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Abstract

Tuning Electrostatic Potentials for Imaging the Quantum Properties of Massless Dirac
Fermions in Graphene

by

Dillon Wong

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Michael F. Crommie, Chair

Graphene, a two-dimensional (2D) honeycomb lattice of sp2-bonded carbon atoms, is
renowned for its many extraordinary properties. Not only does it have an extremely high
carrier mobility, exceptional mechanical strength, and fascinating optical behavior, graphene
additionally has an interesting energy-momentum relationship that is emergent from its
space group symmetry. Graphene’s low-energy electronic excitations consist of quasiparticles
whose energies disperse linearly with wavevector and obey a 2D massless Dirac equation with
a modified speed of light. This fortuitous circumstance allows for the exploration of ultra-
relativistic phenomena using conventional tabletop techniques common to solid state physics
and material science. Here I discuss experiments that probe these ultra-relativistic effects via
application of scanning tunneling microscopy (STM) and spectroscopy (STS) to graphene
field-effect transistors (FETs) in proximity with charged impurities.

The first part of this dissertation focuses on the ultra-relativistic Coulomb problem.
Depending on the strength of the potential, the Coulomb problem for massless Dirac particles
is divided into two regimes: the subcritical and the supercritical. The subcritical regime
is characterized by an electron-hole asymmetry in the local density of states (LDOS) and,
unlike in nonrelativistic quantum mechanics, does not support bound states. In contrast, the
supercritical regime hosts quasi-bound states that are analogous to “atomic collapse” orbits
predicted to occur in atoms with nuclear charge Z > 170. By using an STM tip to directly
position calcium (Ca) impurities on a graphene surface, we assembled “artificial nuclei”
and observed a transition between the subcritical and supercritical regimes with increasing
nuclear charge. We also investigated the screening of these charged impurities by massless
Dirac fermions while varying the graphene carrier concentration with an electrostatic gate.

The second part of this dissertation focuses on the ultra-relativistic harmonic oscillator.
We developed a method for manipulating charged defects inside the boron nitride (BN)
substrate underneath graphene to construct circular graphene p-n junctions. These p-n
junctions were effectively quantum dots that electrostatically trapped graphene’s relativistic
charge carriers, and we imaged the interference patterns corresponding to this quantum
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confinement. The observed energy-level spectra in our p-n junctions closely matched a
theoretical spectrum obtained by solving the 2D massless Dirac equation with a quadratic
potential, allowing us to identify each observed state with principal and angular momentum
quantum numbers.

The results discussed here provide insight into fundamental aspects of relativistic quan-
tum mechanics and into graphene properties pertinent to technological applications. In
particular, graphene’s response to electrostatic potentials determines the scope in which its
charge carriers can be directed and harnessed for useful purposes. Furthermore, many of the
results contained in this dissertation are expected to generalize to other Dirac materials.
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Chapter 1

Introduction

1.1 The Coulomb Potential and the Harmonic

Oscillator

Two of the most basic and important problems in physics are the Coulomb potential and
the harmonic oscillator potential. These two potentials are ubiquitous and, because they
are amongst the few that we know how to solve exactly, are often used as a starting point
to model and understand the complicated world around us. The Coulomb problem has a
long history, stretching back to when Issac Newton first demonstrated that Kepler’s laws
of planetary motion could be derived from a 1/r2 force. Much later, Niels Bohr and Erwin
Schrödinger incorporated the Coulomb potential into the framework of a quantum theory to
obtain the energy levels of a hydrogen atom. The quantum theory of the Coulomb potential
is by no means limited in applicability, as it easily explains many aspects of semiconductor
impurity states, excitons, and other phenomena. The usefulness of the Coulomb field is only
surpassed by the harmonic oscillator, which is truly everywhere in all areas of science and
engineering. Almost everything – including the Coulomb potential – is a harmonic oscillator
or a system of coupled oscillators.

In nonrelativistic quantum mechanics, particle motion in a time-independent potential is
governed by the Schrödinger equation

− h̄2

2m
∇2Ψ + V (r)Ψ = EΨ, (1.1)

for which V (r) = Ze2/r for the Coulomb potential, and V (r) = 1
2
mω2r2 for the harmonic os-

cillator. The Schrödinger equation can be solved for both potentials using the same method.
Separation of variables yields a radial Schrödinger equation, which is then transformed into a
Sturm-Liouville equation with a complete set of orthogonal eigenfunctions. These eigenfunc-
tions are obtained by plugging in a power series into the differential equation and deriving a
recursive formula that determines the coefficients of the power series. The power series is then
given a name: the associated Laguerre polynomials for the three-dimensional (3D) Coulomb
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problem and the Hermite polynomials for the one-dimensional (1D) harmonic oscillator. The
corresponding discrete energy eigenvalues are

E = −Z
2e4m

2h̄2n2 , (1.2)

with n = 1, 2, 3, ... for the 3D Coulomb potential, and

E = h̄ω(n+
1

2
), (1.3)

with n = 0, 1, 2, 3, ... for the 1D harmonic oscillator.
All of this was understood as early as the mid-1920s, and this is now taught in standard

undergraduate courses in quantum mechanics. Less well known, however, is the behavior
of a relativistic particle in a Coulomb or harmonic oscillator potential. As we shall see
in the subsequent section, graphene provides a pathway for experimentally exploring how
relativistic electrons react to these elementary potentials.

1.2 Graphene as a Platform for Relativistic Physics

Graphene, an atomically thin sheet of graphite, was first isolated on insulating substrates in
2004 by Andre Geim and Konstantin Novoselov [1], and its two-dimensional (2D) nature and
π Berry phase were immediately verified via quantum Hall measurements [2, 3]. Graphene’s
electronic structure, however, was already theoretically understood as far back as 1947, when
Philip Wallace first calculated the band structure using the tight-binding method [4]. Here, I
present the tight-binding model for graphene and show that its electrons obey a 2D massless
Dirac equation.

1.2.1 Tight-Binding Theory of Graphene

The carbon atoms in graphene are arranged in a honeycomb lattice that is composed of
two interpenetrating triangular sublattices, hereby denoted as the A and B sublattices (see
Fig. 1.1a). Each triangular sublattice can be constructed by the primitive lattice vectors

a1 = a

(
−
√

3

2
,
3

2

)
, a2 = a

(√
3

2
,
3

2

)
, (1.4)

where a = 1.42 Å is the distance between an atom on the A sublattice and its nearest
neighbors on the B sublattice. The vectors to the nearest neighbors of each B atom are

δ1 = a

(
−
√

3

2
,
1

2

)
, δ2 = a

(√
3

2
,
1

2

)
, δ3 = a (0,−1) . (1.5)
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Figure 1.1: Graphene unit cell. (a) A honeycomb lattice consists of two triangular sublattices
A and B. Each unit cell consists of a basis with an A atom and its nearest neighbor on B
at −δ3 away from the A atom. (b) The Brillouin zone is a hexagon. The corners of the
Brillouin zone are denoted K and K ′.

The reciprocal lattice vectors are

G1 =
2π

a

(
− 1√

3
,
1

3

)
, G2 =

2π

a

(
1√
3
,
1

3

)
. (1.6)

As depicted in Fig. 1.1b, the Brillouin zone for a triangular lattice is a hexagon with high
symmetry points K and K ′ on its corners:

K =
2π

a

(
2

3
√

3
, 0

)
, K′ =

2π

a

(
− 2

3
√

3
, 0

)
. (1.7)

The atoms are σ-bonded by sp2 orbitals, while pz orbitals stick out of the graphene plane,
forming π and π∗ bands [5]. These bands, which form the conduction and valence bands of
graphene, can be modeled by the following Hamiltonian with hopping amplitude t:

H = −t
∑
〈i,j〉

(
a†ibj + h.c.

)
+ U

∑
i

(
a†iai − b

†
ibi

)
. (1.8)

I have suppressed the spin index and have neglected hopping further than nearest neighbor.
U is half the energy difference between an electron sitting on sublattice B as opposed to A,
which is obviously zero. Here, 〈i, j〉 denotes nearest neighbors, and the operators a†i and ai
are the creation and annihilation operators for site i on sublattice A (and similarly, b†j and
bj are for site j on B).

Since graphene has discrete translational symmetry, we can construct Bloch states in-
dexed by crystal momentum k:

ai =
1√
N

∑
k

eik·Riak, (1.9)
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bi =
1√
N

∑
k

eik·Ribk. (1.10)

Ri is the vector to the ith unit cell, and N is the number of unit cells. Plugging these two
expressions into the Hamiltonian in Eq. 1.8 gives

H = − t

N

∑
〈i,j〉

∑
k,k
′

(
eik
′·Rj−ik·Ria†kbk′ + h.c.

)
+
U

N

∑
i,k,k

′

ei(k
′−k)·Ri

(
a†kak′ − b

†
kbk′

)
= −t

∑
k

[(
1 + e−ik·a1 + e−ik·a2

)
a†kbk + h.c.

]
+ U

∑
k

(
a†kak′ − b

†
kbk

)
. (1.11)

Figure 1.2: Graphene band structure. (a) Tight-binding energy-momentum dispersion of
graphene. The upper (π∗) and lower (π) bands touch at the K and K ′ points. (b) The elec-
tronic dispersion relation near the K point is an isotropic Dirac cone. The energy disperses
linearly with momentum away from the singularity, which is known as the Dirac point. The
Fermi level coincides with the Dirac point for neutral (undoped) graphene.

If we organize the amplitudes for being on each sublattice into a two-component spinor,
the Hamiltonian can be written as a matrix for each k:

H(k) = −t
(

U 1 + e−ik·a1 + e−ik·a2

1 + eik·a1 + eik·a2 −U

)
. (1.12)

For U = 0, the energy eigenvalues for this Hamiltonian matrix are E = ±|1 + eik·a1 + eik·a2|,
which is plotted in Fig. 1.2a. For undoped graphene, the upper band is an empty conduction
band, while the lower band is a filled valence band.

1.2.2 Dirac Cones and the Dirac Point

Eq. 1.12 can be expanded for small q = (qx, qy) around the K point (i.e. k = K + q) to
obtain

HK(q) = h̄vF
(
qxσx + qyσy

)
+ Uσz, (1.13)
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where σx, σy, and σz are the Pauli matrices, and vF = 3at
2h̄
≈ 106 m/s is the graphene Fermi

velocity. These Pauli matrices do not act on spin but rather on the sublattice degree of
freedom. If we then define φ such that q = (qx, qy) = q(cos(φ), sin(φ)), the Hamiltonian in
Eq. 1.13 (for U = 0) can be rewritten as

HK(q) = h̄vF q

(
0 e−iφ

eiφ 0

)
, (1.14)

which has eigenvectors

ΨK,π
∗(q) =

1√
2

(
e−iφ/2

eiφ/2

)
, ΨK,π(q) =

1√
2

(
e−iφ/2

−eiφ/2
)
. (1.15)

This is similar to a spin pointing in the φ-direction. For this reason, the sublattice degree of
freedom is referred to as “pseudospin.” However, unlike the real spin, pseudospin is locked
parallel or antiparallel to q. It is said that graphene electrons have “helicity” (also inappro-
priately named “chirality”) equal to +1 in the conduction band (because pseudospin and q
are parallel) and −1 in the valence band (because pseudospin and q are antiparallel).

If the A and B sublattices are energetically inequivalent (such as in hexagonal boron
nitride (BN)), the σz term in Eq. 1.13 (often called the “mass term”) produces a band gap
of width 2U . Since the A and B sublattices in graphene are energetically equivalent (and
ignoring spin-orbit coupling, which is small for carbon), graphene is gapless. This leads to a
linear dispersion E = ±h̄vF q = ±pvF quite like that of a massless particle (except the speed
of light has been replaced by vF ). The positive eigenvalue E = h̄vF q is for ΨK,π

∗ , and the
negative eigenvalue E = −h̄vF q is for ΨK,π. Fig. 1.2b depicts this dispersion relation, which
is composed of two symmetric conical bands that touch at an E = 0 singularity called the
Dirac point ED. As a consequence, graphene also has a linear electronic density of states
(DOS) per unit area given by

DOS(E) =
2|E|

π(h̄vF )2 . (1.16)

This expression includes both the spin degeneracy and “valley degeneracy” described in the
next paragraph.

The Hamiltonian in Eq. 1.12 can also be expanded around the K ′ point to obtain

HK
′(q) = h̄vF

(
−qxσx + qyσy

)
+ Uσz. (1.17)

The Hamiltonian at K ′ is constrained to take this form because (for U = 0) time reversal and
inversion symmetries require that HK

′(−q) = H∗K(q) and HK
′(−q) = σxHK(q)σx. HK(q)

and HK
′(q) can be combined into a single Hamiltonian

H(q) = h̄vF
(
qxσx ⊗ τz + qyσy

)
+ Uσz. (1.18)

Here, τz is the third Pauli matrix acting on the K and K ′ degree of freedom, sometimes
referred to as valley pseudospin. In this dissertation, we will not be concerned about the K ′

point except that it gives an additional degeneracy factor of 2 in Eq. 1.16.
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1.2.3 Graphene Continuum Model

I henceforth drop the subscript K on HK and abbreviate the Pauli matrices as σ = (σx, σy).
We obtain a continuum model Hamiltonian for graphene

H = −ih̄vFσ · ∇ (1.19)

by replacing the momentum h̄q by −ih̄∇ in Eq. 1.13. This is the 2D massless Dirac Hamil-
tonian and leads to ultra-relativistic phenomena such as the Klein paradox [6–11], Zitterbe-
wegung [12], and atomic collapse [13–18].

In the presence of an external potential V (r), the continuum model equation for graphene
becomes

− ih̄vFσ · ∇Ψ + V (r)Ψ = EΨ. (1.20)

We note here an important property of the above single-particle equation. If we replace Ψ
with σzΨ

′, then by the anticommuting property of the Pauli matrices {σi, σj} = δij,

− ih̄vFσ · ∇Ψ′ − V (r)Ψ′ = −EΨ′. (1.21)

This implies that if Ψ is a solution to the Dirac equation with potential V (r) and energy E
(Eq. 1.20), then Ψ′ = σzΨ is a solution to the Dirac equation for −V (r) and −E. So long
as the Dirac equation remains a good description for charge carrier motion in graphene, the
physics that occur in potentials V (r) and −V (r) are exactly the same (except the energy E
is inverted).

1.3 The Klein Paradox

The fact that charge carrier motion in graphene can be described via a massless Dirac equa-
tion has many interesting consequences. The most famous is that of the Klein paradox,
where an electron normally incident on a potential barrier has a 100% transmission proba-
bility [6]. This is highly counterintuitive because this Klein tunneling process occurs even
when the kinetic energy is smaller than the potential barrier height. Suppose we have a
Heaviside step potential

V (x) = 2V0Θ(x)− V0 =

{
−V0, x < 0

V0, x > 0.
(1.22)

Ignoring intervalley scattering, we can model graphene electrons using the Hamiltonian

H = −ih̄vFσ · ∇+ V (x). (1.23)

There is translational invariance in the y-direction, so crystal momentum qy is a good quan-
tum number. Since we are considering an electron that is moving perpendicular to the
barrier, we shall take qy = 0. The effective Hamiltonian simplifies to

H = −ih̄vFσx
∂

∂x
+ V (x). (1.24)
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This Hamiltonian commutes with σx, so pseudospin in the x-direction is conserved. As per
the discussion in the previous section, pseudospin is parallel to group velocity. We thus
conclude that if the pseudospin cannot be flipped by V (x), the group velocity also cannot
be reversed by the step potential. The electron travels through the barrier with 100%
transmission probability and 0% reflection probability. Note that this is untrue if qy 6= 0,
i.e. for an electron not normally incident on the barrier.

The Klein paradox also occurs for massive relativistic fermions, in which the transmission
coefficient approaches 1 as the potential barrier height approaches infinity.

1.4 The Relativistic Coulomb Potential

1.4.1 The Massive Case

According to Kepler’s first law of planetary motion, planets move around the Sun in elliptical
orbits. Newton explained this in terms of his 1/r2 force law, for which solutions to the
equations of motion yield conic sections. Much later, with the advent of special relativity,
Charles Darwin (not the famous one, but his grandson) solved the relativistic Kepler problem
with energy

E =

√
(pc)2 + (mc2)2 +

Ze2

r
. (1.25)

Darwin found two regimes for different angular momentum L:

L >
Ze2

c
and L <

Ze2

c
. (1.26)

The first regime is similar to that of Kepler’s first law. There are elliptical orbits, although
the ellipse may precess and form rosettes. The second regime is quite different and unfamiliar.
These orbits spiral towards the center of the 1/r potential.

Heuristically, if we impose the quantization condition L = h̄, then these two regimes
become

Z <
h̄c

e2 =
1

α
and Z >

1

α
. (1.27)

Here, α = e
2

h̄c
≈ 1

137
is the fine-structure constant in Gaussian units. We will dub the Zα < 1

regime “subcritical” and the Zα > 1 regime “supercritical,” although the definitions of the
subcritical and supercritical regimes will change slightly depending on the physical situation
(for example, there is an additional factor of 1/2 in two dimensions).

The quantum version of the relativistic Kepler problem has been analytically solved.
Suppose we have a hydrogen-like nucleus with atomic number Z. If m is the mass of an
electron, then the energy eigenvalues of this system are given by [19]

E =
mc2√

1 + (Zα)
2(

n−(j+ 1
2)+

√
(j+ 1

2)
2
−(Zα)

2
)2

, (1.28)
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where n and j are quantum numbers. This monstrous equation yields a complex (as opposed
to purely real) eigenvalue when Zα > 1. The non-Hermitian nature of this problem is due
to the singularity at r = 0 and can be repaired by taking into account the finite size of the
nucleus. With the r = 0 singularity regularized, real energy eigenvalues are obtained, but
the condition for the supercritical regime is pushed upwards to Z > 170 [20].

When Z exceeds 170 in the supercritical regime, the binding energy exceeds 2mc2. The
vacuum becomes unstable, and it is favorable to produce an electron-positron pair ex nihilo.
The electron spirals into the nucleus and is confined in an “atomic collapse” state, while the
positron flies away. There have been attempts to observe positron emission produced though
this phenomenon by colliding two subcritical nuclei (Z1, Z2 < 170, such as uranium) that
have combined atomic number Z1 + Z2 greater than 170 [21], but the experimental results
have been inconclusive.

1.4.2 The Massless Case

Suppose we had a 2D massless charged particle with momentum p in a Ze2/r Coulomb
potential. The energy is

E = pc− Ze2

r
. (1.29)

If we impose the Heisenberg uncertainty condition pr > h̄/2, this expression becomes

E >
h̄c/2− Ze2

r
, (1.30)

which for Z < h̄c

2e
2 = 1

2α
gives E > 0. We conclude that, in the subcritical regime Zα < 1/2,

there are no bound states of the Coulomb potential. This argument is, of course, not rigorous
(and I deliberately chose pr > h̄/2 for the quantization condition to give the extra 1/2 that
appears in the critical charge ZC = 1

2α
in two dimensions). However, theoretical calculations

by Antonio Castro Neto, Leonid Levitov, Michael Fogler, and their respective colleagues
have shown that this is indeed true [13–17]. The reason that there are no bound states for
massless electrons in a Coulomb potential is that they are repelled from the center by the
centrifugal force. I will now give a handwavy argument to support this.

The 2D massless Dirac equation with a Coulomb potential is

− ih̄cσ · ∇Ψ− Ze2

r
Ψ = EΨ. (1.31)

Similarly to how the Schrödinger equation for the hydrogen atom is solved, separation of
variables can be applied to separate the radial and angular parts of this partial differential
equation. To do this, we employ the ansatz

Ψnm =
eimφ√
r

(
uAn (r)e−iφ/2

iuBn (r)eiφ/2

)
, (1.32)
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where n and m are principal and angular momentum quantum numbers, and uAn (r) and
uBn (r) are functions only of the radial variable r. Plugging this ansatz wavefunction into
Eq. 1.31 yields the radial Dirac equation

E

h̄c

(
uAn (r)

uBn (r)

)
=

[
iσy

∂

∂r
+ σx

m

r
− Zα

r

](
uAn (r)

uBn (r)

)
. (1.33)

The second term in the brackets is a repulsive centrifugal term that is proportional to the
half-integer angular momentum m. Unlike the centrifugal term in the radial Schrödinger
equation for a central potential, which goes as 1/r2 because the kinetic energy goes as ∇2,
the repulsive centrifugal barrier in the Dirac equation goes as 1/r. This is the same power
law as the Coulomb term, and if Zα is less than the minimum unit of angular momentum
(i.e. the subcritical regime), there are no bound states of the system because the centrifugal
force dominates over the Coulomb attraction everywhere.

What happens in the supercritical regime Zα > 1/2? The Hamiltonian in Eq. 1.31 is scale
invariant, so there are no characteristic energy or length scales in the problem. Consequently,
a bound state energy cannot be defined. This is similar to the case for the massive Dirac
equation, where the r = 0 singularity caused problems. To patch this, we need to introduce
a lower length scale cutoff r0 to regularize the problem. Physically, r0 could represent the
size of the nucleus or the lattice dimensions.

In the supercritical regime (with cutoff r0), the Coulomb attraction dominates over the
centrifugal force, and bound states exist. The binding energy can be calculated via the
Bohr-Sommerfeld quantization condition∮

p · dr = 2πnh̄. (1.34)

The resulting energies (labeled by integer n and angular momentum L) are [14]

En = −Ze
2

r0

e−πh̄n/γ, (1.35)

where γ =

√(
Ze

2

c

)2

− L2.

To summarize, for a massive fermion in a Coulomb potential, there are “normal” bound
states for Z < 170 and special “atomic collapse” states for Z > 170. The massless case differs
in that there are no bound states in the subcritical regime (Zα < 1/2 in two dimensions),
but the atomic collapse states exist for the supercritical regime. The interpretation of the
atomic collapse states in both the massive and massless cases is the same: the bound states
are resonant with a lower continuum of negative-energy states, allowing the production of
electron-positron pairs.

At the present time that I am writing this dissertation, the periodic table ends at Z =
118. We are far from synthesizing a Z = 137 nucleus (dubbed Feynmanium, after Richard
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Feynman who recognized that Z > 1/α was problematic), let alone Z > 170 elements.
Therefore, we turn to graphene to realize the supercritical atomic collapse phenomenon.
The continuum model for graphene is the 2D massless Dirac equation, except the speed of
light c has been replaced by the Fermi velocity vF . Since vF is approximately 300 times

smaller than the speed of light, the effective fine-structure constant in graphene αeff = e
2

h̄vF

is 300 times larger than α = e
2

h̄c
. Note that αeff is not small (even if we introduce a dielectric

constant), so it makes for a poor parameter for perturbative expansions. Also, αeff is only
relevant for electronic motion in graphene; the α in the famous πα optical absorption of
graphene is the real fine-structure constant.

Since αeff is of order unity, the supercritical regime is much more attainable, and graphene
indeed serves as an excellent platform for simulating relativistic phenomena. By placing
Coulomb impurities on graphene, we should be able to explore atomic collapse, which man-
ifests as a bound state slightly below the Dirac point. The atomic collapse state will be
resonant with the graphene valence band (which contains hole-like quasiparticles) instead of
a positron continuum. I will discuss our experimental results on the subcritical regime in
Ch. 5 and the supercritical regime in Ch. 6.

1.5 The Relativistic Harmonic Oscillator

The behavior of a 2D massless fermion in a harmonic oscillator potential is described by the
Hamiltonian

H = −ih̄vFσ · ∇+ κr2, (1.36)

where r2 = x2 +y2. Like light and sound, a massless fermion has a linearly dispersive energy-
momentum relationship. Therefore, many phenomena that occur for light and sound waves
should also occur for graphene electrons. One such phenomenon is the so-called whispering-
gallery mode, in which a wave travels along the perimeter of a circular cavity. For acoustic
waves, one can whisper at one end of the circular dome at St. Paul’s Cathedral (or at the
Temple of Heaven or at that circular bench near the Berkeley Campanile), and a listener
would be able to hear the whisper at the other end. For relativistic electronic waves, the
Hamiltonian in Eq. 1.36 describes such whispering-gallery modes in a circular resonant cavity
[22]. In Ch. 8, I will discuss the spatial imaging of electrostatically confined quasi-bound
states for the Eq. 1.36 Hamiltonian.
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Chapter 2

Principles of Scanning Tunneling
Microscopy

Scanning tunneling microscopy (STM) is the main characterization technique used in the
experiments described in this dissertation. Therefore, I must include an obligatory chapter
discussing its basic principles. When two conductors are brought together, electrons can
tunnel from one conductor to the other with exponential sensitivity to the distance between
the conductors. If one conductor is a sharp metal tip, then the tip can be raster scanned
across the other conductor’s surface to produce an image of that surface. By using a care-
fully prepared tip, STM can provide detailed topographic and electronic information about
conducting surfaces with atomic-scale resolution.

2.1 Theory of Quantum Tunneling

An electron can tunnel through a classically forbidden barrier because it is a wave. The
simplest way to understand tunneling is to solve the Schrödinger equation for a 1D rect-
angular potential barrier. Imposition of the boundary conditions requires the electron to
have some probability of being on the “wrong side” of the barrier. Although it is useful to
keep this picture in mind, it is also important to have a theory that can make quantitative
predictions for tunneling in STM. Here, I give a simplified treatment of the Bardeen [23] and
Tersoff-Hamann [24, 25] theories of tunneling.

2.1.1 The Bardeen Theory

Suppose we have a system described by the Hamiltonian H = H0 +H ′. According to Fermi’s
golden rule [26], the transition rate from an H0 eigenstate |i〉 (the initial state with energy
Ei) to |f〉 (a continuum of final states around energy Ef ) is given by

W =
∑
f

2π

h̄
|〈f |H ′|i〉|2δ(Ef − Ei). (2.1)
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We are interested in a system that comprises an STM tip and a conducting sample. If
electrons are tunneling from sample states |s〉 (with energies Es) to STM tip states |t〉 (with
energies Et), then the transition rate is

W =
∑
s

∑
t

2π

h̄
|Mt,s|2δ(Et − Es)(1− f(Et))f(Es), (2.2)

where f(E) is the Fermi-Dirac distribution, and Mt,s = 〈t|H ′|s〉 is the tunneling matrix
element.

Since the tip states form a continuum, we can replace the sum over t with an integral
over Dt(Et)dEt (for a tip density of states Dt(Et)):

W ∝
∑
s

∫ ∞
−∞
|Mt,s|2Dt(Et)δ(Et − Es)(1− f(Et))f(Es)dEt. (2.3)

If we apply a sample bias V (or equivalently, if we apply a voltage −V on the tip), then
we must change this expression for W to reflect the fact that the sample electrochemical
potential shifts by −eV . After doing the integral over dEt,

W ∝
∑
s

|Mt,s|2Dt(Es − eV )(1− f(Es − eV ))f(Es). (2.4)

The total tunneling current I(V ) is −e multiplied by the difference of the transition rates
from sample to tip and from tip to sample. Thus,

I(V ) ∝
∑
s

|Mt,s|2Dt(Es − eV )(f(Es − eV )− f(Es)). (2.5)

We assume the tip density of states is constant in the energy range of interest. Also, since our
STM measurements are at low temperature, we approximate the Fermi-Dirac distribution
as a step function, i.e. ∂

∂V
f(Es − eV ) ≈ eδ(EF − (Es − eV )), where EF is the Fermi energy.

Then, the differential conductance is

dI

dV
∝
∑
s

|Mt,s|2δ(eV − (Es − EF )). (2.6)

Now, let’s calculate the tunneling matrix element Mt,s = 〈t|H ′|s〉. Define Us to be the
potential due to the sample and Ut to be due to the tip. Also assume that Us and Ut do not
overlap in space, i.e. Us = 0 everywhere Ut 6= 0 and vice versa. Then, by simple application
of the Schrödinger equation (with Et = Es) [27],

Mt,s = 〈t|H ′|s〉 =

∫
τ

ψ∗tUtψsd
3r =

∫
τ

(
h̄2

2m
∇2ψ∗t + Etψ

∗
t

)
ψsd

3r

=
h̄2

2m

∫
τ

(
ψs∇2ψ∗t − ψ∗t∇2ψs

)
d3r (2.7)

=
h̄2

2m

∫
σ

(ψs∇ψ∗t − ψ∗t∇ψs) · d2r,
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where ψt and ψs represent tip and sample wavefunctions, respectively. The above d3r inte-
grals are taken over the entire volume τ such that Ut 6= 0. I used Green’s identity to convert
the volume integral into a flux integral over a surface σ between the tip and the sample.

Putting everything together, we have

dI

dV
∝
∑
s

∣∣∣∣∫
σ

(ψs∇ψ∗t − ψ∗t∇ψs) · d2r

∣∣∣∣2 δ(eV − (Es − EF )). (2.8)

2.1.2 The Tersoff-Hamann Theory

In the volume τ where the sample potential Us = 0, (∇2 − κ2)ψs = 0, where h̄2κ2 =
2m(Φ − Es), and Φ is the sample work function. If we assume the tip wavefunction obeys
(∇2 − κ2)ψt = −δ(r− r0) and is spherically symmetric, then [28, 29]

ψt(r) =
e−κ|r−r0|

4π|r− r0|
. (2.9)

In other words, we take the tip wavefunction to be an s-wave centered around the tip apex
nucleus at r0. With this assumption, we find that Mt,s = 〈t|H ′|s〉 ∝ ψs(r0). Thus, the
tunneling matrix element is proportional to the sample wavefunction evaluated at the tip
apex.

Plugging in Mt,s ∝ ψs(r0) into Eq. 2.6,

dI

dV
∝
∑
s

|ψs(r0)|2δ(EF + eV − Es) = LDOS(r0, EF + eV ). (2.10)

Therefore, the experimentally measurable quantity dI/dV can be interpreted as the sample’s
total wavefunction probability density at position r0 and energy EF + eV . This is called the
local density of states (LDOS) and is a theoretically calculable quantity.

As depicted in Fig. 2.1, the total tunneling current is the integral of Eq. 2.10:

I(V ) ∝
∫ EF+eV

EF

∑
s

|ψs(r0)|2δ(E − Es)dE. (2.11)

2.1.3 Tunneling into Bloch States

According to the simplest 1D model for tunneling through a rectangular potential barrier, a
sample state decays into vacuum as ψs(z) = ψs(0)e−κz, where κ = (2m(Φ− Es)/h̄2)1/2, and
Φ is the sample work function. However, a correction must be made for Bloch states in a
crystal. For simplicity, suppose a Bloch state decaying into the vacuum has the form

ψs(x, y, z) = ei(kxx+kyy)e−γz. (2.12)
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Figure 2.1: Tunneling between tip and sample. (a) The total tunneling current between an
STM tip and a conducting sample is proportional to the integrated LDOS between EF and
EF + eV . If V > 0, electrons tunnel from the tip to unoccupied states in the sample. (b) If
V < 0, electrons tunnel from occupied states in the sample to the tip.

Then, plugging into the Schrödinger equation(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
ψ = κ2ψ (2.13)

gives us

γ =
√
κ2 + k2

||, (2.14)

where k|| =
√
k2
x + k2

y is the component of the crystal momentum parallel to the surface.

Thus, states with a larger parallel component of momentum decay faster into the vacuum
than states with a smaller parallel component of momentum. This will be important for
interpreting dI/dV spectroscopy for graphene.

2.1.4 The Spectral Function and the Local Density of States

There is an interesting interpretation of the LDOS that is useful to be aware of. Define the
“one-particle Green’s function” as

G(r′, t′, r, t) = −i〈0|T{Ψ(r, t)Ψ†(r′, t′)}|0〉. (2.15)

Here, |0〉 is the many-body ground state with N electrons, Ψ†(r′, t′) is a field operator that
creates an electron at position r′ at time t′, and Ψ(r, t) destroys an electron at position r
and time t . T is the time-ordering operator, which I can ignore if I take t′ = 0 and t > 0.
In the Heisenberg picture, the operators evolve as

Ψ(r, t) = eiHt/h̄Ψ(r, 0)e−iHt/h̄, (2.16)
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Ψ†(r, t) = eiHt/h̄Ψ†(r, 0)e−iHt/h̄. (2.17)

Putting this all together gives

G(r′, r, t) = −i〈0|Ψ(r, 0)e−iHt/h̄Ψ†(r′, 0)|0〉 = −i〈r|e−iHt/h̄|r′〉, (2.18)

where the ground state energy is zero, and |r′〉 = Ψ†(r′, 0)|0〉 is the ground state with an
additional electron localized at r′. Eq. 2.18 has a physical interpretation. It is the probability
amplitude that an electron starting at position r′ and subject to time evolution for time t
will end up at position r.

Suppose we have a complete, orthonormal set of (N + 1)-electron energy eigenstates
labeled by λ, i.e. states {c†λ|0〉} with excitation energies {Eλ}. Inserting the resolution of
the identity twice yields

G(r′, r, t) = −i
∑
λλ
′

〈r|λ〉〈λ|e−iHt/h̄|λ′〉〈λ′|r′〉 = −i
∑
λ

e−iEλt/h̄ψ∗λ(r
′)ψλ(r), (2.19)

where we let |λ〉 = c†λ|0〉 and ψλ(r) = 〈r|λ〉.
Let r′ = r because the location where the STM injects electrons into the sample is also

the measurement location. Also, STM measurements are “slow,” so we are more interested in
energy-resolved spectroscopy rather than time-resolved dynamics. Thus, we should Fourier
transform the Green’s function with respect to the time variable:

G(r, ω) = −i
∑
λ

∫ ∞
0

ei(ω−Eλ/h̄)te−ηt|ψλ(r)|2dt. (2.20)

I put in e−ηt to help the integral converge. Physically, 1/η represents the lifetime of a
quasiparticle excitation. For non-interacting fermions, we can take the limit η → 0 at the
end of the calculation. Evaluating Eq. 2.20 gives us

G(r, ω) = −i
∑
λ

[
ei(ω−Eλ/h̄)te−ηt

i(ω − Eλ/h̄)− η

]∞
0

|ψλ(r)|2 =
∑
λ

[
1

ω − Eλ/h̄+ iη

]
|ψλ(r)|2. (2.21)

We can define the “spectral function” A(r, ω) for interpreting STM data:

A(r, ω) = − 1

π
Im[G(r, ω)] =

1

π

∑
λ

η

(ω − Eλ/h̄)2 + η2 |ψλ(r)|2. (2.22)

As a side note, there is an equivalent momentum-space spectral function for interpreting
angle-resolved photoemission spectroscopy (ARPES) data:

A(k, ω) = − 1

π
Im[G(k, ω)] =

1

π

ImΣ

(ω − Ek/h̄− ReΣ)2 + (ImΣ)2 , (2.23)

where I have introduced the so-called “self-energy” Σ.



CHAPTER 2. PRINCIPLES OF SCANNING TUNNELING MICROSCOPY 16

For Eq. 2.22, take the η → 0 limit:

1

π

η

(ω − Eλ/h̄)2 + η2 → δ(ω − Eλ/h̄). (2.24)

Finally, we get an expression for the LDOS out of this formalism:

A(r, ω) ∝
∑
λ

|ψλ(r)|2δ(h̄ω − Eλ) = LDOS(r, h̄ω). (2.25)

The spectral function obeys certain sum rules. For example, its integral over dω must
give 1. Consequently, the LDOS obeys sum rules as well. The integral of the LDOS over all
space must be the density of states (DOS):∫

LDOS(r, E)d3r = DOS(E). (2.26)

And of course, the integral of the DOS over all energies should give the total number of
states.

2.2 Scanning Tunneling Microscopy Operation and

Instrumentation

2.2.1 Scanning Tunneling Microscopy Basics

The experiments in this dissertation were performed using an ultra-high vacuum (UHV)
Omicron low-temperature (LT) STM. The pressures were typically 10−10 torr or lower, and
the temperatures were approximately 4 to 5 K (liquid-helium temperature). A photograph
of our STM can be seen in Fig. 2.2.

A schematic diagram of how an STM works is depicted in Fig. 2.3. Using a piezoelectric
motor, a sharp metal wire (the tip, usually made of PtIr or W) is brought less than 1 nm
away from a surface. A bias −Vs (conventionally, Vs is the voltage on the sample relative
to the tip) is applied to the tip, causing a tunneling current I. The tunneling current is
converted to a voltage via a preamplifier and is recorded by a computer. While the tip is
scanned across the surface, a feedback loop controls the voltage on a piezo such that the
tip-sample distance is adjusted to maintain a constant I. Changes in the tip-sample distance
are recorded while the tip moves across the surface to produce a topographic image of the
surface. This topographic image contains information about the positions of the atoms on
the surface as well as information about the LDOS (since according to Eq. 2.11, the tunneling
current depends on the LDOS). Since the tunneling current is exponentially sensitive to the
tip height z, STM topographic images can have extremely fine vertical and lateral resolution.

The piezo motor in our Omicron LT-STM operates on stick-slip motion. Fig. 2.4b shows
a photograph of our z coarse walker. Three little sapphire balls glued to shear piezos move
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Figure 2.2: UHV Omicron LT-STM. (a) Photograph of an Omicron LT-STM system, which
consists of an STM chamber, preparation chamber, and loadlock chamber. The tip-sample
junction is visually accessible and can be seen via a long-distance optical microscope. (b)
The STM is removed from the vacuum chamber. The STM rests inside a magnetic damping
system hanging below liquid helium and liquid nitrogen cryostats.

Figure 2.3: STM schematic diagram. An STM tip is placed ∼5 Å away from a sample
surface. A bias voltage −Vs is applied on the tip to induce tunneling. The tunneling current
is measured, and a feedback loop is employed to adjust the tip-sample distance such that
the tunneling current I is constant as the tip raster scans across the surface.
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along three sapphire rails for coarse vertical alignment of the tip and the sample. An at-
tached cylindrical “fine piezo” provides precision motion along the x-, y-, and z-directions
for scanning the tip across the sample surface. The tip is magnetically attached to the very
end of the fine piezo.

Figure 2.4: STM tip and piezoelectric actuator. (a) Photograph of piezoelectric motor sitting
inside gold-plated fins used for magnetic damping. (b) A dismantled piezo motor. Sapphire
balls are glued to a “coarse piezo.” The sapphire balls can freely slide against sapphire rails
for motion in the z-direction. The STM tip is mounted atop a cylindrical “fine piezo” that
provides picometer-resolved motion in the x-, y-, and z-directions.

In addition to obtaining topographic images of surfaces, STM is also a powerful tool for
directly imaging electronic wavefunctions. In what is known as scanning tunneling spec-
troscopy (STS), we can add a small a.c. “wiggle” voltage (typically with amplitude 1 to
8 mV root mean square (rms) and frequency 400 to 700 Hz) to the tip bias and monitor the
tunneling current response. This is achieved by feeding the current I into a lock-in amplifier
set to filter out everything except the first harmonic, giving the derivative dI/dV .

To obtain a dI/dV point spectrum, the STM tip is fixed at a certain location (x, y, z), and
the sample bias Vs is swept through a range of interest while the STM feedback loop is open
(i.e. off). Since, as mentioned in Sec. 2.1.2, dI/dV is proportional to the LDOS, a dI/dV
spectrum provides information about the distribution of sample eigenstates at (x, y, z) as a
function of energy E = EF + eVs.

Alternatively, one can obtain spatial information about the LDOS at a fixed energy.
This can be done in two ways: dI/dV grids and dI/dV maps. A dI/dV grid is simply a
set of energy-resolved dI/dV spectra obtained at an array of spatial locations and is often
very time-consuming to obtain. A dI/dV map, however, is obtained by acquiring dI/dV
simultaneously while the tip raster scans across the surface with the feedback loop closed
(i.e. on). Both methods, but especially the dI/dV map, do not give dI/dV on an isosurface
of constant z. Rather, z is a function of (x, y) because the tip moves up and down to keep
the tunneling current constant.
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Suppose that we are interested in LDOS(x, y, z0, E), which is a function of (x, y) for
fixed z0 and energy E. Since wavefunctions decay exponentially into a tunneling barrier, we
assume that

LDOS(x, y, z, E) = LDOS(x, y, z0, E)e−(z−z0)/λ, (2.27)

where λ is the length scale of the exponential decay, which we assume to be constant (al-
though it really is not). Here, z is the STM tip height, which is a function of (x, y) as the
tip scans across the surface and the feedback loop adjusts z to keep the tunneling current at
a constant I0. The current is given by

I0 ∝
∣∣∣∣∫ Vs

0

LDOS(x, y, z, EF + eV )dV

∣∣∣∣
∝
∣∣∣∣∫ Vs

0

LDOS(x, y, z0, EF + eV )dV

∣∣∣∣ e−(z−z0)/λ. (2.28)

This implies that the measured dI/dV signal is

dI

dV
(x, y, z)

∣∣∣
V=Vs

∝ LDOS(x, y, z, EF + eVs) ∝
LDOS(x, y, z0, E)∣∣∣∫ Vs0

LDOS(x, y, z0, EF + eV ′)dV ′
∣∣∣ . (2.29)

Therefore, dI/dV maps measure the LDOS with a spatially varying proportionality factor.
Caution is advised when interpreting dI/dV and comparing to theoretical LDOS calculations
[30, 31].

2.2.2 Tip Preparation

A crucial aspect of STM is preparing the tip. Without a good tip, an STM measurement
can be worthless. Indeed, since dI/dV is proportional to a product of the tip DOS and
the sample LDOS (see Eq. 2.5), one can produce wildly different dI/dV signals by simply
changing the tip DOS. A lot of care is required to ensure a constant tip DOS such that
dI/dV can be interpreted as the sample LDOS.

Our STM tips are made of either W or an 80% platinum/20% iridium alloy. In this
section, I discuss how we prepare PtIr tips, since this comprises most of the tips that we use.
W tips are produced by etching W wires in NaOH.

To make a PtIr tip, first dissolve anhydrous CaCl2 powder in ultrapure water (distilled
water is probably sufficient) until saturation. The CaCl2 solution will get hot as you mix
the CaCl2 and water. Then, dilute the saturated CaCl2 solution with an equal volume of
water (a 2:1 ratio is probably better, but I can never remember if it is 2:1 CaCl2 to water
or the reverse). Bend a W wire into a ring shape, and immerse it just under the surface of
the solution. Dip the very end of a PtIr wire into the solution at the center of the W ring.
Use a transformer to step down the wall power to 35 to 50 V rms, and apply this voltage
between the PtIr wire and W ring. The apex of the PtIr wire should emit a sound (and
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possibly also light). When the sound stops, the end of the PtIr wire will have been etched
by the CaCl2 solution. Check the PtIr wire under an optical microscope to see if the PtIr is
sufficiently sharp to be used as an STM tip (this varies depending on one’s requirement for
the experiment). If the PtIr is not sufficiently sharp, dip it back into the solution, and try
again. If the PtIr is sufficiently sharp, then squirt ethanol or isopropanol onto the PtIr to
clean it. Be careful not to damage the new tip apex.

For some experiments, we have also electron-beam heated the tip in UHV. This is called
“flashing” and is typically not necessary. The PtIr tip is placed into the STM and needs to
be calibrated for dI/dV spectroscopy. This is achieved by “poking” and “pulsing” the tip on
an Au(111) crystal (prepared by sputtering with 0.5 keV Ar+ ions and annealing to 375°C).

To poke a tip is to controllably crash the tip ∼1 nm into the Au(111) surface. The
selected depth of the poke varies depending on how “bad” the tip is. This is assessed by
examining the surface of Au(111) underneath the poke location. A poke typically leaves
behind a protrusion in Au(111). An ideal poke leaves a single round protrusion with an
aspect ratio of 4 nm in diameter per 1 nm in height. Unfortunately, the poke is often not
ideal and leaves behind a strangely shaped protrusion – or worse, multiple protrusions. By
a principle of reciprocity, an STM topograph is simultaneously an image of the tip and the
sample. A misshapen poke is indicative of an oddly shaped tip that will produce anomalous
distortions of objects in topographic images. Multiple protrusions from a poke is indicative
of a “double tip” or a “multi-tip,” which can lead to multiple copies of the same object in a
single image. These “bad tips” are undesirable and must be poked away. An example of a
protrusion from a “good poke” can be seen at bottom of Fig. 2.5.

Figure 2.5: Au(111) topographic image. The twinned stripes are a surface “herringbone”
reconstruction. A protrusion resulting from a poke is seen at the bottom.
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If a tip is “really bad,” i.e. poking does not appear to improve the tip, one can “pulse”
the tip. This entails applying a short 10 V pulse on the tip (with duration usually less than
1 second) while the STM is in tunneling regime. If the tip is “really, really bad,” i.e. the
pulses do not appear to improve the tip, one can scratch the tip into tantalum foil.

Figure 2.6: Au(111) dI/dV spectrum. The onset of the Au(111) surface state is around
Vs = −0.5 V. Since dI/dV is proportional to the LDOS and we are often uninterested in the
proportionality constant, the dI/dV signal is plotted in arbitrary units (a.u.). The Fermi
energy is Vs = 0 V.

Usually, poking and pulsing suffices for fixing an STM tip. Once a desirable tip shape
is obtained (by examining the protrusion that results from a poke), one acquires a dI/dV
spectrum on Au(111). The spectrum should look like that in Fig. 2.6, with a sharp increase at
Vs = −0.5 V (the onset of the Au(111) surface state) but relatively featureless otherwise [32].
If the obtained dI/dV spectrum does not look like Fig. 2.6, poke until it does. Afterwards,
I usually check the dI/dV spectrum again after ∼15 minutes to make sure the tip is stable.

2.3 Scanning Tunneling Microscopy of Graphene

Fig. 2.7 shows an atomically resolved STM topographic image of graphene/BN. The inter-
ference of the graphene and BN atomic lattices creates a superlattice structure known as a
moiré pattern [33, 34].

As mentioned in Sec. 1.2.2, the DOS of graphene is proportional to |E|. Therefore, as
depicted in Fig. 2.8b, a dI/dV spectrum acquired on graphene should be V-shaped. However,
that is not the case for a tip that is properly calibrated against an Au(111) surface state.
In Sec. 2.1.3, we showed that states with larger crystal momentum decay faster into the
vacuum. This implies that STM is much more sensitive to tunneling into states at the Γ
point of the Brillouin zone compared to the low-energy states at K and K ′.

The low-energy states at K and K ′, however, are mixed with higher-energy Γ-point
states in the σ and σ∗ bands by electron-phonon coupling. We can interpret this as a
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Figure 2.7: Graphene/BN topographic image with atomic lattice and moiré pattern.

Figure 2.8: Elastic and inelastic tunneling into graphene. (a) An electron elastically tunnel-
ing from the tip to an unoccupied state in graphene. (b) Since graphene has a linear DOS,
the expected dI/dV spectrum due to the process depicted in (a) will be V-shaped with a
minimum at the graphene Dirac point. (c) An electron can also inelastically tunnel from
tip to graphene (or vice versa) with the emission (or absorption) of a phonon with energy
h̄ω. (d) The contribution to dI/dV due to the inelastic process in (c) has a “phonon gap”
of energy 2h̄ω.
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second-order inelastic tunneling process (depicted in Fig. 2.8c) in which an electron makes
a virtual transition between a state in the σ or σ∗ band at Γ and a state in the π or π∗

band at K or K ′. To conserve momentum, this must be accompanied with the emission or
absorption of a K- or K ′-point excitation (which will be an h̄ω = 60 ∼ 70 meV phonon). If
this phonon-assisted inelastic tunneling process dominates over the elastic channel, dI/dV
will look like Fig. 2.8d, which has a 2h̄ω = ∼130 meV gap-like feature centered at the Fermi
energy (Vs = 0 V) because it costs a minimum of h̄ω energy to excite the phonon. It is
important to note that such a gap is the result of inelastic tunneling and is not an actual
electronic structure feature intrinsic to graphene. More information about phonon-assisted
inelastic tunneling can be found in Refs. [35] and [36].

Figure 2.9: Graphene dI/dV spectrum. The black curve is for p-doped graphene, while the
red curve is for n-doped graphene. A ∼130 meV gap-like feature can be seen straddling the
Fermi level.

In our experiments, the contribution of inelastic tunneling to dI/dV appears to be much
larger than that of elastic tunneling. The dI/dV curves in Fig. 2.9 each show a symmetric
∼130 meV gap-like feature around EF (Vs = 0 V). There is an additional local minimum
in each dI/dV curve. In the black curve, which is for p-doped graphene, a local minimum
appears to the right of EF . In the red curve, which is for n-doped graphene, a local minimum
appears left of EF . These are interpreted as minima in the LDOS due to the Dirac point
and are shifted by h̄ω relative to the true energy locations of the Dirac point.
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Chapter 3

The Dirac Equation

I include here a chapter on the Dirac equation itself as it is understood in relativistic quantum
mechanics. This chapter strays far from condensed matter physics, but I feel that it is relevant
for understanding the context of the phenomena discussed in this dissertation.

A good treatment on the Dirac equation can be found in J. J. Sakurai’s “Modern Quan-
tum Mechanics” [19], although I personally used an amazing set of lecture notes by Prof.
Robert Littlejohn as a reference for writing this chapter.

3.1 The Klein-Gordon Equation

At the turn of the 20th century, Albert Einstein and Henri Poincaré showed that spacetime
transformations in inertial frames respected the following “Minkowski” invariant:

(ct)2 − x2 − y2 − z2 = (ct′)2 − x′2 − y′2 − z′2. (3.1)

A spacetime “4-vector” that has coordinates (ct, x, y, z) in one frame of reference will have
coordinates (ct′, x′, y′, z′) in another frame of reference. Such transformations (if they keep
the origin fixed) are called the Lorentz transformations and include rotations and “boosts”
(transformations between frames moving at constant velocity with respect to each other).

Eq. 3.1 is often written in a shorthand

xµxµ = x′νx′ν , (3.2)

where x0 = x0 = ct, x1 = −x1 = x, x2 = −x2 = y, x3 = −x3 = z (and similar for the primed
variables). Summation over the Greek indices is implied.

Also components of a 4-vector, the energy E and momentum p must obey the same
relation. If p0 = p0 = E/c, p1 = −p1 = px, p

2 = −p2 = py, and p3 = −p3 = pz, then

pµpµ = p′νp′ν . (3.3)

This invariant is the mass squared: (mc)2 = pµpµ. For p = |p|,

E2 = (pc)2 + (mc2)2. (3.4)
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This is the heralded energy-momentum relationship for a relativistic particle.
To obtain a quantum theory, we can replace E by ih̄ ∂

∂t
and p by −ih̄∇. This gives us

the Klein-Gordon equation

1

c2

∂2Ψ

∂t2
−∇2Ψ = −

(mc
h̄

)2

Ψ. (3.5)

If we write ∂µ = ∂
∂x
µ and ∂µ = ∂

∂xµ
, then

∂µ∂µΨ = −
(mc
h̄

)2

Ψ. (3.6)

Notice that, unlike the Schrödinger equation, the Klein-Gordon equation treats time and
space on equal footing. The equation has second derivatives in both time and space.

3.2 The Three-Dimensional Dirac Equation

3.2.1 Derivation from the Klein-Gordon Equation

The fact that the Klein-Gordon equation has a second derivative in time leads to an unfor-
tunate property: it allows solutions with negative probability density. To remedy this, Paul
Dirac invented an equation that only has first derivatives in time and space:

ih̄
∂Ψ

∂t
= −ih̄c

3∑
j=1

αj
∂Ψ

∂xj
+mc2βΨ = 0. (3.7)

Here, αj and β are to be determined by imposing the energy-momentum relation Eq. 3.4.
The wavefunction Ψ must be a solution to the Klein-Gordon equation (Eq. 3.5), so we apply
the Dirac Hamiltonian H = cα · p +mc2β twice to get an equation with second derivatives:

− h̄2∂
2Ψ

∂t2
= −h̄2c2

∑
jk

αjαk
∂2Ψ

∂xj∂xk
− ih̄mc3

∑
j

(
αjβ + βαj

) ∂Ψ

∂xj
+m2c4β2Ψ = 0. (3.8)

Comparing this to Eq. 3.5, we arrive at the anticommutation relations

{αj, αk} = 2δjk,

{αj, β} = 0, (3.9)

{β, β} = 2.

We can deduce from these relations that αj and β are N ×N traceless, Hermitian matrices
that square to 1. If they square to 1, then their eigenvalues are ±1, so N must be even (or
else they would have nonzero trace).
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The obvious guess is N = 2, for which {1, σx, σy, σz} forms a basis for the space of 2× 2
Hermitian matrices. This set is not big enough to construct αj (three matrices) and β (one
matrix). It turns out N = 4 is the smallest matrix size allowed for the 3D Dirac equation.

There are many possible equivalent choices for αj and β. The most popular are Dirac-
Pauli, Weyl, and Majorana. The Dirac-Pauli representation is

α =

(
0 σ
σ 0

)
, β =

(
1 0
0 −1

)
. (3.10)

Here, σ = (σx, σy, σz).
The Dirac equation is often written as

ih̄γµ∂µΨ = mcΨ, (3.11)

which is just Eq. 3.7 with β multiplied on both sides. The γµ are defined as

γ = βα =

(
0 σ
−σ 0

)
, γ0 = β =

(
1 0
0 −1

)
. (3.12)

This form of the Dirac equation is often preferred because it is manifestly Lorentz covariant.
Immediately following from the anticommutation relations in Eq. 3.9, the γµ obey

{γµ, γν} = 2gµν . (3.13)

This is called the Clifford algebra. gµν is the metric tensor such that xµ = gµνxν :

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (3.14)

We can multiply Eq. 3.11 on both sides by Ψ†γ0 to get ih̄Ψ†γ0γµ∂µΨ = mcΨ†γ0Ψ. Then

taking the conjugate transpose of Eq. 3.11 (and using an easily verified identity γ0 (γµ)† =
γµγ0), we get −ih̄∂µΨ†γ0γµΨ = mcΨ†γ0Ψ. Subtracting these expressions gives

Ψ†γ0γµ∂µΨ + ∂µΨ†γ0γµΨ = 0 (3.15)

or equivalently,

∂µ

(
Ψ†γ0γµΨ

)
=

1

c

∂

∂t

(
Ψ†Ψ

)
+∇ ·

(
Ψ†αΨ

)
= 0. (3.16)

This looks just like a continuity equation for

ρ = Ψ†Ψ, (3.17)

J = cΨ†αΨ. (3.18)

We can interpret Ψ†Ψ as the wavefunction probability density (just like in nonrelativistic
quantum mechanics) and cα as a velocity operator. We conclude that the Dirac equation is
a bona fide wave equation that conserves probability.
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3.2.2 Positive and Negative Energy Eigenvalues

It is straightforward to check that the Dirac Hamiltonian has positive and negative energy
eigenvalues (see also Fig. 3.1):

E = ±
√

(pc)2 + (mc2)2. (3.19)

The solutions of the Dirac equation with positive energy eigenvalues are easily understood
as particle states with momentum p = (px, py, pz) and mass m. The solutions with negative
energy eigenvalues, however, are not as easy to interpret. If these negative-energy states
exist, it could be possible for Dirac particles to infinitely cascade to lower and lower energies
by emitting electromagnetic radiation. This is clearly absurd, so Dirac hypothesized that
all of the negative-energy states were already occupied. The Pauli exclusion principle would
then forbid fermions from falling into lower-energy states, and the negative-energy states
would no longer be a concern.

Figure 3.1: Positive and negative energy eigenvalues of the Dirac Hamiltonian. The Dirac

equation has both positive-energy and negative-energy solutions, with E =
√

(pc)2 + (mc2)2

and E = −
√

(pc)2 + (mc2)2, respectively. The positive energies comprise a continuum of

electron states, while the negative-energy continuum is a filled “Dirac sea” of positron states.
There is a 2mc2 gap in the spectrum.

This interpretation of the negative-energy states has an interesting consequence. If energy
at least 2mc2 is supplied, a particle in a negative-energy state can be promoted into a
positive-energy state. This leaves behind a hole, an unoccupied state in this “Dirac sea” of
negative-energy particles. This hole would behave like a particle with the same mass m but
opposite charge.
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A more modern interpretation does not invoke an infinite number of particles occupying
an infinite number of negative-energy states. The Dirac equation is not actually an equation
for a single particle but rather for a many-body quantum field. The quantum field gives
rise to particles (e.g. electrons) and “antiparticles” (e.g. positrons). However, the Dirac sea
picture is perfectly valid in solids, where there are valence bands that actually are completely
filled with electrons.

3.2.3 Lorentz Symmetry of the Dirac Equation

Since the Dirac equation is a relativistic wave equation, it must be invariant under the
Lorentz transformations. Let Λ be a rotation, a boost, or some combination of rotations and
boosts that transforms a spacetime 4-vector x into x′:

x′
µ

= Λµ
νx

ν . (3.20)

Also define D(Λ) such that
Ψ′(x) = D(Λ)Ψ(Λ−1x) (3.21)

is the Lorentz-transformed wavefunction. Since Ψ′ must also be a solution to the Dirac
equation, we have

ih̄γµ
∂

∂xµ
[
D(Λ)Ψ(Λ−1x)

]
= mc

[
D(Λ)Ψ(Λ−1x)

]
. (3.22)

Multiply both sides of this equation by D−1(Λ), and let yµ = (Λ−1)µνx
ν . We obtain

ih̄D−1(Λ)γµD(Λ)
∂

∂xµ
Ψ(y) = mcΨ(y). (3.23)

By the chain rule, ∂
∂x
µ = ∂

∂y
ν
∂y
ν

∂x
µ = ∂

∂y
ν (Λ−1)νµ,

ih̄D−1(Λ)γµD(Λ)(Λ−1)νµ
∂

∂yν
Ψ(y) = mcΨ(y). (3.24)

Comparing Eq. 3.24 to the Dirac equation, we obtain the following identity:

D−1(Λ)γµD(Λ) = Λµ
νγ

ν . (3.25)

As long as D(Λ) obeys this relation, the Dirac equation will have the symmetries of the
Lorentz group. The heuristic (but not quite true) explanation of Eq. 3.25 is that the γµ

matrices rotate like a 4-vector.
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3.3 The Two-Dimensional Dirac Equation

Much of the formalism developed in the previous section on the 3D Dirac equation also
applies to two dimensions. The 2D Dirac equation is the same as Eq. 3.7 except without the
α3 term:

ih̄
∂Ψ

∂t
= −ih̄c

2∑
j=1

αj
∂Ψ

∂xj
+mc2βΨ = 0. (3.26)

The anticommutation relations in Eq. 3.9 continue to apply, meaning that α1, α2, and β
must be of even dimension. However, unlike the 3D Dirac equation, we can use simpler 2×2
matrices because the Pauli matrices themselves are a set of three matrices that satisfy the
anticommutation relations.

α1 = σx, α2 = σy, β = σz. (3.27)

The Dirac Hamiltonian is thus

H = −ih̄cσ · ∇+mc2σz. (3.28)

Here, σ = (σx, σy).
The Dirac-Pauli γµ matrices become

γ0 = σz, γ
1 = iσy, γ

2 = −iσx, (3.29)

and the continuity equation (Eq. 3.16) continues to hold in two dimensions by a similar
construction.

Notice that the 2D and 3D Dirac equations have σ in them. Unlike the Schrödinger
equation, where the spin degree of freedom needs to be kludged in, spin naturally emerges
from the Dirac equation. Hence, the Dirac equation is an equation of motion for spin 1

2

particles called “Dirac fermions.” Many spin-related phenomena such as spin-orbit coupling,
hydrogen fine structure, and the electron g-factor also originate from the Dirac equation.

3.3.1 The Nonrelativistic Limit

We can couple the Dirac equation to electric and magnetic fields:

ih̄
∂Ψ

∂t
= cσ ·

[
−ih̄∇− q

c
A
]

Ψ +mc2σzΨ + qΦΨ, (3.30)

where q is the charge of the Dirac fermion (−e for an electron), A is the magnetic vector
potential, and Φ is the electric scalar potential. Using the Heisenberg equation of motion,
one could derive the Lorentz force law. Furthermore, one could also obtain the Schrödinger
equation as the nonrelativistic limit of the Dirac equation. It is rather tedious to do it, so I
only quote the result here. Let us write Ψ as

Ψ = e−imc
2
t/h̄

(
ψ
ζ

)
. (3.31)



CHAPTER 3. THE DIRAC EQUATION 30

Then, after a bunch of work and judiciously chosen approximations...

ih̄
∂ψ

∂t
=

1

2m

(
−ih̄∇− q

c
A
)2

ψ + qΦψ − h̄

2mc
qBψ, (3.32)

where B =
∂Ay
∂x
− ∂Ax

∂y
. The first term on the right-hand side is obviously the kinetic energy,

the second term is the electric potential energy, and the third term is the Zeeman term.

3.3.2 Rotations and Boosts

We can obtain analytic forms for the D(Λ) in Sec. 3.2.3 by expanding them in terms of
“infinitesimal generators.” I will not do that here, but I will quote the results for the 2D
Dirac equation. To rotate a wavefunction Ψ by an angle θ, multiply by

D(θ) = e−iθσz/2 =

(
e−iθ/2 0

0 eiθ/2

)
. (3.33)

As an example, it turns out that the spin of a massless particle is locked parallel to its mo-
mentum, so the wavefunction Ψ of a positive-energy massless Dirac fermion with momentum
pxx̂ is

Ψ =

(
1
1

)
e−ip

µ
xµ/h̄, (3.34)

where pµ = (px, px, 0, 0). We can then obtain Ψ′ for a massless particle moving in any other
direction by multiplying by D(θ) and replacing xν with (Λ−1)µνxµ:

Ψ′ =

(
e−iφ/2

eiφ/2

)
e−iΛ

µ
νp
ν
xµ/h̄. (3.35)

Likewise, the D-matrix for boosting by velocity v in the x-direction is

D(x̂, λ) = eλσx/2 =

(
coshλ/2 sinhλ/2
sinhλ/2 coshλ/2

)
, (3.36)

where tanhλ = v/c. Boosting by v in the y-direction is given by

D(ŷ, λ) = eλσy/2 =

(
coshλ/2 −i sinhλ/2
i sinhλ/2 coshλ/2

)
. (3.37)

3.3.3 Angular Momentum

The Dirac equation has rotational symmetry in the 2D plane, so angular momentum should
be conserved. Define the total angular momentum operator as the sum of the orbital and
spin angular momentum operators:

Jz = xpy − ypx +
h̄σz
2
. (3.38)
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We can compute the commutator of Jz with the Hamiltonian H = −ih̄c(σxpx+σypy)+mc2σz.

[H, Jz] = −ih̄cσxpy[px, x] + ih̄cσypx[py, y]− ih̄2c

2
px[σx, σz]−

ih̄2c

2
py[σy, σz]

= −h̄2cσxpy + h̄2cσypx − h̄2cσypx + h̄2cσxpy (3.39)

= 0

We used the identity [σj, σk] = 2iεjklσl. Since the commutator [H, Jz] = 0, angular momen-
tum Jz is conserved, and we can find simultaneous eigenstates of H and Jz. This does not
change if we add a central potential V (r) to the Dirac Hamiltonian.

The orbital angular momentum Lx = xpy − ypx and spin angular momentum Sz = h̄σz
2

are not separately conserved. It is only the total angular momentum Jz = Lz + Sz that is
conserved.

3.4 The Massless Dirac Equation

Although the 2D and 3D Dirac equations are similar, there are significant differences between
them. Whereas the 3D Dirac equation respects parity and time reversal, the mass termmc2σz
in the 2D Dirac Hamiltonian (Eq. 3.28) does not. In fancy-pants language, parity maps a
(1

2
, 0) left-handed Weyl spinor into a (0, 1

2
) right-handed Weyl spinor (and vice versa). A

3D Dirac fermion is a (1
2
, 0) ⊕ (0, 1

2
) bispinor representation of the Lorentz group, so the

3D Dirac equation is invariant under parity. On the other hand, the 2D Dirac equation is
only symmetric under proper, orthochronous Lorentz transformations, which exclude parity
P : (x, y) → (x,−y) and time reversal T : t → −t. The 2D massless Dirac equation in
Eq. 3.40 does not have this problem and is symmetric under both parity and time reversal.

− ih̄c
[
σx

∂

∂x
+ σy

∂

∂y

]
Ψ = EΨ (3.40)

This Dirac equation describes the physics of graphene.

3.4.1 Parity Transformation

As mentioned above, the 2D parity operator P takes (x, y) into (x,−y). Note that I am
defining parity P as a mirror reflection and not as the full spatial inversion (x, y)→ (−x,−y)
because inversion through a point is the same as a rotation by 180◦, which is continuously
connected to the identity element of the Lorentz group. Let us write Ψ as

Ψ = ei(pxx+pyy)/h̄χ, (3.41)

where χ is a spinor. To be a solution of Eq. 3.40,

χ =

(
e−iφ/2

eiφ/2

)
(3.42)
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for positive-energy solutions, or

χ =

(
e−iφ/2

−eiφ/2
)

(3.43)

for negative-energy solutions. Note that this is the same as Eq. 1.15. Here, φ is defined to
be the angle between the x-axis and p = (px, py).

Parity takes φ to −φ. Notice that the σx matrix does exactly this to χ. Therefore, we can
implement the parity transformation on Ψ by acting σx on it, i.e. PΨ(x, y) = σxΨ(x,−y).

If Ψ is a solution to the 2D massless Dirac equation (Eq. 3.40), then Ψ′(x, y) = PΨ(x, y)
is also a solution. Parity is a symmetry of the 2D massless Dirac equation.

3.4.2 Time Reversal Symmetry

Time reversal is also a symmetry of the 2D massless Dirac equation. To verify this, we need
to find an operator that maps (

e−iφ/2

eiφ/2

)
→
(
−ie−iφ/2

ieiφ/2

)
(3.44)

and (
e−iφ/2

−eiφ/2
)
→
(
−ie−iφ/2

−ieiφ/2
)

(3.45)

because time reversal takes φ to φ+ π. It is easy to check that T = σyK does this, where K
is defined to be an operator that implements complex conjugation.

Suppose Ψ′ and Ψ = TΨ′ = σyKΨ′ are related to each other by time reversal. If we plug
in Ψ into the 2D massless Dirac equation (Eq. 3.40), we get

− ih̄c
[
σx

∂

∂x
+ σy

∂

∂y

]
σyKΨ′ = EσyKΨ′. (3.46)

By the properties of the Pauli matrices,

− ih̄c
[
σx

∂

∂x
+ σy

∂

∂y

]
Ψ′ = EΨ′. (3.47)

Therefore, if Ψ is a solution to the 2D massless Dirac equation, then its time-reversed partner
Ψ′ is also a solution to the 2D massless Dirac equation.

Notice that T 2 = −1. This implies that Ψ 6= TΨ and that each energy level is at least
doubly degenerate. This is Kramers theorem.
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Chapter 4

Graphene Device Fabrication

In this chapter, I discuss how we fabricate our graphene/BN devices. The monolayer
graphene samples used in the experiments described in Chs. 5 and 6 (the relativistic Coulomb
potential) were produced via chemical vapor deposition (CVD), while those in Chs. 7 and
8 (the relativistic quantum harmonic oscillator) were made by mechanical exfoliation (the
Scotch tape trick). Since the CVD process is described in great detail in a video in Ref. [37], I
will focus on the method involving exfoliated graphene. The technique for transferring exfo-
liated graphene onto BN was innovated by Cory Dean in the groups of Philip Kim, Kenneth
L. Shepard, and James Hone [38], but we use a variant of a different procedure discussed in
Zomer et al. [39].

4.1 Dry Transfer Procedure

Graphene (and other 2D materials) can be placed on top of other layered materials to create
heterostructures with atomically clean interfaces. This can achieved through a variety of
transfer methods, one of which is schematically depicted in Fig. 4.1 and is described below:

1. Use a diamond scribe to dice a glass microscope slide into three pieces, and clean one
of these pieces with acetone and then with ethanol or isopropanol.

2. Affix a piece of single-sided transparent tape to that glass slide piece, and clean again
with acetone and isopropanol.

3. Drop nine droplets of 10% methyl methacrylate (MMA) in methyl isobutyl ketone
(MIBK) solution onto the tape/glass slide, and spin it at 1300 to 1400 revolutions per
minute (RPM) for 65 seconds.

4. Mechanically exfoliate graphite onto the MMA side of the MMA/tape/glass slide struc-
ture, and search for a desirable monolayer graphene flake (see Fig. 4.2 for an optical
microscope image of graphite and graphene flakes on MMA).
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5. Cut the MMA/tape into a ∼2 mm by 2 mm area.

6. Dice a heavily doped silicon wafer with a 285 nm SiO2 layer into a ∼1 cm by 1 cm
square chip.

7. Mechanically exfoliate BN onto the SiO2/Si chip, and find a BN flake with a desirable
thickness. The thickness of a BN flake an be ascertained through its color under an
optical microscope. Our BN flakes are usually 60 to 100 nm thick.

8. Anneal BN/SiO2/Si in a 350◦C Ar/H2 forming gas.

9. Using an optical microscope with a large working distance and suitable micromanip-
ulators (such as one depicted in Fig. 4.3), align the graphene/MMA/tape/glass slide
structure over the BN/SiO2/Si chip such that the desired graphene flake is directly
above the desired BN flake. Slowly lower the glass slide until the graphene makes
contact with the BN.

10. Heat the silicon chip to ∼90◦C for 5 to 10 minutes. Let it cool for another 5 to 10
minutes.

11. The silicon chip should now be stuck to the glass slide. Place the entire structure in
45◦C CH2Cl2 for 20 to 30 minutes to dissolve the tape and MMA.

12. Look at the graphene/BN heterostructure under an optical microscope. The graphene
should have adhered to the BN, creating the desired heterostructure. If the graphene
is not stuck to BN, then toss the chip and start over. There may be a few bubbles
(possibly made of hydrocarbons trapped between the graphene and BN interface), but
hopefully not many.

13. Anneal the graphene/BN/SiO2/Si structure in a 350◦C Ar/H2 forming gas.

14. Scan the graphene with an ambient atomic force microscope (AFM) to check the sample
cleanliness. If the sample is too dirty, then throw it away and start over. Scratching the
graphene surface with the AFM tip may remove unwanted contaminants and improve
the sample quality.

4.2 Sample Mounting and Contacting

Following the procedure laid out in Sec. 4.1 produces a graphene/BN/SiO2/Si heterostructure
that needs to be electrically contacted and mounted onto a sample holder. To electrically
contact the graphene, we use either standard electron-beam lithography (with polymethyl
methacrylate (PMMA) 495 and 950 as the resist) or shadow mask techniques. Shadow
masks are preferred over lithography because PMMA can be difficult to remove from the
heterostructures. In either case, we deposit 10 nm of Ti and 100 nm of Au for the contact
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Figure 4.1: Graphene/BN dry transfer procedure. First, a transparent piece of tape is
attached to a microscope glass slide cut into a square shape. MMA is then spin coated onto
the tape/glass slide. Graphene is mechanically exfoliated onto the MMA. The MMA/tape is
cut into a ∼2 mm by 2 mm area. BN is exfoliated onto a ∼1 cm by 1 cm SiO2/Si chip, and
the glass slide is aligned above the SiO2/Si chip such that the desired graphene flake will
be stamped on top of the desired BN flake. Upon stamping the graphene/MMA/tape/glass
slide structure onto the BN/SiO2/Si, heat the chip to ∼90◦C for 5 to 10 minutes. Afterwards,
dissolve the tape/MMA in dichloromethane at 45◦C for 20 to 30 minutes. If successful, the
graphene should adhere to the BN, forming a graphene/BN heterostructure.
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Figure 4.2: Optical micrograph of graphene/MMA. (a) Image of graphite flakes exfoliated
onto MMA. The thinner graphite flakes have color that is more similar to the background
than the thicker flakes, with monolayer graphene barely distinguishable from the background.
(b) Zoomed-in image of graphene flake in the red circle in (a).

Figure 4.3: Optical microscope with micromanipulators used for aligning 2D materials for
dry transfer and for aligning stencil masks to samples. This optical microscope also has a
custom-built heater stage powered by the adjacent power supply.

electrode (or alternatively, Cr/Au if we are making a two-terminal device and are concerned
about contact resistance).

To mount the heterostructure onto a sample holder (see Fig. 4.4), we cleave the Si chip
into a narrow strip and clamp the strip down with tantalum foil. The tantalum foil is held
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in place by nuts and threaded rods. (Before 2015, we also placed a sapphire spacer between
the Si chip and the sample plate. Sample mounting was often quite frustrating with this
extra piece of sapphire, and so we got rid of it.)

Figure 4.4: Sample plate. Silicon chips are rigidly held onto sample holders via tantalum
clamping foil. Each sample holder has four contacts that are electrically isolated from the
sample plate. A wire connects one of these contacts to a gold electrode on the chip, which
grounds a graphene sample.

The sample holder has four electrical contacts in addition to the baseplate itself. We use
wire bonding (with Si/Al wire) to connect the Ti/Au electrode to one of the four electrical
contacts (again, see Fig. 4.4). In our experiments, we ground graphene by grounding this
contact. If the sample of interest is a two-terminal device with source and drain contacts,
caution is required to prevent electrostatic discharge from destroying the graphene.

The Si layer of the heterostructure is used as a backgate. Applying a gate voltage Vg to
the Si allows us to tune the charge carrier density in the graphene because the graphene and
Si layer form a parallel plate capacitor with capacitance per unit area C = ε/d. Here, ε is the
dielectric constant of the insulating layers between graphene and Si, and d is the distance in
between. The dielectric constant is ε ≈ 4 (or 4ε0 in the SI unit system) for both SiO2 and
BN. The distance d is the sum of the SiO2 thickness (285 nm) and the BN thickness. The
charge density n induced in graphene by a gate voltage Vg is

e(n− n0) = C(Vg − φQ) ≈ εVg/d, (4.1)

where e = |e| is the magnitude of the electron charge, φQ is the electric potential on graphene
(assumed to be small compared to Vg because the graphene is grounded), and n0 is the charge
density when Vg = 0 V. The density n0 is a residual charge density in graphene caused by
doping from contaminants, substrates, tip-induced contact potentials, and other extrinsic
sources. Note that n is related to the Fermi energy and Dirac point energy via

n =
|EF − ED| (EF − ED)

π(h̄vF )2 . (4.2)
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Therefore, |EF − ED| ∝
√
|Vg − VCNP |, where VCNP is known as the charge neutrality point

(i.e. the gate voltage such that graphene is undoped). In measurements of conductance (or
resistance) against Vg, VCNP appears as a minimum (maximum).

In order to actually use the Si backgate, we must connect it to a power supply (we use
a Keithley 2400 SourceMeter or a similar model). To do this, we electrically connect the Si
layer to the sample holder baseplate and apply Vg to the baseplate. Although the Si layer
and the baseplate are already in physical contact, we ensure electrical contact by using a
diamond scribe to scratch off some of the SiO2. This exposes the Si layer underneath the
scratched location, and we then use wire bonding to attach a wire between the scratch and
the baseplate. Wire bonding to Si can be difficult, so the bond is made such that the wire
adheres to SiO2 while physically touching the exposed Si.

4.3 Approaching Graphene Devices

After mounting the sample and attaching wires to the Ti/Au electrode and Si gate, we move
the sample and sample holder into the UHV chamber. Before we approach the sample with
our STM tip, however, we anneal the device overnight at 200◦C to 400◦C. This removes
contaminants and adsorbed water.

Figure 4.5: Optical image of graphene/BN heterostructure inside STM. The heterostructure
is electrically connected to lithographically patterned source and drain electrodes, which in
turn are connected to wire bonds. The STM tip is seen above the heterostructure, while a
reflection of the tip is seen below.

We are then finally ready to approach the graphene/BN heterostructure with our STM
tip. If the graphene/BN is larger than 30 µm by 30 µm, we can visually approach the het-
erostructure because it can be resolved by our Infinity K2/SC long-distance optical micro-
scope with PixeLINK CCD camera. If the graphene is smaller, then we must use another
technique to find the heterostructure. We have used two different techniques to navigate
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our tip to graphene: a capacitance-based method pioneered by Eva Y. Andrei [40] and a
scanning gate technique invented by Brian J. LeRoy. We find the latter method to be more
effective, so I will now discuss our version of it. This method, which only works for devices in
which the conductance G can be measured, exploits the fact that the STM tip is a movable
top gate that is most effective when it is very near graphene. The procedure is described
below:

1. Bring the STM tip as close as possible to the graphene/BN heterostructure without
crashing the tip. This can be done by approaching the source or drain electrode.

2. Set Vs to the largest possible value without field emission. We use 10 V or −10 V.

3. Measure the conductance G as a function Vg.

4. Set Vg at the value where
∣∣dG/dVg∣∣ is largest. Minimize any visible light that may be

illuminating the graphene/BN heterostructure.

5. While monitoring G, walk the STM tip towards graphene. Move the tip to the location
where G changes the most from its background value.

6. Repeat step 5, but walk the tip in a perpendicular direction.

7. Iterate steps 5 and 6 until the tip converges onto the location of the graphene/BN
heterostructure.

When the tip has been successfully navigated to graphene, approach and scan. The re-
mainder of this dissertation discusses the results of our experiments on these graphene/BN
devices.
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Chapter 5

Charge Carrier Screening of a
Subcritical Impurity

This chapter describes our work on the electronic screening of subcritical charged impurities,
particularly its dependence on the carrier density. The results presented here are based on
an unpublished manuscript titled “Spatially resolving density-dependent screening around
a single charged atom in graphene” by Dillon Wong, Fabiano Corsetti, Yang Wang, Victor
W. Brar, Hsin-Zon Tsai, Qiong Wu, Roland K. Kawakami, Alex Zettl, Arash A. Mostofi,
Johannes Lischner, and Michael F. Crommie. The STM measurements were performed by
Yang Wang and myself; the samples were made from CVD graphene by Hsin-Zon Tsai
and Qiong Wu; and the theoretical calculations were done by Fabiano Corsetti, Arash A.
Mostofi, and Johannes Lischner. The manuscript has recently been accepted for publication
in Physical Review B.

5.1 Introduction

Since electrons in graphene behave like massless Dirac fermions, graphene serves as an ex-
cellent platform for simulating ultra-relativistic physics. By placing a single charged ion on
graphene, we can create what is effectively a relativistic hydrogen atom and image its eigen-
states with STM. As discussed in Ch. 1, massless Dirac fermions have drastically different
responses to Coulomb potentials depending on the strengths of the potentials as quantified
by the effective charge Z. In the subcritical regime, Z is less than a critical charge ZC , and
there are no bound states of this relativistic Coulomb system. Strictly speaking, however,
the potential of a charged ion on graphene is not Coulombic because charge carrier screening
changes the shape of the potential. Nevertheless, a subcritical regime is still observed.

By studying the electronic response of graphene quasiparticles to a subcritical charged
ion while varying the graphene carrier density, we can obtain important information about
the screening of electrostatic potentials in graphene as well as deeper understanding of the
electron-electron interactions therein. This is important because knowledge of screening
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processes and of the wavevector-dependent static dielectric function ε(q) is critical for un-
derstanding many material properties. The ultra-relativistic nature of its charge carriers
cause graphene to have very unusual screening behavior: undoped graphene behaves like a
dielectric while doped graphene behaves like a metal [41, 42].

The screening of charged impurities by massless Dirac fermions is of particular technologi-
cal importance to the performance and construction of graphene-based field-effect transistors
(FETs). Charged impurities limit carrier mobility [43–45], shift the chemical potential [46],
induce phase transitions [47–49], and split Landau levels [50]. In this chapter, I present an
STM/STS study of the local screening response of gated graphene to positively charged cal-
cium (Ca) atoms. We find that charged defects are screened by graphene’s ultra-relativistic
carriers over an unusually long length scale on the order of ten nanometers. The electronic
screening length is highly dependent on the charge carrier density and is thus tunable via
gate voltage. Our experimental observations, which provide important insight into electron-
electron interactions in graphene, are in good agreement with theoretical simulations of the
electronic structure of doped graphene in the presence of a screened Coulomb potential.

5.2 Charged Calcium on Graphene

The experiments were performed in a UHV Omicron LT-STM at 4.8 K using PtIr STM tips
calibrated against the surface state of Au(111) [32]. dI/dV was measured using standard
lock-in detection of the a.c. tunneling current modulated by a 6 mV rms, 500 – 700 Hz signal
added to Vs.

Monolayer graphene sheets were grown through CVD [51] and were subsequently trans-
ferred onto BN crystals exfoliated onto SiO2/Si wafers. The BN crystals provide atomically
smooth surfaces [33, 34] with reduced charge inhomogeneity compared to SiO2 [52, 53]. The
graphene samples were electrically contacted by Ti/Au electrodes and were then cleaned by
annealing at 400◦C in UHV for several hours. These experiments were repeated on multiple
gate-tunable graphene devices for many different calcium atoms.

Calcium atoms were deposited onto graphene by thermally heating a calcium getter
source (Alvatec and Trace Sciences International) calibrated by a mass spectrometer (SRS
Residual Gas Analyzer). Before each deposition, the graphene was first checked using STM
for surface cleanliness. The STM tip was then retracted out of line-of-sight of the getter
source to avoid contamination of the tip. After degassing the getter source, calcium atoms
were evaporated directly onto the low-temperature graphene surface [37]. Fig. 5.1a shows a
schematic of the experimental setup, and Fig. 5.1b shows a typical STM topographic image
of graphene following a Ca deposition. Ca atoms appear as identical round protrusions that
are surrounded by dark depressions caused by the rearrangement of LDOS spectral weight.
These dark depressions are clear signatures of the charged nature of the Ca atoms [54].

We can quantitatively assess the charge donated by each Ca atom by plotting the carrier
density in graphene against the density of Ca adatoms, which is shown in Fig. 5.2. The carrier
density n is given by Eq. 4.2, where |ED − EF | was measured through STS at Vg = 0 V.
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Figure 5.1: Calcium adatoms on graphene. (a) Schematic diagram of experimental setup. A
calcium atom sits on a graphene/BN/SiO2/Si heterostructure. A bias −Vs is applied to the
STM tip, while Vg is applied to the Si to gate the graphene. (b) STM topographic image of
Ca adatoms on graphene/BN. Tunneling parameters: Vs = −0.45 V, I = 2 pA.

The density of Ca adatoms, which was estimated by counting the number of Ca adatoms in
many different areas, was controlled via the time durations of the Ca depositions and by the
number of depositions. By fitting a linear regression line (dashed red line in Fig. 5.2) to the
data, we obtained a charge transfer of 0.7± 0.2 electrons per Ca adatom.

5.3 Electron-Hole Asymmetry

In order to determine the charge states of the Ca adatoms at different doping levels, we
performed gate-dependent dI/dV spectroscopy on graphene at various distances away from
an individual Ca adatom that was at least 20 nm away from every other Ca adatom. This
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Figure 5.2: Carrier density versus calcium adatom density.

data is plotted in Figs. 5.3a-c for p-doped, nearly neutral, and n-doped graphene, respec-
tively. Each dI/dV curve has been normalized by a different constant to account for the
exponential dependence of the tunneling conductance on tip height, as was done in Ref. [54].
As explained in Sec. 2.3 and Refs. [35] and [36], the dI/dV curves all show a ∼130 meV gap-
like feature at the Fermi energy caused by phonon-assisted inelastic tunneling. The p-doped
(n-doped) spectra have local minima on the right (left) of the Fermi level that represent the
graphene Dirac point. For the nearly neutral graphene spectra, the Dirac point is near the
Fermi energy and is obscured by the ∼130 meV gap-like feature.

The dI/dV spectra in Figs. 5.3a-c all display a characteristic electron-hole asymmetry in
which the dI/dV intensity at the energies above the Dirac point increases near the Ca atom
(relative to far away from the impurity), whereas the dI/dV intensity at energies below the
Dirac point decreases near the Ca atom. This is consistent with theoretical predictions that
the LDOS of graphene near a positively charged Coulomb impurity should increase above the
Dirac point and decrease below the Dirac point [13, 14]. Indeed, similar behavior has been
seen in dI/dV spectroscopy near positively charged cobalt trimers [54]. Thus, we conclude
that the Ca adatom is positively charged regardless of the graphene doping level achievable
within our experimental conditions. The charge state of the Ca atom is stable and does not
change during our measurements.

The observed electron-hole asymmetry can be simply understood as an attraction of
the states above the Dirac point towards the positively charged atom and a repulsion of
the states below the Dirac point away from the atom. In analogy to relativistic quantum
mechanics in which the positive-energy continuum represents electrons and the negative-



CHAPTER 5. SCREENING OF A SUBCRITICAL IMPURITY 44

Figure 5.3: Experimental and simulated spectroscopy near isolated Ca adatom. (a) Normal-
ized dI/dV spectra obtained at various distances away from a Ca atom on p-doped graphene.
(b) Same as (a) for nearly neutrally doped graphene. (c) Same as (a) for n-doped graphene.
These dI/dV curves show that Ca adatoms remain positively charged as graphene’s carrier
density is tuned via Vg. Initial tunneling parameters: Vs = 0.6 V, I = 60 pA. (d) Tight-
binding simulation of dI/dV spectra on p-doped graphene away from a screened Coulomb
potential. (e) Same as (d) for nearly neutral graphene. (f) Same as (d) for n-doped graphene.
The Dirac points in (a), (c), (d), and (f) are indicated by black arrows.
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energy continuum represents positrons, the conduction band states of graphene are electron-
like, and the valence band states are hole-like. Thus, states above the Dirac point are
negatively charged quasiparticles that are attracted to the positive Ca atom, increasing the
LDOS and dI/dV in its vicinity. States below the Dirac point behave like positively charged
particles that are repelled from the atom, lowering the LDOS and dI/dV .

An alternate way to interpret the electron-hole asymmetry is to realize that the LDOS of
graphene in the presence of the atom is the LDOS of graphene without the atom but shifted
towards lower energies by the local value of the potential produced by the atom. This
explains the reduction of dI/dV below the Dirac point and the increase of dI/dV above the
Dirac point. For the spectral weight at a given energy E, this is valid for distances much
further from the atom than h̄vF/ |E − ED|. If the atom produces a Coulomb potential, the
Dirac point itself is not shifted by the local value of the Coulomb potential because the
massless Dirac Hamiltonian is scale invariant.

5.4 Dependence on Charge Carrier Density

Since the Ca adatoms are charge stable under our experimental conditions, we can study
graphene’s screening response to charged impurities over a wide range of carrier densities.
We expect the spatial distribution of dI/dV to alter as Vg is changed because charge carrier
screening, which controls the shape of the potential produced by a Ca adatom, should depend
on the electron density. Figs. 5.4a-c and 5.5a-c show gate-dependent dI/dV maps near a
Ca adatom for p-doped graphene and n-doped graphene, respectively. Fig. 5.4c (Fig. 5.5c)
represents graphene that is more p-doped (n-doped) than in Fig. 5.4b (Fig. 5.5b), which is
in turn more p-doped (n-doped) than in Fig. 5.4a (Fig. 5.5a). The sample bias Vs chosen
for each dI/dV map varies with Vg such that we imaged the same states in each map. To
optimize dI/dV contrast, the maps in Figs. 5.4a-c (p-doped graphene) imaged states 0.15 eV
above the Dirac point, and the maps in Figs. 5.5a-c (n-doped graphene) imaged states 0.08 eV
below the Dirac point. We avoided including the Ca atom in the dI/dV maps in order to
minimize the risk of picking up the atom with the STM tip, so the location of the Ca adatom
is marked by a red disk below each map. The color schemes of the dI/dV maps are adjusted
to the maximum and minimum values of each map, with yellow representing high dI/dV
intensity and blue representing low dI/dV intensity.

The overall appearance of the dI/dV maps is qualitatively consistent with a stable,
positively charged Ca atom. In Figs. 5.4a-c, the dI/dV intensity is higher near the Ca
atom because states above the Dirac point were probed. In contrast, the dI/dV intensity is
lower near the Ca atom in Figs. 5.5a-c because states below the Dirac point were probed.
I emphasize that whether dI/dV increases or decreases near the Ca atom does not depend
on whether the graphene is n-doped or p-doped but rather on the position of Vs relative to
the Dirac point. Additionally, comparison between Figs. 5.4a-c (and Figs. 5.5a-c) shows a
systematic difference in the length scale of the dI/dV contrast. When the magnitude of Vg
increases (for both n-doped and p-doped graphene), dI/dV returns to the background value
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Figure 5.4: Gate-dependent dI/dV for p-doped graphene. (a-c) dI/dV maps (0.15 eV above
the Dirac point) near a Ca atom (represented by red disks) on p-doped graphene. (d) Radially
averaged dI/dV (0.15 eV above the Dirac point) as a function of distance away from a Ca
atom on p-doped graphene. Curves are vertically offset for clarity, with the magnitude of
the p-doping increasing from the top curve to the bottom curve. The values of dI/dV far
away from the Ca atom are normalized to 1. (e) Simulated dI/dV (0.15 eV above the Dirac
point) as a function of distance away from an RPA-screened Coulomb potential on p-doped
graphene. The values of the charge carrier density n were chosen to correspond to the
gate voltages in (d). Graphene was modeled via a nearest-neighbor-hopping tight-binding
model. The values of the simulated dI/dV far away from the screened Coulomb potential
are normalized to 1. Tunneling parameters: (a) Vs = 0.28 V, I = 28 pA; (b) Vs = 0.38 V,
I = 38 pA; (c) Vs = 0.45 V, I = 45 pA.

more quickly with increasing distance from the Ca atom.
In order to better illustrate and accurately quantify the trend shown in Figs. 5.4a-c and

5.5a-c, we plot dI/dV as a function of distance away from a Ca atom for p-doped (Fig. 5.4d)
and n-doped (Fig. 5.5d) graphene. The data in Figs. 5.4d and 5.5d were obtained by radially
averaging dI/dV maps similar to those in Figs. 5.4a-c and 5.5a-c (with the Ca atom as the
center) and then normalizing the data to account for tip-height variations caused by the
STM feedback loop [54]. For each of Figs. 5.4d and 5.5d, the dI/dV curves for different Vg
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Figure 5.5: Gate-dependent dI/dV for n-doped graphene. (a) dI/dV maps (0.08 eV below
the Dirac point) near a Ca atom (represented by red disks) on n-doped graphene. (d) Radially
averaged dI/dV (0.08 eV below the Dirac point) as a function of distance away from a Ca
atom on n-doped graphene. Curves are vertically offset for clarity, with the magnitude of
the n-doping increasing from the top curve to the bottom curve. The values of dI/dV far
away from the Ca atom are normalized to 1. (e) Simulated dI/dV (0.08 eV below the Dirac
point) as a function of distance away from an RPA-screened Coulomb potential on n-doped
graphene. The values of the charge carrier density n were chosen to correspond to the
gate voltages in (d). Graphene was modeled via a nearest-neighbor-hopping tight-binding
model. The values of the simulated dI/dV far away from the screened Coulomb potential
are normalized to 1. Tunneling parameters: (a) Vs = −0.16 V, I = 17 pA; (b) Vs = −0.22 V,
I = 20 pA; (c) Vs = −0.28 V, I = 28 pA.

are shifted vertically such that the magnitude of the graphene charge carrier concentration
|n| increases from the top curve to the bottom curve. As |n| increases in magnitude, dI/dV
more quickly returns to its unperturbed value (i.e. the value of dI/dV in the absence of the
atom).
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5.5 Models for the Dielectric Function

5.5.1 The Thomas-Fermi Model

Let’s review the Thomas-Fermi theory of screening in a 3D electron system. Suppose we
have a small, localized, and slowly varying external charge distribution ρext(r) that induces a
change in the charge carrier density nind(r) = n(r)− n0, where n0 is the equilibrium density
(i.e. without the external charge). We want to know the potential V (r) produced by the
external and induced charges, so we use Poisson’s equation:

∇2V (r) = −4π [ρext(r)− enind(r)] . (5.1)

I am working in Gaussian units here (not SI). Since the total electrochemical potential must
be the same everywhere, EF (n0) = EF (n(r))− eV (r), where EF is a local chemical potential
that is a function of n(r). If we can assume nind(r) = n(r) − n0 is small, then we can
approximate EF (n(r))− EF (n0) ≈ dEF

dn
[n(r)− n0], so

nind(r) = eDOS(EF )V (r), (5.2)

where DOS(EF ) is the density of states at the equilibrium Fermi energy. Plugging this into
Eq. 5.1 gives

∇2V (r) = −4π
[
ρext(r)− e2DOS(EF )V (r)

]
. (5.3)

We can Fourier transform this equation to obtain

[−q2 − 4πe2DOS(EF )]V (q) = −4πρext(q), (5.4)

where q is the magnitude of the wavevector q = (qx, qy, qz). V (q) and ρext(q) are the Fourier
transforms of V (r) and ρext(r), respectively. Finally, we get the 3D Thomas-Fermi dielectric
function

ε(q) = 1 +
4πe2DOS(EF )

q2 . (5.5)

This dielectric function is applicable for a 3D metal. Doped graphene is 2D, so we need to
modify this formalism a little. We again start from Poisson’s equation

∇2V (r) = −4πeδ(r) + 4πe2DOS(EF )V (x, y, z = 0)δ(z) (5.6)

but put in a point charge at the origin as the explicit external charge. Note that the Thomas-
Fermi approximation is not very good here because δ(r) is not slowly varying... but let’s
proceed anyway. I also put δ(z) into the induced-charge term because the induced charge is
confined in the z-direction. Fourier transforming Eq. 5.6 yields(

q2 + q2
z

)
V (q, qz) = 4πe− 4πe2DOS(EF )

∫
dqz
2π

V (q, qz). (5.7)
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Now q = (qx, qy) and q2 = q2
x + q2

y. I intentionally separated qz from q because

V (q) =

∫
dqz
2π

V (q, qz) (5.8)

is the Fourier transform of the potential in the 2D plane. The 2D Fourier transform of the
Coulomb potential is Ṽ (q) = 2πe/q, and we want to compare the screened potential V (q)
to it.

It is straightforward to check that the solution of Eq. 5.7 is

V (q) =
2πe

q

1

ε(q)
, (5.9)

where the 2D Thomas-Fermi dielectric function is [5, 41, 55, 56]

ε(q) = 1 +
2πe2DOS(EF )

q
. (5.10)

The main difference between Eqs. 5.5 and 5.10 is an extra factor of q. Screening in 2D
materials is typically weaker than in 3D materials because electric field lines can leave the
plane of a 2D material [57]. In Eq. 5.10, I have ignored the substrate dielectric constant. To
include a BN substrate, replace the 1 with (εBN + 1)/2.

The characteristic length scale of Eq. 5.10 is the Thomas-Fermi screening length [42]

λTF =
1

2πe2DOS(EF )
=

h̄vF

4e2kF
, (5.11)

where kF =
√
π|n| is the magnitude of the Fermi wavevector relative to the K and K ′ points.

Importantly, λTF depends sensitively on kF and can therefore be tuned by application of a
gate voltage. Additionally, λTF only depends on the absolute value of the carrier density
n. Increasing the magnitude of the charge carrier density via the gate voltage Vg leads to
a decrease of λTF , which explains the observed decrease of the decay length of dI/dV in
Figs. 5.4d and 5.5d.

It is also noteworthy that a conventional 2D electron gas (2DEG) with parabolic bands
has a DOS(EF ) and a λTF that are independent of n [58]. It is thus a consequence of the
linear, relativistic-like bands of graphene that λTF ∝ 1/

√
|n|.

5.5.2 The Random Phase Approximation

Thomas-Fermi screening theory qualitatively explains our experimental findings, but it does
not include the effects of interband transitions between graphene’s π and π∗ bands, and it
is only valid for slowly varying potentials. To obtain a quantitatively more accurate model
for describing screening in graphene, we turn to the random phase approximation (RPA).
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The static dielectric function is given by

ε(q) = 1− Ṽ (q)Π(q). (5.12)

Ṽ (q) is the Fourier transform of the Coulomb potential, and Π(q) is the electron-hole polar-
ization bubble diagram. Applying RPA for a 3D metal yields the famous Lindhard dielectric
function. For a 2D graphene sheet with area L2, Π(q) is given by

Π(q) =
2

L2

∑
k,s,s

′

fs,k+q − fs′,k
Es,k+q − Es′,k

[
1 + ss′ cos (θk+q − θk)

]
, (5.13)

where s, s′ = ±1 are band indices, fs,k is the occupation of band s at wavevector k, Es,k is the
energy of band s at k, and θk+q− θk is the angle between k + q and k. Doing some difficult
math for the case of undoped graphene (using the Dirac Hamiltonian and only considering
interband transitions) gives a constant

ε(q) = 1 +
πe2

2h̄vF
. (5.14)

More math for doped graphene (now including intraband transitions) yields [41, 55, 59]

ε(q) = 1 +
2πe2DOS(EF )

q
F (q, kF ), (5.15)

F (q, kF ) = 1 + Θ(q − 2kF )

−1

2

√
1−

(
2kF
q

)2

+
q

4kF
cos−1

(
2kF
q

) . (5.16)

Here, Θ is the Heaviside step function. Note that when q < 2kF , F (q, kF ) = 1, so the RPA
dielectric function is identical to the Thomas-Fermi dielectric function.

5.6 Tight-Binding Simulation of Calcium on

Graphene

Now that we have the RPA dielectric function, we need to calculate the LDOS to quantita-
tively compare to experiment. My theory collaborators (Fabiano Corsetti, Arash A. Mostofi,
and Johannes Lischner) used a nearest-neighbor tight-binding model for the graphene elec-
trons and an on-site RPA-screened Coulomb potential to describe the Ca atom.

Fig. 5.6 shows the results of our tight-binding calculations for p-doped, nearly neutral,
and n-doped graphene. To compare the simulation to our experimental data, we need to
include the effects of phonon-assisted inelastic tunneling and finite quasiparticle lifetime. We
follow a procedure outlined in Ref. [36] to add in these effects, and the results are displayed
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Figure 5.6: Calculated energy-dependent LDOS near screened Coulomb potential. (a) The
LDOS of p-doped graphene (|n| = 2.44 × 1012 cm−2) calculated via a tight-binding model
for different distances away from a screened Coulomb potential. (b) Same as (a) for nearly
neutral graphene (|n| = 1.5 × 1011 cm−2). (c) Same as (a) for n-doped graphene (|n| =
1.37× 1012 cm−2).

in Figs. 5.3d-f. In agreement with the experimental data shown in Figs. 5.3a-c, the simulated
spectra in Figs. 5.3d-f exhibit an electron-hole asymmetry in which dI/dV increases above
the Dirac point and decreases below the Dirac point for locations closer to the center of the
screened Coulomb potential.

To compare our calculations to Figs. 5.4d and 5.5d, we then analyzed the behavior of
the theoretical tunneling spectrum as a function of distance away from the potential center
for a fixed energy. Figs. 5.7a and 5.7b plot simulated dI/dV as a function of distance for p-
doped and n-doped graphene, respectively. Again, we corrected for lifetime broadening and
inelastic tunneling, and the results are plotted in Figs. 5.4e and 5.5e for p-doped and n-doped
graphene, respectively. We chose the energies and carrier densities n for the calculations such
that Fig. 5.4e (Fig. 5.5e) directly corresponds to Fig. 5.4d (Fig. 5.5d).

In agreement with the experimental observations seen in Figs. 5.4d and 5.5d, the theo-
retical tunneling spectra return to their unperturbed values more rapidly for higher doping
concentrations for both p-doped and n-doped graphene, reflecting the decreased range of the
potential caused by reductions in the screening length. Fabiano Corsetti, Arash A. Mostofi,
and Johannes Lischner also carried out density functional theory (DFT) calculations for
a Ca atom on doped graphene, and the DFT results corroborate the trends seen in the
experimental data and in the tight-binding model.

It is apparent from comparing Figs. 5.4d and 5.5d to Figs. 5.4e and 5.5e that the theo-
retical tunneling spectra return to their unperturbed values more quickly than the experi-
mental dI/dV . This may be evidence that RPA is not sufficient to fully explain screening
in graphene. A theory of electron-electron interactions beyond RPA may be required to
reconcile the differences between experiment and theory [60, 61].
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Figure 5.7: Calculated density-dependent LDOS near screened Coulomb potential. (a) Sim-
ulated dI/dV (calculated for energy 0.15 eV above the Dirac point) as a function of distance
away from an RPA-screened Coulomb potential on p-doped graphene. (b) Same as (a) for
n-doped graphene but at energy 0.08 eV below the Dirac point.

5.7 Conclusion

The results presented in this chapter confirm that the RPA model correctly describes elec-
tronic screening in graphene up to a point. RPA screening is already an essential ingredient
in theoretical models for bipolar charge carrier transport in graphene, as it explains the gate
dependence of the conductivity of graphene FETs [62–65]. Electronic screening also affects
the energy levels of adsorbates on graphene [66, 67] as well as the coupling strengths of inter-
layer interactions [68–70]. Our data for the simplest possible system – an individual, isolated
charged impurity on graphene – allows us to directly visualize this screening phenomenon
on a microscopic scale.

To summarize, we have explored how relativistic charge carriers in graphene respond to a
subcritical Coulomb potential. We also examined how these charge carriers screen a Coulomb
potential at various carrier concentrations. STM/STS measurements of the local electronic
structure of gate-tunable graphene in the presence of isolated Ca adatoms have allowed us to
directly observe how the spatial distribution of the density of states around a charged defect
changes with the charge carrier density. Unlike conventional parabolic-band 2DEGs, where
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the Thomas-Fermi screening length λTF is independent of the carrier density, graphene’s
Dirac-like band dispersion leads to λTF ∝ 1/

√
|n|. Thus, increasing carrier density causes

the LDOS (and dI/dV ) near a charged impurity to return to its unperturbed value more
quickly with increasing distance. This experimentally observed trend is confirmed by a
tight-binding model of graphene incorporating an RPA-screened Coulomb potential. The
fundamental behavior described here can be generalized to gain a deeper understanding into
how density-dependent screening processes may affect the shape of other externally imposed
electrostatic potentials.
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Chapter 6

Atomic Collapse in Supercritical
Artificial Nuclei

This chapter describes our work on the electronic response of massless Dirac fermions to
supercritical clusters of charged impurities. The results presented here are based on Ref. [71]:
Y. Wang et al., “Observing atomic collapse resonances in artificial nuclei on graphene”,
Science 340 734–737 (2013).

6.1 Introduction

An electron bound to a hydrogen-like atom with nuclear charge Z moves with speed Zαc,
where α ≈ 1/137 is the fine-structure constant. This clearly cannot be true for Z > 1/α,
and so a relativistic description of electron motion is required for superheavy atomic nuclei.
According to relativistic quantum mechanics, when the charge Z of a nucleus exceeds a
certain critical threshold (ZC ≈ 170 when the finite size of the nucleus is taken into account),
the binding energy of an electron to the nucleus exceeds 2mc2 [20]. In this supercritical
regime, the strong electric field of the Coulomb potential renders the vacuum unstable and
leads to electron-positron pair production. The positron escapes, while the electron is bound
to the nucleus. The bound state is known as an “atomic collapse” state because it represents
the quantization of a semiclassical trajectory where the electron spirals inwards towards the
nucleus [72].

Since the periodic table currently ends at atomic number 118, one might imagine that
obtaining a Z > 170 supercritical nucleus is far outside our present technological reach.
There have been many attempts to observe positron emission from transient supercritical
nuclei created by colliding heavy ions [21, 73, 74]. The results of these attempts, however,
have so far been inconclusive. There are still future experiments planned at the Facility for
Antiproton and Ion Research (FAIR – a particle accelerator under construction in Darmstadt,
Germany) that hope to observe atomic collapse behavior in heavy ion collisions [75, 76], but
it remains to be seen whether these experiments will be successful.
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Fortunately, graphene provides us with a convenient platform for exploring relativistic
physics. Since quasiparticles in graphene behave like ultra-relativistic particles, there have
been theoretical predictions that charged impurities on graphene could produce atomic col-
lapse states [13–15], with holes in the valence band playing the role of positrons. Graphene’s
massless Dirac fermions move with speed vF , so the effective fine-structure constant in
graphene is enhanced by a factor c/vF ≈ 300. Consequently, the critical charge ZC needed
for supercritical behavior is drastically reduced, and observing atomic collapse in graphene
does not require absurdly high values of the nuclear charge.

This chapter describes an experiment where we searched for atomic collapse states around
“artificial nuclei” assembled on the surface of a gate-tunable graphene device. We created
these artificial nuclei by using an STM tip to push ionized Ca dimers together. This STM
atomic manipulation allowed us to create supercritical Coulomb potentials by combining
subcritical charged impurities. Near our largest artificial nucleus, STS measurements re-
vealed the emergence of a spatially extended electronic resonance with energy just below the
Dirac point. We interpreted this resonance as the electron-like part of the atomic collapse
wavefunction and compared our experimental observations with theoretical solutions of the
massless Dirac equation with a Coulomb potential.

6.2 Construction of the Artificial Nuclei

The experiments were performed in a UHV Omicron LT-STM at temperature T = 5 K.
Before all measurements, PtIr STM tips were calibrated against the surface state of an
Au(111) crystal [32]. dI/dV was measured by standard lock-in detection of the a.c. tunneling
current modulated by a 6 mV rms, 500 – 700 Hz signal added to the tunneling bias.

Our graphene samples were grown via CVD [51]. BN flakes were mechanically exfoliated
onto heavily doped Si wafers coated with a 285 nm thermal oxide. Graphene monolayers were
transferred on top of BN/SiO2/Si, and electrical contact was made to graphene by depositing
10 nm Ti and 30 nm Au electrodes using a shadow mask. Completed heterostructures were
annealed in UHV at ∼400◦C overnight before STM/STS measurements.

We deposited Ca atoms onto a low-temperature (T = 5 K) graphene surface using a Ca
getter source (Alvatec) that was calibrated by evaporating Ca atoms into a mass spectrometer
(SRS Residual Gas Analyzer). Since Ca adatoms were difficult to manipulate with an STM
tip, we used Ca dimers for our experiment. We obtained Ca dimers on graphene by warming
the sample to T = 16± 3 K for 1 to 2 minutes before returning the sample to T = 5 K. This
caused Ca atoms to thermally diffuse and bind together to form dimers.

Fig. 6.1 shows an STM topographic image of Ca dimers and their manipulation. To
move a Ca dimer with an STM tip, the tunneling parameters are first set to Vs = 0.5 V,
I = 2 pA, and Vg = −60 V. Then, the tip is placed near the dimer on the side opposite to
the desired direction of motion. Applying a Vs = −1 V pulse pushes the Ca dimer forward.
Since Ca dimers are positively charged, they can be difficult to move near each other. The
Vs = −1 V pulses sometimes push Ca dimers in wrong directions, especially if other Ca
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Figure 6.1: STM atomic manipulation of calcium dimers. Voltage pulses are applied to the
STM tip to kick Ca dimers into clusters with larger charge.

dimers are nearby. Eventually, however, clusters of Ca dimers (as shown in Fig. 6.1) can be
assembled with sufficient effort. We used atomic manipulation to assemble artificial nuclei
containing one to five Ca dimers (see insets of Figs. 6.2a-e).

6.3 Spectroscopy Measurements Near the Artificial

Nuclei

To characterize the effect that the artificial nuclei have on the motion of massless Dirac
fermions in graphene, we measured dI/dV spectra as a function of lateral distance away
from the center of each set of Ca dimers. These spectra (normalized for changes in tip height
due to the STM feedback loop [54] and shown in Figs. 6.2a-e) all possess a ∼130 meV gap-
like feature at the Fermi energy caused by phonon-assisted inelastic tunneling [35, 36]. The
spectra obtained at locations far away from the artificial nuclei also have additional minima
at around Vs = 0.23 V that are associated with the graphene Dirac point. Similar to the
case for a single Ca monomer described in Ch. 5, there is also an electron-hole asymmetry
in which the dI/dV intensities for states above the Dirac point increase near the clusters
and decrease for states below the Dirac point. The electron-hole asymmetry indicates that
the Ca-dimer clusters are positively charged because the electron-like states above the Dirac
point are attracted to the cluster while hole-like states below the Dirac point are repelled
from it.

There are noteworthy differences between each set of dI/dV spectra acquired for each
artificial nucleus. Spectra taken near the two-dimer cluster (Fig. 6.2b) displayed greater
electron-hole asymmetry than for the one-dimer system (Fig. 6.2a) as well as an extra os-
cillation at an energy above the Dirac point. Spectra obtained near the three-dimer cluster
(Fig. 6.2c) showed even stronger electron-hole asymmetry, and the oscillation began to form
a resonance-like structure near Vs = 0.30 V. For spectra taken near the four-dimer cluster
(Fig. 6.2d), the resonance-like structure increased in intensity and coalesced into a sharp peak
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Figure 6.2: Evolution of ar-
tificial nuclei from subcritical
to supercritical regime. (a-e)
dI/dV spectra measured at dif-
ferent distances away from the
centers of artificial nuclei com-
posed of one to five Ca dimers.
The center of an artificial nu-
cleus is defined as the aver-
age of the coordinates of each
dimer within a cluster. Initial
tunneling parameters: Vs =
−0.5 V, I = 60 pA, Vg =
−30 V. The insets show STM
topographic images of the ar-
tificial nuclei. (f-j) Theoreti-
cally simulated dI/dV spectra
for graphene with a Coulomb
potential at the same distances
as for the artificial nuclei in
(a-e) for (f) Z/ZC = 0.5, (g)
Z/ZC = 0.9, (h) Z/ZC =
1.4, (i) Z/ZC = 1.8, and (j)
Z/ZC = 2.2. The black dashed
lines indicate the location of
the Dirac point, and red ar-
rows point at the atomic col-
lapse resonance.
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Figure 6.3: dI/dV map of atomic collapse state near a five-dimer artificial nucleus. The
dimers appear as slightly darker disks near the center of the circular atomic collapse wave-
function. Tunneling parameters: Vs = 0.20 V, I = 15 pA, Vg = −30 V.

at a well-defined energy near the Dirac point. Finally, for the five-dimer cluster (Fig. 6.2e),
the energy of the resonance shifted below the Dirac point. The formation of this resonance
represents the transition from the subcritical regime to the supercritical regime and the
emergence of a quasi-bound atomic collapse state.

To study the spatial dependence of the quasi-bound state that appears for a high-Z
artificial nucleus, we performed dI/dV mapping at the resonance energy around the five-
dimer cluster shown in the inset of Fig. 6.2e. This dI/dV map is shown in Fig. 6.3 and
displays a radially symmetric distribution of the graphene spectral weight around the five-
dimer cluster despite the asymmetric arrangement of the dimers. The state is spatially
extended more than 10 nm from the nuclear center and is thus derived from the motion of
quasiparticles in the pristine graphene away from the artificial nucleus.
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6.4 Theoretical Calculations for Coulomb Potential

on Graphene

The resonance that emerges as our cluster charge increases is the atomic collapse state of
a supercritical nucleus. This explanation is supported by theoretical calculations of the
LDOS of graphene. These LDOS calculations, performed by Andrey V. Shytov and Leonid
S. Levitov, assume a 2D continuum Dirac model for undoped graphene in the presence
of a radially symmetric potential V (r). As a function of the distance r from the origin,
V (r) is Coulomb except for a cutoff at 1 nm, where the potential takes a constant value
V (r < 1 nm) = V (r = 1 nm). The only essential fitting parameter in the calculations was
Z/ZC , where the “effective charge” Z is a measure of the strength of the Coulomb potential
(including screening due to the substrate and graphene polarization), and ZC = h̄vF

2e
2 . More

details about the calculations can be found in Refs. [14] and [15].
Fig. 6.4 shows the results of theoretical calculations for several values of Z/ZC . To

directly compare these simulations to our experimental data, we need to include the effects
of phonon-assisted inelastic tunneling and quasiparticle lifetime. Figs. 6.2f-j show the results
of the same calculation but taking into account inelastic tunneling and lifetime broadening
by following a procedure outlined in Ref. [36].

Our experimental data suggests that the one-dimer system and the two-dimer cluster are
in the subcritical regime, so we determine Z/ZC for these two artificial nuclei by matching
the strengths of the electron-hole asymmetry in experiment to theory in accordance to a
method outlined in Ref. [54]. The three-dimer cluster appears to be transitioning into the
supercritical regime, and the four-dimer and five-dimer clusters have fully entered the super-
critical regime, as evidenced by the sharpness and energy location of the spatially localized
resonance. For these three artificial nuclei, we determined Z/ZC by matching the resonance
energies in the experimental data to the theoretical calculations.

The values of Z/ZC selected for the calculation results presented in Figs. 6.4 and 6.2f-
j were obtained through the aforementioned fitting methods for the one-dimer (Z/ZC =
0.5 ± 0.1), two-dimer (Z/ZC = 0.9 ± 0.1), three-dimer (Z/ZC = 1.4 ± 0.2), four-dimer
(Z/ZC = 1.8 ± 0.2), and five-dimer (Z/ZC = 2.2 ± 0.2) artificial nuclei. The main features
observed in the experimental data are reproduced by their corresponding Dirac equation
simulations, including the electron-hole asymmetry and the emergence of the resonance peak
as the total charge increases. This confirms our interpretation of the resonance as the atomic
collapse quasi-bound state of a supercritical charge.

As a sanity check, Sangkook Choi and Steven G. Louie used DFT to calculate the charge
of a single Ca dimer. This calculation, which had no fitting parameters, yielded Z/ZC =
0.6 ± 0.3, consistent with Z/ZC = 0.5 ± 0.1 extracted from comparing our experimental
data to the Dirac equation simulations. Additionally, we can rule out the possibility that
our quasi-bound states are caused by multiple scattering of Dirac quasiparticles between the
Ca dimers because the distance between dimers in an artificial nucleus is about 2 nm. The
corresponding energy for multiple scattering is E = h̄vFπ/(2 nm) ≈ 1 eV, which is far too
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Figure 6.4: Theoretical LDOS of graphene with Coulomb potential calculated by solving
the massless Dirac equation. These curves are for different distances from an impurity
having charge (a) Z/ZC = 0.5, (b) Z/ZC = 0.9, (c) Z/ZC = 1.4, (d) Z/ZC = 1.8, and (e)
Z/ZC = 2.2.
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large to explain our experimental observations. The large spatial extent of the quasi-bound
state (see Fig. 6.3) also shows that the resonance arises from a spatially extended Coulomb
potential and not from local impurity hybridization with the underlying carbon atoms in
graphene.

The radially symmetric distribution of dI/dV seen in Fig. 6.3 is consistent with the
predicted behavior for the atomic collapse state with lowest energy and lowest angular mo-
mentum (i.e. j = 1/2) [13–15]. In principle, just like the hydrogen atom, there should be an
infinite number of quasi-bound states corresponding to different principal quantum numbers.
However, because the energies of the atomic collapse states follow an exponential sequence
and the spatial extent of each state is inversely proportional to its energy (as measured from
the Dirac point), only the quasi-bound state with the lowest energy should be detectable
because screening suppresses all states with sufficiently large spatial extent.

6.5 Carrier Density Dependence of Atomic Collapse

Resonance

The observed behavior of the atomic collapse state depends on whether it is empty or oc-
cupied by electrons. This can be seen in the gate-dependent dI/dV spectra in Fig. 6.5,
which were all measured 3.7 nm from the center of the five-dimer cluster in the inset of
Fig. 6.2e. Each red arrow indicates the energy of the atomic collapse state for each gate
voltage, and the black arrows indicate the energies of the Dirac point as extracted from
measuring dI/dV on graphene at least 20 nm away from the cluster center. For p-doped
graphene (−60 V ≤ Vg ≤ −15 V), the atomic collapse state is empty, and the resonance
shifts to lower energy relative to the Dirac point as the magnitude of the carrier concen-
tration decreases. For n-doped graphene (0 V ≤ Vg ≤ 30 V), the resonance intensity is
dramatically suppressed.

The strong doping dependence of the atomic collapse resonance can be partially explained
as a screening effect. In the p-doped regime, electronic screening reduces the effective charge
of the artificial nucleus, reducing the magnitude of the bound state energy. When the
magnitude of the carrier density decreases, the screening of the impurity charge is reduced,
so the resonance peak is shifted to lower energy.

The phenomenology in the n-doped regime is radically different and is difficult to ex-
plain. Here, the atomic collapse peak almost completely disappears. We hypothesize that
this behavior is due to internal correlation among the localized charge carriers that inhabit
the atomic collapse state. Normally, graphene states are fourfold degenerate due to the spin
and valley degrees of freedom. However, the atomic collapse state cannot be inhabited by
four electrons because each electron would screen the nucleus such that the effective charge Z
would appear subcritical to the other electrons. Somehow, electron-electron interactions re-
duce the single-particle spectral function as measured by STS, but future studies are required
to elucidate how this occurs.
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Figure 6.5: Doping dependence of atomic collapse state. Gate-dependent dI/dV spectra
obtained at a lateral distance of 3.7 nm from the center of a five-dimer cluster. Curves
are shifted vertically for clarity. Each red arrow indicates the energy of the atomic collapse
state for each gate voltage, while black arrows indicate the Dirac point energies extracted
by measuring dI/dV spectra at least 20 nm away from the cluster center. Initial tunneling
parameters: Vs = −0.5 V, I = 60 pA.
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Figure 6.6: Atomic collapse molecule. (a) STM topographic image of two four-dimer clusters
assembled near each other. (b) dI/dV spectra (not normalized) each acquired at the corre-
spondingly color-coded “X” in (a). Initial tunneling parameters: Vs = −0.5 V, I = 40 pA,
Vg = −25 V. (c) dI/dV map of the two four-dimer clusters. The dimers appear as slightly
darker disks. Tunneling parameters: Vs = 0.15 V, I = 10 pA, Vg = −25 V. (d) Same as (c)
but with different tunneling parameters: Vs = 0.22 V, I = 20 pA, Vg = −25 V.

6.6 Atomic Collapse Molecule

Now that we had some fun playing faux nuclear physics, we can also play pseudo-chemistry
with the atomic collapse orbitals. Fig. 6.6a shows an STM topographic image of eight Ca
dimers arranged in two groups of four. To probe the electronic structure of this coupled
system of two artificial nuclei, we performed STS measurements at various locations near
this Ca-dimer configuration. Fig. 6.6b shows a series of dI/dV spectra taken at points along
a line between the two artificial nuclei. There appears to be two resonance peaks now.

Figs. 6.6c-d are two dI/dV maps taken at different energies. The map in Fig. 6.6d has
a larger energy (Vs = 0.22 V) than the map in Fig. 6.6c (Vs = 0.15 V). The appearance
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of the dI/dV maps strongly suggests that Fig. 6.6c shows a bonding orbital and Fig. 6.6d
shows an antibonding orbital. If this is indeed the case, then the double-four-dimer system is
an “atomic collapse molecule.” Then, by creating various arrangements of n-dimer clusters,
we could engineer new and interesting quantum eigenstates for exploring Z > 170 ultra-
relativistic chemistry.

6.7 Conclusion

In conclusion, we investigated the behavior of massless Dirac fermions in a Coulomb potential
by using STM atomic manipulation to assemble clusters of Ca dimers on a gated graphene
surface. We found that, as the number of dimers in a cluster increased, the system underwent
a transition between a subcritical regime with no bound states to a supercritical regime with
a quasi-bound atomic collapse state. This atomic collapse state observed in graphene is
highly analogous to an electronic eigenstate of a Z > 170 atomic nucleus. Furthermore, the
gate dependence of the atomic collapse resonance revealed very nontrivial behavior that we
believe is caused by electron-electron interactions.

The atomic collapse state is the impurity state of a donor atom on graphene, and just like
for donor and acceptor states in semiconductors, learning how to create and manipulate these
impurity states may be useful for controlling the motion of charge carriers in graphene-based
devices. Constructing donor and acceptor levels in graphene through atomic manipulation is
quite difficult and time consuming, but there may be alternative methods for realizing these
exotic quasi-bound states [77].



65

Chapter 7

Manipulation of Defects in Hexagonal
Boron Nitride

In Ch. 8, I will discuss our work on the relativistic quantum harmonic oscillator. We cre-
ated a parabolic potential in graphene by manipulating the charge states of defects in the
underlying BN substrate. In this chapter, we examine some of the properties of such de-
fects and describe a technique for manipulating them. The results presented here are based
on Ref. [78]: D. Wong et al., “Characterization and manipulation of individual defects in
insulating hexagonal boron nitride using scanning tunnelling microscopy”, Nature Nanotech-
nology 10, 949–953 (2015). I also use content from Ref. [79]: J. Velasco Jr. et al. “Nanoscale
control of rewriteable doping patterns in pristine graphene/boron nitride heterostructures”,
Nano Letters 16, 1620–1625 (2016).

7.1 Introduction

Since defects have a major role in determining the properties and applications of many
materials, characterizing them on a microscopic level is of crucial importance. Defects in BN
are of particular interest because BN is a vital component in many new and technologically
promising devices that incorporate 2D materials [38, 80]. Although BN defects have been
investigated through cathodoluminescence [81], secondary ion mass spectrometry (SIMS)
[82], electron paramagnetic resonance [83–85], and many other techniques [86–88], these
studies have primarily been limited to spatially averaged defect behavior, and investigation
of individual BN defects remains an outstanding challenge.

STM has long been used to image individual point defects in conductors [89, 90], semi-
conductors [91–94], and ultrathin films [95–99], but single-defect characterization remains
an elusive goal for bulk insulators. In this chapter, I discuss the STM characterization and
manipulation of defects inside insulating BN. It is normally difficult to use STM to obtain
information about insulators because there are no conducting paths to drain the tunneling
current, but this was not an issue in our experiment because BN was capped by monolayer
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Figure 7.1: Detecting charged defects inside BN. (a) STM topographic image of a clean
graphene/BN area with a ∼7 nm moiré pattern. (b) dI/dV map of the same location as
(a). There are bright dots, a dark dot, and a ring structure that are presumably due to BN
defects. Tunneling parameters: Vs = −0.25 V, I = 0.4 nA.

graphene. The atomically thin nature of graphene allowed us to visualize defects in the
underlying BN layers and obtain charge and energy-level information about the defects.

We were also able to change the charge states of the defects through voltage pulses applied
to our STM tip. By combining this tip-induced defect manipulation with an electric field from
the Si backgate, we patterned nanoscale p-n junctions in graphene/BN heterostructures. The
p-n junctions produced by this method were nonvolatile, erasable, and (most importantly
for their use in Ch. 8) clean.

7.2 Detecting Subsurface Defects

Our samples were fabricated using the transfer technique described in Ch. 4. We exfoliated
BN crystals (synthesized by Takashi Taniguchi and Kenji Watanabe) onto heavily doped Si
chips each capped by a 285 nm SiO2 dielectric layer. Graphene monolayers were exfoliated
from graphite onto MMA and were each subsequently transferred onto a 60 to 100 nm thick
BN flake. The samples were electrically contacted with standard electron-beam lithography
and were then annealed in flowing Ar/H2 forming gas at 350◦C. We measured the electrical
conductance of completed devices with a standard a.c. voltage bias lock-in technique with a
50 µV signal at 97.13 Hz. Samples that exhibited acceptable bipolar charge carrier transport
were transferred into the preparation chamber of our UHV Omicron LT-STM, where they
were annealed for several hours at ∼300◦C before moving the devices into the STM chamber
for measurements at temperature T = 5 K. Our PtIr STM tip was calibrated against the
surface state of an Au(111) crystal [32]. All STM topographic images and dI/dV maps were
obtained using constant-current feedback, and all STS measurements were acquired through
lock-in detection of the a.c. tunneling current induced by a 6 mV, 613.7 Hz wiggle voltage
added to Vs.
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Figure 7.2: Identifying the charge states of BN defects. (a) dI/dV map of bright-dot defect.
(b) dI/dV map of dark-dot defect. Tunneling parameters: Vs = −0.3 V, I = 0.4 nA,
Vg = 5 V. (c) dI/dV spectra of graphene measured at various lateral distances from the
center of the bright dot in (a). The spectra reveal that the bright dot is a positively charged
defect. (d) Same as (c) but for the dark dot in (b). The spectra reveal that the dark dot
is a negatively charged defect. Initial tunneling parameters: Vs = −0.5 V, I = 0.4 nA,
Vg = 20 V.

Fig. 7.1a shows an STM topographic image of graphene/BN with a ∼7 nm moiré pattern
caused by the interference of the graphene and BN atomic lattices [33, 34]. We can see
localized shallow dips and a protrusion with height ∆z < 0.1 Å. Fig. 7.1b presents a dI/dV
map taken at the same location. The map reveals randomly distributed bright (high dI/dV )
and dark (low dI/dV ) circular dots that are ∼20 nm in diameter and have varying degrees of
intensity. A sharp ring feature is also seen at the right edge of the map. None of the localized
defect features seen in Fig. 7.1b appear to distort the moiré pattern at their corresponding
locations in the topographic image in Fig. 7.1a.

Figs. 7.2a-b display higher-resolution dI/dV maps of representative bright and dark dots.
The maps clearly show that the moiré pattern is not obscured by the defects. We cannot
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Figure 7.3: Electron-hole asymmetry in spectroscopy near BN defects. (a) dI/dV spectra
of graphene measured at various lateral distances from the center of the bright-dot defect
in Fig. 7.2. (b) Same as (a) but for the dark-dot defect. Initial tunneling parameters:
Vs = 0.5 V, I = 0.4 nA, Vg = 20 V.

identify the charge states of these dots from the dI/dV maps alone because the appearances
of the dot defects nontrivially depend on Vs and Vg. As mentioned in Sec. 2.2.1, as Vs and
Vg are changed, the constant-current feedback loop adjusts the STM tip height such that
the current I remains constant. This may cause bright-dot defects to appear dark (and vice
versa) under different tunneling conditions.

In order to identify the charge states of these defects, we acquired dI/dV spectra at
different distances away from the centers of the dots (plotted in Figs. 7.2c-d). The graphene
Dirac point is seen at Vs ≈ −0.17 V. For the bright-dot spectra (Fig. 7.2c), dI/dV above the
Dirac point increases as the STM tip approaches the bright-dot center. Fig. 7.2d shows the
opposite trend, in which dI/dV above the Dirac point decreases as the STM tip approaches
the dark-dot center. As explained in Ch. 5, an increase of the LDOS above the Dirac point
indicates that electron-like Dirac fermions are attracted to the center, and hence an increase
in dI/dV is a signature of a positive charge. Likewise, a decrease of the LDOS above the
Dirac point indicates that electron-like Dirac fermions are repelled from the center, and
hence a decrease in dI/dV is a signature of a negative charge. Therefore, we can conclude
that the bright dot is a positively charged defect while the dark dot is negatively charged.

The spectra in Figs. 7.2c-d are not normalized for changes in tip height due to the STM
feedback loop [54]. Notice that the areas under the curves in Fig. 7.2c (as well as in Fig. 7.2d)
integrated from Vs = −0.5 V to Vs = 0 V are equal. This is a consequence of the constant-
current feedback condition. We can change the initial tunneling parameters such that the
integrated areas between Vs = 0 V to Vs = 0.5 V are all equal. Fig. 7.3 shows precisely this.
In these spectra, dI/dV below the Dirac point decreases near the positively charged defect
(the bright dot) because hole-like Dirac fermions are repelled. In contrast, dI/dV below
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the Dirac point increases near the negatively charged defect (the dark dot) because hole-like
Dirac fermions are attracted.

What are these dot defects? Three scenarios are possible: (i) adsorbates bound to the
surface of graphene, (ii) adsorbates trapped at the interface between the graphene and BN,
and (iii) intrinsic defects within the insulating BN substrate. Our observations imply that
(iii) is the correct scenario. Scenario (i) can be ruled out because weakly bound adsorbates
would have higher height profiles than the observed topographically small features (∆z <
0.1 Å) and would also be swept away by the STM tip for the large tunneling currents involved
in our measurements. Strongly bound adsorbates would also have taller height profiles and
should disrupt the graphene honeycomb lattice, which we did not observe. Additionally,
strongly bound adsorbates would lead to changes in the graphene spectroscopy due to the
formation of localized bonding states, which are not seen. We can rule scenario (ii) out
because an adsorbate trapped beneath graphene would cause a bump in graphene at least
an order of magnitude larger than the ∆z < 0.1 Å features observed here. A trapped
adsorbate would also locally delaminate the graphene from the BN substrate, disrupting the
moiré pattern, which is evidently not seen in Figs. 7.1 and 7.2a-b.

Scenario (iii) – charged defects inside the BN substrate – is therefore the most likely ex-
planation for the defects observed here. Polycrystalline BN is known to host many types of
charged defects, as inferred from thermoluminescence and electron paramagnetic resonance
experiments [83–85]. Examples of such defects are nitrogen vacancies (which act as donors)
and carbon impurities substituted at nitrogen sites (which act as acceptors). A SIMS in-
vestigation of high-purity, single-crystal BN synthesized at high pressure and temperature
(which are used in the study described in this chapter) has also identified oxygen and carbon
impurities [82]. A comparison between optoelectronic experiments performed on the high-
purity, single-crystal BN [87, 88] and theoretical calculations [100, 101] demonstrates that
the defects in the high-purity, single-crystal BN are consistent with nitrogen vacancies and
carbon substitutions of nitrogen. Such defects, when ionized, could produce the bright dots
and dark dots seen in Figs. 7.1 and 7.2. The defects appear as ∼20 nm clouds because they
are indirectly observed through graphene’s screening response to their electric potentials.
The fact that these defects are embedded in BN layers underneath graphene explains why
the dots have such small topographic deflection, why the moiré pattern is not disrupted, and
also why no new states arise in graphene spectroscopy. The variations in the intensities of
the bright and dark dots can be explained by BN defects lying at different depths relative
to the graphene capping layer.

7.3 The Ring Defects

As seen at the right edge of Fig. 7.1, there are also ring defects. Similar rings observed
in other systems have been attributed to the charging of impurities and quantum dots [92,
102–104]. We hypothesize that the ring in Fig. 7.1 is due to the charging of a defect in
the topmost layer of BN. The defect hybridizes with graphene states, and the ring radius R
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Figure 7.4: Schematic model for ring defect, along with data on the gate dependence of
the ring radius. (a) dI/dV map of a ring defect at Vg = 17 V. Tunneling parameters:
Vs = −0.3 V, I = 0.4 nA. (b) dI/dV map of the same ring defect as (a) but at Vg = 9 V.
(c) Ring radius R for different values of Vs and Vg. The ring radius R was extracted from
dI/dV maps of the same ring defect as in (a) and (b). (d-e) Schematic model (energies not
to scale) for ring formation due to charge transfer between graphene and a defect in the top
layer of BN. When the distance r between the STM tip and the defect is larger than the
ring radius (i.e. r > R), the defect level is filled, and the defect is negatively charged. When
the distance between the tip and the defect is smaller than the ring radius (i.e. r < R),
local gating from the tip reduces the electron density around the defect such that the Fermi
level is below the defect level, neutralizing the defect. If the tip potential is negative and
the graphene is n-doped, lowering Vg shifts the unperturbed defect level closer to the Fermi
energy, increasing R.

becomes dependent on the graphene carrier density. Figs. 7.4a-b show that the ring radius
changes from 2 nm (Fig. 7.4a) to 11 nm (Fig. 7.4b) as the backgate voltage is changed from
Vg = 17 V to Vg = 9 V at Vs = −0.3 V. Fig. 7.4c plots the ring radius R against Vg for
various values of Vs. This data was acquired by measuring R from dI/dV maps taken at
the same location as Figs. 7.4a-b but varying Vg and Vs. Although the value of R depends
on the STM tip shape as well as the local graphene charge neutrality point, the qualitative
trend seen in Fig. 7.4c is representative of most of the observed ring defects. For a constant
Vs, R increases with decreasing Vg until a critical gate voltage (VC = 6 ± 1 V for the ring
observed in Fig. 7.4), upon which the ring vanishes.
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Figure 7.5: The gate dependence of the ring radius R for different values of Vs collapses
onto a single curve when the gate voltage is divided by Vtip. In these plots, VC = 6 V,
∆Φ = −0.8 V, and γ = 0.63.

I now present a model to explain the appearance and behavior of the ring. Suppose there
is a defect in the topmost layer of BN such that the defect strongly interacts with graphene.
Also suppose that the defect has an energy level that is below the Fermi energy when the tip
is far away. The tip is a top gate that capacitively couples to the graphene region directly
above the defect (this is called tip-induced band bending). If the electric potential at the tip
is Vtip, then the change in the local carrier density δn induced by the tip is given by

eδn = C(r)Vtip. (7.1)

Here, C(r) is a capacitance per unit area that increases with decreasing tip-defect lateral
distance r. The quantity Vtip is not the same as Vs because of the contact potential due to
the difference between the PtIr and graphene work functions. The correct expression for Vtip

is

Vtip = −Vs +
Φgraphene − ΦPtIr

e
, (7.2)

where the work functions are Φgraphene ≈ 4.5 eV [105] and ΦPtIr ≈ 5.2 eV [106].
For the data acquired in Fig. 7.4, Vtip < 0 V, so electrostatic gating from the tip lowers

the local electron density in the graphene. As the tip approaches the defect, C(r) increases,
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and δn becomes more negative. The Fermi level eventually crosses the defect level when
the tip is at some distance R∗ away from the defect. The charge state of the defect and,
consequently, the graphene LDOS abruptly change at r = R∗, causing a discontinuity in
I(Vs). This sudden change in the tunneling current manifests as a ring with radius R = R∗

in dI/dV maps. The ring radius R separates the region where the tip is too far from the
defect to change its charge state (r > R) from the region where the tip is close enough to the
defect to change its charge state (r < R). Figs. 7.4d and 7.4e sketch cartoons for the r > R
and r < R cases, respectively. In these diagrams, the defect level is depicted as filled (and
the defect is negatively charged) when r > R, while the defect level is depicted as empty
(and the defect is neutral) when r < R. This picture is supported by the dI/dV maps in
Figs. 7.4a-b, where the exterior of the ring is surrounded by a dark screening cloud that is
absent in the interior.

If V ∗C is the backgate voltage where the Fermi level and the defect level coincide (without
perturbation from the tip), then no ring should appear for Vtip < 0 V and Vg < V ∗C because
decreasing the electron density further increases the energy separation between the Fermi
level and the defect level. Additionally, R should increase as Vg approaches V ∗C from above
because the |δn| required to neutralize the defect decreases. This is consistent with our
observation that the ring radius diverges at VC = 6± 1 V. Hence, we deduce that V ∗C = VC ,
which occurs when the Fermi level (and hence the defect level) is ∼30 ± 10 meV above
the graphene Dirac point. This puts the ring defect level at ∼4 eV below the edge of the
BN conduction band [107], which is similar to an energy level for carbon substitutions of
nitrogen in bulk BN [84]. This may be a coincidence because the energy levels of defects at
an interface are not the same as for defects in the bulk, and we expect hybridization between
graphene and a carbon substitutional impurity to locally distort the graphene lattice.

We can test the validity of the model described above because C(r) = eδn/Vtip is (to a
very good approximation) only a function of r and is not a function of Vs. Hence, the data
in Fig. 7.4c can be rescaled onto a single curve by plotting the quantity∣∣∣∣∣ Vg − VC

−Vs +
(
Φgraphene − ΦPtIr

)
/e

∣∣∣∣∣ (7.3)

against the ring radius R. This is evidently shown in Fig. 7.5a, where we take the work
function difference to be Φgraphene − ΦPtIr = −0.8 eV. The data points do not fall onto a
single curve as nicely for other values of Φgraphene − ΦPtIr.

Since the capacitance per unit area C(r) must decrease with increasing r, let’s assume
the following functional form:

C(r) =
α

(r2 + β2)γ
, (7.4)

where α, β, and γ are unknown geometric factors. Then, if we plot the quantity∣∣∣∣∣ Vg − VC
−Vs +

(
Φgraphene − ΦPtIr

)
/e

∣∣∣∣∣
− 1
γ

(7.5)
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Figure 7.6: STM manipulation of BN defects. Voltage pulses are applied to the STM tip
(Vs = 5 V for 10 seconds) to toggle the charge states of the dot defects. (a) dI/dV map
of graphene/BN showing various dots and rings. Tunneling parameters: Vs = −0.25 V,
I = 0.4 nA. (b) dI/dV map of the same location after the tip was moved to the center of the
region in (a) and a voltage pulse was applied to the tip. (c) dI/dV map of the same location
after another tip pulse. Red arrows mark the disappearance of dots relative to the previous
image, blue arrows mark the appearance of dots, and each green arrow marks a defect that
has changed the sign of its charge.

against R2, the data points should fall onto a straight line for the correct value of γ. If the
tip was an infinite parallel plate, γ = 0. If the tip was a perfect sphere hovering over a
perfectly metallic surface, then γ = 1. Fig. 7.5b shows the data for γ = 0.63.

7.4 Defect Manipulation

7.4.1 Field Ionization of Defects

In addition to characterizing BN defects, we were also able to manipulate their charge states
with the STM tip. Unlike the ring phenomenon discussed in Sec. 7.3, the defect manipulation
presented in this section is nonvolatile, i.e. changes in the charge states persist when the tip
is removed. STM control over defect charge has been demonstrated in other systems, such as
for Si impurities in GaAs [108] and Au adatoms on NaCl films [95], but this is unprecedented
in bulk insulators.

Fig. 7.6a shows a dI/dV map of graphene/BN with many charged defects. To change
the charge states of defects in this map, we performed the following procedure:

1. Set Vs = 0.5 V, I = 0.4 nA, Vg = 0 V while the feedback loop is closed.

2. Open the STM feedback loop.

3. Withdraw the tip 1 nm.

4. Ramp Vs up to 5 V over a period of 30 seconds.
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5. Wait 10 seconds.

6. Ramp Vs down to 0.5 V over a period of 30 seconds.

7. Close the STM feedback loop.

It is not necessary to follow this procedure exactly. The important step is to apply a relatively
large bias on the tip to create a sufficiently large electric field in the tip-sample junction.
The magnitude of the required bias depends on the tip-sample distance. Since graphene
does not perfectly screen electric fields in the vertical direction [109, 110], defects in BN will
experience a field that is strong enough to ionize them.

Fig. 7.6b presents a dI/dV map of the same region as Fig. 7.6a after performing this
tip-pulse procedure, and Fig. 7.6c shows a dI/dV map after another tip voltage pulse. A
close examination of Fig. 7.6 reveals that the defect configurations are significantly altered by
application of these tip pulses. The defects are observed to reversibly switch between charged
and neutral states as well as between states having opposite charge. We use colored arrows
to highlight changes between each dI/dV map. A red arrow indicates the disappearance of a
charged defect (when compared to the preceding image), a blue arrow marks the appearance
of a charged defect, and a green arrow points out where a defect has changed the sign of its
charge. Defects that disappear after a tip pulse always reappear in the same location after
subsequent tip pulses. Furthermore, we note that dark dots (the negatively charged defects)
disappear and reappear at a higher rate than bright dots (the positively charged defects).
Ring defects, the brightest dots, and the darkest dots remain unchanged by tip pulses.

When a defect disappears after a tip pulse, it has changed from a charged state to a
neutral state. Likewise, a defect that appears after a tip pulse has changed from a neutral
state to a charged state. These tip-pulse-induced changes in the defects’ charge states are
caused by electric-field-induced emission of charge carriers from the BN defect states. By
tilting the local potential landscape, the tip electric field causes charge carriers to tunnel
through the ionization barrier between different defects, charging some while neutralizing
others. Unfortunately, we do not know the precise mechanism whereby carriers are pulled
from their defects, as there are multiple known processes for field-induced ionization of
defects in insulators: direct tunneling [111], phonon-assisted tunneling [112], and thermionic
emission (i.e. the Poole-Frenkel effect) [113, 114], just to name a few. Considering the low-
temperature condition of our experiment, we suspect that our defects are ionized by direct
tunneling, but we do not know for sure.

Field ionization of BN defects explains the disappearance and reappearance of dots at
the same locations, which cannot be interpreted as defect migration through the BN lattice.
The higher rate of switching for the dark dots compared to the bright dots suggests that it
is more energetically favorable for neutral acceptors to emit holes than for neutral donors
to emit electrons (and the same for the time-reversed processes). Hence, we hypothesize
that the acceptor states may be closer to the BN valence band than the donor states are
to the BN conduction band. Since the rings, the brightest dots, and darkest dots never
change under tip pulses, we can infer that they are in the top layers of BN and are in direct
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Figure 7.7: dI/dV map of a quadrant of a circular graphene p-n junction created by applying
a Vs = 5 V pulse for 10 seconds at the top-right corner of the image. The tip was retracted
1.3 nm away from the graphene surface after opening the STM feedback loop, and the gate
voltage applied during the pulse was Vg = −20 V. Tunneling parameters: Vs = −0.25 V,
I = 0.4 nA, Vg = −10 V.

electrical contact with the graphene. The charge states of these unchanging defects depend
only on graphene’s local chemical potential and show no metastability or hysteresis with the
electric field. The defects that switch charge states must be in lower BN layers, out of direct
electrical contact with graphene.

7.4.2 Fabrication of p-n Junctions

The defect manipulation discussed in Sec. 7.4.1 does not lead to a net charge transfer between
graphene and BN. However, if we use the Si backgate to impose a uniform electric field in
the BN, a net charge could accumulate at BN defects to screen the gate electric field. The
backgate electric field would also guide charge carriers towards graphene. Hence, we modify
the procedure outlined in Sec. 7.4.1 to include a nonzero gate voltage during the tip pulse:

1. Set Vs between −1 V and 1 V while the feedback loop is closed. We typically use
Vs = −0.5 V, I = 0.5 nA.

2. Set Vg 6= 0 V.

3. Open the STM feedback loop.
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4. Withdraw the tip by a distance between 0.5 nm and 2.5 nm. You can choose to retract
the tip by a distance that is less than 0.5 nm, but the probability of blasting a hole in
the graphene sheet increases as the tip-sample distance decreases.

5. Increase Vs to 5 V.

6. Wait. We usually wait 10 – 60 seconds.

7. Decrease Vs back to the original value.

8. Close the STM feedback loop.

As I will discuss below, this procedure creates a nanoscale circular graphene p-n junction.
More information about the tip-pulse procedure can be found in Refs. [79], [115], and [116].
The p-n junction can be erased by another tip pulse performed while holding Vg = 0 V.
Alternatively, exposing the graphene device to visible or ultraviolet light also erases the p-n
junction.

Fig. 7.7 is a dI/dV map that shows the result of applying this procedure with the tip
located at the top-right corner. The gate voltage applied during the tip pulse was Vg =
−20 V. The tip voltage pulse created a circular p-n junction in graphene with greater electron
density in the interior than in the exterior. In this map (obtained with Vg = −10 V during
data acquisition), the brighter region is n-doped graphene. It is surrounded by a dark circular
boundary that is approximately charge neutral. The region outside of the dark circle is p-
doped graphene.

Note that step 2 is an important part of this procedure. If Vg < 0 V during the tip voltage
pulse, a circular graphene p-n junction with an n-doped interior is created. If Vg > 0 V during
the tip pulse, we get a circular p-n junction with a p-doped interior. The distance in step 4
and the wait time in step 6 determine the magnitude of the doping. Longer wait times give
rise to larger changes in the charge carrier density.

Suppose that the charge carrier concentration n in graphene is a function of Vg given
by n(Vg) = CVg + n0, where C is proportional to the capacitance of the graphene device,
and n0 is a residual doping. After a sufficiently long wait time in step 6, the change in the
carrier density at the center of the p-n junction will be −CV ∗g , where V ∗g is the gate voltage
applied during the tip pulse. The carrier density at the center of the p-n junction will then
be n(Vg) = C(Vg − V ∗g ) + n0, but the density far away from the p-n junction will remain
n(Vg) = CVg + n0.

The creation of this tip-pulse-induced charge distribution can be explained by the field
ionization of BN defects together with charge carrier movement within the BN insulator. The
intense electric field of the tip pulse penetrates through the graphene into the BN below,
causing a strong electric potential gradient around BN defects that results in defect field
emission. If Vg < 0 V during a tip voltage pulse, the gate electric field causes electrons
that have been released from defects to drift into the graphene, leaving behind a positive
space charge layer in the BN. Likewise, if Vg > 0 V during a tip pulse, the gate electric field
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causes released holes to drift into the graphene, leaving behind a negative space charge layer
in the BN. The space charge layer in the BN locally gates the graphene above it, changing
the graphene charge carrier density and producing a p-n junction in the graphene. The net
result is that both n-type and p-type doping profiles can be written into graphene with a
spatial resolution determined by the electric potential gradient surrounding the STM tip.

7.5 Conclusion

In conclusion, we used STM/STS to image and manipulate point defects inside an insulating
BN substrate underneath monolayer graphene. We identified the charge states of individual
defects, and we extracted energy-level information for one type of negatively charged defect.
Using voltage pulses applied to our STM tip, we were able to ionize, neutralize, and even
switch the charge states of BN defects. By applying both a nonzero gate voltage and an STM
tip voltage pulse, we created circular p-n junctions in graphene. In the next chapter (Ch. 8),
I will discuss an experiment where we imaged the energy eigenstates of an ultra-relativistic
quantum harmonic oscillator in these graphene p-n junctions.

As a side note, the technique developed in Sec. 7.4.2 for realizing artificial doping patterns
is essentially a variant of charge-trap flash technology. In charge-trap flash devices, an
electric pulse from a control gate causes electron accumulation in a charge-trapping layer
(a dielectric, usually Si3N4), which in turn gates a metal-oxide-semiconductor field-effect
transistor (MOSFET). We simply replaced the MOSFET with graphene, used the STM tip
as the control gate, and deployed BN as the charge-trapping layer.
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Chapter 8

The Relativistic Quantum Harmonic
Oscillator

This chapter describes our work on the electronic response of massless Dirac fermions to
a harmonic oscillator potential. The results presented here are based on Ref. [116]: J. Lee
et al., “Imaging electrostatically confined Dirac fermions in graphene quantum dots”, Nature
Physics 12, 1032–1036 (2016).

Our work draws inspiration from Y. Zhao et al. [22] from Joseph A. Stroscio’s group.
They studied “whispering-gallery modes” (WGMs) caused by electron confinement in the
electrostatic potential produced by their STM tip. However, they could not image the
WGMs because their confinement potential moves with the tip. I had a pleasant chat with
Dr. Stroscio at the American Physical Society March Meeting in San Antonio about these
WGMs. At the time, Dr. Stroscio did not know that we could create circular graphene p-n
junctions, nor did we detect signatures of WGMs in our p-n junctions. Dr. Stroscio told me
that we were unlikely to see WGMs in our data because of broadening due to phonon-assisted
inelastic tunneling, which immediately gave me the idea to look at the elastic channel within
the phonon gap in graphene dI/dV spectroscopy. This is the reason that the data in this
chapter focuses on the bias range −0.1 V ≤ Vs ≤ 0.1 V. I thank Dr. Stroscio for that very
useful discussion, which ultimately enabled us to image the WGMs.

I also want to give a shout-out to C. Gutiérrez et al. [117] from Abhay N. Pasupa-
thy’s group, who investigated a closely related problem: Klein tunneling at sharp graphene
p-n junctions. The primary difference between their study and ours is that their poten-
tials are approximately step functions, while we have potentials that are roughly quadratic.
Markus Morgenstern [118] and Lin He (at Beijing Normal University) have similar near-
contemporaneous work as well.

Additionally, if you look at Figs. 2.4 and 2.5 of Yang Wang’s PhD dissertation [18], you
can see WGMs in the data. Yang and I, upon a suggestion from Mikhail E. Portnoi [119] back
in 2011, briefly entertained the idea that the features in the data were quasi-bound states
induced by the tip potential. We discarded that hypothesis because we were enamored with
the idea that they were “plasmarons” [120–122]. Too bad for us... Sad!
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8.1 Introduction

Quantum confinement provides a pathway to access and exploit the novel physical proper-
ties of many nanoscale materials. Since graphene holds great promise as a component in
future electronic devices, it is important to devise methods for confining charge carriers in
graphene. Graphene electrons have been localized in high magnetic fields [123], lithographi-
cally patterned structures [124–126], and chemically synthesized quantum dots [127–130]. An
alternate route to trapping graphene’s charge carriers is through electrostatic confinement,
which is notoriously difficult because electric potentials are transparent to massless Dirac
fermions at normal incidence [6–10, 131]. Although Klein tunneling allows Dirac fermions to
penetrate potential barriers, several experimental and theoretical studies have demonstrated
that circular graphene p-n junctions can still trap Dirac fermions [22, 132–136]. Spatial
characterization of such confined relativistic states, however, has remained elusive.

In Sec. 7.4.2, we discussed a new technique for patterning circular p-n junctions in
graphene/BN heterostructures. In an experiment described in this chapter, we spatially
mapped the local electronic structure of these circular graphene p-n junctions. We found
that these engineered p-n junctions form highly tunable cavities that strongly influence the
motion of graphene’s relativistic electrons. Within these p-n junctions, we observed energy
levels corresponding to quasi-bound states, and we were able to directly visualize the quan-
tum interference patterns of electrostatically confined electrons. Outside of the p-n junctions,
Dirac fermions scatter off the cavity boundary, forming Friedel oscillations. We explained
our findings by comparing our experimental data to a theoretical model for ultra-relativistic
particles in a harmonic oscillator potential.

8.2 Electronic Structure of a Relativistic Harmonic

Oscillator

8.2.1 Experimental Eigenstate Distribution

We fabricated graphene/BN devices using the transfer technique outlined in Ch. 4. Graphene
monolayers were mechanically exfoliated from graphite and then subsequently transferred
onto BN flakes (60 – 100 nm thickness) peeled onto SiO2/Si chips. The graphene flakes were
electrically grounded via Ti (10 nm)/Au (100 nm) electrodes deposited through electron-
beam evaporation using a stencil mask. Samples were then annealed in Ar/H2 forming gas
at 350◦C and in UHV at 200◦C – 400◦C.

STM measurements were carried out at temperature T = 4.8 K with PtIr tips calibrated
against the surface state of Au(111) [32]. STS measurements were performed by lock-in
detection of the a.c. tunnel current induced by a modulated voltage (1 – 8 mV at 613.7 Hz)
added to Vs. We acquired dI/dV (Vg, Vs) and dI/dV (r, Vs) measurements by sweeping Vs
(starting from a fixed set of initial tunneling parameters) and then incrementing the gate
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Figure 8.1: Creation and characterization of p-n junction. (a) Schematic diagram of the
fabrication of a local embedded gate in a graphene/BN heterostructure. A voltage pulse
Vs = 5 V is applied to the STM tip while Vg is held at a nonzero value. This creates a space
charge in the BN layer, which gives rise to a circular p-n junction in graphene. (b) The STM
probes the electronic eigenstates of the p-n junction. (c) Carrier density n(r) as a function
of the distance r from the center of a p-n junction fabricated using the technique sketched
in (a-b). (d) The Dirac point energy ED as a function of r. The red curve is a fit to the
quadratic polynomial ED(r) = −κr2 + constant, with the curvature κ ≈ 6× 10−3 meV/nm2.

voltage Vg or the distance to the p-n junction center r. All figures containing d2I/dV 2 plots
were obtained by taking the simple difference between consecutive dI/dV values.

The procedure for fabricating circular graphene p-n junctions was explained in detail in
Sec. 7.4.2. To summarize, we start with a graphene/BN heterostructure on an SiO2/Si chip.
The heavily doped Si layer is used as a global backgate while the BN layer acts as a tunable
local embedded gate after being treated by a tip voltage pulse. To create a local embedded
gate in the BN layer, the STM tip is first retracted by a distance ∆z (approximately 2 nm)
away from tunneling regime. A Vs = 5 V voltage pulse of duration ∆t (usually about a
minute) is then applied to the tip while simultaneously holding the backgate voltage at
Vg = V ∗g (for example, 40 V). The voltage pulse ionizes defects in the BN region directly
underneath the tip, and the released charge is guided by the backgate electric field to the
graphene. The charge migration leaves behind a space charge layer in the BN that screens
the backgate electric field and behaves like a local embedded gate underneath graphene.



CHAPTER 8. THE RELATIVISTIC HARMONIC OSCILLATOR 81

Figure 8.2: Gate-dependent electronic structure of circular graphene p-n junction. (a)
Schematic diagram of a circular graphene p-n junction. The white rectangle indicates the
measurement region. (b) STM topographic image of the region sketched in (a). (c) dI/dV
map of the same region as shown in (b). Dashed lines are placed near the p-n junction
boundary in (b-c). Tunneling parameters: Vs = −0.25 V, I = 0.5 nA, Vg = 30 V, 6 mV rms

a.c. modulation added to Vs. (d-g) d2I/dV 2(Vg, Vs) measured at different distances away
from the p-n junction center, as indicated in (c). Initial tunneling parameters: Vs = −0.1 V,
I = 1.5 nA, 1 mV rms a.c. modulation. The observed resonances vary in energy E roughly
according to the expected graphene dispersion E ∝

√
|Vg − VCNP| + constant. The energy

spacing between resonances is seen to be larger at the center (d) than further out (e-f), and
the resonances disappear outside the p-n junction boundary (g).

This process is depicted in the cartoon in Figs. 8.1a-b.
We applied the above procedure with V ∗g = 40 V, ∆z = 2 nm, and ∆t = 1 minute.

Figs. 8.1c-d show plots of the resulting charge carrier density n(r) and Dirac point energy
ED(r) as a function of the distance r from the p-n junction center. The values of n(r) and
ED(r) were extracted from dI/dV curves. The Dirac point energy ED(r) (which represents
the electric potential U(r) in the graphene) appears roughly parabolic, so we fit ED(r) to
a quadratic polynomial ED(r) = −κr2 + E0 (red curve in Fig. 8.1d). We determined the



CHAPTER 8. THE RELATIVISTIC HARMONIC OSCILLATOR 82

curvature κ = 6.33× 10−3 meV/nm2 and constant offset E0 = 1.05× 10−1 eV.
To study the local electronic structure of the p-n junction, we examined a rectangular

sector of it as schematically represented in Fig. 8.2a. Fig. 8.2b shows an STM topographic
image of the rectangular sector. The graphene surface is clean and has a 2.8 nm moiré
pattern [33, 34]. A dI/dV map of the same region shown in Fig. 8.2c reflects changes
in the LDOS caused by the spatially varying charge density distribution. To gain more
direct information about the LDOS, we obtained d2I/dV 2(Vg, Vs) at four spatial locations at
different distances away from the p-n junction center. This data is presented in Figs. 8.2d-g,
and the four locations are marked in Fig. 8.2c. We plotted the derivative of dI/dV (Vg, Vs)
with respect to Vs in order to enhance the most important features: quasi-periodic resonances
that disperse to lower energies with increasing Vg (the original dI/dV data can be found in
the Supplementary Information of Ref. [116]). The energies E of the resonances roughly
evolve as E ∝

√
|Vg − VCNP| + constant (where VCNP is the local charge neutrality point),

which is in accordance to the expected behavior of a 2D material with a linear band structure.
The energy spacing between resonances ∆E decreases as the STM probes locations further
from the p-n junction center; ∆E is 29± 2 mV at the center, 16± 2 mV at 50 nm from the
center, and 13±2 mV at 100 nm from the center for measurements performed at Vg = 32 V.
The resonances disappear outside of the p-n junction in Fig. 8.2g.

Fig. 8.3a depicts a spatially resolved mapping of the energy-dependent eigenstate distri-
bution for a fixed gate voltage Vg = 32 V. The data is plotted as d2I/dV 2(r, Vs) (see the
Supplementary Information of Ref. [116] for the undifferentiated dI/dV data). The energy
level structure and complex interior nodal patterns are clear and obvious. There are hori-
zontal features enclosed in a parabolic dome, reminiscent of the solutions of the Schrödinger
equation for the simple harmonic oscillator.

8.2.2 Theoretical Eigenstate Distribution

We can explain these observations by considering the response of massless Dirac fermions to a
circular electrostatic potential. Klein tunneling causes normally incident Dirac quasiparticles
to penetrate potential barriers with unity transmission. However, quasiparticles with large
angles of incidence are reflected by potential barriers [6, 9, 10]. Therefore, inside a potential
well with circular symmetry, charge carriers with large angular momenta (which are obliquely
incident to the potential barrier) are reflected inwards, resulting in electron confinement and
the formation of quasi-bound resonances [132–136]. As angular momentum is increased,
quasiparticles are repelled from the center of the potential by the centrifugal force, leading
to an increase in the number of resonances that should be observable in dI/dV spectroscopy
measured away from the center [137]. This is consistent with Figs. 8.2d-f, in which the energy
spacing ∆E at the center is approximately double the energy spacing at 100 nm away from
the center.

We can test this qualitative explanation by comparing our data to theoretical calculations
performed by Joaquin F. Rodriguez-Nieva and Leonid S. Levitov. Our theory collaborators
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Figure 8.3: Spatially resolving harmonic oscillator energy levels. (a) d2I/dV 2(r, Vs) for a
circular graphene p-n junction. The measurement was performed at a fixed gate voltage.
Initial tunneling parameters: Vs = −0.1 V, I = 1.5 nA, Vg = 32 V, 1 mV rms a.c. modula-
tion added to Vs. (b), Theoretical ∂LDOS/∂E as a function of energy E and radial distance
r for a potential U(r) = −κr2 + constant (shown as dashed line). (c) Experimental dI/dV
radial line cuts at different Vs values for Vg = 32 V. (d) Theoretical |Ψn,m|2 as a function of
radial distance for quasi-bound states labeled by principal and angular momentum quantum
numbers (n,m). Each theoretical curve has been vertically displaced by a quantity propor-
tional to Vs for the correspondingly colored experimental curve in (c) to ensure that the
black dashed line denotes the classical turning points of the potential U(r).
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solved the 2D massless Dirac equation with a quadratic potential:

− ih̄vFσ · ∇Ψ− κr2Ψ = EΨ. (8.1)

Note that, because of an argument presented in Sec. 1.2.3, solving the Dirac equation for
U(r) = −κr2 is completely equivalent to solving the equation for U(r) = κr2. We used
κ = 6×10−3 meV/nm2 for the curvature of the potential because this was the value extracted
from the polynomial fit in Fig. 8.1d. The characteristic energy scale of this equation is
E∗ = (h̄2v2

Fκ)1/3 ≈ 15 meV, and the characteristic length scale is r∗ = h̄vF/E
∗ ≈ 50 nm.

By assuming the ansatz in Eq. 1.32, we can obtain a radial Dirac equation that is only
a function of the coordinate r:

−κr2 − En,m
h̄vF

∂

∂r
+
m

r

− ∂

∂r
+
m

r

−κr2 − En,m
h̄vF

un,m(r) = 0, (8.2)

where n is a principal quantum number, and m is an angular momentum quantum number.
The LDOS is given by

LDOS(E, r) =
∑
n,m

〈
∣∣un,m(r)

∣∣2〉λδ(E − En,m), (8.3)

〈
∣∣un,m(r)

∣∣2〉λ =

∫ ∞
0

dr′
∣∣un,m(r′)

∣∣2 e−(r−r′)2/2λ. (8.4)

Here, n represents quasi-bound and unbounded states. The LDOS was spatially broadened
by λ = 0.01r∗.

The radial Dirac equation was solved through the finite difference method discretized on
1200 lattice sites in the interval 0 < r < L. A large repulsive potential at r = L = 12r∗

was imposed as the boundary condition, and spurious states localized at r = 0 and r = L
were excluded. The sum in Eq. 8.3 was carried out for angular momenta in the range
−401/2 ≤ m ≤ 401/2, and the delta function was approximated as a Lorentzian function of
width 0.3E∗ (this is sufficiently small such that the intrinsic quasiparticle lifetimes due to
Klein tunneling are preserved).

The result of this calculation is shown in Fig. 8.3b, which plots ∂LDOS/∂E (the energy
derivative of the LDOS) with respect to the energy E and distance r. The theoretical
eigenstate distribution in Fig. 8.3b closely resembles the experimental eigenstate distribution
in Fig. 8.3a. Both theory and experiment have a characteristic parabolic envelope due to
the confinement potential as well as a complex set of interior nodal patterns.

We can gain more insight about the quasi-bound states inside the p-n junction by compar-
ing constant-energy experimental dI/dV line cuts (shown in Fig. 8.3c) to the theoretically
simulated harmonic oscillator wavefunctions (|Ψn,m|2 shown in Fig. 8.3d). The principal
quantum numbers n are nonnegative integers, and the angular momentum quantum num-
bers m are half-integers because they represent a sum of the pseudospin and the orbital
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angular momentum (which are not separately conserved by the Dirac Hamiltonian – see
Sec. 3.3.3).

We note two important properties of the energy eigenstates. First, although each wave-
function probability distribution |Ψn,m|2 features n+1 maxima, most of its probability weight
is concentrated in the first maximum. The position of this maximum is pushed further away
from the center of the circular potential for larger magnitudes of the angular momentum
|m|. Second, for massless Dirac fermions confined in a parabolic potential, we observe nearly
perfect energy alignment of the energies En,m and En−1,m+2 for small n and m, indicating an
approximate accidental degeneracy. This degeneracy explains why different resonances orig-
inating from different Ψn,m states form the horizontal rows seen in Figs. 8.3a-b. These two
observations allow us to attribute each experimental dI/dV peak in Fig. 8.3c to a different
Ψn,m eigenstate because each state contributes most of its spectral weight to a single energy
and radial location. This also explains why the energy spacing for the resonances close to
the center is nearly twice as large as the energy spacing away from the center in Figs. 8.2d-g:
only the lowest angular momentum states (m = ±1/2) have appreciable spectral weight at
the center, while all other Ψn,m states (for m 6= ±1/2) have their probability densities away
from the center.

8.3 External Friedel Oscillations

If you compare the experimental data in Fig. 8.3a with the theory in Fig. 8.3b, you can
see that there are oscillations outside of the parabolic dome in Fig. 8.3b that are absent
in Fig. 8.3a. These are Friedel oscillations caused by the outward scattering of inbound
Dirac fermions as well as by coherent electron-hole transmutation at the p-n junction (i.e.
Klein tunneling). A circular p-n junction with a p-doped interior attracts hole-like carriers
and repels electron-like carriers, while a p-n junction that is n-doped in the interior attracts
electron-like carriers and repels hole-like carriers. We should therefore observe an external
standing wave pattern due to the quantum interference of the repelled quasiparticles. Why
do we not see these external Friedel oscillations?

The p-n junction studied in Figs. 8.1, 8.2, and 8.3 was p-doped in the interior and n-
doped in the exterior. Fig. 8.4 presents d2I/dV 2(r, Vs) for various Vg for a circular graphene
p-n junction of the opposite polarity, i.e. a p-n junction that was n-doped in the interior
and p-doped in the exterior. The p-n junction was created by a Vs = 5 V tip voltage pulse
performed with V ∗g = −40 V, ∆z = 1.8 nm, and ∆t = 1 minute. As is immediately obvious,

the d2I/dV 2(r, Vs) in Fig. 8.4 are flipped upside down compared to that of Fig. 8.3a but are
otherwise similar. Notably, however, is the appearance of the external Friedel oscillations.
The parabola also has a different shape for different Vg measurements, presumably due to
carrier-density-dependent electronic screening.

Figs. 8.5a-b show two dI/dV maps (acquired at two different energies) of a rectangular
section of a circular graphene p-n junction. This p-n junction is different from that in
Fig. 8.4 but is prepared in a similar manner (Vs = 5 V tip voltage pulse with V ∗g = −40 V,
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Figure 8.4: Electronic structure of graphene p-n junction with n-doped interior. (a)
d2I/dV 2(r, Vs) for a circular graphene p-n junction that is n-doped at the center and p-
doped outside. Initial tunneling parameters: Vs = −0.1 V, I = 1.5 nA, Vg = −21 V, 1 mV
rms a.c. modulation added to Vs. (b-d) Same as (a) for Vg = −23 V, Vg = −25 V, and
Vg = −27 V, respectively.

∆z = 1.8 nm, and ∆t = 30 seconds at middle of the left edge of each map). The p-n junction
is n-doped at the center and is p-doped outside. Inside the p-n junction, there are circular
quantum interference patterns caused by the confinement of Dirac electrons. Outside of the
p-n junction boundary, outwardly scattered hole-like quasiparticles form Friedel oscillations.

We do not understand why external Friedel oscillations are observed for p-n junctions
that are n-doped in the interior and p-doped in the exterior but are not observed for p-n
junctions that are p-doped in the interior and n-doped in the exterior. According to an
argument presented in Sec. 1.2.3, for every solution Ψ(r) (with energy eigenvalue E) of
the Dirac equation with potential U(r), there exists a solution Ψ′(r) (with energy −E) of
the Dirac equation with potential −U(r) such that |Ψ′(r)|2 = |Ψ(r)|2. In principle, the
electronic behavior of p-n junctions that are opposite in polarity should be the same. Then,
what causes the lack of symmetry and the absence of external Friedel oscillations for p-n
junctions with p-doped interiors? One possible factor to consider is that the STM tip is a
movable top gate (with Vtip < 0 V under the conditions of our measurements – see Sec. 7.3)
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Figure 8.5: dI/dV map of quantum interference in graphene p-n junction. (a) dI/dV map
measured for a p-n junction with an n-doped interior. Tunneling parameters: Vs = 25 mV,
I = 0.5 nA, Vg = −23 V, 1 mV rms a.c. modulation added to Vs. (b) dI/dV map at the
same location as (a) but for a different energy eigenstate showing a different spatial pattern.
Tunneling parameters: Vs = 22 mV, I = 0.4 nA, Vg = −22 V, 1 mV rms a.c. modulation.
The dark bands (low values of dI/dV ) marked by additional dashed lines represent the
classical turning points of the potential.

that produces a potential that must be combined with the stationary substrate-induced
confinement potential. For a p-n junction with a p-doped interior, the tip potential and the
stationary confinement potential are in the same direction (i.e. the tip reduces the carrier
density, also p-doping graphene). For a p-n junction with an n-doped interior, the shapes
of the tip potential and the stationary confinement potential are in opposite directions (i.e.
the tip potential and the stationary confinement potential have curvatures with opposite
signs). To better understand the influence of the tip potential on our dI/dV measurements,
we would need simulations of graphene with a quadratic potential that include a movable
tip.
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Figure 8.6: Gate-dependent behavior of graphene p-n junction with n-doped interior. (a)
dI/dV (Vg, Vs) at the center (r = 0 nm) of a circular graphene p-n junction that is n-doped
in the interior and p-doped outside. The p-n junction was created by a Vs = 5 V tip voltage
pulse applied while holding Vg = V ∗g = −10 V. Initial tunneling parameters: Vs = −0.1 V,
I = 1.5 nA, 1 mV rms a.c modulation added to Vs. (b-d) Same as (a) except the tip pulse was
applied for V ∗g = −20 V, V ∗g = −30 V, and V ∗g = −40 V, respectively. (e-h) d2I/dV 2(Vg, Vs)
obtained by differentiating the plots in (a-d) with respect to Vs.

8.4 The Depth Dependence

The potential wells in our study are not truly quadratic. They have finite depths whose
magnitudes can be controlled via the value of the gate voltage V ∗g used during a tip voltage
pulse; increasing the magnitude of V ∗g increases the difference between the carrier density
at the center and the carrier density far away from the p-n junction. Figs. 8.6a-d show
dI/dV (Vg, Vs) at the centers of circular graphene p-n junctions with sequentially larger well

depths, and Figs. 8.6e-h show the corresponding d2I/dV 2(Vg, Vs). All of the p-n junctions
are n-doped at their centers. The p-n junction for Figs. 8.6a and 8.6e was created via a
Vs = 5 V tip pulse with V ∗g = −10 V, ∆z = 1.7 nm, and ∆t = 10 seconds. The p-n
junction for Figs. 8.6b and 8.6f was created via a Vs = 5 V tip pulse with V ∗g = −20 V,
∆z = 1.68 nm, and ∆t = 60 seconds. The p-n junction for Figs. 8.6c and 8.6g was created
via a Vs = 5 V tip pulse with V ∗g = −30 V, ∆z = 1.68 nm, and ∆t = 60 seconds. The p-n
junction for Figs. 8.6d and 8.6h was created via a Vs = 5 V tip pulse with V ∗g = −20 V,
∆z = 1.68 nm, and ∆t = 60 seconds. By examining differences between these plots, one can
obtain information about how the potential well depth influences the electronic structure of
a p-n junction.
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Figure 8.7: Spectroscopic features at higher sample biases. (a) d2I/dV 2(r, Vs) for a circular
graphene p-n junction. The measurement was performed at a fixed gate voltage. The p-n
junction was created via a Vs = 5 V tip voltage pulse with V ∗g = 40 V, ∆z = 1.9 nm, and
∆t = 10 seconds. Initial tunneling parameters: Vs = −1.4 V, I = 1 nA, Vg = 20 V, 8 mV
rms a.c. modulation added to Vs. (b) Same as (a) for Vg = 25 V.

8.5 The Resonances at Higher Biases

According to the Tersoff-Hamann theory of tunneling (see Sec. 2.1.2), the tunneling current
I is given by

I ∝
∫ EF+eVs

EF

LDOS(r, E)dE. (8.5)

Naively then, dI/dV ∝ LDOS(r, EF +eVs). This is not completely correct for a gate-tunable
material because the chemical potential EF can also depend on Vs through the effect of the
tip as a top gate. Differentiating Eq. 8.5 with respect to Vs yields

dI

dV
∝
(

1 +
1

e

∂EF
∂Vs

)
LDOS(r, EF + eVs)−

(
1

e

∂EF
∂Vs

)
LDOS(r, EF ). (8.6)

The above equation implies that each localized state (with energy E) contributes to a dI/dV
spectrum twice: once when (i) E = EF+eVs and another time when (ii) E = EF . Scenario (i)
corresponds to the quasi-bound state resonances seen throughout the −0.1 V ≤ Vs ≤ 0.1 V
measurements in Secs. 8.2, 8.3, and 8.4. Fig. 8.7 shows features due to scenario (ii) in
d2I/dV 2(r, Vs) plots obtained for the sample bias range −1.4 V ≤ Vs ≤ 1.4 V. The features
appear at the top of Figs. 8.7a-b and are extremely faint. If you are having trouble seeing the
features, please hold this dissertation at least a meter from your eyes. Since the scenario (ii)
features are caused by electrostatic gating from the tip, the signal intensity of these features
strongly depends on the geometry and physical condition of the tip. On very rare occasions,
the scenario (ii) features will be prominently visible in d2I/dV 2(Vg, Vs) at the same Vs values
as the scenario (i) features, leading to apparent Coulomb diamonds.
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8.6 Conclusion

In summary, we directly imaged the energy eigenstates of an ultra-relativistic quantum har-
monic oscillator by fabricating circular graphene p-n junctions and performing STM/STS
measurements of their local electronic structure. These circular p-n junctions electrostati-
cally confined graphene’s massless Dirac fermions, giving rise to quasi-bound states that we
identified with a set of principal and angular momentum quantum numbers. We also ob-
served Friedel oscillations caused by the outward scattering of inbound Dirac quasiparticles.
The p-n junctions that we created were effectively highly tunable quantum dots for one type
of graphene charge carrier and quantum antidots for the other type of carrier.

This concludes my dissertation on using STM to manipulate charged impurities in gate-
tunable graphene/BN heterostructures for the purpose of creating electrostatic potentials
that control the motion of charge carriers in graphene. We applied the methods developed
and described herein to image the quantum wavefunctions of massless Dirac fermions in
Coulomb and harmonic oscillator potentials.
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interference in graphene heterojunctions”, Physical Review Letters 101, 156804 (2008).

10V. V. Cheianov and V. I. Fal’ko, “Selective transmission of Dirac electrons and ballistic
magnetoresistance of n-p junctions in graphene”, Physical Review B 74, 041403 (2006).

11L. M. Zhang and M. M. Fogler, “Nonlinear screening and ballistic transport in a graphene
p-n junction”, Physical Review Letters 100, 116804 (2008).

12M. I. Katsnelson, “Zitterbewegung, chirality, and minimal conductivity in graphene”, The
European Physical Journal B - Condensed Matter and Complex Systems 51, 157–160
(2006).

13V. M. Pereira, J. Nilsson, and A. H. Castro Neto, “Coulomb impurity problem in graphene”,
Physical Review Letters 99, 166802 (2007).

http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1038/nphys1198
http://dx.doi.org/10.1103/PhysRevLett.102.026807
http://dx.doi.org/10.1103/PhysRevLett.101.156804
http://dx.doi.org/10.1103/PhysRevB.74.041403
http://dx.doi.org/10.1103/PhysRevLett.100.116804
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://dx.doi.org/10.1140/epjb/e2006-00203-1
http://dx.doi.org/10.1103/PhysRevLett.99.166802


BIBLIOGRAPHY 92

14A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, “Atomic collapse and quasi-Rydberg
states in graphene”, Physical Review Letters 99, 246802 (2007).

15A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, “Vacuum polarization and screening
of supercritical impurities in graphene”, Physical Review Letters 99, 236801 (2007).

16M. M. Fogler, D. S. Novikov, and B. I. Shklovskii, “Screening of a hypercritical charge in
graphene”, Physical Review B 76, 233402 (2007).

17A. Shytov, M. Rudner, N. Gu, M. Katsnelson, and L. Levitov, “Atomic collapse, Lorentz
boosts, Klein scattering, and other quantum-relativistic phenomena in graphene”, Solid
State Communications 149, 1087–1093 (2009).

18Y. Wang, “Scanning tunneling microscopy study of graphene electronic structures”, PhD
thesis (University of California, Berkeley, 2014).

19J. J. Sakurai, Modern quantum mechanics (Addison Wesley, Sept. 1993).
20J Reinhardt and W Greiner, “Quantum electrodynamics of strong fields”, Reports on

Progress in Physics 40, 219 (1977).
21J. Silver, “Heavy-ion physics: giant nucleus at Darmstadt?”, Nature 315, 276–276 (1985).
22Y. Zhao, J. Wyrick, F. D. Natterer, J. F. Rodriguez-Nieva, C. Lewandowski, K. Watanabe,

T. Taniguchi, L. S. Levitov, N. B. Zhitenev, and J. A. Stroscio, “Creating and probing
electron whispering-gallery modes in graphene”, Science 348, 672–675 (2015).

23J. Bardeen, “Tunnelling from a many-particle point of view”, Physical Review Letters 6,
57–59 (1961).

24J. Tersoff and D. R. Hamann, “Theory and application for the scanning tunneling micro-
scope”, Physical Review Letters 50, 1998–2001 (1983).

25J. Tersoff and D. R. Hamann, “Theory of the scanning tunneling microscope”, Physical
Review B 31, 805–813 (1985).

26R. T. Yamachika, “Probing atomic-scale properties of organic and organometallic molecules
by scanning tunneling spectroscopy”, PhD thesis (University of California, Berkeley, 2009).

27C. J. Chen, Introduction to scanning tunneling microscopy (Oxford University Press, USA,
2007).

28V. W. Brar, “Scanning tunneling spectroscopy of graphene and magnetic nanostructures”,
PhD thesis (University of California, Berkeley, 2010).

29Y.-C. Chen, “Exploring graphene nanoribbons using scanning probe microscopy and spec-
troscopy”, PhD thesis (University of California, Berkeley, 2014).

30J. Li, W.-D. Schneider, and R. Berndt, “Local density of states from spectroscopic scanning-
tunneling-microscope images: Ag(111)”, Physical Review B 56, 7656–7659 (1997).

31C. Wittneven, R. Dombrowski, M. Morgenstern, and R. Wiesendanger, “Scattering states
of ionized dopants probed by low temperature scanning tunneling spectroscopy”, Physical
Review Letters 81, 5616–5619 (1998).

http://dx.doi.org/10.1103/PhysRevLett.99.246802
http://dx.doi.org/10.1103/PhysRevLett.99.236801
http://dx.doi.org/10.1103/PhysRevB.76.233402
http://dx.doi.org/10.1016/j.ssc.2009.02.043
http://dx.doi.org/10.1016/j.ssc.2009.02.043
http://stacks.iop.org/0034-4885/40/i=3/a=001
http://stacks.iop.org/0034-4885/40/i=3/a=001
http://dx.doi.org/10.1038/315276a0
http://dx.doi.org/10.1126/science.aaa7469
http://dx.doi.org/10.1103/PhysRevLett.6.57
http://dx.doi.org/10.1103/PhysRevLett.6.57
http://dx.doi.org/10.1103/PhysRevLett.50.1998
http://dx.doi.org/10.1103/PhysRevB.31.805
http://dx.doi.org/10.1103/PhysRevB.31.805
http://dx.doi.org/10.1103/PhysRevB.56.7656
http://dx.doi.org/10.1103/PhysRevLett.81.5616
http://dx.doi.org/10.1103/PhysRevLett.81.5616


BIBLIOGRAPHY 93

32W. Chen, V. Madhavan, T. Jamneala, and M. F. Crommie, “Scanning tunneling mi-
croscopy observation of an electronic superlattice at the surface of clean gold”, Physical
Review Letters 80, 1469–1472 (1998).

33R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and
M. F. Crommie, “Local electronic properties of graphene on a BN substrate via scanning
tunneling microscopy”, Nano Letters 11, 2291–2295 (2011).

34J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe,
T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and
spectroscopy of ultra-flat graphene on hexagonal boron nitride”, Nature Materials 10,
282–285 (2011).

35Y. Zhang, V. W. Brar, F. Wang, C. Girit, Y. Yayon, M. Panlasigui, A. Zettl, and M.
F. Crommie, “Giant phonon-induced conductance in scanning tunnelling spectroscopy of
gate-tunable graphene”, Nature Physics 4, 627–630 (2008).

36V. W. Brar, S. Wickenburg, M. Panlasigui, C.-H. Park, T. O. Wehling, Y. Zhang, R.
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