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Abstract

One of the most compelling characteristics of controlled pro-
cessing is our limitation to exercise it. Theories of control allo-
cation account for such limitations by assuming a cost of con-
trol that constrains how much cognitive control is allocated to
a task. However, this leaves open the question of why such
a cost would exist in the first place. Here, we use neural net-
work simulations to test the hypothesis that constraints on cog-
nitive control may reflect an optimal solution to the stability-
flexibility dilemma: allocating more control to a task results in
greater activation of its neural representation but also in greater
persistence of this activity upon switching to a new task, yield-
ing switch costs. We demonstrate that constraints on control
impair performance of any given task but reduce performance
costs associated with task switches. Critically, we show that
optimal control constraints are higher in environments with a
higher probability of task switches.

Keywords: cost of cognitive control; capacity constraint;
neural networks; task switching

Introduction

Everyday we are confronted with tasks that require us to
bias processing towards task-relevant information and ac-
tions, while avoiding processing interference from distracting
tasks (e.g. writing a paper while ignoring incoming email no-
tifications). This ability to *focus’ on a task is referred to as
cognitive control and is engaged across various domains of
cognition (Cohen, 2017)

Despite its tremendous utility in daily life, cognitive con-
trol is subject to fundamental processing limitations that
manifest themselves in two qualitatively different ways: we
appear to be constrained in both the number of control-
demanding tasks that we can execute at the same time (Posner
& Snyder, 1975; Shiffrin & Schneider, 1977), as well as in the
intensity of control we are willing to allocate to any given task
(Padmala & Pessoa, 2011; Botvinick & Braver, 2015; Shen-
hav, Botvinick, & Cohen, 2013; Shenhav et al., 2017). Con-
straints on the number of control-dependent tasks that can be
executed have been attributed to the sharing of local resources
(process-specific representations) required to execute the dif-
ferent tasks (Navon & Gopher, 1979; Meyer & Kieras, 1997;
Allport, 1980; Salvucci & Taatgen, 2008; Feng, Schwemmer,
Gershman, & Cohen, 2014; Musslick et al., 2016). From this
perspective, constraints on multitaksing can be viewed as a
purpose of control — to limit processing to a single task among
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ones that share representations and therefore are subject to in-
terference (Cohen, Dunbar, & McClelland, 1990; Botvinick,
Braver, Barch, Carter, & Cohen, 2001) — rather than a limita-
tion of the control system itself. However, constraints on the
intensity of control allocated to a single task remain less well
understood. These constraints seem puzzling from a norma-
tive perspective: Why would a system refrain from allocating
maximal control to a task to which it is already committed, as-
suming that performance scales with the intensity of control
allocated? One hypothesis is that the allocation of control is
associated with a cost, that subjects factor into their decisions
about control allocation (Botvinick & Braver, 2015; Shen-
hav et al., 2013, 2017). For instance, participants respond
faster and more accurately on a cognitive control task (e.g.
name the ink of a color word instead of reading the word)
when offered a greater reward for their performance (Krebs,
Boehler, & Woldorff, 2010; Padmala & Pessoa, 2011), sug-
gesting that they can increase the intensity of control allo-
cated to a task if it is worth the incentive, but otherwise hold
back from doing so. Recent computational modeling work
has demonstrated that including such a cost can help integrate
a wide range of empirical findings concerning the allocation
of control (Musslick, Shenhav, Botvinick, & Cohen, 2015;
Manohar et al., 2015; Lieder, Shenhav, Musslick, & Griffiths,
2018). However, the reason for this cost remains a mystery.
If it is assumed that there is an overall "budget” of control
available, then it is possible that allocating control to one task
is associated with an opportunity cost with respect to others
(Kurzban, Duckworth, Kable, & Myers, 2013). However, this
does not explain why there is a budget in the first place. Put
another way, once a commitment has been made to perform a
given task (i.e., allocate cognitive control to it), and that pre-
cludes the performance of others, then the opportunity cost
has already been paid, so why not allocate control maximally
to the selected task? Here, we explore a potential answer to
this question.

Specifically, we explore the hypothesis that constraints on
control intensity (i.e., encoded as cost) reflect, at least in
part, an optimal solution to the stability-flexibility dilemma.
This dilemma arises from a tension between allocating con-
trol maximally to a task currently being performed (to min-
imize distraction and optimize performance), and the ability
to quickly and flexibly reconfigure the system to perform a



different task when the environment changes. This is evi-
dent empirically in the form of costs to performance when
switching from one task to another, which are magnified
with increases in the allocation of control to the initial task
(Goschke, 2000). The dilemma is consistent with the task-
set inertia hypothesis, according to which the task-set of a
previously performed task persists and interferes with initial
performance of a subsequent task following a switch (Allport,
Styles, & Hsieh, 1994).

We use a recurrent neural network model of task perfor-
mance and control to explore how different choices of a
global control parameter (gain modulation) that determines
its maximal intensity, influence the stability and flexibility
of performance in a task switching environment. Critically,
we determine the optimal value of this parameter as a func-
tion of the demand for flexibility in the task environment,
and show how these results can explain differences in hu-
man task switch costs as a function of task switch probability.
Finally, we conclude with a discussion about how computa-
tional dilemmas such as the stability-flexibility tradeoff may
help provide a normative account of previously unexplained —
and what may otherwise appear to be irrational — constraints
on cognitive control. The code for all simulations used in this
work is available at github.com/musslick/CogSci-2018b.

Recurrent Neural Network Model

To explore the effect of constraints on the intensity of con-
trol, we simulate control configurations as activity states of
processing units in a neural network (control module) that un-
fold over the course of trials. Within each trial, the process-
ing units of the network engage an evidence accumulation
process that integrates information about the stimulus, and is
used to generate a response (decision module). In this section
we describe the processing dynamics for both the control and
decision modules, as well as the environments in which the
model is tasked to perform.

Control Module

We simulate the intensities of two different control signals as
activities of two processing units indexed by i,i € {1,2} in a
recurrent neural network. The activity of each processing unit
unit i at a given trial 7 represents the intensity of the control
signal for one of two tasks and is determined by its net input

net,-T = w,-,[actin1 —&—w,-,jacthfl +1; (1)

that is a linear combination of the unit’s own activity at the
previous trial actiT - multiplied by the self-recurrent weight
w; ;, the activity of the other unit j € 1,2, j # i at the previ-
ous trial acth_l multiplied by an inhibitory weight w; ;, as
well as an external input /; provided to the unit (see Figure 1).
The self-recurrent and mutually-inhibitory weights induce at-
tractors within the control module, such that it can maintain
its activity over time in one state or the other, but not both.
The latter implements a capacity constraint on control with
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regard to the number of control-dependent tasks the network
can support. These weights also determine the activity of the
units in each attractor state, that is also regulated by a gain
parameter that we use to implement the intensity constraint,
as discussed further below. The external input acts as a gat-
ing signal to the corresponding control unit (Braver & Cohen,
1999) and is set to 1 if the task represented by the control unit
needs to be performed and set to O otherwise. The net input
of each unit is averaged over time

net] =1-(net] )+ (1 —t)ne;’ "

2

where nez;’ ! corresponds to the time averaged net input
at the previous trial and T € R : 0 < 7 < 1 is the rate constant.
A higher 7 leads to a faster change in activation for both units.
Finally, the activity of each unit is a sigmoid function of its
time averaged net input

1

actiT = ————r1
1+ e—gmet]

3)

where g is a gain parameter that regulates the slope of
the activation function. The sigmoid activation function con-
strains the activity of both units to lie between 0 and 1. The
gain of the activation function effectively regulates the dis-
tance between the two control states, with lower gain leading
to a lower activation of the currently relevant control unit. In
this model, we use g to implement a constraint on the inten-
sity of control, and explore its effect on the network’s balance
between stability and flexibility.

Control
Module

W11 W22
« » Decision Module
Stimulus G, jﬁ
/ time steps within trial

S1
\D‘imensionf/
drift = (S1 + S,)+ Syact;, + S,act,

Figure 1: Recurrent neural network model used in simula-
tions. Each of the two processing units in the control module
(blue) receive an external input signal /7, I, that indicates the
currently relevant task. The dynamics of the network unfold
over the course of trials and are determined by recurrent con-
nectivity wi 1,ws > for each unit, as well as mutual inhibition
w12, w2 1 between units. The activity of each control unit bi-
ases the processing of a corresponding stimulus dimension on
a given trial. On each trial, the decision module accumulates
evidence for both stimulus dimensions towards one of two
responses until a threshold is reached.

Il 2

Response 1

Response 2

Decision Module

On each trial the decision module integrates information
along two stimulus dimensions S; and S, of a single stim-
ulus to determine a response. Each dimension (e.g., color or



shape) can take one of two values (e.g., red or green; round
or square), each of which is associated with one of two re-
sponses (e.g. pressing left or right button). Each of the two
tasks requires mapping the current value of one of the two
stimulus dimensions to its corresponding response, while ig-
noring the other dimension. Since both tasks involve the same
pair of responses, stimuli can be congruent (stimulus values
in both dimensions associated with the same response) or in-
congruent (associated with different responses). We simu-
late the response integration process using a drift diffusion
model (DDM, Ratcliff, 1978), in which the drift is determined
by the combined stimulus information from each dimension,
weighted by input received from the control module (as de-
scribed below), and evidence is accumulated over time until
one of two response thresholds is reached. The drift rate is
decomposed into an automatic and controlled component

drift = (S) +82) +act] $1 +actl S, 4)
—— N——

automatic controlled

where the automatic component reflects automatic process-
ing of each stimulus dimension that is unaffected by control.
The absolute magnitude of S1,S, depends on the strength of
the association of each stimulus with a given response and
its sign depends on the response (e.g. S < 0 if the associated
response is to press the left button, S > 0 if the associated re-
sponse is to press the right button). Thus, for congruent trials
S1 and S have the same sign, and the opposite sign for incon-
gruent (conflict) trials. For the simulations described below,
the strength of the associations was equal along the two stim-
ulus dimensions. The controlled component of the drift rate
is the sum of the two stimulus values, each weighted by the
activation of the corresponding control unit. Thus, each unit
in the control module biases processing towards one of the
stimulus dimensions, similar to other computational models
of cognitive control (e.g. Cohen et al., 1990; Mante, Sus-
sillo, Shenoy, & Newsome, 2013; Musslick et al., 2015). As
a result, progressively greater activation of a control unit im-
proves performance — speeds responses and improves accu-
racy — for the corresponding task. Mean reaction times (RTs)
and error rates for a given parameterization of drift rate at
trial 7 are derived from an analytical solution to the DDM
(Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006).

Task Environment and Processing Dynamics

We used the model to simulate performance while switching
between 100 mini-blocks of the two tasks (Meiran, 1996).
Each mini-block consisted of six trials of the same task. A
task cue presented before and throughout each mini-block in-
structed the model to adjust control signals to the currently
relevant task i, by setting ; to 1 for the task-relevant control
unit and /;.; to O for the other. On each trial, a stimulus was
presented comprised of a value along each dimension S; and
S>, the decision module integrated the input, and generated
a response that was deemed correct if it corresponded to the
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one associated with the stimulus value along the dimension
indicated by the task cue.

Effects of Network Gain
on Stability and Flexibility

The intensity of the control signals is functionally constrained
by the gain parameter of the activation function in Equation 3:
lowering gain lowers the activity of a control unit for a given
positive net input, and thus constrains the maximum signal
intensity of the task-relevant control unit. Here, we exam-
ine how manipulations of gain influence the model’s perfor-
mance, and in particular measures of stability and flexibility
in the task switching design described above.

To do so we varied g from 0.1 to 3 in steps of 0.1. The con-
trol module of each model was parameterized with balanced
recurrent and inhibitory weights, w;; = 1,w; ; = —1 and arate
constant of T = 0.9. The decision module (DDM) was pa-
rameterized' with a threshold of z = 0.0475, a non-decision
time of Tp = 0.2 and a noise of ¢ = 0.04. We simulated per-
formance of each model on 10 different randomly permuted
task switching sequences of the type described above. Each
sequence was generated with a 50% task switch rate (i.e. one
half of the mini-blocks required to switch to another task with
respect to the previous mini-block whereas the other half of
the mini-blocks required to repeat the previous task). Task
transitions were counterbalanced with each task and response
congruency conditions.

For each simulation, we assessed the mean difference in
reaction times (RTs) and error rates between incongruent
and congruent trials as a measure of cognitive stability. In-
congruent trials typically lead to slower reaction times and
higher error rates than congruent trials due to response con-
flict, referred to as the incongruency effect. The stability-
flexibility dilemma suggests that increased control intensity
(implemented here by higher values of g) should augment
sensitivity to the task-relevant stimulus dimensions and di-
minish it to the task irrelevant dimension, thereby reducing
the incongruency effect (Goschke, 2000). We also measured
mean task performance as an index of task stability. Finally,
we assessed the flexibility in terms of performance costs as-
sociated with a task switch relative to a task repetition from
one mini-block to another. Specifically, we computed the per-
formance difference between the first trial of switch vs. rep-
etition mini-blocks. We predicted that increasing g would in-
crease task switch costs, as this would increase the distance
between the attractors in the control module and thus make
it harder to switch between them. We evaluated the effect of
gain on each of these measures by regressing each against the
gain of the network across all task sequences and networks.

The results in Figure 2a indicate that all tested models

IThe parameter values were chosen to yield reasonable model
performance, i.e. an average task accuracy higher than chance.
While each parameter has a quantitative effect on the results de-
scribed below, the qualitative (direction) of the effects remains
robust across a wide range of parameter values (for details, see
github.com/musslick/CogSci-2018Db).
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Figure 2: Effects of network gain. (a) Overall mean perfor-
mance, mean incongruency effects and mean switch costs for
both reaction time and error rate are shown as a function of
network gain. Error bars indicate the standard error of the
mean across different task sequences for each network. (b)
Activation trajectory for models with different gain is shown
as a series of connected black dots from the control attrac-
tor for task 1 (red) to the control attractor for task 2 (blue).
Contour lines and arrows indicate the energy and shape of the
attractor landscape after a task switch from task 1 to task 2.

showed an incongruency effect. Moreover all models exhib-
ited switch costs with respect to both RTs and error rates.
More interestingly, higher values of gain lead to increases in
cognitive stability as reflected in a lower incongruency effect
for both RTs, b = —0.3508, #(289) = —49.93, p < 10143
and error rates, b = —0.1194, 1(289) = —24.60, p < 10772,
Models with higher gain also exhibit overall faster reaction
times, b = —0.1742,1(289) = —47.68, p < 10738, and lower
error rates, b = —0.0597, 1(289) = —24.60, p < 10772, for
a given task. Conversely, increases in gain lead to higher
costs of switching between tasks for both RTs, b = 0.1866,
1(289) = 67.19, p < 10777 and error rates, b = 0.1014,
1(289) = 251.21, p < 1070 To investigate these effects
in more detail, we plotted the change in activity after a task
switch for two models with different gains (g1 = 1,82 = 3).
Figure 2b illustrates that the control states for both tasks
are closer together for the model with lower gain, reflecting
overall lower control signal intensities for both control units.
However, this also shortened the trajectory of activity from
one control state to the other, thus requiring less time steps to
traverse. The opposite effects were observed for higher gain.
Together these effects illustrate that lower values of g func-
tionally constrain the amount of control, reducing stability
and overall performance, but affording greater flexibility.

Optimal Network Gain as a Function of
Flexibility Demand

The findings above suggest that there may be an optimal value
of gain for a given task environment, depending on the de-
gree of flexibility it requires. We examined this directly, by
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varying the probability of task switches across experiment se-
quences from 10% to 90% in steps of 20%, while counter-
balancing tasks, task transitions and congruency conditions
within each sequence. We used the same values for all model
parameters as in the previous section. The network was tested
on 10 different task sequences at a given level of switch fre-
quency. For each sequence, we optimized the gain parameter
of the network so to maximize its accuracy across all trials
in the sequence. We assessed the mean activity of the con-
trol units associated with optimal gain at each level of task
switch frequency, as a measure of constraints on control in-
tensity. We measured average performance, incongruency
effects and switch costs associated with the optimal values
of gain at each task switch frequency, to test whether this
could account for effects observed in human performance:
Sequences with a higher frequency of task switching typi-
cally produce impaired overall performance but smaller task
switch costs (Mayr, 2006; Monsell & Mizon, 2006). All mea-
surements were linearly regressed against the probability of a
task switch in the sequence.

@ . ®
c =
£ 5%
(4] €5 Relevant Task
g 1.8 8 E 05| —Irrelevant Task
B T /
- S c
o =2
1.6 2]

0.2 0.4 0.6 0.8
Task Switch Probability

0.2 0.4 0.6 0.8
Task Switch Probability

Figure 3: Gain optimization for experiments with different
task switch probabilities. (a) The optimal gain is plotted as
a function of task switch probability in the experiment se-
quence. (b) The average intensity of the control unit dedi-
cated to the currently relevant task (orange), as well as the
intensity of the control unit associated with the irrelevant task
(blue) are shown as a function of task switch probability in a
given experiment sequence.

Simulation results are shown in Figure 3. The optimal gain
of the network decreases with the frequency of task switches,
b= —0.4520, 1(49) = —29.59, p < 10731, That is, the model
achieves an overall higher accuracy on sequences with high
switch rate if it imposes a higher constraint on the amount
of control it can allocate to a single task in exchange for
the benefit of improved performance of task switches. The
decrease in gain is reflected in the model’s control alloca-
tion policy: The higher the probability of a task switch, the
lower the average control unit activity allocated to the rele-
vant task, b = —0.0376, t(49) = —32.94, p < 10733, and the
more control unit activity is allocated to the irrelevant task,
b= —0.0890, 1(49) = —29.58, p = 1073!. That is, it is better
to bring the control attractors closer together when the tasks
switch frequently. Note that this occurs at the cost of reduced
stability: Models optimized for higher switch rates exhibit
higher incongruency effects (RT, b = 0.0974, 1(49) = 31.87,
p < 10734; and error rate, b = 0.0084, 1(49) =30.92, p <
1073%). Moreover, overall RTs, b = 0.1409, 1(49) = 128.87,
p < 1079 and error rates, b = 0.0322, #(49) = 138.81,



p < 107% increase with the frequency of switching. How-
ever, task switch costs decrease as a function of switch prob-
ability for RT, b = —0.0865, 1(49) = —31.22, p < 10733 and
error rates, b = —0.0595, ¢(49) = —36.96, p < 1073, as a
consequence of lower gain. The latter results are qualitative
replications of empirical observations made by Mayr (2006),
as well as Monsell and Mizon (2006).

General Discussion and Conclusion

Cognitive control allows us to flexibly reconfigure process-
ing in accord with current task goals. However, controlled
processing is subject to fundamental limitations (Posner &
Snyder, 1975; Shiffrin & Schneider, 1977). Understanding
these limitations is critical for understanding human process-
ing and its failure. One limitation is the intensity of control
people are able (or willing) to allocate to a given task, re-
cently described in terms of the cost of control (Shenhav et
al., 2013, 2017). Here, we described neural network simu-
lations that suggest that this constraint may reflect a norma-
tive solution to a fundamental tradeoff between the intensity
of control given to a single task (cognitive stability) and the
ability to switch quickly between tasks (cognitive flexibility).
We demonstrated that a meta-control parameter, the gain of
the network’s activation function, can regulate this tradeoff
in a task switching paradigm. Specifically, while lower gain
(higher constraints on control) degraded performance on each
task (lower stability), it reduced performance costs associated
with task switches (higher flexibility). We showed that the
optimal level of gain (constraint on control) varied as a func-
tion of the demand for flexibility in the task environment, and
that this pattern qualitatively matches observations of human
performance made under similar conditions.

These findings provide the first normative account for
constraints on cognitive control from the perspective of the
stability-flexibility dilemma. They suggest why people may
take account of costs when deciding how much control to
allocate to a given task (Botvinick & Braver, 2015; Shen-
hav et al., 2013, 2017). The simulation results described in
this paper my also provide an explanation for behavioral ef-
fects of manipulations in task switch probability observed by
Mayr (2006); Monsell and Mizon (2006), namely that higher
switch rates lead to an overall decrease in performance but
also lower switch costs. The present work suggests that this
may reflect adaptation to higher frequency of task switches
by decreasing the amount of control allocated to a task. The
model also predicts that higher task switch frequency should
produce an increase in incongruency effects, a prediction that
can be tested in future empirical work.

The conclusions of this work are limited to the model as-
sumptions and parameter ranges considered. Also, we limited
our analyses to the gain of the network’s activation function
and its effect on the stability-flexibility tradeoff. However,
previous computational work has identified alternative mech-
anisms that mediate the balance between stability and flexibil-
ity, including dopaminergic (Braver & Cohen, 1999; Cools,
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2015) and acetylcholinergic (Liljenstrom, 2003) neuromodu-
lation, as well as GABA channel conductance (Ueltzhoffer,
Armbruster-Geng, & Fiebach, 2015), all of which are as-
sumed to regulate the excitability of processing units in re-
current neural networks. An important step for future work is
to test the generality of the stability-flexibility tradeoff across
different model architectures, as well as different mechanisms
within a given architecture. The latter may involve inhibitory
bias units that selectively suppress a corresponding control
unit, rather than a global modulation parameter. Such selec-
tive constraints may help to explain limitations of cognitive
control that are task specific. Finally, future work will have
to test whether the constraints on control allocation are also
optimal with respect to alternative objective functions, such
as reward rate maximization (Simen et al., 2009).

The presence of a stability-flexibility tradeoff often re-
lies on the implicit assumption that tasks cannot be executed
in parallel. Interestingly, computational work suggests that
such parallel processing limitations can result from of an-
other computational dilemma that neural networks face: the
tradeoff between learning efficiency that is promoted by the
use of shared task representations, and interference-free par-
allel processing that requires the separation of task represen-
tations (Musslick et al., 2016, 2017). From this perspective,
parallel processing limitations reflect a preference for learn-
ing efficiency that is associated with shared representations.
The stability-flexibility tradeoff arises from the enforcement
of such parallel processing limitations — that is, the serial ex-
ecution of tasks — and thereby the value of switching quickly
between them. The study of such computational dilemmas
in neural systems holds promise to uncover normative expla-
nations for the seemingly irrational constraints on cognitive
control, as well as human cognition in general.
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