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ABSTRACT OF THE THESIS

Sampling is All You Might Need

by

Yik Cheung Jeffrey Chan

Master of Applied Statistics and Data Science

University of California, Los Angeles, 2025

Professor Guido F. Montúfar Cuartas, Chair

We propose two gradient-free optimization methods to solve Ordinary Least Squares

linear regression problems, focusing on the use of Monte Carlo and Bagging Monte Carlo

techniques. These methods leverage multiple core processors to iteratively generate sample

betas within a restricted search space and record the mean squared error. While exploring

the parameter space, our results do not conclusively align with the double descent narrative

commonly discussed in prior literature, which primarily links this phenomenon to gradient

descent methods and their implicit norm-minimization bias. Our experimental comparisons

reveal that these gradient-free approaches yield competitive performance metrics, including

mean squared error, R2, and L2 Norm, which are on par with those achieved by traditional

Ordinary Least Squares and Gradient Descent methods.
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Chapter 1

Introduction

Gradient based and gradient free optimization are the two primary classes of optimization

methods that we can employ in machine learning. In machine learning, it is common to use

gradient based optimization specifically gradient descent or its variants. However, we suggest

that gradient free optimizers might be undervalued and that they can have several advantages.

For example, gradient free optimizers do not require smoothness or differentiability of an

objective function to perform optimization and may have a better chance to avoid poor

local minima [5, 7, 9]. Unlike gradient free optimizer, the learning rate in gradient based

optimization is a critical hyperparameter that has to be adjusted with care for the algorithm

to converge and reach a good solution [5, 11].

One of the driving ideas in contemporary machine learning and in particular neural

networks is that the parameter optimization procedures that are used for training play a key

role in enabling generalization. Specifically, parameter optimization by gradient descent serves

as regularizer that implicitly biases the solutions in a way that is beneficial for generalization.

For example, in the case of overparametrized linear models, optimizing the squared error loss

by gradient descent is biased towards the solution that is closest to initialization. This means

that for zero initialization the algorithm will return the minimum norm solution, which is

known to have good generalization properties.

Some recent works have suggested that the driving factor for the good generalization

performance of overparametrized models is not necessarily the specific parameter optimization
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procedure but rather the fact that the set of good solutions in parameter space has a large

volume [4]. Certainly the metric on parameter space influences both the volume of a particular

set of solutions and also gradient descent. Towards gaining clarity about this, we investigate

what happens if the parameter optimization is conducted in a gradient free manner via

randomly sampling values of the search variable.

Double Descent is a phenomenon that is observed in machine learning models as the

number of model parameters increases relative to the number of training data points [2].

Here one observes that as the number of parameters increases, the test error first decreases

and then increases, as one would expect from traditional statistical learning theory, but then,

surprisingly, as the number of parameters continues to increase, the test error decreases

again. Double Descent has been characterized in particular for the case of ordinary linear

regression [18].

In the present work, we utilize multi-core computational resources to execute two novel

gradient free optimizers, Monte Carlo (MC) and Bagging Monte Carlo (BMC), to solve linear

regression problems. We compare the performance results with Ordinary Least Squares (OLS)

and Gradient Descent (GD) which serve as our baseline. In the meantime, we will capture

the Double Descent events by varying the number of data points of the input matrix size, k

where k ∈ N, to create the over and under parametrized scenarios. In addition, we will use

OLS, GD, MC, and BMC to build a predictive linear regression model using a ratio of 70% :

30% training and testing data split. Lastly, we report its performances using train and test

mean squared error, train and test R2, train and test L2 Norm, number of cores used, and

the optimizers’ configurations.

1.1 Contributions

This research advances the field of machine learning optimization through the introduction

of innovative gradient-free methods tailored for solving linear regression challenges. The

2



key contributions of this work are crafted to demonstrate both theoretical and practical

advancements:

• Development of Novel Optimization Techniques: We introduce two gradient-free

approaches—Monte Carlo (MC) and Bagging Monte Carlo (BMC). These techniques

leverage the power of multi-core processors to perform extensive parameter searches

within a defined space, significantly enhancing the computational efficiency and robust-

ness of model training processes.

• Empirical Analysis of the Double Descent Phenomenon: Through rigorous

experimental design, our study not only illustrates how MC and BMC manifest the

Double Descent phenomenon but also contrasts these observations with those from

traditional methods such as Ordinary Least Squares and Gradient Descent. This

comparison sheds light on the conditions under which Double Descent occurs, thereby

enriching the current understanding of model complexity and training dynamics.

• Comprehensive Performance Evaluation: The efficacy of MC and BMC is evalu-

ated against conventional optimization algorithms. Our results reveal that these new

methods achieve comparable, if not superior, performance metrics such as train and test

R2, mean squared error (MSE), and L2 Norm. Such findings underscore the potential

of gradient-free methods to serve as viable alternatives to gradient-based optimization

in certain regression tasks.

• Practical Implications and Scalability: The implementation of MC and BMC

demonstrates their scalability and adaptability to different data regimes and hardware

configurations. This aspect is crucial for practitioners seeking efficient solutions in

environments with varying computational resources.

These contributions are pivotal as they not only enhance the algorithmic toolkit available

to data scientists but also provide deeper insights into the behavior of learning models under
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various optimization regimes. The findings from this research could potentially inform future

developments in machine learning optimization, particularly in how we understand and

leverage the capabilities of gradient-free algorithms in broader applications.

1.2 Related Work

The exploration of optimization methods in machine learning is vast and variegated, with a

rich tapestry of research focusing on both gradient-based and gradient-free techniques. Our

review of the literature reveals a dynamic field where the understanding of phenomena such

as Double Descent is still evolving and where gradient-free methods are gaining recognition

for their robustness and versatility.

Understanding Double Descent: The phenomenon of Double Descent has been

scrutinized extensively in recent literature. Belkin et al. (2019) provided a foundational

perspective by identifying the occurrence of Double Descent in highly parametrized models,

challenging traditional beliefs about overfitting [2]. Nakkiran et al. (2019) expanded on

this by demonstrating that Double Descent could occur across various model families, not

just deep neural networks, suggesting a more ubiquitous nature of the phenomenon [12,13].

These studies underscore the complexity of model training dynamics in modern machine

learning, setting the stage for our exploration of how gradient-free methods interact with

these dynamics.

Gradient-Free Optimizations: While the majority of optimization research has histor-

ically centered on gradient-based methods due to their intuitive implementation and effective

results in large-scale applications, gradient-free methods have carved out a niche due to their

applicability in non-differentiable scenarios. Works by Chiang et al. (2023) and Schaeffer et

al. (2024) have begun to peel back the layers on how gradient-free approaches could sidestep

some of the pitfalls that ensnare gradient-based methods, particularly in handling noisy or

incomplete data landscapes [4, 18].
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Comparative Studies and Applications: Our work is particularly inspired by the

comparative studies of Buschjäger and Morik (2021), who argued against the existence of

Double Descent in Random Forests, suggesting that certain algorithmic frameworks inherently

resist such phenomena due to their structural properties [3]. This discourse opens new avenues

for investigating how different optimization frameworks—especially less traditional, gradient-

free methods—behave under varying data conditions.

In bridging these discussions, our research does not merely replicate existing findings

but seeks to expand the dialogue about optimization methods in machine learning. By

integrating and building upon these foundational studies, we aim to illuminate the practical

and theoretical implications of employing gradient-free methods like Monte Carlo and Bagging

Monte Carlo in scenarios traditionally dominated by gradient-based approaches. This not only

enriches the field’s understanding of Double Descent but also enhances the toolkit available

to practitioners dealing with complex, real-world datasets.
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Chapter 2

Preliminaries

In this paper, we are comparing the performance of the following optimizers to solve a linear

regression problem: Ordinary Least Squares (OLS), Gradient Descent (GD), Monte Carlo

(MC) and Bagging Monte Carlo (BMC). Linear regression is

y = Xβ + ϵ. (2.1)

In equation 2.1, y represents the vector of dependent variables, X is the design matrix with

N rows representing the number of observations and p columns representing the number of

features (independent variables), β is the vector of coefficients to be estimated, and ϵ is the

vector of random errors, assumed to be normally distributed with mean zero and constant

variance σ2, i.e., ϵ ∼ N(0, σ2I).

The explicit representation of equation 2.1 is as follows:

y =


1 x1,2 · · · x1,p

...
... . . . ...

1 xN,2 · · · xN,p



β1

...

βp

+


ϵ1
...

ϵN

 (2.2)

where y is a vector of actual value, β is the weight vector, X is a N rows by p columns

matrix containing input data points as its rows, and ϵ is a noise vector with ϵ ∼ N(0, σI).

After performing equation 2.2, we will have a vector of response, y. In addition, we use the
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mean squared error (MSE) as our loss function,

ℓ(Ŷ ) =
1

N

N∑
i=1

(Yi − Ŷi)
2, (2.3)

where Ŷi is the predicted value and Yi is the actual value. It is very common to use the OLS

to arrive the optimal coefficient, β̂ that is the value of β in equation 2.1 that minimizes

equation 2.3. The essence of OLS is projecting the observed data points onto a subspace

defined by the independent variable. In the simple overdetermined case where X⊤X is

invertible the minimizer of the squared error loss is given by

β̂ = (X⊤X)−1X⊤y. (2.4)

Meanwhile, GD works by iteratively adjusting the parameters in the opposite direction of the

gradient of the loss where we will have an initial guess β when i = 0. GD can be expressed

as follows

βi = βi−1 − α∇f(βi−1). (2.5)

In the case of MSE, f(β) = ℓ(Ŷ (β)). In addition, ȳ is

ȳ =
1

n

n∑
i=1

yi (2.6)

R2 is defined as

R2 = 1−
∑N

i (yi − ŷi)
2∑N

i (yi − ȳ)2
. (2.7)

Lastly, the Euclidean norm of an n-vector x is

∥ x ∥2=

{
n∑
i

|xi|2
} 1

2

. (2.8)
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2.1 Double Descent

Double Descent is a phenomenon observed in machine learning where the performance of a

model on a validation or test set first gets worse as the model complexity increases (overfitting

near the interpolation threshold), and then surprisingly improves even as the complexity

continues to grow.

In our notations, XN×p represents a matrix with N rows and p columns, where N is

the number of observations and p is the number of features. This matrix format is used

throughout to denote the dimensions of matrices relevant to our discussion.

This phenomenon can be represented through the following figure which illustrates how

test error evolves as model complexity increases, as shown in Figure 2.1:

Figure 2.1: Double Descent Curve [16]. Adapted from J. W. Rocks and P. Mehta, “Memorizing
without overfitting: Bias, variance, and interpolation in over-parameterized models," available
at arXiv:2010.13933.

The Double Descent curve typically shows a "U" shape followed by a second decreasing

phase as the model’s capacity becomes significantly large relative to the complexity of the

task. The first descent corresponds to the traditional U-shaped bias-variance tradeoff, and

the second descent occurs when the model enters the overparameterized regime, where models

can fit the training data perfectly and still generalize well to new data. This counterintuitive

behavior has been noted in settings including but not limited to neural networks, deep trees,

and certain linear regression models.
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2.2 Gradient Descent

Gradient Descent is a method to find the minimum of a function by iteratively moving

towards the steepest descent direction defined by the negative of the gradient. In the context

of linear regression, the Gradient Descent algorithm updates the parameters in the opposite

direction of the gradient of the loss function with respect to the parameters.

The update rule for the parameters can be expressed as:

βi = βi−1 − α∇f(βi−1), (2.9)

where βi is the vector of coefficients at iteration i, α is the learning rate, and ∇f(βi−1) is

the gradient of the loss function f with respect to β at iteration i.

This process is repeated until convergence, typically when the change in loss is below a

predefined threshold or after a fixed number of iterations.

2.3 Monte Carlo Method

The Monte Carlo method is a robust statistical simulation technique widely used across

various fields such as algebraic computations, modeling natural processes, and in quantitative

disciplines like finance and statistics. This method involves the generation of a significant

number of random samples to approximate complex mathematical solutions, making it invalu-

able for scenarios where analytical or deterministic solutions are impractical or impossible to

derive.

The fundamental principle of the Monte Carlo method is to utilize random sampling

to estimate properties of a distribution or to approximate the solution to a mathematical

problem. This is particularly effective in high-dimensional spaces where the volume of the

space explodes exponentially with the number of dimensions, making traditional analysis
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Algorithm 1 Capturing the Double Descent Events Pseudocode
Required: XN×p,Y N×1

Initialization: O ← ∅, G← ∅, M ← ∅, E ← ∅, i = 1
Step size: α, usually set to a small value like 0.01 or adjusted dynamically
Stopping criteria: Threshold for minimal improvement in MSE, typically 10−6

while k ≤ N do
while i ≤ 100 do

Ak×P ← sample(X,Y , size = k)

X
⌊k×0.7⌋×p
train ,X

⌊k×0.3⌋×p
test ,Y

⌊k×0.7⌋×p
train ,Y

⌊k×0.3⌋×p
test ← splitData(Ak×p)

β̂OLS ← OLS(X⌊k×0.7⌋×p
train ,Y

⌊k×0.7⌋×p
train )

O ← (trainLoss(β̂OLS), testLoss(β̂OLS))
Initialization for GD: β0 ← Random or Zero initialization
β̂GD ← GradientDescent(X⌊k×0.7⌋×p

train ,Y
⌊k×0.7⌋×p
train , α, Stopping criteria)

G← (trainLoss(β̂GD), testLoss(β̂GD))

β̂MC ← MonteCarlo(X⌊k×0.7⌋×p
train ,Y

⌊k×0.7⌋×p
train )

M ← (trainLoss(β̂MC), testLoss(β̂MC))

β̂BMC ← BaggingMonteCarlo(X⌊k×0.7⌋×p
train ,Y

⌊k×0.7⌋×p
train )

E ← (trainLoss(β̂BMC), testLoss(β̂BMC))
i← i+ 1

end while
k ← k + δ ▷ δ is the increment in k to gradually increase task complexity

end while
return R ▷ Returns a record of the training and testing losses

unfeasible.

The Monte Carlo method can be mathematically described as follows: Suppose we want

to estimate an integral
∫
D
g(x)dx

ĝ = m(D)
1

N

N∑
i=1

g(xi) ∀i ∈ {1, · · · , n} (2.10)

where xi are drawn uniformly over D, and m(D) is the measure or mass of the support , D,

commonly
∫
D
dx. By the law of large numbers, as N , the number of samples, increases, ĝ

converges to
∫
g(x)dx.

The statistical properties such as the mean µ and variance σ2 of the underlying process

can also be estimated. For random variables X1, X2, . . . , Xn independently and identically
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distributed with mean µ = E[Xi] and variance σ2 = Var[Xi], the sample mean

Mn =
1

n

n∑
i=1

Xi (2.11)

approximates µ, and by the Central Limit Theorem, the distribution of Mn converges to a

normal distribution centered at µ with variance σ2

n
as n→∞.

The Monte Carlo estimations rely heavily on the law of large numbers which asserts that

the sample average converges in probability towards the expected value as the sample size

grows:

lim
n→∞

P(|Mn − µ| ≥ ϵ) = 0, (2.12)

for any ϵ > 0, ensuring the consistency of the Monte Carlo estimates.

These principles allow the Monte Carlo method to provide reliable estimations even in

complex scenarios, supporting its application in fields like mathematical finance, applied

statistics, and artificial intelligence for problems that are otherwise analytically intractable

[6, 10,17,20,21].

2.4 Bagging Method

The ensemble method, particularly the Bagging (Bootstrap Aggregating) approach, is designed

to improve the stability and accuracy of machine learning algorithms by combining multiple

models to reduce variance and avoid overfitting [8,14,15]. Commonly used in decision tree

algorithms and various clustering methods, Bagging is particularly effective in environments

where the prediction model is highly sensitive to the variability in its training dataset [1, 19].

Bagging involves generating multiple versions of a predictor by using a random sampling

with replacement technique on the training data, training a separate model on each sample,

and then averaging the predictions. The ensemble’s final output is derived by averaging the

predictions from all the individual models to improve the generalization error of the resultant
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model.

In Bagging, multiple datasets are created from the original dataset by bootstrap sampling.

Each of these datasets is used to train a model f̂ (b), where b represents the index of the

individual model in the ensemble. The variable x denotes an input vector from the dataset,

and B indicates the total number of bootstrap samples or models in the ensemble. The

aggregated prediction, f̂(x)B, is calculated as follows:

f̂(x)B =
1

B

B∑
b=1

f̂ (b)(x), (2.13)

where f̂ (b)(x) is the prediction made by the b-th model on input x. This aggregation helps

to mitigate the variance between the predictions of individually trained models, leading to

more robust and stable performance across diverse datasets.

The efficacy of Bagging comes from its ability to reduce variance and provide a smoothing

effect over the training data, which is particularly beneficial in models that are prone to

overfitting, such as decision trees [8, 14, 15].
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Chapter 3

Methodology

3.1 Monte Carlo Sampling

Monte Carlo method is a computational technique that generates random points (samples)

to execute a numerical experiment for N amount of times. When we exhaust all the samples

in the universe, we will arrive to the optimal solution. In this paper, we use C amount

of cores to perform Monte Carlo simulation. Each core will run Q amount of individual

simulations, for a total of Q× C samples of the vector βp×1. Next, we split the input data

matrix X into training and testing sets, (X⌊k×0.7⌋×p
train ,Y

⌊k×0.7⌋×p
train ), with a ratio of 70% and

30%, respectively, using sklearn package. The selection of the range for the betas was based

on initial exploratory analysis and heuristic adjustments to ensure the optimization process

captures a broad spectrum of potential solutions, thereby increasing the robustness of the

model findings.

Algorithm 2 Search Space Function Pseudocode
Required: X, α = 3
lower ← ⌊min(X

⌊N×0.7⌋×p
tr )/α⌋

upper ← ⌊max(X
⌊N×0.7⌋×p
tr )/α⌋

return lower, upper

Once we have generated the sample β, β ∼ U(lower, upper) and the lower and upper

values are retrieved from algorithm 2, we compute the loss using equation 2.3 for each sample

β with the same set of input data (X⌊N×0.7⌋×p
train , Y ⌊N×0.7⌋×p

train ). The following is the pseudo
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code for the Monte Carlo method and the following is the basic notation: X⌊N×0.7⌋×p
train as train

input matrix, Y ⌊N×0.7⌋×p
train as train output vector, X⌊N×0.3⌋×p

test as test input matrix, Y ⌊N×0.3⌋×p
test

as test output vector, and we calculate train MSE and store it to into a variable a. Lastly,

the algorithm will store the sample beta and both MSEs as a tuple into the set R.store the

sample beta and both MSEs as a tuple into the set R.

Algorithm 3 Monte Carlo Optimizer Pseudocode
Required: Q, X

⌊N×0.7⌋×p
tr , Y

⌊N×0.7⌋×p
tr

Initialization: R← ∅, i = 1
while i ≤ Q do

Initialization: β̂p×1
MC ← ∅, a← 0

lower, upper ← search_space(X
⌊N×0.7⌋×p
train )

β̂p×1
MC ← generate_betas(lower, upper)

a←MSE(X
⌊N×0.7⌋×p
train , Y

⌊N×0.7⌋×p
train )

R← R ∪ {(β̂p×1
MC , a)}

i← i+ 1
end while
return R

Lastly, to use the standard multi core procedure, we use the built in multi processing

package from Python to execute the algorithm 3 for C amount of times. Once all the cores

are completed with the simulation, we will combine all the results and find the lowest MSE

weight vector from algorithm 3 with input data (X⌊N×0.7⌋×p
train , Y ⌊N×0.7⌋×p

train ) as our final β̂.

3.2 Bagging Monte Carlo Optimizer

In our Bagging Monte Carlo optimizer, BMC, it uses the same structure as algorithm 2 and 3

with a few modifications. In our experiment, we use C cores to build C models and average

C predictions as our output value.

f̂bag(x) =
1

C

C∑
i=1

f̂ i(x) (3.1)
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To generate C sets of data, we will be using sklearn resample function for bagging sampling

with replacement argument as true and number of samples will be the amount of rows, N , of

the data matrix X, divided by C number of cores.

Algorithm 4 Bagging Sampling Pseudocode
Required: X,Y , C
Initialization: X ′ ← ∅, i = 1, n = ⌊N

C
⌋

while i ≤ C do
X ′ ←X ′ ∪ {(resample(X, replacement = True, number_of_sample = n))}
i← i+ 1

end while
return X ′

Once we have the Bagging Sampling function ready, we use algorithm 3 and 4 to perform

the simulation and then apply equation 3.1 to calculate the predicted value.

3.3 Data Processing

In our experiments, we have used the energy and wine data sets from University of California,

Irvine and California Housing data set from Sklearn. Instead of letting the optimizers do its

job, we first perform a standard exploratory data analysis and transform certain features.

Meanwhile, linear regression is very sensitive to the outlier and multi-collinearity; as a result,

we first run the Variance Inflation Factor (VIF) and keep all the features that have a VIF

less than 11.
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Chapter 4

Results

4.1 Double Descent Observation

In this section, we demonstrate the result of result, algorithm 1, of the Double Descent

observations by varying the input size or amount of rows, k, of the data matrix and for each

k, we collect 100 mean squared error values to generate all the plots in section 4.1 where

as the shaded region is the standard error of the calculated mean squared error. First, lets

Figure 4.1: Double Descent Experiment Using California Housing Dataset
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dive into the California housing data set. In figure 4.1, all the optimizers have a consistent

decreasing trend across different values of k. In addition, there are no strong Single and

Double Descent patterns in OLS, MC, BMC, and GD. Also, both MC and BMC optimizers

achieve comparable MSE with OLS and GD. On the other hand, the BMC optimizer has the

smallest standard error across all values k and its MSE quickly stabilized after k is beyond

250.

Figure 4.2: Double Descent Experiment Using Energy Dataset

In figure 4.2, none of the optimizers are showing any evidence of Single and Double

Descent patterns. Moreover, OLS, GD, MC, and BMC optimizers have low and steady MSEs

across all k values, whereas BMC is performing consistently when the k value exceeds 100.

Meanwhile, BMC has low MSE with minimal variability that converges quickly. Lastly, MC

has an interesting plot. It has the smallest MSE when the number of observations is smaller

than 100. When k is greater than 100, the MSE starts to hover around 0.68. In figure 4.3, all

four experiments share the same pattern and nuance on the MSE throughout the variety of

value k. Moreover, BMC has the smallest standard error among other optimizers. Lastly,
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Figure 4.3: Double Descent Experiment Using Wine Dataset

the double descent experiment unable to reveal double descent phenomena, that is test error

increases dramatically where the training error reaches the minimal point.

In our examination of the double descent phenomenon, we focused on varying the sample

size k of the training data across multiple datasets. It is important to note that the traditional

double descent curve is more pronounced when the number of training samples k includes

values both smaller and larger than the dimensionality of the data. However, our experimental

setup primarily involved sample sizes that were generally larger than the data dimensions,

which could potentially obscure the observation of the double descent phenomenon. Future

studies could benefit from a deliberate variation in k to span a range more comprehensively,

potentially revealing more distinct patterns of double descent.
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4.2 Performance on Real Data Set

In this section, we illuminate the Ordinary Least Squares (OLS), Monte Carlo (MC), Bagging

Monte Carlo (BMC), and Gradient Descent (GD) performances in a table with three real

world data sets. The performance metrics include the train and test mean squared error

Table 4.1: California Housing Dataset Performance
Optimizer Tr ϵ Ts ϵ Tr R2 Ts R2 Tr Norm Ts Norm Time (s) Cores Itr

OLS 84.956 76.308 0.447 0.472 367.418 227.960 0 1 -
GD 84.957 76.310 0.447 0.472 367.418 227.963 0.992 1 1e5
MC 85.130 76.273 0.446 0.472 367.792 227.908 3.191 12 6e5
BMC 86.926 78.518 0.445 0.468 367.987 228.756 6.476 12 6e5

The table includes the train error (Tr ϵ), test error (Ts ϵ), train and test R2, train and test L2 Norm,
computation time in seconds (Time), number of cores used (Cores), and the number of iterations (Itr.)

performed by each optimizer. ’Itr.’ denotes the total iterations performed during the optimization process,
essential for achieving convergence in iterative methods like Gradient Descent.

denoted as error, train and test R2, Time used in seconds to perform the optimization, and

the optimizers’ configuration. In addition, GD uses a learning rate of 0.0001 and iterates

100,000 times with an early stopping threshold at 0.000001. Lastly, we are using 70% of

the data to train the model and 30% as the test set to test the model. In Table 4.1, the

proposed optimizers, BMC and MC, demonstrate highly competitive results compared to the

benchmarks, OLS and GD. Specifically, BMC and MC train and test R2 differ by at most

0.40% from the OLS train and test R2. On the other hand, the train and test MSE for BMC

and MC are within 2.40% of the baseline. Furthermore, the test L2 Norms of BMC and MC

exceed the baseline by 0.35%.

In Table 4.2, proposed optimizers, BMC and MC, illustrates that the train and test R2

deviates by at most 1.5% from the baseline, OLS. Moreover, the MC and BMC train and

test MSE are insignificant. On the other hand, the test L2 Norms of BMC and MC surpass

the baseline by 16.04 and 17.45, respectively.

In Table 4.3, the proposed optimizers, BMC and MC, performance metrics are similar to
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Table 4.2: Energy Dataset Performance
Optimizer Tr ϵ Ts ϵ Tr R2 Ts R2 Tr Norm Ts Norm Time (s) Cores Itr

OLS 0.000 0.000 1.000 1.000 0.000 0.000 0 1 -
GD 0.000 0.000 1.000 1.000 0.234 0.163 0.658 1 1e5
MC 1.286 1.318 0.986 0.985 26.279 17.451 3.217 12 6e5
BMC 2.600 2.498 0.987 0.987 25.206 16.044 6.757 12 6e5

The table includes the train error (Tr ϵ), test error (Ts ϵ), train and test R2, train and test L2 Norm,
computation time in seconds (Time), number of cores used (Cores), and the number of iterations (Itr.)
performed by each optimizer. ’Itr.’ denotes the total iterations performed during the optimization process,
essential for achieving convergence in iterative methods like Gradient Descent.

Table 4.3: Wine Dataset Performance
Optimizer Tr ϵ Ts ϵ Tr R2 Ts R2 Tr Norm Ts Norm Time (s) Cores Itr

OLS 0.020 0.025 0.258 0.255 4.716 3.449 0.000 1 -
GD 0.022 0.028 0.191 0.169 4.923 3.642 0.860 1 1e5
MC 0.020 0.025 0.253 0.256 4.731 3.447 3.155 12 6e5
BMC 0.021 0.026 0.255 0.260 4.723 3.438 6.496 12 6e5
The table includes the train error (Tr ϵ), test error (Ts ϵ), train and test R2, train and test L2 Norm,
computation time in seconds (Time), number of cores used (Cores), and the number of iterations (Itr.)

performed by each optimizer. ’Itr.’ denotes the total iterations performed during the optimization process,
essential for achieving convergence in iterative methods like Gradient Descent.

the benchmarks, OLS and GD. Specifically, the train and test R2 for BMC and MC differ by

less than 0.3% from OLS. Similarly, the train and test MSE for BMC and MC are marginal

compared to the OLS train and test MSE. Lastly, the train and test L2 Norm for BMC and

MC are at most 0.011.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this paper, we have developed two gradient free optimizers that utilize sampling and

multiple cores processors to administrate the optimization process. In addition, the Monte

Carlo method requires random sampling technique to search for the weight vector within

a predefined search space. On the other hand, Bagging Monte Carlo exploits the ensemble

method that requires bagging sampling for the input data for C individual models, and in

each model, it randomly generates Q amount of weight vectors and selects the lowest MSE

weight vector as the final weight. Lastly, Bagging Monte Carlo aggregates Q results and

returns the averaged predicted value. In section 4.1, we have experiments with multiple

datasets to observe the Double Descent event with OLS, GD, MC, and BMC optimizers. On

the other hand, GD, BC, and BMC are considerably stable across all k values. In addition,

BMC has the lowest with most stable MSE with minimal variability across all values k.

Section 4.2 has shown that BMC and MC are highly comparable with the baseline, OLS.

In two out of three experiments, BMC and MC have lower train and test MSEs than the

GD. Moreover, the robustness of the train and test R2 for BMC and MC are highly similar

to the OLS R2. Furthermore, both BMC and MC are exploiting the 12 cores resource with

manageable computation time that generates 600,000 samples that deliver highly competitive

performance accuracies in both train and test datasets.
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5.2 Future Work

For future work, researching and discovering the model behaviors that involve more than

five features is necessitated. Second, both Monte Carlo and Bagging Monte Carlo optimizers

show promising performance in solving linear regression problems. However, it would be

interesting to investigate if both optimizers will do well in a non-convex problem. Third,

the search space plays a key role in the process of Monte Carlo and Bagging Monte Carlo

optimization and it is crucial to understand how we should define a search space that yields

to a high accuracy. Lastly, it is common to have a multiple cores machine that has more than

12 cores in practice. We can leverage more cores to mitigate each core workload. However, it

is intriguing to test the algorithm on an accelerator like GPU.
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