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Abstract 
Novel methods for harvesting energy in down hole applications are desired.  Specifically, it is hoped that 
sufficient power can be generated near a hydrocarbon reservoir to operate commercially available well 
monitoring equipment.  Vibration based harvesters are the most likely systems to be developed.  The 
efficiency of such harvesters is highly dependent on the natural frequency of the structural system.  To 
optimize the harvester design, the dynamic properties of the down hole system must be characterized.   

This paper presents the results of an analytical frequency study undertaken to identify the role axial 
force effects, annulus fluid geometry, and annulus fluid properties have on the first natural frequency of 
a production string as the conveyed fluid velocity was varied.  The system was modeled using an Euler-
Bernoulli formulation and includes a hydrodynamic forcing function to account for annulus fluid effects.  
The problem was solved in the frequency domain using the spectral element method, which 
conveniently provides natural frequency information.   

The results of the study are in-line with previously published studies on analogous systems.  It was 
found that the well annulus geometry, annulus fluid density, and annulus fluid viscosity have a strong 
role in determining the behavior of the system.  Additionally, the axial force, added mass, and viscous 
effects were found to shift the natural frequency of the system while only axial force and viscous effects 
cause a shift in the fluid velocity at which bifurcation occurs.  These findings, along with the method 
outlined in this paper, provide a useful tool in the characterization of hydrocarbon producing wells 
which is a first step towards developing an energy harvesting system. 

Although the problem of determining the dynamics of a fluid conveying pipe immersed in a viscous 
fluid has been approached using a shell formulation in the past, to the authors knowledge this is the first 
time the problem has been solved with a beam formulation. 

Approved for publication, LA-UR-XX-XXXXX.  Copyright for this paper have been transferred to 
SPE.   
 
Introduction 
Novel energy harvesters are sought to power down hole production well monitoring systems that, when 
used in conjunction with commercially available telemetry systems, eliminate the need for running 
conductor cable within a well annulus.  Utilizing the mechanical vibrations stemming from the kinetic 
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energy of the produced fluid appears to be a common strategy (Schultz et al. 2004; Fripp and Michael 
2007; Wetzel et al. 2009; Guerrero et al. 2011; Pabon and Bettin 2013) where the energy harvester is 
structurally supported by the production string.  The energy generated from this strategy is highly 
sensitive to the frequencies found in the structural system: the harvester needs to be tuned to the natural 
frequencies of the production string in order to maximize the energy harvested.  If the harvester is “out-
of-tune,” a sufficient amount of energy may not be collected resulting in the monitoring systems being 
under-powered. 
 The first step towards the optimal design of an energy harvesting system, then, is to understand the 
dynamics of the production string.  While previous work has investigated the behavior of pipes 
conveying fluid (Housner 1952; Long 1955; Dodds and Runyan 1965; Naguleswaran and Williams 
1968; Paidoussis and Issid 1974; Lee et al. 1995; Lee and Chung 2002; Seo et al. 2005; Lee and Park 
2006), these studies failed to account for external mediums such as the confined fluid found in the well 
annulus.  Other studies incorporating external mediums, specifically viscoeleastic foundations (Lottati 
and Kornecki 1986; Lee et al. 2009; Soltani et al. 2010; Hosseini et al. 2014), do not account for inertial 
changes known to exist as a beam vibrates in a fluid (Tuck 1969; Yeh and Chen 1978; Siniavskii et al. 
1980).   

This paper presents the results from a parametric study which investigated the effects of axial force, 
annulus fluid, and annulus geometry on the first natural frequency of a production string as the conveyed 
fluid velocity was varied.  The problem was formulated using Eurler-Bernoulli beam theory and solved 
in the frequency domain using the spectral element method (SEM).  The results provide insight into the 
change in dynamic behavior of the production string for various conditions, information useful for the 
future design and optimization of down hole energy harvesters. 
 
Statement of Theory and Definitions 
Hydrocarbon wells are individually designed in order to optimize hydrocarbon extraction.  This leads to 
a variety of potential well configurations.  In order to understand the effects of the noted variables of 
interest, a handful of specific configurations are investigated and compared in a parametric study.  To 
permit a computationally feasible study several idealizations and assumptions are made (see Figure 1): 

• The energy harvester is located adjacent to the in-line components the harvester is intended to 
power. 

• The length of production string containing the energy harvester is braced against the production 
casing to prevent amplified vibrations from damaging adjacent components. 

• The bracing elements generate a fixed-fixed boundary condition. 
• The production casing is rigid and coaxial to the production string (the production string being 

centered in the casing by the bracing elements). 
• The annulus fluid is single-phase and stagnant. 
• The production string has a constant cross section with the tube coupling elements providing 

negligible changes to the systems mass and stiffness. 
• The produced fluid is turbulent and is modeled as plug flow (since the primary interest of this 

paper is the effects the annulus geometry and annulus fluid have on the system, modeling 
multiphase flow is considered unnecessarily burdensome). 

With these assumptions in mind, the governing equation of motion can be defined.  Assuming steady 
fluid flow and neglecting gravity induced tension effects, the linearized equation of motion for a pipe 
conveying fluid (Paidoussis and Issid 1974) can be modified to include annulus fluid effects as 

 
𝐸∗𝐼𝑤̇"""" + 𝐸𝐼𝑤"""" + {𝑀#𝑈$ − 𝑇+ + 𝑝̅𝐴#(1 − 2𝜈)}𝑤"" + 2𝑀#𝑈𝑤̇" + (𝑀# +𝑚)𝑔𝑤" + 𝑐𝑤̇ + (𝑀# +𝑚)𝑤̈ 

 
+𝑖𝜌%𝜋𝑟&$𝜔𝛤𝑈'𝑒#() = 0,……………………………………………………………………………….. (1) 
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 where the terms represented are: Kelvin-Voigt dissipation, flexural restoring force, centrifugal force, 
applied tension, pressure induced tension, Coriolis force, gravity, viscous damping, inertia, and the 
hydrodynamic force stemming from the annulus fluid.  Within equation (1), prime and dot indicate a 
derivative with respect to spatial location and time, respectively. 
 The hydrodynamic force (the last term in equation (1)) has been derived by Wamsganss et al. (1974) 
with similar derivations by Stokes (1851) and Rosenhead (1963).  The complex hydrodynamic function, 
𝛤, is defined in Appendix A and contributes both an added mass (a function of 𝑅𝑒[𝛤]) and a viscous 
drag (a function of 𝐼𝑚[𝛤]) term to the system through the hydrodynamic force.  These effects act to alter 
the natural frequency of the system and are of particular interest in the present study. 
 Since both the hydrodynamic function and hydrodynamic force are frequency dependent, equation (1) 
is solved in the frequency domain using the SEM.  A description of the method can be found in the 
literature (Doyle 1989; Lee 2009) and is not presented here. 
 
Presentation of Data and Results 
The results from a parametric study are presented in the following sections: the effects of axial force, 
annulus fluid density, annulus fluid viscosity, and annulus geometry on the systems first natural 
frequency were investigated as the conveyed fluid velocity was increased.  Note that the negative 
convention of the fluid velocity used in the following results indicates that the fluid is flowing in the 
direction opposite gravity, e.g. from the reservoir to the ground surface.  The numeric inputs used in the 
study (see Table 1) are thought to be reasonable but are not intended to represent any specific condition 
found in practice.  Where possible, the results are presented using a normalized conveyed fluid velocity, 
 

𝑢 = F*!
+,
𝑈𝐿, ............................................................................................................................................ (2) 

 
 and a normalized natural frequency 
 

𝛺 = F*!-.
+,

𝜔𝐿$. ...................................................................................................................................... (3) 

 
Axial Force. 

A single system is subject to three different axial loads (cases I-III respectively): 150kN tension, 0kN 
(e.g. unloaded), and 250kN compression.  The change in the first natural frequency for these three cases 
as the fluid velocity is increased is presented in Figure 2.  Note that 𝑅𝑒[Ω] decreases as the fluid velocity 
increases.  This is due to an increasing compression in the system stemming from the centrifugal force 
generated by the conveyed fluid.  Upon revisiting equation 1, specifically the third and fourth terms, the 
applied axial force is seen to be proportional to the conveyed fluid velocity squared: as the fluid velocity 
increases, the compression in the system increses.  As the compression in the system approaches the 
Euler buckling load both 𝑅𝑒[Ω] and 𝐼𝑚[Ω] approach zero and divergence instability is reached.  For the 
unloaded system this occurs at a normalized fluid velocity of −6.28 and is in agreement with published 
results (Rao 2007).  For cases I and III, the Euler load can be written as 𝑃+/0%1 = 𝑀#𝑈21$ − 𝑇+ allowing 
the critical fluid velocities to be calculated as 𝑢213245%	, = −6.69 and 𝑢213245%	,,, = −5.54.  Both results 
agree well with the results produced by the SEM model shown in Figure 2. 

The difference in 𝑅𝑒[Ω] between the three cases for zero flow (𝑢 = 0) can also be estimated 
analytically.  Using case III as an example, Bolotin (1964) suggested the relationship 𝛺2 =
𝛺Q1 + 𝑇+ 𝑃+/0%1⁄  where 𝛺 for the unloaded case was found by the SEM model to be 22.37, agreeing 
with published results (Paidoussis 1998).  Noting 𝑃+/0%1 = 1123.9𝑘𝑁 for the system, the predicted 
natural frequency of 𝛺2 = 19.73 agrees well with the SEM result of 19.80 (error = 0.3%). 
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Annulus Fluid Density. 
Appearing in the definition of the hydrodynamic force, the annulus fluid density acts to scale the 

effect of the hydrodynamic function.  Its effect is illustrated with four inviscid cases (cases IV-VII) 
shown in Table 2.  For each case, real values of the hydrodynamic function are assumed and the 
conveyed fluid is assumed to be stagnant.  Since the real part of the hydrodynamic function contributes 
only an added mass effect, an analytical calculation of each systems first natural frequency can be made 
and compared directly with the SEM results.   

For each case, the system mass (𝑀# +𝑚) is known and the added mass can be calculated as 
𝜌%𝜋𝑟&$𝑅𝑒[Γ].  To analytically determine the natural frequency of the four cases the system stiffness is 
required.  For case IV, the annulus fluid density is taken to be zero resulting in the elimination of the 
hydrodynamic forcing term from the equation of motion and simplifying the system to a beam vibrating 
in a vacuum.  The natural frequency in this case is widely known to be Ω = 22.37.  The stiffness of case 
IV (and in fact all four cases) can then be calculated as 𝐾 = 𝜔7$(𝑀# +𝑚) = 222696	 𝑘𝑔 𝑚𝑠$⁄ .  
Excellent agreement is seen between the analytically calculated and the SEM model estimates of the 
natural frequencies for the four cases shown in Table 2 
 
Annulus Viscosity and Geometry. 

The hydrodynamic force is dependent on the hydrodynamic function, itself dependent on the annulus 
fluid viscosity and annulus geometry, as shown in Appendix A.  The relationship between the three 
inputs (𝜐% , 𝑟2 , 𝑟&) and the resulting hydrodynamic function is not transparent.  The next section 
investigates how these three variables work to define the hydrodynamic function while the two sections 
that follow investigate how the hydrodynamic function affects the natural frequency of inviscid and 
viscous systems. 
 

Hydrodynamic Function. 
Four hydrodynamic functions are defined by the inputs listed in Table 3 with the real and imaginary 

parts of the resulting hydrodynamic functions plotted in Figure 3.  Recall that the real part of the 
hydrodynamic function generates an added mass in the system while the imaginary part generates a 
viscous drag.  The following can be observed for the the inputs considered: 
• 𝑅𝑒[Γ] and |𝐼𝑚[Γ]| increase with a decreasing 𝑟2 𝑟&⁄  ratio. 
• 𝑅𝑒[Γ] and |𝐼𝑚[Γ]| increase with an increasing annulus fluid viscosity. 

 
Inviscid System. 
Cases IX and X assume an inviscid annulus fluid with varying annulus geometry (case VIII acts as 

the benchmark beam in vacuum case).  The natural frequencies are plotted in Figure 4 as the conveyed 
fluid velocity is increased.  As the casing radius (𝑟2) is decreased (e.g. moving from case IX to X), the 
real part of the hydrodynamic function increases (an inviscid annulus fluid leads to a purely real 
hydrodynamic function) resulting in an increased system mass and a decrease in the systems natural 
frequency.  The shifts in 𝑅𝑒[Γ] for 𝑢 = 0 can be calculated analytically as was done in the Annulus 
Fluid Density section.  The results of the analytical calculation can be found in Table 4 and are in 
agreement with the SEM results. 

Returning to Figure 4, divergence instability is seen to occur at 𝑢21 = −6.28 for all three cases.  
Since divergence is a static phenomenon, its occurance is not dependent on inertial effects generated by 
the inviscid annulus fluid.  
 

Viscous System. 
Cases XII-XIV assume a viscous annulus fluid with varying annulus geometry and annulus fluid 

viscosity (case XI, again, acts as a beam in vacuum benchmark).  Unlike the inviscid systems, the 
vertical shift in the real part of the natural frequency is now attributable to both added mass (stemming 
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from 𝑅𝑒[Γ]) and viscous drag (stemming from 𝐼𝑚[Γ]).  This difference is apparent when comparing 
cases XII and XIII when 𝑢 = 0.  The added mass in case XII is much greater than that of case XIII, 
which if no other hydrodynamic effect existed would have resulted in 𝑅𝑒[Ω]245%	8,, < 𝑅𝑒[Ω]245%	8,,,.  
However, since the the viscous drag associated with case XIII is much larger than that of case XII the 
combined effect of the viscous fluid is 𝑅𝑒[Ω]245%	8,, > 𝑅𝑒[Ω]245%	8,,, as seen in Figure 5. 

Bifurcation occurs when the real part of the natural frequency reaches zero.  Once bifurcation is 
reached, the system behaves in an overdamped manner.  The bifurcation point of cases XI-XIV differ 
due to the different levels of viscous drag in each case.  If the conveyed fluid velocity is increased past 
the bifurcation point, the complex natural frequency of the system will continue to migrate towards the 
point of divergence (𝑅𝑒[Ω] = 𝐼𝑚[Ω] = 0); the system becomes unstable once divergence is reached.  
Note that like the inviscid cases the divergence point for cases XI-XIV all coincide: divergence is a 
static phenomenon and is not dependent on added mass or damping. 
 
Conclusions 
A parametric study was performed to investigate the effect axial force, annulus fluid properties, and 
annulus geometry had on the natural frequency of a braced length of production string.  The study was 
motivated by the desire to develop an optimized down hole energy harvester that will be structurally 
supported by the production string.  The results of the study are in agreement with previous studies of 
analogous systems and are as follows: 

• Axial force acts to alter the stiffness of the structural system. 
• The annulus fluid density scales the effects of the hydrodynamic function. 
• The hydrodynamic function contributes added mass and viscous drag through its real and 

imaginary parts, respectively. 
• A shift in the bifurcation point is seen when the annulus fluid is viscous or externally applied 

axial forces are included in the system. 
 This study was a first step towards the development of an optimal, mechanically based, down hole 
energy harvester. 
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Nomenclature 
Dimensionless Terms 

i = imaginary unit 
u = normalized fluid velocity 
 = nondimensional critical fluid velocity 

   = modified Bessel functions 
Im[] = imaginary part 
Re[]  = real part 
n  = poisson ratio 
G  = hydrodynamic function 

= normalized natural frequency 
= normalized natural frequency adjusted for compression 

 
Dimensional Terms 

c  = viscous damping coefficient 
  = hydrodynamic force 

𝑢21 
𝐼',𝐼9,𝐾', 𝐾9 

𝛺 
𝛺2 

𝑓!"#$% 



6  SPE-SPE-174047-MS-MS 

g = coefficient of gravity 
m = mass per unit length of pipe 
  = added mass 
 = mean pressure differential 
 = confining shell inner radius 
 = pipe outer radius 
t = time 
w = lateral deflection of the pipe  
 = pipe wall thickness 

  = flow area 
  = pipe cross sectional area 

E = Young’s modulus 
E* = Kelvin-Voigt viscosity 
I  = pipe inertia 
K = system stiffness 
L = pipe length  

= mass per unit length of conveyed fluid 
= Euler buckling load 

= externally applied tension 
U = mean axial flow 

= critical fluid velocity 
= pipe velocity 

= annulus fluid density 
= conveyed fluid density 
= pipe density 
= annulus fluid kinematic viscosity 

w = radial frequency 
= natural frequency  
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Conversions 

𝑚   x 3.28 E0 = 𝑓𝑡	
𝒎𝟐  x 1.08 E1 = 𝒇𝒕𝟐 
𝒎𝟒  x 1.16 E2 = 𝒇𝒕𝟒 
𝑚/𝑠   x 3.28 E0 = 𝑓𝑡/𝑠	
𝑚/𝑠$  x 3.28 E0 = 𝑓𝑡/𝑠$	
𝑚$/𝑠  x 1.08 E1 = 𝑓𝑡$/𝑠	
𝑘𝑔/𝑚  x 6.72 E-1 = 𝑙𝑏/𝑓𝑡	
𝑘𝑔/𝑚=  x 6.24 E-2 = 𝑙𝑏/𝑓𝑡=	
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𝑘𝑔/𝑠  x 2.20 E0 = 𝑙𝑏/𝑠	
𝑘𝑔/𝑚𝑠  x 6.72 E-1 = 𝑙𝑏/𝑓𝑡𝑠	
𝑘𝑔/𝑚𝑠$  x 6.72 E-1 = 𝑙𝑏/𝑓𝑡𝑠$	
𝑁   x 2.25 E-1 = 𝑙𝑏	
𝑁/𝑚$  x 2.09 E-2 = 𝑙𝑏/𝑓𝑡$	

 
Appendix A 
To derive the hydrodynamic function, the following assumptions were made: 

• The production string has a uniform cross section and is concentric to a rigid cylindrical surface. 
• The length between bracing elements greatly exceeds the diameter of the production string. 
• The annulus fluid has zero velocity at the outer boundary (e.g. the casing) and a velocity that 

matches the production string at the pipe-fluid interface. 
• Production string displacements are small. 
• The annulus fluid is Newtonian, homogeneous, and incompressible. 

 The hydrodynamic function is then written as 
 
𝛤 = >"#$

>%&"
− 1 = 𝑅𝑒[𝛤] − 𝑖𝐼𝑚[𝛤],	………………………………………………………………...... (A.1) 

 
 with the arguments 𝛤7/. and 𝛤:%7 given as 
 
𝛤7/. = 2𝛼$[𝐼'(𝛼)𝐾'(𝛽) − 𝐼'(𝛽)𝐾'(𝛼)] − 4𝛼[𝐼9(𝛼)𝐾'(𝛽) + 𝐼'(𝛽)𝐾9(𝛼)] 
 
+4𝛼𝛾[𝐼'(𝛼)𝐾9(𝛽) + 𝐼9(𝛽)𝐾'(𝛼)] − 8𝛾[𝐼9(𝛼)𝐾9(𝛽) − 𝐼9(𝛽)𝐾9(𝛼)]………………………………. (A.2) 

 
and  

 
𝛤:%7 = 𝛼$(1 − 𝛾$)[𝐼'(𝛼)𝐾'(𝛽) − 𝐼'(𝛽)𝐾'(𝛼)] 
 
+2𝛼𝛾[𝐼'(𝛼)𝐾9(𝛽) − 𝐼9(𝛽)𝐾'(𝛽) + 𝐼9(𝛽)𝐾'(𝛼) − 𝐼'(𝛽)𝐾9(𝛽)] 
 
+2𝛼𝛾$[𝐼'(𝛽)𝐾9(𝛼) − 𝐼'(𝛼)𝐾9(𝛼) + 𝐼9(𝛼)𝐾'(𝛽) − 𝐼9(𝛼)𝐾'(𝛼)].………..………………………. (A.3) 
 
 The arguments to the hydrodynamic function are  
 
𝛾 = 1'

1(
, ………………………………………………………………………………………………. (A.4) 

 

𝑘+ = F#(
?&

, …………………………………………………………………………………………….. (A.5) 

 
𝛼 = 𝑘+𝑟&, …………………………………………………………………………………………….. (A.6) 
 
 and 
 
𝛽 = 𝑘+𝑟2 .	……………………………………………………………………………………………… (A.7) 
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Tables 

 
Table 1 - Parametric study inputs. 

 

 
Table 2 - Annulus fluid density effects. 

 

 
Table 3 - Hydrodynamic function inputs. 
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Table 4 - Added mass effects with zero flow. 
 
Figures 

 
Figure 1 - Well configuration. 
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Figure 2 - Axial force effects: flow velocity vs. fundamental frequency. 
 

 
Figure 3 - Hydrodynamic function: real (top) and imaginary (bottom) for various inputs. 
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Figure 4 - Inviscid system: flow velocity vs. fundamental frequency. 
 

 
Figure 5 - Viscous system: flow velocity vs. fundamental frequency. 




