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Experimental Beam Combining Stabilization
using Machine Learning, Trained While Phases
Drift
QIANG DU1* , DAN WANG1 , TONG ZHOU1 , ANTONIO GILARDI1 ,
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WILCOX1

1Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
*QDu@lbl.gov

Abstract: An 8-beam, diffractive coherent beam combiner is phase controlled by a learning
algorithm trained while optical phases drift, using a differential mapping technique. Combined
output power is stable to 0.4% with 95% of theoretical maximum efficiency, limited by the
diffractive element.

© 2022 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Coherent beam combining (CBC) is a powerful technique for laser power scaling, and is key to a
broad range of applications [1]. Large numbers of beams can be coherently combined with high
efficiency in different ways, including tiled-aperture [2], and filled-aperture combining [3–5].
In all cases, it is imperative that the coherence of the whole beam array be maintained against
environmental perturbations using an active stabilization controller which can sense phase
errors. Despite difficulties of the large number of degrees of freedom, incomplete diagnostics
and non-linearity, a deterministic error detector is desired for optimal feedback bandwidth and
stability. Such an error detector must maintain knowledge of the combining process, in order to
map between observations and actions in many channels. From a control system engineering
point of view, the active stabilization of the coherence state against environmental perturbation
can be seen as a many-in-many-out (MIMO) feedback system. The input array to the controller is
intensity data with a number of elements <, and the output array is a number of phase actuators
=. The job of a pattern recognizer is to map from the observation space (intensity array, � ∈ R<)
to the action space (beam phases Φ ∈ R=).
We have previously demonstrated that deterministic stabilization control can be achieved by

pattern recognition, using a basic physics model and knowledge of the diffractive combiner
element’s complex transfer function in a spatial combiner of 8 beams in a 3 × 3 array [6], and 81
beams in a 9 × 9 array [7]. If all relevant parameters were known and constant, this model would
be sufficient for control. However, a static model may not capture all the details in an operating
system, is subject to uncontrolled parameter drift, and is difficult to verify.
Machine learning can control complex systems with many inputs and outputs connected

by interlinked, nonlinear processes if those connections are consistent and reproducible. For
example, it was shown that a simple, fully connected neural network (NN) can be trained to
combine 81 beams [8] using interference pattern recognition. Deep reinforcement learning
controllers have also shown promising capabilities [9, 10], where 128 pulses were temporally
stacked in simulation [11], and 100 beams were spatially combined in experiment using two
spatial-light-modulators (SLM) [12].
However, there are still critical problems to be solved. Training the machine to recognize

patterns and corresponding input phase states implies the patterns are stable enough to be
measured and correlated with controlled phases. This may not be the case in a realistic fiber
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laser system where thermal drifts cause phases to continuously vary. It is possible to stabilize the
phases using a non-deterministic control algorithm such as Stochastic Parallel Gradient Descent
(SPGD) while the machine learns. Alternatively, one can make the training process robust
against drift. We do this by training using the difference between two observations as the input
phases are changed in a controlled way, basically finding a difference rather than an absolute
value. This two-state dither scheme allows the phases to drift during training, because the two
measurements are acquired in a short time interval compared with the drift rate. The method is
named Deterministic Differential Remapping Method (DDRM), and was proposed in previous
simulation work [13, 14].

Additionally, some uncontrolled system parameters will change with time, such as beam power
and alignment. Slight drifts in these factors may degrade combination efficiency, so a static
model is inadequate to solve the stabilization problem. Even if the machine learns to control
the combiner for one state of these uncontrolled parameters, that learning will become less
valid as they drift. Thus, the system must learn initially and keep learning during operation,
while not perturbing the output power. The learning process is not dependent on knowing the
physical model, so it can encompass unknown effects unaccounted for by a simplified model.
While the feedback system may not be able to control all these effects, it can adjust its operation
and, to a large extent, compensate for them. We therefore want to establish a learning method
that can learn on unstable systems, to enable both initial and continual traning of the machine.
Establishing that the differential phase error mapping technique works in a real system is a key
step towards this goal.
In summary, the deterministic multidimensional stabilization of coherent beam combining

should address the following challenges:

1. Incomplete measurement: The optical phase difference under control is not directly
observable (without an additional interferometer, which adds undesirable complexity) and
must be derived from intensity data.

2. Non-uniqueness: There may be a many-to-one mapping from phase to intensity pattern
depending on the combiner transmission function.

3. Nonlinearity: The transfer function from phase difference to intensity difference is
nonlinear, with additional amplifier nonlinearity and sensor saturation.

4. Scalability: As the number of beams increases, the feedback rate should remain the same.
This is possible if the amount of error data increases proportionally with the number of
beams.

5. Drifting phase state: The phase state of the system is constantly drifting due to unknown
perturbations from the laser and the environment. This is particularly problematic for low
sampling rate systems, such as ultrafast high power lasers with kHz repetition rate or less.

6. Drifting uncontrolled parameters: Parameters that are not under control tend to drift,
which will change the mapping. The state of a multiple-beam combiner can be perturbed by
factors including beam power imbalance, polarization change, beam spatial and temporal
shape mismatch, etc. Currently, we only actively correct the group delay of each beam for
phase control, since other parameters drift more slowly.

In our previous studies, we have addressed and solved problems 1–4 [7,8], and proved that
a model-based approach is capable of overcoming those challenges in experiment [6]. In this
paper, we show that our DDRM machine learning controller can also solve 5 in experiment, and
is promising for solving 6, without knowing a mathematical model of the system.



2. Method: Pattern Recognition by Neural Network

2.1. Training on drifting systems: Deterministic Differential Remapping Method (DDRM)

We use a diffractive optical element (DOE), an =-way splitter operated in reverse, to combine
beams. Each input beam will itself be split into = beams. The beams next to it, displaced by
one one inter-beam angle increment, will also each produce = beams. Since these groups of
step-offset beams are superimposed, they will produce an interference pattern at the output which
is wider than the diffraction pattern for one beam. For example, beams in an # × # array creates
a (2# − 1) × (2# − 1) beam interference pattern. Our general approach is to train a neural
network to correlate interference pattern differences with phase differences, so that we can train
it on a drifting system and retrain during operation, tracking changes. The NN becomes a device
that learns which differences in interference patterns are correlated with which vectors in phase
space. After the training, given an arbitrary pattern within the training range, it can find the error
vector for feedback.
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Fig. 1. Training process by pairing two pattern measurements � (C), � (C + n) with a
known phase dither q3 (C), which is much faster than natural phase noise q= (C).

Fig. 1 shows the training process. Since the absolute beam phase state ∠1(C) is unknown due
to drift q= (C), we can inject a known phase dither q3 (C) and measure the interference patterns
before and after dithering, as � (C) and � (C + n), to build up a mapping between the action space
and the observation space using the correlated data sample of {q3 (C), [� (C), � (C + n)]}.
The dither vector q3 (C) is a random sample from an =-dimensional space, and drawn from

uniformly distributed orthogonal matrices generated by the special orthogonal group ($ (=),
which is widely used in many numerical applications (including Monte Carlo methods for
best sampling efficiency in high-dimensional data spaces). The generated vectors q3 (C) =
{q3 (C, 8)}, 8 ∈ [1, · · · , =] will be statistically independent variables having zero mean and equal
variances: 〈q3 (C, 8)〉 = 0, 〈q3 (C, 8)q3 (C, :)〉 = f23X8: , where X8: is the Kronecker delta. This is
the same set of dither vectors being used in SPGD algorithms for CBC [15].

The prediction accuracy of a trained NN depends on the unknown drift amount,
∫ C+n
C

q= (C) 3C,
the RMS dithering amount f3 (C), and the number of samples in the training dataset. Highly
accurate prediction can be achieved if the dither speed is much faster than the natural drift rate:
f3 (C) �

∫ C+n
C

q= (C) 3C. by reducing the sampling period n or increasing the RMS dithering



amount f3 (C), so that the drift contribution is negligible.
As a summary, in training process, if

∠1(C + n) − ∠1(C) = q3 (C) +
∫ C+n

C

q= (C) 3C ' q3 (C)

there are mappings between phase space and pattern space:

5 : {∠1(C), ∠1(C + n)} ↦→ {� (C), � (C + n)}
5 −1 : {� (C), � (C + n)} ↦→ q3 (C)

where 5 : Φ→ I is the combiner function, and 5 −1 : I→ Φ is the pattern recognizer function.
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Fig. 2. Feedback process by correcting a predicted phase error vector, from a measured
pattern � (C) and a target pattern �0.

Fig. 2 shows the feedback process, where the trained neural network predicts the distance
vector q̂(C) in action space from any given pair of observation space samples. In case of coherent
combining stabilization, it is always desired to have the best achievable combining efficiency,
corresponding to a target interference pattern �0. We find this �0 in the training dataset, and
use it as the destination (an input to the neural network) together with a measured pattern of
� (C), which corresponds to an arbitrary, starting phase state �. �0 is chosen as the best pattern
with highest combining efficiency, which is near the true optimal state if the random sampling
grid is small enough, given enough training samples. The number of samples can be drastically
reduced by learning from a SPGD controller as explained later. Although � is typically not seen
in the training dataset, the inference process of the neural network acts like a multidimensional
interpolation to predict the distance vector to the target state �. This is based on the NN’s
experience of � and �, and given that the sampling grid is smaller than the discontinuity of the
multidimensional phase state landscape. Because of the group delay (latency) of feedback Y,
the beam phase state may have drifted away from the measured state � by the time feedback is
applied, resulting in an inaccurate correction, causing larger instability and lower combining
efficiency. This is a common problem to all feedback control systems, and can be mitigated by
introducing a controller such as a simple PID controller or a Kalman filter, which is more tolerant



to measurement inaccuracy. Discussions of feedback controller design for optimizing control
robustness and accuracy is beyond the scope of this paper. Here our DDRM method serves as an
error detector from a control system engineering point of view.
As a summary, in the feedback process, if feedback group delay Y is small, the NN pattern

recognizer acts as a multidimensional phase detector, and the correction vector is predicted from
a pair of interference patterns (target and measured), to stabilize the combiner phase state close to
optimal, i.e. the state which has the highest combining efficiency seen from the training dataset.

5 −1 : {� (C), �0} ↦→ q̂(C)

5 : {1(C) + q2 (C) +
∫ C+Y

C

q= (C) 3C} ↦→ � (C + Y) ' �0

2.2. NN architecture

For two-dimensional diffractive coherent beam combining, we show that a neural network using
either multilayer perceptron (MLP) or convolutional neural network (CNN) structures are suitable
for this function, and behave equally well in both simulation and experiment. In particular, a
CNN recognizer reads the double-frame 2D pattern observations as if they are two color channel
images, and the convolution layers look at adjacent side beams within the size of the DOE
transmission function shape, extracting features out of it, before mapping to a vector in phase
space. In contrast, MLP recognizer is more generic and can be applied to any MIMO control
systems, where the input layer is just double the pattern space dimensionality (2<) and the output
layer is =, flattened.

Although the degrees of freedom in phase space is actually = − 1 (beam phases are all relative
to an arbitrary reference beam), we found no problem in training and feedback with = outputs,
because the training process is tolerant of the additional dimension, and apparently is able to use
it when driving all = beams for combining.

MLP CNN

Type Input Size Output Size Type Input Shape Output Size

Linear 2 × 25 60 2D convolutional 2 × (5 × 5) 64

ReLU ReLU

Linear 60 30 2D convolutional 64 32

ReLU ReLU

Linear 30 15 Flatten

ReLU Linear 32 15

Linear 15 8 Linear 15 8

Table 1. MLP and CNN architecture

For our 8-beam CBC in a 3 × 3 array with 5 × 5 pattern, the MLP and CNN neural network
structures are listed in Table 1. The hyper parameters are tuned manually to find the best balance
between size, inference time and prediction accuracy, and optimized with a minimal number of
layers and neurons while still maintaining reproducible results. All experiment results shown in
this paper are produced by an MLP pattern recognizer.



2.3. Fast training in limited range: Learn while stabilized by SPGD

Sampling a continuous multidimensional space can be costly in terms of data and time. We
showed previously [8] that the many-to-one mapping and large dimensionality problems can be
mitigated by training only on data from a limited range of phase space. Here, we prove that this
concept works in experiment, and together with DDRM, we show that training samples can be
from the recorded observation and action pair of any controller that can roughly maintain the
optimal combining state, so that samples are taken near the target and the number of samples
required is greatly reduced compared to a full-scale random sampling scheme.
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Fig. 3. Training dataset recorded from SPGD feedback. Dotted line indicates the SPGD
phase dithering. Blue data path shows the training data samples.

As shown in Fig. 3, a conventional controller such as SPGD stabilizes the phase state near
optimal, and the recorded observation and dithering pairs form a labelled training set for DDRM,
where one sample is {� (C), q3 (C), � (C + n)}. In one SPGD correction step, both forward and
backward dithering data are used.
For the 8-beam CBC in a 3 × 3 array, in simulation, we found that learning from SPGD only

requires 600 samples and 20 episodes of training in order to achieve ∼ 99% normalized efficiency
and < 0.5% RMS stability, where similar performance requires 40,000 samples using a random
dithering method without focusing near the optimal region.

3. Experiment Result

3.1. Beam array formation and optical setup

Having previously shown that the diffractive optic pair works with short pulses [4], we used a
CW signal instead, with no change to the combining principle.
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We implemented the control scheme on an 8-way beam combiner similar to that of [6], as
shown in Figure 4. This device is designed to equalize delays and combine an array of high energy
fiber amplifiers seeded by signals successively picked off from a central beam. For these tests we
implemented piezo-actuated mirrors for phase control, using a single-frequency CW laser as a
source, split eight ways using a separate diffractive optic. An array of mirrors forms the eight
beams into a 3 × 3 matrix with no center beam, which is then incident on the angular dispersion
compensating diffractive optic. After passing through the diffractive combining optic, a fraction
of the output power is incident on a camera which images the far field spots, showing interference
patterns associated with the input beam array phase state. This information is processed by the
neural network to yield error signals applied to the piezo mirrors to shift optical phases. There
are two power meters, measuring the combined beam power and the summation of side beam
power respectively, for out-of-loop efficiency and stability measurements.

Latency (delay) of feedback signals, together with the bandwidth of the errors to be minimized,
defines the stability of control. Latency should be much smaller than the error period, requiring
fast hardware and software implementations. For our 8-beam CBC in a 3 × 3 array with 5 × 5
pattern, we found the inference time of our 4 layer MLP model is about 0.21 ms, and a CNN
model with two convolutional layers is about 0.33 ms, on a typical CPU without any GPU
acceleration. When quantized on an FPGA, the inference time of a 16-bit MLP model could be
reduced to 85 ns (or 17 clock cycles at 200MHz).

The camera (Teledyne Dalsa Genie Nano M640 NIR) has a sensor without gamma correction,
and the response is linear with respect to the number of photons received by the sensor. The
camera is configured with Mono 10-bit pixel format readout through Ethernet at 100 frames
per second, at a fixed exposure time of 1 ms without analog gain (39.7 dB SNR), so the sensor
sensitivity is constant. The camera region-of-interest is 320 × 320 pixels, covering the 5 × 5
pattern with beam size of about 40 × 40 pixels. The 25 beam power values are calculated by
integrating the camera pixel levels around each beam centroid, and are flattened as a floating
point 1D array to feed into the MLP NN input layer, or a 2D matrix to the CNN input layer.
The piezo driver is an 8-channel, 16-bit DAC (digital-to-analog-converter) followed by an

8-channel piezo amplifier, and the measured step response rise time is about 0.4 ms. All data
acquisition, neural network inference, and loop control tasks are performed on a PC (Ubuntu 18.08,
Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz) without hardware acceleration, where the end-to-
end group delay is about 4 ms. The 4ms includes camera exposure, Ethernet communication,
image processing, neural network inference, PID controller processing, communication to DAC
FPGA, and piezo mirror actuation time. A PID controller is used to balance and optimize loop
gain and stability. We operate the feedback loop at 100 Hz, which is sufficient given the noise
bandwidth of the input beam as shown in Fig 5. The two power meters (Thorlabs PM16-121)
have analog amplifier bandwidth of 10 Hz, and communicate through a USB interface. They are
only used for out-of-loop measurement of absolute optical power and their bandwidth does not
affect feedback control.



Besides the piezo mirror bandwidth limit, the feedback loop bandwidth is largely limited by
CPU load, Gigabit Ethernet throughput, camera exposure and image processing time, lack of
synchronous data acquisition, and the uncertainty of the non-realtime operating system. We are
now implementing everything on a single FPGA chip, so the loop group delay can be reduced to
sub-microsecond when using fast ADCs instead of camera.

3.2. Input beam characterization

We measured the input beam power and phase noise and calculated their power spectral density
(PSD) as shown in Fig 5.

300

320

340

360

380

400

420

Po
we

r [
W

]

Input beam power

10 5

10 3

10 1

101

Po
we

r S
pe

ct
ra

l D
en

sit
y 

[
W

2  /
 H

z]

PSD of input beam power (average)

00:00 01:40 03:20 05:00 06:40 08:20 10:00
Time [Minute:Second]

400

200

0

200

400

Ph
as

e 
er

ro
r [

de
g]

Input beam phase stability

10 2 10 1 100 101

Frequency [Hz]

10 3

10 2

10 1

100

101

102

103

104

Po
we

r S
pe

ct
ra

l D
en

sit
y 

[d
eg

2  /
 H

z]

PSD of input beam phase (average)

Fig. 5. Power and phase instabilities of incident beams. Data sampling rate is 100 Hz
for both cases.

For power noise, we record the summation of two power meters, when only unblocking one
input beam in free-running condition. The average RMS beam power stability is about 0.48%
over 10 minutes, and the measured average noise spectral density rolls off at ∼ 10Hz, due to the
analog bandwidth of the power meters used for measurement. The power meters are out-of-loop,
and we do not control beam powers. We made no attempt to balance the input beam powers
either. The 0.48% RMS power stability contributes very little to the combining efficiency loss,
according to the power fraction perturbation analysis 1 − [ = (f%/%)2 /4 as in [16]. And the
power induced interference pattern change is small for recognition detection, at a sampling rate
of 100Hz.

It is trickier to measure phase noise. Instead of trying to measure a free-running condition, we
record the piezo mirror movement driven by each DAC output when the combiner is stabilized
by a NN controller, which offers the best stability. This gives ∼ 0.4% RMS in combined beam
power, and [ =∼ 98.5% normalized efficiency, which corresponds to about fq =

√
1 − [ = 7.1◦

RMS piston phase error [16]. Details about this estimation can be found at the end of Section 3.3.
The DAC count is converted to optical phase by a calibration procedure interfering two beams



while quickly sweeping the phase of one of them. The estimated average phase stability is about
59 ± 7.1◦ RMS over 10 minutes, and the noise bandwidth also falls within 20 Hz. The estimated
phase noise includes the actual phase noise but also the NN based feedback error, detection noise
and the PZT noise. Our sampling rate of 100 Hz is high enough to cover the majority phase noise
bandwidth of 20 Hz.

When translating this stabilization scheme to high average power lasers, the control bandwidth
will have to be increased. Sources of phase noise exhibited from high power fiber amplifiers
include thermally-induced noise, amplified spontaneous emission (ASE), pump power fluctuation
and thermo-acoustic phase noise, with an overall bandwidth of about 1 kHz (e.g. Optical Engines
PE1000 amplifier, as shown in Fig.1(c) of [17]). Active stabilization in high power laser
systems will require about ∼10 kHz, and a low-latency controller with end-to-end group delay of
microseconds. The DDRM control method described in this paper could achieve this goal when
implemented in a realtime device such as an FPGA.

3.3. DDRM Training and Stabilization Performance

An SPGD controller is implemented with optimized gain, with dithering size of RMS 25◦.
Training from SPGD records 8,000 samples (takes 80 seconds), uses < 40 episodes of training,

resulting an RMS prediction error of about 11 degrees (validation loss of trained NN). We start
recording data at a random phase state without waiting for the SPGD to converge, and the majority
of the 8,000 samples are around the optimal state.

The trained NN is always able to achieve optimal combining efficiency with stability of < 1%
in long term, regardless of any system conditions (e.g. optical alignment, beam power, camera
settings, etc.). Fig. 6 shows the phase prediction error of the trained NN versus the number of
episodes of training. After < 40 episodes, the phase prediction error reduces to < 13◦ RMS.
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dithering amount q3 = 25◦ RMS. The blue curve is from the training process ("training
loss"), and the orange curve is validation error from presenting the trained NN with
new data samples (not in the training set, or "validation loss").

Once this training process is complete, the trained neural network is presented with a measured
interference pattern � (C) and the best pattern it has seen in the training dataset (the target pattern
�0). Fig 7 shows the in-loop (from camera) and out-of-loop (from power meter) measurements
of SPGD feedback and NN feedback respectively, where NN is able to maintain maximum
achievable efficiency without introducing dither noise.
The center beam is saturated in the camera measurement after the loop is closed. We use all

25 observable beam powers as input to NN, because they all contain detailed information for
decoding the phase state, even in highly nonlinear (saturated) response regions. Presenting all



information to NN also helps during the locking process when the center beam is not saturated.
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Fig. 7. Comparison between SPGD and NN feedback. Upper left: camera measurement
of combined and side beams, from SPGD. Lower left: power meter measurements with
SPGD. Upper right: camera-measured beam powers with NN. Lower right: power
meter measurements with NN. The camera saturates at high intensity, while the power
meter is linear.

Fig. 7 shows the difference between the SPGD algorithm and the NN over 5 minutes. The
difference is due to several factors. At the camera sampling rate of 5B = 100 Hz, the cutoff
frequency of SPGD algorithms is typically 5B/10/# where # = 8 is the number of beams. This
value is improved by a factor of 3 when using orthogonal dither [18], so the feedback bandwidth
of SPGD is about 4 Hz in the present case. Our ultimate application will be limited in repetition
rate to about 10kHz with 100 beams, giving 10Hz response, which is not adequate. Also,
the SPGD is using only one sensor, that of the combined power, while the NN uses 25-spot
interference patterns observed on the camera, gaining more data. This advantage scales with the
number of beams. In addition, the SPGD must dither in order to determine how to correct the
input phases. For training, we can use SPGD as a guide to the area around the optimal point, and
not reduce performance of the NN.
In addition to adding noise from random dither, the SPGD recovers slowly (in a fraction of



a second) from perturbations, given its cutoff bandwidth of ∼ 4Hz. Our pattern recognition
scheme recovers in one cycle, and this is true for any number of beams, whereas the latency
of SPGD scales with the number of beams. When feedback is turned on, both methods need
multiple correction steps to reach the optimal phase state from a free-running, random phase
state. The speed of convergence can be seen from Fig. 7b, where SPGD takes about 3 seconds
and NN takes about 0.3 second.

Under these conditions, the NN outperforms SPGD. In other applications with higher sample
rates or lower latency, it is possible to achieve better performance with SPGD. What is
demonstrated here is that for the set of conditions we have in our current application, the NN
with DDRM achieves useful results and shows promise for future applications where repetition
rate is limited. These comparison results clearly show the motivation behind our development of
the DDRM method.
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Fig. 8. Experimental 8-beam combining process, showing time near closing of the loop.
(a) Upper: combined and side beam powers. Lower: DAC values. (b): interference
pattern before and after locking, seen by the camera. (c): Beams combined from a
random state takes less than 35 correction steps.

Fig 8a shows the typical locking process from free running state to combined state. Figure 8b
shows interference patterns (center beam saturated) before and after the loop is closed. Fig 8c
zooms in around the moment when the NN controller is turned on. It takes less than 35 steps for



NN controller to bring the combiner from an arbitrary phase state into the optimal combined
state and maintain stability afterwards.
Fig. 9 shows the long term stability of a NN controlled loop using out-of-loop power meter

measurements of the combined and total side beam powers, where stability of the combined
beam is RMS 0.4% after locking, which is similar to the input beam power stability.
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Fig. 9. Experiment data of 3×3 combiner using neural network recognizer stabilization,
over 33 minutes. Upper graph: combined beam and side beam powers. Lower graph:
DAC output values used to control phase during stabilization. Combining efficiency:
4192/(4192 + 1174) = 78.1%.

The practical combining efficiency is limited by the diffractive combiner, which can be
determined by measuring its efficiency when used as a splitter. We determined the splitting
efficiency of the combining DOE by sending one beam onto the DOE, and measuring the power
of each beam versus the total power after the DOE (removing transmission loss). The resulting
splitting efficiency is 82.1%, while the measured combining efficiency is 78.1%. The measured
combining efficiency is therefore 95% of the theoretical maximum, indicating that our phase
controller contributes little to the overall loss in efficiency. Diffractive splitters with efficiency in
the high 90s% have been demonstrated.

In the current experiment, it is not possible to directly measure residual phase error when the
controller is operational. This would require a separate, highly reliable diagnostic. However, an
indirect, simplified estimation of the RMS error can be derived from the efficiency loss [16],
fq =

√
1 − [, where [ is the normalized combining efficiency. This estimate assumes equal

beam amplitudes and other ideal conditions, and a full assessment of estimation accuracy is
beyond the scope of this paper, but normalized combining efficiency loss can still be used to
find an upper bound of the RMS residual phase error. We calculate the average combined beam
power using NN data, and find the maximum achievable combined beam power using SPGD
data, so that the ratio of the two represents [. We used data shown in Figure 7, where the SPGD
max power is 224.8 k counts and NN average power is 223.5 k counts. After correcting camera
saturation, the measured [ is 98.5%, corresponding to fq = 7.1◦ RMS residual phase error
of the NN feedback loop. This is close to the 5.7◦ RMS piston phase error required for < 1%
efficiency loss, according to [16]. From another point of view, based on phase estimation error
during training (Figure 6) our NN has 13◦ RMS phase error detection accuracy. Since this is
uncorrelated among 8 beams, the detection error averages down to 13/

√
8 = 4.6◦, which could



result in 7◦ RMS phase error, when using a tuned PID controller. Our numerical simulation also
confirmed this estimation based on both instability and efficiency loss. Results from Monte-Carlo
simulations using our 2D convolution model show that RMS phase error of 7.1 degrees leads
to an instability of 0.46% and combining efficiency of 99.2%. These results are close to the
simplified estimates above, and are described in more detail in an upcoming paper [14].
We ran the same experiments for 6 months, and the trained NN is always able to achieve

similar combining efficiency to the SPGD controller, and maintain < 1% combined efficiency
stability, measured by out-of-loop power meters.
We also studied the robustness of NN based feedback, by purposely introducing a small

movement (20 jog steps, or ∼ 0.57◦) on one axis of a motorized alignment mirror, controlled by
a piezo inertia motor controller (Thorlabs KIM101). This results in about 125◦ of phase shift due
to changes in optical path length, over a few milliseconds. Observing the DAC output response,
the NN control loop is able to adjust the DAC value of the corresponding channel and recover
to the steady combined state in a few steps, without any noticeable degradation of stability or
efficiency. The loop step response behavior is consistent with the locking process from a random
state.
We also tested the robustness of the training process by blocking one beam. The retrained

NN (with the same architecture) is still capable of combining 7 beams with similar performance,
except the unused DAC channel is driving at the slew rate limited value, as expected.

4. Ongoing investigation of recursive learning

4.1. Method

A recursive relearning process, learning from data during stabilization, could capture and track
system variations such as beam power drift, as shown in Fig. 10.
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Fig. 10. NN feedback and recursive relearning processes using locking data. Blue data
path shows the training data samples.

Since there is no dithering during this deterministic feedback, we use the predicted phase q̂(C)
and the pattern pair as one sample in the training data set, and the NN is retrained from scratch
using only the locking data without disturbing operation. In other words, there is no memory or



history from the previous iteration, and the NN weights are newly trained only from the locking
data. The target pattern �0 is also updated by selecting the highest efficiency pattern in the locking
data. The training process is identical as described in Section 2.1. In this way, all external system
transfer functions are captured and tracked, including the PID controller gain, optical coherent
combining process, and measurement electronics response (such as camera settings).

4.2. Result and discussion

We implemented recursive relearning when recording the data in Fig. 9, where there are 27
relearning iterations. Each iteration records 4,000 samples, i.e. 40 seconds at 100 Hz sampling
rate, where the RMS prediction error is < 1◦ because of the quiet locking data. The retraining
process takes less than 20 seconds, followed by < 1 ms to swap NN weights when the CPU
is waiting for the next camera frame. There is no loop instability or transient observed due to
the NN update. The retrained NN is also capable of locking from a free running state, with
performance similar to the SPGD-trained NN.
This demonstrates that the NN locking data contains enough information for retraining NN

weights and maintaining consistent performance. The target pattern �0 is also updated at each
iteration, from the best of the 4,000 samples. These findings point to a potential solution to
challenge 6, as stated in the introduction.
However, we found that the retraining process is not able to compensate for changes of

uncontrolled parameters (e.g., large changes in the power of one beam), compared to SPGD
training. This may be due to the very limited range of phase states in the training set, because
there is no wide-ranging dither or exploration of the new phase landscape. Also, the effective
phase dithering derived from locking data are not from an orthogonal set, and are thus less
efficient in sampling. These are topics for future research toward implementation of recursive
learning during operation.
In practice, with a 10kHz sampling rate, it only takes one second to get enough data samples

for training with exploration (e.g. from SPGD), which is allowable for many applications that do
not strictly require uninterruptible operation.

5. Conclusion

We have experimentally demonstrated that a neural network-based phase controller can learn while
phases freely drift or are being controlled within some range, by employing a differential mapping
technique, DDRM. This approach results in accurate data that can provide high resolution phase
error estimates and tight control of beam combining efficiency. It also supports the possibility
of relearning during operation, which could obviate the need to stop operation for retraining.
The demonstrated neural network controller provides fast recovery from a random state, and
single-step correction of small perturbations, when trained using an unconventional protocol.
The DDRM method could have many other applications where it is necessary to train a machine
using unstable data.
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