξjzi)x2

a1 + a2δx1 − (a2 + a3ξjzi)x2

At x∗
2 CRRA = ∞. Following Gollier et al, it is this high coefficient of relative risk aversion that

leads to the violation of the irreversibility effect. We explore the relationship between risk aversion

and the irreversibility effect further in section 5.10

3.2. Second Application: More General Definition of Irreversibility Effect. Consider

next the following problem faced by a profit maximizing firm:

(9) max
K≥0

(
−cK +

∑
j

qj max
L≥0

(∑
i

πijpiF (K,L) − wL
))

8Note that if η = 0 in equation (8), then hyperbolic absolute risk preferences reduce to constant relative risk aversion
preferences and γ can be interpreted as the coefficient of relative risk aversion.
9This result, in fact, is a generalization of Epstein’s in his consumption-savings model. For constant relative risk
aversion preferences, Epstein establishes that the third derivative of the value function is concave (convex) if α < (>)1
where α is the coefficient of relative risk aversion. Gollier et al. (2000) show that this result can be extended to a more
general class of preferences, hyperbolic absolute risk aversion, and that the restrictions on the relevant coefficient
of risk aversion are not only sufficient but also necessary to establish the sign of the third derivative of the value
function.
10Note that this result is dependent on the functional forms of the benefit and the damage function. It can be shown
that if instead of these functions being quadratic one assumes that the benefit and damage functions display constant
relative risk aversion then whether or not the irreversibility effect holds depends on whether the coefficient of risk
aversion is greater than or less than one.
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where K denotes capital, L denotes labor, c is the cost of capital, w is the wage rate, F is a

strictly concave production function and pi is the unknown output price. The firm determines its

demand for capital in the first period and its demand for labor in the second period after it receives

some information about output prices. Capital is thus quasi fixed while labor is variable. In the

second period the firm can neither invest nor disinvest in capital. Since the first period choice,

capital, enters the benefit function in the second period the benefit is said to be intertemporally

nonseparable.11 The question is whether Epstein’s sufficient condition can be used to establish the

irreversibility effect, and whether or not there is an irreversibility effect.

According to Epstein’s sufficient condition, whether the irreversibility effect holds depends on

the second derivative of the slope of the value function in the random variable. For the following

constant elasticity of substitution production function

F (K,L) = [aK−β + bL−β]
−µ
β

where a > 0, b > 0, β > −1, β �= 0, 0 < µ < 1 (µ being a measure of returns to scale) and

the elasticity of substitution, σ, is equal to 1
(1+β) , Hartman (1976) has established that the third

derivative of the value function depends on the relationship between the elasticity of substitution

and the returns to scale. Specifically, Hartman has shown that if σ > (<) 1
(1−µ) then JK(K, pi)

is concave (convex) in pi. This combined with theorem 1 implies that if σ > (<) 1
(1−µ) then the

demand for capital is lower (higher) when there is a possibility of learning than when there is no

possibility of learning. Since the demand for capital does not unambiguously increase or decrease

with learning Epstein leads the reader to conclude that the irreversibility effect is violated in this

11Note that if the firm was allowed to invest or disinvest in capital in the second period then the problem faced by
the firm would become intertemporally separable. Consider the case where the firm is allowed to disinvest in the
capital stock, at a cost, in the second period. The problem described by equation (9) would change to

(10) max
K1≥0

 
−c1K1 +

X
j

qj max
L≥0,K2≤K1

`X
i

πijpiF (K2, L) − wL + c2(K1 − K2)
´!

where K1 denotes capital in the first period, K2 denotes capital in the second period, c1 is the cost of capital in the
first period and c2 is the cost of capital in the second period. Since there is a cost associated with disinvestment
c2 > c1. Equation (10) can be re-written as

max
K1≥0

 
(c2 − c1)K1 +

X
j

qj max
L≥0,K2≤K1

`X
i

πijpiF (K2, L) − wL − c2K2

´!

Since K1 does not affect the benefit function in the second period, the problem is intertemporally separable. A similar
case can be made for when the firm is allowed to invest in the second period.
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example. Others have interpreted this ambiguous result to mean that Epstein’s condition cannot

be applied to intertemporally non-separable benefit functions.

We shall argue instead that, even if the slope of the value function is concave for some parameter

values and convex for other values, there still may be an irreversibility effect because the flexible

value of capital, defined below, also changes with the parameters. This further implies that Epstein’s

condition can in fact be applied to intertemporally non-separable benefit functions and also argues

for a more general definition for the irreversibility effect.

Observe that the firm can neither increase nor decrease its capital stock in the second period.

Consequently, one cannot tell a priori whether a high or a low demand for capital in the first period

constitutes a flexibility-enhancing decision. When σ is high so that capital and labor can be easily

substituted then a lower capital stock today may very well give the decision maker greater flexibility

tomorrow. If it turns out that the decision maker has underestimated his or her production needs

then he or she can compensate for the low stock of capital by hiring more labor. On the other

hand, if σ is low so that capital and labor cannot be substituted, a higher capital stock today

may maintain greater flexibility tomorrow. If so, when σ > (<) 1
(1−µ) , a decrease (increase) in the

demand for capital when there is a possibility of learning constitutes an irreversibility effect. We

show that this is in fact the case, and that the model does give rise to an irreversibility effect, first

by defining what is meant by flexibility in this context and then by showing that the level of capital

that gives the greatest amount of flexibility is lower (higher) when σ > (<) 1
1−µ .

If we attempt to apply the Freixas aand Laffont definition of flexibility (see section 2) to Epstein’s

model, then since capital can neither be increased nor decreased in the second period, the set

C2(x1) is empty, where x1 and x2 are the levels of capital chosen in the first and the second period

respectively.12 Defining x2 as the level of labor chosen in the second period does not help to

determine the level of capital that gives more or less flexibility in the second period as the first

period’s choice of capital in no way restricts the choice of labor in the second period.

By the definition of flexibility put forward by Jones and Ostroy (1984) (see footnote 3), so long

as x1 and x2 are defined in terms of the choice variables (capital or labor), the set G(x1, zi, α) is

also empty. This then brings us to the question, with respect to what variables should flexibility

be measured? So far we have measured flexibility in terms of the choice variables, so flexibility is

12Note that the set C cannot be used to define the irreversibility effect either in this problem.
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measured in terms of the choices of capital or labor in the second period that are feasible given

the choice of capital in the first period. However, one could instead measure flexibility in terms

of the level of output that can be attained in the second period given the choice of capital in the

first. After all, the firm cares about the level of capital, or any other input, only in so far as it

allows the firm to produce output in the second period. With this alternative measure of flexibility,

if we define x1 as the level of capital chosen in the first period, x2 as the level of output attained

in the second period, zi as the price of output in the second period and α as the wage rate, then

G(x1, zi, α) can be defined as the set of outputs that can be attained for given levels of capital and

labor and for a particular price of output.

The question is how does one estimate the set G(x1, zi, α)? One possibility is to define the set

in terms of the range of output13 that can be attained for a given level of capital. If the firm learns

that the price of output is likely to be high tomorrow then the firm would like to produce a high

output and if it learns that the price of output is likely to be low then it would like to produce a

low output. Flexibility for the firm manifests itself in terms of the range of output that the firm

can produce. With this definition a more flexible level of capital is one that enables the firm to

produce a greater range of output in the second period.

We now show that the most flexible level of capital changes with a change in the parameters, and

further, that the level of capital that gives the greatest flexibility is lower (higher) when σ > (<) 1
1−µ .

Proposition 1. If σ > (<) 1
1−µ then K̂ = K(K).

where K̂ is the level of capital that implies the greatest amount of flexibility, K is the minimum

capital stock and K is the maximum capital stock.14

Proof. Let ȳ(K) denote the range of output that can be achieved for a given level of capital and let

γ = −µ
β . Note that when σ > (<) 1

1−µ , γ < (>)1 since σ = 1
1+β > (<) 1

1−µ implies that µ < (>)−β.

ȳ(K) = (aK−β + bL
−β)γ − (aK−β + bL−β)γ

13Note that this is consistent with Hirshleifer and Riley (1992) who point out that flexibility is different from the
range of actions which in our example would mean the range of capital or labor. We instead equate flexibility to the
range of outputs.
14If σ = 1 so that the production function is a Cobb-Douglas then one can show that a higher level of capital gives a
greater range of output. If σ = 0 so that the production function is a Leontief then it is difficult to determine what
level of capital gives greater flexibility tomorrow.
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where L is the minimum labor and L is the maximum labor. The derivative of the range of output

with respect to the capital stock is given by

∂ȳ

∂K
= −aγβK−(β+1)

(
(aK−β + bL

−β)γ−1 − (aK−β + bL−β)γ−1

)
When γ < (>)1, ∂ȳ

∂K < (>)0. This in turn implies that when γ < (>)1 then the level of capital

that gives the maximum range of output, K̂, is equal to the minimum (maximum) stock of capital.

�

Thus we have shown that the irreversibility effect holds, and Epstein’s condition can be applied

to intertemporally non-separable benefit functions. Moreover, we have shown that our definition

of the irreversibility effect is more general than the conventional definitions.

4. NECESSARY VERSUS SUFFICENT CONDITIONS

Epstein’s theorem, as we have seen, establishes a sufficient condition for the irreversibility effect.

This means that the effect may still occur even if the condition does not hold. The subsequent

literature has developed a number of additional sufficiency conditions, and at least a couple of

claimed necessary conditions. The alternative sufficient conditions expand the scope of the effect,

but it is our view that the case has not yet been made for the more restrictive and more powerful

necessary conditions. In this section we consider the proposed conditions.

4.1. Freixas and Laffont. The quest for a necessary condition was begun by Freixas and Laffont

(1984), who develop a necessary and sufficient condition for the irreversibility effect to hold for

intertemporally separable net benefit functions. They consider the dynamic optimization problem:

(11) max
x1

(
B1(x1) +

∑
j

qj max
x2≤x1

∑
i

πijB2(x2, zi)
)

where x1 is the choice variable in the first period, x2 is the choice variable in the second period, z

is a random variable, qj is the prior probability on the signal and πij is the posterior probability

distribution. Let x∗
1 be the optimal choice of x1 under the more informative signal, x∗∗

1 the optimal

choice under the less informative signal and J(x1, ξ) be the value function. Theorem 2 specifies the
13



condition developed by Freixas and Laffont for the irreversibility effect to hold given that a unique

solution exists.

Theorem 2. x∗
1 ≥ x∗∗

1 if B1(x1) + J(x1, ξ) is quasi-concave.

The theorem states that the irreversibility effect holds if the value function is quasi-concave or

that quasi-concavity is a sufficient condition for the irreversibility effect to hold when the benefit

function is intertemporally separable. Freixas and Laffont establish sufficiency analytically and

then develop a numerical example to show that the sufficient condition is also necessary. Their

numerical example establishes that if quasi-concavity is violated then, in fact, the irreversibility

effect is violated. The irreversibility effect (that is, x∗
1 ≥ x∗∗

1 given that x2 ≤ x1) is also shown to

be equivalent to J(x1, ξ
′)−J(x1, ξ) being locally increasing in x∗∗

1 where ξ′ is the more informative

signal, ξ is the less informative signal, and J(x1, ξ
′) − J(x1, ξ) is the value of information.

It seems to us that quasi-concavity is only sufficient and not necessary for the irreversibility

effect to hold in intertemporally separable functions. By slightly modifying Frexias and Laffont’s

numerical example, we show that the irreversibility effect can hold even when the value function

is not quasi-concave; quasi-concavity is therefore sufficient, not necessary. Having said this, we

note that quasi-concavity is a very weak condition. Most if not all empirically important benefit

functions will exhibit this property.

In Freixas and Laffont’s numerical example the random variable z is assumed to take two possible

values, z1 and z2 each with probability 0.5. Furthermore, there are two levels of learning, perfect

or none at all. The functional forms of the benefit functions are,

B1(x1, 0 ≤ x1 ≤ 2.5π) = π

B1(x1, x1 ≥ 2.5π) = −1.25(x1 − 2.5π) + π

B2(x2, z1) = 2x2

B2(x2, z2) = − cos x2 + 1

With these benefit functions quasi-concavity is violated, x∗
1 ≤ x∗∗

1 and J(x1, ξ
′) − J(x1, ξ), the

value of information, is not increasing in x1. These results are shown in Figure 1 where the choice

variable in the first period, x1, is drawn on the x-axis and the value of information on the y-axis.
14



0     1     2         pi 4     5       2pi 7     8          3pi 10    
−0.2

0

0.2

0.4

0.6

0.8

x
1

V
al

ue
 o

f I
nf

or
m

at
io

n

Value of Information for the Freixas−Laffont 1984 Example

Figure 1. Value of Information for the Example in Freixas-Laffont 1984
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Figure 2. Original and Modified Utility Functions

Note that in the range [2π, 3π] the value of information decreases in x1. So long as the optima lie

in this range the irreversibility effect is violated.

Now consider a slight modification where B1(x1) and B2(x2, z1) remain unchanged and B2(x2, z2)

is given by

B2(x2, z2, 0 ≤ x2 ≤ 2π) = − cos x2 + 1

B2(x2, z2, x2 ≥ 2π) = x2 − 2π
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Figure 3. Value of Information for the Modified Example in Freixas-Laffont 1984

The original and modified benefit functions are illustrated in Figure 2. Both functions are

identical in the range [0, 2π] and thereafter the original function is represented by the dotted line

and the modified function by the broken line.

With the modified value function although quasi-concavity is still violated, x∗
1 ≥ x∗∗

1 (strictly

greater if the optimal lies between π and 2π and equal otherwise) and the value of information is no

longer decreasing over a finite interval of x1. These results are shown in Figure 3. Note that with

the modified benefit function the value of information no longer decreases in the range [2π, 3π].

The irreversibility effect holds though quasi-concavity is violated. Consequently, quasi-concavity is

not necessary, merely sufficient, for the irreversibility effect to hold in the class of intertemporally

separable benefit functions.

4.2. Gollier et al. Another set of sufficient conditions are developed by Gollier et al. (2000) while

relating primitives of an economic model to Epstein’s otherwise difficult to interpret conditions.

As they stand it is not clear what type of model gives rise to a concave or convex slope of the

value function and thus qualifies for application of Epstein’s Theorem. Gollier et al. (2000) provide

necessary and sufficient conditions for two classes of models under which the second derivative of

the slope of the value function can be signed. As noted previously, within the class of models

characterized by hyperbolic absolute risk aversion (HARA) preferences, the slope of the value

function is concave (convex) in the random variable depending on the coefficient of risk aversion.

Also, in models with small risks or in which the random variable has a two-atom support, the slope
16



of the value function is concave (convex) if and only if absolute prudence is larger (smaller) than

twice the absolute aversion to risk.

Gollier et al relate these results to a discussion of necessary versus sufficient conditions. They

state that their conditions are necessary as well as sufficient to determine whether the initial level

of the decision variable with learning is greater or less than the initial level with no or less learning

(i.e., whether x∗
1 � x∗∗

1 ), not just necessary and sufficient to sign the third derivative of the value

function. They first derive the necessary and sufficient conditions to sign the third derivative of the

value function, or the second derivative of the slope, and then on the basis of Epstein’s theorem they

state that the sign of the third derivative is necessary and sufficient to determine whether x∗
1 � x∗∗

1 .

Epstein’s theorem demonstrates that the sign of the third derivative is a sufficient condition for

determining whether or not the initial decision with more learning is less than the initial decision

with less learning. Therefore, it appears that the Gollier et al conditions are only sufficient to sign

the relationship between first period decisions and learning.

Having considered the effect of learning on first period decisions in the absence of an explicit

irreversibility constraint, Gollier et. al introduce an irreversibility constraint and reconsider the

effect of learning. They show that the irreversibility effect holds if (but not only if) either prudence

is larger than twice absolute risk aversion and the utility function is HARA or prudence is larger

than twice absolute risk aversion and the risk is binary or small.

4.3. Ulph and Ulph; Kolstad. Another set of sufficient conditions have been developed by Ulph

and Ulph (1997) and Kolstad (1996). Ulph and Ulph develop a new sufficient condition that

establishes the irreversibility effect for intertemporally nonseparable net benefit functions with

multiplicative uncertainty. In terms of the model described in section 2, multiplicative uncertainty

implies that B2(x1, x2, zi) = ziB2(x1, x2). For these models, Ulph and Ulph’s sufficient condition

states that, if the irreversibility constraint bites when there is no possibility of learning, then

the irreversibility effect must hold. In terms of our canonical model, let x∗∗
2 and x∗∗

1 denote the

optimal decisions in the absence of learning. If C2(x1) = x1 ≤ x2, then x∗∗
2 = x∗∗

1 implies that

the irreversibility constraint bites in the absence of learning. So long as this condition is met,

the irreversibility effect is said to hold. Since the condition cannot be applied to models in which

the irreversibility constraint does not bite in the absence of learning (i.e., when x∗∗
2 �= x∗∗

1 ) or for
17



different specifications of uncertainty, it may be considered less general Epstein’s, given that the

latter can also be applied in cases of intertemporal nonseparability, as we have shown.

In the same vein Kolstad shows that the irreversibility effect holds in models with effective

irreversibility—that is, in models in which the irreversibility constraint bites. Kolstad builds on an

example developed by Freixas and Laffont to establish his sufficient condition:

sign(x∗
1 − x∗∗

1 ) = sign(∆(y) − ∆(y′))

where

∆(y) =
∂f1

∂x1

∑
y∈A(y)

∑
πij

∂B2

∂x2
+

∂f2

∂x1

∑
y∈B(y)

∑
πij

∂B2

∂x2
,

C2(x1) = f1(x1) ≤ x2 ≤ f2(x1) (so that the initial decision imposes a lower and upper bound on

the choice variable in the second period), A(y) = {yj|x2(x1, yj) = f1(x1)}, a set of signals that end

up resulting in an action at the lower bound of the constraint, and finally B(y) = {yj |x2(x1, yj) =

f2(x1)}, a set of signals for which the optimum choice in the second period is at the upper bound

of the constraint. Thus, it is necessary to sign ∆(y)−∆(y′) in order to establish the irreversibility

effect. Though not strict intertemporal separability, Kolstad’s sufficient condition requires that
∂B2(x1,x2,zi)

∂x1
be independent of x2. and may therefore be considered less general than Epstein’s.

In summary, to date a number of sufficient conditions have been established for the irreversibility

effect, but not necessary conditions, which would be both more restrictive and more powerful. Put

differently, the irreversibility effect may hold more widely than previously believed, since it may

hold even when the sufficient conditions are violated. The earliest sufficiency result, due to Epstein,

we have shown to be more general in the sense of being more widely applicable—to intertemporally

nonseparable benefit functions—than is often realized. However, a shortcoming of this condition is

that it is not readily related to the primitives of an economic model. This is remedied by Gollier et

al, who derive necessary and sufficient conditions on the primitives to sign the second derivative of

the slope of the value function, and therefore to apply Epstein’s sufficiency theorem. The theorem of

Freixas and Laffont is also important in this regard, showing that the irreversibility effect will hold

if (and they would argue only if) an intertemporally separable benefit function is quasi-concave, a

condition one would normally expect to be satisfied.
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5. The Irreversibility Effect and Risk Aversion

Another question unresolved in the existing literature is whether risk aversion can be separated

from the irreversibility effect. We examine this issue in the context of the consumption and savings

problem discussed by Epstein. In this example an individual allocates an initial amount of wealth

between consumption and savings over three periods. Investment in the first period yields a fixed

return while investment in the second period yields a random return. Some information is gained

about the random rate of return at the beginning of the second period.

(12) max
0≤x1≤w

B1(w − x1) + β
∑

j

qj max
0≤x2≤rx1

(
B2(rx1 − x2) + β

∑
i

πijB3(x2zi)
)

where x1 and x2 denote savings in periods 1 and 2 respectively, w is the initial wealth, r is the

sure gross rate of return to the first period savings, β is the discount factor, zi is the random gross

return to second period savings, B1 is the utility function in the first period, B2 the utility function

in the second period and B3 the utility function in the third period.

With the following constant relative risk aversion utility function,

(13) B(c) =

⎧⎪⎨
⎪⎩

c1−α

1−α if α �= 1,

log(c) if α = 1,

where α is the coefficient of relative risk aversion, Epstein has established that the effect of learning

on the optimal level of savings in the first period depends on the elasticity of intertemporal substi-

tution, that is, on σ = 1
α . When σ > 1 the slope of the value function is convex and the possibility

of learning about the future rate of return leads to an increase in savings in the first period and

when σ < 1 the possibility of learning leads to a decrease in the level of first period savings.

Since savings in the second period are constrained to be no greater than the gross rate of return

times savings in the first period and since the level of savings does not unambiguously increase

with learning, this is evidence that the irreversibility effect is violated in this problem. Specifically,

the irreversibility effect is violated when σ < 1, that is, when benefits are intertemporally non-

substitutable or the coefficient of risk aversion is large. This can be interpreted to imply that

risk aversion cannot be separated from the irreversibility effect. However, with constant relative
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risk aversion preferences, as with all Von-Neumann-Morgenstern preferences, the coefficient of risk

aversion is constrained to be the reciprocal of the coefficient of intertemporal substitution, and

therefore one cannot tell whether the violation of the irreversibility effect is being driven by high

risk aversion or low intertemporal substitution. We therefore consider an example of generalized

isoelastic preferences, for which the coefficient of relative risk aversion is not constrained to be

the reciprocal of the elasticity of intertemporal substitution. This allows us to separate the effect

of risk aversion from that of intertemporal substitution, and to determine whether the violation

of the irreversibility effect is being driven by the lack of intertemporal substitutability or by high

risk aversion. This shows, therefore, whether the irreversibility effect can be separated from risk

aversion.

Consider the generalized isoelastic preferences:

Jt = B(ct, EtJt+1)

=

(
(1 − β)c1−ρ

t + β[1 + (1 − β)(1 − α)EtJt+1]
1−ρ
1−α

) 1−α
1−ρ

− 1

(1 − β)(1 − α)

where β ∈ (0, 1), α > 0 and is the coefficient of relative risk aversion and 1
ρ = σ is the elasticity of

intertemporal substitution. Note that σ is no longer constrained to be equal to 1
α . With isoelastic

preferences it is difficult to establish the relationship between the convexity or concavity of the

slope of the value function and α and ρ analytically. Consequently we use numerical simulation to

separate the effects of risk aversion and intertemporal substitution. We compare optimal savings

in the first period with perfect learning and with no learning for a wide range of parameter values

for α and ρ. Simulations give the results in Table 1.

Table 1: Experiments with Generalized Isoelastic Preferences

α < 1 α > 1

σ < 1 x∗
1 � x∗∗

1 x∗
1 � x∗∗

1

σ > 1 x∗
1 ≥ x∗∗

1 x∗
1 ≥ x∗∗

1

When σ < 1 it is feasible for x∗
1 < x∗∗

1 , that is, for savings to decrease with learning for both α < 1

and α > 1. However, when σ > 1 x∗
1 is always at least as large as x∗∗

1 irrespective of the coefficient
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of relative risk aversion. This implies that though the irreversibility effect is violated even with non-

expected utility preferences, the violation is caused by a low elasticity of intertemporal substitution

and not by a high coefficient of relative risk aversion, supporting an assertion by Epstein that the

violation of the irreversibility effect can be attributed to intertemporal substitution rather than to

risk aversion (see footnote 13 on page 278 in Epstein (1980)).

6. The Irreversibility Effect and The Value of Information

Finally, we consider another important relationship touched on in the literature, between the ir-

reversibility effect and the value of information. As shown by Hanemann (1989), with a continuum

of development levels quasi-option value is no longer equivalent to the conditional value of perfect

information—conditional on there being no investment initially.15 However, there is a relationship

between the irreversibility effect and the unconditional value of perfect information. If the uncon-

ditional value of perfect information increases in the degree of flexibility then the irreversibility

effect holds. We establish this relationship numerically through examples previously discussed in

the paper.

It turns out that in three, out of the four, examples discussed by Epstein where the irreversibility

effect holds (the timing of orders for capital, highways and farms, and the firm’s demand for capital)

the unconditional value of perfect information is positively correlated with the degree of flexibility.

On the other hand, in examples where the irreversibility effect is violated (Epstein’s consumption-

savings problem and Freixas and Laffont’s numerical example) the unconditional value of perfect

information decreases even though the level of flexibility increases.

Let the unconditional value of perfect information be defined as J(x1, 1)−J(x1, 0) where J(x1, 1)

denotes the value function under perfect learning and J(x1, 0) denotes the value function under

no learning, both evaluated at some level of initial investment x1. Note that the value function

itself is defined by equation (5). Now consider Epstein’s firm’s-demand-for-capital example. We

have shown that when capital and labor are highly substitutable a low demand for capital in the

first period leads to greater flexibility and when capital and labor are not easily substitutable then

a high demand for capital implies greater flexibility. Furthermore, as shown in Figures 4 and 5

the unconditional value of perfect information increases in the level of flexibility—the value of

information increases in the level of capital with low substitutability and decreases in the level of

15For a discussion of the relationship between the irreversibility effect and quasi-option value see Hanemann (1989).
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Figure 4. Value of Information with Low Substitutability
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Figure 5. Value of Information with High Substitutability

capital with high substitutability. Consequently, for the firm’s-demand-for-capital example, if the

unconditional value of perfect information increases in the level of flexibility then the irreversibility

effect holds.

Now consider Esptein’s consumption-savings example. We have shown that flexibility increases

in the level of initial savings irrespective of whether the elasticity of intertemporal substitution is

high or low. Figure 6 shows that the value of information increases in the level of flexibility, that is

in the initial level of savings, when the elasticity of intertemporal substitution is high while Figure

7 shows that the value of information decreases in the level of flexibility when the elasticity of

intertemporal substitution is low. In the former case the irreversibility effect holds; in the latter it

is violated.
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Figure 6. Value of Information with High Elasticity of Substitution
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Figure 7. Value of Information with Low Elasticity of Substitution

Similarly, in the example discussed by Freixas and Laffont, the irreversibility effect is violated

when the value of information does not increase in the level of flexibility. This is illustrated in

Figure 1. In the figure, and corresponding numerical example, even though flexibility increases in

x1, the value of information decreases for x1 ∈ [2π, 3π]. When the example is modified to restore

the irreversibility effect the value of information becomes a monotonic function of the degree of

flexibility, as illustrated in Figure 3.

How can an increase in flexibility be associated with a decrease in the value of information?

Over the interval (2π, 3π) where the value of information decreases in x1, an increase in flexibility

increases the value function with no learning more than it increases the value function with learning.
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This has the effect of decreasing the value of information in x1. To see this consider the case where

x1 lies in the interval [π, 3π].

Value of Information =
∑

i

ri max
x2≤x1

B2(x2, zi)︸ ︷︷ ︸
J(x1,1)

− max
x2≤x1

∑
i

riB2(x2, zi)︸ ︷︷ ︸
J(x1,0)

= 0.5 max
x2≤x1

2x2 + 0.5 max
x2≤x1

(1 − cos x2) − max
x2≤x1

(x2 + 0.5 − 0.5 cos x2)

= x1 + 0.5 − 0.5 cos π − x1 − 0.5 + 0.5 cos x1

= 0.5(cos x1 − cos π)

= 0.5(cos x1 + 1)

where ri is the probability of state zi occurring. For values of x1 between π and 2π, cos x1 increases

in x1 and thus the value of information increases in x1 over this interval. On the other hand, when

x1 lies between 2π and 3π then cos x1 decreases in x1 and so does the value of information. Note

that J(x1, 1) = x1 and

dJ(x1, 1)
dx1

= 1

when x1 ∈ [π, 3π]. These imply that the value function with learning increase with flexibility

(which in turn amounts to an increase in x1) over the interval x1 ∈ [π, 3π]. Also J(x1, 0) =

0.5 + x1 − 0.5 cos x1 and

dJ(x1, 0)
dx1

= 1 + 0.5 sin x1.

Since sinx1 ∈ [−1, 1] for x1 ∈ [π, 3π], an increase in flexibility also increases the value function

with no learning. However,

dJ(x1, 0)
dx1

=

⎧⎪⎨
⎪⎩

< 1 for x1 ∈ [π, 2π],

> 1 for x1 ∈ [2π, 3π].

Consequently, an increase in flexibility increases the value function with learning more than

the value function without learning over the interval x1 ∈ [π, 2π] thereby increasing the value of
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information over this interval. However, for x1 ∈ [2π, 3π] an increase in flexibility increases the

value function without learning more than the value function with learning, causing the value of

information to decrease over this interval.

An interesting question is whether the violation of the irreversibility effect in this example can

be attributed to intertemporal non-substitutability as in the consumption-savings example. Unfor-

tunately, it is not possible to define the elasticity of intertemporal substitution for the numerical

example because the benefit functions are either linear, in which case the elasticity is undefined,

or not quasi-concave, in which case the elasticity is negative. Thus it is not possible to determine

whether it is in fact a low elasticity of substitution that is driving the violation of the irreversibility

effect.

7. Concluding Remarks

We have defined the irreversibility effect and indicated its relevance to environmental and other

problems involving decisions under uncertainty, and established a number of analytical and numer-

ical results. Our most sweeping conclusion is that it seems to hold more widely than has perhaps

previously been recognized. We provide a critical review of conditions established in the literature

for the effect to hold. From our review, it appears that these conditions are sufficient, but not

necessary. The effect may hold though one or more are violated.

An interesting interpretive result is that Epstein’s condition, the original contribution to this

literature, and Theorem 1 in our paper, can in fact by applied more widely, in particular to in-

tertemporally nonseparable benefit functions, than previously indicated. Of course this tells us

nothing about whether the effect holds in a particular case. We show however using a new and

more general definition of irreversibility that it does hold in Epstein’s model of the firm’s demand

for capital, characterized by an intertemporally nonseparable benefit function. By the same token,

we use the condition to prove that the irreversibility effect does not hold in another application to

an intertemporally nonseparable benefit function, a model of the optimal control of greenhouse gas

emissions.

The irreversibility effect is related to other concepts in the literature on decisions under un-

certainty. We show with the aid of a numerical simulation involving generalized isoelastic prefer-

ences, for which the coefficient of relative risk aversion is not constrained to be the reciprocal of

the elasticity of intertemporal substitution, that violation of the irreversibility effect in Epstein’s
25



consumption-savings model is driven by a low elasticity of intertemporal substitution and not by a

high coefficient of relative risk aversion.

Numerical analysis of several different models also demonstrates an important relationship be-

tween the irreversibility effect and the value of information. If the value of information increases in

the degree of flexibility then the irreversibility effect holds. It seems obvious that the greater the

flexibility in a decision environment, the more valuable information bearing on the decision will be,

and indeed this will generally be the case. Since the value of information is however given by the

difference in the value function (in a dynamic programming problem) with and without learning,

we show that where the irreversibility effect is violated an increase in flexibility increases the value

function with learning by less than the value function without learning, thereby decreasing the

value of information.
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