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Abstract 

Human Immunodeficiency Virus type 1 (HIV) is a lentivirus that infects CD4+ T cells, 

causing progressive immune dysfunction (AIDS). Although effective treatments exist, HIV is 

able to form a ‘latent reservoir’ in long-lived memory immune cells that is transcriptionally silent 

and invisible to both the immune system and conventional antivirals. The HIV fate decision 

between latency and replication is controlled by the sole HIV promoter, LTR, and its gene 

product and non-cooperative monomeric activator, Tat. It remains unclear how the Tat-LTR 

positive-feedback circuit generates an activation threshold to prevent ‘leaky’ Tat expression from 

transactivating the LTR, thereby enabling maintenance of the latent state. Threshold generation 

in gene regulatory networks (GRNs) is typically achieved through deterministic bistability, 

which is absent here. Without some form of non-linear activation (e.g. self-cooperativity), 

expression noise should trigger runaway Tat feedback and thus HIV replication. Despite this, 

HIV latency is apparently stable, even under strong activating conditions. Using flow cytometry 

and single-cell imaging, I find that HIV LTR exhibits a transient threshold in response to Tat. 

The molecular threshold at early times is ~40,000 Tat proteins per cell, but largely disappears 

after 40 hours, explaining the lack of bistability and hysteresis. Further, I demonstrate that slow 

‘toggling’ between active and inactive promoter states can generate an activation threshold 

without cooperativity. Cellular signaling can modulate toggling frequency and thereby adjust this 

threshold. These results indicate a potential role for promoter toggling as a mechanism for 

tunable threshold generation in GRNs. Finally, I propose a class of general stochastic models for 

multi-step transactivation of a toggling promoter, and argue for its relevance to LTR, which is 

known to exhibit intrinsic bursts of transcription at multiple time scales. This work may advance 

the predictive modeling of Tat-LTR and similar GRNs in higher eukaryotes.  
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Chapter 1:  Hypotheses 

1.1. The HIV LTR promoter exhibits a transient threshold in response to Tat 

Infection with Human Immunodeficiency Virus (HIV) persists for a lifetime, even in the era 

of highly active antiretroviral therapies (HAART) that reduce viral blood titers to undetectable 

levels. Upon infection of CD4+ T lymphocytes, HIV undergoes a fate decision between active 

replication and proviral latency (Figure 1). In latently infected cells, HIV remains hidden within 

the cellular genome; the integrated provirus either does not express viral transcripts, or does so 

minimally and non-productively (Chun et al., 1995). Consequently, latent HIV cannot be 

detected by the immune system, nor can it be targeted by HAART or other standard therapeutic 

approaches. Stochastic reactivation of latent HIV leads to the rebound of HIV viremia upon 

interruption of HAART (Richman et al., 2009). The potential clinical utility of a treatment that 

depletes this ‘latent reservoir’ has attracted considerable interest, but these efforts have met with 

limited success (Deeks, 2012; Shang et al., 2015). Better understanding of the mechanisms that 

stabilize latent HIV would improve the likelihood of developing such a treatment. 

A central puzzle of HIV latency and reactivation is that the genetic circuit responsible for 

controlling this process appears to be too simple to generate two deterministically stable states 

(Weinberger, 2015). The HIV LTR promoter, which controls all HIV transcription, is activated 

by its gene product Tat in a simple non-cooperative positive-feedback loop. This circuit should 

not have an activation threshold; in parameter ranges where activation is possible, leaky 

expression from the LTR should inevitably trigger Tat positive feedback, leading to HIV 

replication (Figure 2A). Despite this, the latent state of HIV is stable (Crooks et al., 2015; 

Siliciano et al., 2003), and can persist even when the state of the host cell strongly favors 
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replication (Ho et al., 2013). Therefore, I hypothesize that HIV latency results from an intrinsic 

threshold ‘hardwired’ into the LTR promoter itself. This hypothesis is supported by work 

submitted for publication (Aull et al., 2016), reproduced in Chapter 3. 

Figure 1: HIV replication is controlled by 
the viral Tat-LTR positive-feedback circuit. 
Schematic of the HIV fate decision between 
active replication (ON) and latent (OFF) 
states. Transactivation of LTR, the sole 
promoter of HIV, by its gene product Tat 
drives further Tat production and HIV 
replication. LTR is quiescent during latency. 
Figure adapted from (Dar et al., 2014). 

 
 
1.2. Toggling provides a mechanism for creating activation thresholds 

Stochastic fate decisions, in which genetically identical cells produce different phenotypic 

outcomes, are driven by the inherent noise of biological systems (Raj and van Oudenaarden, 

2008). Transcription, at least in higher eukaryotes, does not occur with uniform probability; 

rather, mRNA is produced in sharp bursts, with the promoter otherwise inactive (Symmons and 

Raj, 2016). This structured noise may have functional consequences. I hypothesize that hours-

long periods of LTR inactivity allow small bursts of Tat to decay, while larger amounts persist 

and trigger positive feedback during subsequent bursts. Thus, even in the absence of a 

deterministic method for establishing an activation threshold, LTR is able to suppress its 

response to ‘leaky’ Tat expression and maintain the latent state of HIV. 

1.3. Tat increases the intensity and duration of LTR expression bursts 

The mechanistic origins of transcriptional bursting are not well understood (Symmons and 

Raj, 2016). One recently identified source of confusion is that the bursting occurs at multiple 

Active HIV
replication

Proviral
latency

ON

OFF

Tat

TatX

LTR

LTR



 

3 

time scales (Featherstone et al., 2016; Tantale et al., 2016). Studies based on directly imaging 

transcriptional foci in eukaryotic cells typically report bursts at the scale of a few minutes, with 

variable intensity among the bursts (Chubb et al., 2006; Corrigan et al., 2016; Larson et al., 

2011). By contrast, studies that track expression of reporter genes over time typically report burst 

cycles of a few hours, with the promoter ‘toggling’ between discrete active and inactive states 

(Harper et al., 2011; Suter et al., 2011; Zoller et al., 2015). Studies of LTR expression that infer 

burst parameters from statistical properties of the distributions of single-cell mRNA or protein 

measurements also give results consistent with lengthy toggling cycles (Dar et al., 2012; Dey et 

al., 2015; Skupsky et al., 2010). I propose general stochastic models for the multi-step 

transactivation of a toggling promoter that unify these diverse observations. This model 

features a slow, Tat-independent toggling step to an “open” state, which can then undergo a rapid 

Tat-binding step to reach the active state. By this arrangement of steps, Tat can both increase the 

probability of expression and, by keeping the promoter in the active state, decrease the odds that 

the LTR will toggle back to the inactive state. In Chapter 4, I argue that this model has natural 

properties that are desirable for a promoter in a genetic circuit like that of HIV, including an 

intrinsic activation threshold and a large dynamic range. 
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Chapter 2:  Introduction 

Acquired Immune Deficiency Syndrome (AIDS) is the result of a progressive, ultimately 

fatal immune dysregulation caused by infection with Human Immunodeficiency Virus (HIV). In 

the absence of treatment, roughly half of those infected with HIV type 1, the most prevalent 

form, will progress to AIDS within ten years (Mandell et al., 2010). Roughly 39 million people 

have died of AIDS in the period 1981-2014, mostly in sub-Saharan Africa (UNAIDS, 2015). 

There is no shortage of anti-HIV pharmaceuticals; over 30 mechanistically diverse agents have 

been approved for clinical use, and when used in combination, these are capable of routinely 

lowering HIV blood titers to undetectable levels. Despite this, HIV is generally incurable, with 

infected persons requiring treatment for life (Mandell et al., 2010). The cost and complexity of 

administering the necessary antiviral cocktails (HAART) means that many go without HIV 

treatment, especially in countries with limited medical infrastructure (UNAIDS, 2015). 

A major obstacle to curing HIV is the presence of a ‘latent reservoir’ of inactive, genomically 

integrated provirus that is invisible to the immune system and presents no conventional drug 

targets (Figure 1). Due to the stability of latent HIV and the longevity of the memory CD4+ T 

cells that harbor it, the half-life of the latent reservoir has been estimated at 44 months (Crooks et 

al., 2015; Finzi et al., 1999; Siliciano et al., 2003), thus natural attrition is not sufficient to cure 

the virus on any practical time-scale. Even when infected persons have been successfully treated, 

having no detectable viral load for years, interruption of treatment results in HIV viremia in as 

little as two weeks (Davey et al., 1999; Imamichi et al., 2001). However, latent HIV is rare, 

being present in roughly 1 in 106 target cells in vivo (Chun et al., 1997; Eriksson et al., 2013; 
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Finzi et al., 1997; Wong et al., 1997). If this relatively small reservoir could be eliminated, a cure 

for HIV would become a practical reality. 

2.1. The problem of partial HIV reactivation 

Proponents of the “shock and kill” approach to HIV treatment hope to identify a mechanism 

by which the latent reservoir can be reactivated on demand. This new treatment modality would 

be applied in combination with conventional HAART, preventing a new reservoir from forming. 

Ideally, this approach would purge HIV from the body, meaning that infected persons would be 

truly cured and could discontinue treatment (Deeks, 2012; Richman et al., 2009). 

An article from the Siliciano Lab (Ho et al., 2013) highlights the difficulty of this 

proposition. The standard test for HIV reactivation, a viral outgrowth assay (VOA), measures the 

proportion of resting CD4+ T cells that release infectious virus after stimulation (Finzi et al., 

1997; Siliciano and Siliciano, 2005). Even under maximal T cell activation, the strongest known 

stimulus to HIV replication, the proportion of patient-isolated CD4+ T cells that were positive by 

VOA was 300 times less than the proportion of these same cells found to contain latent HIV by 

single-cell PCR (Eriksson et al., 2013). These non-inducing proviruses were previously assumed 

to be defective, but direct sequencing revealed that a full 11.9% were intact. Further, when 

populations of 2x105 patient-isolated CD4+ T cells that did not produce virus on the first round 

of stimulation were allowed to recover and then treated again, another 24.6% of these showed 

active replication (Ho et al., 2013). Based on these results, Ho et al. argues that the true size of 

the latent reservoir is 60 times greater than revealed by VOA. This result is more remarkable 

given that the activating stimulus is far too strong to apply in vivo; potential treatments that have 

entered early-stage clinical trials give a much weaker result (Bullen et al., 2014), even when used 
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in combination (Laird et al., 2015). A better understanding of the fundamental mechanisms of 

HIV latency will be required to make progress. 

2.2. Evidence for cellular control of HIV latency 

HIV is a lentivirus, with its compact genome of only 9.7 kb containing one promoter and 

nine overlapping ORFs. The functions of all fifteen viral gene products have been 

comprehensively documented, yielding no evidence of a virally encoded transcriptional program 

for maintaining the latent state. Thus, research on HIV latency has focused on identifying 

cellular determinants of HIV fate, with the goal of relieving barriers to HIV reactivation and 

purging the latent reservoir (Siliciano and Greene, 2011). 

The gene-regulatory circuit that controls HIV should, in the absence of cellular restrictions, 

inevitably trigger viral replication. The sole promoter of HIV, the long terminal repeat (LTR), is 

activated by its gene product Tat, forming a positive feedback loop. Tat binds as an obligate 

monomer to the RNA hairpin formed by stalled transcription at the LTR promoter, relieving the 

stall and driving expression of the full viral transcript, including Tat (Siliciano and Greene, 

2011). Unlike multimeric activators, which can exhibit an activation threshold based on weak 

binding activity below the association constant, a positive feedback circuit based on a 

monomeric activator can only have one stable state (Dill and Bromberg, 2010). The theory of 

activation thresholds is further detailed in Chapter 3 (see Figure 2A). Briefly, if the HIV Tat-

LTR feedback loop is capable of activation, it should always activate once any leaky expression 

has occurred, thus triggering replication. An enduring mystery of HIV research is how the virus 

exploits its host cell to achieve both latency and replication without devoting any obvious 

regulatory mechanisms to the task. 
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2.2.1.  Cellular activation increases LTR expression 

HIV preferentially replicates in activated CD4+ T cells (Spina et al., 1995; Stevenson et al., 

1990; Zack et al., 1990; Zhou et al., 2005). Once the HIV genome became available, and its LTR 

promoter was identified, researchers quickly noted the similarities between LTR and a class of 

activation-induced lymphocytic promoters, typified by the interleukin-2 receptor (IL-2Rα, or 

CD25) and activating cytokines such as TNF-α, IL-2, IL-6, and IL-8 (Böhnlein et al., 1988; Civil 

et al., 1999). All of these promoters, as well as LTR, have a CD28-responsive element 

(CD28RE) that is required for expression. CD28 refers to the co-stimulatory receptor which, in 

combination with the antigen-specific receptor CD3, leads to activation of targeted CD4+ T cells 

(Murphy and Weaver, 2017). These CD28RE promoters are not expressed in resting memory T 

cells, the cell type most likely to harbor latent HIV. 

Expression of CD28RE promoters is controlled by a suite of activation-induced transcription 

factors that have densely packed, and in some cases interacting, binding sites located within the 

CD28RE. The most important of these activating factors are NF-κB (Duh et al., 1989; Nabel and 

Baltimore, 1987; West et al., 2001), NFAT and AP-1 (Duverger et al., 2013; Kinoshita et al., 

1997; Rooney et al., 1995), and SP1 (Perkins et al., 1993; Ross et al., 1991; Suñé and García-

Blanco, 1995). Removing either of the two NF-κB binding sites or the first SP1 binding site 

gives the largest reductions in LTR transcription (Burnett et al., 2009). 

Given that activating cytokines such as TNF-α and IL-2 are known to stimulate CD28RE 

promoter expression, these agents were the first to be proposed as a method for reactivating 

latent HIV (Chun et al., 1998b). However, in HIV-infected persons stabilized on HAART, 

treatment with IL-2 alone (Abrams et al., 2009; Davey et al., 1999; Dybul et al., 2002; Stellbrink 
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et al., 2002), IL-2 plus interferon γ (Lafeuillade et al., 2001), and IL-2 plus anti-CD3 antibody 

(Prins et al., 1999; van Praag et al., 2001) did not reduce the latent reservoir and also caused 

serious adverse effects by overstimulating the immune system. Concerns over similar toxicity 

have limited the use of cytokine mimics, such as Protein Kinase C (PKC) agonists, that also 

activate CD28RE (Delagrèverie et al., 2016). 

Recent clinical trials of cell state activating treatments have focused on more tolerable 

agents. Major classes include Toll-like receptor (TLR) agonists, which stimulate receptors 

involved in nonspecific pathogen recognition (Novis et al., 2013; Scheller et al., 2006); the 

cytokine IL-7, which is involved in T cell homeostasis and also increases CD4+ T cell count 

(Levy et al., 2009; Wang et al., 2005); and disulfiram, an FDA-approved compound used to treat 

alcohol dependence, which can activate NF-κB through the Akt pathway (Doyon et al., 2013; 

Xing et al., 2011). Neither TLR agonists (Winckelmann et al., 2013), nor IL-7 (Katlama et al., 

2016; Vandergeeten et al., 2013), nor disulfiram (Elliott et al., 2015; Spivak et al., 2014) have 

proved effective in patients, though more trials are ongoing (Delagrèverie et al., 2016). 

The use of activating treatments also risks creating the opposite response, in which the 

immune cells become refractory to stimulation. These ‘exhausted’ cells can also be produced by 

the chronic immune activation associated with HIV infection, and are more likely to harbor 

latent HIV (Autran et al., 2013; Barouch and Deeks, 2014; Klatt et al., 2013). Evidence suggests 

that organ transplant recipients put on immunosuppressants show a reduction in latent HIV 

(Stock et al., 2014). Restoration of exhausted immune cells via inhibition of programmed cell 

death protein-1 (PD-1) may similarly reduce the latent reservoir (Said et al., 2010; Velu et al., 
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2015). Inhibitors of PD-1 and PD-1 ligand are currently being tested in several highly anticipated 

clinical trials (Delagrèverie et al., 2016). 

Overall, it is likely that disrupting the HIV latent reservoir by immune activation will cause 

more harm than good. Consequently, those seeking an effective “shock and kill” therapy for HIV 

have largely turned their attention to the mechanisms that restrict LTR expression in non-

activated cells (Ruelas and Greene, 2013; Siliciano and Greene, 2011). 

2.2.2.  The resting cell state restricts LTR expression 

Resting CD4+ T cells present numerous obstacles for HIV replication (Pan et al., 2013). 

These obstacles include barriers to infection, such as depletion of internal nucleotide pools by 

SAMDH1 (Baldauf et al., 2012; Descours et al., 2012) and hypermutation of the HIV genome by 

APOBEC3G (Yu et al., 2004), which prevent efficient reverse transcription and integration of 

the intact HIV provirus (Korin and Zack, 1998; Pierson et al., 2002; Zack et al., 1992; Zhou et 

al., 2005). When infection does occur, resting CD4+ T cells are unable to support expression 

from the LTR promoter, thus HIV remains latent (Agosto et al., 2007; Swiggard et al., 2005). 

In the resting CD4+ T cell, many of the activating transcription factors that target LTR are 

sequestered or inactivated (Ruelas and Greene, 2013). The active form of NF-κB, the p50/RelA 

heterodimer, is sequestered in the cytoplasm by IκBα. NFAT is also retained in the cytoplasm by 

heavy phosphorylation. Instead, the NF-κB binding site of LTR is occupied by the inactive 

p50/p50 homodimer, which lacks a transactivation domain and which recruits repressive histone 

deacetylases (HDACs) to the LTR (Williams et al., 2006). Other repressive transcription factors 

with LTR binding sites, such as YY1 and LSF, are also involved in recruiting HDACs (Coull et 
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al., 2000; Romerio et al., 1997). The absence of activating transcription factors from LTR, and 

the presence of repressors, limits transcriptional initiation at the promoter. 

If HIV transcription does occur in the resting CD4+ T cell, the mRNA is likely to be 

sequestered as well, being retained in the nucleus instead of exported to the cytoplasm for 

translation. This defect in nuclear export can be reversed by overexpression of polypyrimidine 

tract binding protein (PTB), which is also produced upon cellular activation (Lassen et al., 2006). 

HIV mRNA encodes the viral activator Tat, which is required for efficient transcriptional 

elongation from the LTR promoter. In the absence of Tat, 87% of initiated transcripts terminated 

prematurely at positions +55 to +59 (Kao et al., 1987). Thus, blocking nuclear export of HIV 

mRNA further reduces the likelihood that latent HIV will generate enough Tat protein to 

maintain expression of LTR and successfully enter the active replication state.  

The mechanism of Tat activation of LTR is complex, but a key step is the Tat-dependent 

recruitment of P-TEFb to the LTR (Ott et al., 2011; Wei et al., 1998). Recruitment of P-TEFb is 

impaired in resting CD4+ T cells, where P-TEFb is partially sequestered in an inactive complex 

with 7SK RNA and HEXIM-1 (Yang et al., 2001). Active P-TEFb phosphorylates the regulatory 

domain of RNA Pol II (Kim et al., 2002; Parada and Roeder, 1996) and its repressive cofactors 

NELF and DSIF (Bourgeois et al., 2002; Fujinaga et al., 2004; Ivanov et al., 2000), releasing the 

transcriptional stall at LTR and enabling productive elongation. 

P-TEFb provides a potential mechanism for targeted HIV latency reactivating agents that do 

not require activation of the resting cell. The most promising class of agents, bromodomain 

(BET) inhibitors, block the binding of BRD4 and related BET proteins to P-TEFb and have been 

shown to increase LTR activity (Banerjee et al., 2012). The mechanism of activation is 
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controversial, but it is believed that BRD4 competes with other potential binding partners of P-

TEFb, including Tat (Bisgrove et al., 2007; Li et al., 2013) but also Tat-independent factors 

(Boehm et al., 2013) including NF-κB (Barboric et al., 2001). BET inhibitors are being 

developed as a cancer treatment, and synergize with other HIV latency reactivating agents in 

vitro, but have not yet been clinically tested in HIV-infected persons (Delagrèverie et al., 2016). 

2.2.3.  Epigenetic effects restrict LTR expression 

Because HIV integrates into the genome of its host cell, LTR is subject to epigenetic 

regulation, just as other cellular promoters are. The prospect of reactivating latent HIV by 

altering the repressive chromatin environment of its genomic location has garnered intense 

research interest. The major therapeutic agents that have been clinically tested in HIV-infected 

persons are histone deacetylase (HDAC) inhibitors (Delagrèverie et al., 2016), though a diverse 

set of epigenetic mechanisms have been implicated in the formation and maintenance of HIV 

latency (Ruelas and Greene, 2013; Siliciano and Greene, 2011). 

Histone acetylation plays a role in fine-tuning expression of regulated eukaryotic promoters. 

In activated CD4+ T cells, the CD28RE factors NF-κB (Zhong et al., 2002) and NFAT (García-

Rodríguez and Rao, 1998) recruit the histone acetyl transferase (HAT) p300/CBP to the LTR, 

resulting in localized opening of the chromatin and increased transcriptional activation. Notably, 

p300/CBP also interacts with the viral activator Tat, and provides functionally important 

acetylations to the Tat protein (Ott et al., 1999). In resting CD4+ T cells, the p50/p50 NF-κB 

homodimer (Williams et al., 2006) and other repressive factors (Coull et al., 2000; Romerio et 

al., 1997) recruit HDACs to the LTR instead, promoting a closed chromatin state that is less 

likely to be transcribed. 
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HDAC inhibitors were quickly identified as potential HIV latency reactivating agents in vitro 

(Laughlin et al., 1993; Van Lint et al., 1996). The first HDAC inhibitor tested in vivo was 

valproic acid (VPA), an FDA-approved anticonvulsant that targets Class I HDACs (Phiel et al., 

2001). Class I HDACs are the predominant type found at the LTR in resting CD4+ T cells 

(Keedy et al., 2009). While an early trial of VPA in HIV-infected persons gave promising results 

in three of the four cases (Lehrman et al., 2005), the ensuing wave of follow-up trials failed to 

demonstrate any depletion of the HIV latent reservoir following VPA treatment (Archin et al., 

2010; Archin et al., 2008; Routy et al., 2012; Sagot-Lerolle et al., 2008; Siliciano et al., 2007; 

Steel et al., 2006). 

Another, more potent HDAC inhibitor, suberoylanilide hydroxamic acid (SAHA) or 

vorinostat, is an FDA-approved cancer treatment. Vorinostat can reactivate HIV from resting 

CD4+ T cells derived from HIV-infected persons on HAART (Banerjee et al., 2012; Elliott et al., 

2014). Romidepsin is another, yet more potent HDAC inhibitor with greater Class I specificity, 

also FDA-approved for cancer treatment. In clinical trials, romidepsin triggered reactivation of 

HIV mRNA from resting CD4+ T cells and detectable HIV viremia (Søgaard et al., 2015). 

However, in clinical trials, vorinostat (Barton et al., 2014; Elliott et al., 2014; Ke et al., 2015), 

the chemically related compound panobinostat (Rasmussen et al., 2014), and also romidepsin 

(Søgaard et al., 2015) all failed to deplete the HIV latent reservoir. Trials of these agents, alone 

and in combination with anti-HIV therapeutic vaccines, are ongoing (Delagrèverie et al., 2016).  

DNA methylation serves as a longer-term method of gene silencing. This modification is 

common in heterochromatic regions of mammalian DNA, occurring largely at CpG dinucleotides 

(Deaton and Bird, 2011; Razin and Cedar, 1977). Many promoters, including LTR, have an 
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‘island’ of CpG sites that facilitate silencing by DNA methylation (Bednarik et al., 1990). 

Whether methylation of the LTR is a major driver of HIV latency in vivo remains controversial. 

In cell line models (Bednarik et al., 1990; Blazkova et al., 2009; Kauder et al., 2009; Pearson et 

al., 2008) and primary CD4+ T cells infected in vitro (Kauder et al., 2009; Tyagi et al., 2010), 

latent HIV is hypermethylated at the LTR promoter. Inhibition of DNA methylation with 5-aza-

2’deoxycytidine restores the impaired response of LTR to cellular activation (Blazkova et al., 

2009; Kauder et al., 2009). However, recent studies of latently infected CD4+ T cells derived 

from aviremic HIV-infected persons on HAART do not reveal hypermethylation of LTR in the 

natural context (Blazkova et al., 2012; Ho et al., 2013). While it remains possible that 

methylation is involved in the maintenance of HIV latency (Blazkova et al., 2009), it is unlikely 

to be the dominant mechanism of latency establishment. 

The effect of genomic location on HIV activity has also been investigated. HIV integrates 

semi-randomly into the host genome, with a bias towards actively expressed genes (Han et al., 

2004; Schröder et al., 2002). This bias is attributed to LEDGF/p75, a host cell chromatin 

tethering factor and required cofactor for HIV integration (Marshall et al., 2007; Shun et al., 

2007), which specifically targets genes localized to nuclear pores (Marini et al., 2015). An early 

hypothesis was that HIV latency was the unintended result of integration within transcriptionally 

disfavored regions of the genome. However, latent HIV integration sites in a Jurkat CD4+ T cell 

model are not only enriched for globally repressed heterochromatic sites, including centromeric 

repeats (Jordan et al., 2003), but also for sites within highly expressed genes (Lewinski et al., 

2005). A comparison of five in vitro models, using primary cells and cell lines, reveals no 

consistent predictors of HIV latency based on genomic integration site (Sherrill-Mix et al., 
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2013). In latently infected CD4+ T cells from aviremic persons on HAART, most integration 

sites are within actively transcribed regions (Han et al., 2004; Ho et al., 2013). 

The unexpected presence of latent HIV in actively transcribed genomic regions has prompted 

the investigation of transcriptional interference (Shearwin et al., 2005) as a mechanism for 

suppressing LTR expression. For primary CD4+ T cells in vitro, there was a modest 1.8-fold bias 

in latent HIV found in the same orientation as the host gene, rather than the reverse orientation 

(Shan et al., 2011). If the provirus is integrated in the same orientation as the host gene, ‘read-

through’ by RNA Pol II may displace nascent assemblages of transcriptional machinery on LTR, 

thus preventing its expression (Greger et al., 1998). In a Jurkat CD4+ T cell model, this 

interference can be stopped by blocking transcription of the upstream host gene (Lenasi et al., 

2008). Alternately, if the provirus is integrated in the reverse orientation, the RNA Pol II 

complexes from LTR may collide with those of the host gene, causing early arrest of 

transcription (Lewinski et al., 2005). However, it is unclear how these site-specific effects could 

cause the general phenomenon of latency, nor how strong activating stimuli could produce a 

partial response (Ho et al., 2013), given that binding of activated NF-κB effectively blocks 

transcriptional interference (Lenasi et al., 2008). 

2.3. Evidence for viral control of HIV latency 

Given the complex relationship between expression of the HIV LTR promoter and numerous 

cellular factors acting at the global trans and locus-specific cis levels, and the lack of latency-

specific transcripts that maintain LTR repression, researchers have long supposed that cell state 

is the predominant driver of HIV latency. The prevailing hypothesis has been that latency is an 

evolutionary accident, resulting when HIV infects an activated CD4+ T cell that is in the process 
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of transitioning to the quiescent memory cell state (Coffin and Swanstrom, 2013; Siliciano and 

Greene, 2011). However, this hypothesis had not been empirically tested, and recent 

experimental results have failed to support it (Razooky et al., 2015). Emerging evidence suggests 

that the ‘bet-hedging’ phenotype of HIV, in which both latency and active replication are 

potential outcomes of infection, increases overall fitness and is actively maintained by features of 

the Tat-LTR circuit (Rouzine et al., 2015; Weinberger, 2015). 

2.3.1.  The HIV fate decision occurs shortly after infection 

Latency is established early during acute infection, likely within days of initial HIV exposure 

(Chun et al., 1998a). In a macaque model, treatment with HAART three days post intra-rectal 

exposure to SIV was unable to prevent establishment of the latent reservoir (Whitney et al., 

2014), and in a recent human case, the child of an untreated HIV+ mother was ultimately not 

protected by antiviral treatment initiated within 30 hours of birth (Ledford, 2014). To directly 

measure the kinetics of the HIV fate decision in vitro, dual-reporter viruses were developed, with 

a fluorescent LTR marker and a second constitutive marker that also reveals latently infected 

cells. In established cell lines, the majority of HIV infections result in immediate latency 

(Calvanese et al., 2013; Dahabieh et al., 2013).  

The simplicity of this dual-reporter in vitro system excludes several common explanations 

for HIV latency. While the cell lines used are still not fully uniform, the complex immune 

dynamics present in vivo are absent. Further, the rapid onset of latency precludes a major role for 

epigenetic silencing, which acts on timescales of a week or more in T cells (Tyagi et al., 2010). 

The most likely conclusion is that the Tat-LTR positive-feedback circuit provides the necessary 
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conditions for the short-term establishment of latency in HIV-targeted cells (Razooky et al., 

2015; Weinberger, 2015). 

2.3.2.  Latency may increase the odds of HIV transmission 

In the era of HAART, latency provides an advantage by preventing the clearance of 

established HIV infections (Richman et al., 2009). HAART is nevertheless a recent invention, 

and cannot account for the ancient origins of latency, which appears to be a common feature of 

the lentiviral clade (VandeWoude and Apetrei, 2006). Indeed, latency should decrease replicative 

fitness, as it decreases the viral load and thus the probability of transmission. 

In a recent modeling study, Rouzine et al. (2015) argues that this decrease in viral load is 

balanced by an increased probability that the new infection will become self-sustaining. Over 

90% of HIV infections occur via mucosal routes (e.g., genital or oral contact), and these sites are 

depleted in HIV-targeted immune cells (Haase, 2011). A latency-deficient HIV strain might 

therefore “burn out” by replicating in an environment where the probability of transmission is 

low. However, if the virus temporarily enters latency, then reactivates in a target-rich 

environment such as a lymph node, systemic infection will likely occur. The model of Rouzine et 

al. (2015) thus calculates the optimal frequency of latent infections at 50%. This figure is not 

dissimilar to published estimates of HIV latency rates, which indicate that roughly half of all 

infections become latent in both established cell lines and activated primary CD4+ T cells 

(Calvanese et al., 2013; Chavez et al., 2015; Dahabieh et al., 2013). 

This model assumes that HIV transmission is a rare event, which is well attested. Infections 

typically expand from a single founder sequence; the diversity of HIV sequences found within 
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the infected person emerges in situ (Kearney et al., 2009; Keele et al., 2008). Less than 1% of 

unprotected sex acts successfully transmit HIV (Fraser et al., 2007; Gray et al., 2001; Wawer et 

al., 2005), and in primates, mucosal challenge experiments with large doses of SIV often fail to 

establish systemic infections (Haase, 2011; Miller et al., 2005).  

The evidence that latency increases the probability of transmission is more speculative. It 

was recently shown that sexual transmission of HIV does not select for latency-deficient strains 

with higher replicative capacity, but rather for consensus-like LTR variants with a substantial 

probability of latency (Deymier et al., 2015). Given the high mutation rate of HIV, which has a 

labile RNA genome and experiences roughly one mutation per replication event (Cuevas et al., 

2015; Perelson, 2002), it would be extraordinary if HIV were unable to solve the latency 

“problem” over evolutionary time. Therefore, HIV latency is very likely to be adaptive. 

2.3.3.  Tat feedback is sufficient to maintain LTR activity 

Tat plays a central role in the control of HIV replication. While the LTR does respond to cell 

state, even strong activating stimuli (e.g., TNF-α) only increase LTR expression roughly 2-fold, 

while Tat increases LTR expression over 50-fold (Razooky and Weinberger, 2011; Weinberger 

et al., 2005; Weinberger et al., 2008). When Tat activity is disrupted by mutation (Emiliani et al., 

1998; Yukl et al., 2009) or by direct inhibition (Mousseau et al., 2015), HIV is unable to exit 

latency. Conversely, when the HIV-infected cells constitutively express Tat, latency is greatly 

reduced (Donahue et al., 2012). Inducible Tat expressed in trans is able to reactivate latent HIV 

in short-term infections with a Tat-deleted virus (Razooky et al., 2015), and exogenous Tat 

reverses long-term latency in cell line models (Jordan et al., 2003; Weinberger et al., 2008).  
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To directly test the hypothesis that cellular silencing is sufficient to break Tat-LTR positive 

feedback and push HIV into latency, Razooky and Pai et al. (2015) activated primary CD4+ T 

cells, infected them with single-round (env mutant) HIV, then allowed the cells to relax to the 

resting memory state. Strikingly, while expression of the activation markers CD25 and CD69 

declined to baseline levels within a week, only 11.6% of actively transcribed HIV loci had turned 

off after 13 days without stimulation. This result indicates that Tat feedback is sufficient to 

overcome progressive cellular silencing and maintain expression of the Tat-LTR feedback loop, 

despite the less favorable conditions for LTR expression (Razooky et al., 2015).  

Naively, it seems obvious that Tat would control HIV replication, since Tat plays an 

indispensable role in the complex biochemistry of LTR activation (Ott et al., 2011). In genetics 

terms, the absence of Tat, and therefore of LTR transcriptional elongation, is ‘epistatic’ to 

activating factors that promote LTR transcriptional initiation. The broader point is that, since Tat 

is sufficient to drive LTR activity, HIV evolution should be able to tune the fate decision 

between latency and active replication for optimal fitness by changing the feedback properties of 

the Tat-LTR circuit, all without changing the host cell. For example, a shorter-lived or less active 

variant of Tat would increase latency, while a more active variant would reduce latency. 

A synthetic biology study directly tested the hypothesis that tuning the strength of Tat-LTR 

feedback can affect latency (Razooky et al., 2015). By adding an FKBP degron tag, the rate of 

Tat degradation can be reversibly decreased, with this shorter-lived Tat providing weaker 

positive feedback to LTR. As predicted, increasing the half-life of Tat from the FKBP-shortened 

2.5 hours to its native 8 hours was sufficient to reactivate the majority of latent isoclones tested 

(Razooky et al., 2015). Tat-LTR feedback was similarly weakened by the orthogonal method of 
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SirT1 overexpression, which decreases the proportion of active Tat in the cell (Weinberger et al., 

2008). Tat is only functionally active when acetylated (Kiernan et al., 1999; Ott et al., 1999); its 

activity is controlled by a futile cycle of acetylation by p300 and deacetylation by SirT1 (Pagans 

et al., 2005). Overexpression of SirT1 was sufficient to increase the probability of latent 

infection (Weinberger et al., 2008). 

These synthetic biology studies also provide direct evidence that a minimal circuit containing 

only LTR and Tat is sufficient to generate ‘phenotypic bifurcation’, in which isoclonal cell lines 

hosting, e.g., a lentiviral LTR-GFP-IRES-Tat construct produce bimodal distributions of GFP 

activity (Weinberger et al., 2005). This minimal Tat-LTR feedback circuit has none of the 

standard indicators of bistability (as detailed in Chapter 3), and is likely monostable OFF 

(Weinberger and Shenk, 2007). However, stochastic modeling suggests that ‘noise’ in LTR 

expression can be amplified by Tat positive feedback to create the observed bifurcations 

(Weinberger et al., 2005; Weinberger and Shenk, 2007), potentially sustaining a transient pulse 

of LTR activity for long enough to enable HIV replication (Weinberger, 2015). 

2.3.4.  The LTR sequence drives transcriptional pausing 

Positioned nucleosomes are a major source of the intrinsic noise in eukaryotic transcription, 

especially for non-constitutive promoters (Symmons and Raj, 2016), which typically have a 

high-occupancy nucleosome near the transcriptional start site (TSS) that can intermittently pause 

expression (Tirosh and Barkai, 2008). In the case of LTR, there are two characteristic positioned 

nucleosomes, which occur regardless of integration site: nuc-1, which is adjacent to the TSS and 

blocks elongation of RNA Pol II, and nuc-0, which is ~450 bases upstream and interferes with 

transcription factor binding (Van Lint et al., 1996; Verdin et al., 1993). These nucleosomes can 
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be remodeled by epigenetic factors, including histone acetyl transferases (HATs) recruited by 

activated NF-κB and NFAT (Bednarik et al., 1990; Kauder et al., 2009; Pearson et al., 2008) and 

by SWI/SNF complexes (Rafati et al., 2011). However, the dominant driver of baseline 

nucleosome positioning is the genomic sequence at that location (Struhl and Segal, 2013). The 

more nucleosome-bound the LTR becomes, the lower the frequency of expression bursts, and the 

higher the noise relative to the mean (Dey et al., 2015). Thus, by creating large, infrequent bursts 

of Tat expression, the LTR sequence itself likely drives the ‘phenotypic bifurcation’ of HIV 

latency (Weinberger, 2015). 

2.4. Background on transcriptional noise 

2.4.1.  Intrinsic noise as a driver of cell-to-cell variability 

Stochastic fate decisions, in which genetically identical cells produce different phenotypic 

outcomes, are driven by the inherent noise of biological systems (Raj and van Oudenaarden, 

2008). Noise can be divided into two broad categories: ‘extrinsic’, which pertains to cell-to-cell 

differences in global factors such as environmental stimuli, cell size, stage in cell cycle, and 

availability of transcriptional components; and ‘intrinsic’, which pertains to variations in 

expression of a single promoter locus. The importance of intrinsic noise was elegantly 

demonstrated by Elowitz et al. (2002), who measured the expression of two identical E. coli 

promoters driving fluorescent proteins of different colors. In this system, correlated expression is 

due to extrinsic noise, while the remaining variation is due to intrinsic noise. This cell-to-cell 

intrinsic variability was clearly visible from the range of blended colors produced, especially 

under conditions that repress transcription (Elowitz et al., 2002). 
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The mechanisms that generate intrinsic noise are not completely understood. While the 

combination of low absolute numbers of mRNA and efficient translation amplifies intrinsic noise 

(Ozbudak et al., 2002), other processes contribute as well. In bacteria, transcription occurs in 

bursts (Golding et al., 2005), broadening the distribution of single-cell mRNA counts relative to 

the Poisson curve expected from independent single mRNA production events occurring with 

constant probability (So et al., 2011; Taniguchi et al.; Zong et al., 2010). The periodic buildup 

and release of DNA supercoiling likely accounts for the bursting observed in highly transcribed 

bacterial genes (Chong et al., 2014). For weaker promoters, these bursts likely involve relatively 

few mRNAs; some studies observed no noise effect attributable to bursting at the transcriptional 

level (Cai et al., 2006; Yu et al., 2006). 

In eukaryotes, which have additional layers of chromatin organization and regulation, the 

situation is even more complex. In S. cerevisiae, extrinsic noise dominates (Raser and O'Shea, 

2004), but in higher eukaryotes, the intrinsic noise from large transcriptional bursts has a larger 

influence (Symmons and Raj, 2016). Due to strong intrinsic noise, expression of co-regulated 

genes (Shah and Tyagi, 2013), or even of matched alleles (Levesque and Raj, 2013), becomes 

largely uncorrelated within a single cell, and the mapping between cellular trans factors and 

locus-specific expression becomes abstract and probabilistic. There are numerous factors that 

influence bursting, but in general, trans factors regulate burst size and cis factors regulate burst 

frequency (Symmons and Raj, 2016). 

2.4.2.  Evidence for hour-scale "bursts" of transcription 

Based on inference from mRNA and protein distributions, the average burst cycle of a 

mammalian promoter was estimated to require a few hours to complete, both in HIV LTR (Dar 
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et al., 2012; Dey et al., 2015; Singh et al., 2010) and in other promoters (Raj et al., 2006; 

Viñuelas et al., 2013). Similar results were obtained in live human tissues (Bahar Halpern et al., 

2015). Instead of short-term activity bursts with a random distribution, as observed in bacteria, 

these state changes (which I refer to as “toggling”) are longer-lasting and appear more structured. 

Toggling has been directly visualized by time-lapse microscopy using reporter genes 

(Featherstone et al., 2016; Harper et al., 2011; Suter et al., 2011). These measurements in diverse 

eukaryotic promoters confirm the generality of hour-scale toggling, and reveal further structures 

within the “noise”; for example, after exiting the active state, the promoters have a ‘refractory 

period’ in which they cannot be reactivated (Cesbron et al., 2015; Harper et al., 2011; Suter et 

al., 2011), and while active, the promoters have smaller-scale bursts of activity that may be 

comparable to those observed in bacteria (Featherstone et al., 2016; Tantale et al., 2016). 

2.4.3.  LTR noise can be tuned to control HIV latency 

When noise is detrimental, promoter sequences can evolve towards more consistent gene 

expression (Batada and Hurst, 2007; Fraser et al., 2004). Given the unusually noisy expression of 

the HIV LTR promoter (Dar et al., 2012; Dey et al., 2015; Singh et al., 2010), it is likely that 

noise plays some kind of adaptive role. Altering the level of noise in gene regulatory networks is 

known to influence stochastic fate decisions (Balázsi et al., 2011). 

LTR noise has been experimentally modified by removing key transcription factor binding 

sites in the minimal LTR-GFP-IRES-Tat model. The two NF-κB sites and first SP1 site had the 

largest impact on LTR output (Burnett et al., 2009), while mutations in the third SP1 site and 

TATA box most strongly increased the switching rate between ON and OFF states (Miller-

Jensen et al., 2013). LTR noise is also increased by latency reactivating compounds such as 
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TNF-α, TSA, and JQ1. TNF-α and TSA increase both the frequency (Singh et al., 2010) and the 

size of LTR expression bursts, with burst frequency increasing at low expression levels and burst 

size increasing at higher expression levels (Dar et al., 2012). Unlike conventional activators, JQ1 

does not increase mean LTR expression, and acts primarily through increasing burst size (Boehm 

et al., 2013). On the theory that previous screens may have missed ‘noise enhancers’ like JQ1, 

Dar et al. (2014) performed a screen of FDA-approved compounds, identifying several that 

increased LTR noise, plus several ‘noise suppressors’ with inverse effects. Despite not increasing 

mean LTR expression, these ‘noise enhancers’ synergized with TNF-α and prostratin in 

reactivating latent HIV from cell lines and primary CD4+ T cells (Dar et al., 2014). 

2.5. Background on classic bistable fate decisions 

Our understanding of the HIV fate decision between latency and active replication (Figure 1) 

will be informed by other well-studied examples of genetic circuits that produce two distinct 

bistable outcomes. Those gene regulatory networks (GRNs) based on transcriptional regulation 

fall into two distinct design patterns: competing negative feedback loops, and self-cooperative 

positive feedback with activation thresholds (Losick and Desplan, 2008; Mitrophanov and 

Groisman, 2008). As the HIV Tat-LTR circuit is likely controlled primarily by transcriptional 

regulation (Weinberger, 2015), such GRNs will be the focus of this discussion. Fate decisions 

based on post-transcriptional regulation and signaling networks use a more diverse range of 

ultrasensitive processes (Ferrell and Ha, 2014a, b, c; Ha and Ferrell, 2016). 

2.5.1.  Competing negative feedback loops 

The most obvious analogy to HIV latency is the fate decision performed by phage λ, an E. 

coli virus and a key model system of early genetics research (Ptashne, 2004). Phage λ infection 
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may proceed to active replication and lysis, or alternately, the phage may integrate into the 

bacterial genome and form a ‘lysogen’ capable of reactivation at a later time. This fate decision 

is controlled by multiple overlapping feedback loops which bias the decision towards the optimal 

outcome for a given cell state. However, the core functionality is performed by a ‘toggle switch’, 

in which two repressors, Cro and CI, compete to repress one another. Each repressor is 

associated with a separate dedicated gene expression program, where Cro promotes lysis and CI 

promotes lysogeny; the competition between Cro and CI ensures that these programs are 

mutually exclusive (Arkin et al., 1998; Bednarz et al., 2014). A dedicated latency program is also 

present in some pathogenic human viruses, including herpesviruses (Farrell et al., 1991), though 

this feature is absent in HIV (Siliciano and Greene, 2011). 

The ‘dual-repressor toggle switch’ has been replicated by synthetic biology, demonstrating 

the generality of this circuit (Gardner et al., 2000). As in the core circuit of phage λ, each 

repressor targets the promoter of the other. When three such modules are connected in a loop, the 

result is a ‘repressilator’ with periodic cycles of activity (Elowitz and Leibler, 2000). 

2.5.2.  Self-cooperative positive feedback loops 

The classic example of a fate decision controlled by self-cooperative positive feedback is that 

of competence in B. subtilis (Maamar and Dubnau, 2005; Süel et al., 2006). Entry into the 

competent state is driven by the transcriptional activator ComK, which cooperatively binds its 

own promoter as a dimer of dimers (Hamoen et al., 1998). As in phage λ, this core circuit is 

tuned by several auxiliary feedback loops that respond to environmental stimuli. However, the 

bistable response of ComK is chiefly enabled by non-linearity attributable to self-cooperative 

binding (see also Figure 2A). When ComK is scarce, it is largely present as inactive monomers, 
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while ComK activity quickly increases as its concentration approaches the dimerization constant. 

This intrinsic threshold limits the ComK response to weak or transient stimuli. The choice of 

individual cells to enter the competent state remains stochastic, with ‘noise’ from the ComK 

promoter playing a key role (Maamar et al., 2007). The ComK circuit is similar to the Tat-LTR 

positive feedback loop that controls HIV replication, with one striking difference: Tat binds as a 

monomer and does not exhibit cooperativity (Weinberger and Shenk, 2007). 

2.5.3.  Bimodality from non-cooperative positive feedback 

There is evidence that cooperative self-activation may be dispensable for generating bimodal 

expression from a positive feedback circuit in eukaryotes, though such a circuit would not 

exhibit true bistability. For example, To and Maheshri (2010) demonstrated bimodality in a 

synthetic positive feedback circuit in S. cerevisiae. This circuit was based around the Tet-OFF 

activator, which exhibits an effectively non-cooperative binding response (Tet-OFF dimerizes 

below effective concentrations). Theoretical studies predict that bimodality is possible with non-

cooperative positive feedback only when transcription occurs in large, infrequent bursts, and 

when the activator increases the frequency of bursting (Friedman et al., 2006). Variants of the 

synthetic Tet-OFF feedback loop that exhibited smaller, more frequent bursts, or that increased 

the effective burst frequency by reducing the Tet-OFF degradation rate, did not exhibit 

bimodality (To and Maheshri, 2010). Many non-constitutive eukaryotic promoters ‘toggle’ 

between active bursts of expression and long periods of inactivity (Symmons and Raj, 2016), 

with the HIV LTR promoter being a clear example (Dar et al., 2012; Singh et al., 2010). The 

implications of LTR promoter toggling for HIV latency are discussed in Chapter 4. 
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Chapter 3:  Transient thresholding in the HIV Tat fate-selection circuit 

Chapter 3 was reproduced from Aull, K.H., Thomson, M., and Weinberger, L.S. (2016). 

Transient thresholding in the HIV Tat fate-selection circuit. (in submission). K.H.A. and L.S.W. 

designed the research; K.H.A. performed the research; K.H.A., M.T., L.S.W. analyzed data; 

K.A., M.T., L.S.W. wrote the paper. 

3.1. Abstract 

Threshold generation in fate-selection circuits is often achieved through deterministic 

bistability, which requires cooperativity (i.e., nonlinear activation) and associated hysteresis. 

However, the Tat positive-feedback loop that controls HIV’s fate decision between replication 

and proviral latency lacks self-cooperativity and deterministic bistability. Absent cooperativity, it 

is unclear how HIV can temporarily remain in an off state long enough for the kinetically slower 

epigenetic silencing mechanisms to act—expression fluctuations should rapidly trigger active 

positive feedback and replication, precluding establishment of latency. Here, using flow 

cytometry and single-cell imaging, I find that the Tat circuit exhibits a transient activation 

threshold, which largely disappears after ~40 hours accounting for the lack of deterministic 

bistability and hysteresis. The molecular threshold at early times is ~104 Tat transactivator 

molecules per cell and cellular signaling can modulate the transient threshold value. Existing 

models appear unable to reproduce this transient threshold effect, and I discuss models that, 

given further data, may recapitulate this phenomenon. 
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3.2. Introduction 

Thresholds allow biological systems to either respond to, or disregard, a signaling input 

based on the input’s strength or level. Such thresholds are critical for cellular decision making 

and are often a key design feature of gene-regulatory circuits, enabling the regulatory circuit to 

be robust to spurious signals or noise (Alon, 2007; Gunawardena, 2005; Wall et al., 2004). 

Historically, the mechanism for threshold generation was thought to be either the presence of 

deterministic multistability (Das et al., 2009; Ferrell, 2002; Strogatz, 2014) or zero-order 

ultrasensitivity (Goldbeter and Koshland, 1981; Melen et al., 2005), both of which require 

specific regulatory architectures (high-order self-cooperativity with hysteresis and zero-order 

oppositional reactions, respectively). For example, if a putative activator molecule requires 

homo-dimerization (i.e., self-cooperativity) to become functional, this automatically generates a 

molecular threshold—determined by the dimerization disassociation constant—and can lead to 

deterministic bistability; below the dimerization threshold there is no functional activator, 

whereas above the threshold activation ensues.  

Formally, deterministic multistability requires nonlinearity in the governing differential 

equations, which can be achieved by self-cooperative positive feedback:  

 
	 
dX
dt

= a i XH

k+ XH − r i X   (1.1) 

 

where X is the activator, a is the feedback strength, k is a Michaelis constant, r is the decay rate, 

and H is the Hill coefficient (Figure 2A, left). When the positive feedback is self-cooperative 

(i.e., H > 1), the circuit can exhibit deterministic multistability; in particular, if H = 2, the system 

can be bistable having two stable states (ON and OFF) separated by an unstable state, the 
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‘separatrix’. Bistable circuits exhibit a response threshold (specifically, at the unstable 

separatrix), and are characterized by hysteresis, a type of memory in which the circuit produces 

different dose-response curves depending on whether signal increases or decreases (Strogatz, 

2014). In contrast, positive-feedback circuits lacking self-cooperativity (H = 1) are monostable, 

having no separatrix (or threshold), no hysteresis, and only a single stable state; if this circuit can 

be turned ON, then the only stable state is the ON state (assuming the biochemical rate constants 

are not changing), with the OFF state being necessarily unstable (Figure 2A, right). 

Gene-regulatory circuits typically achieve H > 1 and bistability via cooperative binding of a 

transcription factor to its promoter (Losick and Desplan, 2008; Mitrophanov and Groisman, 

2008). Notable examples of bistable gene-regulatory circuits include the toggle switch (Gardner 

et al., 2000), phage λ lysis-lyogeny (Arkin et al., 1998; Bednarz et al., 2014), the lac operon 

(Ozbudak et al., 2004), and competence in B. subtilis (Maamar and Dubnau, 2005; Süel et al., 

2006), all of which have thresholds established by high-cooperativity feedback loops. While 

other mechanisms for generating a threshold exist, e.g. zero-order ultrasensitivity (Goldbeter and 

Koshland, 1981; Melen et al., 2005) or buffered threshold-linear responses (Chen and Arkin, 

2012; Levine et al., 2007), these rely on an excess of substrate (i.e., the promoter itself) and are 

not readily applicable to promoter regulation (Dill and Bromberg, 2010). 

In stark contrast to these canonical examples, the circuit that controls HIV’s fate decision 

between active replication and proviral latency (Figure 1) has none of the classic mechanisms 

associated with deterministic bistability or ultrasensitivity (Weinberger, 2015). Latent HIV is the 

chief barrier to a cure (Richman et al., 2009) and the decision between active replication and 

latency in HIV is governed primarily by the virus’s positive-feedback circuit in which HIV Tat 
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protein transactivates expression of the HIV long terminal repeat (LTR) promoter, the only 

promoter in the virus (Figure 1). During latency, the LTR is largely quiescent but establishment 

of latency is not correlated with viral integration site (Ho et al., 2013; Lewinski et al., 2005; 

Sherrill-Mix et al., 2013) or progressive cellular silencing (Razooky et al., 2015). Specifically, 

epigenetic silencing occurs on the order of weeks whereas in vitro, while ~50% of infections 

result in immediate establishment of latency (Calvanese et al., 2013; Dahabieh et al., 2013), and 

in vivo latency is established within 3 days (Whitney et al., 2014). Thus, latency establishment 

appears far too rapid for epigenetic silencing, which acts on timescales of a week or more in T 

cells (Tyagi et al., 2010). Instead, the Tat-LTR positive-feedback circuit appears necessary and 

sufficient for establishment of latency (Razooky et al., 2015), while long-term stability of latency 

is likely mediated by epigenetic silencing (Siliciano and Greene, 2011). 

Tat acts as a monomeric transactivator, binding to a single site on a nascent RNA hairpin 

formed by stalled RNA polymerase II at the LTR promoter. Because Tat binds non-

cooperatively, classical deterministic models predict that the circuit should have no activation 

threshold and thus the latent state would be unstable (Weinberger and Shenk, 2007). Thus, it is 

unclear how, without bistability, HIV generates a molecular threshold in Tat so that it can even 

temporarily remain in an off state and provide an opportunity for the kinetically slower 

epigenetic silencing mechanism to act. Given the noisy expression of the HIV LTR promoter 

(Dar et al., 2012; Dey et al., 2015; Singh et al., 2010), Tat positive feedback should trigger active 

replication within these first few days. This would preclude establishment of proviral latency, as 

active replication destroys the cell within hours (Perelson et al., 1996) and silencing of an 

actively replicating cell cannot overcome active HIV gene expression (Razooky et al., 2015). In 
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general, it remains unclear how the Tat positive-feedback circuit that lacks deterministic 

bistability (and ultrasensitivity) can generate a threshold to establish a stable off state. 

Here, we examine the HIV Tat-LTR circuit to determine how a threshold can be generated 

without self-cooperativity. Using a combination of single-cell experimental analyses, both flow 

cytometry and time-lapse fluorescence microscopy, we find that the LTR circuit exhibits a 

transient threshold for activation by Tat. The threshold gradually disappears and at ~40 hours, 

there appears to be no effective threshold such that the LTR-Tat circuit does not exhibit 

hysteresis or deterministic bistability. The molecular mechanisms enabling this type of transient 

thresholding remain unclear, but the threshold is tunable via cellular activation (e.g. NF-κB 

signaling), which modulates the kinetics of promoter toggling. 

3.3. Materials and Methods 

3.3.1.  Cell lines and reagents 

The minimal Ld2GITF feedback circuit and the doxycycline-inducible Tat-Dendra cell line 

have been previously described (Razooky et al., 2015). Here, the lentiviral LTR mCherry 

reporter from (Razooky et al., 2015) was modified to contain an N-terminal PEST tag, giving 

LTR mCherry-deg, with mCherry protein half-life 10.7 hours (data not shown). Plasmid maps 

and cloning details available on request. LTR mCherry-deg was packaged in 293T cells and used 

to infect Jurkat Tat-Dendra cells at low MOI (mCherry positive cells < 5%). These cells were 

induced at high Dox (500 ng/mL) for 2 days, then FACS sorted to isolate dual-positive single 

cells using a FACSAria II (BD Biosciences USA, San Jose, CA) which were grown into 

isoclonal populations. Isoclones were screened to confirm robust dual-positive response to Dox 

with negligible expression at baseline. Unless otherwise stated, all chemical reagents were 
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sourced from Sigma-Aldrich USA (Saint Louis, MO). When specified, the HIV reactivating 

agents TNF (10 ng/mL tumor necrosis factor alpha) or TSA (400 nM trichostatin A) were 

supplied at the time of Dox addition. 

3.3.2.  Flow cytometry data collection and analysis 

To generate dose-response plots, each isoclone and condition was tested at eight doxycycline 

(Dox) levels: seven two-fold dilutions, from 250 to 3.9 ng/mL, plus a zero-Dox control. Data 

were collected on a MACSQuant™ high-throughput flow cytometer (Miltenyi Biotec, Bergisch 

Gladbach, Germany), gated for live single cells in FlowJo™ (Tree Star, Ashland, OR). The 

mCherry positive cutoff was chosen to exclude non-induced cells. All eight Dox dilutions were 

pooled and cells were grouped by Tat-Dendra signal to estimate the conditional probability of 

LTR response for the specific Tat level. A schematic of this workflow, with sample data, is 

presented in Figure 3B-D (all Tat-Dendra values were background-subtracted, using the mean of 

zero-Dox control as background; clusters with non-positive Tat-Dendra values were not 

considered in the analysis). The dose-response and dose-mean expression curves obtained by this 

method were fit to a standard Hill function: . Nonlinear least-

squares fitting was performed in R, using the nlsLM function from the minpack.lm package 

(CRAN). 

3.3.3.  Immobilization of cells for time-lapse imaging 

5-10x106 actively dividing (healthy) Jurkat cells were washed twice in regular phosphate 

buffered saline (PBS), then again in mildly alkalized PBS (pH 8.0). Immediately before use, a 

single aliquot of biotinylation reagent (1 mg EZ-Link Sulfo-NHS-LC-Biotin, ThermoFisher, 
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Waltham, MA) was re-suspended in 800 µL PBS (pH 8.0). Of this, 500 µL was used to re-

suspend the cells after the final wash, while the rest was added to a collagen-coated coverslip 

plate (#1.5, 35 mm, MatTek, Ashland, MA). Both cells and coverslip were kept at room 

temperature. After 30 min, the coverslip was thoroughly rinsed with PBS + 50 mM glycine, then 

coated with 80 µL streptavidin (1 mg/mL, New England Biolabs, Ipswich, MA). The cells were 

then washed twice in glycine solution, then again in standard culture medium. During the final 

wash step (~15 min later), the coverslip was rinsed with PBS to remove unbound streptavidin. 

The biotinylated cells were resuspended in ~300 µL culture medium, transferred to the coverslip, 

then placed in the incubator for 30 min to settle by gravity. Unbound cells were then carefully 

rinsed away, and the plate was refilled with 2.5 mL of culture medium containing 250 ng/mL 

Dox. The finished plate was placed on the microscope for thermal equilibration (~1 hr) and 

subsequent imaging. 

3.3.4.  Microscope setup and imaging conditions 

All imaging was performed on a Zeiss AxioVert inverted fluorescence microscope (Carl 

Zeiss, Jena, Germany), equipped with a Yokogawa spinning disc, CoolSNAP HQ2 14-bit camera 

(Photometrics, Tucson, AZ), and laser lines for 488nm and 561nm excitation. To facilitate time-

lapse imaging, the microscope has a programmable stage with Definite Focus, and also a stage 

enclosure that maintains samples at 37C and 5% CO2 with humidity. Images were captured 

every 10 minutes, sampling a 5x5 X-Y grid, one Z-position each. Exposures were 800 ms at 20% 

power with the 561nm laser, then 400 ms at 10% power with the 488nm laser, then 600 ms for 

brightfield. The objective used was a 40X oil, 1.3NA, with 2x2 camera binning applied. For all 

“induced Tat” movies, imaging was started no more than 2.5 hours after Dox addition, and was 
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continued until 20 hours. For protein half-life measurements, imaging was started 10 minutes 

after addition of 10 µg/mL cycloheximide and continued for 50 ten-minute intervals. Bleaching 

half-life was measured with the same image settings, but taken at one location in five-second 

intervals to minimize changes in total protein level. For HSV-GFP imaging, to maximize the 

visibility of these very small particles, the 488nm exposure time was increased to 40 s and 

binning was turned off. For each location in a 7x7 X-Y grid, nine Z-positions were sampled at 

0.2 µm intervals; the most in-focus image was chosen for analysis. 

3.3.5.  Image segmentation analysis to generate single-cell trajectories 

The center of each cell was manually marked, using the final brightfield image and a custom 

script (MATLAB, The MathWorks, Natick, MA). For each cell location, a 23-pixel diameter 

circle was marked around it, and the mean fluorescence intensity within that circle was recorded 

at each time point to generate single-cell trajectories. Each trajectory was then subjected to 

automated quality control (QC): cells in which any two consecutive readings differed by more 

than 15% in either channel were excluded; upon review of the source images, these events were 

typically due to cell division, or another cell drifting into view. Cells that began the experiment 

“on” were also excluded (LTR >2% over background at 2.5 hours post-Dox addition; this was 

rare, 2-5 cells per condition). Illustrations of the raw image data and QC process are available in  

Figure 7 (Supporting Materials). For these movies, between 2001 and 2193 cell trajectories 

passed QC. The trajectories were normalized to set their lowest values to zero, then fit to a 

smoothing spline in base R (df=10, n=105) to further reduce noise. Tat-Dendra trajectories were 

also corrected for photobleaching. This was not necessary for mCherry, which did not bleach 
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under the imaging conditions used (data not shown). The photobleaching correction process is 

described in Figure 8 (Supporting Materials). 

3.3.6.  Quantitation of Tat-Dendra molecular number by GFP molecular ruler 

For quantitation using the HSV-GFP molecular ruler (Charpilienne et al., 2001; Desai and 

Person, 1998), the images of viral particles were processed using a custom script (MATLAB, 

The MathWorks, Natick, MA). Each image was background-subtracted, using the median of all 

49 images as background, then thresholded to include the bright particles and the first Airy disk 

surrounding them. The MATLAB function bwconncomp was used to identify potential features 

within the images. To set the correct size, TetraSpeck™ beads (ThermoFisher, Waltham, MA) 

were analyzed by the same method; the 0.2 µm beads were 15-18 pixels (data not shown). Since 

the HSV-1 capsid is 125 nm (Gibson, 1996), features between 10-14 pixels were selected. For 

each feature, the total intensity above background was recorded. The mean value was 1424 units. 

(95% CI 1412-1435; n=5004.). Given that the HSV-GFP images had 100X the exposure time, 

and 4X as many pixels, relative to the Tat-Dendra images, each intensity unit of HSV-GFP 

represents 25X less signal. EGFP is also brighter than Dendra2 by 1.47X (Chudakov et al., 2007) 

such that there are [1424 / 25] intensity equivalents per [900 x 1.47] molecular equivalents, 

which reduces to 1 intensity unit per 23.2 Tat-Dendra (Figure 9, Supporting Materials). From the 

single-cell imaging data, the threshold level of Tat proteins required to minimally activate the 

LTR (i.e., > 2% mCherry positive cells) gives an intensity signal of 5.0 units per pixel, or 1900 

units per cell (each cell is 377 pixels). The conversion factor calculated from molecular ruler thus 

estimates the minimal activation threshold at 4.4x104 Tat molecules per cell (Figure 9C). 
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3.4. Results 

3.4.1.  The HIV LTR-Tat circuit lacks hysteresis and bistability 

Previous studies demonstrated that the HIV Tat-LTR positive-feedback loop has an 

expression rate that appears non-cooperative and scales linearly with Tat at early time points 

(Weinberger and Shenk, 2007), as expected for non-cooperative positive feedback (Figure 2A). 

To confirm that the LTR-Tat circuit does not establish bistability through other mechanisms 

(e.g., nonlinear degradation), we tested for hysteresis in a minimal Tat-LTR feedback circuit, 

where LTR drives expression of an unstable (2 hr half-life) GFP reporter (d2GFP) and an IRES 

enables co-expression of Tat fused to the tunable proteolysis tag FKBP (Figure 2B). In this 

circuit (hereafter Ld2GITF), Tat can be protected by the small molecule Shield-1 (Banaszynski 

et al., 2006), thereby allowing feedback strength to be tuned (Razooky et al., 2015) and alternate 

paths of the circuit—ON-to-OFF versus OFF-to-ON—to be examined. Specifically, cells in the 

GFP ON state (i.e., pre-incubated in Shield-1) can be exposed to successively decreasing Shield-

1 levels to examine turning OFF of the circuit, while cells in the GFP OFF state (i.e., no Shield-1 

pre-incubation) can be exposed to successively increasing Shield-1 levels to examine turning ON 

of the circuit. The difference (Δ) in percentage of GFP ON cells for a specific Shield-1 

concentration can be quantified, with Δ > 1 indicating hysteresis. If hysteresis is present, cells 

beginning in the ON state (i.e., pretreated with high Shield-1) will be more likely remain ON at a 

specific intermediate dose of Shield-1, as compared to cells that began in the OFF state (i.e., non-

pretreated cells); whereas, if hysteresis is not present (Δ = 1), there will no difference in ON-OFF 

percentages for cells beginning in either the ON or OFF state. We tested five isoclonal Ld2GITF 

populations carrying single integrations of the Ld2GITF circuit, and measured Δ to be ≈1 (Mean 
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1.008; 95% CI 0.813-1.203; Figure 2C), indicating that hysteresis is unlikely. These hysteresis 

measurements build upon previous data indicating that the necessary conditions for deterministic 

bistability are absent in the HIV Tat-LTR circuit (Weinberger and Shenk, 2007). 

Figure 2: The HIV LTR-Tat positive-feedback circuit lacks hysteresis and bistability. 
(A) Bistability versus monostability in 
positive-feedback transcriptional circuits. 
Formally, deterministic multistability requires 
nonlinearity in the governing differential 
equations (Strogatz, 2014); for example, if the 
activator requires cooperative self-association 
to bind its promoter, its expression is 
described by a nonlinear Hill equation (Hill 
coefficient H > 1) (Dill and Bromberg, 2010). 
Such circuits exhibit bistability, having two 
attractor states (ON and OFF) separated by a 
response threshold—at low activator levels, 
the decay rate (dashed line) dominates over 
synthesis (solid line), while at high levels the 
opposite is true—and hysteresis, a type of 
memory in which the response is history 
dependent, following different paths from 
ON-to-OFF versus OFF-to-ON (the difference 
between paths is Δ > 1). In contrast, circuits 
lacking self-cooperativity (H = 1) are 
monostable, having neither a threshold nor 
hysteresis (Δ = 1)—if a monostable circuit can 
be turned ON, its only stable state is the ON 
state (assuming the biochemical rate constants 
are not changing), with the OFF state being 
necessarily unstable (Strogatz, 2014). (B) 
Schematic of the minimal HIV “Ld2GITF” 
positive-feedback circuit used to test for 
hysteresis (LTR driving a 2-hour half-life GFP 

reporter and an IRES expressing Tat fused to FKBP, a degradation tag inactivated by the small 
molecule Shield-1). (C) Hysteresis test by flow cytometry analysis of Ld2GITF. Isoclonal Jurkat 
Ld2GITF cells were either pretreated with 1 µM Shield-1 for four days to activate cells to start in 
an ON start (oval data points) or not pretreated to start in an OFF state (square data points). All 
cells were washed, and then incubated in the specified Shield-1 alongside for an additional four 
days and the percentage of GFP+ cells measured. Inset: Δ (the ratio of pretreated to not-
pretreated GFP+ cells) calculated for five isoclonal populations of Ld2GITF (<Δ> 1). 
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3.4.2.  Single-cell flow cytometry analysis of the HIV LTR-Tat dose-response 
function shows a threshold-like response that is transient in time 

Absent bistability, it was unclear how the Tat-LTR circuit might encode a threshold to 

temporarily remain OFF in order to provide an opportunity for the kinetically slower epigenetic-

silencing mechanisms to act. Importantly, chromatin silencing mechanisms appear unable to 

silence the actively transcribing promoter (Razooky et al., 2015). 

First, to check if the Tat-LTR circuit encodes an activation threshold, we directly quantified 

LTR activity as a function of Tat levels using an ‘open-loop’ Tat-LTR dose-response system. In 

this system, one construct encodes Tat fused to the fluorescent reporter Dendra2 expressed from 

a doxycycline-inducible tet promoter, while a second construct encodes an mCherry reporter 

expressed from the LTR promoter (Figure 3A). This open-loop system allows Tat levels to be 

tuned by doxycycline (Dox) and enables both Tat (dose) levels and LTR (response) levels to be 

quantified in the same cell (Razooky et al., 2015) so that the dose-response ‘transfer’ function for 

Tat and LTR can be fit and an effective Hill coefficient calculated.  

To estimate the conditional probability of LTR mean expression level and percentage ON for 

a given Tat level from flow cytometry data, a binning method similar to previous methods 

(Krishnaswamy et al., 2014) was used (Figure 3B-C). Examination of the flow cytometry time-

course data showed that the LTR appears essentially non-responsive to Tat at low Tat levels, but 

LTR activity then increases sharply over a narrow range of Tat (Figure 3D). At early times after 

Dox activation, a pronounced “shoulder” is visible in Tat expression where a substantial 

percentage of cells express Tat-Dendra but these cells do not express mCherry from the LTR. 

This delay between Tat-Dendra and mCherry expression is on the order of eight to twelve hours, 
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which is too long to simply be a temporal delay in expression of mCherry due to activation by 

Tat-Dendra. 

For all LTR isoclones (i.e., integration sites) examined, the dose-response expression curves 

for both mCherry mean expression and percentage of mCherry ON cells exhibits a conspicuous 

activation threshold (Figure 3E). The LTR appears essentially non-responsive to Tat at low Tat 

levels, but LTR activity then increases sharply over a narrow range of Tat. This thresholding 

behavior appears maximized at intermediate time points of 16-20 hours (Figure 3F-G). At early 

times the response is incomplete but by 40 hours, the dose-response curves flatten with the K50 

shifting to lower Tat expression.  
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Figure 3. Caption on next page. 
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Figure 3: The LTR promoter exhibits a transient threshold in its response to Tat.  
(A) Schematic of constructs used to directly quantify LTR-Tat dose-response function. A 
doxycycline-inducible promoter (Tet-ON system) drives expression of a Tat-Dendra2 fusion 
protein, which activates the LTR promoter to drive expression of destabilized mCherry reporter. 
(B) Scheme for estimating conditional probability of LTR activity for a given Tat level, with 
representative two-color flow cytometry dot plot of an isoclonal Jurkat cell line stably expressing 
constructs in panel A after 20 hours of Dox induction (plot shown is Clone 2). To estimate the 
conditional probability of LTR expression for a given Tat level, data was combined from eight 
Dox dilutions (0-250 nM). The dense spot in the lower left corner corresponds to non-induced 
cells (i.e., auto-fluorescence background), which the mCherry positive cutoff gate excludes (as 
indicated by the black horizontal line). Cells with similar Tat-Dendra values were grouped, as 
indicated by the vertical dashed lines, and the percentage of cells above the mCherry positive 
cutoff and mean mCherry fluorescence was recorded for each group. For visual clarity, this panel 
depicts a group of 2500 cells, while the analysis uses a tighter group of 1000 cells. (C) 
Histogram of mCherry intensity for cells in the marked group. Density above the mCherry 
positive cutoff is shaded. Despite the narrow band of Tat-Dendra intensities, the LTR response is 
variable. (D) Full flow cytometry time-course for three isoclones of Jurkat encoding both Tet-
Tat-Dendra and LTR-mCherry-deg induced with eight Dox dilutions, and measured by flow 
cytometry over time. The horizontal lines indicate the mCherry positive cutoff. At early times, a 
pronounced “shoulder” is visible in Tat expression where a substantial percentage of cells 
express Tat-Dendra but these cells do not express mCherry from the LTR. (E) Calculated dose-
response curves for percentage of mCherry+ cells (top) and mCherry mean fluorescence intensity 
(MFI, bottom) from data in panel D. Clone 1 is shown; the other isoclones, and Hill fits, are 
presented in Figure 6 (Supporting Materials). (F) Calculated Hill coefficients (H) from dose-
response curves over time. The expected non-cooperative response (H = 1) is indicated by a 
dashed line, all data points are above the expected H = 1 line. Maximum H-values occur at 
intermediate time points for both %mCherry cells and MFI. (G) Calculated half-maximal 
response (K50) from fits of the dose-response curves over time. K50 declines over time, indicating 
that the threshold becomes progressively weaker. 
 
 
3.4.3.  Time-lapse microscopy analysis verifies the threshold-like LTR response to 

Tat at early times after activation 

To verify that this result was not simply a peculiarity of the flow cytometry approach, we 

next examined activation of this ‘open-loop’ activation circuit using quantitative time-lapse 

imaging (Figure 4A). Jurkat isoclones, as above, were imaged for 20 hours after Dox activation 

and for all isoclones there is a conspicuous delay of approximately seven hours in mCherry 

expression relative to Tat-Dendra expression (Figure 4A–B). The single-cell trajectories used to 
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construct Tat-LTR dose-response trajectories via the same conditional binning method as used 

for flow cytometry (Figure 3) and for all LTR isoclones examined, the dose-response expression 

curves for both mCherry mean expression and percentage of mCherry ON cells exhibits a 

conspicuous activation threshold (Figure 4C–D). As observed in flow cytometry, the microscopy 

imaging shows that the LTR is essentially non-responsive to Tat at low Tat levels, but LTR 

activity then increases sharply over a narrow range of Tat 

We used a previously described ‘molecular ruler’ approach (Charpilienne et al., 2001; Desai 

and Person, 1998) to convert Tat-Dendra fluorescence levels to molecular number (Methods and 

Supporting Materials). For all clones tested, the threshold level of Tat proteins required to 

minimally activate the LTR (i.e., > 2% mCherry positive cells) is in the tens of thousands of 

molecules, with the average being 4.4x104 Tat/cell (Figure 4C–D). Comparable values for Tat 

molecules per cell were previously obtained in a minimal Tat-LTR feedback circuit, with 

quantitation performed by GFP standard beads (Weinberger et al., 2005). Upon accounting for 

cell size differences, this molecular threshold value is also not dissimilar to those calculated for 

phage λ, where 55 Cro molecules are required for lytic infection and 145 CI molecules are 

required for lysogeny (Arkin et al., 1998); human lymphocytes are ~103 times the volume of E. 

coli (Milo et al., 2010). 
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Figure 4: Time-lapse microscopy verifies that the LTR exhibits an activation threshold at 
early times. 
(A) Time-lapse fluorescence microscopy imaging of single cells from three Jurkat cell isoclonal 
populations each encoding both Tat-Dendra and LTR-mCherry-deg. Cells were activated and 
then imaged for 20 hours. Tat-Dendra trajectories are green; mCherry trajectories are magenta; 
mean intensity trace shown in black. ~2000 cell trajectories shown for each clone. (B) Flow-style 
dot plot of Tat-Dendra versus mCherry intensities from time-lapse images at t = 10 h (upper) and 
t = 20 (lower) of Clone 2. Each dot represents an individual cell. As in Figure 3, the horizontal 
line marks the mCherry positive cutoff gate. (C-D) Dose-response curves for %mCherry+ cells 
(left) and mCherry mean fluorescence intensity (MFI, right) versus Tat MFI and calculated 
number of Tat molecules per cell. Single-cell intensities extracted from all images were pooled 
and processed in the same manner as the flow data (each point summarizes 104 observations). 
Tat-Dendra signal intensity was converted to molecular number using a GFP “molecular ruler”. 
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3.4.4.  Transcriptional activation by TNF effectively accelerates the transient 
lifetime of the LTR activation threshold 

Based on observations that HIV latency can be partially reversed by transcriptional 

activators, we next asked if transcriptional activators could alter the observed LTR-activation 

threshold. To transcriptionally active the LTR, we used the well-characterized cytokine tumor 

necrosis factor alpha (TNF), which acts through nuclear factor kappa B (NF-κB) signaling to 

recruit transcriptional activators to the LTR (Jordan et al., 2003; Jordan et al., 2001; Razooky et 

al., 2015), thereby increasing LTR transcriptional burst frequency (Dar et al., 2012; Dar et al., 

2016; Singh et al., 2010) 

When the dose-response function is measured at 20 hours post Dox induction in the presence 

of TNF, the response functions show a markedly reduced threshold (Figure 5A). In fact, when 

comparing the dose-responses in the presence and absence of TNF, the presence of TNF caused 

the 20-hour dose-response curve to look similar to the 40-hour non-TNF dose-response curves 

(compare Figure 5A to Figure 3E). Consistent with this observation, the calculated Hill 

coefficients, H, decreases in the presence of TNF (Figure 5B) and, with the exception of clone 2 

MFI, the K50 values decline in the presence of TNF (Figure 5C), indicating that the threshold 

becomes progressively weaker.  
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Figure 5: Transcriptional activation by TNF effectively accelerates the transient lifetime of 
the LTR activation threshold. 
(A) Dose-response curves for %mCherry positive cells (top) and mCherry MFI (bottom) from 
flow cytometry measurements of three isoclones of Jurkat Tet-Tat-Dendra + LTR-mCherry, at 
20 hours post Dox induction in the presence or absence of TNF. Each data point depicts a group 
of 500 cells. These data were fit to a Hill function (dashed lines); numeric results are given in 
Figure 10 (Supporting Materials). (B) Hill coefficients, H, determined from dose-response curve 
fitting, demonstrate empirical positive cooperativity (H > 1) with lowering of H-values for cells 
treated with TNF. The expected non-cooperative response is indicated by the dotted line at H = 
1. (C) Half-maximal response (K50), determined from dose-response curve fitting. 
 
 
3.5. Discussion 

HIV’s ability to establish latency in resting CD4+ T lymphocytes remains the chief barrier to 

curative therapy (Richman et al., 2009) and an area of active study. Latency establishment is not 

correlated with viral integration site (Ho et al., 2013; Lewinski et al., 2005; Sherrill-Mix et al., 

2013) or progressive cellular silencing, and the Tat positive-feedback circuit is necessary and 
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sufficient for latency establishment (Razooky et al., 2015), with epigenetic silencing possibly 

regulating maintenance and stability of the latent state (Siliciano and Greene, 2011). However, 

given non-cooperative nature of Tat feedback (Weinberger and Shenk, 2007), the circuit was 

thought to lack an activation threshold so it was unclear how HIV could even temporarily remain 

in an off state to provide an opportunity for the kinetically slower epigenetic silencing 

mechanisms to act and stabilize latency. 

Here, using combination of single-cell analyses (flow cytometry and time-lapse microscopy), 

we find that the HIV Tat circuit exhibits a transient threshold in activation that largely disappears 

after ~40 hours. The transient nature of the threshold accounts for the lack of deterministic 

bistability and hysteresis in the circuit and previous findings that Tat feedback is non-cooperative 

(Weinberger and Shenk, 2007). Physiologically, the transient nature of the threshold may allow 

the Tat circuit to temporarily remain in an off state and buffer stochastic fluctuations from 

rapidly triggering positive feedback and active replication, thereby providing a ‘temporal 

window’ for the kinetically slower epigenetic silencing mechanisms to stabilize the off state.  

One caveat to this data is that we only examined three isoclonal integration sites of the LTR 

promoter. It is possible that these integration sites are somehow unique in their ability to generate 

a threshold and that higher-throughput analyses of integration sites will produce a different 

result. Notwithstanding, the cellular and molecular mechanisms that generate this transient 

threshold in LTR activation remain unclear. Based on the above data, it is possible to exclude 

two of the simplest classes of gene-activation models. Since the data shows a fractional response 

of the LTR to despite Tat present in the cell, it is most straightforward to consider chemical-
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reaction-type models where fractional responses can be computed. For example, for the simplest 

Tat-LTR activation model: 

 

		

Tat +LTR→ LTR ::Tat
LTR ::Tat→RNA+Tat +LTR

RNA→RNA+Protein
RNA→∅

Protein→∅
∅→Tat→∅

  (1.2) 

 

it is straightforward to show the absence of the necessary conditions for a cooperative response 

(H > 1). Specifically, we consider the fraction of time the system is in the LTR::Tat state 

(PLTR::Tat), which directly generates RNA and Protein. For H > 1, PLTR::Tat as a function of Tat 

levels requires hyperbolic curvature or, more formally, there must be some non-zero value of Tat 

where δ[PLTR::Tat] / [Tat]2 = 0. However, in this model, δ[PLTR::Tat] / [Tat]2 ≠ 0 for any non-zero 

value of Tat. Likewise, for slightly more complex models based on the two-state or random-

telegraph model of promoter activity: 

 

		 

OFFLTR!OPENLTR

OPENLTR +Tat!ONLTR::Tat

ONLTR::Tat →ONLTR::Tat +RNA
RNA→RNA+Protein

RNA→∅
Protein→∅
∅→Tat→∅

  (1.3) 

 

it is also relatively straightforward to algebraically show that δ[PON] / [Tat]2 ≠ 0 at any non-zero 

value of Tat. 
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In order to transiently generate H > 1, some form of transient Tat cooperativity is required. 

This cooperativity could in principle be achieved through homo-multimerization (Dill and 

Bromberg, 2010; Teng et al., 2012; Wall et al., 2004) of Tat protein, or successive covalent 

modifications (Ferrell Jr., 1998) of Tat, or successive Tat-dependent steps required for LTR 

activation. However, to recapitulate the data, it is absolutely critical that the mechanism of 

cooperativity is transient and disappears over time (or disappears as Tat level increases). The 

homo-multimerization mechanism is the most difficult to reconcile with this. While it is possible 

that the active form of Tat multimerizes at early times (low levels of Tat) but then becomes a 

monomer at later times (high Tat levels) and under TNF stimulation, this scenario would be an 

exotic departure from the typical biophysical models of concentration-dependent multimerization 

of a protein (i.e., monomeric at low concentrations with crowding-induced multimerization). In 

contrast, it may be more appealing to consider models where at early times (low Tat or LTR-

expression levels) two successive Tat dependent steps are required for LTR activation but as the 

promoter increases in transcriptional activity, one of these Tat-dependent steps becomes a Tat-

independent step. For example, active and quiescent promoters differentially localize in the 

nucleus (Cavalli and Misteli, 2013; Simonis et al., 2006) and if the genomic locus where the 

LTR integrates repositions as LTR activity increases, the LTR may be subject to different 

activation signals when it reaches a new nuclear microenvironment (Lusic et al., 2013). In other 

words, at early times during activation the LTR locus is in a quiescent nuclear micro-

environment, whereas at later times after activation the LTR may reposition to a more “TNF-

like” nuclear micro-environment. 
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There may also exist additional thresholds in LTR activation, such as in response to 

chromatin remodeling (Miller-Jensen et al., 2012). However, as discussed above, the epigenetic 

silencing mechanisms that allow for chromatin-mediated reactivation are dynamically slower 

effects that cannot explain establishment of latency (Razooky et al., 2015) and thus this 

chromatin threshold is likely distinct from the early-time transient thresholding results observed 

here. 

Regarding the potential benefits of such transient thresholding relative to multistability, we 

can only provide speculation. When molecular thresholds are established through self-

cooperativity and multistability, it is biochemically difficult to alter the threshold level. In the 

case of the Tat-LTR circuit, TNF (Figure 5) and other cellular activators (e.g., trichostatin A, 

Figure 10 in Supporting Materials) can alter the threshold. Thus, somehow the mechanisms that 

establish the Tat-LTR threshold are distinct and enable ‘tuning’ of the threshold value. Future 

work will focus on elucidating the molecular mechanisms that establish the transient threshold 

and its tunability. 
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3.7. Supporting Materials 

 
Figure 6: At early times, the open-loop Tat-LTR circuit exhibits a threshold in both 
activation and mean expression. 
(A) Flow data from three isoclones of Jurkat Tat-Dendra + LTR mCherry-deg cells, as shown in 
raw form in Figure 3D and as dose-response plots in Figure 3E, fit to a Hill function (Methods). 
The dose-response data and Hill fit lines are depicted for each condition, with Hill coefficient 
(H) and half-maximal binding (K50) values in adjacent table together with goodness of fit (R2). 
(B) The equivalent dose-mean expression curves in Figure 3E were analyzed as in panel A. (C) 
Data and fits from panel B, with Tat-Dendra on a linear scale to emphasize the weakly sigmoidal 
shape. All fits gave R2 > 0.96. 
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Figure 7: Extraction and QC of single-cell trajectories from time-lapse images. 
(A) Jurkat Tat-Dendra + LTR mCherry-deg cells underwent time-lapse microscopy to yield the 
data described in Figure 4. Briefly, the cells were biotinylated, attached to a streptavidin-coated 
coverslip, then induced with 250 ng/mL Dox and imaged for 20 hours. Full details of this 
procedure are in Methods. This two-color fluorescence image is from the final time point of 
Clone 2, and shows one tile of a 5x5 grid. Tat-Dendra is green; mCherry is magenta. (B) The 
same location as panel A, in brightfield. Cell locations were marked in brightfield to ensure that 
dim and non-fluorescent cells are fairly represented. The lower section of the image shows the 
marked cell centers (white ‘+’) surrounded by a 23-pixel diameter circle, which is taken as the 
cell’s area. Pixels within this area contribute to the fluorescence intensity of the cell. This 
location is used for all time points to create a single-cell trajectory. (C) To reduce noise in the 
data, trajectories that showed excessive changes between consecutive time points were 
discarded. This image shows raw mCherry trajectories from Clone 2 undergoing QC. The 
maximum percent change between two consecutive time points is plotted as a function of 
maximum intensity, showing that for both dim and bright cells, most have a percent change 
under 10%. To pass QC, both Dendra and mCherry channels must be under the 15% noise cutoff 
shown. These raw trajectories underwent further QC, smoothing, and bleaching correction, as 
detailed in Methods and Figure 8. 
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Figure 8: Correcting for photobleaching in Tat-Dendra trajectories. 
(A) Single-cell trajectories were constructed from time-lapse imaging of bright Jurkat Tat-
Dendra cells. For the decay curve, cycloheximide was added at t=0 to stop protein synthesis, and 
images were taken every 10 minutes. For the bleaching curve, the same number of images was 
taken in 5-second intervals to simulate non-decaying protein. Error bars show 95% CI. (B) These 
trajectories were fit to simple exponential decay models. The bleaching half-time was measured 
at 11.2 hours. The total rate of visible protein decay can be expressed as the sum of the bleaching 
and degradation rates; from this equation, the half-life of Tat-Dendra was calculated at 3.4 hours. 
This value was confirmed by flow cytometry experiments (data not shown). To compute the 
amount of non-fluorescent protein present, we assume that a fraction of Tat-Dendra enters the 
bleached state at each time point, and the bleached protein degrades at the normal rate. 
 
 
 
 
 
 
 
 
Figure 9: Quantitation of Tat-Dendra by HSV-GFP molecular standard. 
(A) HSV-GFP viral particles can serve as a “molecular ruler” to convert fluorescence intensity to 
molecular number. Since the HSV capsid protein VP26 is fused to EGFP, and each viral particle 
assembles into an icosahedron with precisely 900 copies of VP26, each viral particle contains 
900 EGFP molecules. A small portion of a representative image of HSV-GFP is shown; 
diffraction-limited viral particles that were successfully segmented are circled in red. (B) 
Histogram of intensities from all viral particles (n=5004) that were identified, showing a roughly 
normal distribution with a mean of 1424 intensity units per particle. An increase of one intensity 
unit corresponds to 23.2 Tat-Dendra molecules; this conversion is detailed in Methods. 
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Figure 10: The non-physiological activator TSA and the cytokine TNF have distinct effects 
on threshold parameters. 
(A) Dose-response curves for %mCherry positive cells from flow cytometry measurements of 
three isoclones of Jurkat Tet-Tat-Dendra + LTR-mCherry, at 20 hours post Dox induction in the 
presence of TSA (trichostatin A, a histone deacetylase inhibitor). Each data point depicts a group 
of 500 cells. These data were fit to a Hill function (dashed lines), with Hill coefficient (H) and 
half-maximal binding (K50) values in adjacent table. Hill fits from Figure 5 are presented for 
comparison. (B) Dose-response curves from the above experiment, showing mCherry MFI. 
While TNF consistently decreases both H and K50, TSA has a less consistent effect on both 
parameters. 

 

Clone #1 Clone #2 Clone #3A

B

Tat-Dendra MFI

m
Ch

er
ry

 M
FI 3000

2000

1000

0
10 100 1000 10 100 1000 10 100 1000

Fits

Tat-Dendra MFI

%
 m

Ch
er

ry
 +

100

50

25

0

H K50
2.14
1.77
2.00

105
93
111

H K50
1.75
1.41
2.01

79
92
114

H K50
2.25
1.85
2.90

93
86

128

H K50
1.95
1.60
1.65

107
76
89

H K50
1.69
1.18
1.40

76
55
88

H K50
2.13
1.56
2.78

87
68
114

10 100 1000 10 100 1000 10 100 1000

75

Dox
Only

Dox
+TNF

Dox
+TSA4000



 

53 

Chapter 4:  Promoter toggling generates a tunable threshold in gene 
activation 

4.1. Abstract 

It remains unclear how the HIV latency circuit generates a threshold to establish a stable off 

state. This simple positive feedback circuit lacks cooperative binding or any other known sources 

of deterministic bistability. Stochastic expression of the HIV activator Tat should always trigger 

the activation of its own promoter, the HIV LTR, and thus trigger viral replication. Despite noisy 

expression of LTR, HIV is capable of long-lasting proviral latency. Here, I demonstrate that in a 

general stochastic model, promoter toggling between on and off expression states can generate 

an activation threshold without requiring true bistability. Cellular signaling can modulate 

promoter-toggling frequency and thereby adjust this threshold. Using a combination of single-

cell analysis and computational modeling, I demonstrate the applicability of this result to the 

HIV LTR promoter, which is known to exhibit both intrinsic toggling and an intrinsic activation 

threshold. These results potentially indicate a functional role for promoter toggling as a general 

mechanism for tunable threshold generation in regulatory circuits. 

4.2. Introduction 

The positive-feedback circuit that controls HIV’s fate decision between active replication and 

latency (Figure 1) has none of the classic mechanisms associated with deterministic 

multistability (Aull et al., 2016; Weinberger, 2015). However, the latent state of HIV is stable, 

and can persist even when the state of the host cell strongly favors replication (Ho et al., 2013), 

indicating that this positive-feedback circuit has an activation threshold that must be overcome. 

This property has clinical significance, as near-total reactivation of latent HIV will be required 
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for a cure (Hill et al., 2014), and efforts to reduce HIV latency in vivo have met with limited 

success (Deeks, 2012; Shang et al., 2015). Such efforts would benefit from a clearer 

understanding of how HIV latency is controlled. 

The decision between active replication and latency in HIV is governed primarily by the 

virus’s Tat-LTR positive-feedback circuit, in which HIV Tat protein drives its own expression 

from the long terminal repeat (LTR) promoter, the sole promoter of HIV (Figure 1). This Tat-

LTR circuit is necessary and sufficient to activate HIV (Razooky et al., 2015). Tat acts as a 

monomeric transactivator, binding to a single site on a nascent RNA hairpin formed by stalled 

RNA polymerase II at the LTR (Weinberger and Shenk, 2007). This architecture excludes most 

known forms of threshold generation, including self-cooperativity. Because Tat binds non-

cooperatively to the LTR promoter, classical deterministic models predict that the circuit should 

have no activation threshold, and thus the latent state would be unstable (Figure 2A).  

While long-term stability of HIV latency is likely mediated by epigenetic silencing (Siliciano 

and Greene, 2011), immediate latency occurs in ~50% of infections in cell culture (Calvanese et 

al., 2013; Dahabieh et al., 2013) and in vivo, latency is established within 3 days (Whitney et al., 

2014). This latency is far too rapid for epigenetic silencing that acts on timescales of a week or 

more in T cells (Tyagi et al., 2010). Given the noisy expression of the HIV LTR promoter (Dar 

et al., 2012; Dey et al., 2015), it is unclear how HIV can even temporarily remain in an off state 

and provide an opportunity for the kinetically slower epigenetic silencing mechanism to act, 

since Tat positive feedback should trigger active replication within these first few days. This 

would preclude establishment of proviral latency, since active replication destroys the cell in 

under 2 days (Perelson et al., 1996), and silencing of an actively replicating cell cannot overcome 
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active HIV gene expression (Razooky et al., 2015). In general, it remains unclear how a positive-

feedback circuit that lacks deterministic bistability and ultrasensitivity can generate the 

activation threshold required to establish a stable off state. 

Here, I use the HIV Tat-LTR circuit as a model system to examine how a threshold can be 

generated without self-cooperativity. Using a combination of single-cell experimental analysis 

and in silico modeling, I find that intrinsic promoter toggling can stabilize an off state absent 

bistability. This threshold is tunable via cellular activation (e.g. NF-κB signaling), which 

modulates the kinetics of promoter toggling and can shift the threshold. A class of general 

stochastic models of promoter toggling with transactivation recapitulates these observations. 

These results show that promoter toggling is sufficient to establish a tunable threshold for gene 

activation, potentially indicating a general mechanism for threshold generation in eukaryotic 

gene regulatory networks. 

4.3. Results 

4.3.1.  Non-cyclic promoter toggling is sufficient to create a threshold in gene 
activation but not mean expression 

In order to generate a threshold in promoter activation without bistability, we reasoned that 

the promoter might transiently enter a state that is inaccessible to the transactivator. Then, even 

provided a large dose of transactivator, the promoter could remain unresponsive. This hypothesis 

is based on the concept of chromatin ‘breathing’ (Meshorer et al., 2006)—a process distinct from 

chromatin ‘silencing’—that has been hypothesized to generate episodic, stochastic bursts of 

transcription. Many eukaryotic promoters toggle between active and inactive states exhibiting 

burst-like expression (Harper et al., 2011; Suter et al., 2011; Zoller et al., 2015) and the HIV 
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LTR is no exception (Dar et al., 2012; Singh et al., 2010; Tantale et al., 2016). In the case of 

HIV, this ‘promoter toggling’ model predicts that the LTR promoter could remain insensitive to 

low levels of Tat expression—that deterministically would be predicted to disrupt latency—since 

Tat protein can proteolytically decay between stochastic expression bursts. 

The classical two-state on-off (random telegraph) model of promoter toggling (Kepler and 

Elston, 2001; Ko, 1991; Peccoud and Ycart, 1995) has been invoked to explain bimodal 

expression in the Tat-LTR circuit (Razooky et al., 2015; Razooky and Weinberger, 2011) and an 

analogous synthetic feedback circuit with non-cooperative self-activation (To and Maheshri, 

2010). In this classical model, the promoter slowly toggles between on and off states, with 

expression from the on state proportional to the amount of transactivator. Intrinsic bimodality 

occurs only when expression bursts are large and infrequent; in this ‘slow switching’ regime, the 

protein will fully decay between expression bursts, creating a distinct off population. However, 

this model requires the promoter toggling rate to be much slower than the turnover rate of the 

protein product (Kaern et al., 2005). Given that Tat has a half-life of 8 hours (Weinberger and 

Shenk, 2007), ‘slow switching’ is not consistent with estimated LTR toggling rates of 2-3 hours 

or less (Dar et al., 2012; Tantale et al., 2016), nor with the relatively fast response of LTR to Tat 

(Figure 3D-E). The potential of toggling rates in the physiological range to influence the 

behavior of gene regulatory networks has received less attention. 

To test the concept that physiological rates of promoter toggling can generate an activation 

threshold, I designed a series of increasingly complex stochastic models of a toggling promoter 

and its transactivator, parameterized based on previous measurements of LTR (Model 

Definitions). Transactivation of a general two-state promoter model can occur via a number of 
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different mechanisms: a transactivator molecule (e.g., Tat) could increase the rate of promoter 

opening (kon); the transactivator could decrease the rate of the promoter turning off (koff); or the 

transactivator could increase the expression rate of active promoter (kmax). In the case of Tat 

activation of the LTR, Tat appears to increase the size of LTR expression bursts, acting through 

either kmax or koff (Razooky et al., 2015). I find that the full dynamic range of LTR is achieved 

only when Tat both increases kmax and decreases koff (Figure 12A), which as I show later, is 

required to fit the Tat-LTR experimental dose-response curves. 

To provide a natural mechanism for the inverse relationship between transactivator and koff, I 

extend the classical two-state on-off model, adding an intermediate open promoter state that is 

capable of binding the transactivator but which cannot drive transcription (Figure 11A). In this 

extended model, the promoter slowly toggles between off and open states; only the open 

promoter is accessible to transactivator, and in the presence of transactivator, it can rapidly 

transition to the on state; efficient expression occurs only in the on state, while relaxation to the 

off state occurs only from the open state. In this model, the transactivator linearly increases kbind, 

thus shifting the equilibrium between open and on states to favor the on state and promote 

expression. Moreover, transactivator-mediated increases in kbind reduce switching to the off state 

due to the reduced effective concentration of the open state. This mechanism has the effect of 

altering the effective rates of both kmax and koff; that is, transactivation increases both the intensity 

and duration of expression bursts. 

Simulations of this ‘extended’ toggling model (Figure 11A) show bimodal expression 

patterns as the “cells” are induced (Figure 11B), matching flow cytometry data from the open-

loop Tat-LTR system (Razooky et al., 2015). As transactivator concentration is increased, the 
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fraction of cells with expression above the background value also increases, but non-responders 

persist even at saturating doses (Figure 11B). This partial response is a known property of LTR; 

no matter how strong the stimulus, a fraction of LTRs will remain off, even when they are 

capable of reactivation (Ho et al., 2013). 

When dose-response curves of these simulations are plotted, the model exhibits a threshold in 

activation, and also recapitulates the gradual increase in maximum percent positive cells seen 

over time in the experimental data (Figure 11C). To be sure that the threshold was not due to the 

particulars of this model, I also examined a simplified two-state model with implicit 

transactivator binding (Figure 12), a more mechanistically detailed model with explicit non-

linear production of the transactivator (Figure 13), and a model that incorporates nucleosome 

remodeling (Figure 20). All models generated similar dose-response curves exhibiting threshold 

responses. The near-quantitative match with experimental data (Figure 11C and Figure 11E) 

gives confidence that our extended toggling model is appropriate for Tat’s interaction with LTR. 

An important technical point is that the S (sigmoidal) shape of these dose-response curves 

does not imply that the toggling model is cooperative. The likelihood that the promoter is on is 

hyperbolic (Figure 12B), as is the dose-mean expression curve at steady state (Figure 11D), as 

would be expected for a monostable system (schematic in Figure 2A; see also Analytic Forms). 

The sigmoidal dose-response in terms of percent positives is achieved through the “inertia” of 

the protein response; the more long-lived the protein, the more the protein level reflects the 

average output. A dose that produces an average expression level below the positive cutoff will 

have fewer positive cells than expected from the number of on promoters (see Figure 11B, left), 
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while a dose with average expression above the positive cutoff will have more positives than 

expected, creating a stable threshold in gene activation. 

Viewed in terms of dose-mean expression curves, the extended model gives a more switch-

like response at steady state, as compared to the constitutive or two-state on-off models (Figure 

11D). However, unlike the experimental results, none of these models have a deterministic 

threshold at any time point during induction (compare Figure 6B with Figure 15B and Analytic 

Forms). For the extended model, transactivation extends both the intensity and duration of 

expression bursts; however, transactivation still only affects the rate of one step, increasing kbind 

linearly. Thus, the extended model remains non-cooperative, with no threshold; a deterministic 

threshold implies a separatrix, where the second derivative of the response switches from 

positive to negative, which is absent here (Analytic Forms). Plotting transactivator dose on a 

linear scale highlights the hyperbolic response (Figure 11D, right). By contrast, when the flow 

data from Figure 11C is replotted in terms of mean expression, it shows a threshold, with a 

consistent sigmoidal shape (Figure 11E) and Hill coefficient above 1 (Figure 3F and Figure 6B). 

More complex models that provide a threshold in mean expression will be addressed in an 

upcoming section (Figure 20). However, the present ‘extended’ model (Figure 11A) is sufficient 

to reproduce three key behaviors of LTR: bimodal induction in response to transactivator (Figure 

11B); a true threshold in gene activation (Figure 11C); and a relatively switch-like (though still 

hyperbolic) dose-mean expression curve, giving minimal expression at low input without 

compromising dynamic range at high input (Figure 11E). Thus, in the next section, I use the 

extended toggling model to explore another key behavior: stochastic reactivation of latent HIV 

through stimulation of the host cell.   
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Figure 11: Non-cyclic promoter toggling is sufficient to create a threshold in gene 
activation but not mean expression. 
(A) Schematic of a multi-state toggling promoter model with transactivation (Model 1). In the off 
state, the promoter is “invisible” to transactivator and silent. Only when the promoter toggles 
into the open state can transactivator bind to the promoter, producing a promoter-transactivator 
complex (the on state) that efficiently expresses gene products. Simpler versions of this model 
which only consider off and on states also generate thresholds for transactivation (Figure 12). (B) 
Stochastic simulations of this model. To generate each histogram, 5000 runs were simulated, 
with Tat added at t=0 and protein output recorded at t=12 hours. Tat input is given as molecular 
number; the half-maximal binding concentration (K50) is 104 units. Parameters were based on 
published estimates (compiled in Model 1). This model generates bimodality. (C) Results of 
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simulations shown as % positive trajectories using the cutoff shown in panel B. The resulting 
dose-response curves, in black, follow the same pattern as experimental data. Data from Figure 6 
is reproduced for comparison, with Tat-Dendra intensity scaled to align 12-hour simulations with 
20-hour flow. (Dox induction requires 6-8 hours to take effect.) (D) Results of competing 
models, shown as mean expression at steady state (60 hours). The ‘extended’ model is that of 
panel A; the ‘constitutive’ model lacks the off state; the ‘two-state’ model lacks the open state, 
and kmax varies directly with transactivator binding. Data is shown on log (left) and linear (right) 
plots. The extended model gives the sharpest, most “threshold-like” response, but none of the 
models are truly bistable. (E) Results from panel C replotted in terms of mean expression. The 
flow data shows a threshold, but the simulations do not. 
 
 
 

 
Figure 12: Design constraints for a toggling promoter model with threshold-like activation. 
(A) In our ‘extended’ model (Figure 11), Tat increases the expression from active LTR, and also 
decreases the rate of transition to the closed state (koff). I simulate this effect directly, using a 
simplified set of models with implicit transactivation (Model 2). For the “off rate only” version, 
the model was altered so that transactivator does not change expression rate; both unbound open 
and bound on promoters express at kmax. This model has high background expression, even with 
minimal transactivator present. In the “expression rate only” version, koff does not change; 
transactivator-bound promoter can relax to the off state. This model has low expression even at 
high transactivator, since it cannot remain active for long. The standard model, labeled “both” 
here, exhibits the full dynamic range of expression. Simulations were performed as in Figure 11, 
with the 60 hour time point shown. Transactivator input is given as multiples of K50, the half-
maximal binding concentration. (B) Due to its stability, a protein output can persist from one 
burst to the next, creating a cumulative effect that sharpens the dose-response curve. To illustrate 
this effect, the mCherry protein dose-response (reproduced from panel A) is compared to the 
percentage of transactivator-bound promoter (dotted line) in the same simulated cells. When fit 
to a Hill function (Chapter 3 Materials and Methods), the percent positives data gives an 
apparent cooperativity of H = 1.769, while direct measurement of transactivator-bound promoter 
has H = 1.002. 
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Figure 13: A biochemically detailed model with mRNA and inducible transactivator 
produces comparable output.  
(A) Schematic of a three-state promoter model with inducible transactivator. LTR promoter 
toggles between off and open states. The open LTR can bind Tat to enter the on state, which is 
required for efficient expression. Unlike the simpler model of Figure 11, both mRNA and protein 
are simulated for mCherry, as is Dox induction of Tat-Dendra. (B) Stochastic simulations of the 
model in panel A were performed for 2000 runs at each value of kdox shown. The average Tat-
Dendra output for each kdox demonstrates that Tat-Dendra is induced as a quadratic function of 
time, comparable to experimental time-lapse trajectories obtained by microscopy (Figure 14). 
(C-D) The mCherry output of the simulations in panel B were processed by the binning method 
used for flow data (Figure 3B-D and Chapter 3 Materials and Methods). Each data point is based 
on 1000 runs. The results of these simulations were plotted in terms of percent positives (C) and 
mean expression (D) and compared to scaled flow data as described in Figure 11C and Figure 
11E. The non-linear induction of Tat-Dendra can partially, though not completely, account for 
the switch-like activation observed in the experimental data. 
 
  

0

B

0

105

2x105

3x105

4x105

Ta
t-D

en
dr

a 
m

ols
.A

 openOFF
kon

koff

+
Tat

kdox
(tunable)

kdox
(hrs)

8 12 20
Hours post Dox addition

16

X kbind   

kp

+
Tat

mCherry

 kp-deg

 kmax
 ON

kunbind mRNA

 kr-deg

TetON  ktatprod

C

0

25

50

75

%
 o

f c
ell

s i
n 

ON
 st

at
e

Transactivator molecules
104 105103

8
12
16
20

8
12
16
20

Expt
(hrs)

Model
(hrs)

100

M
ea

n 
pr

ot
ein

 o
ut

pu
t

Transactivator molecules
104 105103

D 150

50

0.1
0.25
0.5
1
1.5
2
3
5
10



 

63 

 
Figure 14: Intensity of Dox-induced Tat-Dendra increases super-linearly with time. 
Single-cell trajectories of Tat-Dendra induction in three isoclones of Jurkat Tat-Dendra + LTR 
mCherry-deg cells were obtained by time-lapse microscopy, as described in Figure 4A, Figure 7, 
Figure 8, Figure 9, and Chapter 3 Materials and Methods. Briefly, the cells were biotinylated, 
attached to a streptavidin-coated coverslip, then induced with 250 nM Dox and imaged for 20 
hours. These trajectories were ranked by Tat-Dendra intensity at 20 hours and grouped by decile, 
with the average intensity for each decile plotted over time. Tat-Dendra induction is super-linear 
and continues to increase over the 20 hour experiment. 
 
 

 
Figure 15: The extended model exhibits a threshold in activation but not mean expression. 
(A) The simulations of the extended toggling model from Figure 11C were fit to a Hill function 
(Chapter 3 Materials and Methods). In terms of percent on, the dose-response curve shows 
weakly positive empirical cooperativity, with H > 1. (B) The equivalent dose-mean expression 
curves from Figure 11E do not show cooperativity, with H ≈ 1. For all fits, R2 ≈ 1. 
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4.3.2.  A threshold generated by promoter toggling can be tuned by cell state 

Molecular thresholds established through multistability and self-cooperativity are often 

dependent upon protein homo-multimerization (Dill and Bromberg, 2010; Teng et al., 2012; 

Wall et al., 2004) or successive covalent modifications (Ferrell Jr., 1998), and thus it is 

biochemically difficult to alter the threshold level. In contrast, I hypothesized that promoter 

toggling could provide a mechanism for tuning of the molecular activation threshold via 

modulation of the frequency of toggling. This hypothesis was motivated by observations that 

latent HIV clones can be partially reactivated by agents that stimulate the host cell (e.g., the 

cytokine TNF-α, which acts primarily through NF-κB signaling; (Jordan et al., 2003; Jordan et 

al., 2001; Razooky et al., 2015)), and these agents act via increasing the LTR burst frequency 

(Dar et al., 2014; Dar et al., 2012; Singh et al., 2010). 

To test this prediction, I again used the non-cyclic ‘extended’ toggling promoter model 

(Figure 11) and increased kon by three-fold, which is within the measured physiological range of 

TNF-α stimulation (Dar et al., 2012). Simulations show that this increase in kon sensitizes the 

LTR response to Tat, with all Tat values with detectable activation giving higher percent 

positives (Figure 17A). The simulated data agree with experimental dose-response curves taken 

in the presence or absence of TNF-α (Figure 16; Figure 17A). Activation of the LTR via 

inhibition of histone deacetylases, using trichostatin A, also produces similar shifts in the dose-

response curves (Figure 6). Thus, promoter toggling provides a mechanism for tuning of a 

molecular activation threshold via cellular activity. 
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Figure 16: Unscaled dose-response plots showing LTR response to TNF.  
(A) Dose-response curves were constructed from three isoclones of Jurkat Tat-Dendra + LTR 
mCherry-deg cultured in Dox media for 20 hours in the presence or absence of TNF-α, as 
described in Figure 3. For these plots and in Figure 17A, each group is 500 cells. (B) Two more 
replicates of panel A, taken at 20 and 40 hours after Dox addition and processed in the same 
manner. Cells for all replicates were prepared, treated, and measured by flow separately. 
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Figure 17: A threshold generated by promoter toggling can be tuned by cellular activation. 
(A) To model the effect of cell state 
activators (e.g. TNF-α) on LTR response, 
the kon value was tripled. For comparison, 
the “Dox Only” simulated dose-response 
curve at 12 hours (kon = 0.1/hr, solid line) 
was reproduced from Figure 2C. The “Plus 
TNF” simulations (kon = 0.3/hr, dotted line) 
were otherwise matched. The higher kon in 
the “Plus TNF” condition promotes a 
stronger and more sensitive response to Tat. 
Dose-response curves were constructed from 
three isoclones of Jurkat Tat-Dendra + LTR 
mCherry-deg, as previously described. The 
cells were induced with Dox in the presence 
or absence of TNF-α, then measured by flow 
at 20 hours. As in Figure 11C, the Tat-
Dendra signal was scaled to align with the 
simulations. There is agreement between 
these experiments (colored lines) and the 
models (black lines). (B) To simulate the 
natural response of latent HIV, the mCherry 
reporter was replaced with Tat, creating 
positive feedback. The first 1000 hours were 
“Dox Only” (baseline) parameters, with the 
last 550 hours shown. At 1000 hours, kon 
was increased to “Plus TNF”, which notably 
increased the activity level of LTR. 

 
 

Next, I asked if this tunable threshold could explain HIV’s stochastic reactivation by TNF-α 

and similar agents. To simulate latent HIV, the open-loop promoter toggling model was modified 

to include positive-feedback circuitry (Figure 17B and Model 4). In the non-activated latent state 

(kon = 0.1/hr), the circuit remains mostly at rest. Transient blips of activation occur, but return to 

baseline quickly. When TNF-α is added to the system (i.e., kon increased by three-fold), the 

circuit activates. While there is no deterministic “switch” to the on state, there are lengthy 

excursions to a high Tat level that could support viral replication (Figure 17B). These excursions 

span multiple burst cycles, and are created by the same mechanism as the activation threshold—
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when Tat is strongly expressed, it can persist from one burst to the next, thus providing a form of 

memory to the system; this requires a Tat half-life comparable to the toggling rate (Figure 18). 

Notably, tunable activation in response to kon also requires non-cooperative feedback; a bistable 

version of this model (H = 2) responds erratically and slowly, even with optimized parameters 

(Figure 19). The dynamics of promoter toggling thus explain another key feature of HIV: 

stochastic reactivation driven by changes in cell state. 

 

 
Figure 18: Toggling models show optimal sensitivity to cell state when transactivator decay 
matches toggling rate. 
(A) The toggling Tat-LTR feedback model (Model 4) was run for 5x104 simulated hours using 
the opening rate (kon) and turnover rate (kdeg) indicated. The proportion of this time spent above 
the “ON” cutoff (5x103 Tat, or 0.5X K50, as in Figure 17) was recorded. Slow turnover (left) 
creates a sharp transition between active and inactive promoter as kon increases. Fast turnover 
(right) creates a more graded response, as the activation threshold disappears in this regime. (B-
D) Partial trajectories from the marked squares in panel A. At the slowest turnover rate (B), the 
response is weak. The moderate rate (C), where kon ≈ kdeg, balances the desired properties of 
switch-like response to increased kon and strong, fast responses with activation threshold. 
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Figure 19: Toggling models with cooperative feedback are poorly responsive to cell state.  
The toggling LTR feedback model (Model 4), in which LTR produces Tat, was run under 
cooperative feedback (H = 2). As in Figure 17B (where N = 1), simulations were run for 1000 
hours at “Dox Only” (baseline) parameters, followed by 1000 hours of “Plus TNF”. Two 
independent runs are shown for each condition. Outside a narrow range of K50 values, this model 
is not sensitive to kon changes in the physiological range. Even under optimized values (K50 at 6 
to 8-fold basal Tat), the response is slow and unreliable. At lower binding affinities (K50 = 6x103, 
top), the system regularly activates under baseline conditions, while at slightly higher affinities 
(K50 = 8x103, bottom), the system can remain inactive for several hundred hours in “Plus TNF”. 
Thus, a bistable version of HIV would require extra circuitry to detect cell state. 
 
 
4.3.3.  Cyclic promoter toggling can generate a threshold in mean expression 

without bistability 

While the non-cyclic ‘extended’ model does not have a threshold in terms of mean 

expression, the experimental data does (Figure 11E; Figure 6). I suggest three potential reasons 

for the disparity. First, the induction of Tat-Dendra with Dox is not instantaneous, as this model 

assumes (Figure 11A). As demonstrated by time-lapse microscopy (Figure 14), Tat-Dendra 

increases super-linearly with time for the duration of the experiment. In a more realistic model 

(Figure 13), Tat-Dendra increases as a quadratic function of time, which sharpens both the dose-
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response and the dose-mean expression curves. Second, it is likely that promoter toggling works 

in concert with other mechanisms, e.g. epigenetic silencing, known to stabilize long-term HIV 

latency (Siliciano and Greene, 2011). A third option, which I explore in this section, is that 

toggling over more complex geometries (e.g. cyclic) may create a true threshold in mean 

expression by introducing multiple transactivation-dependent steps (Figure 20). 

A minimal model of transactivation-dependent chromatin remodeling, previously used to 

model the induction of PHO5 promoter in yeast (Kim and O'Shea, 2008), was adapted to create 

the ‘cyclic’ toggling model (Figure 20A). In this model, the promoter toggles between off, open, 

and on states, as described for the non-cyclic ‘extended’ model (Figure 11A). For the cyclic 

model, I also introduce a repressive nucleosome, which must be removed before the on state can 

express. The nucleosome is removed only from on promoters, where transactivator is bound; it is 

replaced only for open, unbound promoters. This geometry creates two transactivator-dependent 

terms: the fraction of on promoters, and the fraction of promoters without a nucleosome. Since 

both of these conditions must be met to achieve expression, the dose-mean expression curve 

acquires a true deterministic threshold with separatrix (Figure 20B; Analytic Forms), even 

though no single rate in the model has a super-linear response to transactivation (Figure 20A). 

Simulations of this cyclic model were performed as described for the extended model (Figure 

11), and similarly plotted against the scaled flow data in terms of dose-response (Figure 20C) 

and dose-mean expression (Figure 20D), demonstrating that in both cases the cyclic model 

generates empirical cooperativity (H > 1) and a threshold (Figure 21), and also better fits the data 

(Figure 20E). Notably, while this threshold persists at steady state (Figure 20B; Analytic Forms), 

the cyclic model does not exhibit hysteresis or bistability (Figure 22). 
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Figure 20: Cyclic toggling can generate a threshold in mean expression without bistability.  
(A) Schematic of a five-state promoter model with transactivation (Model 5). The promoter 
toggles between off and open-nuc states, with only the open-nuc or open states able to bind 
transactivator. Unlike the simpler ‘extended’ model of Figure 11A, expression also requires a 
cyclic nucleosome remodeling step that is controlled by transactivation. (B-D) Stochastic 
simulations of the model in (A), performed as in Figure 11. As compared to the previous models, 
there is less activity below the K50 of 104 Tat. When fit to a Hill function, the steady state mean 
expression curve (B) gives an apparent cooperativity of H = 1.88, indicating non-linear 
activation and a true threshold. Earlier time points (C-D) also show a threshold in both activation 
and mean expression, with improved fit to data. (E) This flow data, and also extended and 
current ‘cyclic’ models, were fit to Hill functions as in panel B. While the extended model gives 
the non-cooperative result of H ≈ 1, both the data and cyclic model have positive cooperativity, 
with average H = 1.79 for the data (dotted line; 95% CI 1.52-2.06) and average H = 1.62 for the 
cyclic model (95% CI = 1.47-1.77). 
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Figure 21: The cyclic nucleosome toggling model exhibits a threshold in both activation and 
mean expression.  
(A) The simulations of the extended toggling model from Figure 20C were fit to a Hill function 
(Chapter 3 Materials and Methods). In terms of percent on, the dose-response curve shows 
weakly positive empirical cooperativity, with H > 1. (B) The equivalent dose-mean expression 
curves from Figure 20D also show cooperativity, with H > 1. For all fits, R2 ≈  1. 
 
 
 
 
 
 
 
 
 
Figure 22: The cyclic nucleosome toggling model has greater state persistence but does not 
exhibit permanent hysteresis or bistability. 
(A) The toggling LTR feedback model with transactivator-dependent nucleosome remodeling 
(Model 6) was initialized at the basal state with “Plus TNF” parameters and run for 2000 hours. 
Compared to the non-cyclic extended toggling model (Figure 17B), the excursions to the high-
Tat state are longer lasting. (B) Both the cyclic and extended feedback models were run 2000 
times, from both basal and fully active initial conditions, to give the mean expression over time 
for each group. The extended model randomizes more quickly, but the cyclic model does 
ultimately converge to the same mean regardless of starting point. 
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4.4. Discussion 

Overall, these results indicate that that promoter toggling may function as a general 

mechanism for generating intrinsic molecular thresholds in gene activation. Previous quantitative 

studies, performed in the context of native regulatory circuits, have revealed threshold-like 

signal-response curves for LTR (Miller-Jensen et al., 2012) and other eukaryotic promoters 

(Karttunen and Shastri, 1991; Kim and O'Shea, 2008). This has been attributed to positive 

feedback increasing the response to strong signals, and to indirect sources of cooperativity, such 

as slow chromatin remodeling, limiting the response to weak signals. I have attempted to exclude 

such confounding factors by directly measuring transcriptional inputs and outputs at the single-

cell level in a synthetic circuit without feedback. Even when isolated in this manner, LTR retains 

the intrinsic sharpness of its response to Tat (Figure 6). This result reinforces the previous 

conclusion that HIV’s ability to establish latency is intrinsic to the Tat-LTR circuit and not 

driven by the cell ‘relaxing’ or ‘retreating’ to a resting state (Razooky et al., 2015).  

These biologically inspired toggling models match the behavior of the isolated Tat-LTR 

circuit, and also illustrate a mechanism that would allow HIV to directly respond to changes in 

cell state. The sensitivity of LTR response to Tat can be tuned by the rate of LTR entering the 

open state, which increases in the activated cell states that favor HIV replication. This 

mechanism eliminates the need for complex sensing and control circuits in HIV, allowing the 

virus to perform a sophisticated fate decision with only one promoter and a modest 9.7 kb 

genome (Siliciano and Greene, 2011). Indeed, the simplicity of HIV is notable in comparison to 

phage λ, which requires multiple interwoven cooperative feedback loops to create an analogous 
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fate decision in E. coli, and has a genome five times larger than HIV’s (Arkin et al., 1998; 

Bednarz et al., 2014; Ptashne, 2004). 

In a broader context, neither the functional role of promoter toggling, nor its mechanistic 

basis, are well understood (but see Symmons and Raj, 2016 for an excellent review). One 

recently identified source of confusion is that, at least in higher eukaryotes, bursting occurs at 

multiple time scales (Featherstone et al., 2016; Tantale et al., 2016). Studies based on directly 

imaging transcriptional foci typically report bursts at the scale of a few minutes, with variable 

intensity among the bursts (Chubb et al., 2006; Corrigan et al., 2016; Larson et al., 2011). In our 

model, this corresponds to the fast, regulator-dependent movement between open and on states. 

By contrast, studies that track expression of reporter genes over time typically report burst cycles 

of a few hours, with the promoter ‘toggling’ between discrete active and inactive states (Harper 

et al., 2011; Suter et al., 2011; Zoller et al., 2015). Studies of LTR expression that infer burst 

parameters from statistical properties of the distributions of single-cell mRNA or protein 

measurements also give results consistent with lengthy toggling cycles (Dar et al., 2012; Dey et 

al., 2015; Singh et al., 2010; Skupsky et al., 2010). This corresponds to the slow, cell-state-

dependent toggling between open and off. In this chapter, I propose a general multi-step model 

for transactivation of a toggling promoter that unifies these diverse observations, and show that 

this model has desirable properties for a genetic circuit, including an intrinsic non-deterministic 

activation threshold and a large dynamic range. I suggest that other eukaryotic circuits may 

depend on similar design principles for their function, and that systems biologists and modelers 

should remain alert for the possibilities created by toggling. 
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4.5. Model Definitions 

4.5.1.  Extended open-loop model with transactivator and three promoter states. 

From Figure 3E, I estimate kon for typical latent LTR at 0.1 / hr. Our clones were chosen for 
low expression; turn-on rates for LTR in the absence of Tat have been estimated previously at 
0.3 / hr (Dar et al., 2012). Turn-off and decay rates were also taken from (Dar et al., 2012).  

Turnover time for Tat binding was set at 5 seconds, matching estimates for other 
transcription factors (Voss et al., 2011). The half-maximal Tat binding value of K50 = 104 is 
arbitrary, but chosen to match the estimated value from Chapter 3. The 100-fold difference 
between basal and high output was estimated by (Jeeninga et al., 2000). The mCherry half-life 
was chosen to match that of Tat (Weinberger and Shenk, 2007). The mCherry reporter used, with 
its single PEST tag, has a comparable half-life of 10.7 hours (data not shown). 

Simulations were initialized at equilibrium for the zero-Tat steady state. For this parameter 
set, basal mCherry is 10 molecules. The off and open states were randomly assigned so that they 
would occur in the expected distribution at t=0. 

Reaction Description Rate (per hour) 

	OFF→OPEN  Toggling between OFF and 
OPEN states 		

k-on =0.1	("Dox	Only")
k-on =0.3	("Plus	TNF")  

	OPEN→OFF  Toggling between OPEN and 
OFF states 		k-off =2  

	OPEN +Tat→ON  Toggling between OPEN and 
ON states 

		k-turn =500		K50 =104  

		k-bind = k-turn/K50  

	ON→OPEN +Tat  Toggling between ON and 
OPEN states 		k-unbind = k-turn =500  

	ON→ON +mCherry  Maximum LTR output 		k-max =80  

	⊗→mCherry  Basal LTR output 		k-min =0.8  

	mCherry→⊗  Protein decay 		k-deg =0.08	(half-life	~8.7	hr)  
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4.5.2.  Simplified model with transactivator-dependent k-off and k-max. 

In this simplified (two-state) model, Tat increases the expression from active LTR, and also 
decreases the rate of transition to the closed state (koff). This produces results indistinguishable 
from the three-state model in Figure 11A. For the “off rate only” version, the model was altered 
so that Tat does not change expression rate; both unbound open and Tat-bound on LTR express 
at kmax. In the “expression rate only” version, koff does not change; Tat-bound LTR can relax to 
the off state. Other parameters were as described in Model 1.  

Reactions present in all models 
Reaction Description Rate (per hour) 

	OFF→OPEN  Toggling between OFF and 
OPEN states 		

k-on =0.1	("Dox	Only")
k-on =0.3	("Plus	TNF")  

	⊗→mCherry  Basal LTR output 		k-min =0.8  

	mCherry→⊗  Protein decay  
 
Both k-off and k-max are Tat-dependent (standard model) 

Reaction Description Rate (per hour) 

	OPEN→OFF  Toggling between OPEN and 
OFF states 

		P-bind =Tat /(Tat +K50)  

		 k-off =2i(1−P-bind)  

	OPEN→OPEN +mCherry  Output from combined OPEN 
and ON states 		P-bind =Tat /(Tat +K50)  

		 k-max =80iP-bind  
 
Only k-off is Tat-dependent 

Reaction Description Rate (per hour) 

	OPEN→OFF  Toggling between OPEN and 
OFF states 

		P-bind =Tat /(Tat +K50)  

		 k-off =2i(1−P-bind)  

	OPEN→OPEN +mCherry  Output from combined OPEN 
and ON states 		 k-max =80iP-bind  

 
Only k-max is Tat-dependent (random telegraph model) 

Reaction Description Rate (per hour) 

	OPEN→OFF  Toggling between OPEN and 
OFF states 		k-off =2  

	OPEN→OPEN +mCherry  Output from combined OPEN 
and ON states 		P-bind =Tat /(Tat +K50)  

		 k-max =80iP-bind  

		k-deg =0.08	(half-life	~8.7	hr)
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4.5.3.  Detailed model with mRNA and non-linear transactivator production. 

In this model, Tat-Dendra induction was designed to match the experimental time-lapse data 
(Figure 14). In this data, Tat-Dendra intensity is roughly a quadratic function of time. To achieve 
this in the model, the “TetON” regulator is induced with tunable linear expression; both TetON 
and Tat-Dendra start at zero, and production of Tat-Dendra requires two units of TetON as a 
catalyst, giving a quadratic increase of Tat-Dendra with time. 

The mRNA half-life for a related LTR reporter construct was previously measured in (Singh 
et al., 2012). Other parameters were as described in Model 1. Expected mCherry values are 100X 
higher in this model, so the “mCherry positive” cutoff was rescaled. For computational 
efficiency, Tat-Dendra was produced in 100-molecule bursts, and mCherry was produced and 
degraded in 10-molecule bursts. 

Reaction Description Rate (per hour) 

	OFF→OPEN  Toggling between 
OFF and OPEN states 		

k-on =0.1	("Dox	Only")
k-on =0.3	("Plus	TNF")  

	OPEN→OFF  Toggling between 
OPEN and OFF states 		k-off =2  

	OPEN +Tat→ON  Toggling between 
OPEN and ON states 

		k-turn =500		K50 =104  

		k-bind = k-turn/K50  

	ON→OPEN +Tat  Toggling between ON 
and OPEN states 		k-unbind = k-turn =500  

	ON→ON +mRNA  Maximum LTR output 		k-max =80  

	⊗→mRNA  Basal LTR output 		k-min =0.8  

		 
mRNA→

mRNA+10imCherry
 Translation rate 		k-p=30/10  

	mRNA→⊗  mRNA decay 		k-r-deg =0.3	(half-life	~2.3	hr)  

		 10imCherry→⊗  Protein decay 		k-p-deg =0.08/10	(half-life	~8.7	hr)  

	⊗→TetON  Dox-regulated 
intermediate 		k-dox = varies	(range	0.1-10)  

		 
2iTetON→

2iTetON +100iTat
 Tat-Dendra expression 		k-tatprod =0.1  
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4.5.4.  Feedback models with non-cooperative and cooperative activation. 

For the non-cooperative simulations in Figure 17, N = 1 and the half-maximal binding (K50) 
was set to 10X basal expression, or 104 molecules. For the cooperative simulations in Figure 19, 
N = 2 and K50 was set to the listed values. For computational efficiency, Tat was produced and 
degraded in 100-molecule bursts. Other parameters were as described in Model 1. 

Simulations were initialized at equilibrium for the zero-Tat steady state. For this parameter 
set, basal Tat is 103 molecules. The off and open states were randomly assigned so that they 
would occur in the expected distribution at t=0, except in Figure 22, where all runs began in the 
open state with either 103 Tat (basal) or 105 Tat (active). 

Reaction Description Rate (per hour) 

	OFF→OPEN  Toggling between OFF and 
OPEN states 		

k-on =0.1	("Dox	Only")
k-on =0.3	("Plus	TNF")  

	OPEN→OFF  Toggling between OPEN 
and OFF states 		k-off =2  

	 OPEN +N iTat→ON  Toggling between OPEN 
and ON states 

		k-turn =500		K50 =104  

		k-bind = k-turn/K50
N  

	 ON→OPEN +N iTat  Toggling between ON and 
OPEN states 		k-unbind = k-turn =500  

		 ON→ON +100iTat  Maximum LTR output 		k-max =80  

		 ⊗→100iTat  Basal LTR output 		k-min =0.8  

		 100iTat→⊗  Protein decay 		 k-deg =8i10−4 	(half-life	~8.7	hr) 
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4.5.5.  Open-loop model with transactivator-dependent nucleosome remodeling. 

A minimal model of transactivation-dependent nucleosome remodeling, previously used to 
model the induction of PHO5 promoter in yeast (Kim and O'Shea, 2008), was incorporated into 
the open-loop ‘extended’ toggling model (Figure 11A). Tat binds the promoter with the same 
kinetics whether the repressive nucleosome is present or not. Remodeling of the nucleosome 
occurs only when the promoter is on, and is required for expression; this is effectively a second 
transactivator-dependent step, which generates non-linear activation and a true threshold 
(Analytic Forms). Other parameters were as described in Model 1. 

Reaction Description Rate (per hour) 

		OFF→OPEN(nuc)  
Toggling between 
OFF and OPEN 

states 		
k-on =0.1	("Dox	Only")
k-on =0.3	("Plus	TNF")  

		OPEN(nuc)→OFF  
Toggling between 
OPEN and OFF 

states 
		k-off =2  

		
OPEN(nuc)+Tat→ON(nuc)

OPEN +Tat→ON
 Toggling between 

OPEN and ON states 
		k-turn =500		K50 =104  

		k-bind = k-turn/K50  

		
ON(nuc)→OPEN(nuc)+Tat

ON→OPEN +Tat
 Toggling between 

ON and OPEN states 		k-unbind = k-turn =500  

		ON(nuc)→ON  
Remodeling of ON 

into active state 		k-nuc-off =1  

		OPEN→OPEN(nuc)  
Remodeling of OPEN 

to inactive 		k-nuc-on = 4  

	ON→ON +mCherry  Maximum LTR 
output 		k-max =80  

	⊗→mCherry  Basal LTR output 		k-min =0.8  

	mCherry→⊗  Protein decay 		k-deg =0.08	(half-life	~8.7	hr)  
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4.5.6.  Feedback model with transactivator-dependent nucleosome remodeling. 

The ‘cyclic’ model of transactivation-dependent nucleosome remodeling described in Figure 
20A and Model 5 was modified to exhibit feedback, as was done with the ‘extended’ model of 
Figure 11A described in Model 1. 

For simulations starting at the basal state, initial conditions were 103  Tat, and the promoter 
was in the nucleosome-bound open-nuc state. For simulations starting at the fully active state, 
initial conditions were 105  Tat, and the promoter was in the unbound open state. 

Reaction Description Rate (per hour) 

		OFF→OPEN(nuc)  Toggling between 
OFF and OPEN states 		

k-on =0.1	("Dox	Only")
k-on =0.3	("Plus	TNF")  

		OPEN(nuc)→OFF  Toggling between 
OPEN and OFF states 		k-off =2  

		
OPEN(nuc)+Tat→ON(nuc)

OPEN +Tat→ON
 Toggling between 

OPEN and ON states 
		k-turn =500		K50 =104  

		k-bind = k-turn/K50  

		
ON(nuc)→OPEN(nuc)+Tat

ON→OPEN +Tat
 Toggling between ON 

and OPEN states 		k-unbind = k-turn =500  

		ON(nuc)→ON  
Remodeling of ON 

into active state 		k-nuc-off =1  

		OPEN→OPEN(nuc)  
Remodeling of OPEN 

to inactive 		k-nuc-on =1  

		 ON→ON +100iTat  Maximum LTR output 		k-max =80  

		 ⊗→100iTat  Basal LTR output 		k-min =0.8  

		 100iTat→⊗  Protein decay 
		 
k-deg =8i10−4

(half-life	~8.7	hr)  
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4.6. Methods 

The experimental results presented in this chapter were previously described in Chapter 3; 

thus, experimental methods can be found in Chapter 3: Materials and Methods. 

4.6.1.  Stochastic simulations 

All simulations were performed by the stochastic tau-leaping method, as implemented in 

StochPy (Maarleveld et al., 2013), on a modified desktop computer. Text descriptions of these 

models and their chosen parameters are given in Model Definitions. Model specification files in 

PySCeS, interpretive dance, and SBML formats are available upon request. 

4.7. Analytic Forms 

For the classic ‘random telegraph’ model of promoter toggling, in which expression from the 

on state is a function of Tat binding, reporter expression from the open-loop promoter is a 

hyperbolic function of Tat. Here, kon and koff are the rates of toggling to the on and off state 

respectively, kmax is the maximum expression rate of the on promoter, and K50 is the half-

maximal binding concentration of Tat. 

 

		 

OFF!ON
dOFF
dt

= koff iON −kon iOFF

dON
dt

= kon iOFF −koff iON

OFF +ON =1

  (2.1) 

 

 
	
ON =

kon
kon +koff

  (2.2) 
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mRNA	 =ON ikmax i

Tat
Tat +K50

  (2.3) 

 

For the ‘extended’ toggling model of Figure 11A, the fraction of promoters in the on state at 

steady state is also a hyperbolic function of Tat. Expression is proportional to the time the 

promoter spends in the on state, as in (2.3). (For brevity, kbTat = kbind, and ku = kunbind.) 

 

		 

OFF!OPEN!ON
dOFF
dt

= koff iOPEN −kon iOFF

dOPEN
dt

= kon iOFF +ku iON −(koff +kbTat)iOPEN
dON
dt

= kbTat iOPEN −ku iON

OFF +OPEN +ON =1

  (2.4) 

 

 
		
ON =

konkbTat
kukoff +ku(kon +konTat)

  (2.5) 

 

The derivative of this function in terms of Tat is positive everywhere, with the maximum 

over its defined domain (i.e., non-negative Tat) occurring at Tat = 0. Deterministic bistability 

requires a ‘separatrix’ where the second derivative of the dose-mean expression curve goes from 

positive to negative, so this function cannot be bistable at steady state. 

This equation is more easily interpreted in units of K50, the half-maximal binding 

concentration. When the promoter is open, it rapidly reaches equilibrium with the on state. When 

Tat = K50, and the promoter is not off, the system is described by: 
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ON = 12 =

kbK50
kbK50 +ku

			K50 =
ku
kb

  (2.6) 

 

Equation (2.5) can thus be rephrased in terms of (Tat / K50) = T. Similar hyperbolic 

expressions can be obtained for the open and off promoter states.  

 
		
ON =

konT
kon(1+T)+koff

			OPEN =
kon

kon(1+T)+koff
			OFF =

koff
kon(1+T)+koff

  (2.7) 

 

However, in the ‘cyclic’ nucleosome model of Figure 20A, a higher-order response to Tat is 

present. Remodeling of the nucleosome occurs only when the promoter is on, and is required for 

expression; this is effectively a second Tat-dependent step, which generates non-linear activation 

and a true threshold, even though no single reaction rate has a non-linear response to Tat. (For 

brevity, knu = knuc-off, and knb = knuc-on.) 

 

		 

dOFF
dt

= koff iOPEN(nuc)−kon iOFF

dOPEN(nuc)
dt

= kon iOFF +ku iON(nuc)+knb iOPEN −(koff +kb)iOPEN(nuc)
dON(nuc)

dt
= kb iOPEN(nuc)−(ku +knu)iON(nuc)

dOPEN
dt

= ku iON −(kb +knb)iOPEN
dON
dt

= kb iOPEN +knu iON(nuc)−ku iON

OFF +OPEN(nuc)+ON(nuc)+OPEN +ON =1

  (2.8) 
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A= koff knbku i(ku +knu)
B = konknbku i(ku +knu)
C = konknbku ikbTat
D= konknuku ikbTat

E = konknu ikbTat i(kbTat +knb)

ON =
konknu ikbTat i(kbTat +knb)

A+B +C +D+E

  (2.9) 

 

When ku and kb are fast relative to other parameters, Tat binding comes to equilibrium, and 

the ‘cyclic’ model reduces to a three-state linear system. This system can be solved at steady 

state, as previously shown. 

 

		 

OFF!Nuc-Bound 	(NB)!Nuc-Unbound 	(NU)
OFF→NB 	at	Tat-independent	rate	kon

NB→NU 	at	rate	knu 	if	Tat	bound,	Pbind =T /(1+T)
NU→NB 	at	rate	knb 	if	Tat	not	bound,	1-Pbind =1/(1+T)
NB→OFF 	at	rate	koff 	if	Tat	not	bound,	1-Pbind =1/(1+T)

  (2.10) 

 

 

		 

dOFF
dt

=
koff iNB
(1+T) −kon iOFF

dNB
dt

= kon iOFF +
knb iNU
(1+T) −

(koff +knuT)iNB
(1+T)

dNU
dt

=
knuT iNB
(1+T) −

knb iNU
(1+T)

OFF +NB +NU =1

  (2.11) 

 

 
		 
NU =

knukon iT(1+T)
knukon iT(1+T)+knb(koff +kon(1+T))

  (2.12) 
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ON = NU iT

(1+T) =
knukon iT2

knukon iT(1+T)+knb(koff +kon(1+T))
  (2.13) 

 

Given the biologically plausible parameter set of koff = 2, knu = knb = 1, the second derivative 

of this equation reduces to the form below, with a separatrix at T = 2.54 when kon = 0.1, in the 

baseline “Dox Only” state, and at T = 1.50 when kon = 0.3, in the activated “Plus TNF” state. 

 
		 
∂2ON
∂T2 =

2kon(kon(−2kon iT3 −3(kon +2)iT2 +kon +4)+4)
(kon(T +1)2 +2)3

  (2.14) 

 

To understand the responsiveness of Tat-LTR feedback to changing kon, I plot the 

characteristic curves of these equations (as depicted in Figure 2A), using the feedback model 

parameters of Model 4 for the ‘random telegraph’ (2.2) and ‘extended’ (2.7) models, and the 

additional nucleosome remodeling parameters of Model 6 for the ‘cyclic’ (2.14) model. For the 

random telegraph model (Figure 23A), the steep decrease in slope of the expression curves as Tat 

increases limits the dynamic range of the response. To achieve the OFF state, the expression 

curve must be under the decay line; within physiological parameters, this model is either 

monostable OFF or has a very weak ON state. If the decay constant is shifted downwards to 

achieve a robust ON state under activated conditions, considerable Tat will be present even 

under baseline conditions (Figure 23A). For the extended model (Figure 23B), the expression 

curve has a slope that continues to rise at higher Tat levels; the activated expression curve is well 

above the decay line, while the baseline curve remains below, explaining the transition from 

latency to stochastic reactivation observed when TNF-α is added (Figure 17). For the cyclic 

nucleosome model (Figure 23C), the activated expression curve intersects the decay curve, 
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giving a true threshold for reactivation. However, because this threshold is relatively weak, the 

inherent noise of toggling is able to move the system between ON and OFF states (Figure 22). 

 

 

 
Figure 23: Characteristic curves for toggling models at baseline and activated states. 
The expression curves (solid lines) are taken from the applicable equation in Analytic Forms, 
and parameterized as described in the feedback model of Model 4 for the ‘random telegraph’ and 
‘extended’ models, and of Model 6 for the ‘cyclic’ model. The decay rate (black dashed line) is 
the same in all cases. (A) Random telegraph model (2.2). (B) Extended model (2.7). (C) Cyclic 
nucleosome model (2.13). 
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